US20030186416A1 - Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods - Google Patents
Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods Download PDFInfo
- Publication number
- US20030186416A1 US20030186416A1 US10/354,698 US35469803A US2003186416A1 US 20030186416 A1 US20030186416 A1 US 20030186416A1 US 35469803 A US35469803 A US 35469803A US 2003186416 A1 US2003186416 A1 US 2003186416A1
- Authority
- US
- United States
- Prior art keywords
- pme
- subunit
- pp2a
- ser
- leu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091026890 Coding region Proteins 0.000 title claims abstract description 34
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 title claims abstract description 5
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 title claims abstract description 5
- 238000000034 method Methods 0.000 title claims description 17
- 108020004511 Recombinant DNA Proteins 0.000 title description 2
- 230000000694 effects Effects 0.000 claims abstract description 42
- 108010086028 protein phosphatase methylesterase-1 Proteins 0.000 claims abstract description 30
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 29
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 16
- 238000000338 in vitro Methods 0.000 claims abstract description 15
- 229920001184 polypeptide Polymers 0.000 claims abstract description 15
- 241000894006 Bacteria Species 0.000 claims abstract description 11
- 102100037834 Protein phosphatase methylesterase 1 Human genes 0.000 claims abstract description 11
- 210000004027 cell Anatomy 0.000 claims description 81
- 150000001413 amino acids Chemical class 0.000 claims description 40
- 239000002773 nucleotide Substances 0.000 claims description 38
- 125000003729 nucleotide group Chemical group 0.000 claims description 38
- 239000013598 vector Substances 0.000 claims description 35
- 125000003275 alpha amino acid group Chemical group 0.000 claims description 17
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 claims description 14
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 claims description 14
- 230000001105 regulatory effect Effects 0.000 claims description 12
- 150000007523 nucleic acids Chemical class 0.000 claims description 10
- 230000001580 bacterial effect Effects 0.000 claims description 8
- 102000039446 nucleic acids Human genes 0.000 claims description 7
- 108020004707 nucleic acids Proteins 0.000 claims description 7
- 238000013518 transcription Methods 0.000 claims description 5
- 230000035897 transcription Effects 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 241000238631 Hexapoda Species 0.000 claims description 4
- 239000012634 fragment Substances 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 241000124008 Mammalia Species 0.000 claims description 3
- 238000003259 recombinant expression Methods 0.000 claims description 2
- 241000701447 unidentified baculovirus Species 0.000 claims description 2
- 239000013604 expression vector Substances 0.000 claims 8
- 101710105402 Methylesterase 1 Proteins 0.000 claims 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims 1
- 238000012258 culturing Methods 0.000 claims 1
- 210000004962 mammalian cell Anatomy 0.000 claims 1
- 108090000623 proteins and genes Proteins 0.000 abstract description 93
- 102000004169 proteins and genes Human genes 0.000 abstract description 85
- 241000282414 Homo sapiens Species 0.000 abstract description 20
- 210000004899 c-terminal region Anatomy 0.000 abstract description 19
- 239000003112 inhibitor Substances 0.000 abstract description 19
- 230000003197 catalytic effect Effects 0.000 abstract description 18
- 240000004808 Saccharomyces cerevisiae Species 0.000 abstract description 17
- VEFJHAYOIAAXEU-UHFFFAOYSA-N okadaic acid Natural products CC(CC(O)C1OC2CCC3(CCC(O3)C=CC(C)C4CC(=CC5(OC(CC(C)(O)C(=O)O)CCC5O)O4)C)OC2C(O)C1C)C6OC7(CCCCO7)CCC6C VEFJHAYOIAAXEU-UHFFFAOYSA-N 0.000 abstract description 15
- QNDVLZJODHBUFM-WFXQOWMNSA-N okadaic acid Chemical compound C([C@H](O1)[C@H](C)/C=C/[C@H]2CC[C@@]3(CC[C@H]4O[C@@H](C([C@@H](O)[C@@H]4O3)=C)[C@@H](O)C[C@H](C)[C@@H]3[C@@H](CC[C@@]4(OCCCC4)O3)C)O2)C(C)=C[C@]21O[C@H](C[C@@](C)(O)C(O)=O)CC[C@H]2O QNDVLZJODHBUFM-WFXQOWMNSA-N 0.000 abstract description 15
- 108090001060 Lipase Proteins 0.000 abstract description 11
- 102000004882 Lipase Human genes 0.000 abstract description 11
- 239000004367 Lipase Substances 0.000 abstract description 11
- 235000019421 lipase Nutrition 0.000 abstract description 11
- 125000003607 serino group Chemical class [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 abstract description 9
- 238000006243 chemical reaction Methods 0.000 abstract description 7
- 230000033228 biological regulation Effects 0.000 abstract description 5
- 230000022131 cell cycle Effects 0.000 abstract description 5
- 102000006478 Protein Phosphatase 2 Human genes 0.000 abstract description 3
- 108010058956 Protein Phosphatase 2 Proteins 0.000 abstract description 3
- 210000003527 eukaryotic cell Anatomy 0.000 abstract 1
- 239000012038 nucleophile Substances 0.000 abstract 1
- 235000018102 proteins Nutrition 0.000 description 81
- 102200067543 rs41378349 Human genes 0.000 description 69
- 235000001014 amino acid Nutrition 0.000 description 42
- 229940024606 amino acid Drugs 0.000 description 38
- 239000000499 gel Substances 0.000 description 36
- 239000012133 immunoprecipitate Substances 0.000 description 32
- 108091060211 Expressed sequence tag Proteins 0.000 description 30
- 239000002299 complementary DNA Substances 0.000 description 30
- 230000027455 binding Effects 0.000 description 26
- 238000009739 binding Methods 0.000 description 26
- 101001095294 Homo sapiens Protein phosphatase methylesterase 1 Proteins 0.000 description 22
- 239000000758 substrate Substances 0.000 description 22
- 238000003752 polymerase chain reaction Methods 0.000 description 20
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 18
- 238000003556 assay Methods 0.000 description 17
- 239000013615 primer Substances 0.000 description 17
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 16
- 230000011987 methylation Effects 0.000 description 16
- 238000007069 methylation reaction Methods 0.000 description 16
- 239000006166 lysate Substances 0.000 description 15
- 235000004400 serine Nutrition 0.000 description 15
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 14
- 238000002474 experimental method Methods 0.000 description 14
- 239000000047 product Substances 0.000 description 14
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 13
- 108020004705 Codon Proteins 0.000 description 11
- HVLSXIKZNLPZJJ-TXZCQADKSA-N HA peptide Chemical compound C([C@@H](C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@H]1N(CCC1)C(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=C(O)C=C1 HVLSXIKZNLPZJJ-TXZCQADKSA-N 0.000 description 10
- 241000699666 Mus <mouse, genus> Species 0.000 description 10
- 230000009918 complex formation Effects 0.000 description 10
- 238000003119 immunoblot Methods 0.000 description 10
- 239000000523 sample Substances 0.000 description 10
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 10
- 108020003589 5' Untranslated Regions Proteins 0.000 description 9
- 102000007469 Actins Human genes 0.000 description 9
- 108010085238 Actins Proteins 0.000 description 9
- 108020004414 DNA Proteins 0.000 description 9
- 102000004190 Enzymes Human genes 0.000 description 9
- 108090000790 Enzymes Proteins 0.000 description 9
- 230000001413 cellular effect Effects 0.000 description 9
- 230000006870 function Effects 0.000 description 9
- 230000003993 interaction Effects 0.000 description 9
- 239000012528 membrane Substances 0.000 description 9
- 238000006467 substitution reaction Methods 0.000 description 9
- 108010028188 glycyl-histidyl-serine Proteins 0.000 description 8
- 238000009396 hybridization Methods 0.000 description 8
- 239000000203 mixture Substances 0.000 description 8
- 230000035772 mutation Effects 0.000 description 8
- 230000026731 phosphorylation Effects 0.000 description 8
- 238000006366 phosphorylation reaction Methods 0.000 description 8
- 102000040430 polynucleotide Human genes 0.000 description 8
- 108091033319 polynucleotide Proteins 0.000 description 8
- 239000002157 polynucleotide Substances 0.000 description 8
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 8
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 7
- 241000282326 Felis catus Species 0.000 description 7
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 7
- 101800001509 Large capsid protein Proteins 0.000 description 7
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 7
- 239000013592 cell lysate Substances 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 238000000746 purification Methods 0.000 description 7
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 6
- 108020005345 3' Untranslated Regions Proteins 0.000 description 6
- 108060004795 Methyltransferase Proteins 0.000 description 6
- 102000016397 Methyltransferase Human genes 0.000 description 6
- 101000611483 Mus musculus Protein phosphatase methylesterase 1 Proteins 0.000 description 6
- 241001505332 Polyomavirus sp. Species 0.000 description 6
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 6
- 238000004458 analytical method Methods 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 235000014304 histidine Nutrition 0.000 description 6
- FQENQNTWSFEDLI-UHFFFAOYSA-J sodium diphosphate Chemical compound [Na+].[Na+].[Na+].[Na+].[O-]P([O-])(=O)OP([O-])([O-])=O FQENQNTWSFEDLI-UHFFFAOYSA-J 0.000 description 6
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 5
- 206010028980 Neoplasm Diseases 0.000 description 5
- 108010065084 Phosphorylase a Proteins 0.000 description 5
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 5
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 5
- 239000004473 Threonine Substances 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000012217 deletion Methods 0.000 description 5
- 230000037430 deletion Effects 0.000 description 5
- 230000001419 dependent effect Effects 0.000 description 5
- 125000000487 histidyl group Chemical class [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 5
- 230000005764 inhibitory process Effects 0.000 description 5
- 108010057821 leucylproline Proteins 0.000 description 5
- 239000012139 lysis buffer Substances 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 210000000056 organ Anatomy 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 238000003757 reverse transcription PCR Methods 0.000 description 5
- 238000000926 separation method Methods 0.000 description 5
- 229910052709 silver Inorganic materials 0.000 description 5
- 239000004332 silver Substances 0.000 description 5
- 235000013024 sodium fluoride Nutrition 0.000 description 5
- 239000011775 sodium fluoride Substances 0.000 description 5
- 229940048086 sodium pyrophosphate Drugs 0.000 description 5
- 241000894007 species Species 0.000 description 5
- 235000019818 tetrasodium diphosphate Nutrition 0.000 description 5
- 239000001577 tetrasodium phosphonato phosphate Substances 0.000 description 5
- 241000244203 Caenorhabditis elegans Species 0.000 description 4
- 108010033040 Histones Proteins 0.000 description 4
- 102000006947 Histones Human genes 0.000 description 4
- KIAOPHMUNPPGEN-PEXQALLHSA-N Ile-Gly-His Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N KIAOPHMUNPPGEN-PEXQALLHSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 4
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 4
- 241000244206 Nematoda Species 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- 241000283973 Oryctolagus cuniculus Species 0.000 description 4
- VXYQOFXBIXKPCX-BQBZGAKWSA-N Ser-Met-Gly Chemical compound CSCC[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CO)N VXYQOFXBIXKPCX-BQBZGAKWSA-N 0.000 description 4
- 238000002105 Southern blotting Methods 0.000 description 4
- 239000000427 antigen Substances 0.000 description 4
- 108091007433 antigens Proteins 0.000 description 4
- 102000036639 antigens Human genes 0.000 description 4
- 238000010276 construction Methods 0.000 description 4
- 230000012010 growth Effects 0.000 description 4
- 239000000833 heterodimer Substances 0.000 description 4
- 238000004128 high performance liquid chromatography Methods 0.000 description 4
- 238000001114 immunoprecipitation Methods 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000001939 inductive effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 108020004999 messenger RNA Proteins 0.000 description 4
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- BQVCCPGCDUSGOE-UHFFFAOYSA-N phenylarsine oxide Chemical compound O=[As]C1=CC=CC=C1 BQVCCPGCDUSGOE-UHFFFAOYSA-N 0.000 description 4
- 108010071207 serylmethionine Proteins 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- JJHBEVZAZXZREW-LFSVMHDDSA-N Ala-Thr-Phe Chemical compound C[C@@H](O)[C@H](NC(=O)[C@H](C)N)C(=O)N[C@@H](Cc1ccccc1)C(O)=O JJHBEVZAZXZREW-LFSVMHDDSA-N 0.000 description 3
- ORRJQLIATJDMQM-HJGDQZAQSA-N Asp-Leu-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O ORRJQLIATJDMQM-HJGDQZAQSA-N 0.000 description 3
- 101800005309 Carboxy-terminal peptide Proteins 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KKBWDNZXYLGJEY-UHFFFAOYSA-N Gly-Arg-Pro Natural products NCC(=O)NC(CCNC(=N)N)C(=O)N1CCCC1C(=O)O KKBWDNZXYLGJEY-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- 101000757200 Homo sapiens Acidic leucine-rich nuclear phosphoprotein 32 family member A Proteins 0.000 description 3
- 101000836351 Homo sapiens Protein SET Proteins 0.000 description 3
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 description 3
- 108091028043 Nucleic acid sequence Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 108700026244 Open Reading Frames Proteins 0.000 description 3
- 108010029485 Protein Isoforms Proteins 0.000 description 3
- 102000001708 Protein Isoforms Human genes 0.000 description 3
- 102100027171 Protein SET Human genes 0.000 description 3
- GVMUJUPXFQFBBZ-GUBZILKMSA-N Ser-Lys-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O GVMUJUPXFQFBBZ-GUBZILKMSA-N 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- GMOLURHJBLOBFW-ONGXEEELSA-N Val-Gly-His Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N GMOLURHJBLOBFW-ONGXEEELSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 238000007792 addition Methods 0.000 description 3
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 3
- 125000000539 amino acid group Chemical group 0.000 description 3
- 108010069205 aspartyl-phenylalanine Proteins 0.000 description 3
- 239000011324 bead Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000002950 deficient Effects 0.000 description 3
- 238000010520 demethylation reaction Methods 0.000 description 3
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 3
- 229960003957 dexamethasone Drugs 0.000 description 3
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 3
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 description 3
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Chemical compound NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 3
- 108010010147 glycylglutamine Proteins 0.000 description 3
- 108010036413 histidylglycine Proteins 0.000 description 3
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 3
- 229930182817 methionine Natural products 0.000 description 3
- 238000002703 mutagenesis Methods 0.000 description 3
- 231100000350 mutagenesis Toxicity 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 229920002401 polyacrylamide Polymers 0.000 description 3
- 108010026333 seryl-proline Proteins 0.000 description 3
- 230000002103 transcriptional effect Effects 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- GJLXVWOMRRWCIB-MERZOTPQSA-N (2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-[[(2S)-2-acetamido-5-(diaminomethylideneamino)pentanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-3-(4-hydroxyphenyl)propanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-3-(1H-indol-3-yl)propanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanoyl]amino]-6-aminohexanamide Chemical compound C([C@H](NC(=O)[C@H](CCCN=C(N)N)NC(=O)C)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(N)=O)C1=CC=C(O)C=C1 GJLXVWOMRRWCIB-MERZOTPQSA-N 0.000 description 2
- 108020004463 18S ribosomal RNA Proteins 0.000 description 2
- 102100022997 Acidic leucine-rich nuclear phosphoprotein 32 family member A Human genes 0.000 description 2
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 2
- LBYMZCVBOKYZNS-CIUDSAMLSA-N Ala-Leu-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O LBYMZCVBOKYZNS-CIUDSAMLSA-N 0.000 description 2
- CPTXATAOUQJQRO-GUBZILKMSA-N Arg-Val-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O CPTXATAOUQJQRO-GUBZILKMSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- UMHUHHJMEXNSIV-CIUDSAMLSA-N Asp-Leu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(O)=O UMHUHHJMEXNSIV-CIUDSAMLSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 108091035707 Consensus sequence Proteins 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 241000206602 Eukaryota Species 0.000 description 2
- 108700024394 Exon Proteins 0.000 description 2
- NCWOMXABNYEPLY-NRPADANISA-N Glu-Ala-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O NCWOMXABNYEPLY-NRPADANISA-N 0.000 description 2
- BUZMZDDKFCSKOT-CIUDSAMLSA-N Glu-Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O BUZMZDDKFCSKOT-CIUDSAMLSA-N 0.000 description 2
- CUXJIASLBRJOFV-LAEOZQHASA-N Glu-Gly-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)NCC(=O)N[C@@H]([C@@H](C)CC)C(O)=O CUXJIASLBRJOFV-LAEOZQHASA-N 0.000 description 2
- RAUDKMVXNOWDLS-WDSKDSINSA-N Glu-Gly-Ser Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O RAUDKMVXNOWDLS-WDSKDSINSA-N 0.000 description 2
- HVYWQYLBVXMXSV-GUBZILKMSA-N Glu-Leu-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C)C(O)=O HVYWQYLBVXMXSV-GUBZILKMSA-N 0.000 description 2
- YZPVGIVFMZLQMM-YUMQZZPRSA-N Gly-Gln-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)CN YZPVGIVFMZLQMM-YUMQZZPRSA-N 0.000 description 2
- LPCKHUXOGVNZRS-YUMQZZPRSA-N Gly-His-Ser Chemical compound [H]NCC(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(O)=O LPCKHUXOGVNZRS-YUMQZZPRSA-N 0.000 description 2
- FFJQHWKSGAWSTJ-BFHQHQDPSA-N Gly-Thr-Ala Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O FFJQHWKSGAWSTJ-BFHQHQDPSA-N 0.000 description 2
- UMRIXLHPZZIOML-OALUTQOASA-N Gly-Trp-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)NC(=O)CN UMRIXLHPZZIOML-OALUTQOASA-N 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- IGJWJGIHUFQANP-LAEOZQHASA-N Ile-Gly-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)N[C@@H](CCC(=O)N)C(=O)O)N IGJWJGIHUFQANP-LAEOZQHASA-N 0.000 description 2
- WSSGUVAKYCQSCT-XUXIUFHCSA-N Ile-Met-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(C)C)C(=O)O)N WSSGUVAKYCQSCT-XUXIUFHCSA-N 0.000 description 2
- YWCJXQKATPNPOE-UKJIMTQDSA-N Ile-Val-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N YWCJXQKATPNPOE-UKJIMTQDSA-N 0.000 description 2
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- RCFDOSNHHZGBOY-UHFFFAOYSA-N L-isoleucyl-L-alanine Natural products CCC(C)C(N)C(=O)NC(C)C(O)=O RCFDOSNHHZGBOY-UHFFFAOYSA-N 0.000 description 2
- KWTVLKBOQATPHJ-SRVKXCTJSA-N Leu-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC(C)C)N KWTVLKBOQATPHJ-SRVKXCTJSA-N 0.000 description 2
- KSZCCRIGNVSHFH-UWVGGRQHSA-N Leu-Arg-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O KSZCCRIGNVSHFH-UWVGGRQHSA-N 0.000 description 2
- KYIIALJHAOIAHF-KKUMJFAQSA-N Leu-Leu-His Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 KYIIALJHAOIAHF-KKUMJFAQSA-N 0.000 description 2
- RXGLHDWAZQECBI-SRVKXCTJSA-N Leu-Leu-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O RXGLHDWAZQECBI-SRVKXCTJSA-N 0.000 description 2
- CHJKEDSZNSONPS-DCAQKATOSA-N Leu-Pro-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(O)=O CHJKEDSZNSONPS-DCAQKATOSA-N 0.000 description 2
- PIXVFCBYEGPZPA-JYJNAYRXSA-N Lys-Phe-Gln Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CCCCN)N PIXVFCBYEGPZPA-JYJNAYRXSA-N 0.000 description 2
- UOENBSHXYCHSAU-YUMQZZPRSA-N Met-Gln-Gly Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)NCC(O)=O UOENBSHXYCHSAU-YUMQZZPRSA-N 0.000 description 2
- CIDICGYKRUTYLE-FXQIFTODSA-N Met-Ser-Ala Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O CIDICGYKRUTYLE-FXQIFTODSA-N 0.000 description 2
- RDLSEGZJMYGFNS-FXQIFTODSA-N Met-Ser-Asp Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RDLSEGZJMYGFNS-FXQIFTODSA-N 0.000 description 2
- 241001529936 Murinae Species 0.000 description 2
- 241000699670 Mus sp. Species 0.000 description 2
- YBAFDPFAUTYYRW-UHFFFAOYSA-N N-L-alpha-glutamyl-L-leucine Natural products CC(C)CC(C(O)=O)NC(=O)C(N)CCC(O)=O YBAFDPFAUTYYRW-UHFFFAOYSA-N 0.000 description 2
- 108010079364 N-glycylalanine Proteins 0.000 description 2
- 238000000636 Northern blotting Methods 0.000 description 2
- 108700020796 Oncogene Proteins 0.000 description 2
- 101150105440 PME1 gene Proteins 0.000 description 2
- JWQWPTLEOFNCGX-AVGNSLFASA-N Phe-Glu-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 JWQWPTLEOFNCGX-AVGNSLFASA-N 0.000 description 2
- 101150096292 Ppme1 gene Proteins 0.000 description 2
- 229940122454 Protein phosphatase 2A inhibitor Drugs 0.000 description 2
- 229920002684 Sepharose Polymers 0.000 description 2
- NRCJWSGXMAPYQX-LPEHRKFASA-N Ser-Arg-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CO)N)C(=O)O NRCJWSGXMAPYQX-LPEHRKFASA-N 0.000 description 2
- XNCUYZKGQOCOQH-YUMQZZPRSA-N Ser-Leu-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O XNCUYZKGQOCOQH-YUMQZZPRSA-N 0.000 description 2
- HJOSVGCWOTYJFG-WDCWCFNPSA-N Thr-Glu-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O)N)O HJOSVGCWOTYJFG-WDCWCFNPSA-N 0.000 description 2
- FLPZMPOZGYPBEN-PPCPHDFISA-N Thr-Leu-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O FLPZMPOZGYPBEN-PPCPHDFISA-N 0.000 description 2
- 108091036066 Three prime untranslated region Proteins 0.000 description 2
- RNDWCRUOGGQDKN-UBHSHLNASA-N Trp-Ser-Asp Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O RNDWCRUOGGQDKN-UBHSHLNASA-N 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- NAHUCETZGZZSEX-IHPCNDPISA-N Tyr-Trp-Asp Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CC3=CC=C(C=C3)O)N NAHUCETZGZZSEX-IHPCNDPISA-N 0.000 description 2
- FTKXYXACXYOHND-XUXIUFHCSA-N Val-Ile-Leu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(C)C)C(O)=O FTKXYXACXYOHND-XUXIUFHCSA-N 0.000 description 2
- NLNCNKIVJPEFBC-DLOVCJGASA-N Val-Val-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCC(O)=O NLNCNKIVJPEFBC-DLOVCJGASA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 108010029539 arginyl-prolyl-proline Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-L aspartate group Chemical class N[C@@H](CC(=O)[O-])C(=O)[O-] CKLJMWTZIZZHCS-REOHCLBHSA-L 0.000 description 2
- 108010040443 aspartyl-aspartic acid Proteins 0.000 description 2
- 108010047857 aspartylglycine Proteins 0.000 description 2
- 238000000376 autoradiography Methods 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000017858 demethylation Effects 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 108010063718 gamma-glutamylaspartic acid Proteins 0.000 description 2
- BRZYSWJRSDMWLG-CAXSIQPQSA-N geneticin Chemical compound O1C[C@@](O)(C)[C@H](NC)[C@@H](O)[C@H]1O[C@@H]1[C@@H](O)[C@H](O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](C(C)O)O2)N)[C@@H](N)C[C@H]1N BRZYSWJRSDMWLG-CAXSIQPQSA-N 0.000 description 2
- 229930195712 glutamate Natural products 0.000 description 2
- 229940049906 glutamate Drugs 0.000 description 2
- 108010080575 glutamyl-aspartyl-alanine Proteins 0.000 description 2
- 108010057083 glutamyl-aspartyl-leucine Proteins 0.000 description 2
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 2
- 108010050848 glycylleucine Proteins 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 230000002621 immunoprecipitating effect Effects 0.000 description 2
- 230000001965 increasing effect Effects 0.000 description 2
- 230000002401 inhibitory effect Effects 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 2
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 108010044311 leucyl-glycyl-glycine Proteins 0.000 description 2
- 108010073472 leucyl-prolyl-proline Proteins 0.000 description 2
- 108010044348 lysyl-glutamyl-aspartic acid Proteins 0.000 description 2
- 108010017391 lysylvaline Proteins 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 238000001466 metabolic labeling Methods 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- CXKWCBBOMKCUKX-UHFFFAOYSA-M methylene blue Chemical compound [Cl-].C1=CC(N(C)C)=CC2=[S+]C3=CC(N(C)C)=CC=C3N=C21 CXKWCBBOMKCUKX-UHFFFAOYSA-M 0.000 description 2
- 229960000907 methylthioninium chloride Drugs 0.000 description 2
- 238000013508 migration Methods 0.000 description 2
- 230000005012 migration Effects 0.000 description 2
- 238000010369 molecular cloning Methods 0.000 description 2
- 230000000269 nucleophilic effect Effects 0.000 description 2
- 108010073101 phenylalanylleucine Proteins 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 230000004481 post-translational protein modification Effects 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 239000002987 primer (paints) Substances 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000035945 sensitivity Effects 0.000 description 2
- 108020002447 serine esterase Proteins 0.000 description 2
- 102000005428 serine esterase Human genes 0.000 description 2
- 108010048818 seryl-histidine Proteins 0.000 description 2
- CMZUMMUJMWNLFH-UHFFFAOYSA-N sodium metavanadate Chemical compound [Na+].[O-][V](=O)=O CMZUMMUJMWNLFH-UHFFFAOYSA-N 0.000 description 2
- 238000010186 staining Methods 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 238000000539 two dimensional gel electrophoresis Methods 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- 229960004295 valine Drugs 0.000 description 2
- 108010073969 valyllysine Proteins 0.000 description 2
- 238000005406 washing Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 229910000166 zirconium phosphate Inorganic materials 0.000 description 2
- JNTMAZFVYNDPLB-PEDHHIEDSA-N (2S,3S)-2-[[[(2S)-1-[(2S,3S)-2-amino-3-methyl-1-oxopentyl]-2-pyrrolidinyl]-oxomethyl]amino]-3-methylpentanoic acid Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JNTMAZFVYNDPLB-PEDHHIEDSA-N 0.000 description 1
- VWWKKDNCCLAGRM-GVXVVHGQSA-N (2s)-2-[[2-[[(2s)-2-[[(2s)-2-amino-4-methylpentanoyl]amino]propanoyl]amino]acetyl]amino]-3-methylbutanoic acid Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O VWWKKDNCCLAGRM-GVXVVHGQSA-N 0.000 description 1
- BEJKOYIMCGMNRB-GRHHLOCNSA-N (2s)-2-amino-3-(4-hydroxyphenyl)propanoic acid;(2s)-2-amino-3-phenylpropanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1.OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 BEJKOYIMCGMNRB-GRHHLOCNSA-N 0.000 description 1
- PSLCKQYQNVNTQI-BHFSHLQUSA-N (2s)-2-aminobutanedioic acid;(2s)-2-aminopentanedioic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O.OC(=O)[C@@H](N)CCC(O)=O PSLCKQYQNVNTQI-BHFSHLQUSA-N 0.000 description 1
- ZNAIHAPCDVUWRX-DUCUPYJCSA-N (4s,4as,5as,6s,12ar)-7-chloro-4-(dimethylamino)-1,6,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4,4a,5,5a-tetrahydrotetracene-2-carboxamide;4-amino-n-(4,6-dimethylpyrimidin-2-yl)benzenesulfonamide;(2s,5r,6r)-3,3-dimethyl-7-oxo-6-[(2-phenylacetyl)amino]-4-t Chemical compound CC1=CC(C)=NC(NS(=O)(=O)C=2C=CC(N)=CC=2)=N1.N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1.C1=CC(Cl)=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]4(O)C(=O)C3=C(O)C2=C1O ZNAIHAPCDVUWRX-DUCUPYJCSA-N 0.000 description 1
- 0 ************************ Chemical compound ************************ 0.000 description 1
- VHIKRRYTTWNOPQ-UHFFFAOYSA-N *.*.*.*.*.*.*.*.*.C.C.CC.CC.CC.F.I.O.O.P.P.S.[KH].[V] Chemical compound *.*.*.*.*.*.*.*.*.C.C.CC.CC.CC.F.I.O.O.P.P.S.[KH].[V] VHIKRRYTTWNOPQ-UHFFFAOYSA-N 0.000 description 1
- MSXFSSYXHAZVLV-SBUQMIPUSA-N *.*.*.*.*.*.*.*.C.CC.CC.CC.F.I.I.I.S.S.S.[3HH].[V].[V].[W] Chemical compound *.*.*.*.*.*.*.*.C.CC.CC.CC.F.I.I.I.S.S.S.[3HH].[V].[V].[W] MSXFSSYXHAZVLV-SBUQMIPUSA-N 0.000 description 1
- QPXVMGRJTWHKGC-SBUQMIPUSA-N *.*.*.*.*.*.*.C.C.C.C.C.CC.CC.CC.F.I.O.P.[3HH].[KH].[KH].[V] Chemical compound *.*.*.*.*.*.*.C.C.C.C.C.CC.CC.CC.F.I.O.P.[3HH].[KH].[KH].[V] QPXVMGRJTWHKGC-SBUQMIPUSA-N 0.000 description 1
- AOTCWVIWMZGONT-UHFFFAOYSA-N *.*.*.*.*.*.C.C.C.C.CC.CC.CC.CC.I.I.N.N.S.S.S.[KH].[V].[W] Chemical compound *.*.*.*.*.*.C.C.C.C.CC.CC.CC.CC.I.I.N.N.S.S.S.[KH].[V].[W] AOTCWVIWMZGONT-UHFFFAOYSA-N 0.000 description 1
- BJDOOLNACFVYJL-LRMXAEHVSA-N *.*.*.*.*.*.C.C.C.CC.CC.CC.CC.F.F.N.N.O.P.S.S.[3HH].[KH].[KH] Chemical compound *.*.*.*.*.*.C.C.C.CC.CC.CC.CC.F.F.N.N.O.P.S.S.[3HH].[KH].[KH] BJDOOLNACFVYJL-LRMXAEHVSA-N 0.000 description 1
- JDEYYWLHQZFZLE-VDKBLCQKSA-N *.*.*.*.*.*.C.C.C.CC.CC.CC.CC.F.O.O.P.[3HH].[HH].[HH].[KH].[V].[V].[V] Chemical compound *.*.*.*.*.*.C.C.C.CC.CC.CC.CC.F.O.O.P.[3HH].[HH].[HH].[KH].[V].[V].[V] JDEYYWLHQZFZLE-VDKBLCQKSA-N 0.000 description 1
- QQKNMLFXRVHEPW-UHFFFAOYSA-N *.*.*.*.*.C.C.C.C.C.C.CC.CC.CC.P.S.S.[HH].[HH].[KH].[V].[V].[Y] Chemical compound *.*.*.*.*.C.C.C.C.C.C.CC.CC.CC.P.S.S.[HH].[HH].[KH].[V].[V].[Y] QQKNMLFXRVHEPW-UHFFFAOYSA-N 0.000 description 1
- QXJPWFXIENHVMD-LAKYPAIVSA-N *.*.*.*.*.C.C.C.C.C.CC.CC.CC.I.N.O.P.S.S.[3HH].[V].[V].[V] Chemical compound *.*.*.*.*.C.C.C.C.C.CC.CC.CC.I.N.O.P.S.S.[3HH].[V].[V].[V] QXJPWFXIENHVMD-LAKYPAIVSA-N 0.000 description 1
- JYMZAJTUQQUMLN-MOXCQEOOSA-N *.*.*.*.*.C.C.C.C.CC.CC.CC.CC.CC.CC.CC.F.I.N.O.S.[3HH].[KH].[KH].[W].[W].[Y] Chemical compound *.*.*.*.*.C.C.C.C.CC.CC.CC.CC.CC.CC.CC.F.I.N.O.S.[3HH].[KH].[KH].[W].[W].[Y] JYMZAJTUQQUMLN-MOXCQEOOSA-N 0.000 description 1
- NUHACQWPOMJSRQ-PRXONAMSSA-N *.*.*.*.*.C.C.C.CC.CC.CC.CC.CC.N.O.O.P.S.S.[3HH].[HH].[KH].[KH].[V].[V] Chemical compound *.*.*.*.*.C.C.C.CC.CC.CC.CC.CC.N.O.O.P.S.S.[3HH].[HH].[KH].[KH].[V].[V] NUHACQWPOMJSRQ-PRXONAMSSA-N 0.000 description 1
- TZMDZMBCYGZJHO-UHFFFAOYSA-N *.*.*.*.C.C.C.C.C.C.CC.CC.CC.CC.CC.CC.F.F.F.I.I.P.P.[HH].[V] Chemical compound *.*.*.*.C.C.C.C.C.C.CC.CC.CC.CC.CC.CC.F.F.F.I.I.P.P.[HH].[V] TZMDZMBCYGZJHO-UHFFFAOYSA-N 0.000 description 1
- CFIYNMXFHWWMGM-JJOSHYLASA-N *.*.*.*.C.C.C.C.C.C.CC.CC.CC.CC.N.O.O.P.[3HH].[KH].[V].[V].[V].[Y] Chemical compound *.*.*.*.C.C.C.C.C.C.CC.CC.CC.CC.N.O.O.P.[3HH].[KH].[V].[V].[V].[Y] CFIYNMXFHWWMGM-JJOSHYLASA-N 0.000 description 1
- XQDNASJPXLYWOH-UHFFFAOYSA-N *.*.*.*.C.C.C.C.C.CC.CC.CC.CC.CC.CC.F.O.P.P.P.S.S.[KH].[KH].[V].[W] Chemical compound *.*.*.*.C.C.C.C.C.CC.CC.CC.CC.CC.CC.F.O.P.P.P.S.S.[KH].[KH].[V].[W] XQDNASJPXLYWOH-UHFFFAOYSA-N 0.000 description 1
- WQUNUSYAKDIWID-MMFOPHRMSA-N *.*.*.*.C.C.C.C.C.CC.CC.CC.I.I.I.P.P.S.S.[3HH].[HH].[HH].[V] Chemical compound *.*.*.*.C.C.C.C.C.CC.CC.CC.I.I.I.P.P.S.S.[3HH].[HH].[HH].[V] WQUNUSYAKDIWID-MMFOPHRMSA-N 0.000 description 1
- GZNLYTDTVFPXFV-GFFLOUOGSA-N *.*.*.C.C.C.C.C.C.C.CC.CC.CC.CC.I.P.S.S.S.[3HH].[KH].[V].[V].[V] Chemical compound *.*.*.C.C.C.C.C.C.C.CC.CC.CC.CC.I.P.S.S.S.[3HH].[KH].[V].[V].[V] GZNLYTDTVFPXFV-GFFLOUOGSA-N 0.000 description 1
- LVOZGMCTPDNXOG-UHFFFAOYSA-N *.*.*.C.CC.CC.CC.CC.P.P.P.P.S.S.S.S.[HH] Chemical compound *.*.*.C.CC.CC.CC.CC.P.P.P.P.S.S.S.S.[HH] LVOZGMCTPDNXOG-UHFFFAOYSA-N 0.000 description 1
- GQNYUOBIZXREIY-UHFFFAOYSA-N *.*.C.CCC(C)CC.S.S.[KH] Chemical compound *.*.C.CCC(C)CC.S.S.[KH] GQNYUOBIZXREIY-UHFFFAOYSA-N 0.000 description 1
- JDDWSVHQCVSQPK-SDOQECLKSA-N *.C.C.C.C.C.C.C.CC.CC.CC.CC.F.F.N.O.O.S.[3HH].[3HH].[KH].[V].[V].[Y] Chemical compound *.C.C.C.C.C.C.C.CC.CC.CC.CC.F.F.N.O.O.S.[3HH].[3HH].[KH].[V].[V].[Y] JDDWSVHQCVSQPK-SDOQECLKSA-N 0.000 description 1
- DQWHQDPOXXAIRZ-WGXOGICWSA-N *.C.C.C.CC.CC.CC.CC.I.O.O.O.P.S.[3HH].[3HH].[HH].[KH].[KH].[KH].[KH].[KH].[W].[Y] Chemical compound *.C.C.C.CC.CC.CC.CC.I.O.O.O.P.S.[3HH].[3HH].[HH].[KH].[KH].[KH].[KH].[KH].[W].[Y] DQWHQDPOXXAIRZ-WGXOGICWSA-N 0.000 description 1
- WIGDGIGALMYEBW-LLINQDLYSA-N 2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-[[(2s)-2-amino-4-methylpentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]-5-(diaminomethylideneamino)pentanoyl]amino]propanoyl]amino]-3-hydroxypropanoyl]amino]-4-methylpentanoyl]amino]acetic acid Chemical class CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O WIGDGIGALMYEBW-LLINQDLYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- 108020005096 28S Ribosomal RNA Proteins 0.000 description 1
- LGQPPBQRUBVTIF-JBDRJPRFSA-N Ala-Ala-Ile Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O LGQPPBQRUBVTIF-JBDRJPRFSA-N 0.000 description 1
- JBGSZRYCXBPWGX-BQBZGAKWSA-N Ala-Arg-Gly Chemical compound OC(=O)CNC(=O)[C@@H](NC(=O)[C@@H](N)C)CCCN=C(N)N JBGSZRYCXBPWGX-BQBZGAKWSA-N 0.000 description 1
- STACJSVFHSEZJV-GHCJXIJMSA-N Ala-Asn-Ile Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O STACJSVFHSEZJV-GHCJXIJMSA-N 0.000 description 1
- WDIYWDJLXOCGRW-ACZMJKKPSA-N Ala-Asp-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O WDIYWDJLXOCGRW-ACZMJKKPSA-N 0.000 description 1
- CZPAHAKGPDUIPJ-CIUDSAMLSA-N Ala-Gln-Pro Chemical compound C[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N1CCC[C@H]1C(O)=O CZPAHAKGPDUIPJ-CIUDSAMLSA-N 0.000 description 1
- GGNHBHYDMUDXQB-KBIXCLLPSA-N Ala-Glu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)N GGNHBHYDMUDXQB-KBIXCLLPSA-N 0.000 description 1
- NBTGEURICRTMGL-WHFBIAKZSA-N Ala-Gly-Ser Chemical compound C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O NBTGEURICRTMGL-WHFBIAKZSA-N 0.000 description 1
- SMCGQGDVTPFXKB-XPUUQOCRSA-N Ala-Gly-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N SMCGQGDVTPFXKB-XPUUQOCRSA-N 0.000 description 1
- NMXKFWOEASXOGB-QSFUFRPTSA-N Ala-Ile-His Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CN=CN1 NMXKFWOEASXOGB-QSFUFRPTSA-N 0.000 description 1
- CFPQUJZTLUQUTJ-HTFCKZLJSA-N Ala-Ile-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@H](C)N CFPQUJZTLUQUTJ-HTFCKZLJSA-N 0.000 description 1
- QCTFKEJEIMPOLW-JURCDPSOSA-N Ala-Ile-Phe Chemical compound C[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QCTFKEJEIMPOLW-JURCDPSOSA-N 0.000 description 1
- OKIKVSXTXVVFDV-MMWGEVLESA-N Ala-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C)N OKIKVSXTXVVFDV-MMWGEVLESA-N 0.000 description 1
- MNZHHDPWDWQJCQ-YUMQZZPRSA-N Ala-Leu-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O MNZHHDPWDWQJCQ-YUMQZZPRSA-N 0.000 description 1
- WUHJHHGYVVJMQE-BJDJZHNGSA-N Ala-Leu-Ile Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WUHJHHGYVVJMQE-BJDJZHNGSA-N 0.000 description 1
- VHVVPYOJIIQCKS-QEJZJMRPSA-N Ala-Leu-Phe Chemical compound C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 VHVVPYOJIIQCKS-QEJZJMRPSA-N 0.000 description 1
- SOBIAADAMRHGKH-CIUDSAMLSA-N Ala-Leu-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O SOBIAADAMRHGKH-CIUDSAMLSA-N 0.000 description 1
- AJBVYEYZVYPFCF-CIUDSAMLSA-N Ala-Lys-Asn Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(O)=O AJBVYEYZVYPFCF-CIUDSAMLSA-N 0.000 description 1
- SDZRIBWEVVRDQI-CIUDSAMLSA-N Ala-Lys-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O SDZRIBWEVVRDQI-CIUDSAMLSA-N 0.000 description 1
- FUKFQILQFQKHLE-DCAQKATOSA-N Ala-Lys-Met Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(O)=O FUKFQILQFQKHLE-DCAQKATOSA-N 0.000 description 1
- OINVDEKBKBCPLX-JXUBOQSCSA-N Ala-Lys-Thr Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OINVDEKBKBCPLX-JXUBOQSCSA-N 0.000 description 1
- DWYROCSXOOMOEU-CIUDSAMLSA-N Ala-Met-Glu Chemical compound C[C@@H](C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N DWYROCSXOOMOEU-CIUDSAMLSA-N 0.000 description 1
- FVNAUOZKIPAYNA-BPNCWPANSA-N Ala-Met-Tyr Chemical compound CSCC[C@H](NC(=O)[C@H](C)N)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 FVNAUOZKIPAYNA-BPNCWPANSA-N 0.000 description 1
- BFMIRJBURUXDRG-DLOVCJGASA-N Ala-Phe-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C)CC1=CC=CC=C1 BFMIRJBURUXDRG-DLOVCJGASA-N 0.000 description 1
- WQLDNOCHHRISMS-NAKRPEOUSA-N Ala-Pro-Ile Chemical compound [H]N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WQLDNOCHHRISMS-NAKRPEOUSA-N 0.000 description 1
- NCQMBSJGJMYKCK-ZLUOBGJFSA-N Ala-Ser-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O NCQMBSJGJMYKCK-ZLUOBGJFSA-N 0.000 description 1
- CLOMBHBBUKAUBP-LSJOCFKGSA-N Ala-Val-His Chemical compound C[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N CLOMBHBBUKAUBP-LSJOCFKGSA-N 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- 244000105975 Antidesma platyphyllum Species 0.000 description 1
- 108010039627 Aprotinin Proteins 0.000 description 1
- HJVGMOYJDDXLMI-AVGNSLFASA-N Arg-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@@H](N)CCCNC(N)=N HJVGMOYJDDXLMI-AVGNSLFASA-N 0.000 description 1
- GHNDBBVSWOWYII-LPEHRKFASA-N Arg-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O GHNDBBVSWOWYII-LPEHRKFASA-N 0.000 description 1
- TTXYKSADPSNOIF-IHRRRGAJSA-N Arg-Asp-Phe Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O TTXYKSADPSNOIF-IHRRRGAJSA-N 0.000 description 1
- HKRXJBBCQBAGIM-FXQIFTODSA-N Arg-Asp-Ser Chemical compound C(C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N)CN=C(N)N HKRXJBBCQBAGIM-FXQIFTODSA-N 0.000 description 1
- HQIZDMIGUJOSNI-IUCAKERBSA-N Arg-Gly-Arg Chemical compound N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O HQIZDMIGUJOSNI-IUCAKERBSA-N 0.000 description 1
- OQCWXQJLCDPRHV-UWVGGRQHSA-N Arg-Gly-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC(C)C)C(O)=O OQCWXQJLCDPRHV-UWVGGRQHSA-N 0.000 description 1
- YBIAYFFIVAZXPK-AVGNSLFASA-N Arg-His-Arg Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O YBIAYFFIVAZXPK-AVGNSLFASA-N 0.000 description 1
- AGVNTAUPLWIQEN-ZPFDUUQYSA-N Arg-Ile-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N AGVNTAUPLWIQEN-ZPFDUUQYSA-N 0.000 description 1
- GXXWTNKNFFKTJB-NAKRPEOUSA-N Arg-Ile-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(O)=O GXXWTNKNFFKTJB-NAKRPEOUSA-N 0.000 description 1
- LLUGJARLJCGLAR-CYDGBPFRSA-N Arg-Ile-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N LLUGJARLJCGLAR-CYDGBPFRSA-N 0.000 description 1
- NMRHDSAOIURTNT-RWMBFGLXSA-N Arg-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N NMRHDSAOIURTNT-RWMBFGLXSA-N 0.000 description 1
- FSNVAJOPUDVQAR-AVGNSLFASA-N Arg-Lys-Arg Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FSNVAJOPUDVQAR-AVGNSLFASA-N 0.000 description 1
- BTJVOUQWFXABOI-IHRRRGAJSA-N Arg-Lys-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCNC(N)=N BTJVOUQWFXABOI-IHRRRGAJSA-N 0.000 description 1
- FVBZXNSRIDVYJS-AVGNSLFASA-N Arg-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CCCN=C(N)N FVBZXNSRIDVYJS-AVGNSLFASA-N 0.000 description 1
- LFAUVOXPCGJKTB-DCAQKATOSA-N Arg-Ser-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCN=C(N)N)N LFAUVOXPCGJKTB-DCAQKATOSA-N 0.000 description 1
- FRBAHXABMQXSJQ-FXQIFTODSA-N Arg-Ser-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O FRBAHXABMQXSJQ-FXQIFTODSA-N 0.000 description 1
- LLQIAIUAKGNOSE-NHCYSSNCSA-N Arg-Val-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCCN=C(N)N LLQIAIUAKGNOSE-NHCYSSNCSA-N 0.000 description 1
- 206010003445 Ascites Diseases 0.000 description 1
- CMLGVVWQQHUXOZ-GHCJXIJMSA-N Asn-Ala-Ile Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O CMLGVVWQQHUXOZ-GHCJXIJMSA-N 0.000 description 1
- DQTIWTULBGLJBL-DCAQKATOSA-N Asn-Arg-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CC(=O)N)N DQTIWTULBGLJBL-DCAQKATOSA-N 0.000 description 1
- UGXVKHRDGLYFKR-CIUDSAMLSA-N Asn-Asp-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CC(N)=O UGXVKHRDGLYFKR-CIUDSAMLSA-N 0.000 description 1
- XVAPVJNJGLWGCS-ACZMJKKPSA-N Asn-Glu-Asn Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CC(=O)N)N XVAPVJNJGLWGCS-ACZMJKKPSA-N 0.000 description 1
- GFFRWIJAFFMQGM-NUMRIWBASA-N Asn-Glu-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GFFRWIJAFFMQGM-NUMRIWBASA-N 0.000 description 1
- HDHZCEDPLTVHFZ-GUBZILKMSA-N Asn-Leu-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O HDHZCEDPLTVHFZ-GUBZILKMSA-N 0.000 description 1
- NCFJQJRLQJEECD-NHCYSSNCSA-N Asn-Leu-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O NCFJQJRLQJEECD-NHCYSSNCSA-N 0.000 description 1
- NLDNNZKUSLAYFW-NHCYSSNCSA-N Asn-Lys-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O NLDNNZKUSLAYFW-NHCYSSNCSA-N 0.000 description 1
- HZZIFFOVHLWGCS-KKUMJFAQSA-N Asn-Phe-Leu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O HZZIFFOVHLWGCS-KKUMJFAQSA-N 0.000 description 1
- YUOXLJYVSZYPBJ-CIUDSAMLSA-N Asn-Pro-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(O)=O)C(O)=O YUOXLJYVSZYPBJ-CIUDSAMLSA-N 0.000 description 1
- UXHYOWXTJLBEPG-GSSVUCPTSA-N Asn-Thr-Thr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O UXHYOWXTJLBEPG-GSSVUCPTSA-N 0.000 description 1
- KZYSHAMXEBPJBD-JRQIVUDYSA-N Asn-Thr-Tyr Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O KZYSHAMXEBPJBD-JRQIVUDYSA-N 0.000 description 1
- WQAOZCVOOYUWKG-LSJOCFKGSA-N Asn-Val-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CC(=O)N)N WQAOZCVOOYUWKG-LSJOCFKGSA-N 0.000 description 1
- PBVLJOIPOGUQQP-CIUDSAMLSA-N Asp-Ala-Leu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O PBVLJOIPOGUQQP-CIUDSAMLSA-N 0.000 description 1
- XPGVTUBABLRGHY-BIIVOSGPSA-N Asp-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)O)N XPGVTUBABLRGHY-BIIVOSGPSA-N 0.000 description 1
- IXIWEFWRKIUMQX-DCAQKATOSA-N Asp-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](N)CC(O)=O IXIWEFWRKIUMQX-DCAQKATOSA-N 0.000 description 1
- QXHVOUSPVAWEMX-ZLUOBGJFSA-N Asp-Asp-Ser Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O QXHVOUSPVAWEMX-ZLUOBGJFSA-N 0.000 description 1
- WBDWQKRLTVCDSY-WHFBIAKZSA-N Asp-Gly-Asp Chemical compound OC(=O)C[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O WBDWQKRLTVCDSY-WHFBIAKZSA-N 0.000 description 1
- UBPMOJLRVMGTOQ-GARJFASQSA-N Asp-His-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CN=CN2)NC(=O)[C@H](CC(=O)O)N)C(=O)O UBPMOJLRVMGTOQ-GARJFASQSA-N 0.000 description 1
- PAYPSKIBMDHZPI-CIUDSAMLSA-N Asp-Leu-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O PAYPSKIBMDHZPI-CIUDSAMLSA-N 0.000 description 1
- IVPNEDNYYYFAGI-GARJFASQSA-N Asp-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC(=O)O)N IVPNEDNYYYFAGI-GARJFASQSA-N 0.000 description 1
- CTWCFPWFIGRAEP-CIUDSAMLSA-N Asp-Lys-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(O)=O)C(O)=O CTWCFPWFIGRAEP-CIUDSAMLSA-N 0.000 description 1
- VSMYBNPOHYAXSD-GUBZILKMSA-N Asp-Lys-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O VSMYBNPOHYAXSD-GUBZILKMSA-N 0.000 description 1
- GKWFMNNNYZHJHV-SRVKXCTJSA-N Asp-Lys-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CC(O)=O GKWFMNNNYZHJHV-SRVKXCTJSA-N 0.000 description 1
- JXGJJQJHXHXJQF-CIUDSAMLSA-N Asp-Met-Glu Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(O)=O JXGJJQJHXHXJQF-CIUDSAMLSA-N 0.000 description 1
- KOWYNSKRPUWSFG-IHPCNDPISA-N Asp-Phe-Trp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC2=CNC3=CC=CC=C32)C(=O)O)NC(=O)[C@H](CC(=O)O)N KOWYNSKRPUWSFG-IHPCNDPISA-N 0.000 description 1
- ZBYLEBZCVKLPCY-FXQIFTODSA-N Asp-Ser-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O ZBYLEBZCVKLPCY-FXQIFTODSA-N 0.000 description 1
- KGHLGJAXYSVNJP-WHFBIAKZSA-N Asp-Ser-Gly Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O KGHLGJAXYSVNJP-WHFBIAKZSA-N 0.000 description 1
- HRVQDZOWMLFAOD-BIIVOSGPSA-N Asp-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CC(=O)O)N)C(=O)O HRVQDZOWMLFAOD-BIIVOSGPSA-N 0.000 description 1
- JSNWZMFSLIWAHS-HJGDQZAQSA-N Asp-Thr-Leu Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H](CC(=O)O)N)O JSNWZMFSLIWAHS-HJGDQZAQSA-N 0.000 description 1
- GXHDGYOXPNQCKM-XVSYOHENSA-N Asp-Thr-Phe Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)O)NC(=O)[C@H](CC(=O)O)N)O GXHDGYOXPNQCKM-XVSYOHENSA-N 0.000 description 1
- XMKXONRMGJXCJV-LAEOZQHASA-N Asp-Val-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O XMKXONRMGJXCJV-LAEOZQHASA-N 0.000 description 1
- XWKPSMRPIKKDDU-RCOVLWMOSA-N Asp-Val-Gly Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O XWKPSMRPIKKDDU-RCOVLWMOSA-N 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 241000713838 Avian myeloblastosis virus Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- PACUKJHFGMKVOT-OYQRUQRVSA-N C.C.C.C.C.C.C.C.C.C.C.CC.CC.CC.I.I.I.S.S.S.[2HH].[KH].[V] Chemical compound C.C.C.C.C.C.C.C.C.C.C.CC.CC.CC.I.I.I.S.S.S.[2HH].[KH].[V] PACUKJHFGMKVOT-OYQRUQRVSA-N 0.000 description 1
- VFNHPCKYQOPTPY-UHFFFAOYSA-N CCC.CCCCCCC Chemical compound CCC.CCCCCCC VFNHPCKYQOPTPY-UHFFFAOYSA-N 0.000 description 1
- 101150012716 CDK1 gene Proteins 0.000 description 1
- 101001095270 Caenorhabditis elegans Probable protein phosphatase methylesterase 1 Proteins 0.000 description 1
- 101000741929 Caenorhabditis elegans Serine/threonine-protein phosphatase 2A catalytic subunit Proteins 0.000 description 1
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 1
- 102000004308 Carboxylic Ester Hydrolases Human genes 0.000 description 1
- 108090000863 Carboxylic Ester Hydrolases Proteins 0.000 description 1
- 108700010070 Codon Usage Proteins 0.000 description 1
- SRUWWOSWHXIIIA-UKPGNTDSSA-N Cyanoginosin Chemical compound N1C(=O)[C@H](CCCN=C(N)N)NC(=O)[C@@H](C)[C@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](C)NC(=O)C(=C)N(C)C(=O)CC[C@H](C(O)=O)N(C)C(=O)[C@@H](C)[C@@H]1\C=C\C(\C)=C\[C@H](C)[C@@H](O)CC1=CC=CC=C1 SRUWWOSWHXIIIA-UKPGNTDSSA-N 0.000 description 1
- 108050006400 Cyclin Proteins 0.000 description 1
- 102000016736 Cyclin Human genes 0.000 description 1
- LHLSSZYQFUNWRZ-NAKRPEOUSA-N Cys-Arg-Ile Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O LHLSSZYQFUNWRZ-NAKRPEOUSA-N 0.000 description 1
- XGIAHEUULGOZHH-GUBZILKMSA-N Cys-Arg-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N XGIAHEUULGOZHH-GUBZILKMSA-N 0.000 description 1
- PEZINYWZBQNTIX-NAKRPEOUSA-N Cys-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)N PEZINYWZBQNTIX-NAKRPEOUSA-N 0.000 description 1
- LHJDLVVQRJIURS-SRVKXCTJSA-N Cys-Phe-Asp Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](CS)N LHJDLVVQRJIURS-SRVKXCTJSA-N 0.000 description 1
- NDNZRWUDUMTITL-FXQIFTODSA-N Cys-Ser-Val Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O NDNZRWUDUMTITL-FXQIFTODSA-N 0.000 description 1
- IOLWXFWVYYCVTJ-NRPADANISA-N Cys-Val-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CS)N IOLWXFWVYYCVTJ-NRPADANISA-N 0.000 description 1
- ZXGDAZLSOSYSBA-IHRRRGAJSA-N Cys-Val-Phe Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O ZXGDAZLSOSYSBA-IHRRRGAJSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 238000007399 DNA isolation Methods 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 238000001712 DNA sequencing Methods 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 241000252212 Danio rerio Species 0.000 description 1
- 208000031124 Dementia Alzheimer type Diseases 0.000 description 1
- 239000006144 Dulbecco’s modified Eagle's medium Substances 0.000 description 1
- 101100059559 Emericella nidulans (strain FGSC A4 / ATCC 38163 / CBS 112.46 / NRRL 194 / M139) nimX gene Proteins 0.000 description 1
- 241000588724 Escherichia coli Species 0.000 description 1
- 108090000371 Esterases Proteins 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- AAOBFSKXAVIORT-GUBZILKMSA-N Gln-Asn-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(O)=O AAOBFSKXAVIORT-GUBZILKMSA-N 0.000 description 1
- GMGKDVVBSVVKCT-NUMRIWBASA-N Gln-Asn-Thr Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O GMGKDVVBSVVKCT-NUMRIWBASA-N 0.000 description 1
- IPHGBVYWRKCGKG-FXQIFTODSA-N Gln-Cys-Glu Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(O)=O)C(O)=O IPHGBVYWRKCGKG-FXQIFTODSA-N 0.000 description 1
- ALUBSZXSNSPDQV-WDSKDSINSA-N Gln-Cys-Gly Chemical compound NC(=O)CC[C@H](N)C(=O)N[C@@H](CS)C(=O)NCC(O)=O ALUBSZXSNSPDQV-WDSKDSINSA-N 0.000 description 1
- ZDJZEGYVKANKED-NRPADANISA-N Gln-Cys-Val Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(O)=O ZDJZEGYVKANKED-NRPADANISA-N 0.000 description 1
- MCAVASRGVBVPMX-FXQIFTODSA-N Gln-Glu-Ala Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(O)=O MCAVASRGVBVPMX-FXQIFTODSA-N 0.000 description 1
- CGVWDTRDPLOMHZ-FXQIFTODSA-N Gln-Glu-Asp Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O CGVWDTRDPLOMHZ-FXQIFTODSA-N 0.000 description 1
- XSBGUANSZDGULP-IUCAKERBSA-N Gln-Gly-Lys Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)NCC(=O)N[C@@H](CCCCN)C(O)=O XSBGUANSZDGULP-IUCAKERBSA-N 0.000 description 1
- TWTWUBHEWQPMQW-ZPFDUUQYSA-N Gln-Ile-Arg Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O TWTWUBHEWQPMQW-ZPFDUUQYSA-N 0.000 description 1
- NMYFPKCIGUJMIK-GUBZILKMSA-N Gln-Met-Gln Chemical compound CSCC[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)N)N NMYFPKCIGUJMIK-GUBZILKMSA-N 0.000 description 1
- RWQCWSGOOOEGPB-FXQIFTODSA-N Gln-Ser-Glu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(O)=O RWQCWSGOOOEGPB-FXQIFTODSA-N 0.000 description 1
- OSCLNNWLKKIQJM-WDSKDSINSA-N Gln-Ser-Gly Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(=O)NCC(O)=O OSCLNNWLKKIQJM-WDSKDSINSA-N 0.000 description 1
- HGBHRZBXOOHRDH-JBACZVJFSA-N Gln-Tyr-Trp Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O HGBHRZBXOOHRDH-JBACZVJFSA-N 0.000 description 1
- VEYGCDYMOXHJLS-GVXVVHGQSA-N Gln-Val-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O VEYGCDYMOXHJLS-GVXVVHGQSA-N 0.000 description 1
- MKRDNSWGJWTBKZ-GVXVVHGQSA-N Gln-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)N)N MKRDNSWGJWTBKZ-GVXVVHGQSA-N 0.000 description 1
- RUFHOVYUYSNDNY-ACZMJKKPSA-N Glu-Ala-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCC(O)=O RUFHOVYUYSNDNY-ACZMJKKPSA-N 0.000 description 1
- HUWSBFYAGXCXKC-CIUDSAMLSA-N Glu-Ala-Met Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O HUWSBFYAGXCXKC-CIUDSAMLSA-N 0.000 description 1
- AKJRHDMTEJXTPV-ACZMJKKPSA-N Glu-Asn-Ala Chemical compound C[C@H](NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CCC(O)=O)C(O)=O AKJRHDMTEJXTPV-ACZMJKKPSA-N 0.000 description 1
- YKLNMGJYMNPBCP-ACZMJKKPSA-N Glu-Asn-Asp Chemical compound C(CC(=O)O)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N YKLNMGJYMNPBCP-ACZMJKKPSA-N 0.000 description 1
- RDPOETHPAQEGDP-ACZMJKKPSA-N Glu-Asp-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O RDPOETHPAQEGDP-ACZMJKKPSA-N 0.000 description 1
- JPHYJQHPILOKHC-ACZMJKKPSA-N Glu-Asp-Asp Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O JPHYJQHPILOKHC-ACZMJKKPSA-N 0.000 description 1
- XXCDTYBVGMPIOA-FXQIFTODSA-N Glu-Asp-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O XXCDTYBVGMPIOA-FXQIFTODSA-N 0.000 description 1
- JVSBYEDSSRZQGV-GUBZILKMSA-N Glu-Asp-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCC(O)=O JVSBYEDSSRZQGV-GUBZILKMSA-N 0.000 description 1
- WATXSTJXNBOHKD-LAEOZQHASA-N Glu-Asp-Val Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O WATXSTJXNBOHKD-LAEOZQHASA-N 0.000 description 1
- SJPMNHCEWPTRBR-BQBZGAKWSA-N Glu-Glu-Gly Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O SJPMNHCEWPTRBR-BQBZGAKWSA-N 0.000 description 1
- PXXGVUVQWQGGIG-YUMQZZPRSA-N Glu-Gly-Arg Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N PXXGVUVQWQGGIG-YUMQZZPRSA-N 0.000 description 1
- OPAINBJQDQTGJY-JGVFFNPUSA-N Glu-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CCC(=O)O)N)C(=O)O OPAINBJQDQTGJY-JGVFFNPUSA-N 0.000 description 1
- BIHMNDPWRUROFZ-JYJNAYRXSA-N Glu-His-Phe Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O BIHMNDPWRUROFZ-JYJNAYRXSA-N 0.000 description 1
- VMKCPNBBPGGQBJ-GUBZILKMSA-N Glu-Leu-Asn Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)O)NC(=O)[C@H](CCC(=O)O)N VMKCPNBBPGGQBJ-GUBZILKMSA-N 0.000 description 1
- DNPCBMNFQVTHMA-DCAQKATOSA-N Glu-Leu-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O DNPCBMNFQVTHMA-DCAQKATOSA-N 0.000 description 1
- UGSVSNXPJJDJKL-SDDRHHMPSA-N Glu-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CCC(=O)O)N UGSVSNXPJJDJKL-SDDRHHMPSA-N 0.000 description 1
- OQXDUSZKISQQSS-GUBZILKMSA-N Glu-Lys-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(O)=O OQXDUSZKISQQSS-GUBZILKMSA-N 0.000 description 1
- AQNYKMCFCCZEEL-JYJNAYRXSA-N Glu-Lys-Tyr Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 AQNYKMCFCCZEEL-JYJNAYRXSA-N 0.000 description 1
- HQOGXFLBAKJUMH-CIUDSAMLSA-N Glu-Met-Ser Chemical compound CSCC[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCC(=O)O)N HQOGXFLBAKJUMH-CIUDSAMLSA-N 0.000 description 1
- JYXKPJVDCAWMDG-ZPFDUUQYSA-N Glu-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@@H]1CCCN1C(=O)[C@H](CCC(=O)O)N JYXKPJVDCAWMDG-ZPFDUUQYSA-N 0.000 description 1
- BPLNJYHNAJVLRT-ACZMJKKPSA-N Glu-Ser-Ala Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O BPLNJYHNAJVLRT-ACZMJKKPSA-N 0.000 description 1
- SYAYROHMAIHWFB-KBIXCLLPSA-N Glu-Ser-Ile Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O SYAYROHMAIHWFB-KBIXCLLPSA-N 0.000 description 1
- GPSHCSTUYOQPAI-JHEQGTHGSA-N Glu-Thr-Gly Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O GPSHCSTUYOQPAI-JHEQGTHGSA-N 0.000 description 1
- DTLLNDVORUEOTM-WDCWCFNPSA-N Glu-Thr-Lys Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(O)=O DTLLNDVORUEOTM-WDCWCFNPSA-N 0.000 description 1
- ZGXGVBYEJGVJMV-HJGDQZAQSA-N Glu-Thr-Met Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCSC)C(=O)O)NC(=O)[C@H](CCC(=O)O)N)O ZGXGVBYEJGVJMV-HJGDQZAQSA-N 0.000 description 1
- LZEUDRYSAZAJIO-AUTRQRHGSA-N Glu-Val-Glu Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O LZEUDRYSAZAJIO-AUTRQRHGSA-N 0.000 description 1
- YMUFWNJHVPQNQD-ZKWXMUAHSA-N Gly-Ala-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN YMUFWNJHVPQNQD-ZKWXMUAHSA-N 0.000 description 1
- VSVZIEVNUYDAFR-YUMQZZPRSA-N Gly-Ala-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)CN VSVZIEVNUYDAFR-YUMQZZPRSA-N 0.000 description 1
- JBRBACJPBZNFMF-YUMQZZPRSA-N Gly-Ala-Lys Chemical compound NCC(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCCN JBRBACJPBZNFMF-YUMQZZPRSA-N 0.000 description 1
- KFMBRBPXHVMDFN-UWVGGRQHSA-N Gly-Arg-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCNC(N)=N KFMBRBPXHVMDFN-UWVGGRQHSA-N 0.000 description 1
- VXKCPBPQEKKERH-IUCAKERBSA-N Gly-Arg-Pro Chemical compound NC(N)=NCCC[C@H](NC(=O)CN)C(=O)N1CCC[C@H]1C(O)=O VXKCPBPQEKKERH-IUCAKERBSA-N 0.000 description 1
- NZAFOTBEULLEQB-WDSKDSINSA-N Gly-Asn-Glu Chemical compound C(CC(=O)O)[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)CN NZAFOTBEULLEQB-WDSKDSINSA-N 0.000 description 1
- MFBYPDKTAJXHNI-VKHMYHEASA-N Gly-Cys Chemical compound [NH3+]CC(=O)N[C@@H](CS)C([O-])=O MFBYPDKTAJXHNI-VKHMYHEASA-N 0.000 description 1
- SABZDFAAOJATBR-QWRGUYRKSA-N Gly-Cys-Phe Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SABZDFAAOJATBR-QWRGUYRKSA-N 0.000 description 1
- VOCMRCVMAPSSAL-IUCAKERBSA-N Gly-Gln-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)CN VOCMRCVMAPSSAL-IUCAKERBSA-N 0.000 description 1
- QPDUVFSVVAOUHE-XVKPBYJWSA-N Gly-Gln-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CCC(N)=O)NC(=O)CN)C(O)=O QPDUVFSVVAOUHE-XVKPBYJWSA-N 0.000 description 1
- MBOAPAXLTUSMQI-JHEQGTHGSA-N Gly-Glu-Thr Chemical compound [H]NCC(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MBOAPAXLTUSMQI-JHEQGTHGSA-N 0.000 description 1
- KAJAOGBVWCYGHZ-JTQLQIEISA-N Gly-Gly-Phe Chemical compound [NH3+]CC(=O)NCC(=O)N[C@H](C([O-])=O)CC1=CC=CC=C1 KAJAOGBVWCYGHZ-JTQLQIEISA-N 0.000 description 1
- YWAQATDNEKZFFK-BYPYZUCNSA-N Gly-Gly-Ser Chemical compound NCC(=O)NCC(=O)N[C@@H](CO)C(O)=O YWAQATDNEKZFFK-BYPYZUCNSA-N 0.000 description 1
- INLIXXRWNUKVCF-JTQLQIEISA-N Gly-Gly-Tyr Chemical compound NCC(=O)NCC(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 INLIXXRWNUKVCF-JTQLQIEISA-N 0.000 description 1
- FQKKPCWTZZEDIC-XPUUQOCRSA-N Gly-His-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)CN)CC1=CN=CN1 FQKKPCWTZZEDIC-XPUUQOCRSA-N 0.000 description 1
- AAHSHTLISQUZJL-QSFUFRPTSA-N Gly-Ile-Ile Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O AAHSHTLISQUZJL-QSFUFRPTSA-N 0.000 description 1
- SCWYHUQOOFRVHP-MBLNEYKQSA-N Gly-Ile-Thr Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(O)=O SCWYHUQOOFRVHP-MBLNEYKQSA-N 0.000 description 1
- UUYBFNKHOCJCHT-VHSXEESVSA-N Gly-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN UUYBFNKHOCJCHT-VHSXEESVSA-N 0.000 description 1
- LHYJCVCQPWRMKZ-WEDXCCLWSA-N Gly-Leu-Thr Chemical compound [H]NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LHYJCVCQPWRMKZ-WEDXCCLWSA-N 0.000 description 1
- LOEANKRDMMVOGZ-YUMQZZPRSA-N Gly-Lys-Asp Chemical compound NCCCC[C@H](NC(=O)CN)C(=O)N[C@@H](CC(O)=O)C(O)=O LOEANKRDMMVOGZ-YUMQZZPRSA-N 0.000 description 1
- MHZXESQPPXOING-KBPBESRZSA-N Gly-Lys-Phe Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O MHZXESQPPXOING-KBPBESRZSA-N 0.000 description 1
- FJWSJWACLMTDMI-WPRPVWTQSA-N Gly-Met-Val Chemical compound [H]NCC(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(O)=O FJWSJWACLMTDMI-WPRPVWTQSA-N 0.000 description 1
- YYXJFBMCOUSYSF-RYUDHWBXSA-N Gly-Phe-Gln Chemical compound [H]NCC(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(N)=O)C(O)=O YYXJFBMCOUSYSF-RYUDHWBXSA-N 0.000 description 1
- NSVOVKWEKGEOQB-LURJTMIESA-N Gly-Pro-Gly Chemical compound NCC(=O)N1CCC[C@H]1C(=O)NCC(O)=O NSVOVKWEKGEOQB-LURJTMIESA-N 0.000 description 1
- SSFWXSNOKDZNHY-QXEWZRGKSA-N Gly-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN SSFWXSNOKDZNHY-QXEWZRGKSA-N 0.000 description 1
- BMWFDYIYBAFROD-WPRPVWTQSA-N Gly-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN BMWFDYIYBAFROD-WPRPVWTQSA-N 0.000 description 1
- FGPLUIQCSKGLTI-WDSKDSINSA-N Gly-Ser-Glu Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O FGPLUIQCSKGLTI-WDSKDSINSA-N 0.000 description 1
- POJJAZJHBGXEGM-YUMQZZPRSA-N Gly-Ser-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)CN POJJAZJHBGXEGM-YUMQZZPRSA-N 0.000 description 1
- DNVDEMWIYLVIQU-RCOVLWMOSA-N Gly-Val-Asp Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O DNVDEMWIYLVIQU-RCOVLWMOSA-N 0.000 description 1
- 108091006013 HA-tagged proteins Proteins 0.000 description 1
- AFPFGFUGETYOSY-HGNGGELXSA-N His-Ala-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O AFPFGFUGETYOSY-HGNGGELXSA-N 0.000 description 1
- VSLXGYMEHVAJBH-DLOVCJGASA-N His-Ala-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(O)=O VSLXGYMEHVAJBH-DLOVCJGASA-N 0.000 description 1
- HXKZJLWGSWQKEA-LSJOCFKGSA-N His-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CN=CN1 HXKZJLWGSWQKEA-LSJOCFKGSA-N 0.000 description 1
- HDXNWVLQSQFJOX-SRVKXCTJSA-N His-Arg-Gln Chemical compound C1=C(NC=N1)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N HDXNWVLQSQFJOX-SRVKXCTJSA-N 0.000 description 1
- JBJNKUOMNZGQIM-PYJNHQTQSA-N His-Arg-Ile Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O JBJNKUOMNZGQIM-PYJNHQTQSA-N 0.000 description 1
- CJGDTAHEMXLRMB-ULQDDVLXSA-N His-Arg-Phe Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O CJGDTAHEMXLRMB-ULQDDVLXSA-N 0.000 description 1
- UOAVQQRILDGZEN-SRVKXCTJSA-N His-Asp-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O UOAVQQRILDGZEN-SRVKXCTJSA-N 0.000 description 1
- WGHJXSONOOTTCZ-JYJNAYRXSA-N His-Glu-Tyr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O WGHJXSONOOTTCZ-JYJNAYRXSA-N 0.000 description 1
- OEROYDLRVAYIMQ-YUMQZZPRSA-N His-Gly-Asp Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(O)=O OEROYDLRVAYIMQ-YUMQZZPRSA-N 0.000 description 1
- HAPWZEVRQYGLSG-IUCAKERBSA-N His-Gly-Glu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O HAPWZEVRQYGLSG-IUCAKERBSA-N 0.000 description 1
- IDQNVIWPPWAFSY-AVGNSLFASA-N His-His-Gln Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CCC(N)=O)C(O)=O IDQNVIWPPWAFSY-AVGNSLFASA-N 0.000 description 1
- JIUYRPFQJJRSJB-QWRGUYRKSA-N His-His-Gly Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)NCC(O)=O)C1=CN=CN1 JIUYRPFQJJRSJB-QWRGUYRKSA-N 0.000 description 1
- AIPUZFXMXAHZKY-QWRGUYRKSA-N His-Leu-Gly Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O AIPUZFXMXAHZKY-QWRGUYRKSA-N 0.000 description 1
- YXXKBPJEIYFGOD-MGHWNKPDSA-N His-Phe-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CC2=CN=CN2)N YXXKBPJEIYFGOD-MGHWNKPDSA-N 0.000 description 1
- SVVULKPWDBIPCO-BZSNNMDCSA-N His-Phe-Leu Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O SVVULKPWDBIPCO-BZSNNMDCSA-N 0.000 description 1
- KAXZXLSXFWSNNZ-XVYDVKMFSA-N His-Ser-Ala Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CO)C(=O)N[C@@H](C)C(O)=O KAXZXLSXFWSNNZ-XVYDVKMFSA-N 0.000 description 1
- IAYPZSHNZQHQNO-KKUMJFAQSA-N His-Ser-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC2=CN=CN2)N IAYPZSHNZQHQNO-KKUMJFAQSA-N 0.000 description 1
- BRQKGRLDDDQWQJ-MBLNEYKQSA-N His-Thr-Ala Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O BRQKGRLDDDQWQJ-MBLNEYKQSA-N 0.000 description 1
- WSXNWASHQNSMRX-GVXVVHGQSA-N His-Val-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CN=CN1)N WSXNWASHQNSMRX-GVXVVHGQSA-N 0.000 description 1
- 101100273831 Homo sapiens CDS1 gene Proteins 0.000 description 1
- 101000615488 Homo sapiens Methyl-CpG-binding domain protein 2 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- VAXBXNPRXPHGHG-BJDJZHNGSA-N Ile-Ala-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](CC(C)C)C(=O)O)N VAXBXNPRXPHGHG-BJDJZHNGSA-N 0.000 description 1
- MKWSZEHGHSLNPF-NAKRPEOUSA-N Ile-Ala-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)O)N MKWSZEHGHSLNPF-NAKRPEOUSA-N 0.000 description 1
- BOTVMTSMOUSDRW-GMOBBJLQSA-N Ile-Arg-Asn Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(N)=O)C(O)=O BOTVMTSMOUSDRW-GMOBBJLQSA-N 0.000 description 1
- FVEWRQXNISSYFO-ZPFDUUQYSA-N Ile-Arg-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N FVEWRQXNISSYFO-ZPFDUUQYSA-N 0.000 description 1
- HZMLFETXHFHGBB-UGYAYLCHSA-N Ile-Asn-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC(=O)O)C(=O)O)N HZMLFETXHFHGBB-UGYAYLCHSA-N 0.000 description 1
- LLZLRXBTOOFODM-QSFUFRPTSA-N Ile-Asp-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](C(C)C)C(=O)O)N LLZLRXBTOOFODM-QSFUFRPTSA-N 0.000 description 1
- PHIXPNQDGGILMP-YVNDNENWSA-N Ile-Glu-Glu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N PHIXPNQDGGILMP-YVNDNENWSA-N 0.000 description 1
- LPXHYGGZJOCAFR-MNXVOIDGSA-N Ile-Glu-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CC(C)C)C(=O)O)N LPXHYGGZJOCAFR-MNXVOIDGSA-N 0.000 description 1
- LEHPJMKVGFPSSP-ZQINRCPSSA-N Ile-Glu-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)[C@@H](C)CC)C(O)=O)=CNC2=C1 LEHPJMKVGFPSSP-ZQINRCPSSA-N 0.000 description 1
- NZOCIWKZUVUNDW-ZKWXMUAHSA-N Ile-Gly-Ala Chemical compound CC[C@H](C)[C@H](N)C(=O)NCC(=O)N[C@@H](C)C(O)=O NZOCIWKZUVUNDW-ZKWXMUAHSA-N 0.000 description 1
- GTSAALPQZASLPW-KJYZGMDISA-N Ile-His-Trp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CC2=CNC3=CC=CC=C32)C(=O)O)N GTSAALPQZASLPW-KJYZGMDISA-N 0.000 description 1
- NLZVTPYXYXMCIP-XUXIUFHCSA-N Ile-Pro-Lys Chemical compound CC[C@H](C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(O)=O NLZVTPYXYXMCIP-XUXIUFHCSA-N 0.000 description 1
- JHNJNTMTZHEDLJ-NAKRPEOUSA-N Ile-Ser-Arg Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O JHNJNTMTZHEDLJ-NAKRPEOUSA-N 0.000 description 1
- XMYURPUVJSKTMC-KBIXCLLPSA-N Ile-Ser-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N XMYURPUVJSKTMC-KBIXCLLPSA-N 0.000 description 1
- VGSPNSSCMOHRRR-BJDJZHNGSA-N Ile-Ser-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)O)N VGSPNSSCMOHRRR-BJDJZHNGSA-N 0.000 description 1
- SAEWJTCJQVZQNZ-IUKAMOBKSA-N Ile-Thr-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N SAEWJTCJQVZQNZ-IUKAMOBKSA-N 0.000 description 1
- WCNWGAUZWWSYDG-SVSWQMSJSA-N Ile-Thr-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)O)N WCNWGAUZWWSYDG-SVSWQMSJSA-N 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- 108091029795 Intergenic region Proteins 0.000 description 1
- 108091092195 Intron Proteins 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- SITWEMZOJNKJCH-UHFFFAOYSA-N L-alanine-L-arginine Natural products CC(N)C(=O)NC(C(O)=O)CCCNC(N)=N SITWEMZOJNKJCH-UHFFFAOYSA-N 0.000 description 1
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- SENJXOPIZNYLHU-UHFFFAOYSA-N L-leucyl-L-arginine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CCCN=C(N)N SENJXOPIZNYLHU-UHFFFAOYSA-N 0.000 description 1
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- 241000880493 Leptailurus serval Species 0.000 description 1
- WNGVUZWBXZKQES-YUMQZZPRSA-N Leu-Ala-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)NCC(O)=O WNGVUZWBXZKQES-YUMQZZPRSA-N 0.000 description 1
- BQSLGJHIAGOZCD-CIUDSAMLSA-N Leu-Ala-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CO)C(O)=O BQSLGJHIAGOZCD-CIUDSAMLSA-N 0.000 description 1
- GRZSCTXVCDUIPO-SRVKXCTJSA-N Leu-Arg-Gln Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(N)=O)C(O)=O GRZSCTXVCDUIPO-SRVKXCTJSA-N 0.000 description 1
- UCOCBWDBHCUPQP-DCAQKATOSA-N Leu-Arg-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(O)=O UCOCBWDBHCUPQP-DCAQKATOSA-N 0.000 description 1
- OGCQGUIWMSBHRZ-CIUDSAMLSA-N Leu-Asn-Ser Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(O)=O OGCQGUIWMSBHRZ-CIUDSAMLSA-N 0.000 description 1
- YKNBJXOJTURHCU-DCAQKATOSA-N Leu-Asp-Arg Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YKNBJXOJTURHCU-DCAQKATOSA-N 0.000 description 1
- MYGQXVYRZMKRDB-SRVKXCTJSA-N Leu-Asp-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN MYGQXVYRZMKRDB-SRVKXCTJSA-N 0.000 description 1
- VFQOCUQGMUXTJR-DCAQKATOSA-N Leu-Cys-Met Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCSC)C(=O)O)N VFQOCUQGMUXTJR-DCAQKATOSA-N 0.000 description 1
- DLCXCECTCPKKCD-GUBZILKMSA-N Leu-Gln-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O DLCXCECTCPKKCD-GUBZILKMSA-N 0.000 description 1
- HQUXQAMSWFIRET-AVGNSLFASA-N Leu-Glu-Lys Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@H](C(O)=O)CCCCN HQUXQAMSWFIRET-AVGNSLFASA-N 0.000 description 1
- LLBQJYDYOLIQAI-JYJNAYRXSA-N Leu-Glu-Tyr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O LLBQJYDYOLIQAI-JYJNAYRXSA-N 0.000 description 1
- BABSVXFGKFLIGW-UWVGGRQHSA-N Leu-Gly-Arg Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCNC(N)=N BABSVXFGKFLIGW-UWVGGRQHSA-N 0.000 description 1
- HYIFFZAQXPUEAU-QWRGUYRKSA-N Leu-Gly-Leu Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CC(C)C HYIFFZAQXPUEAU-QWRGUYRKSA-N 0.000 description 1
- VGPCJSXPPOQPBK-YUMQZZPRSA-N Leu-Gly-Ser Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O VGPCJSXPPOQPBK-YUMQZZPRSA-N 0.000 description 1
- CFZZDVMBRYFFNU-QWRGUYRKSA-N Leu-His-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)NCC(O)=O CFZZDVMBRYFFNU-QWRGUYRKSA-N 0.000 description 1
- DBSLVQBXKVKDKJ-BJDJZHNGSA-N Leu-Ile-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O DBSLVQBXKVKDKJ-BJDJZHNGSA-N 0.000 description 1
- AVEGDIAXTDVBJS-XUXIUFHCSA-N Leu-Ile-Arg Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O AVEGDIAXTDVBJS-XUXIUFHCSA-N 0.000 description 1
- JKSIBWITFMQTOA-XUXIUFHCSA-N Leu-Ile-Val Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O JKSIBWITFMQTOA-XUXIUFHCSA-N 0.000 description 1
- IAJFFZORSWOZPQ-SRVKXCTJSA-N Leu-Leu-Asn Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O IAJFFZORSWOZPQ-SRVKXCTJSA-N 0.000 description 1
- FAELBUXXFQLUAX-AJNGGQMLSA-N Leu-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC(C)C FAELBUXXFQLUAX-AJNGGQMLSA-N 0.000 description 1
- OVZLLFONXILPDZ-VOAKCMCISA-N Leu-Lys-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O OVZLLFONXILPDZ-VOAKCMCISA-N 0.000 description 1
- DRWMRVFCKKXHCH-BZSNNMDCSA-N Leu-Phe-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=CC=C1 DRWMRVFCKKXHCH-BZSNNMDCSA-N 0.000 description 1
- YRRCOJOXAJNSAX-IHRRRGAJSA-N Leu-Pro-Lys Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)O)N YRRCOJOXAJNSAX-IHRRRGAJSA-N 0.000 description 1
- DPURXCQCHSQPAN-AVGNSLFASA-N Leu-Pro-Pro Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DPURXCQCHSQPAN-AVGNSLFASA-N 0.000 description 1
- PWPBLZXWFXJFHE-RHYQMDGZSA-N Leu-Pro-Thr Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(O)=O PWPBLZXWFXJFHE-RHYQMDGZSA-N 0.000 description 1
- KZZCOWMDDXDKSS-CIUDSAMLSA-N Leu-Ser-Asn Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O KZZCOWMDDXDKSS-CIUDSAMLSA-N 0.000 description 1
- KIZIOFNVSOSKJI-CIUDSAMLSA-N Leu-Ser-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CS)C(=O)O)N KIZIOFNVSOSKJI-CIUDSAMLSA-N 0.000 description 1
- BRTVHXHCUSXYRI-CIUDSAMLSA-N Leu-Ser-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O BRTVHXHCUSXYRI-CIUDSAMLSA-N 0.000 description 1
- PPGBXYKMUMHFBF-KATARQTJSA-N Leu-Ser-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O PPGBXYKMUMHFBF-KATARQTJSA-N 0.000 description 1
- HWMQRQIFVGEAPH-XIRDDKMYSA-N Leu-Ser-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(C)C)C(O)=O)=CNC2=C1 HWMQRQIFVGEAPH-XIRDDKMYSA-N 0.000 description 1
- LJBVRCDPWOJOEK-PPCPHDFISA-N Leu-Thr-Ile Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O LJBVRCDPWOJOEK-PPCPHDFISA-N 0.000 description 1
- FDBTVENULFNTAL-XQQFMLRXSA-N Leu-Val-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N1CCC[C@@H]1C(=O)O)N FDBTVENULFNTAL-XQQFMLRXSA-N 0.000 description 1
- MPGHETGWWWUHPY-CIUDSAMLSA-N Lys-Ala-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN MPGHETGWWWUHPY-CIUDSAMLSA-N 0.000 description 1
- ALSRJRIWBNENFY-DCAQKATOSA-N Lys-Arg-Asn Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(N)=O)C(O)=O ALSRJRIWBNENFY-DCAQKATOSA-N 0.000 description 1
- GQUDMNDPQTXZRV-DCAQKATOSA-N Lys-Arg-Asp Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O GQUDMNDPQTXZRV-DCAQKATOSA-N 0.000 description 1
- DEFGUIIUYAUEDU-ZPFDUUQYSA-N Lys-Asn-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O DEFGUIIUYAUEDU-ZPFDUUQYSA-N 0.000 description 1
- NCTDKZKNBDZDOL-GARJFASQSA-N Lys-Asn-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC(=O)N)NC(=O)[C@H](CCCCN)N)C(=O)O NCTDKZKNBDZDOL-GARJFASQSA-N 0.000 description 1
- IBQMEXQYZMVIFU-SRVKXCTJSA-N Lys-Asp-His Chemical compound C1=C(NC=N1)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](CCCCN)N IBQMEXQYZMVIFU-SRVKXCTJSA-N 0.000 description 1
- WGCKDDHUFPQSMZ-ZPFDUUQYSA-N Lys-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H](N)CCCCN WGCKDDHUFPQSMZ-ZPFDUUQYSA-N 0.000 description 1
- GUYHHBZCBQZLFW-GUBZILKMSA-N Lys-Gln-Cys Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N GUYHHBZCBQZLFW-GUBZILKMSA-N 0.000 description 1
- LLSUNJYOSCOOEB-GUBZILKMSA-N Lys-Glu-Asp Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O LLSUNJYOSCOOEB-GUBZILKMSA-N 0.000 description 1
- DCRWPTBMWMGADO-AVGNSLFASA-N Lys-Glu-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O DCRWPTBMWMGADO-AVGNSLFASA-N 0.000 description 1
- ZASPELYMPSACER-HOCLYGCPSA-N Lys-Gly-Trp Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O ZASPELYMPSACER-HOCLYGCPSA-N 0.000 description 1
- ZXFRGTAIIZHNHG-AJNGGQMLSA-N Lys-Ile-Leu Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(C)C)C(=O)O)NC(=O)[C@H](CCCCN)N ZXFRGTAIIZHNHG-AJNGGQMLSA-N 0.000 description 1
- AIRZWUMAHCDDHR-KKUMJFAQSA-N Lys-Leu-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O AIRZWUMAHCDDHR-KKUMJFAQSA-N 0.000 description 1
- ZJWIXBZTAAJERF-IHRRRGAJSA-N Lys-Lys-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(O)=O)CCCN=C(N)N ZJWIXBZTAAJERF-IHRRRGAJSA-N 0.000 description 1
- ALGGDNMLQNFVIZ-SRVKXCTJSA-N Lys-Lys-Asp Chemical compound C(CCN)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(=O)O)C(=O)O)N ALGGDNMLQNFVIZ-SRVKXCTJSA-N 0.000 description 1
- WWEWGPOLIJXGNX-XUXIUFHCSA-N Lys-Met-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CCCCN)N WWEWGPOLIJXGNX-XUXIUFHCSA-N 0.000 description 1
- LUAJJLPHUXPQLH-KKUMJFAQSA-N Lys-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCCN)N LUAJJLPHUXPQLH-KKUMJFAQSA-N 0.000 description 1
- SBQDRNOLGSYHQA-YUMQZZPRSA-N Lys-Ser-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)NCC(O)=O SBQDRNOLGSYHQA-YUMQZZPRSA-N 0.000 description 1
- ZUGVARDEGWMMLK-SRVKXCTJSA-N Lys-Ser-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN ZUGVARDEGWMMLK-SRVKXCTJSA-N 0.000 description 1
- DYJOORGDQIGZAS-DCAQKATOSA-N Lys-Ser-Met Chemical compound CSCC[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)N DYJOORGDQIGZAS-DCAQKATOSA-N 0.000 description 1
- DIBZLYZXTSVGLN-CIUDSAMLSA-N Lys-Ser-Ser Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O DIBZLYZXTSVGLN-CIUDSAMLSA-N 0.000 description 1
- JHNOXVASMSXSNB-WEDXCCLWSA-N Lys-Thr-Gly Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O JHNOXVASMSXSNB-WEDXCCLWSA-N 0.000 description 1
- VHTOGMKQXXJOHG-RHYQMDGZSA-N Lys-Thr-Val Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C(C)C)C(O)=O VHTOGMKQXXJOHG-RHYQMDGZSA-N 0.000 description 1
- VWPJQIHBBOJWDN-DCAQKATOSA-N Lys-Val-Ala Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O VWPJQIHBBOJWDN-DCAQKATOSA-N 0.000 description 1
- NYTDJEZBAAFLLG-IHRRRGAJSA-N Lys-Val-Lys Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCCN)C(O)=O NYTDJEZBAAFLLG-IHRRRGAJSA-N 0.000 description 1
- GILLQRYAWOMHED-DCAQKATOSA-N Lys-Val-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H](N)CCCCN GILLQRYAWOMHED-DCAQKATOSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 241001599018 Melanogaster Species 0.000 description 1
- QEVRUYFHWJJUHZ-DCAQKATOSA-N Met-Ala-Leu Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CC(C)C QEVRUYFHWJJUHZ-DCAQKATOSA-N 0.000 description 1
- RJEFZSIVBHGRQJ-SRVKXCTJSA-N Met-Arg-Met Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(O)=O RJEFZSIVBHGRQJ-SRVKXCTJSA-N 0.000 description 1
- UZVWDRPUTHXQAM-FXQIFTODSA-N Met-Asp-Ala Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C)C(O)=O UZVWDRPUTHXQAM-FXQIFTODSA-N 0.000 description 1
- MYKLINMAGAIRPJ-CIUDSAMLSA-N Met-Gln-Asn Chemical compound [H]N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O MYKLINMAGAIRPJ-CIUDSAMLSA-N 0.000 description 1
- UZWMJZSOXGOVIN-LURJTMIESA-N Met-Gly-Gly Chemical compound CSCC[C@H](N)C(=O)NCC(=O)NCC(O)=O UZWMJZSOXGOVIN-LURJTMIESA-N 0.000 description 1
- MVBZBRKNZVJEKK-DTWKUNHWSA-N Met-Gly-Pro Chemical compound CSCC[C@@H](C(=O)NCC(=O)N1CCC[C@@H]1C(=O)O)N MVBZBRKNZVJEKK-DTWKUNHWSA-N 0.000 description 1
- UROWNMBTQGGTHB-DCAQKATOSA-N Met-Leu-Asp Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O UROWNMBTQGGTHB-DCAQKATOSA-N 0.000 description 1
- OSZTUONKUMCWEP-XUXIUFHCSA-N Met-Leu-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CCSC OSZTUONKUMCWEP-XUXIUFHCSA-N 0.000 description 1
- CQRGINSEMFBACV-WPRPVWTQSA-N Met-Val-Gly Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O CQRGINSEMFBACV-WPRPVWTQSA-N 0.000 description 1
- 102100021299 Methyl-CpG-binding domain protein 2 Human genes 0.000 description 1
- 241000699660 Mus musculus Species 0.000 description 1
- 101100353035 Mus musculus Ppme1 gene Proteins 0.000 description 1
- XZFYRXDAULDNFX-UHFFFAOYSA-N N-L-cysteinyl-L-phenylalanine Natural products SCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XZFYRXDAULDNFX-UHFFFAOYSA-N 0.000 description 1
- PESQCPHRXOFIPX-UHFFFAOYSA-N N-L-methionyl-L-tyrosine Natural products CSCCC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 PESQCPHRXOFIPX-UHFFFAOYSA-N 0.000 description 1
- XMBSYZWANAQXEV-UHFFFAOYSA-N N-alpha-L-glutamyl-L-phenylalanine Natural products OC(=O)CCC(N)C(=O)NC(C(O)=O)CC1=CC=CC=C1 XMBSYZWANAQXEV-UHFFFAOYSA-N 0.000 description 1
- AJHCSUXXECOXOY-UHFFFAOYSA-N N-glycyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-UHFFFAOYSA-N 0.000 description 1
- KYRVNWMVYQXFEU-UHFFFAOYSA-N Nocodazole Chemical compound C1=C2NC(NC(=O)OC)=NC2=CC=C1C(=O)C1=CC=CS1 KYRVNWMVYQXFEU-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 108010058765 Oncogene Protein pp60(v-src) Proteins 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- WSXKXSBOJXEZDV-DLOVCJGASA-N Phe-Ala-Asn Chemical compound NC(=O)C[C@@H](C([O-])=O)NC(=O)[C@H](C)NC(=O)[C@@H]([NH3+])CC1=CC=CC=C1 WSXKXSBOJXEZDV-DLOVCJGASA-N 0.000 description 1
- MDHZEOMXGNBSIL-DLOVCJGASA-N Phe-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N MDHZEOMXGNBSIL-DLOVCJGASA-N 0.000 description 1
- CYZBFPYMSJGBRL-DRZSPHRISA-N Phe-Ala-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O CYZBFPYMSJGBRL-DRZSPHRISA-N 0.000 description 1
- ULECEJGNDHWSKD-QEJZJMRPSA-N Phe-Ala-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=CC=C1 ULECEJGNDHWSKD-QEJZJMRPSA-N 0.000 description 1
- HHOOEUSPFGPZFP-QWRGUYRKSA-N Phe-Asn-Gly Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O HHOOEUSPFGPZFP-QWRGUYRKSA-N 0.000 description 1
- WMGVYPPIMZPWPN-SRVKXCTJSA-N Phe-Asp-Asn Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N WMGVYPPIMZPWPN-SRVKXCTJSA-N 0.000 description 1
- FIRWJEJVFFGXSH-RYUDHWBXSA-N Phe-Glu-Gly Chemical compound OC(=O)CNC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 FIRWJEJVFFGXSH-RYUDHWBXSA-N 0.000 description 1
- ZLGQEBCCANLYRA-RYUDHWBXSA-N Phe-Gly-Glu Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O ZLGQEBCCANLYRA-RYUDHWBXSA-N 0.000 description 1
- WEMYTDDMDBLPMI-DKIMLUQUSA-N Phe-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N WEMYTDDMDBLPMI-DKIMLUQUSA-N 0.000 description 1
- BWTKUQPNOMMKMA-FIRPJDEBSA-N Phe-Ile-Phe Chemical compound C([C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 BWTKUQPNOMMKMA-FIRPJDEBSA-N 0.000 description 1
- SMFGCTXUBWEPKM-KBPBESRZSA-N Phe-Leu-Gly Chemical compound OC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 SMFGCTXUBWEPKM-KBPBESRZSA-N 0.000 description 1
- SCKXGHWQPPURGT-KKUMJFAQSA-N Phe-Lys-Ser Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O SCKXGHWQPPURGT-KKUMJFAQSA-N 0.000 description 1
- KAJLHCWRWDSROH-BZSNNMDCSA-N Phe-Phe-Asp Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CC(O)=O)C(O)=O)C1=CC=CC=C1 KAJLHCWRWDSROH-BZSNNMDCSA-N 0.000 description 1
- MMJJFXWMCMJMQA-STQMWFEESA-N Phe-Pro-Gly Chemical compound C([C@H](N)C(=O)N1[C@@H](CCC1)C(=O)NCC(O)=O)C1=CC=CC=C1 MMJJFXWMCMJMQA-STQMWFEESA-N 0.000 description 1
- QSWKNJAPHQDAAS-MELADBBJSA-N Phe-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CC2=CC=CC=C2)N)C(=O)O QSWKNJAPHQDAAS-MELADBBJSA-N 0.000 description 1
- GMWNQSGWWGKTSF-LFSVMHDDSA-N Phe-Thr-Ala Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O GMWNQSGWWGKTSF-LFSVMHDDSA-N 0.000 description 1
- ZYNBEWGJFXTBDU-ACRUOGEOSA-N Phe-Tyr-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CC2=CC=CC=C2)N ZYNBEWGJFXTBDU-ACRUOGEOSA-N 0.000 description 1
- IEIFEYBAYFSRBQ-IHRRRGAJSA-N Phe-Val-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)N IEIFEYBAYFSRBQ-IHRRRGAJSA-N 0.000 description 1
- 108010065081 Phosphorylase b Proteins 0.000 description 1
- 108010073135 Phosphorylases Proteins 0.000 description 1
- 102000009097 Phosphorylases Human genes 0.000 description 1
- 108010064851 Plant Proteins Proteins 0.000 description 1
- 244000028344 Primula vulgaris Species 0.000 description 1
- 235000016311 Primula vulgaris Nutrition 0.000 description 1
- FZHBZMDRDASUHN-NAKRPEOUSA-N Pro-Ala-Ile Chemical compound CC[C@H](C)[C@H](NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1)C(O)=O FZHBZMDRDASUHN-NAKRPEOUSA-N 0.000 description 1
- JARJPEMLQAWNBR-GUBZILKMSA-N Pro-Asp-Arg Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O JARJPEMLQAWNBR-GUBZILKMSA-N 0.000 description 1
- KPDRZQUWJKTMBP-DCAQKATOSA-N Pro-Asp-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@@H]1CCCN1 KPDRZQUWJKTMBP-DCAQKATOSA-N 0.000 description 1
- XKHCJJPNXFBADI-DCAQKATOSA-N Pro-Asp-Lys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCCCN)C(=O)O XKHCJJPNXFBADI-DCAQKATOSA-N 0.000 description 1
- SNIPWBQKOPCJRG-CIUDSAMLSA-N Pro-Gln-Cys Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CS)C(=O)O SNIPWBQKOPCJRG-CIUDSAMLSA-N 0.000 description 1
- NMELOOXSGDRBRU-YUMQZZPRSA-N Pro-Glu-Gly Chemical compound OC(=O)CNC(=O)[C@H](CCC(=O)O)NC(=O)[C@@H]1CCCN1 NMELOOXSGDRBRU-YUMQZZPRSA-N 0.000 description 1
- DXTOOBDIIAJZBJ-BQBZGAKWSA-N Pro-Gly-Ser Chemical compound [H]N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CO)C(O)=O DXTOOBDIIAJZBJ-BQBZGAKWSA-N 0.000 description 1
- XYHMFGGWNOFUOU-QXEWZRGKSA-N Pro-Ile-Gly Chemical compound OC(=O)CNC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H]1CCCN1 XYHMFGGWNOFUOU-QXEWZRGKSA-N 0.000 description 1
- FKVNLUZHSFCNGY-RVMXOQNASA-N Pro-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 FKVNLUZHSFCNGY-RVMXOQNASA-N 0.000 description 1
- GURGCNUWVSDYTP-SRVKXCTJSA-N Pro-Leu-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O GURGCNUWVSDYTP-SRVKXCTJSA-N 0.000 description 1
- MRYUJHGPZQNOAD-IHRRRGAJSA-N Pro-Leu-Lys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@@H]1CCCN1 MRYUJHGPZQNOAD-IHRRRGAJSA-N 0.000 description 1
- MCWHYUWXVNRXFV-RWMBFGLXSA-N Pro-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@@H]2CCCN2 MCWHYUWXVNRXFV-RWMBFGLXSA-N 0.000 description 1
- PUQRDHNIOONJJN-AVGNSLFASA-N Pro-Lys-Met Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCSC)C(O)=O PUQRDHNIOONJJN-AVGNSLFASA-N 0.000 description 1
- WFIVLLFYUZZWOD-RHYQMDGZSA-N Pro-Lys-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(O)=O WFIVLLFYUZZWOD-RHYQMDGZSA-N 0.000 description 1
- FHZJRBVMLGOHBX-GUBZILKMSA-N Pro-Pro-Asp Chemical compound OC(=O)C[C@H](NC(=O)[C@@H]1CCCN1C(=O)[C@@H]1CCCN1)C(O)=O FHZJRBVMLGOHBX-GUBZILKMSA-N 0.000 description 1
- DWPXHLIBFQLKLK-CYDGBPFRSA-N Pro-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 DWPXHLIBFQLKLK-CYDGBPFRSA-N 0.000 description 1
- CGSOWZUPLOKYOR-AVGNSLFASA-N Pro-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 CGSOWZUPLOKYOR-AVGNSLFASA-N 0.000 description 1
- KBUAPZAZPWNYSW-SRVKXCTJSA-N Pro-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 KBUAPZAZPWNYSW-SRVKXCTJSA-N 0.000 description 1
- SEZGGSHLMROBFX-CIUDSAMLSA-N Pro-Ser-Gln Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(O)=O SEZGGSHLMROBFX-CIUDSAMLSA-N 0.000 description 1
- ITUDDXVFGFEKPD-NAKRPEOUSA-N Pro-Ser-Ile Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O ITUDDXVFGFEKPD-NAKRPEOUSA-N 0.000 description 1
- LNICFEXCAHIJOR-DCAQKATOSA-N Pro-Ser-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O LNICFEXCAHIJOR-DCAQKATOSA-N 0.000 description 1
- KWMZPPWYBVZIER-XGEHTFHBSA-N Pro-Ser-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O KWMZPPWYBVZIER-XGEHTFHBSA-N 0.000 description 1
- RMJZWERKFFNNNS-XGEHTFHBSA-N Pro-Thr-Ser Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(O)=O RMJZWERKFFNNNS-XGEHTFHBSA-N 0.000 description 1
- VPBQDHMASPJHGY-JYJNAYRXSA-N Pro-Trp-Ser Chemical compound C1C[C@H](NC1)C(=O)N[C@@H](CC2=CNC3=CC=CC=C32)C(=O)N[C@@H](CO)C(=O)O VPBQDHMASPJHGY-JYJNAYRXSA-N 0.000 description 1
- QKWYXRPICJEQAJ-KJEVXHAQSA-N Pro-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@@H]2CCCN2)O QKWYXRPICJEQAJ-KJEVXHAQSA-N 0.000 description 1
- STGVYUTZKGPRCI-GUBZILKMSA-N Pro-Val-Cys Chemical compound SC[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 STGVYUTZKGPRCI-GUBZILKMSA-N 0.000 description 1
- 239000004365 Protease Substances 0.000 description 1
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 1
- MEFKEPWMEQBLKI-AIRLBKTGSA-N S-adenosyl-L-methioninate Chemical compound O[C@@H]1[C@H](O)[C@@H](C[S+](CC[C@H](N)C([O-])=O)C)O[C@H]1N1C2=NC=NC(N)=C2N=C1 MEFKEPWMEQBLKI-AIRLBKTGSA-N 0.000 description 1
- 241000235070 Saccharomyces Species 0.000 description 1
- 241000235342 Saccharomycetes Species 0.000 description 1
- 241000607142 Salmonella Species 0.000 description 1
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 description 1
- FIXILCYTSAUERA-FXQIFTODSA-N Ser-Ala-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FIXILCYTSAUERA-FXQIFTODSA-N 0.000 description 1
- SRTCFKGBYBZRHA-ACZMJKKPSA-N Ser-Ala-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCC(O)=O)C(O)=O SRTCFKGBYBZRHA-ACZMJKKPSA-N 0.000 description 1
- WDXYVIIVDIDOSX-DCAQKATOSA-N Ser-Arg-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)CO)CCCN=C(N)N WDXYVIIVDIDOSX-DCAQKATOSA-N 0.000 description 1
- OBXVZEAMXFSGPU-FXQIFTODSA-N Ser-Asn-Arg Chemical compound C(C[C@@H](C(=O)O)NC(=O)[C@H](CC(=O)N)NC(=O)[C@H](CO)N)CN=C(N)N OBXVZEAMXFSGPU-FXQIFTODSA-N 0.000 description 1
- FIDMVVBUOCMMJG-CIUDSAMLSA-N Ser-Asn-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@@H](N)CO FIDMVVBUOCMMJG-CIUDSAMLSA-N 0.000 description 1
- VBKBDLMWICBSCY-IMJSIDKUSA-N Ser-Asp Chemical compound OC[C@H](N)C(=O)N[C@H](C(O)=O)CC(O)=O VBKBDLMWICBSCY-IMJSIDKUSA-N 0.000 description 1
- FTVRVZNYIYWJGB-ACZMJKKPSA-N Ser-Asp-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(O)=O)C(O)=O FTVRVZNYIYWJGB-ACZMJKKPSA-N 0.000 description 1
- RFBKULCUBJAQFT-BIIVOSGPSA-N Ser-Cys-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CS)NC(=O)[C@H](CO)N)C(=O)O RFBKULCUBJAQFT-BIIVOSGPSA-N 0.000 description 1
- GWMXFEMMBHOKDX-AVGNSLFASA-N Ser-Gln-Phe Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 GWMXFEMMBHOKDX-AVGNSLFASA-N 0.000 description 1
- FMDHKPRACUXATF-ACZMJKKPSA-N Ser-Gln-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CO)C(O)=O FMDHKPRACUXATF-ACZMJKKPSA-N 0.000 description 1
- VDVYTKZBMFADQH-AVGNSLFASA-N Ser-Gln-Tyr Chemical compound OC[C@H](N)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 VDVYTKZBMFADQH-AVGNSLFASA-N 0.000 description 1
- VQBCMLMPEWPUTB-ACZMJKKPSA-N Ser-Glu-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(O)=O VQBCMLMPEWPUTB-ACZMJKKPSA-N 0.000 description 1
- SNVIOQXAHVORQM-WDSKDSINSA-N Ser-Gly-Gln Chemical compound [H]N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(O)=O SNVIOQXAHVORQM-WDSKDSINSA-N 0.000 description 1
- YMTLKLXDFCSCNX-BYPYZUCNSA-N Ser-Gly-Gly Chemical compound OC[C@H](N)C(=O)NCC(=O)NCC(O)=O YMTLKLXDFCSCNX-BYPYZUCNSA-N 0.000 description 1
- GZFAWAQTEYDKII-YUMQZZPRSA-N Ser-Gly-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CO GZFAWAQTEYDKII-YUMQZZPRSA-N 0.000 description 1
- WSTIOCFMWXNOCX-YUMQZZPRSA-N Ser-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CO)N WSTIOCFMWXNOCX-YUMQZZPRSA-N 0.000 description 1
- UIGMAMGZOJVTDN-WHFBIAKZSA-N Ser-Gly-Ser Chemical compound OC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O UIGMAMGZOJVTDN-WHFBIAKZSA-N 0.000 description 1
- ZUDXUJSYCCNZQJ-DCAQKATOSA-N Ser-His-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CN=CN1)NC(=O)[C@H](CO)N ZUDXUJSYCCNZQJ-DCAQKATOSA-N 0.000 description 1
- DLPXTCTVNDTYGJ-JBDRJPRFSA-N Ser-Ile-Cys Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CS)C(O)=O DLPXTCTVNDTYGJ-JBDRJPRFSA-N 0.000 description 1
- DOSZISJPMCYEHT-NAKRPEOUSA-N Ser-Ile-Val Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C(C)C)C(O)=O DOSZISJPMCYEHT-NAKRPEOUSA-N 0.000 description 1
- ZIFYDQAFEMIZII-GUBZILKMSA-N Ser-Leu-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O ZIFYDQAFEMIZII-GUBZILKMSA-N 0.000 description 1
- VMLONWHIORGALA-SRVKXCTJSA-N Ser-Leu-Leu Chemical compound CC(C)C[C@@H](C([O-])=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H]([NH3+])CO VMLONWHIORGALA-SRVKXCTJSA-N 0.000 description 1
- NNFMANHDYSVNIO-DCAQKATOSA-N Ser-Lys-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O NNFMANHDYSVNIO-DCAQKATOSA-N 0.000 description 1
- FPCGZYMRFFIYIH-CIUDSAMLSA-N Ser-Lys-Ser Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O FPCGZYMRFFIYIH-CIUDSAMLSA-N 0.000 description 1
- ZGFRMNZZTOVBOU-CIUDSAMLSA-N Ser-Met-Gln Chemical compound N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(N)=O)C(=O)O ZGFRMNZZTOVBOU-CIUDSAMLSA-N 0.000 description 1
- NIOYDASGXWLHEZ-CIUDSAMLSA-N Ser-Met-Glu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCC(O)=O)C(O)=O NIOYDASGXWLHEZ-CIUDSAMLSA-N 0.000 description 1
- FOOZNBRFRWGBNU-DCAQKATOSA-N Ser-Met-His Chemical compound CSCC[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](CO)N FOOZNBRFRWGBNU-DCAQKATOSA-N 0.000 description 1
- ASGYVPAVFNDZMA-GUBZILKMSA-N Ser-Met-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCSC)NC(=O)[C@H](CO)N ASGYVPAVFNDZMA-GUBZILKMSA-N 0.000 description 1
- GZGFSPWOMUKKCV-NAKRPEOUSA-N Ser-Pro-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CO GZGFSPWOMUKKCV-NAKRPEOUSA-N 0.000 description 1
- QUGRFWPMPVIAPW-IHRRRGAJSA-N Ser-Pro-Phe Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 QUGRFWPMPVIAPW-IHRRRGAJSA-N 0.000 description 1
- CKDXFSPMIDSMGV-GUBZILKMSA-N Ser-Pro-Val Chemical compound [H]N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O CKDXFSPMIDSMGV-GUBZILKMSA-N 0.000 description 1
- WLJPJRGQRNCIQS-ZLUOBGJFSA-N Ser-Ser-Asn Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(O)=O WLJPJRGQRNCIQS-ZLUOBGJFSA-N 0.000 description 1
- OZPDGESCTGGNAD-CIUDSAMLSA-N Ser-Ser-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CO OZPDGESCTGGNAD-CIUDSAMLSA-N 0.000 description 1
- ILZAUMFXKSIUEF-SRVKXCTJSA-N Ser-Ser-Phe Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 ILZAUMFXKSIUEF-SRVKXCTJSA-N 0.000 description 1
- PURRNJBBXDDWLX-ZDLURKLDSA-N Ser-Thr-Gly Chemical compound C[C@H]([C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CO)N)O PURRNJBBXDDWLX-ZDLURKLDSA-N 0.000 description 1
- SNXUIBACCONSOH-BWBBJGPYSA-N Ser-Thr-Ser Chemical compound OC[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@@H](CO)C(O)=O SNXUIBACCONSOH-BWBBJGPYSA-N 0.000 description 1
- VLMIUSLQONKLDV-HEIBUPTGSA-N Ser-Thr-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O VLMIUSLQONKLDV-HEIBUPTGSA-N 0.000 description 1
- LGIMRDKGABDMBN-DCAQKATOSA-N Ser-Val-Lys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CO)N LGIMRDKGABDMBN-DCAQKATOSA-N 0.000 description 1
- 108010022999 Serine Proteases Proteins 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 108091081024 Start codon Proteins 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- IGROJMCBGRFRGI-YTLHQDLWSA-N Thr-Ala-Ala Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](C)C(O)=O IGROJMCBGRFRGI-YTLHQDLWSA-N 0.000 description 1
- PXQUBKWZENPDGE-CIQUZCHMSA-N Thr-Ala-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C)NC(=O)[C@H]([C@@H](C)O)N PXQUBKWZENPDGE-CIQUZCHMSA-N 0.000 description 1
- GFDUZZACIWNMPE-KZVJFYERSA-N Thr-Ala-Met Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCSC)C(O)=O GFDUZZACIWNMPE-KZVJFYERSA-N 0.000 description 1
- VBPDMBAFBRDZSK-HOUAVDHOSA-N Thr-Asn-Trp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N)O VBPDMBAFBRDZSK-HOUAVDHOSA-N 0.000 description 1
- DSLHSTIUAPKERR-XGEHTFHBSA-N Thr-Cys-Val Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(O)=O DSLHSTIUAPKERR-XGEHTFHBSA-N 0.000 description 1
- GARULAKWZGFIKC-RWRJDSDZSA-N Thr-Gln-Ile Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O GARULAKWZGFIKC-RWRJDSDZSA-N 0.000 description 1
- IMDMLDSVUSMAEJ-HJGDQZAQSA-N Thr-Leu-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(N)=O)C(O)=O IMDMLDSVUSMAEJ-HJGDQZAQSA-N 0.000 description 1
- HPQHHRLWSAMMKG-KATARQTJSA-N Thr-Lys-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)O)N)O HPQHHRLWSAMMKG-KATARQTJSA-N 0.000 description 1
- SPVHQURZJCUDQC-VOAKCMCISA-N Thr-Lys-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O SPVHQURZJCUDQC-VOAKCMCISA-N 0.000 description 1
- MGJLBZFUXUGMML-VOAKCMCISA-N Thr-Lys-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)O)N)O MGJLBZFUXUGMML-VOAKCMCISA-N 0.000 description 1
- QNCFWHZVRNXAKW-OEAJRASXSA-N Thr-Lys-Phe Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O QNCFWHZVRNXAKW-OEAJRASXSA-N 0.000 description 1
- DXPURPNJDFCKKO-RHYQMDGZSA-N Thr-Lys-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)[C@@H](C)O)C(O)=O DXPURPNJDFCKKO-RHYQMDGZSA-N 0.000 description 1
- UJQVSMNQMQHVRY-KZVJFYERSA-N Thr-Met-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](C)C(O)=O UJQVSMNQMQHVRY-KZVJFYERSA-N 0.000 description 1
- WVVOFCVMHAXGLE-LFSVMHDDSA-N Thr-Phe-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(O)=O WVVOFCVMHAXGLE-LFSVMHDDSA-N 0.000 description 1
- WRQLCVIALDUQEQ-UNQGMJICSA-N Thr-Phe-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O WRQLCVIALDUQEQ-UNQGMJICSA-N 0.000 description 1
- VGYVVSQFSSKZRJ-OEAJRASXSA-N Thr-Phe-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)[C@H](O)C)CC1=CC=CC=C1 VGYVVSQFSSKZRJ-OEAJRASXSA-N 0.000 description 1
- NYQIZWROIMIQSL-VEVYYDQMSA-N Thr-Pro-Asn Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(N)=O)C(O)=O NYQIZWROIMIQSL-VEVYYDQMSA-N 0.000 description 1
- VUXIQSUQQYNLJP-XAVMHZPKSA-N Thr-Ser-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N)O VUXIQSUQQYNLJP-XAVMHZPKSA-N 0.000 description 1
- VBMOVTMNHWPZJR-SUSMZKCASA-N Thr-Thr-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCC(O)=O)C(O)=O VBMOVTMNHWPZJR-SUSMZKCASA-N 0.000 description 1
- ZESGVALRVJIVLZ-VFCFLDTKSA-N Thr-Thr-Pro Chemical compound C[C@H]([C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N1CCC[C@@H]1C(=O)O)N)O ZESGVALRVJIVLZ-VFCFLDTKSA-N 0.000 description 1
- ZOCJFNXUVSGBQI-HSHDSVGOSA-N Thr-Trp-Arg Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N)O ZOCJFNXUVSGBQI-HSHDSVGOSA-N 0.000 description 1
- OMRWDMWXRWTQIU-YJRXYDGGSA-N Thr-Tyr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CS)C(=O)O)N)O OMRWDMWXRWTQIU-YJRXYDGGSA-N 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- GHXXDFDIDHIEIL-WFBYXXMGSA-N Trp-Ala-Cys Chemical compound C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)N GHXXDFDIDHIEIL-WFBYXXMGSA-N 0.000 description 1
- BIJDDZBDSJLWJY-PJODQICGSA-N Trp-Ala-Val Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](C)C(=O)N[C@@H](C(C)C)C(O)=O BIJDDZBDSJLWJY-PJODQICGSA-N 0.000 description 1
- NXAPHBHZCMQORW-FDARSICLSA-N Trp-Arg-Ile Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O NXAPHBHZCMQORW-FDARSICLSA-N 0.000 description 1
- LHHDBONOFZDWMW-AAEUAGOBSA-N Trp-Asp-Gly Chemical compound C1=CC=C2C(=C1)C(=CN2)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)NCC(=O)O)N LHHDBONOFZDWMW-AAEUAGOBSA-N 0.000 description 1
- NKUIXQOJUAEIET-AQZXSJQPSA-N Trp-Asp-Thr Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@H](O)C)C(O)=O)=CNC2=C1 NKUIXQOJUAEIET-AQZXSJQPSA-N 0.000 description 1
- SLOYNOMYOAOUCX-BVSLBCMMSA-N Trp-Phe-Arg Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O SLOYNOMYOAOUCX-BVSLBCMMSA-N 0.000 description 1
- UEFHVUQBYNRNQC-SFJXLCSZSA-N Trp-Phe-Thr Chemical compound C([C@@H](C(=O)N[C@@H]([C@H](O)C)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CC=CC=C1 UEFHVUQBYNRNQC-SFJXLCSZSA-N 0.000 description 1
- HIZDHWHVOLUGOX-BPUTZDHNSA-N Trp-Ser-Val Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](CO)C(=O)N[C@@H](C(C)C)C(O)=O HIZDHWHVOLUGOX-BPUTZDHNSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- TWAVEIJGFCBWCG-JYJNAYRXSA-N Tyr-Gln-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC1=CC=C(C=C1)O)N TWAVEIJGFCBWCG-JYJNAYRXSA-N 0.000 description 1
- HKYTWJOWZTWBQB-AVGNSLFASA-N Tyr-Glu-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 HKYTWJOWZTWBQB-AVGNSLFASA-N 0.000 description 1
- AKLNEFNQWLHIGY-QWRGUYRKSA-N Tyr-Gly-Asp Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)NCC(=O)N[C@@H](CC(=O)O)C(=O)O)N)O AKLNEFNQWLHIGY-QWRGUYRKSA-N 0.000 description 1
- PGEFRHBWGOJPJT-KKUMJFAQSA-N Tyr-Lys-Ser Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CO)C(O)=O PGEFRHBWGOJPJT-KKUMJFAQSA-N 0.000 description 1
- LRHBBGDMBLFYGL-FHWLQOOXSA-N Tyr-Phe-Glu Chemical compound C([C@H](N)C(=O)N[C@@H](CC=1C=CC=CC=1)C(=O)N[C@@H](CCC(O)=O)C(O)=O)C1=CC=C(O)C=C1 LRHBBGDMBLFYGL-FHWLQOOXSA-N 0.000 description 1
- MNWINJDPGBNOED-ULQDDVLXSA-N Tyr-Pro-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@@H](N)CC1=CC=C(O)C=C1 MNWINJDPGBNOED-ULQDDVLXSA-N 0.000 description 1
- ZZDYJFVIKVSUFA-WLTAIBSBSA-N Tyr-Thr-Gly Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O ZZDYJFVIKVSUFA-WLTAIBSBSA-N 0.000 description 1
- PWKMJDQXKCENMF-MEYUZBJRSA-N Tyr-Thr-Leu Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(O)=O PWKMJDQXKCENMF-MEYUZBJRSA-N 0.000 description 1
- AKKYBQGHUAWPJR-MNSWYVGCSA-N Tyr-Thr-Trp Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)NC(=O)[C@H](CC3=CC=C(C=C3)O)N)O AKKYBQGHUAWPJR-MNSWYVGCSA-N 0.000 description 1
- ABZWHLRQBSBPTO-RNXOBYDBSA-N Tyr-Trp-Phe Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)O)NC(=O)[C@H](CC2=CNC3=CC=CC=C32)NC(=O)[C@H](CC4=CC=C(C=C4)O)N ABZWHLRQBSBPTO-RNXOBYDBSA-N 0.000 description 1
- 108091023045 Untranslated Region Proteins 0.000 description 1
- ZLFHAAGHGQBQQN-AEJSXWLSSA-N Val-Ala-Pro Chemical compound C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N ZLFHAAGHGQBQQN-AEJSXWLSSA-N 0.000 description 1
- ZLFHAAGHGQBQQN-GUBZILKMSA-N Val-Ala-Pro Natural products CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O ZLFHAAGHGQBQQN-GUBZILKMSA-N 0.000 description 1
- XKVXSCHXGJOQND-ZOBUZTSGSA-N Val-Asp-Trp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N XKVXSCHXGJOQND-ZOBUZTSGSA-N 0.000 description 1
- FBVUOEYVGNMRMD-NAKRPEOUSA-N Val-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](C(C)C)N FBVUOEYVGNMRMD-NAKRPEOUSA-N 0.000 description 1
- LMSBRIVOCYOKMU-NRPADANISA-N Val-Gln-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CS)C(=O)O)N LMSBRIVOCYOKMU-NRPADANISA-N 0.000 description 1
- CVIXTAITYJQMPE-LAEOZQHASA-N Val-Glu-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O CVIXTAITYJQMPE-LAEOZQHASA-N 0.000 description 1
- VVZDBPBZHLQPPB-XVKPBYJWSA-N Val-Glu-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O VVZDBPBZHLQPPB-XVKPBYJWSA-N 0.000 description 1
- JTWIMNMUYLQNPI-WPRPVWTQSA-N Val-Gly-Arg Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCNC(N)=N JTWIMNMUYLQNPI-WPRPVWTQSA-N 0.000 description 1
- NXRAUQGGHPCJIB-RCOVLWMOSA-N Val-Gly-Asn Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@@H](CC(N)=O)C(O)=O NXRAUQGGHPCJIB-RCOVLWMOSA-N 0.000 description 1
- RHYOAUJXSRWVJT-GVXVVHGQSA-N Val-His-Glu Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)N[C@@H](CCC(=O)O)C(=O)O)N RHYOAUJXSRWVJT-GVXVVHGQSA-N 0.000 description 1
- LKUDRJSNRWVGMS-QSFUFRPTSA-N Val-Ile-Asp Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N LKUDRJSNRWVGMS-QSFUFRPTSA-N 0.000 description 1
- SDUBQHUJJWQTEU-XUXIUFHCSA-N Val-Ile-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](C(C)C)N SDUBQHUJJWQTEU-XUXIUFHCSA-N 0.000 description 1
- AGXGCFSECFQMKB-NHCYSSNCSA-N Val-Leu-Asp Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)O)NC(=O)[C@H](C(C)C)N AGXGCFSECFQMKB-NHCYSSNCSA-N 0.000 description 1
- ZHQWPWQNVRCXAX-XQQFMLRXSA-N Val-Leu-Pro Chemical compound CC(C)C[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N ZHQWPWQNVRCXAX-XQQFMLRXSA-N 0.000 description 1
- NZGOVKLVQNOEKP-YDHLFZDLSA-N Val-Phe-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(=O)N)C(=O)O)N NZGOVKLVQNOEKP-YDHLFZDLSA-N 0.000 description 1
- UZFNHAXYMICTBU-DZKIICNBSA-N Val-Phe-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N UZFNHAXYMICTBU-DZKIICNBSA-N 0.000 description 1
- YKNOJPJWNVHORX-UNQGMJICSA-N Val-Phe-Thr Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)O)C(O)=O)CC1=CC=CC=C1 YKNOJPJWNVHORX-UNQGMJICSA-N 0.000 description 1
- NSUUANXHLKKHQB-BZSNNMDCSA-N Val-Pro-Trp Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@H](C(O)=O)CC1=CNC2=CC=CC=C12 NSUUANXHLKKHQB-BZSNNMDCSA-N 0.000 description 1
- VIKZGAUAKQZDOF-NRPADANISA-N Val-Ser-Glu Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCC(O)=O VIKZGAUAKQZDOF-NRPADANISA-N 0.000 description 1
- VHIZXDZMTDVFGX-DCAQKATOSA-N Val-Ser-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N VHIZXDZMTDVFGX-DCAQKATOSA-N 0.000 description 1
- QTPQHINADBYBNA-DCAQKATOSA-N Val-Ser-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCCN QTPQHINADBYBNA-DCAQKATOSA-N 0.000 description 1
- TVGWMCTYUFBXAP-QTKMDUPCSA-N Val-Thr-His Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](C(C)C)N)O TVGWMCTYUFBXAP-QTKMDUPCSA-N 0.000 description 1
- GTACFKZDQFTVAI-STECZYCISA-N Val-Tyr-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=C(O)C=C1 GTACFKZDQFTVAI-STECZYCISA-N 0.000 description 1
- RLVTVHSDKHBFQP-ULQDDVLXSA-N Val-Tyr-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)[C@@H](N)C(C)C)CC1=CC=C(O)C=C1 RLVTVHSDKHBFQP-ULQDDVLXSA-N 0.000 description 1
- RTJPAGFXOWEBAI-SRVKXCTJSA-N Val-Val-Arg Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N RTJPAGFXOWEBAI-SRVKXCTJSA-N 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 101100273808 Xenopus laevis cdk1-b gene Proteins 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000007513 acids Chemical group 0.000 description 1
- 229960001570 ademetionine Drugs 0.000 description 1
- 239000002671 adjuvant Substances 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 108010024078 alanyl-glycyl-serine Proteins 0.000 description 1
- 108010005233 alanylglutamic acid Proteins 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 210000003484 anatomy Anatomy 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 230000002788 anti-peptide Effects 0.000 description 1
- 229960004405 aprotinin Drugs 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 108010013835 arginine glutamate Proteins 0.000 description 1
- 108010062796 arginyllysine Proteins 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229940009098 aspartate Drugs 0.000 description 1
- 108010031045 aspartyl-glycyl-aspartyl-alanine Proteins 0.000 description 1
- 108010038633 aspartylglutamate Proteins 0.000 description 1
- 210000003719 b-lymphocyte Anatomy 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910000389 calcium phosphate Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000011089 carbon dioxide Nutrition 0.000 description 1
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 230000004640 cellular pathway Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012512 characterization method Methods 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 108010033625 chemotactic protein methylesterase Proteins 0.000 description 1
- 230000035605 chemotaxis Effects 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 229940125808 covalent inhibitor Drugs 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 108010073357 cyanoginosin LR Proteins 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 108010016616 cysteinylglycine Proteins 0.000 description 1
- 108010060199 cysteinylproline Proteins 0.000 description 1
- 230000021953 cytokinesis Effects 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 238000003795 desorption Methods 0.000 description 1
- 230000000368 destabilizing effect Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 108010009297 diglycyl-histidine Proteins 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 108010054812 diprotin A Proteins 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 239000012154 double-distilled water Substances 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000001378 electrochemiluminescence detection Methods 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 239000012091 fetal bovine serum Substances 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 108010049041 glutamylalanine Proteins 0.000 description 1
- 101150089730 gly-10 gene Proteins 0.000 description 1
- HPAIKDPJURGQLN-UHFFFAOYSA-N glycyl-L-histidyl-L-phenylalanine Natural products C=1C=CC=CC=1CC(C(O)=O)NC(=O)C(NC(=O)CN)CC1=CN=CN1 HPAIKDPJURGQLN-UHFFFAOYSA-N 0.000 description 1
- 108010090037 glycyl-alanyl-isoleucine Proteins 0.000 description 1
- 108010000434 glycyl-alanyl-leucine Proteins 0.000 description 1
- 108010010096 glycyl-glycyl-tyrosine Proteins 0.000 description 1
- 108010033719 glycyl-histidyl-glycine Proteins 0.000 description 1
- 108010082286 glycyl-seryl-alanine Proteins 0.000 description 1
- 108010089804 glycyl-threonine Proteins 0.000 description 1
- 108010020688 glycylhistidine Proteins 0.000 description 1
- 235000009424 haa Nutrition 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 210000001320 hippocampus Anatomy 0.000 description 1
- 108010025306 histidylleucine Proteins 0.000 description 1
- 108010092114 histidylphenylalanine Proteins 0.000 description 1
- 108010085325 histidylproline Proteins 0.000 description 1
- 102000053254 human ANP32A Human genes 0.000 description 1
- 210000003917 human chromosome Anatomy 0.000 description 1
- 230000003463 hyperproliferative effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 238000000099 in vitro assay Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 108091006086 inhibitor proteins Proteins 0.000 description 1
- ZPNFWUPYTFPOJU-LPYSRVMUSA-N iniprol Chemical compound C([C@H]1C(=O)NCC(=O)NCC(=O)N[C@H]2CSSC[C@H]3C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(N[C@H](C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC=4C=CC=CC=4)C(=O)N[C@@H](CC=4C=CC(O)=CC=4)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C)C(=O)NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@H](C)NC(=O)[C@H](CO)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CC=4C=CC=CC=4)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC2=O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CSSC[C@H](NC(=O)[C@H](CC=2C=CC=CC=2)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H]2N(CCC2)C(=O)[C@@H](N)CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N2[C@@H](CCC2)C(=O)N2[C@@H](CCC2)C(=O)N[C@@H](CC=2C=CC(O)=CC=2)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N2[C@@H](CCC2)C(=O)N3)C(=O)NCC(=O)NCC(=O)N[C@@H](C)C(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@H](C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@H](C(=O)N1)C(C)C)[C@@H](C)O)[C@@H](C)CC)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZPNFWUPYTFPOJU-LPYSRVMUSA-N 0.000 description 1
- 238000013383 initial experiment Methods 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- 108010027338 isoleucylcysteine Proteins 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 108010009932 leucyl-alanyl-glycyl-valine Proteins 0.000 description 1
- 108010083708 leucyl-aspartyl-valine Proteins 0.000 description 1
- 108010000761 leucylarginine Proteins 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 108010003700 lysyl aspartic acid Proteins 0.000 description 1
- 108010057952 lysyl-phenylalanyl-lysine Proteins 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- 108010054155 lysyllysine Proteins 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000003340 mental effect Effects 0.000 description 1
- 108010005942 methionylglycine Proteins 0.000 description 1
- 108010067094 microcystin Proteins 0.000 description 1
- ZYZCGGRZINLQBL-GWRQVWKTSA-N microcystin-LR Chemical compound C([C@H](OC)[C@@H](C)\C=C(/C)\C=C\[C@H]1[C@@H](C(=O)N[C@H](CCC(=O)N(C)C(=C)C(=O)N[C@H](C)C(=O)N[C@@H](CC(C)C)C(=O)N[C@H]([C@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N1)C(O)=O)C(O)=O)C)C1=CC=CC=C1 ZYZCGGRZINLQBL-GWRQVWKTSA-N 0.000 description 1
- DIDLWIPCWUSYPF-UHFFFAOYSA-N microcystin-LR Natural products COC(Cc1ccccc1)C(C)C=C(/C)C=CC2NC(=O)C(NC(CCCNC(=N)N)C(=O)O)NC(=O)C(C)C(NC(=O)C(NC(CC(C)C)C(=O)O)NC(=O)C(C)NC(=O)C(=C)N(C)C(=O)CCC(NC(=O)C2C)C(=O)O)C(=O)O DIDLWIPCWUSYPF-UHFFFAOYSA-N 0.000 description 1
- 230000002438 mitochondrial effect Effects 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000000329 molecular dynamics simulation Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 230000000869 mutational effect Effects 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 210000005170 neoplastic cell Anatomy 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 238000011587 new zealand white rabbit Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 229950006344 nocodazole Drugs 0.000 description 1
- 108091027963 non-coding RNA Proteins 0.000 description 1
- 102000042567 non-coding RNA Human genes 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 108010074082 phenylalanyl-alanyl-lysine Proteins 0.000 description 1
- 108010018625 phenylalanylarginine Proteins 0.000 description 1
- 108010012581 phenylalanylglutamate Proteins 0.000 description 1
- 108010083476 phenylalanyltryptophan Proteins 0.000 description 1
- 235000021118 plant-derived protein Nutrition 0.000 description 1
- 238000000782 polymeric membrane extraction Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 108010031719 prolyl-serine Proteins 0.000 description 1
- 108010029020 prolylglycine Proteins 0.000 description 1
- 108010053725 prolylvaline Proteins 0.000 description 1
- 230000004853 protein function Effects 0.000 description 1
- 238000000163 radioactive labelling Methods 0.000 description 1
- 230000026267 regulation of growth Effects 0.000 description 1
- 230000008844 regulatory mechanism Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- 210000004708 ribosome subunit Anatomy 0.000 description 1
- 102220205652 rs1057522121 Human genes 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 238000012163 sequencing technique Methods 0.000 description 1
- 150000003355 serines Chemical group 0.000 description 1
- 108010048397 seryl-lysyl-leucine Proteins 0.000 description 1
- 230000019491 signal transduction Effects 0.000 description 1
- 230000011664 signaling Effects 0.000 description 1
- 238000002741 site-directed mutagenesis Methods 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000000527 sonication Methods 0.000 description 1
- 230000000638 stimulation Effects 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 230000006918 subunit interaction Effects 0.000 description 1
- 239000011593 sulfur Substances 0.000 description 1
- 229910052717 sulfur Inorganic materials 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 125000000341 threoninyl group Chemical group [H]OC([H])(C([H])([H])[H])C([H])(N([H])[H])C(*)=O 0.000 description 1
- 108010061238 threonyl-glycine Proteins 0.000 description 1
- 238000001269 time-of-flight mass spectrometry Methods 0.000 description 1
- 238000010361 transduction Methods 0.000 description 1
- 230000026683 transduction Effects 0.000 description 1
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 1
- 108700004896 tripeptide FEG Proteins 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000003656 tris buffered saline Substances 0.000 description 1
- 108010029384 tryptophyl-histidine Proteins 0.000 description 1
- 108010038745 tryptophylglycine Proteins 0.000 description 1
- 150000003668 tyrosines Chemical class 0.000 description 1
- 108010003137 tyrosyltyrosine Proteins 0.000 description 1
- LSGOVYNHVSXFFJ-UHFFFAOYSA-N vanadate(3-) Chemical compound [O-][V]([O-])([O-])=O LSGOVYNHVSXFFJ-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/18—Carboxylic ester hydrolases (3.1.1)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
Definitions
- the field of this invention is the area of molecular biology, and in particular the DNA sequence encoding Protein Phosphatase Methylesterase-1 (PME-1, formerly called p44A), recombinant vectors, and methods for recombinant production of PME-1 demethylase and its use in identifying compositions with inhibitory activity.
- PME-1 Protein Phosphatase Methylesterase-1
- Protein phosphatase 2A is a highly conserved serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events [Cohen, P. (1989) Annu. Rev. Biochem. 58:453-508; Lee, T. H., et al. (1991) Cell 64:415-423; Mayer-Jaekel, R. E. et al. (1993) Cell 72:621-633; Sontag, E. S. et al. (1993) Cell 75:887-897; Uemura, T. et al. (1993) Genes Dev. 7:429-440].
- the minimal structure thought to exist in vivo consists of a heterodimer between a catalytic 36 kDa subunit termed C and a constant regulatory 63 kDa subunit termed A [Kremmer, E. et al. (1997) Mol. Cell Biol. 17:1692-1701; Usui, H. et al. (1988) J. Biol. Chem. 263:3752-3761].
- This heterodimer is often further complexed with one of several additional regulatory subunits termed B, B′, and B′′ [Cohen, P. (1989) supra].
- B, B′, and B′′ additional regulatory subunits
- the A subunit binds to both the catalytic C and regulatory B-type subunits [Ruediger, R.
- PP2A is highly regulated.
- the regulatory mechanisms include modulation by regulatory subunits or inhibitory proteins and modulation by post-translational modification of the C subunit.
- Subunit composition of the PP2A complex affects both catalytic activity and substrate specificity [Agostinis, P. et al. (1992) Eur. J. Biochem. 205:241-248; Favre, B. et al. (1994) J. Biol. Chem. 269:16311-16317; Scheidtmann, K. H. et al. (1991) Mol. Cell. Biol. 11:1996-2003; Sola, M. M.
- I1PP2A also called PHAPI
- I2PP2A also called PHAPII or SET
- the first indication that PP2A C subunit was methylated involved two observations.
- a 36 kDa SV40 small tumor antigen (ST)-associated cellular protein is a major acceptor of the methyl group from radiolabeled S-adenosyl methionine added to cell extracts [Rundell, K (1987) J. Virol. 61:1240-1243].
- This ST-associated cellular protein was reported to be the PP2A C subunit [Pallas, D. C. et al. (1990) supra].
- the site of methylation of the PP2A C subunit has been identified as leucine 309 [Favre, B. et al. (1994) supra; Lee, J. and Stock, J. (1993) J. Biol.
- PP2A Based on differential antibody recognition of methylated and non-methylated C subunit, PP2A has been reported to undergo cell cycle dependent changes in methylation [Turowski, P. et al. (1995) J. Cell Biol. 129:397-410]. It is not known whether methylation of PP2A affects the subunit composition of the enzyme. Partially purified fractions of PP2A containing A/C heterodimers or A/B/C heterotrimers have both been shown to be substrates for the PP2A methyltransferase [Xie, H. and Clarke, S. (1994) supra]. There are also data which indicate that methylated C subunit can associate with SV40 ST [Rundell, K. (1987) supra].
- the B subunit functions in cell cycle progression through mitosis and in cytokinesis [Healy, A. M. et al. (1991) Mol. Cell Biol. 11:5767-5780; Mayer-Jaekel, R. E. et al. (1993) supra; Uemura, T. et al. (1993) Genes Dev. 7:429-440].
- MT middle tumor antigen
- MT/PP2A complex formation is known to be important for MT-mediated transformation [Campbell, K. S. et al. (1995) supra; Glenn, G. M. et al. (1995) supra; Grussenmeyer, T. et al. (1987) supra; Pallas, D. C. et al. (1988) supra], but the precise functional consequences of MT association with PP2A are still being elucidated. It was recently shown that there is a requirement for direct B/C subunit interaction to form stable heterotrimers [Ogris, E. et al. (1997) supra].
- the nine carboxy-terminal amino acids of the PP2A C subunit, residues 301 to 309, include tyrosine 307, the site of phosphorylation in vitro by v-src, and two potential sites of threonine phosphorylation, residues 301 and 304. Seven of these nine residues, including threonine 304 and tyrosine 307, are found in every PP2A C subunit cloned to date. Threonine 301 is somewhat less conserved.
- PME-1 Protein Phosphatase Methylesterase-1
- PME-1 protein phosphatase methylesterase-1
- Table 2 Detailed exemplified coding sequences are given in Table 2, together with the deduced amino acid sequence for the human; Tables 6 and 3 for the yeast; Tables 7 and 4 for the nematode. All synonymous coding sequences for the exemplified amino acid sequences are within the scope of the present invention.
- Functionally equivalent coding and protein sequences including equivalent sequences from other mammals and other organisms, including but not limited to yeast and nematodes, and variant sequences from humans.
- Functionally equivalent PME-1 coding sequences are desirably from about 50% to about 80% nucleotide sequence homology (identity) to the specifically identified PME-1 coding sequence, from about 80% to about 95%, and desirably from about 95% to about 100% identical in coding sequence to the specifically exemplified coding sequence.
- identity nucleotide sequence homology
- Hybridization conditions of particular stringency provide for the identification of homologs of the human PME-1 coding sequence from other species and the identification of variant human sequences, where those homologs and/or variant sequences have at least (inclusively) 50 to 85%, 85 to 100% nucleotide sequence identity, 90 to 100%, or 95 to 100% nucleotide sequence identity.
- the PME-1 coding sequence and methods of the present invention include the homologous coding sequences in organisms other than humans and mice. Methods can be employed to isolate the corresponding coding sequences (for example, from cDNA) from other organisms, including but not limited to other mammals, avian species, Saccharomyces and Caenorhabditis elegans useful in the methods of this invention using the sequences disclosed herein and experimental techniques well known to the art.
- nucleic acid sequences are synonymous with the exemplified coding sequences.
- Nucleic acid sequences are synonymous if the amino acid sequences encoded by those nucleic acid sequences are the same.
- the degeneracy of the genetic code is well known to the art. For many amino acids, there is more than one nucleotide triplet which serves as the codon for a particular amino acid, and one of ordinary skill in the art understands nucleotide or codon substitutions which do not affect the amino acid(s) encoded.
- PME-1 sequences from other organisms which sequences hybridize to the PME-1 sequence disclosed under stringent conditions.
- Stringent conditions refer to conditions understood in the art for a given probe length and nucleotide composition and capable of hybridizing under stringent conditions means annealing to a subject nucleotide sequence, or its complementary strand, under standard conditions (i.e., high temperature and/or low salt content) which tend to disfavor annealing of unrelated sequences.
- condition of high stringency means hybridization and wash conditions of 65°-68° C., 0.1 ⁇ SSC and 0.1% SDS (indicating about 95-100% nucleotide sequence identity/similarity).
- Hybridization assays and conditions are further described in Sambrook et al. (1989) Molecular Cloning , Second Edition, Cold Spring Harbor Laboratory, Plainview, N.Y.
- conditions of moderate (medium) stringency are those with hybridization and wash conditions if 50-65° C., 1 ⁇ SSC and 0.1% SDS (where a positive hybridization result reflects about 80-95% nucleotide sequence identity).
- Conditions of low stringency are typically those with hybridization and wash conditions of 40-50° C., 6 ⁇ SSC and 0.1% SDS (reflecting about 50-80% nucleotide sequence identity).
- nucleotide sequence refers specifically to all continuous nucleotides of a nucleotide sequence, or e.g. 1000 continuous nucleotides, 500 continuous nucleotides, 100 continuous nucleotides, 25 continuous nucleotides, and 15 continuous nucleotides.
- PME-1-homologous coding sequences are to be isolated from other organisms, one desirably uses nucleotide probes or primers from the most highly conserved regions of the PME-1 protein.
- nucleotide probes or primers from the most highly conserved regions of the PME-1 protein.
- the skilled artisan desirably uses hybridization probes or PCR primers encoding the active site region (GHSMGGA, amino acids 154-160, SEQ ID NO:5, in the protein sequence) and a second highly conserved sequence within the protein [GQMQGK, amino acids 333-338, SEQ ID NO:5) to derive probe or primer sequences.
- telomere sequences of the present invention are recombinant host cells and recombinant vectors carrying the PME-1 coding sequences of the present invention.
- those coding sequences are operably linked to transcriptional and translational control sequences functional in the host cell into which the vectors are introduced and maintained.
- a suitable vector in which a PME-1 coding sequence is operably linked to transcriptional and translational control sequences is introduced into a recombinant host cell of choice, the recombinant host cells are cultured under conditions where the PME-1 sequences are expressed. The PME-1 can then be recovered, if desired. It is understood that the vector and host cells are chosen for maintenance of the vector within the host cell. Similarly, the transcriptional and translational control sequences are chosen for function in the host cell of choice.
- the specifically exemplified human PME-1 sequence can be modified, for example, using polymerase chain reaction (PCR) technology by substituting synonymous codons according to the known codon usage of the chosen host cell so that expression of the coding sequence is maximized.
- PCR polymerase chain reaction
- FIG. 1 shows that the catalytically inactive mutants of PP2A can form complexes with the regulatory A subunit and MT in vivo.
- Lysates from cells containing only control vector (GRE only) or HA-tagged wt (wt-36) or mutant C subunits (H59Q, H118Q) were precipitated with anti-HA tag antibody (12CA5) and analyzed by SDS-PAGE and immunoblotting. The blot was probed first with anti-MT antibody, and then sequentially with antibodies recognizing the A, C (via the epitope tag), and B PP2A subunits.
- the immunoprecipitate of this mutant was prepared from more cells; to properly control for this, the control immunoprecipitate was prepared from an equivalent amount of cells expressing only the vector. Under these conditions, a small amount of MT binds non-specifically to the immunoprecipitate in the GRE only lane.
- FIG. 2A illustrates HA tag immunoprecipitates prepared from 35 S-labeled cell lines individually expressing HA-tagged wt (36wt) or mutant C subunits (H59Q, H118Q) or vector only (GRE only) analyzed by SDS-PAGE and autoradiography. Portions of the gel where C subunit, A subunit, and a novel 44 kDa protein migrate are shown. The C subunits migrate as doublets in these gels; whether doublets or a single band are seen varies from gel to gel (compare with FIG. 1).
- FIG. 2B shows immunoprecipitates identical to those in FIG. 2A analyzed by 2D gel electrophoresis. Only the portion of each gel containing the relevant proteins is shown. The A, B and C subunits and p44B are indicated by labeled brackets and arrowheads, while the corresponding positions in panels lacking these proteins are indicated with unlabeled brackets or arrowheads. For reference, actin is indicated in all panels by a small, unlabeled arrow.
- FIG. 2C shows silver-stained 2D gels of HA tag immunoprecipitates prepared from unlabeled cells expressing vector only (GRE only) or the C subunit mutant, H118Q. Only the portion of each gel containing the relevant proteins is shown.
- the A and C subunits, PME-1, and anti-HA tag antibody heavy chain (Ab) are indicated by labeled brackets and arrowheads.
- Unlabeled arrowheads indicate the corresponding positions in the GRE only control panel.
- actin is indicated in both panels by a small, unlabeled arrow.
- the approximate position that p44B would be located on these gels is indicated by the unlabeled brackets.
- FIG. 3A is a schematic of a 2.5 kb human PME-1 cDNA.
- TGA in frame 5′ UTR stop codon
- ATGs first two potential start codons
- TAGTGA tandem stop codons
- the sequence shown extends from the in frame 5′ UTR stop codon (TGA; overlined) to the second possible start ATG (double underlined) (SEQ ID NO:16).
- the first possible start ATG (underlined once in the sequence shown) was identified as the authentic start site in vivo by making constructs whose transcription/translation products in vitro would start with one or the other of these two ATGs. 35 S-labeled in vitro transcription/translation product starting at the first ATG, but not the product starting at the second ATG, comigrated precisely on 2D gels with PME-1 from HeLa cell lysates.
- FIG. 3B shows that PME-1 mRNA is expressed in different tissues.
- Total RNA from the indicated mouse organs was separated by electrophoresis and hybridized with a mouse PME-1 partial cDNA probe from the 3′ UTR of mouse PME-1.
- the size of the PME-1 transcript was calculated to be 2.6 ⁇ 0.2 kB.
- the lower panel shows the 18S rRNA from the same blot visualized with methylene blue.
- FIG. 4 demonstrates that PME-1 stably associates with H59Q but not wild-type C subunit.
- HA tag immunoprecipitates prepared from NIH3T3 (NIH) or MT-transformed NIH3T3 (NIHMT) cell lines individually expressing HA-tagged wt (wt C sub) or mutant (H59Q) C subunits were analyzed by SDS-PAGE and immunoblotting with HA tag antibody and PME-1 anti-peptide antibody.
- the C subunits migrate as tight doublets in these gels.
- the panels and lanes shown are from the same experiment and gel, but the lanes were not all originally adjacent. Even on long exposure, the 44 kDa protein seen in the mutant lanes is not seen in the wt lanes.
- FIG. 5 shows that human PME-1 is a PP2A methylesterase.
- Immunoprecipitated PP2A C subunit was incubated with lysates from bacteria either not expressing PME-1 (control) or expressing PME-1 (PME-1), or with purified bacterially-expressed PME-1 ( ⁇ 5 ng).
- Okadaic acid (O.A.) or PMSF was added to the reactions to the indicated final concentrations. Reactions containing 1.25% DMSO as a control to match the level resulting from addition of okadaic acid or PMSF stock solutions are noted. After incubation, the immunoprecipitated PP2A C subunits were analyzed by SDS-PAGE.
- Proteins were transferred to nitrocellulose and the membrane was probed with 4b7 (methylation-sensitive Ab), an anti-C subunit antibody that only recognizes unmethylated C subunits. Subsequently, the same membrane was probed with Transduction Laboratories, (Lexington, Ky.) anti-PP2A C subunit antibody (methylation-insensitive Ab), which is insensitive to the methylation state of PP2A and therefore reveals the total C subunit in each lane. The C subunits migrated as doublets in this gel, but whether double or single bands are seen can vary (see comments in legend to FIG. 2A).
- FIG. 6A shows that the PP2A inhibitors, okadaic acid, sodium fluoride, and sodium pyrophosphate, reduce the amount of PME-1 complexed with the catalytically inactive H59Q C subunit.
- Seven parallel dishes of NIH3T3 cells expressing HA-tagged H59Q were lysed in NP40 lysis buffer containing the indicated inhibitor(s) at the following concentrations: sodium vanadate (1 mM); NaF (50 mM); okadaic acid (500 nM); phenylarsineoxide (PAO; 10 ⁇ M); sodium pyrophosphate (Na 4 P 2 O 7 ; 20 mM).
- Anti-HA tag immunoprecipitates were prepared from these lysates and analyzed by SDS-PAGE and immunoblotting. The blot was probed sequentially with antibodies detecting PME-1 and H59Q C subunit (via its HA tag).
- PME-1 and H59Q C subunit via its HA tag.
- sodium fluoride, okadaic acid and sodium pyrophosphate were respectively found to inhibit PP2A 91 ⁇ 10%, 97 ⁇ 4%, and >99%, while phenylarsineoxide and sodium vanadate respectively showed no or 25 ⁇ 18% inhibition.
- FIG. 6B shows that loss of the C subunit carboxy-terminus reduces, but does not abolish, PME-1 Binding.
- N Non-immune
- I HA tag
- Immune complexes were analyzed by SDS-PAGE; proteins were transferred to nitrocellulose; and immunoblotting was performed with antibodies directed against A subunit, PME-1, and C subunit (anti-HA tag).
- the C subunits migrate as doublets in this gel, but whether double or single bands are seen can vary (see comments in legend to FIG. 2A).
- the band seen in all lanes in the PME-1 panel is from the immunoprecipitating antibodies.
- Chemiluminescent quantitation (using a Biorad Fluor-S Max Multilmager, Hercules, Calif.) was used in seven separate experiments with mixtures of clones to quantify the ratio of PME-1 to C subunit signal in each lane.
- the double mutant bound less PME-1 than did H59Q, with a mean reduction of 56 ⁇ 30% and a median value of 39 (range of 8-87%).
- FIG. 6C demonstrates that subunit carboxy-terminal antibodies immunoprecipitate reduced amounts of H59Q/PME-1 Complex.
- Immunoprecipitates were prepared from MT-transformed NIH3T3 cells expressing HA-tagged H59Q using control antibody, HA-tag antibody (12CA5), or carboxy-terminal C subunit antibodies (1D6, 4B7, 4E1). The immune complexes were analyzed by SDS-PAGE; proteins were transferred to nitrocellulose; and immunoblotting was performed with anti-A subunit antibody (upper panel), anti-PME-1 antibody (middle panel) and anti-C subunit antibody recognizing both endogenous and HA tagged proteins (1D6; lower panel).
- a subunit The positions of A subunit, the immunoprecipitating antibody heavy chains (Ab), PME-1, HA-tagged H59Q C subunit, and untagged, endogenous wt C subunit are indicated.
- the C subunits migrate as single bands in this gel, but whether double or single bands are seen can vary (see comments in legend to FIG. 2A).
- HA-tagged H59Q C subunit migrates more slowly than endogenous wt C subunit because of the HA tag.
- Nucleic acids and “polynucleotides,” as used herein, may be DNA or RNA.
- sequences from nematode genes used in the methods of the invention need not be identical and may be substantially identical (as defined below) to sequences disclosed here.
- a polynucleotide sequence is transcribed and translated to produce a functional polypeptide
- a number of synonymous polynucleotide sequences will encode the same polypeptide.
- conservative substitutions of amino acids within a polypeptide may lead to distinct polypeptides with similar or identical function.
- operably linked refers to functional linkage, for example, between a promoter and a downstream sequence, wherein the promoter sequence initiates transcription of the downstream sequence.
- Percentage of sequence identity for polynucleotides and polypeptides is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e. gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity.
- Gaps introduced to optimize alignment are treated as mismatched, whether introduced in the reference sequence or the comparison sequence.
- Optimal alignment of sequences for comparison maybe conducted by computerized implementation of known algorithms (e.g. GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis., or BlastN and BlastX available from the National Center for Biotechnology Information), or by inspection. Sequences are typically compared using either BlastN or BlastX with default parameters.
- Substantial identity of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 75% sequence identity, preferably at least 80%, more preferably at least 90% and most preferably at least 95%.
- two polypeptides are considered to be substantially identical if at least 40%, preferably at least 60%, more preferably at least 90%, and most preferably at least 95% are identical or conservative substitutions.
- Sequences are preferably compared to a reference sequence using GAP using default parameters.
- Polypeptides that are “substantially similar” share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes.
- Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains.
- a group of amino acids having aliphatic side chains of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine.
- Preferred conservative amino acids substitution groups include but are not limited to: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, asparagine-glutamine, and aspartate-glutamate.
- polynucleotide sequences are substantially identical if two molecules selectively hybridize to each other under stringent conditions.
- Stringent conditions are sequence dependent and will be different in different circumstances.
- stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH.
- Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe.
- stringent conditions for a Southern blot protocol involve washing at 65° C. with 0.2 ⁇ SSC.
- PME-1 human protein phosphatase methylesterase-1
- EST Human Expressed Sequence Tag
- the PME-1 protein was identified as the PP2A methylesterase by several criteria, including molecular size, presence of a motif found in esterases (including lipases) utilizing serine as the nucleophilic catalytic residue, ability of okadaic acid (a known inhibitor of both PP2A and the PP2A methylesterase) to inhibit association of PME-1 with the C subunit mutants and to inhibit PME-1 activity, and finally, activity assays performed in vitro with bacterially expressed protein. Complex formation of PME-1 and mutant C subunit involves, at least in part, the C subunit carboxy terminus.
- a catalytically inactive C subunit lacking the carboxy-terminal 9 amino acids showed decreased association with the methylesterase, and an antibody specific for the C subunit C-terminus, whose binding is sensitive to mutation of tyrosine 307, interfered with PME-1 binding.
- the two mutants that complex with PME-1 do not bind substantial amounts of B subunit.
- two other catalytically inactive mutants that do not bind PME-1 also are deficient in B subunit binding.
- the carboxy terminus of the protein phosphatase 2A (PP2A) catalytic (C) subunit is highly conserved. Seven of the last nine residues (301-309) are completely invariant in all known PP2As. Included in these invariant residues are the known pp60 c-src phosphorylation site, tyrosine 307, and the known site of methylation, leucine 309. Additionally, one or more of the nine carboxy terminal residues is necessary for formation of PP2A heterotrimers containing the B regulatory subunit. The importance of this tyrosine for binding the methylesterase, the same change in which did not dissociate B subunit, suggests that this is the reason it is so highly conserved.
- the C subunit mutants were characterized with respect to two properties: 1) ability to form complexes containing the A and B subunits or MT and 2) catalytic activity.
- immunoprecipitates of epitope-tagged wt and mutant C subunits were probed by immunoblotting for the presence of additional subunits and MT (FIG. 1). Both mutants bind substantial A subunit.
- H118Q also binds a small amount of B subunit, while H59Q binds almost none of this subunit.
- phosphatase assays were performed on anti-tag immunoprecipitates from the various cell lines. Using both phosphorylase and histone H1 as substrates, only wt C subunit immunoprecipitates were found to have increased activity as compared to control immunoprecipitates prepared from a cell line containing only “empty” vector (Table 1). Immunoprecipitates of the two mutants showed no activity over background towards either substrate. This finding is consistent with previous published results for mutation of the corresponding residues in related phosphatases.
- Catalytically inactive mutants have the potential to form stable complexes with physiological substrates.
- anti-tag immunoprecipitates were prepared from 35 S-labeled cells.
- FIG. 2A shows that, in addition to the presence of the C and A subunits, a protein of 44 kDa (p44B) is present in the immunoprecipitates of both catalytically inactive mutants. More p44B appears to associate with H59Q than with H118Q. This protein is not present in immunoprecipitates prepared from either cells expressing wt C subunit or cells containing only “empty” vector.
- the p44B protein migrates slightly slower than the non-specific actin band which can be seen in all lanes, and actually overlaps the actin bands in this gel. On two-dimensional (2D) gels, however, p44B is completely separated from actin and forms a streak with a pI near 7.
- FIG. 2C shows silver-stained 2D gels of immunoprecipitates from vector only control cells (GRE only) and from cells expressing H118Q.
- GRE vector only control cells
- FIG. 2C shows silver-stained 2D gels of immunoprecipitates from vector only control cells (GRE only) and from cells expressing H118Q.
- P44B was not readily visible in these gels (see brackets); however, another 44 kDa protein was seen that also specifically coimmunoprecipitates with H118Q.
- This protein, now designated PME-1 was present in almost a 1:1 stoichiometry with the A and C subunits and was formerly called p44a because its pI, approximately 6, was more acidic than that of p44B.
- PME-1 protein for microsequencing was obtained by purifying epitope-tagged H59Q complexes on an anti-tag immunoaffinity column as described hereinbelow. Because PME-1 migrated close to actin on standard 10% SDS-PAGE, the separation of these two proteins was optimized empirically, resulting in the use of a lower percent acrylamide electrophoresed for an extended period of time. Proteins in the gel were electrophoretically transferred to PVDF membrane and visualized by staining with Ponceau S. Both the actin and a clearly separated 44 kDa band migrating just above it were excised for further processing.
- Microsequencing of a tryptic peptide from the lower band confirmed that it was indeed actin.
- Nine microsequences obtained from the 44 kDa band matched no known protein in GenBank, indicating that it was a novel protein.
- a human EST sequence H12112 was found deposited that matched three of the partial sequences obtained from the 44 kDa protein.
- homologous sequences were found in Caenorrhabitis elegans cosmids, and a single Saccharomyces cerevisiae homolog was identified.
- FIG. 3A A schematic of a PME-1 cDNA that includes the end of the 3′ UTR deduced from overlapping ESTs is shown in FIG. 3A.
- the complete cDNA is approximately 2500 nucleotides in length, including an 1164 nucleotide region (including tandem stop codons) encoding a protein of 386 amino acids and a predicted pI of 5.8. All nine tryptic peptide microsequences obtained from the purified 44 kDa band are found encoded in the cloned coding sequence throughout its length (underlined in Table 2), confirming that this is the cDNA for the purified 44 kDa associated protein. This result is also consistent with the reading frame being correct throughout.
- the 386 amino acid PME-1 protein product encoded by the human PME-1 cDNA ORF is shown in Table 2. It has a pI of 5.8, consistent with its migration on 2D gels like the one shown in FIG. 2C. All nine mouse PME-1 tryptic peptide sequences (underlined in Table 2) were accounted for in the human sequence with differences present only at a few positions, indicating that PME-1 is well conserved between these two species. Using the NCBI BLAST program, highly homologous sequences probably corresponding to PME-1 homologs were found for zebrafish, for C. elegans , and for S. cerevisiae . The hypothetical 88.4 kDa C.
- elegans protein in chromosome 3, B0464.7 contains some of the C. elegans sequence homologous to PME-1, but lacks other highly homologous sequences, suggesting that it may represent an inaccurate prediction of exon combinations.
- a more likely combination of exons that includes all B0464 cosmid exons homologous to PME-1 generates a protein of 365 amino acids and approximately 40 kDa (Table 2).
- S. cerevisiae PME-1 (Table 9, Table 3) appears to be a single hypothetical 44.9 kDa protein (PIR accession number S46814; SwissProt accession number P38796) of unknown function encoded by an ORF on chromosome 8R (YHN5; GenBank accession number U10556).
- YHN5 was proposed to be a mitochondrial ribosome subunit protein and named YmS2, based, on a single partially homologous nonapeptide sequence [Kitakawa, M. et al. (1997) Eur. J. Biochem. 245:449-456].
- Human PME-1 has approximately 40% and 26% respective amino acid identity with the C. elegans and yeast sequences (Table 9). A highly charged stretch of amino acids is present in human PME-1 but absent in PMEs from C. elegans and S. cerevisiae .
- PME-1 In order to facilitate further experiments characterizing PME-1, an anti-PME-1 peptide antibody was raised to a sixteen amino acid peptide sequence encoded by the PME-1 cDNA. This peptide antibody detected a 44 kDa protein present in H59Q immunoprecipitates, but absent from immunoprecipitates of wild-type C subunit (FIG. 4). Thus, PME-1, like p44B, associates stably with the catalytically inactive mutant C subunits, but not with wt C subunit.
- the various lipases that share this motif are found in both prokaryotes and eukaryotes and include, among others, two D. melanogaster carboxylesterases.
- CheB a bacterial glutamate methylesterase, has a similar, but not identical, sequence surrounding its active site serine [Krueger, J. K. et al. (1992) Biochim. Biophys. Acta. 1119:332-326] (Table 8).
- CheB [West, A. H. et al. (1995) J. Mol. Biol. 250:276-290] and other lipases utilizing an active site serine [e.g. Winkler, F. K. et al.
- a PP2A C subunit carboxyl methylesterase of 46 kDa has recently been purified [Lee, J. et al., (1996) Proc. Natl. Acad. Sci., USA 93:6043-6047] but no sequence information was reported.
- PME-1 might be a PP2A methylesterase
- PME-1 was expressed in bacteria and bacterial lysates were tested for methylesterase activity towards PP2A C subunit as described in the Examples herein.
- the results shown in FIG. 5 demonstrate that lysates of bacteria expressing PME-1 contain a PP2A methylesterase activity not found in bacterial lysates lacking PME-1.
- PME-1 is indeed a PP2A methylesterase. Because its specificity towards other methylated phosphatases (such as PPX) has not been characterized, it was generically named P rotein Phosphatase M ethyl e sterase-1 (PME-1).
- a PP2A methylesterase might be expected to make important contacts with carboxy-terminal residues.
- Lee and coworkers found that PP2A carboxy-terminal peptides functioned neither as inhibitors nor as substrates for their 46 kDa PP2A methylesterase, suggesting that, at a minimum, contacts with other parts of the C subunit are essential.
- a double mutant, H59Q/301Stop was created. This mutant combines the H59Q mutation, which induces stable binding of PME-1, with a deletion of the nine C subunit carboxy-terminal acids, 301-309.
- FIG. 6B shows the results of an immunoprecipitation assay measuring the relative abilities of H59Q and H59Q/301Stop to bind A subunit and PME-1. Deletion of residues 301-309 from wt C subunit has previously been found to decrease the amount of A subunit bound [Ogris, E. et al. (1997) supra].
- FIG. 6B shows that deletion of these residues from H59Q also reduces the binding of the PP2A A subunit to H59Q.
- the double mutant bound less PME-1 than did H59Q, indicating that one or more of the deleted carboxy-terminal residues is important for H59Q/PME-1 complex formation. PME-1 binding was not completely abolished, however, demonstrating that interactions also exist between PME-1 and other residues in the C subunit.
- This protein was identified as a PP2A methylesterase by several criteria including 1) molecular size; 2) the presence of a motif found in lipases that use serine as their nucleophilic catalytic residue; 3) activity assays performed in vitro with bacterially expressed protein; and 4) the ability of okadaic acid, a known inhibitor of both PP2A and the PP2A methylesterase, to inhibit its activity and decrease its association with the catalytically inactive C subunit mutant, H59Q.
- PME-1 Based on its molecular size, sensitivity to okadaic acid, and the lack of effect of PMSF on PME-1 activity, PME-1 is likely to be equivalent to the 46 kDa PP2A methylesterase whose purification and initial characterization was recently reported by Lee and colleagues [Lee, J. et al.(1996) supra]. Its insensitivity to PMSF indicates that it is not the PMSF-sensitive serine esterase/protease activity reported by Xie and Clarke [Xie, H. et al. (1994) Biochem. Biophys. Res. Commun. 203:1710-1715] which also could remove PP2A carboxymethyl groups.
- PP2A methyltransferase and methylesterase enzymes achieve their specificity, in part, by interacting with or near the active site of the PP2A C subunit. It was reported previously that neither the PP2A methyltransferase nor the PP2A methylesterase can recognize short peptide substrates corresponding to the C subunit carboxy-terminus. Thus, functional recognition by both these enzymes requires additional C subunit structure. Additionally, as demonstrated in this study, perturbation of the C subunit active site by either of two different mutations can stabilize the interaction with the PME-1 methylesterase.
- PP2A inhibitors have a destabilizing effect on the PME-1/H59Q interaction.
- the methyltransferase is inhibited by the PP2A inhibitors, okadaic acid and microcystin-LR, and the methylesterase is inhibited by okadaic acid (testing for inhibition of the methylesterase by microcystin has not been reported).
- this inhibition is due to the interaction of these inhibitors with carboxy-terminal C subunit residues, the PP2A inhibitors, sodium fluoride or sodium pyrophosphate, partially or fully disrupt PME-1 /H59Q complexes.
- H59Q and H118Q bind multiple proteins not bound stably by wt C subunit. These include, in addition to PME-1, p44B and other proteins not marked, but visible, in FIG. 2B. Interestingly, initial experiments suggest that p44B binding to H59Q is even more sensitive to phosphatase inhibitors than is PME-1 binding. These proteins could be PP2A substrates or other proteins whose binding is sensitive to the state of the C subunit active site. One of these proteins is the same molecular size as the PP2A methyltransferase reported by Lee and colleagues (Lee et al. (1993) supra].
- Catalytically inactive mutants of dual specificity and tyrosine phosphatases [Gelerloos, J. A., et al. (1996) Oncogene 13:2367-2368; Bliska, J. B. et al. (1992) J. Exp. Med. 176:1625-1630] have been previously used successfully to identify novel substrates, but unlike PP2A, their catalytic mechanisms involve the formation of covalent intermediates with substrates.
- PME-1 and p44B differ in several characteristics, suggesting that these two proteins are not simply modified forms of one another. They are separated from each other on two-dimensional gels by approximately one pH unit, which is unlikely to be accounted for by modification; PME-1 forms sharp spots on these gels while p44B migrates as a smear.
- in vitro translation of PME-1 yields no product migrating at the position of p44B and we have been unable to detect p44B with antibodies raised against PME-1 sequences.
- the present invention provides the coding sequences for the mammalian PME1 protein, as specifically exemplified by the human coding sequence. This allows the construction of recombinant DNA molecules and recombinant host cells produced in the laboratory, which molecules and host cells are used for the recombinant expression of the PME1 protein and enables assay methods for determining inhibitors of the methylesterase activity of the PME-1 protein, and thus, compounds which slow the growth of cells, especially neoplastic and/or transformed cells.
- the protein of the present invention is a Protein Phosphatase Methylesterase-1 (PME-1) which removes methyl groups from the PP2A growth-regulating protein phosphatase, and that the methylation status of the catalytic subunit affects activity and thus plays a role in growth regulation and normal progression of the cell cycle.
- PME-1 Protein Phosphatase Methylesterase-1
- Monoclonal or polyclonal antibodies preferably monoclonal, specifically reacting with the methylesterase of the present invention encoded by a particular coding sequence may be made by methods known in the art. See, e.g., Harlow and Lane (1988) Antibodies: A Laboratory Manual , Cold Spring Harbor Laboratories; Goding (1986) Monoclonal Antibodies: Principles and Practice, 2d ed., Academic Press, New York.
- Standard techniques for cloning, DNA isolation, amplification and purification, for enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like, and various separation techniques are those known and commonly employed by those skilled in the art.
- a number of standard techniques are described in Sambrook et al. (1989) supra; Maniatis et al. (1982) Molecular Cloning , Cold Spring Harbor Laboratory, Plainview, N.Y.; Wu (ed.) (1993) Meth. Enzymol. 218: Part I; Wu (ed.) (1979) Meth Enzymol. 68; Wu et al. (eds.) (1983) Meth. Enzymol.
- NIH 3T3 lines expressing wt polyomavirus MT and a geneticin resistance gene [Cherington et al. (1986) Proc. Nat. Acad. Sci. USA 83:4307-4311] were transfected by the calcium phosphate precipitation method [Sambrook et al. (1989) supra], and individual clones and mixtures of clones expressing wt C subunit (36wt), H59Q, H118Q, or empty vector (GREonly) were selected and maintained as described previously [Ogris et al. (1997) supra].
- the inducible vector, pGRE5-2 was used to express these proteins, their levels were substantial in the absence of dexamethasone; for this reason, GREonly cells were used as a negative control in this study rather than uninduced wt or mutant C subunit expressing cells.
- dexamethasone treatment was always used to obtain maximal expression of the C subunits.
- SDS-polyacrylamide gel (10% acrylamide) was performed according to Laemmli [Laemmli, U. K. (1970) Nature 227:680-685]. Gels were silver stained by the procedure of Wray et al. [Wray, W. et al. (1981) Biochemistry 118:197-203] except that after electrophoresis the gels were sequentially incubated 10 min in distilled water (200 ml), 10 min in 95% ethanol (200 ml), 1 h. in 50% methanol (100 ml), and 30 min in distilled water (100 ml) prior to staining.
- Immunoblotting [Towbin, H. et al. (1979) Proc. Natl. Acad. Sci. USA 76:4350-4354] was performed with mouse monoclonal anti-tag antibody(16B12; 1:5000 dilution of ascites; BAbCO, Richmond, Calif.); rabbit anti-B subunit antibody (#16; 1:5000); affinity-purified rabbit (R39; 1:5000) or mouse monoclonal (4G7; 1 ⁇ g/ml) anti-A subunit antibodies; mouse monoclonal anti-C subunit antibody (1D6; 0.25 ⁇ g/ml); or rabbit ant-PME-1 antibodies (AR2 or E37; see below). Immunoblots were developed with enhanced chemiluminescences (Amersham, Arlington Heights, Ill.).
- [ ⁇ - 32 P]-labeled phosphorylase a substrate was prepared from phosphorylase b according to the manufacturer's (GibcoBRL, Gaithersburg, Md.) instructions.
- Histone H1 was phosphorylated by mitotic p34 cdc2 purified from Nocodazole arrested HeLa cells as described [Mayer-Jaekel et al. (1994) supra]. Lysates used for immunoprecipitation were equilibrated according to epitope-tagged C subunit expression levels. Assays were performed at a linear range and with subsaturating amounts of each substrate.
- H59Q C subunit complexes containing PME-1 were immunoaffinity purified.
- 135 confluent 15 cm dishes of MT-transformed NIH3T3 cells expressing HA-tagged H59Q were needed to obtain enough PME-1 for microsequencing.
- Forty-five separate immunoaffinity purifications were performed on 3 dishes of lysate at a time, reusing the same immunoaffinity matrix at least 15 times.
- anti-HA tag antibody (12CA5; obtained from BAbCO) was chemically crosslinked to protein A-Sepharose beads (Pharmacia, Piscataway, N.J.) by published methods [Harlow, E., and Lane, D. (1988) supra]. After washing 3 dishes of cells twice with PBS and once with IP wash (10% (vol/vol) glycerol; 135 mM NaCl; 20 mM Tris, pH 8.0), the cells were scraped and lysed at 4° C.
- Optimum fractions from the chromatogram were chosen based on differential UV absorbance at 205 nm, 277 nm and 292 nm, peak symmetry and resolution. Peaks were further screened for length and homogeneity by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-MS) on a Finnigan Lasermat 2000 (Hemel, England); and selected fractions were submitted to automated Edman degradation on an Applied Biosystems 494A, 477A (Foster City, Calif.) or Hewlett Packard G1005A (Palo Alto, Calif.). Details of general strategies for the selection of peptide fractions and their microsequencing have been previously described [Lane et al. (1991) supra].
- nested and seminested PCR were performed using human B cell, human hippocampus, and human kidney cDNA plasmid libraries.
- 5′ primers corresponded to vector sequence that flanked cDNA inserts in the library being used as template, while 3′ primers corresponded to known sequence (EST or newly derived 5′ PME-1 sequence).
- Southern Blotting using an end-labeled 20 bp oligonucleotide corresponding to known PME-1 sequence upstream of the 3′ PCR primer was employed to identify authentic PME-1 products after each reaction.
- PCR products containing 5′ extensions of the PME-1 sequence were purified using a PCR product purification kit (Boehringer-Mannheim, Indianapolis, Ind.), cloned, and sequenced. New primers were designed for PCR and Southern Blotting and then the above steps were repeated until the sequence of the remainder of the PME-1 coding region and a portion of the 5′UTR were obtained.
- Total mRNA was purified from HeLa cells using Trizol Reagent (Life Technologies, Gaithersburg, Md.) according to the manufacturer's instructions. RT-PCR was employed to obtain a PME-1 cDNA from HeLa cell mRNA. First strand synthesis was performed with Avian Myeloblastosis Virus reverse transcriptase (Boehringer-Mannheim, Indianapolis, Ind.) by the manufacturer's protocol using a primer from the PME-1 3′ UTR (TGTTGAGGAGGGGTGGACAG) (SEQ ID NO:1).
- the product was used for PCR with the same 3′ primer and a primer from the PME-1 5′ UTR (TGTATGGGGACCTTCCTCCT) (SEQ ID NO:2) to generate a cDNA containing the entire PME-1 coding region and much of the 5′ UTR, including the in frame stop codon upstream of the putative start ATG.
- E. coli (PR13Q) expressing recombinant His-tagged PME-1 from an isopropylthiogalactoside (IPTG) inducible lac promoter were grown to an O.D. at 600 nm of 0.7 and then induced with IPTG for 2-3 h.
- the PME-1 coding sequence is fused in frame in a vector such as pThioHis A, B, C, pTrcHis A, B, C or pTrcHis 2A, B, C (Invitrogen, Carlsbad, Calif.).
- PME-1 enzyme sources assayed include: lysates of bacteria or baculovirus-infected Sf9 insect cells expressing His-tagged PME-1 and immunoprecipitated PME-1 from baculovirus-infected Sf9 insect cells. Control lysates from bacteria or Sf9 cells not expressing recombinant PME-1 were also incubated with tritiated substrate to measure non-specific background from the lysates.
- PME-1 enzyme source the following were used: cell lysates of bacteria expressing HA-tagged, His-tagged, and untagged PME-1; cell lysates of HA-tagged or untagged PME-1-expressing baculovirus-infected Sf9 insect cells; purified bacterial HA-tagged PME-1, purified (immunoprecipitated) baculovirus-infected Sf9 HA-tagged PME-1.
- Control lysates from bacteria or Sf9 cells not expressing recombinant PME-1 were also incubated with substrate to measure non-specific background from the lysates. After 1h incubation at 32° C., the C subunit immunoprecipitates were washed and analyzed by SDS-PAGE. The proteins in the gels were electrophoretically transferred to nitrocellulose membranes and then the membranes were probed with monoclonal antibody (made in our laboratory) that only recognizes unmethylated PP2A. A second probing of the same membrane with a methylation-insensitive antibody shows the actual amount of PP2A C subunit in each lane.
- An in vitro methylesterase activity assay using the PME-1 protein can be used to screen test compounds for inhibition of PME-1.
- Inhibitors of PME-1 in e.g., neoplastic cells slow the growth of those cells. Inhibitors could also be used to slow the growth in other hyperproliferative conditions.
- PP2A In Alzheimer's disease, PP2A has reduced activity. Identification of compounds which increase PP2A activity, for example, by appropriately modulating PME-1 activity, allows treatment to slow the progression of Alzheimer's disease, and thus postpone loss of mental function in affected patients.
- NCBI BLAST program [Altschul, S. F. et al. (1990) J. Mol. Biol. 215:403-410] was used to probe various databases for PME-1 ESTs and related proteins.
- the DNASTAR Lasergene software package was utilized for alignments and identification of the PROSITE database lipase motif found in PME-1.
- RNA from the organs was isolated using the RNeasy kit (QIAGEN) and analyzed on formaldehyde-1% agarose gels to check for RNA integrity and to estimate the amount of the 18S and 28S RNAs. Based on these estimates, similar amounts of RNA were separated on formaldehyde-1% agarose gels and transferred to GeneScreen nylon membranes. After UV-crosslinking, the membranes were stained with a 0.04% methylene blue solution to visualize the RNA.
- Filters were then hybridized with a 32 P-radiolabeled probe generated by random primer labeling of a DNA fragment from the 3′ untranslated region of the mouse PME-1 cDNA.
- the probe 395 bp in length, is an EcoRI-NotI fragment of a PME-1 EST clone (accession number W34856).
- the blots were used for autoradiography with X-ray film and/or analysed on a STORM PhosphorImager (Molecular Dynamics, Sunnyvale, Calif.).
- the second antiserum, E37 was raised against a mixture of two-nickel agarose-purified, 6 ⁇ His-tagged, bacterially expressed human PME-1 fragments that together represent the carboxy-terminal half of the protein.
- a single female New Zealand white rabbit was immunized and boosted multiple times using Freund's adjuvant.
- Yeast PME-1 was found by homology searches of sequence databases using the NCBI BLAST program and the known human PME-1 sequence. Genomic yeast PME-1 sequence was examined and found to have no introns; therefore, we designed PCR primers for yeast PME-1 carried out PCR, cloned the PCR product into a bacterial vector and sequenced it to make sure no PCR errors had occurred.
- Table 3 shows the amino acid sequence of the yeast methylesterase homolog of PME-1.
- Table 6 provides the coding sequence for the yeast PME-1 protein.
- the C. elegans PME-1 coding sequence was deduced by homology with mammalian and yeast PME-1 sequenced. However, it should be noted that this gene product was not predicted by the Genefinder program.
- Table 4 provides the amino acid sequence of the C. elegans PME-1 homolog and Table 7 gives the coding sequence.
- Review of the EST sequences revealed two potential alternative splicing scenarios. The alternate which encoded an LLSTYCR amino acid segment (SEQ ID NO:17) was ruled out based on the lack of a similar amino acid segment in the yeast PME-1 protein and poor alignment with the human protein sequence.
- Table 9 illustrates the alignment of human, C. elegans and S. cerevisiae (YHN5) PME-1 protein sequences. Residues identical with human PME-1 are as white-on-black. Residues corresponding to the Prosite motif for lipases employing an active site serine are boxed.
- mice PME-1 sequences were found by search for EST sequences on Genbank with significant homology to the human PME-1 DNA sequences disclosed herein.
- Table 5 represents a portion of the mouse coding sequence generated by homology searches and computer-aided alignment of the mouse sequences to the human sequences and creating a consensus sequence for the nucleotides of the various homologous ESTs.
- the first 283 nucleotides of Table 5 are from a single EST (Genbank Accession No. AA555778).
- the next 465 nucleotides are given as X's because there was no mouse sequence homologous to the corresponding human PME-1 cDNA sequence. It is understood that the actual length may not be exactly 465 nucleotides.
- nucleotides 2247-2270 are from a single EST (Accession No. AA644991.)
- nucleotides 2337-2409 are from a single minus-strand EST (Accession No. T25552).
- Plants also have similar growth regulatory phosphatase-kinase-methylation-demethylation systems, and there is a plant protein having significant homology to the mouse, human, yeast and nematode ( C. elegans ) PME-1 sequences, especially to the catalytic and GQMQGK (amino acids 333-338 of SEQ ID NO:5) regions of human PME-1.
- the plant homolog(s) of PME-1 can be identified using techniques similar to those described herein, including, but not limited to, the use of sequence database searches in conjunction with PCR, RT-PCR and/or hybridization studies and immunological screening with antibodies specific for a PME-1 protein.
- H59Q and H118Q are catalytically inactive a C subunit-associated phosphatase activity (% wt) b phosphorylase a cdc2-phosphorylated C subunit (Means ⁇ s.d.) Histone H1 (Mean ⁇ s.d.) None (vector 9 ⁇ 2 2 ⁇ 1 only control) wt 100 100 H59Q 7 ⁇ 1 2 ⁇ 1 H118Q 8 ⁇ 3 2 ⁇ 1
- PETER H. TREVASKIS E., VAUGHAN K., VIGNATI D., WILCOX L., WOHLDMAN P., WATERSTON R., WILSON R., VAUDIN M.; See also SCIENCE 265:2077-2082(1994).
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Peptides Or Proteins (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
Abstract
Carboxymethylation of proteins is a highly conserved means of regulation in eukaryotic cells. The protein phosphatase 2A (PP2A) catalytic (C) subunit is reversibly methylated at its carboxy-terminus by specific methylesterase. Carboxymethylation affects PP2A activity and varies during the cell cycle. The present disclosure provides the coding sequence of a methylesterase, herein named Protein Phosphatase Methylesterase-1 (PME-1). PME-1 is highly conserved from yeast to human and contains a motif found in lipases, which motif has a catalytic triad-activated serine as the active site nucleophile. Recombinant PME-1 polypeptide produced in bacteria demethylates PP2A C subunit in vitro and okadaic acid, a known inhibitor of the PP2A methylesterase, inhibited this reaction. PME-1 represents the first mammalian protein phosphatase methylesterase cloned to date.
Description
- This application is a divisional application of U.S. application Ser. No. 09/839,497 filed Apr. 20, 2001, which is a divisional application of U.S. application Ser. No. 09/293,322 filed Apr. 16, 1999 and claims priority from U.S. Provisional Application Serial No. 60/082,202, filed Apr. 17, 1998.
- [0002] This invention was made, at least in part, with funding from the United States National Institutes of Health (Grant CA 57327). Accordingly, the United States Government has certain rights in this invention.
- The field of this invention is the area of molecular biology, and in particular the DNA sequence encoding Protein Phosphatase Methylesterase-1 (PME-1, formerly called p44A), recombinant vectors, and methods for recombinant production of PME-1 demethylase and its use in identifying compositions with inhibitory activity.
- Protein phosphatase 2A (PP2A) is a highly conserved serine/threonine phosphatase involved in the regulation of a wide variety of enzymes, signal transduction pathways, and cellular events [Cohen, P. (1989)Annu. Rev. Biochem. 58:453-508; Lee, T. H., et al. (1991) Cell 64:415-423; Mayer-Jaekel, R. E. et al. (1993) Cell 72:621-633; Sontag, E. S. et al. (1993) Cell 75:887-897; Uemura, T. et al. (1993) Genes Dev. 7:429-440]. The minimal structure thought to exist in vivo consists of a heterodimer between a catalytic 36 kDa subunit termed C and a constant regulatory 63 kDa subunit termed A [Kremmer, E. et al. (1997) Mol. Cell Biol. 17:1692-1701; Usui, H. et al. (1988) J. Biol. Chem. 263:3752-3761]. This heterodimer is often further complexed with one of several additional regulatory subunits termed B, B′, and B″ [Cohen, P. (1989) supra]. In PP2A heterotrimers, the A subunit binds to both the catalytic C and regulatory B-type subunits [Ruediger, R. et al. (1992) J. Virol. 68:123-129; Ruediger, R. et al. (1994) Mol. Cell Biol. 12:4872-4882]. In the case of the B subunit, it has been shown that one or more of the nine C subunit carboxy terminal amino acids are essential for heterotrimer formation [Ogris, E. et al. (1997) Oncogene 15:911-917]. In cells stably transformed by the middle tumor antigen (MT) of polyomavirus, MT is found in place of the B subunit in a small portion (−10%) [Ulug, et al. (1992) J. Virol. 66:1458-1467] of PP2A complexes [Pallas, D. C. et al. (1990) Cell 60:167-176]. MT/PP2A complex formation is important for MT-mediated transformation [Grussenmeyer, et al. (1987) J. Virol. 61:3902-3909; Pallas, et al. (1988) J. Virol. 62:3934-3940; Glenn, G. M. et al. (1995) J. Virol. 69:3729-3736; Campbell, K. S. et al. (1995)J Virol. 69:3721-3728]. Unlike for B subunit, formation of PP2A heterotrimers containing MT does not require the last nine amino acid residues of the C subunit [Ogris, E. et al. (1997) supra]. The small tumor antigens (STs) of various papovaviruses also form complexes with the A and C subunits of PP2A [Pallas, D. C. et al. (1990) supra].
- Consistent with the multiple important roles that PP2A plays in diverse pathways and cellular events, PP2A is highly regulated. The regulatory mechanisms include modulation by regulatory subunits or inhibitory proteins and modulation by post-translational modification of the C subunit. Subunit composition of the PP2A complex affects both catalytic activity and substrate specificity [Agostinis, P. et al. (1992)Eur. J. Biochem. 205:241-248; Favre, B. et al. (1994) J. Biol. Chem. 269:16311-16317; Scheidtmann, K. H. et al. (1991) Mol. Cell. Biol. 11:1996-2003; Sola, M. M. et al. (1991) Biochem. Biophys. Acta 1094:211-216]. In the case of B subunit, changes of up to 100 fold have been documented using cdc2 phosphorylated substrates [Agostinis, P. et al. (1992) Eur. J. Biochem. 205:241-248; Ferrigno, P. et al. (1993) Mol. Biol. Cell 4:669-677; Mayer-Jaekel, R. E. et al. (1994) Journal of Cell Science 107:2609-2618; Ogris, E. et al. (1997) supra; Sola, M. M. et al. (1991) Biochem. Biophys. Acta 1094:211-216]. Two PP2A inhibitor proteins have been reported: I1PP2A (also called PHAPI) and I2PP2A (also called PHAPII or SET) [Li, M. et al. (1996) Biochemistry 34:1988-1996; Li, M. et al. (1996) Biochemistry 35: 6998-7002; Li, M. et al. (1995) J. Biol. Chem. 271:11059-11062]. These also appear to be substrate-dependent in their effects. Perusal of the NCBI GenBank and EST databases via BLAST followed by sequence comparisons using DNASTAR MegAlign software indicates the existence of three different human PHAPI isoforms encoded by different genes and the presence of multiple alternatively spliced forms of PHAPII. A Xenopus homolog of PHAPII was recently shown to interact with B-type cyclins in vitro [Kellogg, D. R. et al. (1995) J. Cell Biol. 130:661-673], but the molecular consequences of this interaction in the regulation of PP2A are not known.
- The post-translational modifications of the C subunit that have been reported to modulate PP2A activity include phosphorylation and methylation. Inhibition of PP2A activity in vitro was found upon C subunit phosphorylation at either tyrosine 307 or at one or more unidentified threonine residues [Chen, J. et al. (1992)Science 257:1261-1264; Guo, H. and Damuni, Z. (1993) Proc. Natl. Acad. Sci. USA 90:2500-2504]. A similar modification may occur in vivo in response to transformation or growth stimulation [Chen, J. et al. (1994) J. Biol. Chem. 269:7957-7962]. The first indication that PP2A C subunit was methylated involved two observations. A 36 kDa SV40 small tumor antigen (ST)-associated cellular protein is a major acceptor of the methyl group from radiolabeled S-adenosyl methionine added to cell extracts [Rundell, K (1987) J. Virol. 61:1240-1243]. This ST-associated cellular protein was reported to be the PP2A C subunit [Pallas, D. C. et al. (1990) supra]. The site of methylation of the PP2A C subunit has been identified as leucine 309 [Favre, B. et al. (1994) supra; Lee, J. and Stock, J. (1993) J. Biol. Chem. 268:19192-19195; Xie, H. and Clarke, S. (1994) J. Biol. Chem. 269:1981-1984]. One study reported an approximately two-fold increase in the activity of PP2A upon methylation, adjusting for the stoichiometry of methylation [Favre, B. et al. (1994) supra]. Only phosphorylase a and the peptide substrate, phosphorylated Kemptide, were used in that study. These substrates often give similar results. Thus, it remains to be determined whether greater effects might be observed with other substrates. Based on differential antibody recognition of methylated and non-methylated C subunit, PP2A has been reported to undergo cell cycle dependent changes in methylation [Turowski, P. et al. (1995) J. Cell Biol. 129:397-410]. It is not known whether methylation of PP2A affects the subunit composition of the enzyme. Partially purified fractions of PP2A containing A/C heterodimers or A/B/C heterotrimers have both been shown to be substrates for the PP2A methyltransferase [Xie, H. and Clarke, S. (1994) supra]. There are also data which indicate that methylated C subunit can associate with SV40 ST [Rundell, K. (1987) supra].
- The B subunit functions in cell cycle progression through mitosis and in cytokinesis [Healy, A. M. et al. (1991)Mol. Cell Biol. 11:5767-5780; Mayer-Jaekel, R. E. et al. (1993) supra; Uemura, T. et al. (1993) Genes Dev. 7:429-440]. In cells stably transformed by the middle tumor antigen (MT) of polyomavirus, MT is found in place of the B subunit in a small portion (˜10%) [Ulug, E. T. et al. supra] of PP2A complexes [Pallas, D. C. et al. (1990) supra]. MT/PP2A complex formation is known to be important for MT-mediated transformation [Campbell, K. S. et al. (1995) supra; Glenn, G. M. et al. (1995) supra; Grussenmeyer, T. et al. (1987) supra; Pallas, D. C. et al. (1988) supra], but the precise functional consequences of MT association with PP2A are still being elucidated. It was recently shown that there is a requirement for direct B/C subunit interaction to form stable heterotrimers [Ogris, E. et al. (1997) supra].
- The nine carboxy-terminal amino acids of the PP2A C subunit, residues 301 to 309, include tyrosine 307, the site of phosphorylation in vitro by v-src, and two potential sites of threonine phosphorylation, residues 301 and 304. Seven of these nine residues, including threonine 304 and tyrosine 307, are found in every PP2A C subunit cloned to date. Threonine 301 is somewhat less conserved.
- In order to study cellular proteins which interact with PP2A, two catalytically inactive C subunit mutants were generated and used to form stable complexes. The present invention describes the identification of one of these proteins, herein named Protein Phosphatase Methylesterase-1 (PME-1).
- Due to the fact that PP2A is shown to regulate multiple cellular pathways by dephosphorylating several key proteins, there has been a long felt need in the art to understand the molecular mechanisms by which PP2A activity is modulated. The present invention describes cloning of one such modulating enzyme for human PP2A, named herein PME-1, and also shows how to produce recombinant PME-1 polypeptide, which is then used in in vitro assays to identify inhibitors for PME-1 activity.
- It is an object of the present invention to provide nucleotide sequences encoding protein phosphatase methylesterase-1 (PME-1) and the deduced amino acid sequence therefor. Specifically exemplified coding sequences are given in Table 2, together with the deduced amino acid sequence for the human; Tables 6 and 3 for the yeast; Tables 7 and 4 for the nematode. All synonymous coding sequences for the exemplified amino acid sequences are within the scope of the present invention.
- It is a further object of the present invention to provide functionally equivalent coding and protein sequences, including equivalent sequences from other mammals and other organisms, including but not limited to yeast and nematodes, and variant sequences from humans. Functionally equivalent PME-1 coding sequences are desirably from about 50% to about 80% nucleotide sequence homology (identity) to the specifically identified PME-1 coding sequence, from about 80% to about 95%, and desirably from about 95% to about 100% identical in coding sequence to the specifically exemplified coding sequence. Each integer and each subset of each specified range is intended within the context of the present invention.
- Hybridization conditions of particular stringency provide for the identification of homologs of the human PME-1 coding sequence from other species and the identification of variant human sequences, where those homologs and/or variant sequences have at least (inclusively) 50 to 85%, 85 to 100% nucleotide sequence identity, 90 to 100%, or 95 to 100% nucleotide sequence identity.
- The PME-1 coding sequence and methods of the present invention include the homologous coding sequences in organisms other than humans and mice. Methods can be employed to isolate the corresponding coding sequences (for example, from cDNA) from other organisms, including but not limited to other mammals, avian species, Saccharomyces andCaenorhabditis elegans useful in the methods of this invention using the sequences disclosed herein and experimental techniques well known to the art.
- It will further be understood by those skilled in the art that other nucleic acid sequences besides those disclosed herein for the PME-1 coding sequence will function as coding sequences synonymous with the exemplified coding sequences. Nucleic acid sequences are synonymous if the amino acid sequences encoded by those nucleic acid sequences are the same. The degeneracy of the genetic code is well known to the art. For many amino acids, there is more than one nucleotide triplet which serves as the codon for a particular amino acid, and one of ordinary skill in the art understands nucleotide or codon substitutions which do not affect the amino acid(s) encoded.
- Specifically included in this invention are PME-1 sequences from other organisms than those exemplified herein, which sequences hybridize to the PME-1 sequence disclosed under stringent conditions. Stringent conditions refer to conditions understood in the art for a given probe length and nucleotide composition and capable of hybridizing under stringent conditions means annealing to a subject nucleotide sequence, or its complementary strand, under standard conditions (i.e., high temperature and/or low salt content) which tend to disfavor annealing of unrelated sequences. As specifically exemplified, “conditions of high stringency” means hybridization and wash conditions of 65°-68° C., 0.1×SSC and 0.1% SDS (indicating about 95-100% nucleotide sequence identity/similarity). Hybridization assays and conditions are further described in Sambrook et al. (1989)Molecular Cloning, Second Edition, Cold Spring Harbor Laboratory, Plainview, N.Y.
- As used herein, conditions of moderate (medium) stringency are those with hybridization and wash conditions if 50-65° C., 1×SSC and 0.1% SDS (where a positive hybridization result reflects about 80-95% nucleotide sequence identity). Conditions of low stringency are typically those with hybridization and wash conditions of 40-50° C., 6×SSC and 0.1% SDS (reflecting about 50-80% nucleotide sequence identity).
- As used herein, all or part of a nucleotide sequence refers specifically to all continuous nucleotides of a nucleotide sequence, or e.g. 1000 continuous nucleotides, 500 continuous nucleotides, 100 continuous nucleotides, 25 continuous nucleotides, and 15 continuous nucleotides.
- Where PME-1-homologous coding sequences are to be isolated from other organisms, one desirably uses nucleotide probes or primers from the most highly conserved regions of the PME-1 protein. For example, the skilled artisan desirably uses hybridization probes or PCR primers encoding the active site region (GHSMGGA, amino acids 154-160, SEQ ID NO:5, in the protein sequence) and a second highly conserved sequence within the protein [GQMQGK, amino acids 333-338, SEQ ID NO:5) to derive probe or primer sequences.
- It is well-known in the biological arts that certain amino acid substitutions may be made in protein sequences without affecting the function of the protein. Generally, conservative amino acid substitutions or substitutions of similar amino acids are tolerated without affecting protein function. Similar amino acids can be those that are similar in size and/or charge properties, for example, aspartate and glutamate, and isoleucine and valine, are both pairs of similar amino acids. Similarity between amino acid pairs has been assessed in the art in a number of ways. For example, Dayhoff et al. (1978) inAtlas of Protein Sequence and Structure, Volume 5, Supplement 3, Chapter 22, pp. 345-352, which is incorporated by reference herein, provides frequency tables for amino acid substitutions which can be employed as a measure of amino acid similarity. Dayhoff et al.'s frequency tables are based on comparisons of amino acid sequences for proteins having the same function from a variety of evolutionarily different sources.
- Also within the scope of the present invention are recombinant host cells and recombinant vectors carrying the PME-1 coding sequences of the present invention. Desirably, those coding sequences are operably linked to transcriptional and translational control sequences functional in the host cell into which the vectors are introduced and maintained.
- Further provided by the present invention are methods for the recombinant production of a PME-1 protein. After a suitable vector in which a PME-1 coding sequence is operably linked to transcriptional and translational control sequences is introduced into a recombinant host cell of choice, the recombinant host cells are cultured under conditions where the PME-1 sequences are expressed. The PME-1 can then be recovered, if desired. It is understood that the vector and host cells are chosen for maintenance of the vector within the host cell. Similarly, the transcriptional and translational control sequences are chosen for function in the host cell of choice. The specifically exemplified human PME-1 sequence can be modified, for example, using polymerase chain reaction (PCR) technology by substituting synonymous codons according to the known codon usage of the chosen host cell so that expression of the coding sequence is maximized.
- FIG. 1 shows that the catalytically inactive mutants of PP2A can form complexes with the regulatory A subunit and MT in vivo. Lysates from cells containing only control vector (GRE only) or HA-tagged wt (wt-36) or mutant C subunits (H59Q, H118Q) were precipitated with anti-HA tag antibody (12CA5) and analyzed by SDS-PAGE and immunoblotting. The blot was probed first with anti-MT antibody, and then sequentially with antibodies recognizing the A, C (via the epitope tag), and B PP2A subunits. Because a lower level of expression was consistently seen with H118Q, the immunoprecipitate of this mutant was prepared from more cells; to properly control for this, the control immunoprecipitate was prepared from an equivalent amount of cells expressing only the vector. Under these conditions, a small amount of MT binds non-specifically to the immunoprecipitate in the GRE only lane.
- FIG. 2A illustrates HA tag immunoprecipitates prepared from35S-labeled cell lines individually expressing HA-tagged wt (36wt) or mutant C subunits (H59Q, H118Q) or vector only (GRE only) analyzed by SDS-PAGE and autoradiography. Portions of the gel where C subunit, A subunit, and a novel 44 kDa protein migrate are shown. The C subunits migrate as doublets in these gels; whether doublets or a single band are seen varies from gel to gel (compare with FIG. 1). Migration of C subunit as doublets on SDS-PAGE has been noted previously for both HA-tagged and endogenous PP2A C subunits [Campbell et al. (1995) supra; Ogris et al. (1997) supra; Turowski et al. (1995) supra] and does not appear to be due to degradation. The panels and lanes shown are from the same experiment and gel, but the lanes were not all originally adjacent. Even on long exposure, the 44 kDa protein seen in the mutant lanes is not seen in the wt or control lanes.
- FIG. 2B shows immunoprecipitates identical to those in FIG. 2A analyzed by 2D gel electrophoresis. Only the portion of each gel containing the relevant proteins is shown. The A, B and C subunits and p44B are indicated by labeled brackets and arrowheads, while the corresponding positions in panels lacking these proteins are indicated with unlabeled brackets or arrowheads. For reference, actin is indicated in all panels by a small, unlabeled arrow.
- FIG. 2C shows silver-stained 2D gels of HA tag immunoprecipitates prepared from unlabeled cells expressing vector only (GRE only) or the C subunit mutant, H118Q. Only the portion of each gel containing the relevant proteins is shown. The A and C subunits, PME-1, and anti-HA tag antibody heavy chain (Ab) are indicated by labeled brackets and arrowheads. Unlabeled arrowheads indicate the corresponding positions in the GRE only control panel. For reference, actin is indicated in both panels by a small, unlabeled arrow. The approximate position that p44B would be located on these gels is indicated by the unlabeled brackets.
- FIG. 3A is a schematic of a 2.5 kb human PME-1 cDNA. On the stick diagram, the positions of the in frame 5′ UTR stop codon (TGA), of the first two potential start codons (ATGs), of tandem stop codons (TAGTGA) at the end of the PME-1 ORF, and of the poly A tail (bracket) are shown. The 3′ end of the 3′ UTR, including the position of the poly A tail, was deduced by analyzing overlapping PME-1 ESTs; all other regions were directly sequenced. The sequence shown extends from the in frame 5′ UTR stop codon (TGA; overlined) to the second possible start ATG (double underlined) (SEQ ID NO:16). The first possible start ATG (underlined once in the sequence shown) was identified as the authentic start site in vivo by making constructs whose transcription/translation products in vitro would start with one or the other of these two ATGs.35S-labeled in vitro transcription/translation product starting at the first ATG, but not the product starting at the second ATG, comigrated precisely on 2D gels with PME-1 from HeLa cell lysates.
- FIG. 3B shows that PME-1 mRNA is expressed in different tissues. Total RNA from the indicated mouse organs was separated by electrophoresis and hybridized with a mouse PME-1 partial cDNA probe from the 3′ UTR of mouse PME-1. In a separate experiment, the size of the PME-1 transcript was calculated to be 2.6±0.2 kB. The lower panel shows the 18S rRNA from the same blot visualized with methylene blue.
- FIG. 4 demonstrates that PME-1 stably associates with H59Q but not wild-type C subunit. HA tag immunoprecipitates prepared from NIH3T3 (NIH) or MT-transformed NIH3T3 (NIHMT) cell lines individually expressing HA-tagged wt (wt C sub) or mutant (H59Q) C subunits were analyzed by SDS-PAGE and immunoblotting with HA tag antibody and PME-1 anti-peptide antibody. The C subunits migrate as tight doublets in these gels. The panels and lanes shown are from the same experiment and gel, but the lanes were not all originally adjacent. Even on long exposure, the 44 kDa protein seen in the mutant lanes is not seen in the wt lanes.
- FIG. 5 shows that human PME-1 is a PP2A methylesterase. Immunoprecipitated PP2A C subunit was incubated with lysates from bacteria either not expressing PME-1 (control) or expressing PME-1 (PME-1), or with purified bacterially-expressed PME-1 (˜5 ng). Okadaic acid (O.A.) or PMSF was added to the reactions to the indicated final concentrations. Reactions containing 1.25% DMSO as a control to match the level resulting from addition of okadaic acid or PMSF stock solutions are noted. After incubation, the immunoprecipitated PP2A C subunits were analyzed by SDS-PAGE. Proteins were transferred to nitrocellulose and the membrane was probed with 4b7 (methylation-sensitive Ab), an anti-C subunit antibody that only recognizes unmethylated C subunits. Subsequently, the same membrane was probed with Transduction Laboratories, (Lexington, Ky.) anti-PP2A C subunit antibody (methylation-insensitive Ab), which is insensitive to the methylation state of PP2A and therefore reveals the total C subunit in each lane. The C subunits migrated as doublets in this gel, but whether double or single bands are seen can vary (see comments in legend to FIG. 2A).
- FIG. 6A shows that the PP2A inhibitors, okadaic acid, sodium fluoride, and sodium pyrophosphate, reduce the amount of PME-1 complexed with the catalytically inactive H59Q C subunit. Seven parallel dishes of NIH3T3 cells expressing HA-tagged H59Q were lysed in NP40 lysis buffer containing the indicated inhibitor(s) at the following concentrations: sodium vanadate (1 mM); NaF (50 mM); okadaic acid (500 nM); phenylarsineoxide (PAO; 10 μM); sodium pyrophosphate (Na4P2O7; 20 mM). Anti-HA tag immunoprecipitates were prepared from these lysates and analyzed by SDS-PAGE and immunoblotting. The blot was probed sequentially with antibodies detecting PME-1 and H59Q C subunit (via its HA tag). In a separate experiment using phosphorylase a as substrate, sodium fluoride, okadaic acid and sodium pyrophosphate were respectively found to inhibit PP2A 91±10%, 97±4%, and >99%, while phenylarsineoxide and sodium vanadate respectively showed no or 25±18% inhibition.
- FIG. 6B shows that loss of the C subunit carboxy-terminus reduces, but does not abolish, PME-1 Binding. Non-immune (N) and HA tag (I) immunoprecipitates were prepared from MT-transformed NIH3T3 cells expressing vector only (GRE only), HA-tagged H59Q, or HA-tagged H59Q/301Stop double mutant which lacks nine carboxy-terminal amino acids. Immune complexes were analyzed by SDS-PAGE; proteins were transferred to nitrocellulose; and immunoblotting was performed with antibodies directed against A subunit, PME-1, and C subunit (anti-HA tag). The C subunits migrate as doublets in this gel, but whether double or single bands are seen can vary (see comments in legend to FIG. 2A). The band seen in all lanes in the PME-1 panel is from the immunoprecipitating antibodies. Chemiluminescent quantitation (using a Biorad Fluor-S Max Multilmager, Hercules, Calif.) was used in seven separate experiments with mixtures of clones to quantify the ratio of PME-1 to C subunit signal in each lane. In six of seven experiments with mixes of clones, the double mutant bound less PME-1 than did H59Q, with a mean reduction of 56±30% and a median value of 39 (range of 8-87%). Thus, PME-1 binding is clearly reduced by loss of the carboxy-terminus. In a seventh experiment, for unknown reasons, the double mutant bound 235% of the H59Q level of PME-1, lowering the overall mean reduction to 28% (median=40).
- FIG. 6C demonstrates that subunit carboxy-terminal antibodies immunoprecipitate reduced amounts of H59Q/PME-1 Complex. Immunoprecipitates were prepared from MT-transformed NIH3T3 cells expressing HA-tagged H59Q using control antibody, HA-tag antibody (12CA5), or carboxy-terminal C subunit antibodies (1D6, 4B7, 4E1). The immune complexes were analyzed by SDS-PAGE; proteins were transferred to nitrocellulose; and immunoblotting was performed with anti-A subunit antibody (upper panel), anti-PME-1 antibody (middle panel) and anti-C subunit antibody recognizing both endogenous and HA tagged proteins (1D6; lower panel). The positions of A subunit, the immunoprecipitating antibody heavy chains (Ab), PME-1, HA-tagged H59Q C subunit, and untagged, endogenous wt C subunit are indicated. The C subunits migrate as single bands in this gel, but whether double or single bands are seen can vary (see comments in legend to FIG. 2A). HA-tagged H59Q C subunit migrates more slowly than endogenous wt C subunit because of the HA tag.
- “Nucleic acids” and “polynucleotides,” as used herein, may be DNA or RNA. One of skill will recognize that the sequences from nematode genes used in the methods of the invention need not be identical and may be substantially identical (as defined below) to sequences disclosed here. In particular, where a polynucleotide sequence is transcribed and translated to produce a functional polypeptide, one of skill in the art recognizes that because of codon degeneracy, a number of synonymous polynucleotide sequences will encode the same polypeptide. Similarly, because amino acid residues share properties with other residues, conservative substitutions of amino acids within a polypeptide may lead to distinct polypeptides with similar or identical function.
- The term “operably linked” refers to functional linkage, for example, between a promoter and a downstream sequence, wherein the promoter sequence initiates transcription of the downstream sequence.
- “Percentage of sequence identity” for polynucleotides and polypeptides is determined by comparing two optimally aligned sequences over a comparison window, wherein the portion of the polynucleotide or polypeptide sequence in the comparison window may comprise additions or deletions (i.e. gaps) as compared to the reference sequence (which does not comprise additions or deletions) for optimal alignment of the two sequences. The percentage is calculated by determining the number of positions at which the identical nucleic acid base or amino acid residue occurs in both sequences to yield the number of matched positions, dividing the number of matched positions by the total number of positions in the window of comparison and multiplying the result by 100 to yield the percentage of sequence identity. Gaps introduced to optimize alignment are treated as mismatched, whether introduced in the reference sequence or the comparison sequence. Optimal alignment of sequences for comparison maybe conducted by computerized implementation of known algorithms (e.g. GAP, BESTFIT, FASTA, and TFASTA in the Wisconsin Genetics Software Package, Genetics Computer Group (GCG), 575 Science Dr., Madison, Wis., or BlastN and BlastX available from the National Center for Biotechnology Information), or by inspection. Sequences are typically compared using either BlastN or BlastX with default parameters.
- Substantial identity of polynucleotide sequences means that a polynucleotide comprises a sequence that has at least 75% sequence identity, preferably at least 80%, more preferably at least 90% and most preferably at least 95%. Typically, two polypeptides are considered to be substantially identical if at least 40%, preferably at least 60%, more preferably at least 90%, and most preferably at least 95% are identical or conservative substitutions. Sequences are preferably compared to a reference sequence using GAP using default parameters.
- Polypeptides that are “substantially similar” share sequences as noted above except that residue positions which are not identical may differ by conservative amino acid changes. Conservative amino acid substitutions refer to the interchangeability of residues having similar side chains. For example, a group of amino acids having aliphatic side chains of amino acids having aliphatic-hydroxyl side chains is serine and threonine; a group of amino acids having amide-containing side chains is asparagine and glutamine; a group of amino acids having aromatic side chains is phenylalanine, tyrosine, and tryptophan; a group of amino acids having basic side chains is lysine, arginine, and histidine; and a group of amino acids having sulfur-containing side chains is cysteine and methionine. Preferred conservative amino acids substitution groups include but are not limited to: valine-leucine-isoleucine, phenylalanine-tyrosine, lysine-arginine, alanine-valine, asparagine-glutamine, and aspartate-glutamate.
- Another indication that polynucleotide sequences are substantially identical is if two molecules selectively hybridize to each other under stringent conditions. Stringent conditions are sequence dependent and will be different in different circumstances. Generally, stringent conditions are selected to be about 5° C. lower than the thermal melting point (Tm) for the specific sequence at a defined ionic strength and pH. The Tm is the temperature (under defined ionic strength and pH) at which 50% of the target sequence hybridizes to a perfectly matched probe. Typically stringent conditions for a Southern blot protocol involve washing at 65° C. with 0.2×SSC.
- The present inventors have disclosed the full-length cDNA encoding human protein phosphatase methylesterase-1, termed PME-1 herein.
- Two PP2A C subunit mutants with single amino acid changes in their active site residues were found to form stable complexes with cellular proteins. Mutation of either of two histidines predicted to be in the PP2A C subunit active site results in a stable complex between the mutant C subunit and a protein of 44 kDa. This 44 kDa protein (formerly called p44A) is termed PME-1 herein. Immunoaffinity purification of C subunit/PME-1 complexes generated sufficient protein for microsequencing of HPLC purified PME-1 tryptic peptides. Three of the nine peptide sequences matched a human Expressed Sequence Tag (EST), which the present inventors teach consists of the 3′ end of the PME-1 coding region and the entire 3′ untranslated sequence. The complete coding region of the human PME-1 cDNA was obtained via an approach involving nested and semi-nested polymerase chain reaction (PCR), utilizing 3′ primers corresponding to PME-1 EST sequence and 5′ primers corresponding to vector sequence flanking inserts in cDNA libraries. The PME-1 protein was identified as the PP2A methylesterase by several criteria, including molecular size, presence of a motif found in esterases (including lipases) utilizing serine as the nucleophilic catalytic residue, ability of okadaic acid (a known inhibitor of both PP2A and the PP2A methylesterase) to inhibit association of PME-1 with the C subunit mutants and to inhibit PME-1 activity, and finally, activity assays performed in vitro with bacterially expressed protein. Complex formation of PME-1 and mutant C subunit involves, at least in part, the C subunit carboxy terminus. A catalytically inactive C subunit lacking the carboxy-terminal 9 amino acids showed decreased association with the methylesterase, and an antibody specific for the C subunit C-terminus, whose binding is sensitive to mutation of tyrosine 307, interfered with PME-1 binding. Finally, the two mutants that complex with PME-1 do not bind substantial amounts of B subunit. However, two other catalytically inactive mutants that do not bind PME-1 also are deficient in B subunit binding.
- The carboxy terminus of the protein phosphatase 2A (PP2A) catalytic (C) subunit is highly conserved. Seven of the last nine residues (301-309) are completely invariant in all known PP2As. Included in these invariant residues are the known pp60c-src phosphorylation site, tyrosine 307, and the known site of methylation, leucine 309. Additionally, one or more of the nine carboxy terminal residues is necessary for formation of PP2A heterotrimers containing the B regulatory subunit. The importance of this tyrosine for binding the methylesterase, the same change in which did not dissociate B subunit, suggests that this is the reason it is so highly conserved.
- In order to create catalytically inactive PP2A C subunit mutants that retained maximum structural integrity, single residues likely to be involved in catalysis were mutated conservatively. To identify residues potentially involved in catalysis, an alignment of PP2A and various related phosphatases was performed to identify highly conserved residues. A small number of residues were found that are identical in PP2A, PP1, PPX, PP2B, and PPλ. Of those, two histidines (H) at positions 57 and 118 were chosen as having catalytic potential, and were individually mutated to glutamine (Q), yielding the mutants H57Q and H118Q. Subsequent to the construction of these mutants, the crystal structures of PP1 and PP2B [Goldberg, J. et al. (1995)Nature 376:745-753; Kissinger, C. R. et al. (1995) Nature 378:641-644] and a mutational analysis of PPλ [Zhuo, S. et al. (1994) J. Biol. Chem. 269:26234-26238] were reported, the results of which implicated these two histidines in PP2A catalysis. As described herein below, each C subunit mutant cDNA was constructed with the hemagglutinin (HA) tag at its amino terminus to allow for immunoprecipitation analysis [Ogris, E. et al. (1997) supra]. Individual mutants, wild-type C subunit, or no recombinant C subunit (vector only) were expressed stably in NIH3T3 cell lines with and without coexpression of MT. In the MT expressing cells, most PP2A complexes still contain B subunit because MT is produced at a low level relative to PP2A.
- After construction of stable lines, the C subunit mutants were characterized with respect to two properties: 1) ability to form complexes containing the A and B subunits or MT and 2) catalytic activity. To examine complex formation in vivo, immunoprecipitates of epitope-tagged wt and mutant C subunits were probed by immunoblotting for the presence of additional subunits and MT (FIG. 1). Both mutants bind substantial A subunit. H118Q also binds a small amount of B subunit, while H59Q binds almost none of this subunit. Although a small amount of MT was found in control immunoprecipitates, levels of MT well above this were readily detected in the mutant immunoprecipitates, indicating that A/C/MT trimeric complexes had been formed by these proteins. A portion of the MT coimmunoprecipitated with H59Q is shifted relative to the MT associated with wt C subunit; this result is reproducible and will be described in more detail elsewhere. These results indicate that both of these mutants have substantial native structure in vivo.
- To test for catalytic activity, phosphatase assays were performed on anti-tag immunoprecipitates from the various cell lines. Using both phosphorylase and histone H1 as substrates, only wt C subunit immunoprecipitates were found to have increased activity as compared to control immunoprecipitates prepared from a cell line containing only “empty” vector (Table 1). Immunoprecipitates of the two mutants showed no activity over background towards either substrate. This finding is consistent with previous published results for mutation of the corresponding residues in related phosphatases.
- Catalytically inactive mutants have the potential to form stable complexes with physiological substrates. To determine if novel cellular proteins associated with one or both catalytically inactive C subunit mutants, anti-tag immunoprecipitates were prepared from35S-labeled cells. FIG. 2A shows that, in addition to the presence of the C and A subunits, a protein of 44 kDa (p44B) is present in the immunoprecipitates of both catalytically inactive mutants. More p44B appears to associate with H59Q than with H118Q. This protein is not present in immunoprecipitates prepared from either cells expressing wt C subunit or cells containing only “empty” vector. The p44B protein migrates slightly slower than the non-specific actin band which can be seen in all lanes, and actually overlaps the actin bands in this gel. On two-dimensional (2D) gels, however, p44B is completely separated from actin and forms a streak with a pI near 7.
- In order to see if sufficient p44B could be obtained to facilitate microsequencing, scaled up immunoprecipitates were analyzed on 2D gels and silver-stained. FIG. 2C shows silver-stained 2D gels of immunoprecipitates from vector only control cells (GRE only) and from cells expressing H118Q. P44B was not readily visible in these gels (see brackets); however, another 44 kDa protein was seen that also specifically coimmunoprecipitates with H118Q. This protein, now designated PME-1, was present in almost a 1:1 stoichiometry with the A and C subunits and was formerly called p44a because its pI, approximately 6, was more acidic than that of p44B. A similar PME-1 spot was found in silver-stained immunoprecipitates of H59Q. Comparison of the H118Q panels in FIG. 2C and FIG. 2B fails to reveal an35S-labeled spot corresponding to PME-1, suggesting that PME-1 probably has a much longer half-life than the PP2A C or A subunits or p44B.
- To facilitate cloning of the nucleotide sequence encoding PME-1, sufficient PME-1 protein for microsequencing was obtained by purifying epitope-tagged H59Q complexes on an anti-tag immunoaffinity column as described hereinbelow. Because PME-1 migrated close to actin on standard 10% SDS-PAGE, the separation of these two proteins was optimized empirically, resulting in the use of a lower percent acrylamide electrophoresed for an extended period of time. Proteins in the gel were electrophoretically transferred to PVDF membrane and visualized by staining with Ponceau S. Both the actin and a clearly separated 44 kDa band migrating just above it were excised for further processing. Microsequencing of a tryptic peptide from the lower band confirmed that it was indeed actin. Nine microsequences obtained from the 44 kDa band matched no known protein in GenBank, indicating that it was a novel protein. However, a human EST sequence (H12112) was found deposited that matched three of the partial sequences obtained from the 44 kDa protein. In addition, homologous sequences were found inCaenorrhabitis elegans cosmids, and a single Saccharomyces cerevisiae homolog was identified. Additional DNA sequencing of this EST revealed coding information for two more PME-1 microsequences, and it was determined that H112112 encoded most of the carboxy-terminal half of the PME-1 protein (162 amino acids). Because the EST came from an oligo dT-primed cDNA library, it likely contains the entire 3′ untranslated region (UTR).
- To obtain the missing 5′ portion of the coding region, nested and seminested PCR was performed as described in the Examples hereinbelow. 5′ primers corresponded to vector sequence that flanked cDNA inserts in the library being used as template, and 3′ primers corresponded to known sequence (EST or newly derived 5′ sequence). In this manner, the remainder of the coding region and a portion of the 5′ UTR were obtained. Because of the possibility of PCR errors during the multiple reamplification reactions that were necessary to obtain the complete cDNA, the sequences of selected portions of the cDNA sequence were verified. For this purpose, RT-PCR was performed with 5′ and 3′ UTR primer sequences to generate directly from HeLa cell mRNA a product containing the entire coding region and much of the 5′ UTR. The final cDNA sequence is shown in Table 2.
- A schematic of a PME-1 cDNA that includes the end of the 3′ UTR deduced from overlapping ESTs is shown in FIG. 3A. The complete cDNA is approximately 2500 nucleotides in length, including an 1164 nucleotide region (including tandem stop codons) encoding a protein of 386 amino acids and a predicted pI of 5.8. All nine tryptic peptide microsequences obtained from the purified 44 kDa band are found encoded in the cloned coding sequence throughout its length (underlined in Table 2), confirming that this is the cDNA for the purified 44 kDa associated protein. This result is also consistent with the reading frame being correct throughout. There is an in frame stop codon a short distance 5′ of the first ATG that was verified in the RT-PCR product, so (without wishing to be bound by theory), we believe there is no missing 5′ coding sequence. In addition, the entire coding sequence, including the positions of the stop codon(s), has been verified several times. Over 98% of the microsequenced murine residues (107 of 109) were identical to the human sequence. The double underlined serine at position 42 corresponds to a threonine in murine PME-1. When a probe specific for mouse PME-1 was used to detect transcripts from different mouse organs, a single transcript of ˜2.6 Kb was detected in all tissues (FIG. 3B). To date, multiple ESTs have been deposited which encode portions of PME-1. These sequences separately cover the entire 3′ and 5′ UTRs, but not the entire coding region, and there is no association between the EST sequences and the function of the encoded protein. Information from the NCBI Cancer Genome Anatomy Project (CGAP) indicates that PME-1 ESTs have been mapped to human chromosome 11, interval D11S916-D11S911 (80-84cM). It is not known at this time whether PME-1 is mutated in any of the diseases with defects mapped to this general region of chromosome 11.
- The 386 amino acid PME-1 protein product encoded by the human PME-1 cDNA ORF is shown in Table 2. It has a pI of 5.8, consistent with its migration on 2D gels like the one shown in FIG. 2C. All nine mouse PME-1 tryptic peptide sequences (underlined in Table 2) were accounted for in the human sequence with differences present only at a few positions, indicating that PME-1 is well conserved between these two species. Using the NCBI BLAST program, highly homologous sequences probably corresponding to PME-1 homologs were found for zebrafish, forC. elegans, and for S. cerevisiae. The hypothetical 88.4 kDa C. elegans protein in chromosome 3, B0464.7, contains some of the C. elegans sequence homologous to PME-1, but lacks other highly homologous sequences, suggesting that it may represent an inaccurate prediction of exon combinations. A more likely combination of exons that includes all B0464 cosmid exons homologous to PME-1 generates a protein of 365 amino acids and approximately 40 kDa (Table 2). S. cerevisiae PME-1 (Table 9, Table 3) appears to be a single hypothetical 44.9 kDa protein (PIR accession number S46814; SwissProt accession number P38796) of unknown function encoded by an ORF on chromosome 8R (YHN5; GenBank accession number U10556). Recently YHN5 was proposed to be a mitochondrial ribosome subunit protein and named YmS2, based, on a single partially homologous nonapeptide sequence [Kitakawa, M. et al. (1997) Eur. J. Biochem. 245:449-456]. Human PME-1 has approximately 40% and 26% respective amino acid identity with the C. elegans and yeast sequences (Table 9). A highly charged stretch of amino acids is present in human PME-1 but absent in PMEs from C. elegans and S. cerevisiae. This stretch of amino acids does not represent a cloning artifact, because 2D gel comigration experiments showed that 35S-labeled PME-1 in vitro transcription/translation product comigrated precisely on 2D gels with PME-1 from HeLa cell lysates.
- In order to facilitate further experiments characterizing PME-1, an anti-PME-1 peptide antibody was raised to a sixteen amino acid peptide sequence encoded by the PME-1 cDNA. This peptide antibody detected a 44 kDa protein present in H59Q immunoprecipitates, but absent from immunoprecipitates of wild-type C subunit (FIG. 4). Thus, PME-1, like p44B, associates stably with the catalytically inactive mutant C subunits, but not with wt C subunit. Because B subunit, but not MT, requires the C subunit carboxy-terminus for association with the PP2A A/C heterodimer, we wanted to determine if MT expression might increase the amount of PME-1 bound to H59Q. Similar levels of PME-1 were coimmunoprecipitated from untransformed NIH3T3 cells and polyomavirus MT-transformed NIH3T3 cells (FIG. 4), indicating that MT expression does not greatly affect the level of H59Q/PME-1 complex formation in the cell.
- When the human,C. elegans, and S. cerevisiae PME-1 protein sequences were analyzed for motifs found in the Prosite database using DNASTAR Lasergene software, a consensus sequence ([LIV]-x-[LIVFY]-[LIVST]-G-[HYWV]-S-x-G-[GSTAC]) (SEQ ID NO:15) for lipases utilizing an active site serine was found to be conserved. The invariant serine in this motif, corresponding to serine 156 in human PME-1, is the active site serine in these enzymes. In addition, scattered similarities can be seen between other regions of the PME-1 sequence and some of the lipases that have this motif. Therefore, PME-1 is probably a lipase whose active site serine is serine 156.
- The various lipases that share this motif are found in both prokaryotes and eukaryotes and include, among others, twoD. melanogaster carboxylesterases. In addition, CheB, a bacterial glutamate methylesterase, has a similar, but not identical, sequence surrounding its active site serine [Krueger, J. K. et al. (1992) Biochim. Biophys. Acta. 1119:332-326] (Table 8). CheB [West, A. H. et al. (1995) J. Mol. Biol. 250:276-290] and other lipases utilizing an active site serine [e.g. Winkler, F. K. et al. (1990) Nature 343:771-774; Brady, L., et al. (1990) Nature 343:767-770] have a catalytic triad in their primary sequence in the order Ser-Asp(or Glu)-His. Of the conserved histidines in human PME-1, His 349 is a likely candidate for a putative catalytic triad histidine (Table 9). Identification of a putative PME-1 catalytic triad acidic residue by sequence comparison is more problematic because there are multiple acidic residues conserved between species. However, of these, two aspartates in human PME-1, Asp 181 and Asp 324, show conservation in position with putative catalytic triad aspartates in other lipases, and therefore may be more likely possibilities.
- A PP2A C subunit carboxyl methylesterase of 46 kDa has recently been purified [Lee, J. et al., (1996)Proc. Natl. Acad. Sci., USA 93:6043-6047] but no sequence information was reported. To test the possibility that PME-1 might be a PP2A methylesterase, PME-1 was expressed in bacteria and bacterial lysates were tested for methylesterase activity towards PP2A C subunit as described in the Examples herein. The results shown in FIG. 5 demonstrate that lysates of bacteria expressing PME-1 contain a PP2A methylesterase activity not found in bacterial lysates lacking PME-1. Similar results were obtained with purified recombinant PME-1 (FIG. 5). These results indicate that PME-1 is indeed a PP2A methylesterase. Because its specificity towards other methylated phosphatases (such as PPX) has not been characterized, it was generically named Protein Phosphatase Methylesterase-1 (PME-1).
- The 46 kDa PP2A methylesterase reported by Lee and coworkers was inhibited by okadaic acid, a potent PP2A inhibitor, but not by PMSF, a covalent inhibitor of certain serine esterases. To determine if PME-1 displays similar sensitivities to these inhibitors, the above demethylation assay was also conducted in the presence of okadaic acid and PMSF (FIG. 5). The methylesterase activity of bacterially expressed PME-1 was inhibited by 0.1 or 1 μM okadaic acid but not by 1 or 5 mM PMSF, similar to the methylesterase purified by Lee et al. (1996) supra.
- Because single amino acid changes in the C subunit active site were capable of inducing stable complex formation of C subunit with PME-1, it was of interest to determine if PP2A inhibitors could antagonize the H59Q/PME-1 complex. To assay for this possibility, NIH3T3 cells expressing epitope-tagged H59Q C subunit were lysed in the presence of various phosphatase inhibitors and H59Q was immunoprecipitated via its epitope tag. The amount of endogenous, untagged PME-1 coimmunoprecipitating in each case was assayed by blotting with anti-PME-1 antibody (FIG. 6A). hihibitors to which PP2A is highly sensitive (okadaic acid, sodium fluoride, and sodium pyrophosphate), but not those to which PP2A is less sensitive or insensitive (vanadate and phenylarsineoxide, respectively), decreased the amount of PME-1 bound to H59Q.
- A PP2A methylesterase might be expected to make important contacts with carboxy-terminal residues. However, Lee and coworkers found that PP2A carboxy-terminal peptides functioned neither as inhibitors nor as substrates for their 46 kDa PP2A methylesterase, suggesting that, at a minimum, contacts with other parts of the C subunit are essential. To investigate the importance of the H59Q C subunit carboxy-terminus for stable interaction with PME-1, a double mutant, H59Q/301Stop, was created. This mutant combines the H59Q mutation, which induces stable binding of PME-1, with a deletion of the nine C subunit carboxy-terminal acids, 301-309. FIG. 6B shows the results of an immunoprecipitation assay measuring the relative abilities of H59Q and H59Q/301Stop to bind A subunit and PME-1. Deletion of residues 301-309 from wt C subunit has previously been found to decrease the amount of A subunit bound [Ogris, E. et al. (1997) supra]. FIG. 6B shows that deletion of these residues from H59Q also reduces the binding of the PP2A A subunit to H59Q. In addition, although similar amounts of H59Q and H59Q/301Stop were immunoprecipitated in this experiment, the double mutant bound less PME-1 than did H59Q, indicating that one or more of the deleted carboxy-terminal residues is important for H59Q/PME-1 complex formation. PME-1 binding was not completely abolished, however, demonstrating that interactions also exist between PME-1 and other residues in the C subunit.
- To address the same question via a different approach, we assayed via immunoprecipitation whether antibodies directed against the C subunit carboxy-terminus would compete with PME-1 for binding to H59Q. If an antibody competes with PME-1 for binding to residues on H59Q that are important for PME-1 association, that antibody would be expected to coimmunoprecipitate reduced amounts of PME-1 with H59Q when compared to an antibody that does not compete with PME-1. The carboxy-terminal C subunit monoclonal antibodies used for this experiment, 1D6, 4B7, and 4E1, were recently generated against a 15-residue unmethylated carboxy-terminal peptide. These antibodies are unable to efficiently recognize a C subunit mutant lacking the carboxy-terminal leucine, indicating that they bind, at least in part, at the very carboxy-terminus. A positive control monoclonal antibody, 12CA5, immunoprecipitates H59Q via its amino-terminal epitope tag and should not interfere with interactions at the C subunit carboxy-terminus [Ogris, E. et al. (1997) supra]. Comparison of the relative ratios of the PME-1 and H59Q bands in FIG. 6C reveals that, relative to 12CA5, 1D6 and 4B7 immunoprecipitate less PME-1 for the same amount of H59Q C subunit (the band of endogenous, wt C subunit immunoprecipitated by the carboxy-terminal antibodies can be ignored as wt C subunit does not associate stably with PME-1). Furthermore, although 4E1 immunoprecipitated a substantial amount of H59Q C subunit (within approximately two-fold of 12CA5), no PME-1 could be detected, even on long exposures. These results thus further substantiate the conclusions made from FIG. 6B. In addition, the fact that 1D6 and 4B7 coimmunoprecipitate similar amounts of PME-1, but dramatically different amounts of A subunit indicates that PME-1 binding does not appear to be dependent on A subunit binding.
- The successful identification of the first of a number of cellular proteins that stably associate with catalytically inactive PP2A C subunit mutants, but not with wt C subunit, is reported herein. Two proteins of 44 kDa that differ in their isoelectric points, PME-1 and p44B, uniquely associated with two different catalytically inactive C subunit mutants substituted individually at two different active site histidine residues. PME-1 was affinity purified and a cDNA encoding it was cloned. This protein was identified as a PP2A methylesterase by several criteria including 1) molecular size; 2) the presence of a motif found in lipases that use serine as their nucleophilic catalytic residue; 3) activity assays performed in vitro with bacterially expressed protein; and 4) the ability of okadaic acid, a known inhibitor of both PP2A and the PP2A methylesterase, to inhibit its activity and decrease its association with the catalytically inactive C subunit mutant, H59Q.
- Based on its molecular size, sensitivity to okadaic acid, and the lack of effect of PMSF on PME-1 activity, PME-1 is likely to be equivalent to the 46 kDa PP2A methylesterase whose purification and initial characterization was recently reported by Lee and colleagues [Lee, J. et al.(1996) supra]. Its insensitivity to PMSF indicates that it is not the PMSF-sensitive serine esterase/protease activity reported by Xie and Clarke [Xie, H. et al. (1994)Biochem. Biophys. Res. Commun. 203:1710-1715] which also could remove PP2A carboxymethyl groups. Lee and coworkers (1993 supra) reported that their purified PP2A methylesterase eluted as two different peaks from an anion exchange column, consistent with either differential modification or the existence of two closely related isoforms of the enzyme. The amounts of these two species were within several fold of each other. Two pieces of evidence from our studies support the idea that those two forms probably represent differentially modified forms of the enzyme. First, probing of the GenBank EST database with the PME-1 cDNA sequence provides no evidence for a closely related PME-1 isoform, even though numerous ESTs are found which correspond precisely to the PME-1 cDNA sequence. Second, Northern blot analysis yielded a single band in multiple organs. In addition, we have found via immunoblotting that mammalian PME-1 in cell lysates migrates on two-dimensional gels as two spots differing in their isoelectric point in a manner consistent with a single charge difference.
- The molecular basis of the cell cycle-dependent regulation of PP2A C subunit methylation is unknown. The poor metabolic labeling of PME-1 in an asynchronous population of cells relative to a number of other proteins suggests that this protein is quite stable. This result argues against the possibility that cell cycle PP2A methylation is regulated by modulating the amount of the PP2A methylesterase. Whether PME-1 activity is regulated is unknown. In the case of the bacterial chemotactic response, the CheB methylesterase is regulated by phosphorylation [Wylie, D. et al. (1998)Biochem. Biophys. Res. Commun. 151:891-896; Hess, J. F. et al. (1998) Cell 53:79-87], while the methyltransferase is thought to be constitutively active. Lee and coworkers (1996 supra) found no difference in the activity of their two purified forms of PP2A methylesterase, suggesting that the differential modification likely responsible for generating these two forms might not be involved in regulation of activity of this enzyme. It is possible, however, that effects might be seen under other conditions, or that an additional protein(s) may be necessary for an effect to be manifested. In addition, it is possible that more than one modification occurs.
- Without wishing to be bound by any particular theory, it is believed that PP2A methyltransferase and methylesterase enzymes achieve their specificity, in part, by interacting with or near the active site of the PP2A C subunit. It was reported previously that neither the PP2A methyltransferase nor the PP2A methylesterase can recognize short peptide substrates corresponding to the C subunit carboxy-terminus. Thus, functional recognition by both these enzymes requires additional C subunit structure. Additionally, as demonstrated in this study, perturbation of the C subunit active site by either of two different mutations can stabilize the interaction with the PME-1 methylesterase. Furthermore, PP2A inhibitors have a destabilizing effect on the PME-1/H59Q interaction. Finally, the methyltransferase is inhibited by the PP2A inhibitors, okadaic acid and microcystin-LR, and the methylesterase is inhibited by okadaic acid (testing for inhibition of the methylesterase by microcystin has not been reported). Although it has been proposed that this inhibition is due to the interaction of these inhibitors with carboxy-terminal C subunit residues, the PP2A inhibitors, sodium fluoride or sodium pyrophosphate, partially or fully disrupt PME-1 /H59Q complexes. The latter effect is more consistent with a role in binding the PME-1 methylesterase for active site residues and/or metals, or nearby residues sensitive to effects on the active site. Four separate catalytically inactive PP2A active site point mutants including the two described in this study, are methylated at less than 3% of the wild-type level in vivo and in vitro. Although we believe there is interaction with residues and/or metals in or near the active site, but another equally viable possibility is that mutation of active site residues and/or binding of inhibitors has more distant effects on the C subunit conformation critical for stable complex formation with PME-1.
- Contact between the C subunit and PME-1 could be with PME-1 residues and/or with a phosphorylation site on PME-1. Because H59Q and H118Q are virtually unmethylated, PME-1 apparently can remain bound to these mutants in the absence of a methylated carboxy-terminus. At least with H59Q, PME-1's contacts other than on the C subunit carboxy-terminus are strong enough to result in substantial complex formation in the absence of the nine carboxy-terminal C subunit residues. This conclusion is further supported by the finding that two C subunit carboxy-terminal peptide antibodies, known to require Leu 309 for efficient binding, immunoprecipitate H59Q/PME-1 complexes. However, the amount of PME-1 coimmunoprecipitated by these antibodies was less than that coimmunoprecipitated by an antibody recognizing an amino-terminal epitope tag on the C subunit. The latter result and the fact that a third carboxy-terminal C subunit antibody could not immunoprecipitate H59Q/PME-1 complexes at all suggest that PME-1 is proximal to the C subunit carboxy-terminus in the H59Q/PME-1 complex. Moreover, the reduced amounts of PME-1 in complex with the H59Q/301Stop double mutant indicate that carboxy-terminal residues play a role in binding of H59Q to PME-1. The contribution of these residues to the interaction of wild type C subunit with PME-1 might be even more important in the absence of the complex-stabilizing H59Q mutation.
- The decreased B subunit binding observed with these mutants might be due indirectly to lack of methylation at the carboxy-terminus of these mutants. The fact that H59Q and H118Q bind the structural PP2A A subunit and polyomavirus MT suggests that they are not grossly altered in their structure. Two other catalytically inactive point mutants that bind A subunit and polyomavirus MT, but are highly deficient in methylation are also deficient in B subunit binding. Given that the B subunit requires the C subunit carboxy-terminus for stable complex formation with the A/C heterodimer, the B subunit might require a methylated carboxy-terminus for efficient binding to C subunit. An alternate, but not mutually exclusive, possibility is that the carboxy-terminus and the active site are proximal in the three dimensional structure of the C subunit. This model would provide an explanation for how events occurring at the carboxy-terminus (B subunit binding, methylation, phosphorylation, etc.) can affect the active site (activity, specificity), and vice versa. In addition, at least for H59Q and H 118Q, PME-1 and B subunit binding might be mutually exclusive.
- These catalytically inactive C subunit mutants should be useful for identifying other proteins involved in PP2A signaling. H59Q and H118Q bind multiple proteins not bound stably by wt C subunit. These include, in addition to PME-1, p44B and other proteins not marked, but visible, in FIG. 2B. Interestingly, initial experiments suggest that p44B binding to H59Q is even more sensitive to phosphatase inhibitors than is PME-1 binding. These proteins could be PP2A substrates or other proteins whose binding is sensitive to the state of the C subunit active site. One of these proteins is the same molecular size as the PP2A methyltransferase reported by Lee and colleagues (Lee et al. (1993) supra]. Catalytically inactive mutants of dual specificity and tyrosine phosphatases [Gelerloos, J. A., et al. (1996)Oncogene 13:2367-2368; Bliska, J. B. et al. (1992) J. Exp. Med. 176:1625-1630] have been previously used successfully to identify novel substrates, but unlike PP2A, their catalytic mechanisms involve the formation of covalent intermediates with substrates.
- PME-1 and p44B differ in several characteristics, suggesting that these two proteins are not simply modified forms of one another. They are separated from each other on two-dimensional gels by approximately one pH unit, which is unlikely to be accounted for by modification; PME-1 forms sharp spots on these gels while p44B migrates as a smear. In addition, in vitro translation of PME-1 yields no product migrating at the position of p44B and we have been unable to detect p44B with antibodies raised against PME-1 sequences.
- Finally, because of the high conservation of PP2A with other phosphatases such as PP1, PPX, PPV, etc., it will be of interest to see if similar or different cellular proteins bind stably to these phosphatases when the residues corresponding to PP2A H59 and H118 are mutated to glutamine. One question of special interest is whether the corresponding catalytically inactive mutants of PPX, which has the same last four carboxy-terminal amino acids as PP2A and is also methylated at its carboxy-terminal leucine, will also trap PME-1.
- The present invention provides the coding sequences for the mammalian PME1 protein, as specifically exemplified by the human coding sequence. This allows the construction of recombinant DNA molecules and recombinant host cells produced in the laboratory, which molecules and host cells are used for the recombinant expression of the PME1 protein and enables assay methods for determining inhibitors of the methylesterase activity of the PME-1 protein, and thus, compounds which slow the growth of cells, especially neoplastic and/or transformed cells.
- Without wishing to be bound by theory, the present inventors propose that the protein of the present invention is a Protein Phosphatase Methylesterase-1 (PME-1) which removes methyl groups from the PP2A growth-regulating protein phosphatase, and that the methylation status of the catalytic subunit affects activity and thus plays a role in growth regulation and normal progression of the cell cycle. See, e.g., Lee et al. (1996) supra, for a description of the methylesterase and methods for assay.
- Monoclonal or polyclonal antibodies, preferably monoclonal, specifically reacting with the methylesterase of the present invention encoded by a particular coding sequence may be made by methods known in the art. See, e.g., Harlow and Lane (1988)Antibodies: A Laboratory Manual, Cold Spring Harbor Laboratories; Goding (1986) Monoclonal Antibodies: Principles and Practice, 2d ed., Academic Press, New York.
- Standard techniques for cloning, DNA isolation, amplification and purification, for enzymatic reactions involving DNA ligase, DNA polymerase, restriction endonucleases and the like, and various separation techniques are those known and commonly employed by those skilled in the art. A number of standard techniques are described in Sambrook et al. (1989) supra; Maniatis et al. (1982)Molecular Cloning, Cold Spring Harbor Laboratory, Plainview, N.Y.; Wu (ed.) (1993) Meth. Enzymol. 218: Part I; Wu (ed.) (1979) Meth Enzymol. 68; Wu et al. (eds.) (1983) Meth. Enzymol. 100 and 101; Grossman and Moldave (eds.) Meth. Enzymol. 65; Miller (ed.) (1972) Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.; Old and Primrose (1981) Principles of Gene Manipulation, University of California Press, Berkeley; Schleif and Wensink (1982) Practical Methods in Molecular Biology; Glover (ed.) (1985) DNA Cloning Vol. I and II, IRL Press, Oxford, UK; Hames and Higgins (eds.) (1985) Nucleic Acid Hybridization, IRL Press, Oxford, UK; and Setlow and Hollaender (1979) Genetic Engineering: Principles and Methods, Vols. 1-4, Plenum Press, New York. Abbreviations and nomenclature, where employed, are deemed standard in the field and commonly used in professional journals such as those cited herein.
- All references cited in the present application are incorporated by reference herein to the extent that they are not inconsistent with the present Specification.
- The following examples are provided for illustrative purposes, and are not intended to limit the scope of the invention as claimed herein. Any variations in the exemplified sequences and methods which occur to the skilled artisan are intended to fall within the scope of the present invention.
- Plasmids and Mutagenesis
- Site-directed mutagenesis was performed on a HA-tagged wt C subunit cDNA cloned in the pcDNA I Amp vector [Ogris et al. (1997) supra] using the Muta-Gene Phagemid In Vitro Mutagenesis Kit according to the manufacturer's instructions (Bio-Rad Laboratories, Hercules, Calif.). The entire cDNA of both H59Q and H118Q was sequenced to confirm successful mutagenesis and to ensure that no additional mutation occurred. Mutant C subunit cDNAs including the HA tag coding sequence were cloned into the dexamethasone-inducible vector, pGRE 5-2 [Mader, S., and White, J. H. (1993)Proc. Natl. Acad. Sci. USA 90:5603-5607]. The construction of a pGRE5-2 vector expressing HA-tagged wt PP2A C subunit has been previously described [Ogris et al. (1997) supra]. An inducible vector was chosen to try to minimize the potential deleterious effects of wild-type and mutant C subunits (if any) while lines were being carried in culture, and to provide for an uninduced control in analyses of their effects.
- Cells and Cell Culture
- NIH 3T3 lines expressing wt polyomavirus MT and a geneticin resistance gene [Cherington et al. (1986)Proc. Nat. Acad. Sci. USA 83:4307-4311] were transfected by the calcium phosphate precipitation method [Sambrook et al. (1989) supra], and individual clones and mixtures of clones expressing wt C subunit (36wt), H59Q, H118Q, or empty vector (GREonly) were selected and maintained as described previously [Ogris et al. (1997) supra]. H118Q expressed at a level well below that of endogenous wt C subunit, while H59Q expressed at a level equal to or greater than the wt level. Although the inducible vector, pGRE5-2, was used to express these proteins, their levels were substantial in the absence of dexamethasone; for this reason, GREonly cells were used as a negative control in this study rather than uninduced wt or mutant C subunit expressing cells. However, dexamethasone treatment was always used to obtain maximal expression of the C subunits.
- Radiolabeling of Cells
- For metabolic labeling of cells with methionine, subconfluent dishes of cells were labeled for 5h with [35S] methionine (300 uCi/ml) in DMEM minus methionine supplemented with 0.5% dialyzed fetal bovine serum.
- The details of treating the cells with dexamethasone, preparation of cell lysates, and immunoprecipation of C subunits have been described previously [Ogris et al. (1997) supra]. For experiments quantitating PME-1 binding to different mutants (FIG. 6B), immunoprecipates were washed twice with NP40 lysis buffer, twice with PBS, and once with ddH20. Washed immune complexes were used for phosphatase assays or analyzed by one or two-dimensional gel electrophoresis.
- One- and Two-Dimensional Gel Electrophoresis and Fluorography
- SDS-polyacrylamide gel (10% acrylamide) was performed according to Laemmli [Laemmli, U. K. (1970)Nature 227:680-685]. Gels were silver stained by the procedure of Wray et al. [Wray, W. et al. (1981) Biochemistry 118:197-203] except that after electrophoresis the gels were sequentially incubated 10 min in distilled water (200 ml), 10 min in 95% ethanol (200 ml), 1 h. in 50% methanol (100 ml), and 30 min in distilled water (100 ml) prior to staining.
- Immunoblotting
- Immunoblotting [Towbin, H. et al. (1979)Proc. Natl. Acad. Sci. USA 76:4350-4354] was performed with mouse monoclonal anti-tag antibody(16B12; 1:5000 dilution of ascites; BAbCO, Richmond, Calif.); rabbit anti-B subunit antibody (#16; 1:5000); affinity-purified rabbit (R39; 1:5000) or mouse monoclonal (4G7; 1 μg/ml) anti-A subunit antibodies; mouse monoclonal anti-C subunit antibody (1D6; 0.25 μg/ml); or rabbit ant-PME-1 antibodies (AR2 or E37; see below). Immunoblots were developed with enhanced chemiluminescences (Amersham, Arlington Heights, Ill.).
- Phosphatase Assay
- Phosphatase activity present in anti-HA tag immunoprecipitates from the different cell lines was assayed using phosphorylase a and Histone H1. [γ-32P]-labeled phosphorylase a substrate was prepared from phosphorylase b according to the manufacturer's (GibcoBRL, Gaithersburg, Md.) instructions. Histone H1 was phosphorylated by mitotic p34cdc2 purified from Nocodazole arrested HeLa cells as described [Mayer-Jaekel et al. (1994) supra]. Lysates used for immunoprecipitation were equilibrated according to epitope-tagged C subunit expression levels. Assays were performed at a linear range and with subsaturating amounts of each substrate.
- Purification and Microsequencing of PME-1
- To obtain PME-1 protein for microsequencing, H59Q C subunit complexes containing PME-1 were immunoaffinity purified. In total, 135 confluent 15 cm dishes of MT-transformed NIH3T3 cells expressing HA-tagged H59Q were needed to obtain enough PME-1 for microsequencing. Forty-five separate immunoaffinity purifications were performed on 3 dishes of lysate at a time, reusing the same immunoaffinity matrix at least 15 times. To prepare the immunoaffinity matrix, anti-HA tag antibody (12CA5; obtained from BAbCO) was chemically crosslinked to protein A-Sepharose beads (Pharmacia, Piscataway, N.J.) by published methods [Harlow, E., and Lane, D. (1988) supra]. After washing 3 dishes of cells twice with PBS and once with IP wash (10% (vol/vol) glycerol; 135 mM NaCl; 20 mM Tris, pH 8.0), the cells were scraped and lysed at 4° C. with rocking for 10 min in 1.0 ml of NP40 lysis buffer (IP wash containing 1% Nonidet P-40, 1 mM phenylmethylsulfonyl fluoride, and 0.03 units/ml aprotinin). Lysates were cleared at 13,000×g and then incubated for 1 h at 4° C. while rocking with 500 μl of the crosslinked antibody/bead complexes. Complexes were washed once with NP40 lysis buffer, three times with Tris-buffered saline, and then twice with ddH2O. Bound H59Q complexes containing PME-1 were eluted by three sequential incubations with 300 μl of 20 mM triethylamine. Eluates were quickly frozen on dry ice and stored frozen until all batches of affinity purification had been completed. The antibody/bead complexes were then washed twice with 20 mM triethylamine and twice with IPlyse prior to reuse. After H59Q complexes had been purified from all 135 dishes of cells, eluates containing PME-1 were concentrated to dryness by vacuum centrifugation, and the residues were suspended in PBS and gel buffer and analyzed on three separate SDS-polyacrylamide gels [Laemmli, U. K. (1970) Nature 227:680-685]. One-dimensional gels were chosen to avoid losses associated with 2D gel analysis. Because PME-1 migrates closely to actin, the separation of these two proteins was maximized by the use of an 8% SDS-polyacrylamide gel run for an extended period of time.
- Trypsin Digestion, HPLC Separation and Microsequencing
- After separation of PME-1 complexes by SDS-PAGE, the proteins were electrotransferred to polyvinylidiene difluoride (PVDF) membrane and stained with Ponceau S. Individual protein bands were excised and submitted to in situ digestion with trypsin [Fernandez et al. (1994)Anal. Biochem. 218:112-117; Lane et al. (1991) J. Protein Chem. 10:151-160]. The resulting peptide mixture was separated by microbore high performance liquid chromatography using a Zorbax C18 2.1 mm by 150 mm reverse phase column on a Hewlett-Packard 1090 HPLC/1040 diode array detector. Optimum fractions from the chromatogram were chosen based on differential UV absorbance at 205 nm, 277 nm and 292 nm, peak symmetry and resolution. Peaks were further screened for length and homogeneity by matrix-assisted laser desorption time-of-flight mass spectrometry (MALDI-MS) on a Finnigan Lasermat 2000 (Hemel, England); and selected fractions were submitted to automated Edman degradation on an Applied Biosystems 494A, 477A (Foster City, Calif.) or Hewlett Packard G1005A (Palo Alto, Calif.). Details of general strategies for the selection of peptide fractions and their microsequencing have been previously described [Lane et al. (1991) supra].
- cDNA Cloning via PCR and RT-PCR
- To obtain the missing 5′ portion of the PME-1 coding region, nested and seminested PCR were performed using human B cell, human hippocampus, and human kidney cDNA plasmid libraries. 5′ primers corresponded to vector sequence that flanked cDNA inserts in the library being used as template, while 3′ primers corresponded to known sequence (EST or newly derived 5′ PME-1 sequence). Southern Blotting using an end-labeled 20 bp oligonucleotide corresponding to known PME-1 sequence upstream of the 3′ PCR primer was employed to identify authentic PME-1 products after each reaction. PCR products containing 5′ extensions of the PME-1 sequence were purified using a PCR product purification kit (Boehringer-Mannheim, Indianapolis, Ind.), cloned, and sequenced. New primers were designed for PCR and Southern Blotting and then the above steps were repeated until the sequence of the remainder of the PME-1 coding region and a portion of the 5′UTR were obtained.
- Total mRNA was purified from HeLa cells using Trizol Reagent (Life Technologies, Gaithersburg, Md.) according to the manufacturer's instructions. RT-PCR was employed to obtain a PME-1 cDNA from HeLa cell mRNA. First strand synthesis was performed with Avian Myeloblastosis Virus reverse transcriptase (Boehringer-Mannheim, Indianapolis, Ind.) by the manufacturer's protocol using a primer from the PME-1 3′ UTR (TGTTGAGGAGGGGTGGACAG) (SEQ ID NO:1). Using pfu polymerase (Stratagene, La Jolla, Calif.), the product was used for PCR with the same 3′ primer and a primer from the PME-1 5′ UTR (TGTATGGGGACCTTCCTCCT) (SEQ ID NO:2) to generate a cDNA containing the entire PME-1 coding region and much of the 5′ UTR, including the in frame stop codon upstream of the putative start ATG.
- Obtaining the entire human PME-1 coding sequence required hundreds of PCR reactions, scores of oligonucleotide primers, many Southern blots and numerous subclonings and sequencing reactions. Most libraries did not contain cDNAs with a full length PME-1 coding sequence.
- Purification of His-Tagged PME-1 from Bacteria Expressing Recombinant His-Tagged PME-1
-
- Assay for PP2A Methylesterase Activity
- Epitope-tagged PP2A C subunits with3H-methyl groups incorporated in vitro were immunoprecipitated with anti-tag antibody and used as substrate for PME-1. PME-1 enzyme sources assayed include: lysates of bacteria or baculovirus-infected Sf9 insect cells expressing His-tagged PME-1 and immunoprecipitated PME-1 from baculovirus-infected Sf9 insect cells. Control lysates from bacteria or Sf9 cells not expressing recombinant PME-1 were also incubated with tritiated substrate to measure non-specific background from the lysates. After 1 h incubation at 32° C., the amount of 3H-methyl groups remaining was assayed by SDS-polyacrylamide gel electrophoresis (SDS-PAGE). PME-1 was clearly able to demethylate PP2A C subunit as measured by this assay. The HA-tagged PME-1 expressed in the baculovirus vector has been demonstrated to have PP2A methylesterase activity.
- In a second methylesterase assay, unlabeled epitope-tagged PP2A C subunits were immunoprecipitated with anti-tag antibody and used as substrate for PME-1. As PME-1 enzyme source, the following were used: cell lysates of bacteria expressing HA-tagged, His-tagged, and untagged PME-1; cell lysates of HA-tagged or untagged PME-1-expressing baculovirus-infected Sf9 insect cells; purified bacterial HA-tagged PME-1, purified (immunoprecipitated) baculovirus-infected Sf9 HA-tagged PME-1. Control lysates from bacteria or Sf9 cells not expressing recombinant PME-1 were also incubated with substrate to measure non-specific background from the lysates. After 1h incubation at 32° C., the C subunit immunoprecipitates were washed and analyzed by SDS-PAGE. The proteins in the gels were electrophoretically transferred to nitrocellulose membranes and then the membranes were probed with monoclonal antibody (made in our laboratory) that only recognizes unmethylated PP2A. A second probing of the same membrane with a methylation-insensitive antibody shows the actual amount of PP2A C subunit in each lane. Comparison of the blotting signals for the two different antibodies allows demethylation to be evaluated (the signal of the methylation-inhibited antibody gets stronger as PP2A C subunit is demethylated). PME-1 was clearly able to demethylate PP2A C subunit, as measured by this assay.
- An in vitro methylesterase activity assay using the PME-1 protein, for example, produced as a recombinant human PME-1, can be used to screen test compounds for inhibition of PME-1. Inhibitors of PME-1 in e.g., neoplastic cells slow the growth of those cells. Inhibitors could also be used to slow the growth in other hyperproliferative conditions. In Alzheimer's disease, PP2A has reduced activity. Identification of compounds which increase PP2A activity, for example, by appropriately modulating PME-1 activity, allows treatment to slow the progression of Alzheimer's disease, and thus postpone loss of mental function in affected patients.
- Computer Analyses
- The NCBI BLAST program [Altschul, S. F. et al. (1990)J. Mol. Biol. 215:403-410] was used to probe various databases for PME-1 ESTs and related proteins. The DNASTAR Lasergene software package was utilized for alignments and identification of the PROSITE database lipase motif found in PME-1.
- Northern Blot
- Adult Balb/c mice were sacrificed and organs removed and flash-frozen in liquid nitrogen. Total RNA from the organs was isolated using the RNeasy kit (QIAGEN) and analyzed on formaldehyde-1% agarose gels to check for RNA integrity and to estimate the amount of the 18S and 28S RNAs. Based on these estimates, similar amounts of RNA were separated on formaldehyde-1% agarose gels and transferred to GeneScreen nylon membranes. After UV-crosslinking, the membranes were stained with a 0.04% methylene blue solution to visualize the RNA. Filters were then hybridized with a32P-radiolabeled probe generated by random primer labeling of a DNA fragment from the 3′ untranslated region of the mouse PME-1 cDNA. the probe, 395 bp in length, is an EcoRI-NotI fragment of a PME-1 EST clone (accession number W34856). The blots were used for autoradiography with X-ray film and/or analysed on a STORM PhosphorImager (Molecular Dynamics, Sunnyvale, Calif.).
- Production of Polyclonal Antibodies Recognizing PME-1
- Two different antisera recognizing PME-1 were raised in rabbits. The first AR2, was raised against a 16-residue PME-1 peptide sequence (RIELAKTEKYWDGWFR) (amino acids 288-303, SEQ ID NO:5) found encoded in the PME-1 cDNA. The peptide was conjugated to Keyhole Limpet Hemocyanin (KLH) via an added carboxy-terminal cysteine residue using a Piece Imject conjugation kit, and the conjugate was used as immunogen. The second antiserum, E37, was raised against a mixture of two-nickel agarose-purified, 6×His-tagged, bacterially expressed human PME-1 fragments that together represent the carboxy-terminal half of the protein. For each immunogen, a single female New Zealand white rabbit was immunized and boosted multiple times using Freund's adjuvant.
- PME-1 Sequences from other Organisms
- Yeast PME-1 was found by homology searches of sequence databases using the NCBI BLAST program and the known human PME-1 sequence. Genomic yeast PME-1 sequence was examined and found to have no introns; therefore, we designed PCR primers for yeast PME-1 carried out PCR, cloned the PCR product into a bacterial vector and sequenced it to make sure no PCR errors had occurred.
- Table 3 shows the amino acid sequence of the yeast methylesterase homolog of PME-1. Table 6 provides the coding sequence for the yeast PME-1 protein.
- TheC. elegans PME-1 coding sequence was deduced by homology with mammalian and yeast PME-1 sequenced. However, it should be noted that this gene product was not predicted by the Genefinder program.
- Table 4 provides the amino acid sequence of theC. elegans PME-1 homolog and Table 7 gives the coding sequence. Review of the EST sequences revealed two potential alternative splicing scenarios. The alternate which encoded an LLSTYCR amino acid segment (SEQ ID NO:17) was ruled out based on the lack of a similar amino acid segment in the yeast PME-1 protein and poor alignment with the human protein sequence.
- Table 9 illustrates the alignment of human,C. elegans and S. cerevisiae (YHN5) PME-1 protein sequences. Residues identical with human PME-1 are as white-on-black. Residues corresponding to the Prosite motif for lipases employing an active site serine are boxed.
- The mouse PME-1 sequences were found by search for EST sequences on Genbank with significant homology to the human PME-1 DNA sequences disclosed herein. Table 5 represents a portion of the mouse coding sequence generated by homology searches and computer-aided alignment of the mouse sequences to the human sequences and creating a consensus sequence for the nucleotides of the various homologous ESTs. The first 283 nucleotides of Table 5 are from a single EST (Genbank Accession No. AA555778). The next 465 nucleotides are given as X's because there was no mouse sequence homologous to the corresponding human PME-1 cDNA sequence. It is understood that the actual length may not be exactly 465 nucleotides. The following 527 nucleotides are from a single mouse EST (Accession No. AA644991.) The next seven nucleotides (1276-1282) are from an overlap of AA644991 with AA672810. The following 132 nucleotides are from AA 672810 only. Then two other ESTs overlap; thus, most of the remaining nucleotides are quite certain, with the following exceptions. The nucleotides at positions 1942-1943 are somewhat ambiguous in that two ESTs have the identified sequence while others have TA, TN or T-. The G at position 2167 is from 2 of 3 ESTs. R at 2169 is from a G and A in two ESTs. The sequence at 2174-2175 appears unreliable. Nucleotides 2247-2270 are from a single EST (Accession No. EST AA260585) and nucleotides 2337-2409 are from a single minus-strand EST (Accession No. T25552).
- Plants also have similar growth regulatory phosphatase-kinase-methylation-demethylation systems, and there is a plant protein having significant homology to the mouse, human, yeast and nematode (C. elegans) PME-1 sequences, especially to the catalytic and GQMQGK (amino acids 333-338 of SEQ ID NO:5) regions of human PME-1. The plant homolog(s) of PME-1 can be identified using techniques similar to those described herein, including, but not limited to, the use of sequence database searches in conjunction with PCR, RT-PCR and/or hybridization studies and immunological screening with antibodies specific for a PME-1 protein.
TABLE 1 H59Q and H118Q are catalytically inactivea C subunit-associated phosphatase activity (% wt)b phosphorylase a cdc2-phosphorylated C subunit (Means ± s.d.) Histone H1 (Mean ± s.d.) None (vector 9 ± 2 2 ± 1 only control) wt 100 100 H59Q 7 ± 1 2 ± 1 H118Q 8 ± 3 2 ± 1 -
-
TABLE 3 Saccharomyces cerevisiae PME-1 Amino Acid Sequence MSDDLRRKIALSQFEPAKNVLDATFQEAYEDDENDGDALGSLPSFNGQSNRNRKY (SEQ ID NO:6) TGKTGSTTDRISSKEKSSLPTWSDFFDNKELVSLPDRDLDVNTYYTLPTSLLSNTTS IPTFTFHHGAGSSGLSFANLAKELNTKLEGRCGCFAFDARGHAETKFKKADAPICF DRDSFIKDFVSLLNYWFKSKISQEPLQKVSVILIGHSLGGSTCTFAYPKLSTELQKKI LGITMLDIVEEAAIMALNKVEHFLQNTPNVFESINDAVDWHVQHALSRLRSSAEIAI PALFAPLKSGKVVRITNLKTFSPPWDTWFTDLSHSFVGLPVSKLLILAGNENLDKE LIVGQMQGKYQLVVFQDSGHFIQEDSPIKTAITLIDFWKRNDSRNVVIKTNWGQHK TVQNT - From Genbank sequence sequences identified as encoding a hypothetical protein; deposited by JOHNSTON M., ANDREWS S., BRINKMAN R., COOPER J., DING H., DOVER J., DU Z., FAVELLO A., FULTON L., GATTUNG S., GEISEL C., KIRSTEN J., KUCABA T., HILLIER, L., JIER M., JOHNSTON L., LANGSTON Y., ATREILLE P., LOUIS E. J., MACRI C., MARDIS E., MENEZES S., MOUSER L., NHAN M., RIFKIN L., RILES L., ST. PETER H., TREVASKIS E., VAUGHAN K., VIGNATI D., WILCOX L., WOHLDMAN P., WATERSTON R., WILSON R., VAUDIN M.; See also SCIENCE 265:2077-2082(1994).
- ACCESSION: P38796; PIR: S46814 #type complete ACCESSION: S46814 GB: YSCH9205 ACCESSION: U10556 DESC HYPOTHETICAL 44.9 KD PROTEIN IN ERG7-NMD2 INTERGENIC REGION. DATE Feb. 1, 1995 (REL. 31, CREATED) Feb. 1, 1995 (REL. 31, LAST SEQUENCE UPDATE) Feb. 1, 1995 (REL. 31, LAST ANNOTATION UPDATE) GENE YHR 075C. #map_position 8R COM SEQUENCE FROM N.A. STRAIN=S288C/AB972; MED MEDLIN; 94378003. AUTH TAXONOMY EUKARYOTA; FUNGI; ASCOMYCOTINA; HEMIASCOMYCETES. COMMENT Nucleic Acid Features translated to generate this entry: CDS complement(9569 . . . 10771)/codon_start=1/evidence=not_experimental/db_xref=“PID:g500835”
TABLE 4 Caenorhabditis elegans PME-1 Amino Acid Sequence. (SEQ ID NO:7) MSDDKLDTLPDLQSETSHVTTPHRQNDLLRQAVTHGRPPPVPSTSTSGKK REMSELPWSDFFDEKKDANIDGDVFNVYIKGNEGPIFYLLHGGGYSGLTW ACFAKELATLISCRVVAPDLRGHGDTKCSDEHDLSKETQIKDIGAIFKNI FGEDDSPVCIVGHSMGGALAIHTLNAKMISSKVAALIVIDVVEGSAMEAL GGMVHFLHSRPSSFPSIEKAIHWCLSSGTARNPTAARVSMPSQIREVSEH EYTWRIDLTTTEQYWKGWFEGLSKEFLGCSVPKMLVLAGVDRLDRDLTIG QMQGKFQTCVLPKVGHCVQEDSPQNLADEVGRFACRHRIAQPKFSALASP PDPAILEYRKRHHQ -
TABLE 5 Partial CDNA Sequence of Mus musculus PME-1 homolog (SEQ ID NO:8) TTGTACTGCACGTATCGTGGGACGGACCTTGGGCCACTGTTGTCGACGTG CGGCCTCCCTTTGATGTCGGCCCTTGAAAAAAGCATGCACCTCGGCCGCC TACCTTCTCGCCCTCCTCTACCCGGCAGCGGGGGCAGTCAGAGCGGACGC AAGATGCGGATGGGCCCTGGACGGAAGCGGGACTTTACCCCTGTCCCATG GAGTCAGTACTTTGAGTCAATGGAAGATGTGGAAGTGGAGAATGAAACTG GCAAGGATACTTTTCGAGTTTACAAGATTGGTTXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXTT CGGATCCTTGGCCAAGTCAAACAGTGTGAAGGAATTACAAGTCCAGAAGG TTCCAAATCCATAGTGGAAGGAATCATAGAGGAGGAGGAAGAAGATGAGG AAGGAAGTGAGTCAGTTAACAAGAGGAAAAAGGAAGACGACATGGAAACC AAGAAGGATCACCCATACACCTGGAGAATTGAGCTGGCAAAAACAGAAAA GTACTGGGATGGCTGGTTCCGGGGCTTATCCAATCTCTTTCTTAGCTGTC CTATTCCTAAACTGCTGCTCTTGGCGGGTGTTGACAGATTGGATAAAGAT CTGACCATAGGCCAGATGCAGGGGAAGTTCCAGATGCAGGTCTTACCCCA GTGTGGCCATGCAGTCCATGAGGATGCCCCTGACAAGGTAGCTGAAGCTG TTGCCACTTTCCTGATCCGGCACAGGTTTGCAGAGCCCATCGGAGGATTC CAGTGTGTGTTTACTGGCTGCTAGTGACCTGCTGTCTACTCCTCCCTCTA CATTGAGCTCTGTTGTAAATACATCGCACCAGAGGCCACTGTGACGCCGC TGTCTCCTCCTCTCCATCCCGCCCAGCCATGTGACACCGGCTCTTGTAGA GGGCATCCCCAGATGTCCAAACCCTTTCCTGTGTACTGTTGAAAGCATTG TTCTTCAGGGCCCTTGTCCAACAGTGGCCCGTGCAGTCTGGGGTCCACAG CTCTTCCTCTCCTTCCTGTGCTCCCTGCTTGCCTAGGATGAAGCCTCCAG CGCTGCTCCCTGGCCCTGTTCCTGGCATATGGCAATGTACCCCAGGCTCA GGGATCTCCCTTCCTTGAGGATGTTCTTGGCATGGTCCTGCCCTACCTCA TGGGATGGGCAATGCACACACTGGCCCTTATTTTTCCCTTTCAAATAAAA CACCAGTCAGGTACCTTTATCCCAGTCTTAACTGTCCCAAATCTGGAAGG TCCAGAGTAAGCAGGATTCAGGGAGAGGGAGTGGATAGCAAGTATCCCAA GAAACCAACCTGTAAGTCAGGTCCAGCCAGTCCAAGCACATGGCTTCCCA TCTGGGTGAGCCCACTGTCCCACTCCCACATGTCTGGGCACCTGCCCTGG GCTGAGGCCAGGCTGCTCCAAGGGCCGCATGAGCCCTAATCTGCCACAGA GCAACCCAGGTTAAACACAGCCCATGCACAAAGCCACAGGCTAAATCCTG TGGAATTGTTTTTAATGACTGAATTTAACCATTTTCATAGTTGGTTCCTG GAGGTGTGCCAAGTGCCCGCTTGCCTCTTCTAGACCCACAGCTTCTTGAT CCACTTGTGGTTTCCATGTCACTAATGTAGAAACATCATGGACTAGCATC CCCAGTCTTTGCCCTCATCCAGCTGTCGCAGCGCACACTGGGGCCTCCCC CCTGCTGCCCAGGGGGGGRCGGGGTGGGCAGCCTCCTGAAACCCATCTTT CTGTGACTGTCTTAGGTGACGTGTAGCCCTCTTCCGTTTTTTCACCCAAC AACTTCCTCTGTCCTGCTGCACGGTCCAGAGTCTGGGACCGACTTTGTTT CTTTGTTATTTATGATCTTGTTTAAAGAAAATAAATATCTCCCAACCTTT AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAA -
TABLE 6 S. cerevisiae PME-1 Coding Sequence (SEQ ID NO:9) ATGTCTGACGATTTGAGAAGAAAAATTGCTTTATCCCAGTTTGAGAGAGC CAAGAATGTTCTAGATGCGACATTCCAAGAAGCATACGAGGATGATGAAA ACGATGGTGATGCATTAGGTTCCCTGCCATCATTTAATGGACAATCAAAT AGGAACAGAAAATATACGGGCAAAACCGGTAGTACTACTGATAGAATTTC AAGTAAGGAAAAGAGTAGTTTACCCACTTGGAGTGATTTTTTTGATAATA AGGAGTTGGTAAGTCTTCCTGATAGAGATCTGGACGTAAATACATACTAT ACATTACCTACTTCATTGTTATCAAATACCACTTCAATTCCCATCTTTAT TTTCCACCATGGGGCGGGCTCCTCAGGTTTATCATTTGCAAACTTGGCCA AGGAATTAAATACTAAACTAGAAGGAAGATGCGGATGCTTTGCATTTGAT GCTAGGGGGCATGCAGAAACAAAGTTTAAGAAGGCTGATGCGCCTATATG CTTTGACAGGGACTCTTTTATCAAAGATTTTGTAAGCCTGCTAAATTATT GGTTTAAGTCTAAAATAAGCCAAGAGCCACTTCAGAAGGTATCTGTTATA CTAATTGGTCATTCCCTTGGTGGAAGTATATGTACTTTTGCGTACCCTAA ATTATCAACAGAACTACAAAAGAAAATTCTTGGTATTACTATGTTAGATA TTGTAGAAGAGGCTGCCATTATGGCCTTAAATAAAGTTGAACATTTTTTG CAGAATACACCCAATGTATTTGAATCAATTAATGACGCTGTCGATTGGCA CGTTCAACACGCGTTATCGAGATTGAGGTCAAGCGCCGAAATTGCTATAC CAGCTTTATTTGCTCCGCTCAAGTCAGGGAAAGTTGTCAGGATAACAAAC CTTAAGACCTTTAGCCCTTTCTGGGACACATGGTTTACCGATCTGTCGCA CTCCTTTGTTGGCTTACCTGTTAGTAAATTATTAATATTGGCGGGAAACG AAAATCTCGATAAAGAATTAATTGTGGGGCAAATGCAAGGTAAATATCAG TTGGTAGTTTTCCAAGATTCCGGGCATTTCATTCAAGAAGATTCGCCTAT AAAAACAGCAATCACTTTAATTGATTTCTGGAAGCGGAACGATTCTAGGA ATGTAGTAATCAAGACTAATTGGGGTCAACACAAAACCGTGCAAAATACA TAA -
TABLE 7 C. elegans PME-1 Coding Sequence (SEQ ID NO:1O) ATGTCCGACGATAAATTAGACACTCTTCCGGATCTTCAATCGGAAACGTC ACATGTCACAACTCCTCACAGGCAAAATGATCTTCTTCGTCAAGCGGTCA CTCATGGAAGGCCACCACCAGTTCCGAGCACATCAACTTCTGGAAAGAAA CGAGAAATGTCTGAACTACCGTGGTCAGATTTTTTTGATGAAAAGAAGGA CGCAAACATTGATGGAGATGTTTTCAATGTGTACATAAAGGGAAATGAAG GTCCAATTTTCTATTTGCTTCACGGTGGAGGTTATTCAGGCCTCACATGG GCGTGTTTTGCGAAAGAATTGGCAACTTTAATATCATGCAGAGTTGTTGC ACCTGATTTAAGAGGACACGGCGACACTAAATGTTCTGATGAGCACGATC TTTCGAAAGAAACCCAAATAAAGGATATTGGAGCAATCTTCAAGAACATT TTCGGCGAAGACGATTCACCAGTATGCATTGTTGGACACAGTATGGGTGG TGCATTGGCCATTCATACATTGAATGCAAAGATGATTTCTTCAAAAGTCG CTGCACTCATTGTCATTGATGTTGTCGAAGGTTCCGCTATGGAAGCACTT GGAGGAATGGTTCATTTTTTACATTCAAGGCCTTCTTCATTTCCTTCTAT CGAAAAAGCCATTCACTGGTGCCTTTCTTCGGGTACAGCGAGGAATCCCA CAGCTGCACGGGTCTCAATGCCGTCTCAAATTAGAGAAGTATCGGAACAC GAGTACACTTGGCGAATTGATTTAACAACAACAGAACAGTACTGGAAAGG ATGGTTTGAAGGATTATCCAAAGAATTTTTGGGATGTTCCGTTCCGAAGA TGCTTGTTCTAGCGGGCGTTGATCGGCTGGACAGGGATCTCACAATTGGT CAAATGCAGGGAAAGTTTCAGACTTGTGTGTTACCAAAAGTTGGACATTG TGTTCAGGAAGATAGCCCACAAAATCTTGCAGATGAAGTCGGAAGATTCG CTTGCCGCCATAGAATTGCCCAACCGAAATTCTCAGCCCTTGCATCACCA CCAGATCCAGCGATTCTCGAATACAGAAAACGTCATCACCAATAA -
TABLE 8 Comparison of the sequences surrounding the putative or known active site serines of PME-1 proteins and CheB Species First residue Sequence SEQ ID NO: Human PME-1 150 IMLIGHSMG 11 C. elegans PME-1 158 VCIVGHSMG 12 S. cerevisiae PME-1 199 VILIGHSLG 13 S. typhimurium CheB 158 LIAIGASTG 14 -
-
1 17 1 20 DNA Artificial Sequence Description of Artificial Sequence oligonucleotide 1 tgttgaggag gggtggacag 20 2 20 DNA Artificial Sequence Description of Artificial Sequence oligonucleotide 2 tgtatgggga ccttcctcct 20 3 16 PRT Homo sapiens 3 Arg Ile Glu Leu Ala Lys Thr Glu Lys Tyr Trp Asp Gly Trp Phe Arg 1 5 10 15 4 2484 DNA Homo sapiens CDS (100)..(1257) 4 gggcgtcgtt aggggagcga gtcgtgaccg gttgggccac actcaacgtg ggacgaagct 60 tcgcctactg tttgactacg tgcgtgcagc ctcccctcg atg tcg gcc ctc gaa 114 Met Ser Ala Leu Glu 1 5 aag agc atg cac ctc ggc cgc ctt ccc tct cgc cca cct cta ccc ggc 162 Lys Ser Met His Leu Gly Arg Leu Pro Ser Arg Pro Pro Leu Pro Gly 10 15 20 agc ggg ggc agt cag agc gga gcc aag atg cga atg ggc cct gga aga 210 Ser Gly Gly Ser Gln Ser Gly Ala Lys Met Arg Met Gly Pro Gly Arg 25 30 35 aag cgg gac ttt tcc cct gtt cct tgg agt cag tat ttt gag tcc atg 258 Lys Arg Asp Phe Ser Pro Val Pro Trp Ser Gln Tyr Phe Glu Ser Met 40 45 50 gaa gat gta gaa gta gag aat gaa act ggc aag gat act ttt cga gtc 306 Glu Asp Val Glu Val Glu Asn Glu Thr Gly Lys Asp Thr Phe Arg Val 55 60 65 tac aag agt ggt tca gag ggt cca gtc ctg ctc ctt ctg cat gga gga 354 Tyr Lys Ser Gly Ser Glu Gly Pro Val Leu Leu Leu Leu His Gly Gly 70 75 80 85 ggt cat tct gcc ctt tct tgg gct gtg ttc acg gca gcg att att agt 402 Gly His Ser Ala Leu Ser Trp Ala Val Phe Thr Ala Ala Ile Ile Ser 90 95 100 aga gtt cag tgt agg att gta gct ttg gat ctg cga agt cat ggt gaa 450 Arg Val Gln Cys Arg Ile Val Ala Leu Asp Leu Arg Ser His Gly Glu 105 110 115 aca aag gtc aag aat cct gaa gat ctg tct gca gaa aca atg gca aaa 498 Thr Lys Val Lys Asn Pro Glu Asp Leu Ser Ala Glu Thr Met Ala Lys 120 125 130 gac gtt ggc aat gtg gtt gaa gcc atg tat ggg gac ctt cct cct cca 546 Asp Val Gly Asn Val Val Glu Ala Met Tyr Gly Asp Leu Pro Pro Pro 135 140 145 att atg ctg att gga cat agc atg ggt ggt gct att gca gtc cac aca 594 Ile Met Leu Ile Gly His Ser Met Gly Gly Ala Ile Ala Val His Thr 150 155 160 165 gca tca tcc aac ctg gta cca agc ctc ttg ggt ctg tgc atg att gat 642 Ala Ser Ser Asn Leu Val Pro Ser Leu Leu Gly Leu Cys Met Ile Asp 170 175 180 gtt gta gaa ggt aca gct atg gat gca ctt aat agc atg cag aat ttc 690 Val Val Glu Gly Thr Ala Met Asp Ala Leu Asn Ser Met Gln Asn Phe 185 190 195 tta cgg ggt cgt cct aaa acc ttc aag tct ctg gag aat gct att gaa 738 Leu Arg Gly Arg Pro Lys Thr Phe Lys Ser Leu Glu Asn Ala Ile Glu 200 205 210 tgg agt gtg aag agt ggc cag att cga aat ctg gag tct gcc cgt gtc 786 Trp Ser Val Lys Ser Gly Gln Ile Arg Asn Leu Glu Ser Ala Arg Val 215 220 225 tca atg gtt ggc caa gtc aaa cag tgt gaa gga att aca agt cca gaa 834 Ser Met Val Gly Gln Val Lys Gln Cys Glu Gly Ile Thr Ser Pro Glu 230 235 240 245 ggc tca aaa tct ata gtg gaa gga atc ata gag gaa gaa gaa gaa gat 882 Gly Ser Lys Ser Ile Val Glu Gly Ile Ile Glu Glu Glu Glu Glu Asp 250 255 260 gag gaa gga agt gag tct ata agc aag agg aaa aag gaa gat gac atg 930 Glu Glu Gly Ser Glu Ser Ile Ser Lys Arg Lys Lys Glu Asp Asp Met 265 270 275 gag acc aag aaa gac cat cca tac acc tgg aga att gaa ctg gca aaa 978 Glu Thr Lys Lys Asp His Pro Tyr Thr Trp Arg Ile Glu Leu Ala Lys 280 285 290 aca gaa aaa tac tgg gac ggc tgg ttc cga ggc tta tcc aat ctc ttt 1026 Thr Glu Lys Tyr Trp Asp Gly Trp Phe Arg Gly Leu Ser Asn Leu Phe 295 300 305 ctt agt tgt ccc att cct aaa ttg ctg ctc ttg gct ggt gtt gat aga 1074 Leu Ser Cys Pro Ile Pro Lys Leu Leu Leu Leu Ala Gly Val Asp Arg 310 315 320 325 ttg gat aaa gat ctg acc att ggc cag atg caa ggg aag ttc cag atg 1122 Leu Asp Lys Asp Leu Thr Ile Gly Gln Met Gln Gly Lys Phe Gln Met 330 335 340 cag gtc cta ccc cag tgt ggc cat gca gtc cat gag gat gcc cct gac 1170 Gln Val Leu Pro Gln Cys Gly His Ala Val His Glu Asp Ala Pro Asp 345 350 355 aag gta gct gaa gct gtt gcc act ttc ctg atc cgg cac agg ttt gca 1218 Lys Val Ala Glu Ala Val Ala Thr Phe Leu Ile Arg His Arg Phe Ala 360 365 370 gaa ccc atc ggt gga ttc cag tgt gtg ttt cct ggc tgt tagtgacctg 1267 Glu Pro Ile Gly Gly Phe Gln Cys Val Phe Pro Gly Cys 375 380 385 ctgtccaccc ctcctcaaca tcgagctctg ttgtaaatac gtcgcaccag aggccactgt 1327 gatgccactg tctcctctcc atcccgccca gccatgtgac actggctccc ggtagacggg 1387 caccccgaga tgtaccaacc ttttcatgta ttctgccaaa agcattgttt tccagggccc 1447 ttgaccaaca tcggcttccc cagtccaggg ctcccctgct cctttccctt ccctgtactg 1507 gggtagctcc tgcctgctct ccctgcgttg cctagggtaa agcctccaga tttgccatac 1567 tgagcccctc ttcctagcat caggcgatac atctgagttc aaatgtcttc ccaggctcag 1627 ggacctccat tccttgagat tgtcttggca tggcccagcc ctgcctcatg ggatggacaa 1687 tgcatggggt ggtctttatt tttccctttc aaataaaaca ctagtcaggt accgttttat 1747 cccagtcgta ctcttccagg tttggaagac ccagagaggc caagatccca tccttagcca 1807 tagcgagcgg tggtggtgga tagcatcaca agaaacgagc ctgaaaatca ggtccagccg 1867 gtccaagcac atggcctccc atctgggaga gcccactgtc ccactcccac atgtctgggc 1927 acctgccctg ggctgaggcc aggctgctcc aggggcctcc tgcgccctca cctgccacag 1987 agcaacccag gttaaataca gcccatgcac aaagccacag gccaaagcct atggaattgt 2047 ttttaatcat caaatttaac cattttcata actggttcct ggaggtgtgc agtgccccct 2107 tgcctcttca aacctacagc ttctctttgc catttgtgga tttcacatca ctccacacag 2167 aaacattaca gcctggcatc cccagtcttt gccttcttcc agctgcctcg acacagcact 2227 gtggcctgtc cctattgccc aggcacgcca tttccaaggg caggaagggg cagtgtcctg 2287 aagcccatct tttctgtgac tgtcttaggt gatgtgtagc cccctccacc tttccactca 2347 acaacctccc acccctgtcc tgctgcatgg tccggagtct gggacctact ttgttttttg 2407 ttatttatga ccttgtttaa agaaaataaa tatctcccaa cctttaaaaa aaaaaaaaaa 2467 aaaaaaaaaa aaaaaaa 2484 5 386 PRT Homo sapiens 5 Met Ser Ala Leu Glu Lys Ser Met His Leu Gly Arg Leu Pro Ser Arg 1 5 10 15 Pro Pro Leu Pro Gly Ser Gly Gly Ser Gln Ser Gly Ala Lys Met Arg 20 25 30 Met Gly Pro Gly Arg Lys Arg Asp Phe Ser Pro Val Pro Trp Ser Gln 35 40 45 Tyr Phe Glu Ser Met Glu Asp Val Glu Val Glu Asn Glu Thr Gly Lys 50 55 60 Asp Thr Phe Arg Val Tyr Lys Ser Gly Ser Glu Gly Pro Val Leu Leu 65 70 75 80 Leu Leu His Gly Gly Gly His Ser Ala Leu Ser Trp Ala Val Phe Thr 85 90 95 Ala Ala Ile Ile Ser Arg Val Gln Cys Arg Ile Val Ala Leu Asp Leu 100 105 110 Arg Ser His Gly Glu Thr Lys Val Lys Asn Pro Glu Asp Leu Ser Ala 115 120 125 Glu Thr Met Ala Lys Asp Val Gly Asn Val Val Glu Ala Met Tyr Gly 130 135 140 Asp Leu Pro Pro Pro Ile Met Leu Ile Gly His Ser Met Gly Gly Ala 145 150 155 160 Ile Ala Val His Thr Ala Ser Ser Asn Leu Val Pro Ser Leu Leu Gly 165 170 175 Leu Cys Met Ile Asp Val Val Glu Gly Thr Ala Met Asp Ala Leu Asn 180 185 190 Ser Met Gln Asn Phe Leu Arg Gly Arg Pro Lys Thr Phe Lys Ser Leu 195 200 205 Glu Asn Ala Ile Glu Trp Ser Val Lys Ser Gly Gln Ile Arg Asn Leu 210 215 220 Glu Ser Ala Arg Val Ser Met Val Gly Gln Val Lys Gln Cys Glu Gly 225 230 235 240 Ile Thr Ser Pro Glu Gly Ser Lys Ser Ile Val Glu Gly Ile Ile Glu 245 250 255 Glu Glu Glu Glu Asp Glu Glu Gly Ser Glu Ser Ile Ser Lys Arg Lys 260 265 270 Lys Glu Asp Asp Met Glu Thr Lys Lys Asp His Pro Tyr Thr Trp Arg 275 280 285 Ile Glu Leu Ala Lys Thr Glu Lys Tyr Trp Asp Gly Trp Phe Arg Gly 290 295 300 Leu Ser Asn Leu Phe Leu Ser Cys Pro Ile Pro Lys Leu Leu Leu Leu 305 310 315 320 Ala Gly Val Asp Arg Leu Asp Lys Asp Leu Thr Ile Gly Gln Met Gln 325 330 335 Gly Lys Phe Gln Met Gln Val Leu Pro Gln Cys Gly His Ala Val His 340 345 350 Glu Asp Ala Pro Asp Lys Val Ala Glu Ala Val Ala Thr Phe Leu Ile 355 360 365 Arg His Arg Phe Ala Glu Pro Ile Gly Gly Phe Gln Cys Val Phe Pro 370 375 380 Gly Cys 385 6 400 PRT Saccharomyces cerevisiae 6 Met Ser Asp Asp Leu Arg Arg Lys Ile Ala Leu Ser Gln Phe Glu Arg 1 5 10 15 Ala Lys Asn Val Leu Asp Ala Thr Phe Gln Glu Ala Tyr Glu Asp Asp 20 25 30 Glu Asn Asp Gly Asp Ala Leu Gly Ser Leu Pro Ser Phe Asn Gly Gln 35 40 45 Ser Asn Arg Asn Arg Lys Tyr Thr Gly Lys Thr Gly Ser Thr Thr Asp 50 55 60 Arg Ile Ser Ser Lys Glu Lys Ser Ser Leu Pro Thr Trp Ser Asp Phe 65 70 75 80 Phe Asp Asn Lys Glu Leu Val Ser Leu Pro Asp Arg Asp Leu Asp Val 85 90 95 Asn Thr Tyr Tyr Thr Leu Pro Thr Ser Leu Leu Ser Asn Thr Thr Ser 100 105 110 Ile Pro Ile Phe Ile Phe His His Gly Ala Gly Ser Ser Gly Leu Ser 115 120 125 Phe Ala Asn Leu Ala Lys Glu Leu Asn Thr Lys Leu Glu Gly Arg Cys 130 135 140 Gly Cys Phe Ala Phe Asp Ala Arg Gly His Ala Glu Thr Lys Phe Lys 145 150 155 160 Lys Ala Asp Ala Pro Ile Cys Phe Asp Arg Asp Ser Phe Ile Lys Asp 165 170 175 Phe Val Ser Leu Leu Asn Tyr Trp Phe Lys Ser Lys Ile Ser Gln Glu 180 185 190 Pro Leu Gln Lys Val Ser Val Ile Leu Ile Gly His Ser Leu Gly Gly 195 200 205 Ser Ile Cys Thr Phe Ala Tyr Pro Lys Leu Ser Thr Glu Leu Gln Lys 210 215 220 Lys Ile Leu Gly Ile Thr Met Leu Asp Ile Val Glu Glu Ala Ala Ile 225 230 235 240 Met Ala Leu Asn Lys Val Glu His Phe Leu Gln Asn Thr Pro Asn Val 245 250 255 Phe Glu Ser Ile Asn Asp Ala Val Asp Trp His Val Gln His Ala Leu 260 265 270 Ser Arg Leu Arg Ser Ser Ala Glu Ile Ala Ile Pro Ala Leu Phe Ala 275 280 285 Pro Leu Lys Ser Gly Lys Val Val Arg Ile Thr Asn Leu Lys Thr Phe 290 295 300 Ser Pro Phe Trp Asp Thr Trp Phe Thr Asp Leu Ser His Ser Phe Val 305 310 315 320 Gly Leu Pro Val Ser Lys Leu Leu Ile Leu Ala Gly Asn Glu Asn Leu 325 330 335 Asp Lys Glu Leu Ile Val Gly Gln Met Gln Gly Lys Tyr Gln Leu Val 340 345 350 Val Phe Gln Asp Ser Gly His Phe Ile Gln Glu Asp Ser Pro Ile Lys 355 360 365 Thr Ala Ile Thr Leu Ile Asp Phe Trp Lys Arg Asn Asp Ser Arg Asn 370 375 380 Val Val Ile Lys Thr Asn Trp Gly Gln His Lys Thr Val Gln Asn Thr 385 390 395 400 7 364 PRT Caenorhabditis elegans 7 Met Ser Asp Asp Lys Leu Asp Thr Leu Pro Asp Leu Gln Ser Glu Thr 1 5 10 15 Ser His Val Thr Thr Pro His Arg Gln Asn Asp Leu Leu Arg Gln Ala 20 25 30 Val Thr His Gly Arg Pro Pro Pro Val Pro Ser Thr Ser Thr Ser Gly 35 40 45 Lys Lys Arg Glu Met Ser Glu Leu Pro Trp Ser Asp Phe Phe Asp Glu 50 55 60 Lys Lys Asp Ala Asn Ile Asp Gly Asp Val Phe Asn Val Tyr Ile Lys 65 70 75 80 Gly Asn Glu Gly Pro Ile Phe Tyr Leu Leu His Gly Gly Gly Tyr Ser 85 90 95 Gly Leu Thr Trp Ala Cys Phe Ala Lys Glu Leu Ala Thr Leu Ile Ser 100 105 110 Cys Arg Val Val Ala Pro Asp Leu Arg Gly His Gly Asp Thr Lys Cys 115 120 125 Ser Asp Glu His Asp Leu Ser Lys Glu Thr Gln Ile Lys Asp Ile Gly 130 135 140 Ala Ile Phe Lys Asn Ile Phe Gly Glu Asp Asp Ser Pro Val Cys Ile 145 150 155 160 Val Gly His Ser Met Gly Gly Ala Leu Ala Ile His Thr Leu Asn Ala 165 170 175 Lys Met Ile Ser Ser Lys Val Ala Ala Leu Ile Val Ile Asp Val Val 180 185 190 Glu Gly Ser Ala Met Glu Ala Leu Gly Gly Met Val His Phe Leu His 195 200 205 Ser Arg Pro Ser Ser Phe Pro Ser Ile Glu Lys Ala Ile His Trp Cys 210 215 220 Leu Ser Ser Gly Thr Ala Arg Asn Pro Thr Ala Ala Arg Val Ser Met 225 230 235 240 Pro Ser Gln Ile Arg Glu Val Ser Glu His Glu Tyr Thr Trp Arg Ile 245 250 255 Asp Leu Thr Thr Thr Glu Gln Tyr Trp Lys Gly Trp Phe Glu Gly Leu 260 265 270 Ser Lys Glu Phe Leu Gly Cys Ser Val Pro Lys Met Leu Val Leu Ala 275 280 285 Gly Val Asp Arg Leu Asp Arg Asp Leu Thr Ile Gly Gln Met Gln Gly 290 295 300 Lys Phe Gln Thr Cys Val Leu Pro Lys Val Gly His Cys Val Gln Glu 305 310 315 320 Asp Ser Pro Gln Asn Leu Ala Asp Glu Val Gly Arg Phe Ala Cys Arg 325 330 335 His Arg Ile Ala Gln Pro Lys Phe Ser Ala Leu Ala Ser Pro Pro Asp 340 345 350 Pro Ala Ile Leu Glu Tyr Arg Lys Arg His His Gln 355 360 8 2409 DNA Mus musculus misc_feature (1)..(2409) N is A, T, G or C. 8 ttgtactgca cgtatcgtgg gacggacctt gggccactgt tgtcgacgtg cggcctccct 60 ttgatgtcgg cccttgaaaa aagcatgcac ctcggccgcc taccttctcg ccctcctcta 120 cccggcagcg ggggcagtca gagcggacgc aagatgcgga tgggccctgg acggaagcgg 180 gactttaccc ctgtcccatg gagtcagtac tttgagtcaa tggaagatgt ggaagtggag 240 aatgaaactg gcaaggatac ttttcgagtt tacaagattg gttnnnnnnn nnnnnnnnnn 300 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 360 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 420 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 480 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 540 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 600 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 660 nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn nnnnnnnnnn 720 nnnnnnnnnn nnnnnnnnnn nnnnnnnntt cggatccttg gccaagtcaa acagtgtgaa 780 ggaattacaa gtccagaagg ttccaaatcc atagtggaag gaatcataga ggaggaggaa 840 gaagatgagg aaggaagtga gtcagttaac aagaggaaaa aggaagacga catggaaacc 900 aagaaggatc acccatacac ctggagaatt gagctggcaa aaacagaaaa gtactgggat 960 ggctggttcc ggggcttatc caatctcttt cttagctgtc ctattcctaa actgctgctc 1020 ttggcgggtg ttgacagatt ggataaagat ctgaccatag gccagatgca ggggaagttc 1080 cagatgcagg tcttacccca gtgtggccat gcagtccatg aggatgcccc tgacaaggta 1140 gctgaagctg ttgccacttt cctgatccgg cacaggtttg cagagcccat cggaggattc 1200 cagtgtgtgt ttactggctg ctagtgacct gctgtctact cctccctcta cattgagctc 1260 tgttgtaaat acatcgcacc agaggccact gtgacgccgc tgtctcctcc tctccatccc 1320 gcccagccat gtgacaccgg ctcttgtaga gggcatcccc agatgtccaa accctttcct 1380 gtgtactgtt gaaagcattg ttcttcaggg cccttgtcca acagtggccc gtgcagtctg 1440 gggtccacag ctcttcctct ccttcctgtg ctccctgcct tgcctaggat gaagcctcca 1500 gcgctgctcc ctggccctgt tcctggcata tggcaatgta ccccaggctc agggatctcc 1560 cttccttgag gatgttcttg gcatggtcct gccctacctc atgggatggg caatgcacac 1620 actggccctt atttttccct ttcaaataaa acaccagtca ggtaccttta tcccagtctt 1680 aactgtccca aatctggaag gtccagagta agcaggattc agggagaggg agtggatagc 1740 aagtatccca agaaaccaac ctgtaagtca ggtccagcca gtccaagcac atggcttccc 1800 atctgggtga gcccactgtc ccactcccac atgtctgggc acctgccctg ggctgaggcc 1860 aggctgctcc aagggccgca tgagccctaa tctgccacag agcaacccag gttaaacaca 1920 gcccatgcac aaagccacag gctaaatcct gtggaattgt ttttaatgac tgaatttaac 1980 cattttcata gttggttcct ggaggtgtgc caagtgcccg cttgcctctt ctagacccac 2040 agcttcttga tccacttgtg gtttccatgt cactaatgta gaaacatcat ggactagcat 2100 ccccagtctt tgccctcatc cagctgtcgc agcgcacact ggggcctccc cctgctgccc 2160 agggggggrc ggggtgggca gcctcctgaa acccatcttt ctgtgactgt cttaggtgac 2220 gtgtagccct cttccgtttt ttcacccaac aacttcctct gtcctgctgc acggtccaga 2280 gtctgggacc gactttgttt ctttgttatt tatgatcttg tttaaagaaa ataaatatct 2340 cccaaccttt aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 2400 aaaaaaaaa 2409 9 1202 DNA Saccharomyces cerevisiae 9 tgtctgacga tttgagaaga aaaattgctt tatcccagtt tgagagagcc aagaatgttc 60 tagatgcgac attccaagaa gcatacgagg atgatgaaaa cgatggtgat gcattaggtt 120 ccctgccatc atttaatgga caatcaaata ggaacagaaa atatacgggc aaaaccggta 180 gtactactga tagaatttca agtaaggaaa agagtagttt acccacttgg agtgattttt 240 ttgataataa ggagttggta agtcttcctg atagagatct ggacgtaaat acatactata 300 cattacctac ttcattgtta tcaaatacca cttcaattcc catctttatt ttccaccatg 360 gggcgggctc ctcaggttta tcatttgcaa acttggccaa ggaattaaat actaaactag 420 aaggaagatg cggatgcttt gcatttgatg ctagggggca tgcagaaaca aagtttaaga 480 aggctgatgc gcctatatgc tttgacaggg actcttttat caaagatttt gtaagcctgc 540 taaattattg gtttaagtct aaaataagcc aagagccact tcagaaggta tctgttatac 600 taattggtca ttcccttggt ggaagtatat gtacttttgc gtaccctaaa ttatcaacag 660 aactacaaaa gaaaattctt ggtattacta tgttagatat tgtagaagag gctgccatta 720 tggccttaaa taaagttgaa cattttttgc agaatacacc caatgtattt gaatcaatta 780 atgacgctgt cgattggcac gttcaacacg cgttatcgag attgaggtca agcgccgaaa 840 ttgctatacc agctttattt gctccgctca agtcagggaa agttgtcagg ataacaaacc 900 ttaagacctt tagccctttc tgggacacat ggtttaccga tctgtcgcac tcctttgttg 960 gcttacctgt tagtaaatta ttaatattgg cgggaaacga aaatctcgat aaagaattaa 1020 ttgtggggca aatgcaaggt aaatatcagt tggtagtttt ccaagattcc gggcatttca 1080 ttcaagaaga ttcgcctata aaaacagcaa tcactttaat tgatttctgg aagcggaacg 1140 attctaggaa tgtagtaatc aagactaatt ggggtcaaca caaaaccgtg caaaatacat 1200 aa 1202 10 1095 DNA Caenorhabditis elegans 10 atgtccgacg ataaattaga cactcttccg gatcttcaat cggaaacgtc acatgtcaca 60 actcctcaca ggcaaaatga tcttcttcgt caagcggtca ctcatggaag gccaccacca 120 gttccgagca catcaacttc tggaaagaaa cgagaaatgt ctgaactacc gtggtcagat 180 ttttttgatg aaaagaagga cgcaaacatt gatggagatg ttttcaatgt gtacataaag 240 ggaaatgaag gtccaatttt ctatttgctt cacggtggag gttattcagg cctcacatgg 300 gcgtgttttg cgaaagaatt ggcaacttta atatcatgca gagttgttgc acctgattta 360 agaggacacg gcgacactaa atgttctgat gagcacgatc tttcgaaaga aacccaaata 420 aacgatattg gagcaatctt caagaacatt ttcggcgaag acgattcacc agtatgcatt 480 gttggacaca gtatgggtgg tgcattggcc attcatacat tgaatgcaaa gatgatttct 540 tcaaaagtcg ctgcactcat tgtcattgat gttgtcgaag gttccgctat ggaagcactt 600 ggaggaatgg ttcatttttt acattcaagg ccttcttcat ttccttctat cgaaaaagcc 660 attcactggt gcctttcttc gggtacagcg aggaatccca cagctgcacg ggtctcaatg 720 ccgtctcaaa ttagagaagt atcggaacac gagtacactt ggcgaattga tttaacaaca 780 acagaacagt actggaaagg atggtttgaa ggattatcca aagaattttt gggatgttcc 840 gttccgaaga tgcttgttct agcgggcgtt gatcggctgg acagggatct cacaattggt 900 caaatgcagg gaaagtttca gacttgtgtg ttaccaaaag ttggacattg tgttcaggaa 960 gatagcccac aaaatcttgc agatgaagtc ggaagattcg cttgccgcca tagaattgcc 1020 caaccgaaat tctcagccct tgcatcacca ccagatccag cgattctcga atacagaaaa 1080 cgtcatcacc aataa 1095 11 9 PRT Homo sapiens 11 Ile Met Leu Ile Gly His Ser Met Gly 1 5 12 9 PRT Caenorhabditis elegans 12 Val Cys Ile Val Gly His Ser Met Gly 1 5 13 9 PRT Saccharomyces cerevisiae 13 Val Ile Leu Ile Gly His Ser Leu Gly 1 5 14 9 PRT Salmonella typhimurium 14 Leu Ile Ala Ile Gly Ala Ser Thr Gly 1 5 15 10 PRT Artificial sequence UNSURE (1) X at position 1 is Leu, Ile or Val. 15 Xaa Xaa Xaa Xaa Gly Xaa Ser Xaa Gly Xaa 1 5 10 16 51 DNA Homo sapiens 16 tgactacgtg cgtgcagcct cccctcgatg tcggccctcg aaaagagcat g 51 17 7 PRT Artificial Sequence Description of Artificial Sequence Sequence resulting from alternative splicing. 17 Leu Leu Ser Thr Tyr Cys Arg 1 5
Claims (14)
1. An isolated nucleic acid molecule comprising a portion encoding protein phosphatase methylesterase-1 (PME-1), wherein said portion comprises a sequence at least 70% identical to a nucleotide sequence given in SEQ ID NO:9, nucleotides 1-1200.
2. The nucleic acid molecule of claim 1 , wherein said molecule encodes a PME-1 polypeptide consisting essentially of an amino acid sequence as given in SEQ ID NO:6, amino acids 1-400.
3. The nucleic acid molecule of claim 2 , wherein said molecule comprises a PME-1 coding sequence as shown in SEQ ID NO:9, nucleotide 1-1200.
4. A recombinant expression vector comprising the nucleic acid molecule encoding protein phosphatase methylesterase-1 (PME-1) of claim 1 , wherein a coding sequence of said molecule is operably linked to and expressed under control of transcription and translation regulatory elements.
5. The expression vector of claim 4 , wherein the encoded PME-1 consists essentially of the amino acid sequence given in SEQ ID NO:6, amino acids 1-400.
6. The expression vector of claim 4 , wherein said vector comprises the PME-1 coding sequence substantially as given in SEQ ID NO:9, nucleotides 1-1200.
7. The expression vector of claim 4 , wherein said vector is a bacterial vector.
8. The expression vector of claim 4 , wherein said vector is a baculovirus vector.
9. The expression vector of claim 4 , wherein said vector is a mammalian vector.
10. A recombinant host cell, wherein said cell comprises the expression vector of claim 4 .
11. The host cell of claim 10 , wherein said cell is a recombinant bacterial cell.
12. The host cell of claim 10 , where said cell is a recombinant mammalian cell.
13. A method for producing a recombinant protein phosphatase methylesterase-1 (PME-1) polypeptide, said method comprising the steps of:
(a) introducing the expression vector of claim 4 into a host selected from the group consisting of bacteria, insects and mammals; and
(b) culturing under conditions where PME-1 polypeptide is produced,
whereby said PME-1 polypeptide shows protein phosphatase methylsterase activity in vitro.
14. An isolated polypeptide or fragment thereof, having protein phosphatase methylesterase-1 activity, the amino acid sequence of which comprises residues 1-400 of SEQ ID NO: 6.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/354,698 US20030186416A1 (en) | 1998-04-17 | 2003-01-29 | Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US8220298P | 1998-04-17 | 1998-04-17 | |
US09/293,322 US6232110B1 (en) | 1998-04-17 | 1999-04-16 | Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods |
US09/839,497 US6528295B2 (en) | 1998-04-17 | 2001-04-20 | Protein phosphatase methylesterase |
US10/354,698 US20030186416A1 (en) | 1998-04-17 | 2003-01-29 | Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/839,497 Division US6528295B2 (en) | 1998-04-17 | 2001-04-20 | Protein phosphatase methylesterase |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030186416A1 true US20030186416A1 (en) | 2003-10-02 |
Family
ID=22169704
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/293,322 Expired - Lifetime US6232110B1 (en) | 1998-04-17 | 1999-04-16 | Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods |
US09/839,497 Expired - Lifetime US6528295B2 (en) | 1998-04-17 | 2001-04-20 | Protein phosphatase methylesterase |
US10/354,698 Abandoned US20030186416A1 (en) | 1998-04-17 | 2003-01-29 | Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/293,322 Expired - Lifetime US6232110B1 (en) | 1998-04-17 | 1999-04-16 | Coding sequence for protein phosphatase methylesterase, recombinant DNA molecules and methods |
US09/839,497 Expired - Lifetime US6528295B2 (en) | 1998-04-17 | 2001-04-20 | Protein phosphatase methylesterase |
Country Status (3)
Country | Link |
---|---|
US (3) | US6232110B1 (en) |
AU (1) | AU3648499A (en) |
WO (1) | WO1999054442A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7794965B2 (en) | 2002-03-13 | 2010-09-14 | Signum Biosciences, Inc. | Method of identifying modulators of PP2A methylase |
US7923041B2 (en) | 2005-02-03 | 2011-04-12 | Signum Biosciences, Inc. | Compositions and methods for enhancing cognitive function |
US8221804B2 (en) | 2005-02-03 | 2012-07-17 | Signum Biosciences, Inc. | Compositions and methods for enhancing cognitive function |
US9486513B1 (en) | 2010-02-09 | 2016-11-08 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
US9486441B2 (en) | 2008-04-21 | 2016-11-08 | Signum Biosciences, Inc. | Compounds, compositions and methods for making the same |
US9737592B1 (en) | 2014-02-14 | 2017-08-22 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
US9878023B1 (en) | 2010-02-09 | 2018-01-30 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
US10857233B1 (en) | 2010-02-09 | 2020-12-08 | David Gordon Bermudes | Protease inhibitor combination with therapeutic proteins including antibodies |
US10912812B2 (en) | 2014-07-22 | 2021-02-09 | Signum Biosciences, Inc. | Methods for preparing botanical extracts |
US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
US12285437B2 (en) | 2019-10-30 | 2025-04-29 | The Research Foundation For The State University Of New York | Reversing the undesirable pH-profile of doxorubicin via activation of a disubstituted maleamic acid prodrug at tumor acidity |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080021198A1 (en) * | 2005-10-12 | 2008-01-24 | Yigong Shi | Modulators of protein phosphatase 2A and PP2A methyl esterase |
US20070122880A1 (en) * | 2005-10-19 | 2007-05-31 | Institut Curie | Vector for the inducible expression of gene sequences |
US20090274682A1 (en) * | 2008-02-05 | 2009-11-05 | The Trustees Of Princeton University | Demethylation and inactivation of protein phosphatase 2a |
WO2009108745A1 (en) * | 2008-02-26 | 2009-09-03 | The Trustees Of Princeton University | Structure of a protein phosphatase 2a holoenzyme: insights into tau dephosphorylation |
EP2890986B1 (en) | 2012-08-30 | 2017-06-21 | Turun Yliopisto | Method of selecting individualized brain cancer therapy |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6222029B1 (en) * | 1997-08-01 | 2001-04-24 | Genset | 5′ ESTs for secreted proteins expressed in brain |
-
1999
- 1999-04-16 WO PCT/US1999/008377 patent/WO1999054442A1/en active Application Filing
- 1999-04-16 AU AU36484/99A patent/AU3648499A/en not_active Abandoned
- 1999-04-16 US US09/293,322 patent/US6232110B1/en not_active Expired - Lifetime
-
2001
- 2001-04-20 US US09/839,497 patent/US6528295B2/en not_active Expired - Lifetime
-
2003
- 2003-01-29 US US10/354,698 patent/US20030186416A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6222029B1 (en) * | 1997-08-01 | 2001-04-24 | Genset | 5′ ESTs for secreted proteins expressed in brain |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7794965B2 (en) | 2002-03-13 | 2010-09-14 | Signum Biosciences, Inc. | Method of identifying modulators of PP2A methylase |
US7923041B2 (en) | 2005-02-03 | 2011-04-12 | Signum Biosciences, Inc. | Compositions and methods for enhancing cognitive function |
US8221804B2 (en) | 2005-02-03 | 2012-07-17 | Signum Biosciences, Inc. | Compositions and methods for enhancing cognitive function |
US10583119B2 (en) | 2008-04-21 | 2020-03-10 | Signum Biosciences, Inc. | Compounds, compositions and methods for making the same |
US9486441B2 (en) | 2008-04-21 | 2016-11-08 | Signum Biosciences, Inc. | Compounds, compositions and methods for making the same |
US10857233B1 (en) | 2010-02-09 | 2020-12-08 | David Gordon Bermudes | Protease inhibitor combination with therapeutic proteins including antibodies |
US9878023B1 (en) | 2010-02-09 | 2018-01-30 | David Gordon Bermudes | Protease inhibitor: protease sensitive expression system composition and methods improving the therapeutic activity and specificity of proteins delivered by bacteria |
US10364435B1 (en) | 2010-02-09 | 2019-07-30 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
US9486513B1 (en) | 2010-02-09 | 2016-11-08 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
US10954521B1 (en) | 2010-02-09 | 2021-03-23 | David Gordon Bermudes | Immunization and/or treatment of parasites and infectious agents by live bacteria |
US11219671B1 (en) | 2010-02-09 | 2022-01-11 | David Gordon Bermudes | Protease inhibitor:protease sensitive expression system, composition and methods for improving the therapeutic activity and specificity of proteins delivered by bacteria |
US10828350B1 (en) | 2014-02-14 | 2020-11-10 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
US9737592B1 (en) | 2014-02-14 | 2017-08-22 | David Gordon Bermudes | Topical and orally administered protease inhibitors and bacterial vectors for the treatment of disorders and methods of treatment |
US10912812B2 (en) | 2014-07-22 | 2021-02-09 | Signum Biosciences, Inc. | Methods for preparing botanical extracts |
US11129906B1 (en) | 2016-12-07 | 2021-09-28 | David Gordon Bermudes | Chimeric protein toxins for expression by therapeutic bacteria |
US11180535B1 (en) | 2016-12-07 | 2021-11-23 | David Gordon Bermudes | Saccharide binding, tumor penetration, and cytotoxic antitumor chimeric peptides from therapeutic bacteria |
US12285437B2 (en) | 2019-10-30 | 2025-04-29 | The Research Foundation For The State University Of New York | Reversing the undesirable pH-profile of doxorubicin via activation of a disubstituted maleamic acid prodrug at tumor acidity |
Also Published As
Publication number | Publication date |
---|---|
AU3648499A (en) | 1999-11-08 |
WO1999054442A1 (en) | 1999-10-28 |
US20020107374A1 (en) | 2002-08-08 |
US6528295B2 (en) | 2003-03-04 |
US6232110B1 (en) | 2001-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
ES2243208T3 (en) | HUMAN CYCLIC NUCLEOTIDE PHOSPHODESTERASE. | |
Ogris et al. | A protein phosphatase methylesterase (PME-1) is one of several novel proteins stably associating with two inactive mutants of protein phosphatase 2A | |
US6528295B2 (en) | Protein phosphatase methylesterase | |
Doi et al. | MSG5, a novel protein phosphatase promotes adaptation to pheromone response in S. cerevisiae. | |
Peng et al. | C-TAK1 protein kinase phosphorylates human Cdc25C on serine 216 and promotes 14-3-3 protein binding | |
CA2122338C (en) | Novel human cdc25 genes, encoded products and uses therefor | |
US6566087B1 (en) | Phosphodiesterase 8A | |
JP2002543831A (en) | Sphingosine kinase | |
WO2000031275A1 (en) | Recombinant lysophosphatidic acid phosphatase | |
JP2004532647A (en) | HDAC9 polypeptides and polynucleotides and uses thereof | |
Wu et al. | Molecular cloning and characterization of a novel dual-specificity phosphatase 23 gene from human fetal brain | |
ES2291010T3 (en) | PHOSPHODESTERASE ENZYMES. | |
US5801015A (en) | Nucleic acid encoding a Candida cell cycle regulatory protein, TYP1 polypeptide | |
JPH09509319A (en) | RNA modifying enzyme and method of using the same | |
Takekawa et al. | Chromosomal localization of the protein tyrosine phosphatase G1 gene and characterization of the aberrant transcripts in human colon cancer cells | |
US6797513B2 (en) | Nucleic acid encoding CLK2 protein kinases | |
EP0708831A1 (en) | Density enhanced protein tyrosine phosphatases | |
US7052895B2 (en) | Phosphodiesterase enzymes | |
WO2007119787A1 (en) | Phosphatase involved in the regulation of cardiomyocyte differentiation | |
US20030027308A1 (en) | Novel human protein phosphatases identified from genomic sequencing | |
US20020090703A1 (en) | Mammalian protein phosphatases | |
US20050003388A1 (en) | Calcium independent phospholipase A2upsilon polynucleotides and polypeptides and methods therefor | |
US20030104362A1 (en) | Cell-cycle regulatory proteins from human pathogens, and uses related thereto | |
JP4205630B2 (en) | Phosphodiesterase enzyme | |
EP1090987A1 (en) | Cell cycle regulatory factor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EMORY UNIVERSITY, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:PALLAS, DAVID C.;DU, XIAN X.;REEL/FRAME:013583/0177 Effective date: 20010503 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NATIONAL INSTITUTES OF HEALTH (NIH), U.S. DEPT. OF Free format text: CONFIRMATORY LICENSE;ASSIGNOR:EMORY UNIVERSITY;REEL/FRAME:021252/0600 Effective date: 20070110 |