US20030180900A1 - Methods for producing ethanol from carbon substrates - Google Patents
Methods for producing ethanol from carbon substrates Download PDFInfo
- Publication number
- US20030180900A1 US20030180900A1 US10/360,010 US36001003A US2003180900A1 US 20030180900 A1 US20030180900 A1 US 20030180900A1 US 36001003 A US36001003 A US 36001003A US 2003180900 A1 US2003180900 A1 US 2003180900A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- enzyme
- converting enzyme
- product
- starch
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/06—Ethanol, i.e. non-beverage
- C12P7/08—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate
- C12P7/10—Ethanol, i.e. non-beverage produced as by-product or from waste or cellulosic material substrate substrate containing cellulosic material
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/02—Preparation of oxygen-containing organic compounds containing a hydroxy group
- C12P7/04—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic
- C12P7/18—Preparation of oxygen-containing organic compounds containing a hydroxy group acyclic polyhydric
- C12P7/20—Glycerol
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/44—Polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/56—Lactic acid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/58—Aldonic, ketoaldonic or saccharic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/40—Preparation of oxygen-containing organic compounds containing a carboxyl group including Peroxycarboxylic acids
- C12P7/58—Aldonic, ketoaldonic or saccharic acids
- C12P7/60—2-Ketogulonic acid
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E50/00—Technologies for the production of fuel of non-fossil origin
- Y02E50/10—Biofuels, e.g. bio-diesel
Definitions
- At least one substrate-converting enzyme converts at least 50% of the substrate to the intermediate within 72 hours, while in other embodiments, at least one substrate-converting enzyme converts at least 90% of the substrate to the intermediate within 72 hours, and in some preferred embodiments, at least one substrate-converting enzyme converts at least 95% of the substrate to the intermediate within 72 hours.
- at least one substrate-converting enzyme and at least one intermediate-converting enzyme are obtained from a microorganism selected from the group consisting of Rhizopus and Aspergillus.
- the substrate-converting and/or intermediate-converting enzyme(s) are provided as a cell-free extract.
- the contacting steps take place in a reaction vessel, including but not limited to vats, bottles, flasks, bags, bioreactors, and any other receptacle suitable for conducting the methods of the present invention.
- FIG. 1 provides a graph showing the ethanol results for the experiments described in Example 1.
- FIG. 2 Panels A, B and C provide graphs showing the ethanol results from uncooked ground corn fermentation using M1 (Panel A), CU (Panel B), and M1 with DISTILLASE® (Panel C).
- FIG. 5 shows the glucose profile after 72 hour of fermentation as described in Example 4.
- carbon substrate refers to a material containing at least one carbon atom which can be enzymatically converted into an intermediate for subsequent conversion into the desired carbon end-product.
- exemplary carbon substrates include, but are not limited to biomass, starches, dextrins and sugars.
- intermediate refers to a compound that contains at least one carbon atom into which the carbon substrates are enzymatically converted.
- exemplary intermediates include, but are not limited to pentoses, (e.g., xylose, arabinose, lyxose, ribose, ribulose, xylulose); hexoses (e.g., glucose, allose, altrose, mannose, gulose, idose, galactose, talose, psicose, fructose, sorbose, and tagatose); and organic acids thereof.
- pentoses e.g., xylose, arabinose, lyxose, ribose, ribulose, xylulose
- hexoses e.g., glucose, allose, altrose, mannose, gulose, idose, galactose, talose, psicose, fructos
- glucose oxidase unit is defined as the amount of enzyme required to oxidize one micromole of D-glucose per minute under assay conditions of 25° C. and pH 7.0, to gluconic acid.
- one AG unit is the amount of enzyme which splits one micromole of maltose per minute at 25° C. and pH 4.3.
- AGU is the amount of enzyme which splits one micromole of maltose per minute at 25° C. and pH 4.3.
- a commercially available liquid form of glucoamylase OPTIDEX® L-400; Genencor International
- AMG NOVO 150 a commercially available liquid form of glucoamylase
- microorganism refers to any organism with cells that are typically considered to be microscopic, including such organisms as bacteria, fungi (yeasts and molds), rickettsia, and protozoa. It is not intended that the present invention be limited to any particular microorganism(s) or species of microorganism(s), as various microorganisms and microbial enzymes are suitable for use in the present invention. It is also not intended that the present invention be limited to wild-type microorganisms, as microorganisms and microbial enzymes produced using recombinant DNA technologies also find use in the present invention.
- microbial enzyme refers to any enzyme that is produced by a microorganism.
- a “microbial intermediate-converting enzyme” is an enzyme that converts an intermediate to an end-product
- a “microbial substrate-converting enzyme” is an enzyme that converts a substrate to an intermediate or directly converts a substrate to an end-product (i.e., there is not intermediate compound).
- ethanol producer and “ethanol producing organism” refer to any organism or cell that is capable of producing ethanol from a hexose or a pentose.
- ethanol producing cells contain an alcohol dehydrogenase and pyruvate decarboxylase.
- antimicrobial refers to any compound that kills or inhibits the growth of microorganisms.
- the term “linked culture” refers to a fermentation system that employs at least two cell cultures, in which the cultures are added sequentially.
- a primary culture or a set of primary cultures is grown under optimal fermentation conditions for the production of a desired intermediate (i.e., the intermediate is released into the culture media to produce a “conditioned medium”).
- the conditioned medium is then exposed to the secondary culture(s).
- the secondary cultures then convert the intermediate in the conditioned media to the desired end-product.
- the primary cultures are typically glycerol producers and the secondary cultures are 1,3-propanediol producers.
- the term “enhanced” refers to improved production of proteins of interest.
- the present invention provides enhanced (i.e., improved) production and secretion of a protein of interest.
- the “enhanced” production is improved as compared to the normal levels of production by the host (e.g., wild-type cells).
- the host e.g., wild-type cells.
- the present invention provides dramatic improvements in the process for directly converting a commonly available carbon substrate (e.g., biomass and/or starch) into an intermediate, preferably, an intermediate that is readily convertible into a multitude of desired end-products, including alcohols such as ethanol.
- the present invention provides means for dramatically improving the processes for directly converting granular starch into glucose, an intermediate readily convertible into an ethanol.
- Exemplary methods of providing such excessive intermediate conversion include providing an excess of intermediate converting enzyme, increasing the enzyme activity of the intermediate converting enzyme, and/or decreasing the activity of the substrate converting enzyme to convert the intermediate to end-product as quickly as it is converted from the substrate. As the actual rate of conversion is contemplated to vary with the specific end product produced, some variation in the amount and experimentation in determining the amount are contemplated. However guidelines for making these determinations are provided herein.
- Indirect measurement of the levels of intermediate or end-products produced can be assessed by the measurement of oxygen uptake or carbon dioxide production, using methods known in the art (e.g., by determining the oxygen uptake rate and/or the carbon evolution rate).
- a particularly useful carbon substrate is corn starch.
- granular starch is used in a slurry having a percentage of starch between about 20% and about 35%.
- the starch is in a concentration between about 10% and about 35%.
- the range for percent starch is between 30% and 32%.
- other carbon substrate sources find use in the present invention include, but are not limited to biomass, polysaccharides, and other carbon based materials capable of being converted enzymatically to an intermediate.
- the conditions for converting sugars to ethanol are known in the art.
- the temperature is between about 25° C. and 35° C. (e.g., between 25° and 35°, and more particularly at 30° C).
- Useful pH ranges for the conversion medium are provided between about 4.0 and 6.0, between 4.5 and 6.0, and between pH 5.5 and 5.8.
- the alpha-amylase used in some methods of the present invention is generally an enzyme which effects random cleavage of alpha-(1-4) glucosidic linkages in starch.
- the alpha-amylase is chosen from among the microbial enzymes having an E. C. number E. C. 3.2.1.1 and in particular E. C. 3.2.1.1-3.
- the alpha-amylase is a thermostable bacterial alpha-amylase.
- the alpha-amylase is obtained or derived from Bacillus species.
- the quantity of alpha-amylase used in the methods of the present invention will depend on the enzymatic activity of the alpha-amylase and the rate of conversion of the generated glucose by the end-product converter. Generally an amount between 0.001 and 2.0 ml of a solution of the alpha-amylase is added to 1000 gm of raw materials, although in some embodiments, it is added in an amount between 0.005 and 1.5 ml of such a solution. In some preferred embodiments, it is added in an amount between 0.1 and 1.0 ml of such a solution. In further embodiments, other quantities are utilized.
- SPEZYME® FRED For example, generally an amount between 0.01 and 1.0 kg of SPEZYME® FRED (Genencor) is added to one metric ton of starch.
- the enzyme is added in an amount between 0.4 to 0.6 kg, while in other embodiments, it is added in an amount between 0.5 and 0.6 kg of SPEZYME® FRED/metric ton of starch.
- Rhizopus glucoamylase has a stronger degradation activity than Aspergillus niger glucoamylase preparations which also contain ⁇ -amylase (See, Yamamoto et al., Denpun Kagaku, 37:129-136 [1990]).
- One commercial preparation that finds use in the present invention is the glucoamylase preparation derived from the Koji culture of a strain of Rhizopus niveus available from Shin Nippo Chemical Co., Ltd.
- Another commercial preparation that finds use in the present invention is the commercial starch hydrolyzing composition M1 is available from Biocon India (Bangalore, India).
- pullulanases also find use in the methods of the present invention. These enzymes hydrolyze alpha.-1,6-glucosidic bonds. Thus, during the saccharification of the liquefied starch, pullulanases remove successive glucose units from the non-reducing ends of the starch. This enzyme is capable of hydrolyzing both the linear and branched glucosidic linkages of starch, amylose and amylopectin.
- Additional enzymes that find use in the present invention include starch hydrolyzing (RSH) enzymes, including Humicola RSH glucoamylase enzyme preparation (See, U.S. Pat. No. 4,618,579).
- This Humicola RSH enzyme preparation exhibits maximum activity within the pH range of 5.0 to 7.0 and particularly in the range of 5.5 to 6.0.
- this enzyme preparation exhibits maximum activity in the temperature range of 50° C. to 60° C.
- the enzymatic solubilization of starch is preferably carried out within these pH and temperature ranges.
- Humicola RSH enzyme preparations obtained from the fungal organism strain Humicola grisea var. thermoidea find use in the methods of the present invention.
- these Humicola RSH enzymes are selected from the group consisting of ATCC (American Type Culture Collection) 16453, NRRL (USDA Northern Regional Research Laboratory) 15219, NRRL 15220, NRRL 15221, NRRL 15222, NRRL 15223, NRRL 15224, and NRRL 15225, as well as genetically altered strains derived from these enzymes.
- the enzyme obtained from the Koji strain of Rhizopus niveus available from Shin Nihon Chemical Co., Ltd., Ahjyo, Japan, under the tradename “CU CONC” is used.
- Another useful enzyme preparation is a commercial digestive from Rhizopus available from Amano Pharmaceutical under the tradename “GLUCZYME” (See, Takahashi et al., J. Biochem., 98:663-671 [1985]).
- the carbon source is enzymatically converted to the intermediate, it is converted into the desired end-product by the appropriate methodology.
- Conversion is accomplished via any suitable method (e.g., enzymatic or chemical).
- conversion is accomplished by bioconversion of the intermediate by contacting the intermediate with a microorganism.
- the respective substrate-converting enzyme and the intermediate-converting enzyme are placed in direct contact with the substrate and/or intermediate.
- the enzyme(s) are provided as isolated, purified or concentrated preparations.
- microorganisms that are genetically modified to express enzymes not normally produced by the wild-type organism are utilized.
- the organisms are modified to overexpress enzymes that are normally produced by the wild-type organism.
- glucoamylase is used so effectively that economically feasible dosage levels of glucoamylase are suitable for use in the methods of the present invention (i.e., glucoamylase dosage of 0.05-10.0 GAU/g of starch; and preferably 0.2-2.0 GAU/g starch).
- starch hydrolyzing enzymes will find use in the present invention as part of a enzyme mixture which includes starch hydrolyzing enzymes, alpha amylases and glucoamylases.
- RSHs e.g., the enzyme obtained from Rhizopus
- non-cooking temperatures e.g., 25 to 35° C.
- these enzymes find particular use in the methods of the present invention.
- the desired end-product can be any product that may be produced by the enzymatic conversion of the substrate to the end-product.
- the substrate is first converted to at least one intermediate and then converted from the intermediate to an end-product.
- hexoses can be bioconverted into numerous products, such as ascorbic acid intermediates, ethanol, 1,3-propanediol, and gluconic acid.
- Ascorbic acid intermediates include but are not limited to 2,5-diketogluconate, 2 KLG (2-keto-L-gluconate), and 5-KDG (5-keto-D-gluconate).
- Gluconate can be converted from glucose by contacting glucose with glucose dehydrogenase (GDH).
- ethanologenic microorganisms include ethanologenic bacteria expressing alcohol dehydrogenase and pyruvate decarboxylase, such as can be obtained with or from Zymomonas mobilis (See e.g., U.S. Pat. Nos. 5,028,539, 5,000,000, 5,424,202, 5,487,989, 5,482,846, 5,554,520, 5,514,583, and copending applications having U.S. Ser. No. 08/363,868 filed on Dec. 27, 1994, U.S. Ser. No. 08/475,925 filed on Jun. 7, 1995, and U.S. Ser. No. 08/218,914 filed on Mar. 28, 1994, the teachings of all of which are hereby incorporated by reference, in their entirety).
- the ethanologenic microorganism expresses xylose reductase and xylitol dehydrogenase, enzymes that convert xylose to xylulose.
- xylose isomerase is used to convert xylose to xylulose.
- the ethanologenic microorganism also expresses xylulokinase, an enzyme that catalyzes the conversion of xylulose to xylulose-5-phosphate. Additional enzymes involved in the completion of the pathway include transaldolase and transketolase. These enzymes can be obtained or derived from Escherichia coli, Klebsielia oxytoca and Erwinia species (See e.g., U.S. Pat. No. No. 5,514,583).
- supplements are added to the nutrient medium (i.e., the culture medium), including, but not limited to vitamins, macronutrients, and micronutrients.
- Vitamins include, but are not limited to choline chloride, nicotinic acid, thiamine HCl, cyanocobalamin, p-aminobenzoic acid, biotin, calcium pantothenate, folic acid, pyridoxine.HCl, and riboflavin.
- Vitamins include, but are not limited to (NH 4 ) 2 SO 4 , K 2 HPO 4 , NaCl, and MgSO 4 . 7H 2 O.
- Micronutrients include, but are not limited to FeCl 3 6H 2 O, ZnCl 2 .4H 2 O, CoCl 2 .6H 2 O, molybdic acid (tech), CuCl 3 .2H 2 O, CaCl 2 .2H 2 O, and H 3 BO 3 .
- preferred carbon substrates include monosaccharides, disaccharides, oligosaccharides, polysaccharides, and one-carbon substrates.
- the carbon substrates are selected from the group consisting of glucose, fructose, sucrose and single carbon substrates such as methanol and carbon dioxide.
- the substrate is glucose.
- the present process uses a batch method of fermentation.
- a classical batch fermentation is a closed system, wherein the composition of the media is set at the beginning of the fermentation and is not subject to artificial alterations during the fermentation. Thus, at the beginning of the fermentation the medium is inoculated with the desired organism(s). In this method, fermentation is permitted to occur without the addition of any components to the system.
- a batch fermentation qualifies as a “batch” with respect to the addition of the carbon source and attempts are often made at controlling factors such as pH and oxygen concentration. The metabolite and biomass compositions of the batch system change constantly up to the time the fermentation is stopped.
- the present invention is practiced using batch processes, while in other embodiments, fed-batch or continuous processes, as well as any other suitable m0de of fermentation are used. Additionally, in some embodiments, cells are immobilized on a substrate as whole-cell catalysts and are subjected to fermentation conditions for the appropriate end-product production.
- the end-product is identified directly by submitting the media to high pressure liquid chromatography (HPLC) analysis.
- HPLC high pressure liquid chromatography
- One method of the present invention involves analysis of fermentation media on an analytical ion exchange column using a mobile phase of 0.01 N sulfuric acid in an isocratic fashion.
- means for bioconversion and fermentation of a granular starch slurry having 10-35% starch by weight are provided.
- fermentation of a 10-35% starch slurry with E. coli results in the production of residual starch when fermentation has proceeded to the intended organic acid or 1,3-propane diol content levels.
- this reaction is dependent on the microorganism and bioprocessing conditions used and, therefore, recycling of the enzymes on the starch particles occurs when the residual starch is again fermented.
- the fermentation is halted before complete disappearance of the granular starch, for fermentation anew.
- recycling of starch is a facile way to recover enzymes for reuse.
- means for fermentation of a granular starch slurry of 25-25% by weight are provided. Fermenting a 25-35% starch slurry with common baker's yeast will invariably result in residual starch when fermentation has proceeded to the intended alcohol content levels (e.g., 7-10%), dependent on the microorganism used and the recycling of the enzymes on the starch particles occurs when the residual starch is again fermented.
- the present invention be limited to this range, as other weight percentages will find use in the present invention, depending upon the substrate and/or enzyme system utilized in the methods.
- a granular starch slurry of 10-35% by weight is preferred.
- a particularly useful microorganism is one that is resistant to the alcohol produced by the process.
- bioconversion and fermentation of a corn-stover slurry having 10-35% cellulosics by weight is provided.
- fermenting a 10-35% cellulosic slurry with E. coli results in residual cellulosic when fermentation has proceeded to the intended organic acid or 1,3-propane diol content levels. This reaction is dependent upon the microorganism and bioprocessing conditions used. As above, recycling of the enzymes on the cellulosics occurs when the residual corn-stover is again fermented.
- the granular starch or corn stover and microorganisms are removed together (e.g., by centrifugation or filtration). This mixture of removed granular starch or corn stover and microorganisms is mixed with fresh granular starch or corn stover and additional aliquot(s) of enzyme(s) as needed, to produce a fermentation charge for another fermentation run.
- the present invention saves considerable thermal energy.
- the starting substrate e.g., starch
- the substrate is not thermally sterilized.
- the starting substrate e.g., granular starch
- the starting substrate adds contaminating microorganisms to the fermentation medium.
- the method involves seeding the fermentation medium with the great number of the ethanol producing microorganism that are likely to accompany the recycled granular starch. Through their great numbers, the recycled microorganisms overwhelm any contaminating microorganisms, thereby dominating the fermentation, as is, of course, desired.
- the practice of the present invention controls the fermentation rate by releasing metabolizable sugars to the microorganisms (e.g., yeast) at a controlled rate and maintaining the concentration of the intermediate (e.g., glucose) at a level that does not trigger enzyme inhibition or catabolite repression.
- the microorganisms e.g., yeast
- the concentration of the intermediate e.g., glucose
- This approach is very different from what was done prior to the development of the present invention. Indeed, the prior art suggests treating solid starch with enzymes prior to fermentation and/or including enzymes in the fermentation medium to conserve energy and/or to improve fermentation efficiency.
- these teachings do not alter the character of the fermentation so as to avoid the adverse effects of catabolite repression and/or enzymatic inhibition.
- the microbes are removed from the residual starch or biomass particles prior to recycling of the residual starch or biomass.
- practice of the present invention does not necessarily require thermal treatment of the starting substrate (e.g., starch).
- the starting substrate is heat-sterilized, while in other embodiments, it is not. Therefore, in some embodiments, the fermentation/bioconversion is conducted in the presence of a relatively large proportion of microorganisms, in order to overcome the effects of any contamination.
- antimicrobials are added to the fermentation medium to suppress growth of contaminating microorganisms.
- cold sterilization techniques, UV radiation, 65° C. pasteurization are used to sterilize the starting (e.g., substrate) materials.
- biomass poses no problem regarding sterilization of fermentation vats or bioreactors.
- starch as the starting material does not only address the above shortcomings of currently used methods, but has three additional significant benefits in terms of the raw material cost of corn starch vs. D-glucose, reduction of substrate and/or product based inhibition of enzymes employed in the bioconversion, and a concomitant significant reduction in the requirement of high enzyme dosages.
- OD optical density
- OD 280 optical density at 280 nm
- OD 600 optical density at 600 nm
- PAGE polyacrylamide gel electrophoresis
- PBS phosphate buffered saline [150 mM NaCl, 10 mM sodium phosphate buffer, pH 7.2]
- Cerestar Cerestar, a Cargill, inc., company, Minneapolis, Minn.
- SDS sodium dodecyl sulfate
- Tris tris(hydroxymethyl)aminomethane
- w/v weight to volume
- v/v volume to volume
- ATCC American Type Culture Collection, Rockville, Md.
- Difco Difco Laboratories, Detroit, Mich.
- GIBCO BRL Gibco BRL (Life Technologies, Inc., Gaithersburg, Md.); Genencor (Genencor International, Inc., Palo Alto, Calif.); Shin Nihon (
- FIG. 1 provides a graph showing the ethanol content of the various tests.
- Example 2 the same procedure was used for this experiment as in Example 1, except that 35.9% ground corn slurry was used (instead of corn mash), and prior to starting the fermentation the slurry was placed in a 65° C. water for one hour as a pasteurization step. No observed gelatinization of the slurry was observed.
- the enzymes tested were Sumizyme CU (Example 1), a Rhizopus glucoamylase preparation (M1) from Biocon assayed at 178 GAU/gm and 277 RHU/gm, and DISTILLASE® L-400 (Dist.) at 361 GAU/gm and 196 RHU/gm. Table 2 provides the conditions used for this study, and also summarizes the results.
- the ethanol results from the fermentations with M1 and CU are plotted in FIGS. 2A and 2B.
- the rate and yield of ethanol is less than the 0.5 and 0.75 levels indicating the 0.2 level is enzyme limiting.
- the 0.5 and 0.75 levels of M1 seem to give very similar results indicating that enzyme is no longer limiting.
- the results from CU similarly shows that the 0.2 enzyme level is somewhat limiting the fermentation, but is faster than 0.2 GAU/gm for M1 results. This indicates that the RHU activity is a better parameter that indicates the hydrolysis of uncooked starch.
- CU has about twice the RHU activity per GAU as does M1, and CU is seen to hydrolyze the uncooked starch faster at similar GAU levels. At the 0.5 and 0.75 GAU/gm dosage excess glucose is observed particularly at the higher enzyme level. Actually it appears that starch hydrolyzing rate is faster than the fermentation rate. These results also show that at around 15% ethanol, the ethanol seems to become toxic to the yeast since the fermentations appeared to stop.
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Zoology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Biotechnology (AREA)
- Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/360,010 US20030180900A1 (en) | 2002-02-08 | 2003-02-06 | Methods for producing ethanol from carbon substrates |
US10/856,214 US20050100996A1 (en) | 2002-02-08 | 2004-05-27 | Methods for producing ethanol from carbon substrates |
US11/243,382 US8293508B2 (en) | 2002-02-08 | 2005-10-04 | Methods for producing ethanol from carbon substrates |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US35518002P | 2002-02-08 | 2002-02-08 | |
US10/360,010 US20030180900A1 (en) | 2002-02-08 | 2003-02-06 | Methods for producing ethanol from carbon substrates |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/856,214 Continuation US20050100996A1 (en) | 2002-02-08 | 2004-05-27 | Methods for producing ethanol from carbon substrates |
US11/243,382 Continuation US8293508B2 (en) | 2002-02-08 | 2005-10-04 | Methods for producing ethanol from carbon substrates |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030180900A1 true US20030180900A1 (en) | 2003-09-25 |
Family
ID=27734476
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/360,010 Abandoned US20030180900A1 (en) | 2002-02-08 | 2003-02-06 | Methods for producing ethanol from carbon substrates |
US10/856,214 Abandoned US20050100996A1 (en) | 2002-02-08 | 2004-05-27 | Methods for producing ethanol from carbon substrates |
US11/243,382 Expired - Lifetime US8293508B2 (en) | 2002-02-08 | 2005-10-04 | Methods for producing ethanol from carbon substrates |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/856,214 Abandoned US20050100996A1 (en) | 2002-02-08 | 2004-05-27 | Methods for producing ethanol from carbon substrates |
US11/243,382 Expired - Lifetime US8293508B2 (en) | 2002-02-08 | 2005-10-04 | Methods for producing ethanol from carbon substrates |
Country Status (7)
Country | Link |
---|---|
US (3) | US20030180900A1 (fr) |
EP (1) | EP1525300A4 (fr) |
JP (1) | JP2005523689A (fr) |
CN (1) | CN100564534C (fr) |
AU (1) | AU2003217338A1 (fr) |
CA (1) | CA2475416A1 (fr) |
WO (1) | WO2003066826A2 (fr) |
Cited By (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040215296A1 (en) * | 1999-11-16 | 2004-10-28 | Barrx, Inc. | System and method for treating abnormal epithelium in an esophagus |
US20040234649A1 (en) * | 2003-03-10 | 2004-11-25 | Broin And Associates, Inc. | Method for producing ethanol using raw starch |
US20050233030A1 (en) * | 2004-03-10 | 2005-10-20 | Broin And Associates, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20050239181A1 (en) * | 2004-03-10 | 2005-10-27 | Broin And Associates, Inc. | Continuous process for producing ethanol using raw starch |
US20060240147A1 (en) * | 2005-04-21 | 2006-10-26 | Padhye Vinod W | Alcoholic beverages containing corn syrup substitutes |
US20060281157A1 (en) * | 2005-06-14 | 2006-12-14 | Gopal Chotani | Dry solids staging fermentation process |
US20070037267A1 (en) * | 2005-05-02 | 2007-02-15 | Broin And Associates, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20070178567A1 (en) * | 2005-10-10 | 2007-08-02 | Lewis Stephen M | Methods and systems for producing ethanol using raw starch and selecting plant material |
US20080299633A1 (en) * | 2007-11-03 | 2008-12-04 | Rush Stephen L | Systems and processes for cellulosic ethanol production |
US20090011481A1 (en) * | 2004-03-31 | 2009-01-08 | Natureworks Llc | Process for fermenting sugars containing oligomeric saccharides |
US20090181440A1 (en) * | 2007-11-03 | 2009-07-16 | Rush Stephen L | Systems and processes for cellulosic ethanol production |
US20100143974A1 (en) * | 2007-02-01 | 2010-06-10 | Chang-Ho Chung | Process for Sugar Production from Lignocellulosic Biomass Using Alkali Pretreatment |
US20100233771A1 (en) * | 2009-03-03 | 2010-09-16 | Mcdonald William F | System for pre-treatment of biomass for the production of ethanol |
US8450094B1 (en) | 2009-03-03 | 2013-05-28 | Poet Research, Inc. | System for management of yeast to facilitate the production of ethanol |
WO2013148207A2 (fr) | 2012-03-30 | 2013-10-03 | Danisco Us Inc. | Conversion directe d'amidon en sucre fermentescible |
WO2013149192A1 (fr) | 2012-03-30 | 2013-10-03 | Danisco Us Inc. | Amidon direct à sucre fermentable en tant que matière première pour la production d'isoprène, molécules précurseurs d'isoprénoïdes et/ou d'isoprénoïdes |
US8815552B2 (en) | 2009-03-03 | 2014-08-26 | Poet Research, Inc. | System for fermentation of biomass for the production of ethanol |
US20140332364A1 (en) * | 2013-05-07 | 2014-11-13 | Ja Energy, Inc. | Modular distillation unit and ethanol separating apparatus |
US9068206B1 (en) | 2009-03-03 | 2015-06-30 | Poet Research, Inc. | System for treatment of biomass to facilitate the production of ethanol |
US9617574B2 (en) | 2013-03-15 | 2017-04-11 | Auburn University | Efficient process for producing saccharides and ethanol from a biomass feedstock |
US9850512B2 (en) | 2013-03-15 | 2017-12-26 | The Research Foundation For The State University Of New York | Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield |
EP3279329A1 (fr) | 2006-07-21 | 2018-02-07 | Xyleco, Inc. | Systèmes de conversion de biomasse |
US9951363B2 (en) | 2014-03-14 | 2018-04-24 | The Research Foundation for the State University of New York College of Environmental Science and Forestry | Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects |
Families Citing this family (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE602004024964D1 (de) | 2003-03-10 | 2010-02-25 | Novozymes As | Verfahren zur herstellung von alkohol |
US7618795B2 (en) | 2003-06-25 | 2009-11-17 | Novozymes A/S | Starch process |
ES2383366T3 (es) | 2003-06-25 | 2012-06-20 | Novozymes A/S | Enzimas para el tratamiento de almidón |
WO2005118800A1 (fr) * | 2004-05-27 | 2005-12-15 | Genencor International, Inc. | Expression heterologue d'une alpha-amylase de l'aspergillus kawachi stable aux acides et applications pour l'hydrolyse de l'amidon granule |
CN1997735B (zh) * | 2004-05-27 | 2012-02-22 | 金克克国际有限公司 | 白曲霉酸稳定性α淀粉酶和在颗粒淀粉水解中的应用 |
US20060147581A1 (en) | 2004-12-22 | 2006-07-06 | Novozymes A/S | Hybrid enzymes |
AU2005319074B2 (en) | 2004-12-22 | 2011-03-24 | Novozymes A/S | Enzymes for starch processing |
WO2006073839A2 (fr) | 2004-12-30 | 2006-07-13 | Genencor International, Inc. | Proteases antifongiques acides |
BRPI0613681A2 (pt) | 2005-07-19 | 2010-07-13 | Holm Christensen Biosystemer A | método e aparelho para conversão de material celulósico para etanol |
US20080280328A1 (en) | 2005-11-18 | 2008-11-13 | Novozymes A/S | Glucoamylase Variants |
US8076112B2 (en) | 2006-03-22 | 2011-12-13 | Novozymes A/S | Fermentation processes |
BRPI0708833B1 (pt) * | 2006-04-04 | 2017-03-21 | Novozymes As | processos para a produção de um mosto de cervejeiro e para a produção de cerveja |
US7968318B2 (en) | 2006-06-06 | 2011-06-28 | Genencor International, Inc. | Process for conversion of granular starch to ethanol |
US9121040B2 (en) * | 2006-12-18 | 2015-09-01 | University Of Maryland | Process for rapid anaerobic digestion of biomass using microbes and the production of biofuels therefrom |
WO2009005390A1 (fr) * | 2007-07-04 | 2009-01-08 | 'arter Technology Limited' | Procédé de production de bioéthanol à partir de lignocellulose |
US20090238920A1 (en) * | 2008-03-21 | 2009-09-24 | Lewis Ted C | Process for making high grade protein product |
DK2130906T3 (da) * | 2008-06-04 | 2014-05-12 | Biosilta Oy | Fremgangsmåde til tilførsel af vækstkomponenter til cellekulturer |
CN102083991A (zh) | 2008-06-23 | 2011-06-01 | 诺维信公司 | 生产发酵产物的方法 |
US9193979B2 (en) | 2008-11-11 | 2015-11-24 | Richard Allen Kohn | Process for producing lower alkyl alcohols from cellulosic biomass using microorganisms |
KR101101313B1 (ko) | 2008-12-05 | 2011-12-30 | 주식회사 배상면주가 | 양조 폐기물을 이용한 에탄올의 제조방법 |
CA2745508C (fr) * | 2008-12-23 | 2015-11-24 | Greenfield Ethanol Inc. | Utilisation des residus de vinasse comme source nutritive pour la fermentation de biomasse lignocellulosique hydrolysee en ethanol |
DK2226380T5 (da) * | 2009-03-05 | 2015-07-20 | Biosilta Oy | Enzymbaseret fed-batch-teknik i flydende kulturer |
US8916359B2 (en) | 2009-11-30 | 2014-12-23 | Novozymes A/S | Polypeptides having glucoamylase activity and polynucleotides encoding same |
CN102869770B (zh) | 2009-11-30 | 2015-12-16 | 诺维信公司 | 具有葡糖淀粉酶活性的多肽和编码该多肽的多核苷酸 |
CA2782036C (fr) | 2009-12-01 | 2019-01-15 | Novozymes A/S | Polypeptides possedant une activite de glucoamylase et polynucleotides codant pour ceux-ci |
MX338068B (es) * | 2010-04-14 | 2016-04-01 | Novozymes As | Polipeptidos que tienen actividad de glucoamilasa y polinucleotidos que codifican los mismos. |
US9617527B2 (en) | 2010-04-14 | 2017-04-11 | Novozymes A/S | Polypeptides having glucoamylase activity and polynucleotides encoding same |
ES2605235T3 (es) | 2010-11-08 | 2017-03-13 | Novozymes A/S | Polipéptidos que tienen actividad de glucoamilasa y polinucleótidos que codifican los mismos |
DK2637515T3 (da) | 2010-11-08 | 2017-11-27 | Novozymes As | Polypeptider med glucoamylaseaktivitet og polynukleotider, som koder for dem |
EP2654567B1 (fr) | 2010-12-22 | 2018-04-04 | Novozymes North America, Inc. | Procédé de production d'un produit de fermentation à partir de matières contenant de l'amidon |
JP5867911B2 (ja) * | 2011-03-02 | 2016-02-24 | 日立造船株式会社 | 廃棄物からエタノールを製造する方法 |
EP2748188A4 (fr) | 2011-08-26 | 2015-03-18 | Novozymes As | Polypeptides ayant une activité glucoamylase et polynucléotides codant pour ces polypeptides |
CN107267558A (zh) * | 2011-12-02 | 2017-10-20 | 诺维信公司 | 用于制造发酵产物的方法 |
PH12014500771A1 (en) * | 2011-12-13 | 2021-08-09 | Danisco Us Inc | Enzyme cocktails prepared from mixed cultures |
WO2013148993A1 (fr) | 2012-03-30 | 2013-10-03 | Novozymes North America, Inc. | Procédés de fabrication de produits de fermentation |
ES2935920T3 (es) | 2012-03-30 | 2023-03-13 | Novozymes North America Inc | Procesos de elaboración de productos de fermentación |
JP6004321B2 (ja) * | 2012-04-18 | 2016-10-05 | 日立造船株式会社 | 厨芥類のエタノール発酵における雑菌増殖抑制方法 |
US9695381B2 (en) | 2012-11-26 | 2017-07-04 | Lee Tech, Llc | Two stage high speed centrifuges in series used to recover oil and protein from a whole stillage in a dry mill process |
US11939552B2 (en) | 2013-06-24 | 2024-03-26 | Novozymes A/S | Process of recovering oil |
CN105339502A (zh) | 2013-06-24 | 2016-02-17 | 诺维信公司 | 从酒糟水提取油的工艺 |
CA2918685C (fr) | 2013-08-30 | 2024-01-02 | Novozymes A/S | Composition d'enzyme et utilisations de celle-ci |
US11427839B2 (en) | 2014-08-29 | 2022-08-30 | Lee Tech Llc | Yeast stage tank incorporated fermentation system and method |
US11680278B2 (en) | 2014-08-29 | 2023-06-20 | Lee Tech Llc | Yeast stage tank incorporated fermentation system and method |
CA2951715A1 (fr) * | 2014-08-29 | 2016-03-03 | Lee Tech Llc | Systeme de fermentation pour procedes a moutures seches |
CN108350444A (zh) | 2015-09-25 | 2018-07-31 | 诺维信公司 | 丝氨酸蛋白酶用于改进乙醇产量的用途 |
US11166478B2 (en) | 2016-06-20 | 2021-11-09 | Lee Tech Llc | Method of making animal feeds from whole stillage |
WO2018015303A1 (fr) | 2016-07-21 | 2018-01-25 | Novozymes A/S | Variants de sérine protéase et polynucléotides les codant |
US10927361B2 (en) | 2016-07-21 | 2021-02-23 | Novozymes A/S | Serine protease variants and polynucleotides encoding same |
BR112019025391A2 (pt) | 2017-06-02 | 2020-07-07 | Novozymes A/S | levedura melhorada para a produção de etanol |
BR112020003866A2 (pt) | 2017-08-30 | 2020-09-08 | Novozymes A/S | processo para produção de um produto de fermentação, e, composição. |
WO2019148192A1 (fr) | 2018-01-29 | 2019-08-01 | Novozymes A/S | Micro-organismes à utilisation améliorée d'azote pour la production d'éthanol |
WO2020190782A1 (fr) | 2019-03-15 | 2020-09-24 | Danisco Us Inc | Lipase améliorée pour démoussage |
CN114450390A (zh) | 2019-07-26 | 2022-05-06 | 诺维信公司 | 用于乙醇生产的氮转运提高的微生物 |
EP4087936A1 (fr) | 2020-01-07 | 2022-11-16 | Danisco US Inc. | Procédés et compositions pour la production améliorée d'éthanol |
BR112023014736A2 (pt) | 2021-01-22 | 2023-12-12 | Lee Tech Llc | Sistema e método para aperfeiçoamento do processo de moagem úmida e moagem a seco do milho |
CN119421641A (zh) | 2022-06-17 | 2025-02-11 | 李科技有限公司 | 利用结合湿玉米研磨和干玉米研磨的工艺生产纯淀粉浆和酒精的系统和方法 |
Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092434A (en) * | 1974-11-26 | 1978-05-30 | Suntory Ltd. | Preparation of alcohol or alcoholic beverages |
US4316956A (en) * | 1980-02-06 | 1982-02-23 | Novo Industri A/S | Fermentation process |
US4346113A (en) * | 1979-09-21 | 1982-08-24 | Uhde Gmbh | Process for the continuous fermentation of aqueous slurries for the production of alcohol and yeast biomass |
US4376163A (en) * | 1979-10-01 | 1983-03-08 | Alfa-Laval Ab | Process for producing ethanol by continuous fermentation of polysaccharide-containing raw materials |
US4460687A (en) * | 1981-03-23 | 1984-07-17 | Alfa Laval Ab | Fermentation method |
US4514496A (en) * | 1980-12-16 | 1985-04-30 | Suntory Limited | Process for producing alcohol by fermentation without cooking |
US4618579A (en) * | 1984-09-28 | 1986-10-21 | Genencor, Inc. | Raw starch saccharification |
US4727026A (en) * | 1985-11-26 | 1988-02-23 | Godo Shusei Co., Ltd. | Method for direct saccharification of raw starch using enzyme produced by a basidiomycete belonging to the genus Corticium |
US5000000A (en) * | 1988-08-31 | 1991-03-19 | University Of Florida | Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes |
US5008473A (en) * | 1986-09-24 | 1991-04-16 | Ruhrchemie Aktiengesellschaft | Process for purifying propanediol-1,3 |
US5028539A (en) * | 1988-08-31 | 1991-07-02 | The University Of Florida | Ethanol production using engineered mutant E. coli |
US5084385A (en) * | 1984-12-15 | 1992-01-28 | Suntory Limited | Process for producing alcohol using yeast transformed by rhizopus glucoamylase gene |
US5231017A (en) * | 1991-05-17 | 1993-07-27 | Solvay Enzymes, Inc. | Process for producing ethanol |
US5356812A (en) * | 1990-08-10 | 1994-10-18 | Daicel Chemical Industries, Ltd. | Processes for production of optically active 3-phenyl-1,3-propanediol by asymmetric assimilation |
US5424202A (en) * | 1988-08-31 | 1995-06-13 | The University Of Florida | Ethanol production by recombinant hosts |
US5487989A (en) * | 1988-08-31 | 1996-01-30 | Bioenergy International, L.C. | Ethanol production by recombinant hosts |
US5514583A (en) * | 1994-04-15 | 1996-05-07 | Midwest Research Institute | Recombinant zymomonas for pentose fermentation |
US5554520A (en) * | 1988-08-31 | 1996-09-10 | Bioenergy International, L.C. | Ethanol production by recombinant hosts |
US5599689A (en) * | 1995-05-12 | 1997-02-04 | E. I. Du Pont De Nemours And Company | Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1143677A (fr) * | 1980-04-15 | 1983-03-29 | Lidia S. Losyakova | Procede de fabrication d'ethanol a partir de matieres brutes amylacees |
EP0171218B1 (fr) | 1984-08-06 | 1993-10-13 | Genencor, Inc. | Hydrolyse enzymatique d'amidon granulaire directement en glucose |
DE3541129A1 (de) * | 1984-12-13 | 1986-06-26 | Bayerische Versuchs- und Lehrbrennerei TU München - Weihenstephan, 8050 Freising | Verfahren und vorrichtung zum kontinuierlichen abbau von cellulose- und hemicellulosehaltigen substraten |
JPS61162183A (ja) * | 1985-01-07 | 1986-07-22 | Agency Of Ind Science & Technol | プルラナ−ゼ様酵素の製造法 |
CN87103681A (zh) * | 1986-05-01 | 1987-12-09 | 昆士兰大学 | 利用淀粉葡萄糖苷酶和游动酵单细菌将经预处理并液化的淀粉转化成乙醇 |
US5482846A (en) * | 1988-08-31 | 1996-01-09 | University Of Florida | Ethanol production in Gram-positive microbes |
CN1065487A (zh) * | 1991-04-02 | 1992-10-21 | 孔兆钦 | 一种快速连续酿造不含致癌物的无醇啤酒的酿造方法 |
US5789210A (en) | 1993-11-08 | 1998-08-04 | Purdue Research Foundation | Recombinant yeasts for effective fermentation of glucose and xylose |
-
2003
- 2003-02-06 WO PCT/US2003/003670 patent/WO2003066826A2/fr active Application Filing
- 2003-02-06 JP JP2003566177A patent/JP2005523689A/ja active Pending
- 2003-02-06 US US10/360,010 patent/US20030180900A1/en not_active Abandoned
- 2003-02-06 CA CA002475416A patent/CA2475416A1/fr not_active Abandoned
- 2003-02-06 AU AU2003217338A patent/AU2003217338A1/en not_active Abandoned
- 2003-02-06 CN CNB038051028A patent/CN100564534C/zh not_active Expired - Lifetime
- 2003-02-06 EP EP03713381A patent/EP1525300A4/fr not_active Ceased
-
2004
- 2004-05-27 US US10/856,214 patent/US20050100996A1/en not_active Abandoned
-
2005
- 2005-10-04 US US11/243,382 patent/US8293508B2/en not_active Expired - Lifetime
Patent Citations (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4092434A (en) * | 1974-11-26 | 1978-05-30 | Suntory Ltd. | Preparation of alcohol or alcoholic beverages |
US4346113A (en) * | 1979-09-21 | 1982-08-24 | Uhde Gmbh | Process for the continuous fermentation of aqueous slurries for the production of alcohol and yeast biomass |
US4376163A (en) * | 1979-10-01 | 1983-03-08 | Alfa-Laval Ab | Process for producing ethanol by continuous fermentation of polysaccharide-containing raw materials |
US4316956A (en) * | 1980-02-06 | 1982-02-23 | Novo Industri A/S | Fermentation process |
US4514496A (en) * | 1980-12-16 | 1985-04-30 | Suntory Limited | Process for producing alcohol by fermentation without cooking |
US4460687A (en) * | 1981-03-23 | 1984-07-17 | Alfa Laval Ab | Fermentation method |
US4618579A (en) * | 1984-09-28 | 1986-10-21 | Genencor, Inc. | Raw starch saccharification |
US5084385A (en) * | 1984-12-15 | 1992-01-28 | Suntory Limited | Process for producing alcohol using yeast transformed by rhizopus glucoamylase gene |
US4727026A (en) * | 1985-11-26 | 1988-02-23 | Godo Shusei Co., Ltd. | Method for direct saccharification of raw starch using enzyme produced by a basidiomycete belonging to the genus Corticium |
US5008473A (en) * | 1986-09-24 | 1991-04-16 | Ruhrchemie Aktiengesellschaft | Process for purifying propanediol-1,3 |
US5000000A (en) * | 1988-08-31 | 1991-03-19 | University Of Florida | Ethanol production by Escherichia coli strains co-expressing Zymomonas PDC and ADH genes |
US5028539A (en) * | 1988-08-31 | 1991-07-02 | The University Of Florida | Ethanol production using engineered mutant E. coli |
US5424202A (en) * | 1988-08-31 | 1995-06-13 | The University Of Florida | Ethanol production by recombinant hosts |
US5487989A (en) * | 1988-08-31 | 1996-01-30 | Bioenergy International, L.C. | Ethanol production by recombinant hosts |
US5554520A (en) * | 1988-08-31 | 1996-09-10 | Bioenergy International, L.C. | Ethanol production by recombinant hosts |
US5356812A (en) * | 1990-08-10 | 1994-10-18 | Daicel Chemical Industries, Ltd. | Processes for production of optically active 3-phenyl-1,3-propanediol by asymmetric assimilation |
US5231017A (en) * | 1991-05-17 | 1993-07-27 | Solvay Enzymes, Inc. | Process for producing ethanol |
US5514583A (en) * | 1994-04-15 | 1996-05-07 | Midwest Research Institute | Recombinant zymomonas for pentose fermentation |
US5599689A (en) * | 1995-05-12 | 1997-02-04 | E. I. Du Pont De Nemours And Company | Process for making 1,3-propanediol from carbohydrates using mixed microbial cultures |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040215296A1 (en) * | 1999-11-16 | 2004-10-28 | Barrx, Inc. | System and method for treating abnormal epithelium in an esophagus |
US7842484B2 (en) | 2003-03-10 | 2010-11-30 | Poet Research, Inc. | Method for producing ethanol using raw starch |
US8470550B2 (en) | 2003-03-10 | 2013-06-25 | Poet Research, Inc. | Composition comprising raw starch for the production of ethanol |
US20110111085A1 (en) * | 2003-03-10 | 2011-05-12 | Poet Research, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20110097446A1 (en) * | 2003-03-10 | 2011-04-28 | Poet Research, Inc. | Method for producing ethanol using raw starch |
US7919291B2 (en) | 2003-03-10 | 2011-04-05 | Poet Research, Inc. | Method for producing ethanol using raw starch |
US8409639B2 (en) | 2003-03-10 | 2013-04-02 | Poet Research, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20110070618A1 (en) * | 2003-03-10 | 2011-03-24 | Poet Research, Inc. | Method for producing ethanol using raw starch |
US8748141B2 (en) | 2003-03-10 | 2014-06-10 | Poet Research, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20040234649A1 (en) * | 2003-03-10 | 2004-11-25 | Broin And Associates, Inc. | Method for producing ethanol using raw starch |
US8409640B2 (en) | 2003-03-10 | 2013-04-02 | Poet Research, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US8497082B2 (en) | 2003-03-10 | 2013-07-30 | Poet Research, Inc. | Composition comprising corn flour and saccharification enzymes |
US20070202214A1 (en) * | 2003-03-10 | 2007-08-30 | Broin & Associates, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20070196907A1 (en) * | 2003-03-10 | 2007-08-23 | Broin & Associates, Inc. | Method For Producing Ethanol Using Raw Starch |
US8679793B2 (en) | 2003-03-10 | 2014-03-25 | Poet Research, Inc. | Method for producing ethanol using raw starch |
US20100041116A1 (en) * | 2003-03-10 | 2010-02-18 | Broin & Associates, Inc. | Method for producing ethanol using raw starch |
US20050233030A1 (en) * | 2004-03-10 | 2005-10-20 | Broin And Associates, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US20050239181A1 (en) * | 2004-03-10 | 2005-10-27 | Broin And Associates, Inc. | Continuous process for producing ethanol using raw starch |
US20090011481A1 (en) * | 2004-03-31 | 2009-01-08 | Natureworks Llc | Process for fermenting sugars containing oligomeric saccharides |
US9328364B2 (en) | 2004-03-31 | 2016-05-03 | Cargill Incorporated | Process for fermenting sugars containing oligomeric saccharides |
US9714438B2 (en) | 2004-03-31 | 2017-07-25 | Cargill, Incorporated | Process for fermenting sugars containing oligomeric saccharides |
US10655151B2 (en) | 2004-03-31 | 2020-05-19 | Cargill, Incorporated | Process for fermenting sugars containing oligomeric saccharides |
US20060240147A1 (en) * | 2005-04-21 | 2006-10-26 | Padhye Vinod W | Alcoholic beverages containing corn syrup substitutes |
US20070037267A1 (en) * | 2005-05-02 | 2007-02-15 | Broin And Associates, Inc. | Methods and systems for producing ethanol using raw starch and fractionation |
US8980598B2 (en) * | 2005-06-14 | 2015-03-17 | Danisco Us Inc. | Dry solids staging fermentation process |
US20060281157A1 (en) * | 2005-06-14 | 2006-12-14 | Gopal Chotani | Dry solids staging fermentation process |
US20070178567A1 (en) * | 2005-10-10 | 2007-08-02 | Lewis Stephen M | Methods and systems for producing ethanol using raw starch and selecting plant material |
US7919289B2 (en) | 2005-10-10 | 2011-04-05 | Poet Research, Inc. | Methods and systems for producing ethanol using raw starch and selecting plant material |
US8597919B2 (en) | 2005-10-10 | 2013-12-03 | Poet Research, Inc. | Methods and systems for producing ethanol using raw starch and selecting plant material |
EP3279329A1 (fr) | 2006-07-21 | 2018-02-07 | Xyleco, Inc. | Systèmes de conversion de biomasse |
US20100143974A1 (en) * | 2007-02-01 | 2010-06-10 | Chang-Ho Chung | Process for Sugar Production from Lignocellulosic Biomass Using Alkali Pretreatment |
US7514247B2 (en) | 2007-11-03 | 2009-04-07 | Wise Landfill Recycling Mining, Inc. | Systems and processes for cellulosic ethanol production |
US7662617B2 (en) | 2007-11-03 | 2010-02-16 | Rush Stephen L | Systems and processes for cellulosic ethanol production |
US20080299633A1 (en) * | 2007-11-03 | 2008-12-04 | Rush Stephen L | Systems and processes for cellulosic ethanol production |
US20090181440A1 (en) * | 2007-11-03 | 2009-07-16 | Rush Stephen L | Systems and processes for cellulosic ethanol production |
US8815552B2 (en) | 2009-03-03 | 2014-08-26 | Poet Research, Inc. | System for fermentation of biomass for the production of ethanol |
US9416376B2 (en) | 2009-03-03 | 2016-08-16 | Poet Research, Inc. | System for management of yeast to facilitate the production of ethanol |
US8450094B1 (en) | 2009-03-03 | 2013-05-28 | Poet Research, Inc. | System for management of yeast to facilitate the production of ethanol |
US9068206B1 (en) | 2009-03-03 | 2015-06-30 | Poet Research, Inc. | System for treatment of biomass to facilitate the production of ethanol |
US20100233771A1 (en) * | 2009-03-03 | 2010-09-16 | Mcdonald William F | System for pre-treatment of biomass for the production of ethanol |
US9234167B2 (en) | 2009-03-03 | 2016-01-12 | Poet Research, Inc. | System for management of yeast to facilitate the production of ethanol |
WO2013148207A2 (fr) | 2012-03-30 | 2013-10-03 | Danisco Us Inc. | Conversion directe d'amidon en sucre fermentescible |
WO2013149192A1 (fr) | 2012-03-30 | 2013-10-03 | Danisco Us Inc. | Amidon direct à sucre fermentable en tant que matière première pour la production d'isoprène, molécules précurseurs d'isoprénoïdes et/ou d'isoprénoïdes |
US9315831B2 (en) | 2012-03-30 | 2016-04-19 | Danisco Us Inc. | Direct starch to fermentable sugar as feedstock for the production of isoprene, isoprenoid precursor molecules, and/or isoprenoids |
US9617574B2 (en) | 2013-03-15 | 2017-04-11 | Auburn University | Efficient process for producing saccharides and ethanol from a biomass feedstock |
US9850512B2 (en) | 2013-03-15 | 2017-12-26 | The Research Foundation For The State University Of New York | Hydrolysis of cellulosic fines in primary clarified sludge of paper mills and the addition of a surfactant to increase the yield |
US10329593B2 (en) | 2013-03-15 | 2019-06-25 | Auburn University | Efficient process for producing saccharides and ethanol from a biomass feedstock |
US20140332364A1 (en) * | 2013-05-07 | 2014-11-13 | Ja Energy, Inc. | Modular distillation unit and ethanol separating apparatus |
US9951363B2 (en) | 2014-03-14 | 2018-04-24 | The Research Foundation for the State University of New York College of Environmental Science and Forestry | Enzymatic hydrolysis of old corrugated cardboard (OCC) fines from recycled linerboard mill waste rejects |
Also Published As
Publication number | Publication date |
---|---|
WO2003066826A2 (fr) | 2003-08-14 |
US20060084156A1 (en) | 2006-04-20 |
CN100564534C (zh) | 2009-12-02 |
US8293508B2 (en) | 2012-10-23 |
WO2003066826A3 (fr) | 2005-03-03 |
US20050100996A1 (en) | 2005-05-12 |
JP2005523689A (ja) | 2005-08-11 |
CN1639346A (zh) | 2005-07-13 |
CA2475416A1 (fr) | 2003-08-14 |
AU2003217338A1 (en) | 2003-09-02 |
EP1525300A2 (fr) | 2005-04-27 |
EP1525300A4 (fr) | 2006-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8293508B2 (en) | Methods for producing ethanol from carbon substrates | |
AU2008203306B2 (en) | Methods for producing end-products from carbon substrates | |
US20150010970A1 (en) | Methods for producing end-products from carbon substrates | |
Saha et al. | Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol | |
Verma et al. | Bioconversion of starch to ethanol in a single-step process by coculture of amylolytic yeasts and Saccharomyces cerevisiae 21 | |
EP1891225B1 (fr) | Procede de fermentation avec augmentation graduelle de la tour en matière sèche | |
Xu et al. | Xylitol production by Candida tropicalis 31949 from sugarcane bagasse hydrolysate | |
Rodrigues et al. | Batch xylitol production by Candida guilliermondii FTI 20037 from sugarcane bagasse hemicellulosic hydrolyzate at controlled pH values | |
Elena et al. | Current approaches to efficient biotechnological production of ethanol | |
Roberto et al. | Influence of k L a on bioconversion of rice straw hemicellulose hydrolysate to xylitol | |
Behera et al. | Ethanol fermentation of mahula (Madhuca latifolia) flowers using free and immobilized bacteria Zymomonas mobilis MTCC 92 | |
Amartey et al. | Fermentation of a wheat straw acid hydrolysate by Bacillus stearothermophilus T-13 in continuous culture with partial cell recycle | |
AU2012201665A1 (en) | Methods for producing end-products from carbon substrates | |
Labua et al. | Comparison of ethanol production from cassava chips by fermentation using five yeast strains |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |