US20030188692A1 - Apparatus for creating a pathway in an animal and methods therefor - Google Patents
Apparatus for creating a pathway in an animal and methods therefor Download PDFInfo
- Publication number
- US20030188692A1 US20030188692A1 US10/295,008 US29500802A US2003188692A1 US 20030188692 A1 US20030188692 A1 US 20030188692A1 US 29500802 A US29500802 A US 29500802A US 2003188692 A1 US2003188692 A1 US 2003188692A1
- Authority
- US
- United States
- Prior art keywords
- membrane
- tract
- catheter
- tube
- animal
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241001465754 Metazoa Species 0.000 title claims abstract description 32
- 238000000034 method Methods 0.000 title claims abstract description 26
- 230000037361 pathway Effects 0.000 title claims abstract description 16
- 239000012528 membrane Substances 0.000 claims abstract description 121
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 14
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 14
- 238000000151 deposition Methods 0.000 claims abstract description 4
- 230000009471 action Effects 0.000 claims description 4
- 239000012530 fluid Substances 0.000 abstract description 18
- 208000014674 injury Diseases 0.000 abstract description 11
- 230000009027 insemination Effects 0.000 abstract description 11
- 230000008733 trauma Effects 0.000 abstract description 9
- 210000001161 mammalian embryo Anatomy 0.000 abstract description 7
- 210000005000 reproductive tract Anatomy 0.000 abstract description 7
- 230000006378 damage Effects 0.000 abstract description 4
- 230000001225 therapeutic effect Effects 0.000 abstract description 4
- 238000012377 drug delivery Methods 0.000 abstract description 3
- 208000027418 Wounds and injury Diseases 0.000 abstract description 2
- 241000282898 Sus scrofa Species 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 210000004291 uterus Anatomy 0.000 description 8
- 210000000582 semen Anatomy 0.000 description 7
- 238000003780 insertion Methods 0.000 description 4
- 230000037431 insertion Effects 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 238000007789 sealing Methods 0.000 description 4
- 230000035515 penetration Effects 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000000071 blow moulding Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 238000007598 dipping method Methods 0.000 description 2
- 230000012173 estrus Effects 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 210000001035 gastrointestinal tract Anatomy 0.000 description 2
- 229920000126 latex Polymers 0.000 description 2
- 239000004816 latex Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- -1 polyethylene Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 210000002345 respiratory system Anatomy 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 210000001215 vagina Anatomy 0.000 description 2
- ZHJGWYRLJUCMRT-UHFFFAOYSA-N 5-[6-[(4-methylpiperazin-1-yl)methyl]benzimidazol-1-yl]-3-[1-[2-(trifluoromethyl)phenyl]ethoxy]thiophene-2-carboxamide Chemical compound C=1C=CC=C(C(F)(F)F)C=1C(C)OC(=C(S1)C(N)=O)C=C1N(C1=C2)C=NC1=CC=C2CN1CCN(C)CC1 ZHJGWYRLJUCMRT-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 0 OC*C1*C*C1 Chemical compound OC*C1*C*C1 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 208000036029 Uterine contractions during pregnancy Diseases 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- ICSSIKVYVJQJND-UHFFFAOYSA-N calcium nitrate tetrahydrate Chemical compound O.O.O.O.[Ca+2].[O-][N+]([O-])=O.[O-][N+]([O-])=O ICSSIKVYVJQJND-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000701 coagulant Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 230000035558 fertility Effects 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000035876 healing Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 230000036512 infertility Effects 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 238000002357 laparoscopic surgery Methods 0.000 description 1
- 229920003008 liquid latex Polymers 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 230000037230 mobility Effects 0.000 description 1
- 230000004899 motility Effects 0.000 description 1
- 210000003899 penis Anatomy 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 229920006324 polyoxymethylene Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000009877 rendering Methods 0.000 description 1
- 239000000523 sample Substances 0.000 description 1
- 230000037390 scarring Effects 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 210000004872 soft tissue Anatomy 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000010257 thawing Methods 0.000 description 1
- 210000003905 vulva Anatomy 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61D—VETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
- A61D19/00—Instruments or methods for reproduction or fertilisation
- A61D19/02—Instruments or methods for reproduction or fertilisation for artificial insemination
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61D—VETERINARY INSTRUMENTS, IMPLEMENTS, TOOLS, OR METHODS
- A61D19/00—Instruments or methods for reproduction or fertilisation
- A61D19/02—Instruments or methods for reproduction or fertilisation for artificial insemination
- A61D19/027—Devices for injecting semen into animals, e.g. syringes, guns, probes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S604/00—Surgery
- Y10S604/906—Artificial insemination
Definitions
- the present invention relates to the field of creating a pathway into an animal. More particularly, the present invention relates to more effective methods and apparatus for safely creating pathways in mammals for applications such as artificial insemination (AI).
- AI artificial insemination
- FIGS. 1A and 1B show conventional AI catheters for swine.
- the rigid deep insemination catheters are pushed and/or threaded through cervical canals using bulbous ends or slight angles on their tips in an attempt to navigate the curves and turns of the cervical canal.
- One inherent flaw of these rigid deep insemination catheters is their hard tips that can easily damage or puncture soft tissue areas during entry and exit procedures, often injuring or even killing the animal.
- Other disadvantages of these rigid catheters include the need for a professional, such as veterinarian or a highly trained technician, to perform these trans-cervical intra-uterine AI procedures, which reduces but does not substantially eliminate the risk of serious trauma and resulting sterility or death.
- a method and apparatus for safer and more effective deep trans-cervical intra-uterine artificial insemination is provided.
- Such a deep AI catheter causes minimal discomfort and risk of trauma, and does not require the services of a highly trained AI professional
- a catheter is inserted into the cervical tract of the animal to begin creating a pathway in the reproductive tract of an animal.
- a membrane initially positioned inside a tube section of the catheter, is extended from an opening in the tube and into the tract under pressure. The membrane extends into the tract without friction, i.e. without sliding action between the membrane and the tract, thereby reducing the discomfort and the risk of trauma or injury to the animal.
- pressure causes the tip of the membrane to open thereby releasing the AI fluid and depositing the genetic material suspended in the fluid into the reproductive tract.
- deployment of the membrane is facilitated by its taper.
- tapering can be accomplished by reducing the wall thickness and/or diameter of the membrane towards its tip.
- FIGS. 1A and 1B are exemplary conventional AI catheters.
- FIG. 2A, 2B and 2 C show deep rigid deep insemination catheters extending from conventional AI catheters.
- FIGS. 3A and 3B are schematic views of the before and after deployment, respectively, of one embodiment of the catheter in accordance with the present invention.
- FIGS. 4A through 4F show the assembly of the embodiment of the catheter of FIGS. 3A and 3B.
- FIGS. 5A, 5B and 5 C show one embodiment of the catheter attached to two exemplary AI dispensers.
- FIGS. 5D and 5E show the catheter during and after deployment.
- FIG. 6 is an enlarged drawing of one embodiment of a tapered nozzle for the catheter.
- FIGS. 7A through 7E show the insertion and deployment of the catheter in a sow.
- FIGS. 8A, 8B and 8 C are cross-sectional views of alternative embodiments of the membrane for the catheter.
- FIGS. 9A through 4D show the assembly and deployment of another embodiment of the catheter of FIGS. 3A and 3B.
- FIGS. 10 and 11 show alternative embodiments of the catheter tube of FIG. 9A.
- FIGS. 12A through 12C show another embodiment of a catheter nozzle of the present invention.
- FIGS. 12D and 12E show yet another embodiment of the catheter nozzle.
- FIGS. 13A through 13D illustrate the controlled herniation during the deployment of the membrane in accordance with the invention.
- FIGS. 14A through 14E show another herniating embodiment of the membrane of the present invention.
- FIGS. 15A and 15B show yet another embodiment of the invention where the membrane has a closed tip.
- FIGS. 16A and 16B show another embodiment of the invention wherein a container is coupled to a nozzle.
- FIGS. 3A and 3B are views of one embodiment of catheter 300 , prior to and after deployment of a membrane.
- FIGS. 4A through 4F illustrate the assembly of catheter 300 of FIGS. 3A and 3B.
- FIGS. 4A, 4B and 4 C show a membrane 410 , a catheter tube 420 , and a subassembly 430 comprising membrane 410 and tube 420 .
- Membrane 410 can be attached to catheter tube 420 by inserting tip 418 of membrane 410 into opening 421 of tube 420 , until deployable sections 414 and 416 of membrane of 410 are inside hollow 424 of tube 420 .
- a leading edge 412 of membrane 410 is snapped into a positioning ring 422 located on the outer surface of catheter tube 420 , as shown in FIG. 4C.
- Positioning ring 422 can be machined or molded depending on the manufacturing process.
- Other chemical and/or physical means of attaching membrane 410 to tube 420 can also be used, e.g., adhesive, heat bonding, ultrasonic welding, chemical bonding or heat staking.
- subassembly 430 can be press fitted into catheter nozzle 440 , by engaging membrane edge 412 of subassembly 430 into an internal positioning ring 442 of nozzle 440 .
- subassembly 430 can be sufficiently mechanically coupled to nozzle 440
- the various components of assembled catheter 300 can be further secured to each other by sonically welded or heat staked to prevent separation during deployment, such as inside the reproductive tract during artificial insemination (AI).
- AI artificial insemination
- subassembly 430 can be replaced by a one-piece membrane-tube combination that can be manufactured by, for example, blow molding.
- Another method for constructing subassembly 430 is to insert catheter tube 420 over a membrane die, similar to dies used in balloon manufacturing, dipping the die and the attached catheter tube 420 into a suitable liquid membrane media until the entire die and about half inch of the end of catheter tube 420 is coated with the membrane media. After the liquid membrane media is cured, membrane tip 418 is cut. A downward movement of catheter tube 420 detaches tube 420 from the die and also automatically inverts membrane 410 into catheter tube 420 , thereby forming subassembly 430 .
- Membrane tip 418 can include an opening such as a slit or a circular or oval hole. Alternatively, instead of an opening, tip 418 can include a soluble plug or a pre-weakened seal designed to dissolve or fail under pressure at the right time.
- nozzle 440 can be of different shapes and sizes, and combination thereof, including but not limited to spirals, bulbous knobs, including the nozzles illustrated by FIGS. 1A, 1B, 2 A, 2 B, and 2 C. Although spirals are optional, approximately one to three spirals may be optimal when catheter 300 is used in swine. Shorter nozzles are also possible because membrane 410 is self-sealing, longer and self-guiding. In some embodiments, nozzle 440 is tapered to aid in insertion into the tract.
- nozzle 440 may have a smaller diameter and shorter length. Conversely, for second to seventh parity sows with larger birth canals, nozzle 440 may have a larger diameter and longer length to facilitate the deposit of genetic materials and/or diagnostic instruments.
- the overall length of membrane 410 can be approximately four to eight inches and tapering gently from one-eighth of an inch.
- Suitable materials for nozzle 440 and membrane 410 of catheter 300 include silicone, silicone gel packs, foam, latex, ClearTexTM (available from Zeller International, New York), polymers, plastics, metals, or combinations thereof.
- Other candidate materials include the polyolefins, polyethylene and polypropylene, the polyacetals, ploy-butadiene-styrene copolymers, the polyfluoro and polyfluorochloro-polymers, such as TeflonTM and other polymers and copolymers.
- FIGS. 8A and 8B other embodiments include a membrane 810 that are similar to a children's party noisemaker and an inwardly-rolled embodiment 820 not unlike a condom, respectively.
- a twin forked-membrane 830 is also possible for deployment into the dual uterine horns of a sow, as shown in FIG. 8C.
- catheter 300 may have multiple tubes with multiple membranes. Such an embodiment may be useful in laparoscopy where one pathway is created for a camera and a second pathway is created for an instrument during surgery. Alternatively, a large diameter catheter 300 can also be used to create a large pathway within which one or more smaller catheters can be deployed.
- FIGS. 5A, 5D, and 5 E show catheter 300 , before, during and after deployment, respectively.
- FIGS. 5B and 5C one embodiment of the catheter attached to two types of AI dispensers.
- FIGS. 7A through 7E show the insertion and deployment of catheter 300 in a sow 780 .
- Catheter 300 is deployed by introducing genetic material suspended in a suitable fluid under pressure into sow 780 .
- the AI fluid can be transported in a suitable dispenser, such as a squeeze bottle 560 or a pre-packaged tube 570 .
- catheter 300 is inserted into vaginal cavity 782 of sow 780 .
- Catheter 300 is gradually pushed further into sow 780 until nozzle tip 556 is fully inserted into vagina cavity 782 , as shown in FIG. 7B.
- catheter 300 is then gently eased into cervical tract 784 of sow 780 until nozzle tip 556 engages at least the first cervical ring of cervical tract 784 .
- membrane 410 is not advanced until catheter 300 is positioned in cervical tract 784 , thereby preventing contaminated materials that may be contained in vaginal cavity 782 , or fluids from cervical tract 784 , from being accidentally transferred into uterus 788 or uterine horns of sow 780 .
- bio-security of uterus 788 is maintained.
- AI fluid under pressure is fed into catheter 300 .
- Pressure can be generated manually via a dispenser 560 or by a suitable pump, such as a pneumatic or hydraulic pump.
- the effect of the pressure causes membrane 410 to begin unfolding in an inside-out manner not unlike removing one's sock by pulling from the open end.
- catheter 300 includes an opening in membrane tip 418 , the AI fluid under pressure keeps the opening of tip 418 closed until membrane 410 is fully extended into cervical tract 784 .
- membrane 410 of catheter 300 continues to advance in a frictionless manner into the curved and narrow passageway of cervical tract 784 , automatically centering the ever-expanding forward most portion of membrane 410 in the direction of least resistance. It is this expansion and automatic centering action of membrane 410 that advantageously enables membrane 410 to worm its way through cervical tract 784 without damaging or irritating delicate tissues.
- membrane tip 418 is near to or at the entrance of uterus 788 , the pressure causes tip 418 to open thereby allowing the AI fluid to be deposited at the deeper end of cervical tract 786 and/or directly into uterus 788 .
- membrane 410 aids deployment in cervical tract 786 , the taper may not be necessary for proper deployment. In some applications, partial penetration of membrane 410 into the uterine horns (not shown) is also possible, allowing for example the introduction of embryo transplants.
- the invention eliminates the need for multiple removable sheaths by progressively feeding new portion of membrane 410 in an unfolding process. Every newly extended portion of membrane 410 is sterile because there is no prior contact with other biological tissue, such as vaginal cavity or other body fluids.
- membrane 410 collapses after the fluid pressure dissipates, allowing for safe and easy withdrawal of the relatively flat, flexible, smooth and lubricated surface of membrane 410 , causing minimal discomfort and posing minimal risk of trauma and damage to the recipient animal.
- trans-cervical intra-uterine AI advantageously reduces the volume of AI fluid needed for successful insemination by delivering the genetic materials where nature intended, i.e., into uterus 788 .
- a normal dose of 4-6 billion fresh swine semen may be reduced to fewer than 1 billion for successful AI when trans-cervical intra-uterine AI is employed.
- catheter 300 is effective during refractory heat, which is the much longer period during estrus when cervical tract 784 is relaxed, allowing easier penetration of cervical tract 784 . Since catheter 300 bridges cervical tract 784 and deposits the genetic material suspended in the AI fluid much closer to uterus 788 , resistance caused by clamping cervical tract 784 during standing heat is not needed and probably undesirable. Hence catheter 300 is effective during the much longer refractory heat period because semen can be deposited efficiently and with minimal restriction in cervical tract 784 .
- trans-cervical intra-uterine AI can be combined with the relative safety and effectiveness of catheter 300 of the present invention.
- farmers can now use AI in the much longer refractory heat period, allowing these swine farms to operate more efficiently, since successful AI is no longer limited to the much shorter standing heat period.
- Yet another significant advantage of the present invention is the ability of membrane 410 to deploy in a self-centering and self-directing manner, when deployed under pressure.
- a suitable lubricant may be applied to the surface of membrane 410 that may come into contact with the tract of the animal, further reducing discomfort and risk of trauma during deployment and withdrawal of catheter 300 .
- membrane 410 may have a fairly large diameter. This is because if the diameter is too small, membrane 410 may get trapped in the nooks and crannies between protrusions from the wall of cervical tract 784 , 786 . A fairly large diameter allows membrane 410 to gently push aside these protrusions thereby permitting membrane 410 to complete deployment.
- tube 420 has a flared hollow section 424 a and a reduced hollow section 424 b.
- the flared aspect for tube 420 can be manufactured using techniques known to one skilled in the art including extrusion with vacuum or air pressure, blow-molding, and injection molding.
- FIGS. 10 and 11 illustrate alternate embodiments of catheter tube 420 where a larger diameter tube section 420 a is coupled to a smaller diameter tube section 420 b.
- These sections 420 a and 420 b can be mated using techniques known to one skilled in the art such as press-fitting, adhesive or heat sealing, or with a connector 420 c as shown in FIG. 11.
- FIGS. 12 A- 12 C show the assembly of a self-sealing nozzle 1240 for catheter 1200 , whereby the inner diameter of nozzle 1240 is tapered and is configured to fit securely thereby forming a tight seal with subassembly 430 when subassembly 430 is inserted into nozzle 1240 .
- FIGS. 12D & 12E show the assembly of a snap-on version the self-sealing nozzle 1240 of FIGS. 12 A- 12 C.
- an inner ring 1242 of nozzle 1240 snaps into a corresponding positioning ring 422 located on the outer surface of subassembly 430 .
- membrane 410 In accordance with another aspect of the invention, as shown by FIG. 13A, deployment of membrane 410 through any obstructions such as a narrowing of cervical tract 784 , 786 is facilitated by its tapered shape. Tapering of membrane 410 can be accomplished by reducing the wall thickness and/or diameter of membrane 410 towards its tip, i.e., away from nozzle 440 . Hence, in some embodiments, the membrane wall thickness is tapered while the membrane diameter is gently tapered or not tapered at all.
- the length of membrane 410 is approximately 3 to 7 inches from nozzle 440 to membrane tip.
- the external diameter of membrane 410 can range from about ⁇ fraction (3/16) ⁇ inches to ⁇ fraction (5/16) ⁇ inches.
- Membrane wall thickness can vary from approximately 0.025 inches at nozzle 440 to 0.003 inches at the membrane tip.
- membrane dimensions will depend on the properties of membrane material such as elasticity and strength, and also depend on the lo size of the tract of the targeted animal species.
- Suitable membrane materials include a latex compound (product code 1175YL, batch X2471) available from Heveatex Corporation in Fall River, Mass.
- Suitable coagulants include calcium nitrate tetra-hydrate crystal reagent, Ca(NO 3 ) 2 .4H 2 O.
- FIGS. 13B through 13E illustrate the controlled herniation aspect of the present invention which is made possible by tapered membrane 410 .
- membrane encounters an obstruction in the cervical tract 784 .
- herniation occurs at the point of least resistance, which is at the furthermost point of deployment in the cervical tract 784 , i.e., the furthest point from nozzle 440 .
- FIG. 13 c with continuing fluid pressure in membrane 410 , the herniation clears the obstruction at tract 784 , enabling membrane 410 to deploy toward cervical tract 786 .
- membrane 410 encounters another obstruction at cervical tract 786 and herniates at the present furthermost point of deployment, cervical tract 786 , thereby clearing the obstruction and enabling membrane 410 to complete deployment into uterus 788 .
- membrane 410 with a tapered wall thickness there are several ways to manufacture membrane 410 with a tapered wall thickness.
- One way is to dip a membrane tool with the nozzle end first into a tank of liquid latex (not shown). By controlling the dwell time and dipping cycle in the tank, membrane 410 with a graduated wall thickness can be formed over the membrane tool. The combination of gravity and because the nozzle end of the membrane tool is the first to enter the tank and is also the last portion to leave the tank ensures that the wall thickness of membrane 410 is thickest near the nozzle end.
- membrane 1410 herniates substantially continuously and uniformly along the tract during deployment.
- This embodiment may be useful in animals with relatively complex reproductive tracts, such as ewes, where the cervical tract comprises many potential traps for membrane 1410 .
- membrane 1410 fills the cervical tract and these traps can be gently pressed aside and rendering a relatively smooth pathway for the incoming genetic material.
- FIGS. 15A and 15B show another embodiment of the invention where membrane 1510 has a closed tip 1512 .
- This closed tip 1512 enables the substantially precise placement of embryo(s) suspended in a minimal amount of fluid, or gel deposited at membrane pouch 1514 .
- This embodiment may also be useful for depositing a small volume of genetic material such as previously frozen semen.
- a container 1610 e.g. a bottle or flexible semen tube ( 570 ), which holds the genetic material, can be inserted into the vagina of the animal.
- nozzle 440 attached to membrane 410 , can be screwed directly onto container 1610 and the completed assembly 1600 is ready for deployment.
- catheter 300 provides a protective shield for the insertion of devices such as endoscopes, tracheal tubes, or other diagnostic and therapeutic instruments.
- Membrane 410 (the original patent references # 416 , unless I am misinterpreting . . . ) shields the tract from the scraping, scarring and discomfort caused by the contact and friction of the hard, semi-blunt instruments and probes on the otherwise unprotected tract. As a result, healing time and the risk of infection are significantly reduced, thereby lowering recovery time and cost.
- catheter 300 uses an inverted membrane 410 which is turned inside-out during deployment, the concepts of a self-guiding, frictionless, membrane 410 which is deployed with minimal discomfort and trauma to recipient animals has many applications.
- many other applications for catheter 300 are possible.
- catheter 300 can also be used for diagnostic and/or therapeutic applications in which pathways are created in the reproductive tract, respiratory tract, circulatory tract or digestive tract of the recipient animal or a patient. These pathways enable procedures such as embryo transplant and drug delivery to be performed. Laparoscopic procedures such as introducing cameras and instruments are also possible.
- the size and shape of catheter 300 may vary.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Veterinary Medicine (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Reproductive Health (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Animal Husbandry (AREA)
- Media Introduction/Drainage Providing Device (AREA)
- Investigating Or Analysing Biological Materials (AREA)
- Prostheses (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Mechanical Pencils And Projecting And Retracting Systems Therefor, And Multi-System Writing Instruments (AREA)
Abstract
A method and apparatus for safer and more effective deep trans-cervical intra-uterine artificial insemination (AI) is provided. Such a deep AI catheter causes minimal discomfort and risk of trauma, and does not require the services of a highly trained AI professional. First, a catheter is inserted into the cervical tract of the animal. A membrane, initially positioned inside a tube section of the catheter, is then extended from an opening in the tube and into the tract under pressure. The membrane extends into the tract without friction thereby reducing the discomfort and the risk of trauma or injury to the animal. When the membrane is fully extended into the tract, pressure causes the tip of the membrane to open thereby releasing the AI fluid and depositing the genetic material suspended in the fluid into the reproductive tract. Deployment of the membrane is facilitated by tapering its wall thickness towards its tip. In addition to AI and embryo transplant, other applications for the pathway include therapeutic, diagnostic, or other procedures such as introducing fluoroscopic cameras, instruments, and drug delivery.
Description
- This is a continuation-in-part application of U.S. patent application Ser. No. 10/161,575 filed May 31, 2002, titled “Method and Apparatus for creating a pathway in an animal”, and claims priority from a U.S. Provisional Patent Application No. 60/369,941 entitled “Artificial Insemination Device for Swine”, filed Apr. 3, 2002, which is incorporated by reference herein.
- The present invention relates to the field of creating a pathway into an animal. More particularly, the present invention relates to more effective methods and apparatus for safely creating pathways in mammals for applications such as artificial insemination (AI).
- In order to feed the world population that is swelling rapidly year after year, there is an urgent need for a safer and more efficient AI of swine and other farm animals, where fresh or frozen semen and/or embryo transfer technology can be used to transfer high genetic value materials, thereby increasing the quality and quantity of the livestock litters. FIGS. 1A and 1B show conventional AI catheters for swine.
- Unfortunately, freezing is usually necessitated by the short life span of fresh genetic materials and the logistics of distribution. Even with advanced freezing techniques, thawing causes a reduction in the mobility, motility and fertility of the spermatozoa, resulting in the need for trans-cervical intra-uterine AI to obtain commercially acceptable conception rates.
- Referring to FIGS. 2A, 2B and2C, a number of attempts have been made to deposit the weakened spermatozoa directly in the uterus or uterine horn by trans-cervical intra-uterine AI using rigid trans-cervical deep insemination catheters. These rigid deep insemination catheters are basically reduced diameter catheters that are enclosed and extend from within a conventional AI catheter.
- The rigid deep insemination catheters are pushed and/or threaded through cervical canals using bulbous ends or slight angles on their tips in an attempt to navigate the curves and turns of the cervical canal. One inherent flaw of these rigid deep insemination catheters is their hard tips that can easily damage or puncture soft tissue areas during entry and exit procedures, often injuring or even killing the animal. Other disadvantages of these rigid catheters include the need for a professional, such as veterinarian or a highly trained technician, to perform these trans-cervical intra-uterine AI procedures, which reduces but does not substantially eliminate the risk of serious trauma and resulting sterility or death.
- Hence there is a need for a safer and more effective deep trans-cervical intra-uterine AI catheter that causes minimal discomfort and risk of trauma, and does not require the services of a highly trained AI professional. Such a safer and easier-to-use AI catheter will be especially beneficial to the small farmers in third world countries who cannot afford the services of a professional.
- To achieve the foregoing and in accordance with the present invention, a method and apparatus for safer and more effective deep trans-cervical intra-uterine artificial insemination (AI) is provided. Such a deep AI catheter causes minimal discomfort and risk of trauma, and does not require the services of a highly trained AI professional
- In one embodiment, a catheter is inserted into the cervical tract of the animal to begin creating a pathway in the reproductive tract of an animal. A membrane, initially positioned inside a tube section of the catheter, is extended from an opening in the tube and into the tract under pressure. The membrane extends into the tract without friction, i.e. without sliding action between the membrane and the tract, thereby reducing the discomfort and the risk of trauma or injury to the animal. When the membrane is fully extended into the tract, pressure causes the tip of the membrane to open thereby releasing the AI fluid and depositing the genetic material suspended in the fluid into the reproductive tract.
- In accordance with one aspect of the invention, deployment of the membrane is facilitated by its taper. Hence in some embodiments, tapering can be accomplished by reducing the wall thickness and/or diameter of the membrane towards its tip.
- In addition to AI and embryo transplant, other applications for the pathway include other therapeutic, diagnostic or procedures, such as introducing fluoroscopic cameras, instruments, and drug delivery. Note that the various features of the present invention, including the extending membrane and the nozzle, can be practiced alone or in combination. These and other features of the present invention will be described in more detail below in the detailed description of the invention and in conjunction with the following figures.
- The present invention is illustrated by way of example, and not by way of limitation, in the figures of the accompanying drawings and in which like reference numerals refer to similar elements and in which:
- FIGS. 1A and 1B are exemplary conventional AI catheters.
- FIG. 2A, 2B and2C show deep rigid deep insemination catheters extending from conventional AI catheters.
- FIGS. 3A and 3B are schematic views of the before and after deployment, respectively, of one embodiment of the catheter in accordance with the present invention.
- FIGS. 4A through 4F show the assembly of the embodiment of the catheter of FIGS. 3A and 3B.
- FIGS. 5A, 5B and5C show one embodiment of the catheter attached to two exemplary AI dispensers.
- FIGS. 5D and 5E show the catheter during and after deployment.
- FIG. 6 is an enlarged drawing of one embodiment of a tapered nozzle for the catheter.
- FIGS. 7A through 7E show the insertion and deployment of the catheter in a sow.
- FIGS. 8A, 8B and8C are cross-sectional views of alternative embodiments of the membrane for the catheter.
- FIGS. 9A through 4D show the assembly and deployment of another embodiment of the catheter of FIGS. 3A and 3B.
- FIGS. 10 and 11 show alternative embodiments of the catheter tube of FIG. 9A.
- FIGS. 12A through 12C show another embodiment of a catheter nozzle of the present invention.
- FIGS. 12D and 12E show yet another embodiment of the catheter nozzle.
- FIGS. 13A through 13D illustrate the controlled herniation during the deployment of the membrane in accordance with the invention.
- FIGS. 14A through 14E show another herniating embodiment of the membrane of the present invention.
- FIGS. 15A and 15B show yet another embodiment of the invention where the membrane has a closed tip.
- FIGS. 16A and 16B show another embodiment of the invention wherein a container is coupled to a nozzle.
- The present invention will now be described in detail with reference to a few preferred embodiments thereof as illustrated in the accompanying drawings. In the following description, numerous specific details are set forth in order to provide a thorough understanding of the present invention. It will be apparent, however, to one skilled in the art, that the present invention may be practiced without some or all of these specific details. In other instances, well known process steps and/or structures have not been described in detail in order to not unnecessarily obscure the present invention.
- In accordance with the present invention, FIGS. 3A and 3B are views of one embodiment of
catheter 300, prior to and after deployment of a membrane. FIGS. 4A through 4F illustrate the assembly ofcatheter 300 of FIGS. 3A and 3B. - FIGS. 4A, 4B and4C show a
membrane 410, acatheter tube 420, and asubassembly 430 comprisingmembrane 410 andtube 420.Membrane 410 can be attached tocatheter tube 420 by insertingtip 418 ofmembrane 410 into opening 421 oftube 420, untildeployable sections tube 420. Next, aleading edge 412 ofmembrane 410 is snapped into apositioning ring 422 located on the outer surface ofcatheter tube 420, as shown in FIG. 4C.Positioning ring 422 can be machined or molded depending on the manufacturing process. Other chemical and/or physical means of attachingmembrane 410 totube 420 can also be used, e.g., adhesive, heat bonding, ultrasonic welding, chemical bonding or heat staking. - As shown in FIGS. 4D, 4E and4F,
subassembly 430 can be press fitted intocatheter nozzle 440, by engagingmembrane edge 412 ofsubassembly 430 into aninternal positioning ring 442 ofnozzle 440. Althoughsubassembly 430 can be sufficiently mechanically coupled tonozzle 440, the various components of assembledcatheter 300 can be further secured to each other by sonically welded or heat staked to prevent separation during deployment, such as inside the reproductive tract during artificial insemination (AI). - Alternatively,
subassembly 430 can be replaced by a one-piece membrane-tube combination that can be manufactured by, for example, blow molding. Another method for constructingsubassembly 430 is to insertcatheter tube 420 over a membrane die, similar to dies used in balloon manufacturing, dipping the die and the attachedcatheter tube 420 into a suitable liquid membrane media until the entire die and about half inch of the end ofcatheter tube 420 is coated with the membrane media. After the liquid membrane media is cured,membrane tip 418 is cut. A downward movement ofcatheter tube 420 detachestube 420 from the die and also automatically invertsmembrane 410 intocatheter tube 420, thereby formingsubassembly 430. -
Membrane tip 418 can include an opening such as a slit or a circular or oval hole. Alternatively, instead of an opening,tip 418 can include a soluble plug or a pre-weakened seal designed to dissolve or fail under pressure at the right time. - Depending on the specific application,
nozzle 440 can be of different shapes and sizes, and combination thereof, including but not limited to spirals, bulbous knobs, including the nozzles illustrated by FIGS. 1A, 1B, 2A, 2B, and 2C. Although spirals are optional, approximately one to three spirals may be optimal whencatheter 300 is used in swine. Shorter nozzles are also possible because membrane 410is self-sealing, longer and self-guiding. In some embodiments,nozzle 440 is tapered to aid in insertion into the tract. - Different membrane materials and size thickness depend on applications and target animal. For virgin sows, also known as gilts,
nozzle 440 may have a smaller diameter and shorter length. Conversely, for second to seventh parity sows with larger birth canals,nozzle 440 may have a larger diameter and longer length to facilitate the deposit of genetic materials and/or diagnostic instruments. For example in sows, the overall length ofmembrane 410 can be approximately four to eight inches and tapering gently from one-eighth of an inch. - Depending on the specific type and size of the target application, different materials, size, and thickness can be employed. Suitable materials for
nozzle 440 andmembrane 410 ofcatheter 300 include silicone, silicone gel packs, foam, latex, ClearTex™ (available from Zeller International, New York), polymers, plastics, metals, or combinations thereof. Other candidate materials include the polyolefins, polyethylene and polypropylene, the polyacetals, ploy-butadiene-styrene copolymers, the polyfluoro and polyfluorochloro-polymers, such as Teflon™ and other polymers and copolymers. - As shown in the cross-sectional views of FIGS. 8A and 8B, other embodiments include a
membrane 810 that are similar to a children's party noisemaker and an inwardly-rolledembodiment 820 not unlike a condom, respectively. A twin forked-membrane 830 is also possible for deployment into the dual uterine horns of a sow, as shown in FIG. 8C. - Many variations of
catheter 300 are possible. For example,catheter 300 may have multiple tubes with multiple membranes. Such an embodiment may be useful in laparoscopy where one pathway is created for a camera and a second pathway is created for an instrument during surgery. Alternatively, alarge diameter catheter 300 can also be used to create a large pathway within which one or more smaller catheters can be deployed. - FIGS. 5A, 5D, and5E, show
catheter 300, before, during and after deployment, respectively. FIGS. 5B and 5C one embodiment of the catheter attached to two types of AI dispensers. FIGS. 7A through 7E show the insertion and deployment ofcatheter 300 in asow 780.Catheter 300 is deployed by introducing genetic material suspended in a suitable fluid under pressure intosow 780. As shown in FIGS. 5B and 5C, the AI fluid can be transported in a suitable dispenser, such as asqueeze bottle 560 or apre-packaged tube 570. - Referring to FIG. 7A,
catheter 300 is inserted intovaginal cavity 782 ofsow 780.Catheter 300 is gradually pushed further intosow 780 untilnozzle tip 556 is fully inserted intovagina cavity 782, as shown in FIG. 7B. - In FIG. 7C,
catheter 300 is then gently eased intocervical tract 784 ofsow 780 untilnozzle tip 556 engages at least the first cervical ring ofcervical tract 784. Unlike conventional catheters,membrane 410 is not advanced untilcatheter 300 is positioned incervical tract 784, thereby preventing contaminated materials that may be contained invaginal cavity 782, or fluids fromcervical tract 784, from being accidentally transferred intouterus 788 or uterine horns ofsow 780. Hence, bio-security ofuterus 788 is maintained. - Next, as shown in FIG. 7D, AI fluid under pressure is fed into
catheter 300. Pressure can be generated manually via adispenser 560 or by a suitable pump, such as a pneumatic or hydraulic pump. The effect of the pressure causesmembrane 410 to begin unfolding in an inside-out manner not unlike removing one's sock by pulling from the open end. Althoughcatheter 300 includes an opening inmembrane tip 418, the AI fluid under pressure keeps the opening oftip 418 closed untilmembrane 410 is fully extended intocervical tract 784. - Referring now to FIG. 7E,
membrane 410 ofcatheter 300 continues to advance in a frictionless manner into the curved and narrow passageway ofcervical tract 784, automatically centering the ever-expanding forward most portion ofmembrane 410 in the direction of least resistance. It is this expansion and automatic centering action ofmembrane 410 that advantageously enablesmembrane 410 to worm its way throughcervical tract 784 without damaging or irritating delicate tissues. Eventually, whenmembrane 410 is fully extended andmembrane tip 418 is near to or at the entrance ofuterus 788, the pressure causestip 418 to open thereby allowing the AI fluid to be deposited at the deeper end ofcervical tract 786 and/or directly intouterus 788. - While a slight taper of
membrane 410 aids deployment incervical tract 786, the taper may not be necessary for proper deployment. In some applications, partial penetration ofmembrane 410 into the uterine horns (not shown) is also possible, allowing for example the introduction of embryo transplants. - Hence the invention eliminates the need for multiple removable sheaths by progressively feeding new portion of
membrane 410 in an unfolding process. Every newly extended portion ofmembrane 410 is sterile because there is no prior contact with other biological tissue, such as vaginal cavity or other body fluids. - When a suitable amount of AI fluid has been deposited into
sow 780,membrane 410 collapses after the fluid pressure dissipates, allowing for safe and easy withdrawal of the relatively flat, flexible, smooth and lubricated surface ofmembrane 410, causing minimal discomfort and posing minimal risk of trauma and damage to the recipient animal. - The use of trans-cervical intra-uterine AI advantageously reduces the volume of AI fluid needed for successful insemination by delivering the genetic materials where nature intended, i.e., into
uterus 788. For example, a normal dose of 4-6 billion fresh swine semen may be reduced to fewer than 1 billion for successful AI when trans-cervical intra-uterine AI is employed. - In conventional AI, a small window of opportunity for a successful deposit of genetic material suspended in the AI fluid occurs during standing heat, which lasts for only five to eight minutes every one to three hours during estrus, when
sow 780 is receptive to boar mounting. During standing heat, when a boar mounts sow 780,cervical tract 784 clamps onto the boar's penis to assist ejaculation, and uterine contractions draws the semen throughcervical tract 784. If conventional AI is attempted outside this small window of opportunity, sow 780 will not assist in the drawing of the semen throughcervical tract 784, and much of the AI fluid will backflow out the sow's vulva and is wasted, thereby reducing the probability of a successful litter. - Unlike conventional A1,
catheter 300 is effective during refractory heat, which is the much longer period during estrus whencervical tract 784 is relaxed, allowing easier penetration ofcervical tract 784. Sincecatheter 300 bridgescervical tract 784 and deposits the genetic material suspended in the AI fluid much closer touterus 788, resistance caused by clampingcervical tract 784 during standing heat is not needed and probably undesirable. Hencecatheter 300 is effective during the much longer refractory heat period because semen can be deposited efficiently and with minimal restriction incervical tract 784. - Hence the advantages of trans-cervical intra-uterine AI can be combined with the relative safety and effectiveness of
catheter 300 of the present invention. Farmers can now use AI in the much longer refractory heat period, allowing these swine farms to operate more efficiently, since successful AI is no longer limited to the much shorter standing heat period. - Yet another significant advantage of the present invention is the ability of
membrane 410 to deploy in a self-centering and self-directing manner, when deployed under pressure. During manufacture, a suitable lubricant may be applied to the surface ofmembrane 410 that may come into contact with the tract of the animal, further reducing discomfort and risk of trauma during deployment and withdrawal ofcatheter 300. - In addition, unlike the conventional rigid deep penetration catheters, once
membrane 410 ofcatheter 300 has been deployed and withdrawn fromcervical tract 784, it is difficult to reinsertmembrane 410 back intocatheter nozzle 440 andtube 420, thereby discouraging the reuse of the now contaminatedmembrane 410. - Referring now to FIGS. 9A through 9D, which show the assembly and deployment of another embodiment of the invention for use in fairly large animals such as swine,
membrane 410 may have a fairly large diameter. This is because if the diameter is too small,membrane 410 may get trapped in the nooks and crannies between protrusions from the wall ofcervical tract membrane 410 to gently push aside these protrusions thereby permittingmembrane 410 to complete deployment. - However with a fairly large membrane diameter, any genetic material remaining inside
catheter tube 420 aftermembrane 410 has fully deployed is wasted. Hence, in accordance with one aspect of the invention,tube 420 has a flaredhollow section 424 a and a reducedhollow section 424 b. The flared aspect fortube 420 can be manufactured using techniques known to one skilled in the art including extrusion with vacuum or air pressure, blow-molding, and injection molding. - FIGS. 10 and 11 illustrate alternate embodiments of
catheter tube 420 where a largerdiameter tube section 420 a is coupled to a smallerdiameter tube section 420 b. Thesesections connector 420 c as shown in FIG. 11. - As discussed above, there are many ways to attach
membrane 410 tocatheter tube 420 formingsubassembly 430, and also many ways to attachnozzle 440 totube subassembly 430. FIGS. 12A-12C show the assembly of a self-sealingnozzle 1240 forcatheter 1200, whereby the inner diameter ofnozzle 1240 is tapered and is configured to fit securely thereby forming a tight seal withsubassembly 430 whensubassembly 430 is inserted intonozzle 1240. - FIGS. 12D & 12E show the assembly of a snap-on version the self-sealing
nozzle 1240 of FIGS. 12A-12C. Whensubassembly 430 is inserted intonozzle 1240, aninner ring 1242 ofnozzle 1240 snaps into acorresponding positioning ring 422 located on the outer surface ofsubassembly 430. - In accordance with another aspect of the invention, as shown by FIG. 13A, deployment of
membrane 410 through any obstructions such as a narrowing ofcervical tract membrane 410 can be accomplished by reducing the wall thickness and/or diameter ofmembrane 410 towards its tip, i.e., away fromnozzle 440. Hence, in some embodiments, the membrane wall thickness is tapered while the membrane diameter is gently tapered or not tapered at all. - For example in swine and similar size animals, the length of
membrane 410 is approximately 3 to 7 inches fromnozzle 440 to membrane tip. The external diameter ofmembrane 410 can range from about {fraction (3/16)} inches to {fraction (5/16)} inches. Membrane wall thickness can vary from approximately 0.025 inches atnozzle 440 to 0.003 inches at the membrane tip. - Naturally, specific membrane dimensions will depend on the properties of membrane material such as elasticity and strength, and also depend on the lo size of the tract of the targeted animal species. Suitable membrane materials include a latex compound (product code 1175YL, batch X2471) available from Heveatex Corporation in Fall River, Mass. Suitable coagulants include calcium nitrate tetra-hydrate crystal reagent, Ca(NO3)2.4H2O.
- FIGS. 13B through 13E illustrate the controlled herniation aspect of the present invention which is made possible by tapered
membrane 410. In FIG. 13B, membrane encounters an obstruction in thecervical tract 784. Becausemembrane 410 has a tapered wall thickness, herniation occurs at the point of least resistance, which is at the furthermost point of deployment in thecervical tract 784, i.e., the furthest point fromnozzle 440. As shown in FIG. 13c, with continuing fluid pressure inmembrane 410, the herniation clears the obstruction attract 784, enablingmembrane 410 to deploy towardcervical tract 786. In this example,membrane 410 encounters another obstruction atcervical tract 786 and herniates at the present furthermost point of deployment,cervical tract 786, thereby clearing the obstruction and enablingmembrane 410 to complete deployment intouterus 788. - There are several ways to manufacture
membrane 410 with a tapered wall thickness. One way is to dip a membrane tool with the nozzle end first into a tank of liquid latex (not shown). By controlling the dwell time and dipping cycle in the tank,membrane 410 with a graduated wall thickness can be formed over the membrane tool. The combination of gravity and because the nozzle end of the membrane tool is the first to enter the tank and is also the last portion to leave the tank ensures that the wall thickness ofmembrane 410 is thickest near the nozzle end. - In another embodiment as shown in FIGS. 14A through 14E, instead of controlled herniation at the furthermost point of deployment,
membrane 1410 herniates substantially continuously and uniformly along the tract during deployment. This embodiment may be useful in animals with relatively complex reproductive tracts, such as ewes, where the cervical tract comprises many potential traps formembrane 1410. By herniating and expanding continually to a controlled diameter,membrane 1410 fills the cervical tract and these traps can be gently pressed aside and rendering a relatively smooth pathway for the incoming genetic material. - FIGS. 15A and 15B show another embodiment of the invention where
membrane 1510 has a closedtip 1512. Thisclosed tip 1512 enables the substantially precise placement of embryo(s) suspended in a minimal amount of fluid, or gel deposited atmembrane pouch 1514. This embodiment may also be useful for depositing a small volume of genetic material such as previously frozen semen. Referring now to FIGS. 16A and 16B, in larger animal such as cows, acontainer 1610, e.g. a bottle or flexible semen tube (570), which holds the genetic material, can be inserted into the vagina of the animal. Hence,nozzle 440, attached tomembrane 410, can be screwed directly ontocontainer 1610 and the completedassembly 1600 is ready for deployment. - Once fully extended into a tract of a recipient animal, e.g., into the reproductive tract, respiratory tract, circulatory tract or digestive tract,
catheter 300 provides a protective shield for the insertion of devices such as endoscopes, tracheal tubes, or other diagnostic and therapeutic instruments. Membrane 410 (the original patent references #416, unless I am misinterpreting . . . ) shields the tract from the scraping, scarring and discomfort caused by the contact and friction of the hard, semi-blunt instruments and probes on the otherwise unprotected tract. As a result, healing time and the risk of infection are significantly reduced, thereby lowering recovery time and cost. - Although the described embodiment of
catheter 300 uses aninverted membrane 410 which is turned inside-out during deployment, the concepts of a self-guiding, frictionless,membrane 410 which is deployed with minimal discomfort and trauma to recipient animals has many applications. In addition to AI and embryo transplant, many other applications forcatheter 300 are possible. For example,catheter 300 can also be used for diagnostic and/or therapeutic applications in which pathways are created in the reproductive tract, respiratory tract, circulatory tract or digestive tract of the recipient animal or a patient. These pathways enable procedures such as embryo transplant and drug delivery to be performed. Laparoscopic procedures such as introducing cameras and instruments are also possible. Depending on the application, the size and shape ofcatheter 300 may vary. - While this invention has been described in terms of several preferred embodiments, there are alterations, modifications, permutations, and substitute equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, modifications, permutations, and substitute equivalents as fall within the true spirit and scope of the present invention.
Claims (16)
1. A method of creating a pathway in a tract of an animal, useful in association with a catheter having a tube coupled to a membrane initially positioned substantially inside the tube, the method comprising:
inserting the tube into a tract of the animal; and
extending the membrane from an opening in the tube and into the tract, thereby creating the pathway in the tract, and wherein the membrane is extended in the tract without sliding action between the membrane and the tract, and wherein the membrane is configured to herniate when the membrane encounters an obstruction in the tract, thereby clearing the obstruction and enabling the membrane to continue to extend.
2. The method of claim 1 wherein the extension of the membrane is caused by pressure.
3. The method of claim 1 wherein the tract is the cervical tract of the animal.
4. The method of claim 3 wherein the animal is a sow.
5. The method of claim 1 wherein the tube has a nozzle located at the opening of the tube.
6. The method of claim 1 wherein the membrane wall thickness is tapered.
7. The method of claim 3 further comprising depositing genetic material into the animal.
8. A catheter useful for creating a pathway in a tract of an animal, the catheter comprising:
a tube configured to be inserted into the tract of the animal; and
a membrane initially positioned inside the tube, the membrane configured to extend from an opening in the tube and into the tract, wherein the membrane extends without sliding action between the membrane and the tract, and wherein the membrane wall thickness is tapered away from the tube opening.
9. The catheter of claim 8 wherein the membrane has an open tip.
10. The catheter of claim 8 wherein the membrane has a closed tip.
11. The catheter of claim 8 wherein the extension of the membrane is caused by pressure.
12. The catheter of claim 8 wherein the tract is the cervical tract of the animal.
13. The catheter of claim 12 wherein the animal is a sow.
14. The catheter of claim 8 wherein the tube has a nozzle located at the opening of the tube.
15. The catheter of claim 8 wherein the nozzle has a positioning ring configured to mate with a corresponding positioning ring on the tube.
16. The catheter of claim 12 wherein the membrane is configured to deposit genetic material into the animal.
Priority Applications (20)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/295,008 US20030188692A1 (en) | 2002-04-03 | 2002-11-14 | Apparatus for creating a pathway in an animal and methods therefor |
NZ535298A NZ535298A (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefor |
AT03703960T ATE493166T1 (en) | 2002-04-03 | 2003-01-23 | DEVICE FOR CREATING A PATH IN AN ANIMAL |
PL373290A PL204501B1 (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefor |
AU2003205284A AU2003205284B2 (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefor |
EP03703960A EP1494524B1 (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal |
KR1020037014549A KR100568700B1 (en) | 2002-04-03 | 2003-01-23 | Injectors and membranes for creating an injection route inside the animal and methods of creating the injection route |
PCT/US2003/001927 WO2003084584A2 (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefor |
EA200401103A EA006149B1 (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a passway in an animal and methods therefor |
DE60335533T DE60335533D1 (en) | 2002-04-03 | 2003-01-23 | DEVICE FOR CREATING A PATH IN AN ANIMAL |
MXPA04009664A MXPA04009664A (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefor. |
CNB038070502A CN100435752C (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefore |
BRPI0308645-3B1A BR0308645B1 (en) | 2002-04-03 | 2003-01-23 | APPARATUS FOR CREATING A PASS IN AN ANIMAL AND METHODS FOR |
JP2003581822A JP4417117B2 (en) | 2002-04-03 | 2003-01-23 | Apparatus and method for creating pathways in animals |
CA002490727A CA2490727C (en) | 2002-04-03 | 2003-01-23 | Apparatus for creating a pathway in an animal and methods therefor |
US10/693,661 US6860235B2 (en) | 2002-04-03 | 2003-10-24 | Apparatus for creating a pathway in an animal and methods therefor |
ZA2004/07695A ZA200407695B (en) | 2002-04-03 | 2004-09-23 | Apparatus for creating a pathway in an animal and methods therefore |
NO20044123A NO20044123L (en) | 2002-04-03 | 2004-09-28 | Apparatus for creating a web in an animal and methods therefor |
CO04109739A CO5611056A2 (en) | 2002-04-03 | 2004-11-02 | APPARATUS AND METHODS TO CREATE A VIA IN AN ANIMAL |
HK05110803.1A HK1078738A1 (en) | 2002-04-03 | 2005-11-28 | Apparatus for creating a pathway in an animal and methods therefor |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US36994102P | 2002-04-03 | 2002-04-03 | |
US10/161,575 US6526917B1 (en) | 2002-04-03 | 2002-05-31 | Method and apparatus for creating a pathway in an animal |
US10/295,008 US20030188692A1 (en) | 2002-04-03 | 2002-11-14 | Apparatus for creating a pathway in an animal and methods therefor |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/161,575 Continuation-In-Part US6526917B1 (en) | 2002-04-03 | 2002-05-31 | Method and apparatus for creating a pathway in an animal |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/693,661 Continuation US6860235B2 (en) | 2002-04-03 | 2003-10-24 | Apparatus for creating a pathway in an animal and methods therefor |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030188692A1 true US20030188692A1 (en) | 2003-10-09 |
Family
ID=46150227
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/295,008 Abandoned US20030188692A1 (en) | 2002-04-03 | 2002-11-14 | Apparatus for creating a pathway in an animal and methods therefor |
US10/693,661 Expired - Lifetime US6860235B2 (en) | 2002-04-03 | 2003-10-24 | Apparatus for creating a pathway in an animal and methods therefor |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/693,661 Expired - Lifetime US6860235B2 (en) | 2002-04-03 | 2003-10-24 | Apparatus for creating a pathway in an animal and methods therefor |
Country Status (6)
Country | Link |
---|---|
US (2) | US20030188692A1 (en) |
KR (1) | KR100568700B1 (en) |
AT (1) | ATE493166T1 (en) |
CO (1) | CO5611056A2 (en) |
HK (1) | HK1078738A1 (en) |
ZA (1) | ZA200407695B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005051007A1 (en) * | 2005-10-25 | 2007-04-26 | Chen, Sheng-Jui, Pyng-Jenn | Artificial insemination device for e.g. pig, has flexible tube that unfolds outward, extends to uterus or its vicinity along cervical tract, and deposits semen into uterus, when semen is squeezed in from rear end of inner catheter |
DE102005051008A1 (en) * | 2005-10-25 | 2007-04-26 | Chen, Sheng-Jui, Pyng-Jenn | Artificial insemination device for animal, has extension member tucked into nozzle via front passage opening of nozzle and amassed in compressed state between forward portion of center orifice and nozzle passage |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100522104C (en) * | 2005-06-15 | 2009-08-05 | 陈生瑞 | Artificial trace insemination device for animals |
US7416526B2 (en) * | 2005-07-05 | 2008-08-26 | Sheng-Jui Chen | Artificial insemination device in animals |
US7435212B2 (en) * | 2005-08-23 | 2008-10-14 | Sheng-Jui Chen | Artificial insemination device with an inner catheter for animals |
US8920448B2 (en) * | 2006-06-30 | 2014-12-30 | Atheromed, Inc. | Atherectomy devices and methods |
US8007506B2 (en) * | 2006-06-30 | 2011-08-30 | Atheromed, Inc. | Atherectomy devices and methods |
US20080045986A1 (en) | 2006-06-30 | 2008-02-21 | Atheromed, Inc. | Atherectomy devices and methods |
AU2007269274A1 (en) | 2006-06-30 | 2008-01-10 | Atheromed, Inc. | Atherectomy devices and methods |
US8628549B2 (en) * | 2006-06-30 | 2014-01-14 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US20110112563A1 (en) * | 2006-06-30 | 2011-05-12 | Atheromed, Inc. | Atherectomy devices and methods |
US9492192B2 (en) * | 2006-06-30 | 2016-11-15 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US8361094B2 (en) | 2006-06-30 | 2013-01-29 | Atheromed, Inc. | Atherectomy devices and methods |
US20090018566A1 (en) | 2006-06-30 | 2009-01-15 | Artheromed, Inc. | Atherectomy devices, systems, and methods |
US9314263B2 (en) * | 2006-06-30 | 2016-04-19 | Atheromed, Inc. | Atherectomy devices, systems, and methods |
US8070762B2 (en) | 2007-10-22 | 2011-12-06 | Atheromed Inc. | Atherectomy devices and methods |
US8236016B2 (en) | 2007-10-22 | 2012-08-07 | Atheromed, Inc. | Atherectomy devices and methods |
CN103957825B (en) | 2011-10-13 | 2018-12-07 | 阿瑟罗迈德公司 | Atherectomy device, system and method |
EP2833940B1 (en) * | 2012-04-05 | 2018-08-22 | Mark L. Anderson | Intra rectal/vaginal applicator technology |
KR102480355B1 (en) | 2019-10-09 | 2022-12-23 | 크로스베이 메디칼 아이엔씨 | Methods and Eversion Catheter Devices for Delivery and Placement of IUDs in the Uterine Cavity |
US11304723B1 (en) | 2020-12-17 | 2022-04-19 | Avantec Vascular Corporation | Atherectomy devices that are self-driving with controlled deflection |
WO2025038964A1 (en) | 2023-08-16 | 2025-02-20 | Avantec Vascular Corporation | Thrombectomy devices with lateral and vertical bias |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6526917B1 (en) * | 2002-04-03 | 2003-03-04 | Mark E. Anderson | Method and apparatus for creating a pathway in an animal |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3050060A (en) * | 1959-09-16 | 1962-08-21 | Roy D Hoffman | Speculum liner and insemination rod combination |
US3380453A (en) * | 1965-10-22 | 1968-04-30 | Lester J Gendron | Livestock cervical tube |
US3896815A (en) * | 1974-06-06 | 1975-07-29 | Shiley Lab Inc | Expansible tip catheters |
US4403603A (en) * | 1979-10-04 | 1983-09-13 | Hutchins Rhonda P | Method to enhance artificial dog breeding |
FR2563726B1 (en) * | 1984-05-04 | 1986-10-10 | Robert Cassou | ARTIFICIAL INSEMINATION APPARATUS, PARTICULARLY CARNIVORES |
AT387718B (en) * | 1986-04-09 | 1989-03-10 | Fischl Franz H Dr | ARTIFICIAL FERTILIZATION CATHEDER |
US5389089A (en) * | 1992-10-13 | 1995-02-14 | Imagyn Medical, Inc. | Catheter with angled ball tip for fallopian tube access and method |
US5360389A (en) * | 1993-05-25 | 1994-11-01 | Chenette Philip E | Methods for endometrial implantation of embryos |
EP0654978A1 (en) * | 1993-06-04 | 1995-05-31 | Kwahak International Co., Ltd. | Artificial insemination and embryo transfer device |
US5674178A (en) * | 1996-06-12 | 1997-10-07 | Root; Robert W. | Artificial insemination tool |
US6071231A (en) * | 1997-07-11 | 2000-06-06 | Mendoza; Marco Antonio Hidalgo | Device and method for artificial insemination of bovines and other animals |
US5899848A (en) * | 1997-07-14 | 1999-05-04 | Haubrich; Mark A. | Device and process for artificial insemination of animals |
US6355027B1 (en) | 1999-06-09 | 2002-03-12 | Possis Medical, Inc. | Flexible microcatheter |
US6255027B1 (en) * | 2000-05-22 | 2001-07-03 | Xerox Corporation | Blocking layer with light scattering particles having coated core |
-
2002
- 2002-11-14 US US10/295,008 patent/US20030188692A1/en not_active Abandoned
-
2003
- 2003-01-23 KR KR1020037014549A patent/KR100568700B1/en not_active Expired - Fee Related
- 2003-01-23 AT AT03703960T patent/ATE493166T1/en not_active IP Right Cessation
- 2003-10-24 US US10/693,661 patent/US6860235B2/en not_active Expired - Lifetime
-
2004
- 2004-09-23 ZA ZA2004/07695A patent/ZA200407695B/en unknown
- 2004-11-02 CO CO04109739A patent/CO5611056A2/en active IP Right Grant
-
2005
- 2005-11-28 HK HK05110803.1A patent/HK1078738A1/en not_active IP Right Cessation
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6526917B1 (en) * | 2002-04-03 | 2003-03-04 | Mark E. Anderson | Method and apparatus for creating a pathway in an animal |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102005051007A1 (en) * | 2005-10-25 | 2007-04-26 | Chen, Sheng-Jui, Pyng-Jenn | Artificial insemination device for e.g. pig, has flexible tube that unfolds outward, extends to uterus or its vicinity along cervical tract, and deposits semen into uterus, when semen is squeezed in from rear end of inner catheter |
DE102005051008A1 (en) * | 2005-10-25 | 2007-04-26 | Chen, Sheng-Jui, Pyng-Jenn | Artificial insemination device for animal, has extension member tucked into nozzle via front passage opening of nozzle and amassed in compressed state between forward portion of center orifice and nozzle passage |
Also Published As
Publication number | Publication date |
---|---|
ZA200407695B (en) | 2005-02-23 |
US20040134442A1 (en) | 2004-07-15 |
KR20040014520A (en) | 2004-02-14 |
CO5611056A2 (en) | 2006-02-28 |
ATE493166T1 (en) | 2011-01-15 |
US6860235B2 (en) | 2005-03-01 |
KR100568700B1 (en) | 2006-04-07 |
HK1078738A1 (en) | 2006-03-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6860235B2 (en) | Apparatus for creating a pathway in an animal and methods therefor | |
US6526917B1 (en) | Method and apparatus for creating a pathway in an animal | |
US6527703B2 (en) | Device for sow-intra-uterine insemination and embryo transfer | |
US6695767B2 (en) | Device, a probe and a method for introducing and/or collecting fluids in the inside of an animal uterus | |
CA2220550C (en) | A system for introducing a fluid into the uterus of an animal | |
AU2003205284B2 (en) | Apparatus for creating a pathway in an animal and methods therefor | |
JPH08501718A (en) | Artificial fertilization and fertilized egg transfer device | |
US7971553B2 (en) | Method and apparatus for creating a pathway in an animal | |
US8136483B2 (en) | Method and apparatus for creating a pathway in an animal | |
JP2001120581A (en) | Instrument and method for transplant of animal embryo | |
JP3115795U (en) | Vaginal artificial insemination equipment for canines | |
JP2005211190A (en) | Catheter for artificial insemination for livestock | |
AU5259999A (en) | A method for introducing a fluid into the uterus of an animal |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: PATHWAY TECHNOLOGIES, LLC, DELAWARE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ANDERSON, MARK E.;ANDERSON, DONALD E.;ANDERSON, GLENN M.;AND OTHERS;REEL/FRAME:014245/0835 Effective date: 20030620 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |