+

US20030193271A1 - Surface mount quartz crystal resonators and methods for making same - Google Patents

Surface mount quartz crystal resonators and methods for making same Download PDF

Info

Publication number
US20030193271A1
US20030193271A1 US09/946,222 US94622201A US2003193271A1 US 20030193271 A1 US20030193271 A1 US 20030193271A1 US 94622201 A US94622201 A US 94622201A US 2003193271 A1 US2003193271 A1 US 2003193271A1
Authority
US
United States
Prior art keywords
plate
planar area
resonator
central portion
border
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US09/946,222
Inventor
William Beaver
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to US09/946,222 priority Critical patent/US20030193271A1/en
Publication of US20030193271A1 publication Critical patent/US20030193271A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders or supports
    • H03H9/0595Holders or supports the holder support and resonator being formed in one body
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • H03H3/04Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks for obtaining desired frequency or temperature coefficient
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/02Details
    • H03H9/05Holders or supports
    • H03H9/10Mounting in enclosures
    • H03H9/1007Mounting in enclosures for bulk acoustic wave [BAW] devices
    • H03H9/1035Mounting in enclosures for bulk acoustic wave [BAW] devices the enclosure being defined by two sealing substrates sandwiching the piezoelectric layer of the BAW device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic elements; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • H03H9/19Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator consisting of quartz

Definitions

  • the present invention relates to quartz crystal resonators and methods for making same. More particularly, the invention relates to surface mount quartz crystal resonators, and methods of making such resonators, which are straightforward in construction, inexpensive to manufacture, and effective and durable in use.
  • Quartz crystal resonators because of their frequency accuracy and stability, are indispensable in modern electronics, for example, in telecommunications, computers, entertainment equipment and the like, as well as in other applications, many of which are well known.
  • a quartz crystal resonator is a device comprising a piezoelectric quartz crystal element in the form of a thin plate, for example, a circular or rectangular plate, and an enclosure which can be sealed by some means to form a hermetic seal. Electrical terminals are provided which pass into the enclosure to provide the means to apply an alternating voltage across the quartz crystal element causing the element to vibrate.
  • the piezoelectric quartz element has a set of thin conductive metallic electrodes deposited onto its major surfaces.
  • the over lapping area of the electrode on one side of the plate with that of the electrode on the other side of the plate defines the resonating portion of the quartz element.
  • the piezoelectric quartz crystal element resonates when an alternating voltage having a frequency of the resonant frequency of the quartz crystal element, is applied.
  • the resonant frequency of the quartz crystal element is determined by the piezoelectric and elastic constants of quartz, the dimensions of the quartz element, the metallic electrodes and other secondary factors.
  • quartz crystal resonators were made up of an electroded piezoelectric quartz crystal plate and a ceramic enclosure or base.
  • the quartz crystal resonator plate is fixed in or on the ceramic enclosure by electrically conductive epoxy applied at two points on one end of the quartz crystal plate.
  • a metal cover is welded to a metal flange on the ceramic enclosure.
  • a ceramic cover is joined to the ceramic enclosure or base by means of adhesive or by reflow of low melting point glass.
  • the ceramic enclosures or bases are of laminated ceramic construction which employs a combination of cofired metallic depositions, metal vias and ceramic-to-metal seals. These ceramic components require a high level of technology to manufacture, are comparatively expensive, and have historically been in short supply.
  • the present resonators are straightforward in construction, relatively inexpensive to manufacture, effective in use, for example, in electronic equipment such as computers, handheld cell phones, wireless control and data transmission systems and the like, and do not rely on materials or components which have historically been in short supply.
  • the present surface mount quartz crystal resonators do not require, and preferably do not include, the ceramic enclosures or bases referred to above.
  • the present invention avoids dealing with such ceramic enclosures or bases and the problems attendant thereto.
  • the present quartz crystal resonators are encapsulated in a base plate of quartz and a cover plate of quartz.
  • the present surface mount quartz crystal resonators when installed in the application circuit have substantial, preferably enhanced, resistence to shock and vibration.
  • the present resonators can be produced with a reduced height and/or profile relative to the resonators of the prior art.
  • the present methods of producing surface mount quartz crystal resonators are straightforward to practice and provide a cost effective approach to producing surface mount quartz crystal resonators.
  • the present resonator plates comprise a quartz crystal-based plate or plate member including a central portion or region having a peripheral region, for example, around the width and length of the central portion.
  • the central portion is adapted to resonate at a desired frequency, preferably in response to an alternating voltage being applied across the central region.
  • a border or border portion is provided which substantially surrounds the peripheral region of the central portion.
  • the border includes a first region physically separated or spaced apart from the central region, and a second region joined to the central portion.
  • the central portion of the quartz crystal-based plate resonates at a desired frequency preferably in response to the application of an alternating voltage, while the border of the plate remains substantially stationary, as will be described hereinafter.
  • the border of the plate remains substantially stationary, as will be described hereinafter.
  • the other portion, that is the border, of the plate is used to support the resonating central portion and to provide part of the housing or enclosure of the surface mount resonator.
  • the first region of the border which is physically separated from the central portion of the plate member preferably is formed by removal of quartz from a solid quartz crystal plate.
  • a solid quartz crystal plate is provided and a quantity of quartz is removed, for example, forming a slot, so that the first region of the border is spaced apart, for example, by the formed slot, from the resonating central portion.
  • the outer periphery of the quartz crystal-based plate may be of any suitable geometric shape, for example, suitable for use in a surface mount quartz crystal resonator.
  • Particularly useful geometric shapes include a substantially circular shape, a substantially rectangular shape and the like.
  • the quartz crystal-based plate has a rectangular outer periphery and includes a slot located between the central portion and the first region. The slot is located inwardly of the outer periphery along at least three sides of the rectangular outer periphery.
  • the central region of the quartz crystal-based plate preferably is provided with electrodes to facilitate the application of an alternating voltage.
  • a first electrode is provided on the top surface of the central portion and a second electrode is provided on an opposing bottom surface of the central portion.
  • the thickness of the central portion may be substantially uniform or may be variable. In one very useful embodiment, the thickness of the central portion preferably is reduced in the region or regions of the central portion which are outside of the resonant region defined by the overlapping electrodes. For example, the thickness of the central region may be reduced in one or more regions of the central portion on which neither first nor second electrode is provided.
  • the thickness of the central portion is essentially uniform but is substantially or significantly reduced relative to the thickness of the border.
  • the electrode material is extended from the resonant central part to an outer peripheral surface of the quartz-crystal based plate. Moreover, the electrode material is deposited on the plate in a recessed planar region having no substantial ridges. Alternatively, the electrode material may be deposited on the plate in an elevated planar region.
  • the first electrode extends in a plane from the resonant portion to the outer edge of the border.
  • the electrode extends across the outer edge surface of the border to the opposing side of the quartz crystal-based plate.
  • the electrode is essentially flat and ridgeless across the surface of the quartz crystal-based plate.
  • resonator assemblies which comprise a quartz crystal-based plate or plate member, as described elsewhere herein, and a base plate secured to the plate so that the central portion of the plate is free to resonate relative to the base plate, for example, in response to an appropriate alternating voltage being applied thereto, across the plate.
  • the base plate is secured to the border of the quartz crystal-based plate, preferably along substantially the entire outer portion of the border. This securement of the base plate to the border of the quartz crystal-based plate provides a substantially strong mechanical bond between the plate member and the base plate. This enhances the durability of the present resonators, for example, relative to the prior art resonators, which enhances the effective life of the present resonators.
  • the base plate and quartz crystal-based plate can be secured using various techniques, it is preferred that adhesives be employed.
  • the assembly preferably includes an adhesive located between the base plate and the border of the quartz crystal-based plate. This adhesive is effective in securing the base plate to the border.
  • a suitable adhesive may be employed.
  • One particularly useful class of adhesives are epoxy-based adhesives.
  • the base plate may be comprised of any suitable material of construction, for example, metals, glasses, ceramics and the like, the preferred material of construction is quartz.
  • quartz is very effective in reducing costs while substantially matching the physical characteristics of the quartz crystal-based plate.
  • the base plate preferably includes a plurality of base electrodes positioned so that one base electrode is in electrical connection with the first electrode of the central portion of the plate member and another base electrode is in electrical connection with the second electrode of the central portion.
  • Such base electrodes are very effective in providing the alternating voltage signal from a remote source to the resonating central portion of the plate member.
  • the electrodes described herein may be constructed of any suitable electrically conductive material. However, it is preferred that such electrodes comprise metals.
  • the electrodes can be provided in any suitable manner. Preferably, the electrodes are provided by vacuum deposition onto the surface, as desired.
  • Quartz crystal resonators in accordance with the present invention, include the quartz crystal-based plate and base plate, as described elsewhere herein, and, in addition, a cover plate secured to the quartz crystal-based plate so that the plate is located between the base plate and the cover plate.
  • the base plate and the cover plate are both secured to the border of the quartz crystal-based plate. More preferably, both the base plate and the cover plate are secured to substantially the entire outer portion of the border so that the resonator is firmly mechanically bonded together and the resonating central portion of the quartz crystal-based plate is hermetically sealed or enclosed.
  • a first adhesive is provided which is located between the base plate and the border and is effective in securing the base plate to the border
  • a second adhesive is provided and located between the cover plate and the border and is effective in securing the cover plate to the border.
  • the compositions of the first and second adhesives may be the same or different, preferably the same.
  • the cover plate preferably comprises quartz.
  • the quartz crystal-based plate, base plate and cover plate all comprise quartz.
  • at least one of the base plate and the cover plate includes an outwardly extending recess. This feature will be described in more detail hereinafter.
  • methods for producing quartz crystal resonators include providing a solid quartz crystal plate. Quartz is removed from the solid quartz crystal plate to form a quartz crystal plate member including a central portion, a border and a space, preferably a slot, between the central portion and the border including a first region separated from the central portion and a second region joined to the central portion. First and second electrodes are placed on the top surface and the opposing bottom surface of the plate member, respectively.
  • the plate member is secured to an electroded base plate so that the central region is free to resonate relative to the base plate, preferably in response to an alternating voltage being applied to the central region.
  • the plate member is secured to a cover plate so that the plate member is located between the base and the cover plate.
  • quartz material is removed from each one of the upper surface and lower surface of the plate to form a recessed planar region, or alternatively, an elevated planar region, for accommodating the electrode on each one of the upper surface and lower surface of the plate.
  • the recessed or elevated planar region is substantially continuous and extends to the outer peripheral edge of the quartz crystal based plate.
  • Outer peripheral edge surface plating is provided which conductively connects the electrode on an upper surface of the plate with a terminal portion of the electrode on a lower surface of the plate without need for through holes or the like.
  • the electrode preferably comprises a substantially flat, continuous plating.
  • the base plate and the cover plate both comprise quartz and the securing steps include the use of adhesives to secure the plate member to the base plate and the plate member to the cover plate, respectively.
  • the securing steps are effective to both mechanically bond the base plate, the plate member and the cover plate together, and form a hermetically sealed periphery.
  • Electrically conductive adhesive preferably electrically conductive epoxy adhesive, is employed to make contacts between the electrodes which are deposited on the central portion and the electrodes which are deposited onto the base plate which complete the electrical circuit of the resonator.
  • FIG. 1 is a top front view, in perspective, of a piezoelectric quartz crystal resonator plate in accordance with the present invention
  • FIG. 2 is a perspective illustration of the plate shown in FIG. 1 with conductive metallic electrodes coating the major surfaces;
  • FIG. 3A is a perspective illustration of the upper internal surface electrode pattern of a quartz base plate in accordance with the present invention.
  • FIG. 3B is a perspective illustration of the lower external surface electrode pattern of the quartz base plate in accordance with the present invention.
  • FIG. 4 is a perspective illustration of the piezoelectric quartz resonator plate shown in FIG. 2 bonded to the quartz base plate;
  • FIG. 5 is a perspective illustration of a surface mount quartz crystal resonator in accordance with the present invention.
  • FIG. 6 is a cross-sectional view of an alternate embodiment of a surface mount quartz crystal resonator in accordance with the present invention.
  • FIGS. 7A and 7B are a partial top view and a cross-sectional view, respectively, of another piezoelectric quartz resonator plate in accordance with the present invention.
  • FIGS. 8A and 8B are a partial top view and a cross-sectional view, respectively, of a further piezoelectric quartz resonator plate in accordance with the present invention.
  • FIG. 9 is a perspective view of a resonator plate in accordance with a preferred embodiment of the invention.
  • FIG. 10 and 11 are cross-sectional views of the resonator plate shown in FIG. 9, taken across lines 10 - 10 and lines 11 - 11 respectively.
  • FIG. 12 is an exploded view of a resonator assembly including the resonator plate shown in FIG. 9.
  • FIG. 13 is a top view of another resonator plate of the invention.
  • FIG. 14 is a cross sectional view of the resonator plate of FIG. 13 taken across line 14 - 14 .
  • FIG. 1 a rectangular piezoelectric quartz crystal plate 10 is shown.
  • a decoupling slot 11 has been formed in the plate 10 by removing a narrow section of quartz along three sides of the plate 10 and partially along fourth side 14 .
  • the forming of the decoupling slot 11 creates a central resonant part 13 of quartz and a border 12 of quartz around the peripheral region 13 A of central resonant part.
  • the border 12 includes a first region 12 A which is spaced apart, by slot 11 , from resonant part 13 , and a second region 12 B which is joined to the resonant part.
  • the amount of removal along the fourth side 14 of the plate 10 depends on how strong the second region 12 B joining the border 12 and the resonant part 13 is desired to be. Second region 12 B is strongest if no quartz is removed parallel to the fourth side 14 of the plate 10 .
  • the length of the quartz plate 10 is shown to be parallel with the X Axis, referred to as the crystallographic axes of the quartz crystal and the AT-cut of quartz crystal.
  • the width of plate 10 is parallel to the Z′ Axis and the thickness of the plate is parallel to the Y′ Axis.
  • t thickness in mm and F is the resonating frequency in MHZ.
  • the resonator assemblies in accordance with the present invention are adapted to resonate at frequencies within a range of between about 3.2 MHz to about 100 MHz. More specifically, in one embodiment of the invention, a resonator assembly is provided which can resonate at frequencies between about 8 MHz and about 50 MHz.
  • the forming of the quartz plate 10 in the way shown in FIG. 1 provides a resonant part 13 of the plate 10 which is substantially mechanically isolated from the border 12 of the plate so that the border of the plate may be incorporated into the enclosure structure of the quartz crystal resonator to be made from plate 10 without detriment to the resonant characteristics of the final product.
  • conductive metallic electrodes 14 and 15 are vacuum deposited opposite each other, on the top or first major surface 13 B and the bottom or second major surface 13 C, respectively, of resonant part 13 of the quartz plate 10 , as is shown in FIG. 2.
  • the dimensions of the electrodes 14 , 15 depend on the values of the parameters of the equivalent electrical circuit which the final quartz crystal resonator is being designed to meet and the size limitations that may apply because of the application involved. However, the thickness of the electrodes 14 , 15 and the density of the metal that is employed for the electrodes 14 , 15 are primary factors that determine the reduction in frequency of the resonant part 13 of the quartz plate 10 from the frequency that is apparent when no electrodes have been applied to the resonant part 13 , which is referred to as the unelectroded frequency.
  • f u is the unelectroded frequency of the resonant part
  • f e is the frequency of the electroded resonant part.
  • the energy of the wave is proportional to the square of the acoustic displacement, the energy of the wave also exponentially decreases as it radiates from the electrode edges 16 , 17 toward the edges 18 , 19 of the resonant part 13 of the quartz plate 10 .
  • This phenomenon is termed energy trapping and is well known in the quartz device industry.
  • Energy that reaches the edges 18 , 19 of the resonant part 13 is lost from the resonator either by dispersion or absorption of the acoustic wave.
  • the larger the value of ⁇ the greater the rate of exponential decreasing of the amplitude of the acoustic displacement and the greater the amount of energy trapping.
  • the equivalent series resistance is large.
  • ⁇ and the length of quartz plate between the edges of the electrodes 16 , 17 and the edges 18 and 19 of the resonant part 13 are design considerations in determining the dimensions of the quartz plate 10 and the resonant part 13 so that the quartz crystal resonator meets the requirements of the intended application, such as they may be.
  • Conductive metallic appendages extend from the top electrode 14 and the bottom electrode 15 to terminal electrode areas 20 , 21 of the quartz crystal resonator plate 10 .
  • the significance of the terminal electrode areas 20 , 21 is that they line up with base terminal electrode areas 26 , 27 on the upper internal surface 23 of the quartz base plate 22 which is shown in FIG. 3.
  • Conductive epoxy is applied so that it connects the terminal electrode area 20 to base terminal electrode area 26 and terminal electrode area 21 to base terminal electrode area 27 .
  • the quartz plate 10 including electrodes 14 and 15 , is bonded to quartz base plate 22 , which is shown in FIGS. 3A and 3B, using a conventional epoxy adhesive.
  • the quartz base plate 22 has about the same crystallographic orientation as the quartz crystal plate 10 so that the thermal expansion characteristics of the base plate and the plate 10 are substantially or essentially the same.
  • base plates of quartz having crystallographic orientations dissimilar from the plate 10 or of materials other than quartz can be employed.
  • FIG. 3A shows the upper internal surface 23 of base plate 22
  • FIG. 3B shows the lower external surface 24 of the quartz base plate 22 .
  • the lateral dimensions of the quartz crystal plate 10 are essentially the same as the quartz base plate 22 .
  • the metallic electrode pattern 25 , 28 on the upper internal surface 23 is such that metallic electrode leads extend from each of the terminal electrode areas 26 and 27 to metallic electrodes 25 and 28 , respectively, which in turn wrap around the edges of the base plate 22 to connect to terminal electrode areas 29 and 30 , respectively, on the lower external surface 24 of the quartz base plate 22 .
  • a conventional conductive epoxy adhesive is applied so that it connects the terminal electrode areas 20 , 21 on the quartz plate 10 with base terminal electrode areas 26 , 27 on the upper internal surface 23 , which are in turn connected via the metallic electrode pattern with the terminal electrode areas 29 , 30 on the lower external surface 24 .
  • the metallic electrodes 14 , 15 which drive the resonant part 13 of the quartz plate 10 are thus connected to terminals 29 , 30 on the lower external surface 24 of the base plate 22 .
  • FIG. 3B four terminal electrode areas 29 , 30 , 31 , 32 are shown on the lower external surface 24 of the quartz base plate 22 .
  • the two other terminal areas 31 , 32 are functional only in that they are soldered or fixed to the application printed circuit board and aid in locating and holding the final surface mount quartz resonator in place.
  • the number of electroded terminal areas could be reduced to two and their location on the lower external surface 24 would be that which best fits the requirements of the application.
  • the conductive metallic electrode patterns on the surfaces 23 and 24 of the quartz base plate 22 are vacuum deposited thin metallic films. However, they can be placed on the surfaces by other means as well.
  • Epoxy adhesive 34 is applied to the perimeter of either the plate 10 or the base plate 22 .
  • the application of the epoxy adhesive around the plate perimeter forms epoxy adhesive 34 into a frame having a width is less than the width of the border 12 of the quartz crystal plate 10 .
  • the plate 10 and base plate 22 are then positioned one on top of the other and seated so that the epoxy adhesive 34 completely contacts the facing surfaces of both plates. Care is taken to insure that no epoxy adhesive bridges the slot 11 in the quartz plate 10 between the border 12 and the resonant part 13 .
  • the epoxy adhesive 34 has the dual purpose of mechanically bonding the two plates 10 and 22 together and forming a hermetic seal around the joining perimeter. Note that the outer perimeter 33 of adhesive layer 34 substantially coincides with the outer perimeters of plates 10 and 22 . The thickness of the epoxy adhesive layer 34 is sufficient to keep the resonant part 13 from touching or making contact with the quartz base plate 22 when the part 13 is resonating.
  • Conventional conductive epoxy 36 is applied so that it connects the terminal electrode areas 20 and 21 of the quartz plate 10 and the terminal electrode areas 26 and 27 , respectively, on the base plate 22 .
  • the adhesives are allowed to cure in accordance with the specification of the manufacturers of the adhesive.
  • Adhesives 34 and 36 can be cured at the same time.
  • the assembly 39 of the plate 10 and base plate 22 may be tested before further processing. This can be accomplished by contacting the terminal electrode areas 29 , 30 and using the appropriate instruments for performing the tests that are required. As is normal in the case of quartz crystal resonators, the frequency preferably is adjusted to the required frequency before completing the assembly and sealing on the cover.
  • the quartz cover plate 35 has essentially the same dimensions as the quartz base plate 22 but the quartz cover plate has no functional electrodes.
  • the quartz cover plate 35 is transparent and the electrodes of the quartz crystal plate 10 and the quartz base plate 22 can be seen through the cover plate.
  • the surface of the quartz cover plate 35 is used for marking the device for identification.
  • the quartz cover plate 35 is bonded to the assembly of the quartz plate 10 and the quartz base plate 22 in substantially the same way the quartz base plate 22 was joined to the quartz resonator plate.
  • Conventional epoxy adhesive 38 is applied to the border 12 of the quartz plate 10 .
  • the width of the application of epoxy adhesive 38 around the perimeter of the quartz plate 10 is narrower than the border 12 to insure that excess epoxy adhesive does not bridge the slot 11 between the border 12 and the resonant part 13 of the quartz plate 10 . If excess epoxy adhesive should be inadvertently placed onto the resonant part 13 the resonant characteristics would be detrimentally affected depending on how much epoxy adhesive was so placed.
  • the outer perimeter 37 of epoxy adhesive 38 substantially coincides with the outer perimeter of plate 10 , base plate 22 , and cover plate 35 .
  • the cover plate 35 is then placed on top of the assembly and seated so that the perimeter of the cover plate 35 is completely in contact with the epoxy adhesive 38 and no voids are present.
  • This latter step is performed in a glove box which contains dry nitrogen gas so that the quartz crystal resonator part 13 is hermetically sealed and filled with the inert gas dry nitrogen.
  • the epoxy adhesive 38 is cured in the same inert gas in accordance with the specifications of the adhesive manufacturer.
  • the epoxy adhesive has a certain viscosity and surface tension which supports the three quartz plates 22 , 10 and 35 during assembly and keeps them from touching after cure. It is important the central resonant part 13 not be in contact with either the quartz base plate 22 or the quartz cover plate 35 . Such contact may prevent resonance from occurring or result in high equivalent series resistance of the resonator. If for any reason the design may require that the central resonant part be thicker than the perimeter border then the central part of the quartz cover and base plate can be recessed sufficient, as described hereinafter, so that contact is avoided.
  • a feature of the invention lies in the fact that the temperature coefficients of expansion of the quartz crystal plate 10 , the quartz base plate 22 and the quartz cover plate 35 are the same so the stresses which arise from the use of dissimilar materials for the base and cover according to old art are avoided.
  • a feature of this invention resulting from the structure of the resonator assembly 40 , is that the resonant part 13 of the quartz crystal resonator plate 10 is supported within the cavity which is formed by the border 12 of the quartz plate 10 , the quartz base plate 22 , the cover plate 35 and the thicknesses of the epoxy adhesives 33 and 38 around the perimeter bonding the assembly together.
  • the quartz plate 10 is not separated from the base plate 22 and the cover plate 35 , as is often the case with the prior art.
  • the strength of the quartz supporting the resonant part 13 is much greater than two small dots of conductive epoxy which supports the resonator element of surface mount quartz crystal resonators in the prior art.
  • FIG. 6 illustrates an alternate embodiment of a surface mount quartz crystal resonator assembly in accordance with the present invention. Except as expressly described herein, this alternate resonator assembly , shown generally at 140 , is structured and functions in a manner similar to that described previously with regard to resonator assembly 40 . Components of alternate resonator 140 which correspond to components of resonator assembly 40 are identified by the same reference numeral increased by 100.
  • cover plate 135 and the base plate 122 include recesses.
  • base plate 122 includes an outwardly extending recessed area 50
  • cover plate 135 includes an outwardly extending recessed area 52 .
  • These recessed areas or regions 50 and 52 can be produced by conventional methods. Such recessed areas are designed to provide additional space within which resonate part 113 can resonate without coming in contact with either the base plate 122 or the cover plate 135 .
  • This embodiment is particularly useful when it is desired to reduce the size, for example, the profile, of the resonator.
  • FIGS. 7A and 7B illustrate another embodiment of a quartz crystal plate in accordance with the present invention. Except as expressly described herein, this other quartz crystal plate, shown generally at 210 , is structured and functions in a manner similar to that previously described with regard to plate 10 . Components of other plate 210 which correspond to components of plate 10 are identified by the same reference numeral increased by 200.
  • the other plate 210 deals with the energy trapping phenomenon, which has been previously discussed with reference to FIG. 2.
  • the design of the resonant part 213 of the quartz resonator plate 210 require a very large value of ⁇ to achieve the necessary energy trapping for the design to result in an acceptably low value of the equivalent resistance.
  • mass loading is achieved by the thickness of the electrode 14 which is deposited onto the resonant part 13 of the quartz plate 10 .
  • the metallic electrode material has a much lower internal mechanical Q than quartz, using electrodes which are relatively thick increases the equivalent resistance.
  • FIGS. 7A and 7 B An alternative to increasing the electrode thickness is shown in FIGS. 7A and 7 B.
  • the frequency of the thickness shear mode which is employed in this embodiment of the invention is inversely proportional to the thickness of the quartz resonator plate 210 and can be expressed by the EQN. 1, noted above. If the thickness of the resonant part 213 is reduced, as shown in FIG. 7, between the edges of the electrode 216 , 217 and the edges of the resonant part 218 , 219 then the frequency in those regions 60 , 62 will be much higher than the frequency in the electroded region 64 . For example, if the thickness is decreased by 10% then the frequency, ignoring other factors, will increase by about 10%. Since the mass loading, A, as given by EQN.
  • the mass loading ⁇ can be increased without having excessively thick electrodes but by decreasing the thickness of the quartz plate outside of the electroded area 64 . This method enables the designs to achieve high levels of energy trapping and good values of equivalent resistance, and still be of small, compact size.
  • Quartz resonators of higher frequency are becoming of increased importance.
  • the thickness must correspondingly decrease.
  • One alternative is to use overtones of the fundamental frequency which allows for a thicker plate to be used for higher frequencies.
  • the equivalent circuit of an overtone mode resonance has higher equivalent resistance and much lower motional capacitance than the fundamental mode resonance. For this reason in many applications the fundamental mode is required.
  • FIGS. 8A and 8B illustrate a further embodiment of a quartz crystal plate in accordance with the present invention. Except as expressly described herein, this further quartz crystal plate, shown generally at 310 , is structured and functions in a manner similar to previously described with regard to plate 10 . Components of further plate 310 which correspond to components of plate 10 are identified by the same reference numeral increased by 300.
  • the central portion 313 of the quartz crystal plate 310 is reduced in thickness so that its resonant frequency meets that required by the application. This may be accomplished using any suitable technique, for example, by selectively etching the central portion 313 , while leaving the border 312 to be much thicker and stronger.
  • the thickness transition 70 lies between the border region 312 B and the central portion 313 . Using this approach a very thin central portion 313 plate 310 having high resonant frequencies can be achieved without sacrificing the thickness and strength of the border 312 .
  • FIGS. 9 - 11 show a preferred embodiment of the invention. Particularly, FIGS. 9 - 11 show specifically an alternative resonator plate 410 . Except as expressly described herein, this other resonator plate 410 is structured and functions in a manner similar to that previously described with regard to resonator plate 10 . Components of alternate resonator plate 410 which correspond to components of resonator plate 10 are identified by the same reference numeral increased by 400 .
  • the resonator plate 410 includes conductive outer edge surface plating 414 A and 415 A. More specifically, at least one of, preferably both of, the electrodes 414 and 415 extend from the central portion 413 to and across an outer edge surface 451 of the border 412 and terminate as terminal portions 414 B, 415 B disposed on the opposing side of the plate 410 .
  • the following description will refer to the first electrode 414 , although it should be appreciated that a similar or identical description can be made regarding the second electrode 415 .
  • the top surface of the resonant central portion 413 includes a planar area 458 which occupies at least a portion of the resonant central portion 413 and extends to an edge 422 A of the plate 410 .
  • the planar area is preferably flat and substantially ridgeless as shown and has a size and shape sufficient to accommodate the electrode 414 so that the electrode 414 defines a continuous, flat plane from edge 459 to edge 459 ′. This feature reduces the potential occurrence of discontinuities within the electrodes 414 and 415 and increases reliability of the resonator 410 in operation.
  • the central portion 413 has been etched and reduced in thickness such that the planar area 458 defines a recessed plane.
  • the planar area occupies the entire central portion 413 , although it should be appreciated that in some embodiments of the invention, the recessed planar area 458 may occupy only the area of the central portion 413 upon which the electrode is to occupy.
  • the recessed planar area 458 extends to the outer peripheral edge 422 A of the plate 410 and defines a groove 460 that transverses the second region 412 B of the plate border 412 .
  • This groove 460 provides a recessed pathway to accommodate an extended portion 464 of the electrode 414 between the resonant central portion 413 and the outer peripheral edge 422 A of the plate 410 .
  • the recessed portion 458 including groove 460 , defines therefor a common, substantially ridgeless and continuous plane upon which the electrode material is located.
  • the assembly 440 includes quartz cover plate 435 and quartz base 422 , with resonator plate 410 hermetically sealed therebetween, for example, by means of non-conductive epoxy 435 .
  • Conductive epoxy 436 may be applied to base plate 422 at terminal areas 426 and 427 to connect both electrodes 414 and 415 to the base plate 422 .
  • FIGS. 13 and 14 Another resonator plate 510 having conductive edge plating is shown in FIGS. 13 and 14. Except as expressly described herein, this other resonator plate 510 is structured and functions in a manner similar to that previously described with respect to resonator plate 10 and resonator plate 410 . Components of resonator plate 510 which correspond to components of resonator plate 10 are identified by the same reference numeral increased by 500.
  • Resonator plate 510 is similar to resonator plate 410 in that each of the electrodes 514 and 515 are substantially ridgeless and each occupies a continuous, flat planar area 580 extending from resonant central portion 513 to peripheral edge 522 A of the plate 510 . Each electrode 514 and 515 defines conductive edge plating 514 A and 515 A.
  • Electrode 514 and the relationship thereof with respect to the plate 510 will be described in detail, although it should be appreciated that a similar or identical description can be made for electrode 515 (shown in phantom line in FIG. 13) located on opposing surface of plate 510 .
  • the continuous planar surface area 580 for accommodating the electrode 514 is raised, or elevated, with respect to the surrounding surface area of plate 510 .
  • the elevated planar area is sized and shaped to substantially conform with the electrode located thereon such that portion 513 A of resonant central portion 513 is elevated with respect to portion 513 B of the central portion 513 .
  • the continuous substantially planar surface area 580 extends across border portion 512 B of the plate 510 forming a ridge like structure thereon.
  • the plates 410 and 510 can be formed by cutting a solid, substantially uniform quartz crystal plate to shape, with the X-crystallographic axis aligned along the length of the plate. Portions which are to be raised or elevated are covered, or masked, with a suitable material, and exposed, unmasked portions of the plate are reduced by etching techniques, sandblasting, polishing and/or any other suitable means, to form the recessed areas on the portions of the plate that are unmasked.
  • the present resonator plates can be produced in large quantities, using inexpensive materials and in very little time.
  • the present resonator assemblies can be made to be substantially smaller in size than conventional metal or ceramic enclosed resonator assemblies. It is especially notable that resonator assemblies, in accordance with the present invention, have been produced and it is believed that these comprise, presently, the world's smallest hermetically sealed quartz resonators.
  • Tables 1 and 2 illustrate production test results and resonator dimensions respectively for three resonators, Resonators Nos. 1, 2 and 3 in accordance with the present invention. The Tables are provided for purposes of example only and are not to be considered as limiting the scope of the present invention. TABLE 1 Performance test results of Resonators Nos.
  • a method of manufacturing a quartz crystal-based resonator plate comprises the steps of providing a solid quartz crystal based plate having a top surface, an opposing bottom surface, an outer edge, and an outer edge surface; removing a portion of the plate to form the quartz crystal-based plate having a shape substantially as described and shown elsewhere herein; forming a substantially ridgeless planar area on the plate that extends along a common plane from the central part to the outer edge of the plate, and the planar area being either elevated or recessed with respect to a surrounding surface area of the plate; applying an electrode material to the planar area, wherein the electrode material extends to and across an outer edge surface to the opposing side of the plate; and repeating the forming and applying steps on the opposing bottom surface of the plate.
  • the method of the present invention for manufacturing quartz crystal-based resonator plates preferably further includes stacking a plurality of the plates and applying conductive edge plating to the stack of plates.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

A surface mount quartz crystal resonator includes a quartz crystal-based plate including a central portion adapted to resonate at a desired frequency, and a border substantially surrounding a peripheral region of the central portion. The border includes a first region physically separated from the central portion, and a second region joined to the central portion. A base plate is provided which is secured to the plate so that the central portion of the plate is free to resonate relative to the base plate. A cover plate is provided and is secured to the plate so that the plate is located between the base plate and the cover plate. At least one, and preferably both, of the base plate and the cover plate are made of quartz.

Description

  • This is a continuation-in-part of U.S. patent application Ser. No. 09/583,005, filed May 26, 2000.[0001]
  • BACKGROUND OF THE INVENTION
  • The present invention relates to quartz crystal resonators and methods for making same. More particularly, the invention relates to surface mount quartz crystal resonators, and methods of making such resonators, which are straightforward in construction, inexpensive to manufacture, and effective and durable in use. [0002]
  • Quartz crystal resonators, because of their frequency accuracy and stability, are indispensable in modern electronics, for example, in telecommunications, computers, entertainment equipment and the like, as well as in other applications, many of which are well known. As used herein, a quartz crystal resonator, is a device comprising a piezoelectric quartz crystal element in the form of a thin plate, for example, a circular or rectangular plate, and an enclosure which can be sealed by some means to form a hermetic seal. Electrical terminals are provided which pass into the enclosure to provide the means to apply an alternating voltage across the quartz crystal element causing the element to vibrate. The piezoelectric quartz element has a set of thin conductive metallic electrodes deposited onto its major surfaces. The over lapping area of the electrode on one side of the plate with that of the electrode on the other side of the plate defines the resonating portion of the quartz element. The piezoelectric quartz crystal element resonates when an alternating voltage having a frequency of the resonant frequency of the quartz crystal element, is applied. The resonant frequency of the quartz crystal element is determined by the piezoelectric and elastic constants of quartz, the dimensions of the quartz element, the metallic electrodes and other secondary factors. [0003]
  • Conventionally, surface mount quartz crystal resonators were made up of an electroded piezoelectric quartz crystal plate and a ceramic enclosure or base. The quartz crystal resonator plate is fixed in or on the ceramic enclosure by electrically conductive epoxy applied at two points on one end of the quartz crystal plate. A metal cover is welded to a metal flange on the ceramic enclosure. Alternately, a ceramic cover, is joined to the ceramic enclosure or base by means of adhesive or by reflow of low melting point glass. [0004]
  • The ceramic enclosures or bases are of laminated ceramic construction which employs a combination of cofired metallic depositions, metal vias and ceramic-to-metal seals. These ceramic components require a high level of technology to manufacture, are comparatively expensive, and have historically been in short supply. [0005]
  • It would be advantageous to provide surface mount quartz crystal resonators which are straightforward in construction, inexpensive to manufacture and effective and durable in use. [0006]
  • SUMMARY OF THE PRESENT INVENTION
  • New surface mount quartz crystal resonators and methods for making same have been developed. The present resonators are straightforward in construction, relatively inexpensive to manufacture, effective in use, for example, in electronic equipment such as computers, handheld cell phones, wireless control and data transmission systems and the like, and do not rely on materials or components which have historically been in short supply. For example, the present surface mount quartz crystal resonators do not require, and preferably do not include, the ceramic enclosures or bases referred to above. Thus, the present invention avoids dealing with such ceramic enclosures or bases and the problems attendant thereto. Preferably, the present quartz crystal resonators are encapsulated in a base plate of quartz and a cover plate of quartz. Importantly, the present surface mount quartz crystal resonators when installed in the application circuit have substantial, preferably enhanced, resistence to shock and vibration. Also, the present resonators can be produced with a reduced height and/or profile relative to the resonators of the prior art. The present methods of producing surface mount quartz crystal resonators are straightforward to practice and provide a cost effective approach to producing surface mount quartz crystal resonators. [0007]
  • One important aspect of the present invention relates to resonator plates, which are a major component of the present quartz crystal resonators. In general, the present resonator plates comprise a quartz crystal-based plate or plate member including a central portion or region having a peripheral region, for example, around the width and length of the central portion. The central portion is adapted to resonate at a desired frequency, preferably in response to an alternating voltage being applied across the central region. A border or border portion is provided which substantially surrounds the peripheral region of the central portion. The border includes a first region physically separated or spaced apart from the central region, and a second region joined to the central portion. [0008]
  • In use, the central portion of the quartz crystal-based plate resonates at a desired frequency preferably in response to the application of an alternating voltage, while the border of the plate remains substantially stationary, as will be described hereinafter. Thus, only a portion of the quartz crystal-based plate resonates. The other portion, that is the border, of the plate is used to support the resonating central portion and to provide part of the housing or enclosure of the surface mount resonator. [0009]
  • The first region of the border which is physically separated from the central portion of the plate member preferably is formed by removal of quartz from a solid quartz crystal plate. In one embodiment, a solid quartz crystal plate is provided and a quantity of quartz is removed, for example, forming a slot, so that the first region of the border is spaced apart, for example, by the formed slot, from the resonating central portion. [0010]
  • The outer periphery of the quartz crystal-based plate may be of any suitable geometric shape, for example, suitable for use in a surface mount quartz crystal resonator. Particularly useful geometric shapes include a substantially circular shape, a substantially rectangular shape and the like. In one particularly useful embodiment, the quartz crystal-based plate has a rectangular outer periphery and includes a slot located between the central portion and the first region. The slot is located inwardly of the outer periphery along at least three sides of the rectangular outer periphery. [0011]
  • The central region of the quartz crystal-based plate preferably is provided with electrodes to facilitate the application of an alternating voltage. In one particularly useful embodiment, a first electrode is provided on the top surface of the central portion and a second electrode is provided on an opposing bottom surface of the central portion. [0012]
  • The thickness of the central portion may be substantially uniform or may be variable. In one very useful embodiment, the thickness of the central portion preferably is reduced in the region or regions of the central portion which are outside of the resonant region defined by the overlapping electrodes. For example, the thickness of the central region may be reduced in one or more regions of the central portion on which neither first nor second electrode is provided. [0013]
  • In another very useful embodiment the thickness of the central portion is essentially uniform but is substantially or significantly reduced relative to the thickness of the border. [0014]
  • In a preferred embodiment of the invention, the electrode material is extended from the resonant central part to an outer peripheral surface of the quartz-crystal based plate. Moreover, the electrode material is deposited on the plate in a recessed planar region having no substantial ridges. Alternatively, the electrode material may be deposited on the plate in an elevated planar region. [0015]
  • In one especially advantageous embodiment of the invention, the first electrode extends in a plane from the resonant portion to the outer edge of the border. The electrode extends across the outer edge surface of the border to the opposing side of the quartz crystal-based plate. Preferably, the electrode is essentially flat and ridgeless across the surface of the quartz crystal-based plate. [0016]
  • In another broad aspect of the present invention, resonator assemblies are provided which comprise a quartz crystal-based plate or plate member, as described elsewhere herein, and a base plate secured to the plate so that the central portion of the plate is free to resonate relative to the base plate, for example, in response to an appropriate alternating voltage being applied thereto, across the plate. The base plate is secured to the border of the quartz crystal-based plate, preferably along substantially the entire outer portion of the border. This securement of the base plate to the border of the quartz crystal-based plate provides a substantially strong mechanical bond between the plate member and the base plate. This enhances the durability of the present resonators, for example, relative to the prior art resonators, which enhances the effective life of the present resonators. [0017]
  • Although the base plate and quartz crystal-based plate can be secured using various techniques, it is preferred that adhesives be employed. Thus, the assembly preferably includes an adhesive located between the base plate and the border of the quartz crystal-based plate. This adhesive is effective in securing the base plate to the border. A suitable adhesive may be employed. One particularly useful class of adhesives are epoxy-based adhesives. [0018]
  • Although the base plate may be comprised of any suitable material of construction, for example, metals, glasses, ceramics and the like, the preferred material of construction is quartz. The use of quartz is very effective in reducing costs while substantially matching the physical characteristics of the quartz crystal-based plate. [0019]
  • The base plate preferably includes a plurality of base electrodes positioned so that one base electrode is in electrical connection with the first electrode of the central portion of the plate member and another base electrode is in electrical connection with the second electrode of the central portion. Such base electrodes are very effective in providing the alternating voltage signal from a remote source to the resonating central portion of the plate member. [0020]
  • The electrodes described herein may be constructed of any suitable electrically conductive material. However, it is preferred that such electrodes comprise metals. The electrodes can be provided in any suitable manner. Preferably, the electrodes are provided by vacuum deposition onto the surface, as desired. [0021]
  • Quartz crystal resonators, in accordance with the present invention, include the quartz crystal-based plate and base plate, as described elsewhere herein, and, in addition, a cover plate secured to the quartz crystal-based plate so that the plate is located between the base plate and the cover plate. Preferably, the base plate and the cover plate are both secured to the border of the quartz crystal-based plate. More preferably, both the base plate and the cover plate are secured to substantially the entire outer portion of the border so that the resonator is firmly mechanically bonded together and the resonating central portion of the quartz crystal-based plate is hermetically sealed or enclosed. [0022]
  • In one embodiment, a first adhesive is provided which is located between the base plate and the border and is effective in securing the base plate to the border, and a second adhesive is provided and located between the cover plate and the border and is effective in securing the cover plate to the border. The compositions of the first and second adhesives may be the same or different, preferably the same. [0023]
  • Although any suitable material may be employed as the cover plate, the cover plate preferably comprises quartz. Thus, in one particularly useful embodiment, the quartz crystal-based plate, base plate and cover plate all comprise quartz. In one useful embodiment, at least one of the base plate and the cover plate includes an outwardly extending recess. This feature will be described in more detail hereinafter. [0024]
  • In another broad aspect of the present invention, methods for producing quartz crystal resonators are provided. Such methods include providing a solid quartz crystal plate. Quartz is removed from the solid quartz crystal plate to form a quartz crystal plate member including a central portion, a border and a space, preferably a slot, between the central portion and the border including a first region separated from the central portion and a second region joined to the central portion. First and second electrodes are placed on the top surface and the opposing bottom surface of the plate member, respectively. The plate member is secured to an electroded base plate so that the central region is free to resonate relative to the base plate, preferably in response to an alternating voltage being applied to the central region. The plate member is secured to a cover plate so that the plate member is located between the base and the cover plate. [0025]
  • In a preferred embodiment of the invention, quartz material is removed from each one of the upper surface and lower surface of the plate to form a recessed planar region, or alternatively, an elevated planar region, for accommodating the electrode on each one of the upper surface and lower surface of the plate. The recessed or elevated planar region is substantially continuous and extends to the outer peripheral edge of the quartz crystal based plate. Outer peripheral edge surface plating is provided which conductively connects the electrode on an upper surface of the plate with a terminal portion of the electrode on a lower surface of the plate without need for through holes or the like. The electrode preferably comprises a substantially flat, continuous plating. This embodiment of the resonator plate is straightforward and economical to manufacture and highly reliable in operation. In addition, the resonator of this embodiment can be made extremely small in size for use in a variety of applications. [0026]
  • In one embodiment, the base plate and the cover plate both comprise quartz and the securing steps include the use of adhesives to secure the plate member to the base plate and the plate member to the cover plate, respectively. The securing steps are effective to both mechanically bond the base plate, the plate member and the cover plate together, and form a hermetically sealed periphery. Electrically conductive adhesive, preferably electrically conductive epoxy adhesive, is employed to make contacts between the electrodes which are deposited on the central portion and the electrodes which are deposited onto the base plate which complete the electrical circuit of the resonator. [0027]
  • Each and every feature described herein, and each and every combination of two or more of such features, is included within the scope of the present invention provided that the features included in such a combination are not mutually inconsistent. [0028]
  • These and other aspects and advantages of the present invention are set forth in the following detailed description and claims, particularly when considered in conjunction with the accompanying drawings in which like parts bear like reference numerals.[0029]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a top front view, in perspective, of a piezoelectric quartz crystal resonator plate in accordance with the present invention; [0030]
  • FIG. 2 is a perspective illustration of the plate shown in FIG. 1 with conductive metallic electrodes coating the major surfaces; [0031]
  • FIG. 3A is a perspective illustration of the upper internal surface electrode pattern of a quartz base plate in accordance with the present invention; [0032]
  • FIG. 3B is a perspective illustration of the lower external surface electrode pattern of the quartz base plate in accordance with the present invention; [0033]
  • FIG. 4 is a perspective illustration of the piezoelectric quartz resonator plate shown in FIG. 2 bonded to the quartz base plate; [0034]
  • FIG. 5 is a perspective illustration of a surface mount quartz crystal resonator in accordance with the present invention; [0035]
  • FIG. 6 is a cross-sectional view of an alternate embodiment of a surface mount quartz crystal resonator in accordance with the present invention; and [0036]
  • FIGS. 7A and 7B are a partial top view and a cross-sectional view, respectively, of another piezoelectric quartz resonator plate in accordance with the present invention. [0037]
  • FIGS. 8A and 8B are a partial top view and a cross-sectional view, respectively, of a further piezoelectric quartz resonator plate in accordance with the present invention. [0038]
  • FIG. 9 is a perspective view of a resonator plate in accordance with a preferred embodiment of the invention. [0039]
  • FIG. 10 and 11 are cross-sectional views of the resonator plate shown in FIG. 9, taken across lines [0040] 10-10 and lines 11-11 respectively.
  • FIG. 12 is an exploded view of a resonator assembly including the resonator plate shown in FIG. 9. [0041]
  • FIG. 13 is a top view of another resonator plate of the invention. [0042]
  • FIG. 14 is a cross sectional view of the resonator plate of FIG. 13 taken across line [0043] 14-14.
  • DETAILED DESCRIPTION
  • Referring now to FIG. 1, a rectangular piezoelectric [0044] quartz crystal plate 10 is shown. A decoupling slot 11 has been formed in the plate 10 by removing a narrow section of quartz along three sides of the plate 10 and partially along fourth side 14. The forming of the decoupling slot 11 creates a central resonant part 13 of quartz and a border 12 of quartz around the peripheral region 13A of central resonant part. The border 12 includes a first region 12A which is spaced apart, by slot 11, from resonant part 13, and a second region 12B which is joined to the resonant part. The amount of removal along the fourth side 14 of the plate 10 depends on how strong the second region 12B joining the border 12 and the resonant part 13 is desired to be. Second region 12B is strongest if no quartz is removed parallel to the fourth side 14 of the plate 10. In the embodiment of the invention being described, the length of the quartz plate 10 is shown to be parallel with the X Axis, referred to as the crystallographic axes of the quartz crystal and the AT-cut of quartz crystal. The width of plate 10 is parallel to the Z′ Axis and the thickness of the plate is parallel to the Y′ Axis.
  • Without wishing to limit the invention, typical dimensions of [0045] quartz plate 10 include a length in the range of about 3.2 mm to about 12 mm, for example, about 7.5 mm; a width in the range of about 2.5 mm to about 5.5 mm, for example, about 5 mm; and a thickness dependent on the resonating frequency according to the following relationship t = 1.65 F EQN . 1
    Figure US20030193271A1-20031016-M00001
  • where t is thickness in mm and F is the resonating frequency in MHZ. The resonator assemblies in accordance with the present invention are adapted to resonate at frequencies within a range of between about 3.2 MHz to about 100 MHz. More specifically, in one embodiment of the invention, a resonator assembly is provided which can resonate at frequencies between about 8 MHz and about 50 MHz. [0046]
  • With the [0047] plate 10 formed as shown in FIG. 1, stresses which are applied to the sides of the plate 10 to the first region 12A of border 12 outside of the decoupling slot 11 have no influence on the resonant characteristics of the resonant part 13. Stresses applied to the fourth side 14 result in some strain in the resonant part 13. However, because the resonant part 13 is free to move without interference from the other three sides of the border 12 of plate 10, the effect of the strain from the fourth side 14 on the resonant characteristics are very small, if noticeable at all.
  • The forming of the [0048] quartz plate 10 in the way shown in FIG. 1 provides a resonant part 13 of the plate 10 which is substantially mechanically isolated from the border 12 of the plate so that the border of the plate may be incorporated into the enclosure structure of the quartz crystal resonator to be made from plate 10 without detriment to the resonant characteristics of the final product.
  • In order to apply an electrical signal across the [0049] resonant part 13 of the quartz plate 10, conductive metallic electrodes 14 and 15 are vacuum deposited opposite each other, on the top or first major surface 13B and the bottom or second major surface 13C, respectively, of resonant part 13 of the quartz plate 10, as is shown in FIG. 2.
  • The dimensions of the [0050] electrodes 14, 15 depend on the values of the parameters of the equivalent electrical circuit which the final quartz crystal resonator is being designed to meet and the size limitations that may apply because of the application involved. However, the thickness of the electrodes 14, 15 and the density of the metal that is employed for the electrodes 14, 15 are primary factors that determine the reduction in frequency of the resonant part 13 of the quartz plate 10 from the frequency that is apparent when no electrodes have been applied to the resonant part 13, which is referred to as the unelectroded frequency. The ratio of the amount of the reduction of the resonant frequency to the unelectroded frequency is commonly called the mass loading of the electrode, which is expressed by the equation, Δ = f u - f e f u = mass loading , EQN . 2
    Figure US20030193271A1-20031016-M00002
  • where f[0051] u is the unelectroded frequency of the resonant part, and fe is the frequency of the electroded resonant part. A result of acoustic wave considerations shows that the thickness shear wave that is driven between the electrodes 14, 15 at frequency fe cannot propagate into the unelectroded areas of the resonant part 13 and the amplitude of the acoustic displacement exponentially decreases as the wave radiates towards the edges 18, 19 of the resonant part 13.
  • Since the energy of the wave is proportional to the square of the acoustic displacement, the energy of the wave also exponentially decreases as it radiates from the electrode edges [0052] 16, 17 toward the edges 18, 19 of the resonant part 13 of the quartz plate 10. This phenomenon is termed energy trapping and is well known in the quartz device industry. Energy that reaches the edges 18, 19 of the resonant part 13 is lost from the resonator either by dispersion or absorption of the acoustic wave. The larger the value of Δ, the greater the rate of exponential decreasing of the amplitude of the acoustic displacement and the greater the amount of energy trapping. When the amount of acoustic energy which is lost by inadequate energy trapping is large, then the equivalent series resistance is large.
  • It is normally desired that a quartz crystal resonator have a relatively small equivalent series resistance. Therefore, the value of Δ and the length of quartz plate between the edges of the [0053] electrodes 16, 17 and the edges 18 and 19 of the resonant part 13 are design considerations in determining the dimensions of the quartz plate 10 and the resonant part 13 so that the quartz crystal resonator meets the requirements of the intended application, such as they may be.
  • Conductive metallic appendages extend from the [0054] top electrode 14 and the bottom electrode 15 to terminal electrode areas 20, 21 of the quartz crystal resonator plate 10. The significance of the terminal electrode areas 20, 21 is that they line up with base terminal electrode areas 26, 27 on the upper internal surface 23 of the quartz base plate 22 which is shown in FIG. 3. Conductive epoxy is applied so that it connects the terminal electrode area 20 to base terminal electrode area 26 and terminal electrode area 21 to base terminal electrode area 27.
  • The [0055] quartz plate 10, including electrodes 14 and 15, is bonded to quartz base plate 22, which is shown in FIGS. 3A and 3B, using a conventional epoxy adhesive. The quartz base plate 22 has about the same crystallographic orientation as the quartz crystal plate 10 so that the thermal expansion characteristics of the base plate and the plate 10 are substantially or essentially the same. However, for applications having somewhat less stringent requirements or specifications, base plates of quartz having crystallographic orientations dissimilar from the plate 10 or of materials other than quartz can be employed. FIG. 3A shows the upper internal surface 23 of base plate 22, while FIG. 3B shows the lower external surface 24 of the quartz base plate 22.
  • The lateral dimensions of the [0056] quartz crystal plate 10 are essentially the same as the quartz base plate 22. The metallic electrode pattern 25, 28 on the upper internal surface 23 is such that metallic electrode leads extend from each of the terminal electrode areas 26 and 27 to metallic electrodes 25 and 28, respectively, which in turn wrap around the edges of the base plate 22 to connect to terminal electrode areas 29 and 30, respectively, on the lower external surface 24 of the quartz base plate 22. A conventional conductive epoxy adhesive is applied so that it connects the terminal electrode areas 20, 21 on the quartz plate 10 with base terminal electrode areas 26, 27 on the upper internal surface 23, which are in turn connected via the metallic electrode pattern with the terminal electrode areas 29, 30 on the lower external surface 24. The metallic electrodes 14, 15 which drive the resonant part 13 of the quartz plate 10 are thus connected to terminals 29, 30 on the lower external surface 24 of the base plate 22.
  • In FIG. 3B, four [0057] terminal electrode areas 29, 30, 31, 32 are shown on the lower external surface 24 of the quartz base plate 22. However, only two terminal areas 29, 30 are part of the electrical circuit. The two other terminal areas 31, 32 are functional only in that they are soldered or fixed to the application printed circuit board and aid in locating and holding the final surface mount quartz resonator in place. The number of electroded terminal areas could be reduced to two and their location on the lower external surface 24 would be that which best fits the requirements of the application. The conductive metallic electrode patterns on the surfaces 23 and 24 of the quartz base plate 22 are vacuum deposited thin metallic films. However, they can be placed on the surfaces by other means as well.
  • The assembly of the [0058] quartz crystal plate 10 to the quartz base plate 22 utilizes conventional epoxy adhesive 34 as is shown in FIG. 4. Epoxy adhesive 34 is applied to the perimeter of either the plate 10 or the base plate 22. The application of the epoxy adhesive around the plate perimeter forms epoxy adhesive 34 into a frame having a width is less than the width of the border 12 of the quartz crystal plate 10. The plate 10 and base plate 22 are then positioned one on top of the other and seated so that the epoxy adhesive 34 completely contacts the facing surfaces of both plates. Care is taken to insure that no epoxy adhesive bridges the slot 11 in the quartz plate 10 between the border 12 and the resonant part 13. The epoxy adhesive 34 has the dual purpose of mechanically bonding the two plates 10 and 22 together and forming a hermetic seal around the joining perimeter. Note that the outer perimeter 33 of adhesive layer 34 substantially coincides with the outer perimeters of plates 10 and 22. The thickness of the epoxy adhesive layer 34 is sufficient to keep the resonant part 13 from touching or making contact with the quartz base plate 22 when the part 13 is resonating.
  • Conventional [0059] conductive epoxy 36 is applied so that it connects the terminal electrode areas 20 and 21 of the quartz plate 10 and the terminal electrode areas 26 and 27, respectively, on the base plate 22. After the application of the epoxy adhesive 34 and 36, the adhesives are allowed to cure in accordance with the specification of the manufacturers of the adhesive. Adhesives 34 and 36 can be cured at the same time.
  • After the [0060] adhesives 34 and 36 have been properly cured, the assembly 39 of the plate 10 and base plate 22 may be tested before further processing. This can be accomplished by contacting the terminal electrode areas 29, 30 and using the appropriate instruments for performing the tests that are required. As is normal in the case of quartz crystal resonators, the frequency preferably is adjusted to the required frequency before completing the assembly and sealing on the cover.
  • As shown in FIG. 5, the [0061] quartz cover plate 35 has essentially the same dimensions as the quartz base plate 22 but the quartz cover plate has no functional electrodes. The quartz cover plate 35 is transparent and the electrodes of the quartz crystal plate 10 and the quartz base plate 22 can be seen through the cover plate. However, the surface of the quartz cover plate 35 is used for marking the device for identification.
  • The [0062] quartz cover plate 35 is bonded to the assembly of the quartz plate 10 and the quartz base plate 22 in substantially the same way the quartz base plate 22 was joined to the quartz resonator plate. Conventional epoxy adhesive 38 is applied to the border 12 of the quartz plate 10. The width of the application of epoxy adhesive 38 around the perimeter of the quartz plate 10 is narrower than the border 12 to insure that excess epoxy adhesive does not bridge the slot 11 between the border 12 and the resonant part 13 of the quartz plate 10. If excess epoxy adhesive should be inadvertently placed onto the resonant part 13 the resonant characteristics would be detrimentally affected depending on how much epoxy adhesive was so placed. The outer perimeter 37 of epoxy adhesive 38 substantially coincides with the outer perimeter of plate 10, base plate 22, and cover plage 35.
  • After the [0063] epoxy adhesive 38 is applied, the cover plate 35 is then placed on top of the assembly and seated so that the perimeter of the cover plate 35 is completely in contact with the epoxy adhesive 38 and no voids are present. This latter step is performed in a glove box which contains dry nitrogen gas so that the quartz crystal resonator part 13 is hermetically sealed and filled with the inert gas dry nitrogen. The epoxy adhesive 38 is cured in the same inert gas in accordance with the specifications of the adhesive manufacturer.
  • The epoxy adhesive has a certain viscosity and surface tension which supports the three [0064] quartz plates 22, 10 and 35 during assembly and keeps them from touching after cure. It is important the central resonant part 13 not be in contact with either the quartz base plate 22 or the quartz cover plate 35. Such contact may prevent resonance from occurring or result in high equivalent series resistance of the resonator. If for any reason the design may require that the central resonant part be thicker than the perimeter border then the central part of the quartz cover and base plate can be recessed sufficient, as described hereinafter, so that contact is avoided.
  • A feature of the invention lies in the fact that the temperature coefficients of expansion of the [0065] quartz crystal plate 10, the quartz base plate 22 and the quartz cover plate 35 are the same so the stresses which arise from the use of dissimilar materials for the base and cover according to old art are avoided.
  • A feature of this invention, resulting from the structure of the [0066] resonator assembly 40, is that the resonant part 13 of the quartz crystal resonator plate 10 is supported within the cavity which is formed by the border 12 of the quartz plate 10, the quartz base plate 22, the cover plate 35 and the thicknesses of the epoxy adhesives 33 and 38 around the perimeter bonding the assembly together. The quartz plate 10 is not separated from the base plate 22 and the cover plate 35, as is often the case with the prior art. The strength of the quartz supporting the resonant part 13 is much greater than two small dots of conductive epoxy which supports the resonator element of surface mount quartz crystal resonators in the prior art.
  • FIG. 6 illustrates an alternate embodiment of a surface mount quartz crystal resonator assembly in accordance with the present invention. Except as expressly described herein, this alternate resonator assembly , shown generally at [0067] 140, is structured and functions in a manner similar to that described previously with regard to resonator assembly 40. Components of alternate resonator 140 which correspond to components of resonator assembly 40 are identified by the same reference numeral increased by 100.
  • With reference to FIG. 6, the primary difference between alternate resonator assembly [0068] 140 and resonator assembly 40 is that the cover plate 135 and the base plate 122 include recesses. In particular, base plate 122 includes an outwardly extending recessed area 50, and cover plate 135 includes an outwardly extending recessed area 52. These recessed areas or regions 50 and 52 can be produced by conventional methods. Such recessed areas are designed to provide additional space within which resonate part 113 can resonate without coming in contact with either the base plate 122 or the cover plate 135. This embodiment is particularly useful when it is desired to reduce the size, for example, the profile, of the resonator.
  • FIGS. 7A and 7B illustrate another embodiment of a quartz crystal plate in accordance with the present invention. Except as expressly described herein, this other quartz crystal plate, shown generally at [0069] 210, is structured and functions in a manner similar to that previously described with regard to plate 10. Components of other plate 210 which correspond to components of plate 10 are identified by the same reference numeral increased by 200.
  • The [0070] other plate 210 deals with the energy trapping phenomenon, which has been previously discussed with reference to FIG. 2. In some applications, which require small overall size, the design of the resonant part 213 of the quartz resonator plate 210 require a very large value of Δ to achieve the necessary energy trapping for the design to result in an acceptably low value of the equivalent resistance. Normally the desired value of Δ, mass loading is achieved by the thickness of the electrode 14 which is deposited onto the resonant part 13 of the quartz plate 10. However, because the metallic electrode material has a much lower internal mechanical Q than quartz, using electrodes which are relatively thick increases the equivalent resistance.
  • An alternative to increasing the electrode thickness is shown in FIGS. 7A and 7 B. The frequency of the thickness shear mode which is employed in this embodiment of the invention is inversely proportional to the thickness of the [0071] quartz resonator plate 210 and can be expressed by the EQN. 1, noted above. If the thickness of the resonant part 213 is reduced, as shown in FIG. 7, between the edges of the electrode 216, 217 and the edges of the resonant part 218, 219 then the frequency in those regions 60, 62 will be much higher than the frequency in the electroded region 64. For example, if the thickness is decreased by 10% then the frequency, ignoring other factors, will increase by about 10%. Since the mass loading, A, as given by EQN. 2, is proportional to the difference between the frequency in the unelectroded region 60, 62 and the frequency in the electroded region 64, then the mass loading Δ can be increased without having excessively thick electrodes but by decreasing the thickness of the quartz plate outside of the electroded area 64. This method enables the designs to achieve high levels of energy trapping and good values of equivalent resistance, and still be of small, compact size.
  • Quartz resonators of higher frequency are becoming of increased importance. However, as given in EQN. 1 as the frequency of the resonator increases its thickness must correspondingly decrease. The thinner the quartz plate the more fragile it becomes and the more difficult it is to process through the manufacturing process. One alternative is to use overtones of the fundamental frequency which allows for a thicker plate to be used for higher frequencies. However, the equivalent circuit of an overtone mode resonance has higher equivalent resistance and much lower motional capacitance than the fundamental mode resonance. For this reason in many applications the fundamental mode is required. [0072]
  • FIGS. 8A and 8B illustrate a further embodiment of a quartz crystal plate in accordance with the present invention. Except as expressly described herein, this further quartz crystal plate, shown generally at [0073] 310, is structured and functions in a manner similar to previously described with regard to plate 10. Components of further plate 310 which correspond to components of plate 10 are identified by the same reference numeral increased by 300.
  • As shown in FIGS. 8A and 8B, the [0074] central portion 313 of the quartz crystal plate 310 is reduced in thickness so that its resonant frequency meets that required by the application. This may be accomplished using any suitable technique, for example, by selectively etching the central portion 313, while leaving the border 312 to be much thicker and stronger. The thickness transition 70 lies between the border region 312B and the central portion 313. Using this approach a very thin central portion 313 plate 310 having high resonant frequencies can be achieved without sacrificing the thickness and strength of the border 312.
  • FIGS. [0075] 9-11 show a preferred embodiment of the invention. Particularly, FIGS. 9-11 show specifically an alternative resonator plate 410. Except as expressly described herein, this other resonator plate 410 is structured and functions in a manner similar to that previously described with regard to resonator plate 10. Components of alternate resonator plate 410 which correspond to components of resonator plate 10 are identified by the same reference numeral increased by 400.
  • A primary difference between [0076] alternate resonator plate 410 and resonator plate 10, is that the resonator plate 410 includes conductive outer edge surface plating 414A and 415A. More specifically, at least one of, preferably both of, the electrodes 414 and 415 extend from the central portion 413 to and across an outer edge surface 451 of the border 412 and terminate as terminal portions 414B, 415B disposed on the opposing side of the plate 410. For the sake of brevity and simplicity, the following description will refer to the first electrode 414, although it should be appreciated that a similar or identical description can be made regarding the second electrode 415.
  • As shown, the top surface of the resonant [0077] central portion 413 includes a planar area 458 which occupies at least a portion of the resonant central portion 413 and extends to an edge 422A of the plate 410. The planar area is preferably flat and substantially ridgeless as shown and has a size and shape sufficient to accommodate the electrode 414 so that the electrode 414 defines a continuous, flat plane from edge 459 to edge 459′. This feature reduces the potential occurrence of discontinuities within the electrodes 414 and 415 and increases reliability of the resonator 410 in operation. In the shown embodiment, the central portion 413 has been etched and reduced in thickness such that the planar area 458 defines a recessed plane. In this particular example, the planar area occupies the entire central portion 413, although it should be appreciated that in some embodiments of the invention, the recessed planar area 458 may occupy only the area of the central portion 413 upon which the electrode is to occupy.
  • Importantly, the recessed [0078] planar area 458 extends to the outer peripheral edge 422A of the plate 410 and defines a groove 460 that transverses the second region 412B of the plate border 412. This groove 460 provides a recessed pathway to accommodate an extended portion 464 of the electrode 414 between the resonant central portion 413 and the outer peripheral edge 422A of the plate 410. As shown, the recessed portion 458, including groove 460, defines therefor a common, substantially ridgeless and continuous plane upon which the electrode material is located.
  • Turning now specifically to FIG. 12, an exploded view of a [0079] resonator assembly 440 is shown. The assembly 440 includes quartz cover plate 435 and quartz base 422, with resonator plate 410 hermetically sealed therebetween, for example, by means of non-conductive epoxy 435. Conductive epoxy 436 may be applied to base plate 422 at terminal areas 426 and 427 to connect both electrodes 414 and 415 to the base plate 422.
  • Another [0080] resonator plate 510 having conductive edge plating is shown in FIGS. 13 and 14. Except as expressly described herein, this other resonator plate 510 is structured and functions in a manner similar to that previously described with respect to resonator plate 10 and resonator plate 410. Components of resonator plate 510 which correspond to components of resonator plate 10 are identified by the same reference numeral increased by 500.
  • [0081] Resonator plate 510 is similar to resonator plate 410 in that each of the electrodes 514 and 515 are substantially ridgeless and each occupies a continuous, flat planar area 580 extending from resonant central portion 513 to peripheral edge 522A of the plate 510. Each electrode 514 and 515 defines conductive edge plating 514A and 515A.
  • For the sake of brevity, only electrode [0082] 514 and the relationship thereof with respect to the plate 510 will be described in detail, although it should be appreciated that a similar or identical description can be made for electrode 515 (shown in phantom line in FIG. 13) located on opposing surface of plate 510.
  • In contrast to [0083] plate 410 in FIGS. 9-11, the continuous planar surface area 580 for accommodating the electrode 514 is raised, or elevated, with respect to the surrounding surface area of plate 510. In addition, it is shown that the elevated planar area is sized and shaped to substantially conform with the electrode located thereon such that portion 513A of resonant central portion 513 is elevated with respect to portion 513B of the central portion 513.
  • As shown more clearly in FIG. 14, the continuous substantially [0084] planar surface area 580 extends across border portion 512B of the plate 510 forming a ridge like structure thereon.
  • The facial symmetry of [0085] plates 410 and 510 greatly facilitates manufacture and processing of the plates and assemblies of the present invention, and reduces application errors.
  • The [0086] plates 410 and 510 can be formed by cutting a solid, substantially uniform quartz crystal plate to shape, with the X-crystallographic axis aligned along the length of the plate. Portions which are to be raised or elevated are covered, or masked, with a suitable material, and exposed, unmasked portions of the plate are reduced by etching techniques, sandblasting, polishing and/or any other suitable means, to form the recessed areas on the portions of the plate that are unmasked.
  • The present resonator plates can be produced in large quantities, using inexpensive materials and in very little time. In addition, the present resonator assemblies can be made to be substantially smaller in size than conventional metal or ceramic enclosed resonator assemblies. It is especially notable that resonator assemblies, in accordance with the present invention, have been produced and it is believed that these comprise, presently, the world's smallest hermetically sealed quartz resonators. The following Tables 1 and 2 illustrate production test results and resonator dimensions respectively for three resonators, Resonators Nos. 1, 2 and 3 in accordance with the present invention. The Tables are provided for purposes of example only and are not to be considered as limiting the scope of the present invention. [0087]
    TABLE 1
    Performance test results of Resonators
    Nos. 1, 2 and 3
    Freq. ESR C0 C1 L1 Q
    No. (MHz) (Ohms) (Pf) (fF) (mH) (K)
    1 42.425 10.7 2.20 9.8 1.4 34
    2 46.450 22.1 0.92 4.2 3.1 37
    3 50.866 24.0 0.67 3.1 3.2 42
  • [0088]
    TABLE 2
    Dimensions of Resonators Nos. 1, 2 and 3
    Length Width Height Volume
    No. (mm) (mm) (mm) (cu · mm)
    1 5.00 3.20 0.60 9.60
    2 3.20 2.50 0.40 3.20
    3 2.50 2.00 0.40 2.00
  • A preferred embodiment of a method of the invention is included within the scope of the invention. A method of manufacturing a quartz crystal-based resonator plate comprises the steps of providing a solid quartz crystal based plate having a top surface, an opposing bottom surface, an outer edge, and an outer edge surface; removing a portion of the plate to form the quartz crystal-based plate having a shape substantially as described and shown elsewhere herein; forming a substantially ridgeless planar area on the plate that extends along a common plane from the central part to the outer edge of the plate, and the planar area being either elevated or recessed with respect to a surrounding surface area of the plate; applying an electrode material to the planar area, wherein the electrode material extends to and across an outer edge surface to the opposing side of the plate; and repeating the forming and applying steps on the opposing bottom surface of the plate. [0089]
  • The method of the present invention for manufacturing quartz crystal-based resonator plates preferably further includes stacking a plurality of the plates and applying conductive edge plating to the stack of plates. [0090]
  • While this invention has been described with respect to various specific examples and embodiments, it is to be understood that the invention is not limited thereto and that it can be variously practiced within the scope of the following claims. [0091]

Claims (33)

What is claimed is:
1. A resonator plate comprising:
a quartz crystal-based plate, including
a central portion having a top surface and a bottom surface and adapted to resonate at a desired frequency, and
a border substantially surrounding the central portion, the border including a first region physically separated from the central portion, a second region joined to the central portion, and an outer edge surface;
a first electrode disposed on the top surface of the central portion and including conductive plating on the outer edge surface of the border; and
a second electrode disposed on the bottom surface of the central portion.
2. The resonator plate of claim 1 wherein the quartz crystal-based plate has a length and a width defining a substantially rectangular outer periphery, and the length of the quartz crystal-based plate is aligned along the X-crystallographic axis.
3. The resonator plate of claim 1 further comprising a planar area sized to accommodate the first electrode, the planar area comprising a substantially ridgeless plane extending continuously across at least a portion of the top surface of the central portion to the outer edge surface.
4. The resonator plate of claim 3 wherein the planar area is a recessed planar area with respect to at least one surface area adjacent the planar area.
5. The resonator plate of claim 4 wherein the planar area defines a groove transversing the second region of the border.
6. The resonator plate of claim 3 wherein the planar area is an elevated planar area with respect to at least one surface area adjacent the planar area.
7. The resonator plate of claim 3 wherein the planar area defines an elevation across the second region of the border.
8. The resonator plate of claim 1 which is adapted to resonate at a frequency in a range of between about 3.5 MHz and about 100 MHz.
9. The resonator plate of claim 1 which is adapted to resonate at a frequency of about 50 MHz.
10. A resonator assembly comprising:
a quartz crystal-based resonator plate, including
a central portion having a top surface and a bottom surface and adapted to resonate at a desired frequency, and
a border substantially surrounding the central portion, the border including a first region physically separated from the central portion, a second region joined to the central portion, and an outer edge surface;
a first electrode disposed on the top surface of the central portion and including conductive plating on the outer edge surface of the border;
a second electrode disposed on the bottom surface of the central portion;
a base plate secured to the resonator plate; and
a cover plate secured to the resonator plate.
11. The resonator assembly of claim 10 wherein the the base plate includes a terminal electrode conductively connected to the first electrode on the resonator plate.
12. The resonator assembly of claim 10 wherein the second electrode includes conductive plating on the outer edge surface of the border.
13. The resonator assembly of claim 10 wherein the quartz crystal-based resonator plate has a length and a width defining a substantially rectangular outer periphery, and the length of the quartz crystal-based plate is aligned along the X-crystallographic axis.
14. The resonator assembly of claim 10 further comprising a planar area sized to accommodate the first electrode, the planar area comprising a substantially ridgeless plane extending continuously across at least a portion of the top surface of the central portion to the outer edge surface.
15. The resonator assembly of claim 14 wherein the planar area is a recessed planar area with respect to at least one surface area adjacent the planar area.
16. The resonator assembly of claim 15 wherein the planar area defines a groove across the second region of the border.
17. The resonator assembly of claim 14 wherein the planar area is an elevated planar area with respect to at least one surface area adjacent the planar area.
18. The resonator plate of claim 17 wherein the planar area defines an elevation across the second region of the border.
19. The resonator assembly of claim 10 which is adapted to resonate at a frequency in a range of between about 3.5 MHz and about 100 MHz.
20. The resonator assembly of claim 10 which is adapted to resonate at a frequency of about 50 MHz.
21. The assembly of claim 10 which has a volume of less than about 10 cubic millimeters.
22. The assembly of claim 10 which has a volume of about 3.2 cubic millimeters.
23. The assembly of claim 10 which has a volume of about 2.0 cubic millimeters.
24. A resonator plate comprising:
a quartz crystal-based resonator plate, including
a central portion having a top surface and a bottom surface adapted to resonate at a desired frequency, and
a border substantially surrounding the central portion, the border including a first region physically separated from the central portion, a second region joined to the central portion, and an outer edge surface;
a first electrode, disposed on the surface of the central portion and extending substantially continuously across the second region of the border to the outer edge surface; and
a second electrode disposed on the bottom surface of the central portion and extending substantially continuously across the second region of the border to the outer edge surface,
wherein of the first electrode includes conductive plating on a portion of the outer edge surface of the border and the second electrode includes conductive plating on another portion of the outer edge surface of the border.
25. The resonator plate of claim 24 wherein the quartz crystal-based plate has a length and a width defining a substantially rectangular outer periphery, and the length of the quartz crystal-based plate is aligned along the X-crystallographic axis.
26. The resonator plate of claim 24 further comprising a planar area sized to accommodate the first electrode, the planar area comprising a substantially ridgeless plane extending continuously across at least a portion of the top surface of the central portion to the outer edge surface.
27. The resonator plate of claim 26 wherein the planar area is a recessed planar area with respect to at least one surface area adjacent the planar area.
28. The resonator plate of claim 27 wherein the planar area defines a groove across the second region of the border.
29. The resonator plate of claim 26 wherein the planar area is an elevated planar area with respect to at least one surface area adjacent the planar area.
30. The resonator plate of claim 29 wherein the planar area defines an elevation across the second region of the border.
31. A method of manufacturing a quartz crystal-based resonator plate comprising the steps of:
providing a solid quartz crystal based plate having a top surface, an opposing bottom surface, an outer edge, and an outer edge surface;
removing a portion of the plate to form the quartz crystal-based plate having a slot physically separating a central portion of the plate from a border of the plate;
forming a planar area on the top surface of plate wherein the planar area extends along a common plane from the central portion across a portion of the border and to the outer edge of the plate, and wherein the planar area comprises one of an elevated planar area and a recessed planar area, with respect to an adjacent surface area of the plate;
applying an electrode material to at least a portion of the planar area, and
repeating the forming and applying steps on the opposing bottom surface of the plate.
32. The method of claim 31 wherein the step of applying comprises applying conductive plating to the outer edge surface of the plate.
33. The method of claim 31 further comprising the step of stacking a plurality of quartz crystal-based plates and plating an edge of each of the plates by applying conductive plating to the stack of plates.
US09/946,222 2000-05-26 2001-09-05 Surface mount quartz crystal resonators and methods for making same Abandoned US20030193271A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US09/946,222 US20030193271A1 (en) 2000-05-26 2001-09-05 Surface mount quartz crystal resonators and methods for making same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/583,005 US6590315B2 (en) 2000-05-26 2000-05-26 Surface mount quartz crystal resonators and methods for making same
US09/946,222 US20030193271A1 (en) 2000-05-26 2001-09-05 Surface mount quartz crystal resonators and methods for making same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
US09/583,005 Continuation-In-Part US6590315B2 (en) 2000-05-26 2000-05-26 Surface mount quartz crystal resonators and methods for making same

Publications (1)

Publication Number Publication Date
US20030193271A1 true US20030193271A1 (en) 2003-10-16

Family

ID=24331293

Family Applications (2)

Application Number Title Priority Date Filing Date
US09/583,005 Expired - Fee Related US6590315B2 (en) 2000-05-26 2000-05-26 Surface mount quartz crystal resonators and methods for making same
US09/946,222 Abandoned US20030193271A1 (en) 2000-05-26 2001-09-05 Surface mount quartz crystal resonators and methods for making same

Family Applications Before (1)

Application Number Title Priority Date Filing Date
US09/583,005 Expired - Fee Related US6590315B2 (en) 2000-05-26 2000-05-26 Surface mount quartz crystal resonators and methods for making same

Country Status (2)

Country Link
US (2) US6590315B2 (en)
CN (1) CN1175565C (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117726A (en) * 2013-01-31 2013-05-22 深圳市晶峰晶体科技有限公司 Electric-resistance-welded small size quartz-crystal resonator with one-end-fixed chip
JP2018504793A (en) * 2015-12-22 2018-02-15 成都泰美克晶体技術有限公司Chengdu Timemaker Crystal Technology Co., Ltd Quartz resonator having a circular wafer structure and manufacturing method thereof

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3995918B2 (en) * 2001-10-29 2007-10-24 セイコーインスツル株式会社 Surface mount type piezoelectric vibrator
JP2003318699A (en) * 2002-04-23 2003-11-07 Piedekku Gijutsu Kenkyusho:Kk Crystal unit and its manufacturing method
CN1750393B (en) * 2004-09-13 2012-10-10 威廉·比华 A surface mount quartz crystal resonator and manufacturing method thereof
CN1761152B (en) * 2004-10-12 2013-11-13 应达利电子(深圳)有限公司 Quartz crystal oscillator pasted on surface, and preparation method
EP1977476B1 (en) * 2005-12-23 2011-04-27 Alcatel Lucent Attachment of deep drawn resonator shell
US20070188053A1 (en) * 2006-02-14 2007-08-16 Robert Bosch Gmbh Injection molded energy harvesting device
JP2007258918A (en) * 2006-03-22 2007-10-04 Epson Toyocom Corp Piezoelectric device
JP4305542B2 (en) * 2006-08-09 2009-07-29 エプソントヨコム株式会社 AT cut quartz crystal resonator element and manufacturing method thereof
US7414351B2 (en) * 2006-10-02 2008-08-19 Robert Bosch Gmbh Energy harvesting device manufactured by print forming processes
US8069554B2 (en) * 2007-04-12 2011-12-06 Seagate Technology Assembly and method for installing a disc clamp
US7802466B2 (en) * 2007-11-28 2010-09-28 Sierra Sensors Gmbh Oscillating sensor and fluid sample analysis using an oscillating sensor
US20110215678A1 (en) * 2008-12-24 2011-09-08 Daishinku Corporation Piezoelectric resonator device, manufacturing method for piezoelectric...
JP5595218B2 (en) * 2010-10-20 2014-09-24 日本電波工業株式会社 Piezoelectric device and method for manufacturing piezoelectric substrate
JP5893900B2 (en) * 2010-12-28 2016-03-23 日本電波工業株式会社 Surface mount crystal unit and substrate sheet
JP5657400B2 (en) * 2011-01-12 2015-01-21 日本電波工業株式会社 Crystal device
JP5930532B2 (en) * 2012-06-01 2016-06-08 日本電波工業株式会社 Piezoelectric vibrating piece and piezoelectric device
USD760230S1 (en) 2014-09-16 2016-06-28 Daishinku Corporation Piezoelectric vibration device
US10069472B2 (en) 2015-04-10 2018-09-04 Samsung Electro-Mechanics Co., Ltd. Bulk acoustic wave resonator and filter including the same
KR101901696B1 (en) * 2015-04-10 2018-09-28 삼성전기 주식회사 Bulk acoustic wave resonator and filter including the same
CN105958957B (en) * 2016-04-27 2018-07-17 北京无线电计量测试研究所 A kind of crystal resonator and preparation method thereof
CN112543011B (en) * 2020-12-23 2025-08-08 中国电子科技集团公司第十三研究所 Dual-chip parallel surface-mount quartz crystal resonator and preparation method
CN117220635B (en) * 2023-09-26 2024-10-11 北京晨晶电子有限公司 Quartz surface-mounted crystal oscillator and packaging method

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH623690A5 (en) * 1978-09-08 1981-06-15 Centre Electron Horloger
FR2441960A1 (en) * 1978-11-16 1980-06-13 Suisse Horlogerie PIEZOELECTRIC RESONATOR WORKING IN THICKNESS SHEAR
US4499395A (en) * 1983-05-26 1985-02-12 The United States Of America As Represented By The Secretary Of The Air Force Cut angles for quartz crystal resonators
US5541469A (en) * 1993-04-14 1996-07-30 Murata Manufacturing Co., Ltd. Resonator utilizing width expansion mode
JPH07106905A (en) * 1993-10-06 1995-04-21 Matsushita Electric Ind Co Ltd Oscillator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103117726A (en) * 2013-01-31 2013-05-22 深圳市晶峰晶体科技有限公司 Electric-resistance-welded small size quartz-crystal resonator with one-end-fixed chip
JP2018504793A (en) * 2015-12-22 2018-02-15 成都泰美克晶体技術有限公司Chengdu Timemaker Crystal Technology Co., Ltd Quartz resonator having a circular wafer structure and manufacturing method thereof

Also Published As

Publication number Publication date
CN1175565C (en) 2004-11-10
US6590315B2 (en) 2003-07-08
CN1326266A (en) 2001-12-12
US20020089261A1 (en) 2002-07-11

Similar Documents

Publication Publication Date Title
US20030193271A1 (en) Surface mount quartz crystal resonators and methods for making same
US6111480A (en) Piezoelectric resonator and method of adjusting resonant frequency thereof
US9923544B2 (en) Piezoelectric vibration element, manufacturing method for piezoelectric vibration element, piezoelectric resonator, electronic device, and electronic apparatus
US20030127945A1 (en) Piezoelectric resonator, and piezoelectric filter, duplexer, and communication apparatus, all including same
EP0641073B1 (en) Packaged piezoelectric resonator
US7012355B2 (en) Crystal unit
EP0823781B1 (en) Piezoelectric resonator, manufacturing method thereof, and electronic component using the piezoelectric resonator
US5548180A (en) Vibrator resonator and resonance component utilizing width expansion mode
EP0800269B1 (en) Piezoelectric resonator and electronic component using the same
US6362561B1 (en) Piezoelectric vibration device and piezoelectric resonance component
JP2000068780A (en) Quartz oscillator and its production
US5892416A (en) Piezoelectric resonator and electronic component containing same
EP0820144B1 (en) Piezoelectric resonator and electric component using the same
JP3262007B2 (en) Energy trap type thickness-slip resonator and electronic components using this resonator
EP0468051B1 (en) Structure of ultra-thin sheet piezoresonator
CN101388654A (en) Manufacturing method of all-quartz-crystal resonator and quartz-crystal resonator thereof
EP0827273B1 (en) Piezoelectric resonator and electronic component using the same
US6420945B1 (en) Piezoelectric resonator having internal electrode films, piezoelectric component and ladder filter formed therefrom
CN1761152B (en) Quartz crystal oscillator pasted on surface, and preparation method
JP3896585B2 (en) Tuning fork type piezoelectric vibrator
US6097134A (en) Piezoelectric resonator and electronic component including same
CN1750393B (en) A surface mount quartz crystal resonator and manufacturing method thereof
EP0800268B1 (en) Piezoelectric resonator
EP0845859B1 (en) Piezoelectric resonator and electronic component using the same resonator
JPH07147526A (en) Vibrator utilizing width spread mode, resonator and resonator component

Legal Events

Date Code Title Description
STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载