US20030173251A1 - Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions - Google Patents
Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions Download PDFInfo
- Publication number
- US20030173251A1 US20030173251A1 US10/265,948 US26594802A US2003173251A1 US 20030173251 A1 US20030173251 A1 US 20030173251A1 US 26594802 A US26594802 A US 26594802A US 2003173251 A1 US2003173251 A1 US 2003173251A1
- Authority
- US
- United States
- Prior art keywords
- compound
- molecular weight
- lubricating oil
- amine
- composition
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000002270 dispersing agent Substances 0.000 title claims abstract description 82
- 239000010687 lubricating oil Substances 0.000 title claims abstract description 46
- 239000000203 mixture Substances 0.000 title claims description 96
- 239000007859 condensation product Substances 0.000 title claims description 30
- 239000004071 soot Substances 0.000 title abstract description 32
- -1 hydroxy aromatic compounds Chemical class 0.000 claims abstract description 131
- 150000001412 amines Chemical class 0.000 claims abstract description 53
- 150000001875 compounds Chemical class 0.000 claims abstract description 49
- BCHZICNRHXRCHY-UHFFFAOYSA-N 2h-oxazine Chemical group N1OC=CC=C1 BCHZICNRHXRCHY-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000003921 oil Substances 0.000 claims description 60
- 239000000047 product Substances 0.000 claims description 47
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 31
- 125000003118 aryl group Chemical group 0.000 claims description 27
- 125000004432 carbon atom Chemical group C* 0.000 claims description 23
- 230000001050 lubricating effect Effects 0.000 claims description 10
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 9
- 229910052717 sulfur Inorganic materials 0.000 claims description 8
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Chemical compound C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 6
- MWPLVEDNUUSJAV-UHFFFAOYSA-N anthracene Chemical compound C1=CC=CC2=CC3=CC=CC=C3C=C21 MWPLVEDNUUSJAV-UHFFFAOYSA-N 0.000 claims description 6
- WDECIBYCCFPHNR-UHFFFAOYSA-N chrysene Chemical compound C1=CC=CC2=CC=C3C4=CC=CC=C4C=CC3=C21 WDECIBYCCFPHNR-UHFFFAOYSA-N 0.000 claims description 6
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical group C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 claims description 6
- 125000004433 nitrogen atom Chemical group N* 0.000 claims description 6
- BBEAQIROQSPTKN-UHFFFAOYSA-N pyrene Chemical compound C1=CC=C2C=CC3=CC=CC4=CC=C1C2=C43 BBEAQIROQSPTKN-UHFFFAOYSA-N 0.000 claims description 6
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 5
- GVEPBJHOBDJJJI-UHFFFAOYSA-N fluoranthrene Natural products C1=CC(C2=CC=CC=C22)=C3C2=CC=CC3=C1 GVEPBJHOBDJJJI-UHFFFAOYSA-N 0.000 claims description 3
- 229910052760 oxygen Inorganic materials 0.000 claims description 3
- 125000005842 heteroatom Chemical group 0.000 claims description 2
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims 4
- 125000002485 formyl group Chemical class [H]C(*)=O 0.000 abstract description 2
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical class O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 82
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 64
- 229920000642 polymer Polymers 0.000 description 63
- 235000019198 oils Nutrition 0.000 description 58
- 239000002585 base Substances 0.000 description 46
- 229910052757 nitrogen Inorganic materials 0.000 description 36
- 239000000654 additive Substances 0.000 description 28
- 238000006243 chemical reaction Methods 0.000 description 26
- 230000015572 biosynthetic process Effects 0.000 description 24
- 238000000034 method Methods 0.000 description 24
- 239000000376 reactant Substances 0.000 description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 24
- 229920000768 polyamine Polymers 0.000 description 23
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 22
- 238000009472 formulation Methods 0.000 description 22
- 125000000217 alkyl group Chemical group 0.000 description 21
- 239000006229 carbon black Substances 0.000 description 21
- 150000002148 esters Chemical class 0.000 description 21
- 239000011541 reaction mixture Substances 0.000 description 21
- 229930195733 hydrocarbon Natural products 0.000 description 20
- 150000002430 hydrocarbons Chemical class 0.000 description 20
- 238000003786 synthesis reaction Methods 0.000 description 20
- 239000002253 acid Substances 0.000 description 19
- 239000003054 catalyst Substances 0.000 description 19
- 239000003599 detergent Substances 0.000 description 19
- KJCVRFUGPWSIIH-UHFFFAOYSA-N 1-naphthol Chemical compound C1=CC=C2C(O)=CC=CC2=C1 KJCVRFUGPWSIIH-UHFFFAOYSA-N 0.000 description 18
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Natural products OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 17
- 239000000463 material Substances 0.000 description 17
- 229910052751 metal Inorganic materials 0.000 description 17
- 239000002184 metal Substances 0.000 description 17
- 229920002367 Polyisobutene Polymers 0.000 description 15
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 15
- 150000001299 aldehydes Chemical class 0.000 description 15
- 238000012360 testing method Methods 0.000 description 15
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 14
- 239000005977 Ethylene Substances 0.000 description 14
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 13
- 238000005804 alkylation reaction Methods 0.000 description 13
- 239000000314 lubricant Substances 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- UFWIBTONFRDIAS-UHFFFAOYSA-N Naphthalene Chemical compound C1=CC=CC2=CC=CC=C21 UFWIBTONFRDIAS-UHFFFAOYSA-N 0.000 description 12
- 239000002199 base oil Substances 0.000 description 12
- 239000004711 α-olefin Substances 0.000 description 12
- 230000000996 additive effect Effects 0.000 description 11
- 239000003963 antioxidant agent Substances 0.000 description 11
- 229920001577 copolymer Polymers 0.000 description 11
- 239000000243 solution Substances 0.000 description 11
- 239000004215 Carbon black (E152) Substances 0.000 description 10
- 238000002156 mixing Methods 0.000 description 10
- 230000007935 neutral effect Effects 0.000 description 10
- 150000002989 phenols Chemical class 0.000 description 10
- 230000029936 alkylation Effects 0.000 description 9
- 150000008064 anhydrides Chemical class 0.000 description 9
- 230000003078 antioxidant effect Effects 0.000 description 9
- 239000003795 chemical substances by application Substances 0.000 description 9
- 239000012141 concentrate Substances 0.000 description 9
- 239000003112 inhibitor Substances 0.000 description 9
- CCCMONHAUSKTEQ-UHFFFAOYSA-N octadec-1-ene Chemical compound CCCCCCCCCCCCCCCCC=C CCCMONHAUSKTEQ-UHFFFAOYSA-N 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- JWAZRIHNYRIHIV-UHFFFAOYSA-N 2-naphthol Chemical compound C1=CC=CC2=CC(O)=CC=C21 JWAZRIHNYRIHIV-UHFFFAOYSA-N 0.000 description 8
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 8
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 7
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical class C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 7
- 150000001491 aromatic compounds Chemical class 0.000 description 7
- 238000001816 cooling Methods 0.000 description 7
- KZNICNPSHKQLFF-UHFFFAOYSA-N dihydromaleimide Natural products O=C1CCC(=O)N1 KZNICNPSHKQLFF-UHFFFAOYSA-N 0.000 description 7
- 238000010438 heat treatment Methods 0.000 description 7
- 239000000178 monomer Substances 0.000 description 7
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 7
- 150000003254 radicals Chemical class 0.000 description 7
- 239000010802 sludge Substances 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 description 7
- 0 *C1CC(=O)N(c2ccccc2)C1=O.CC.CO.[H]C(C)CC Chemical compound *C1CC(=O)N(c2ccccc2)C1=O.CC.CO.[H]C(C)CC 0.000 description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- RRHGJUQNOFWUDK-UHFFFAOYSA-N Isoprene Chemical compound CC(=C)C=C RRHGJUQNOFWUDK-UHFFFAOYSA-N 0.000 description 6
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 6
- 239000003377 acid catalyst Substances 0.000 description 6
- 230000002378 acidificating effect Effects 0.000 description 6
- 239000004480 active ingredient Substances 0.000 description 6
- 125000002947 alkylene group Chemical group 0.000 description 6
- 150000004985 diamines Chemical class 0.000 description 6
- 238000007254 oxidation reaction Methods 0.000 description 6
- 239000003760 tallow Substances 0.000 description 6
- 229910015900 BF3 Inorganic materials 0.000 description 5
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 5
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 5
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 5
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 5
- 150000001298 alcohols Chemical class 0.000 description 5
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 5
- 150000004982 aromatic amines Chemical class 0.000 description 5
- 229910052796 boron Inorganic materials 0.000 description 5
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 5
- 239000011575 calcium Substances 0.000 description 5
- 229910052791 calcium Inorganic materials 0.000 description 5
- 238000006482 condensation reaction Methods 0.000 description 5
- 239000003999 initiator Substances 0.000 description 5
- 239000002480 mineral oil Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 description 5
- 239000003208 petroleum Substances 0.000 description 5
- 229920001281 polyalkylene Chemical class 0.000 description 5
- 229920000098 polyolefin Polymers 0.000 description 5
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 5
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 5
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 5
- 150000003335 secondary amines Chemical class 0.000 description 5
- 229940014800 succinic anhydride Drugs 0.000 description 5
- 150000005846 sugar alcohols Polymers 0.000 description 5
- 239000011593 sulfur Substances 0.000 description 5
- 239000010689 synthetic lubricating oil Substances 0.000 description 5
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 5
- QGLWBTPVKHMVHM-KTKRTIGZSA-N (z)-octadec-9-en-1-amine Chemical compound CCCCCCCC\C=C/CCCCCCCCN QGLWBTPVKHMVHM-KTKRTIGZSA-N 0.000 description 4
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 4
- QEQVCPKISCKMOQ-UHFFFAOYSA-N 3h-benzo[f][1,2]benzoxazine Chemical compound C1=CC=CC2=C(C=CNO3)C3=CC=C21 QEQVCPKISCKMOQ-UHFFFAOYSA-N 0.000 description 4
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical compound C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 description 4
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 4
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 4
- VQTUBCCKSQIDNK-UHFFFAOYSA-N Isobutene Chemical compound CC(C)=C VQTUBCCKSQIDNK-UHFFFAOYSA-N 0.000 description 4
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 4
- 125000001931 aliphatic group Chemical group 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000000460 chlorine Substances 0.000 description 4
- 229910052801 chlorine Inorganic materials 0.000 description 4
- 235000014113 dietary fatty acids Nutrition 0.000 description 4
- 239000006185 dispersion Substances 0.000 description 4
- 239000000194 fatty acid Substances 0.000 description 4
- 229930195729 fatty acid Natural products 0.000 description 4
- 229920001519 homopolymer Polymers 0.000 description 4
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 4
- 150000002736 metal compounds Chemical class 0.000 description 4
- 150000002762 monocarboxylic acid derivatives Chemical class 0.000 description 4
- 229910017464 nitrogen compound Inorganic materials 0.000 description 4
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 4
- 238000006116 polymerization reaction Methods 0.000 description 4
- 150000003141 primary amines Chemical class 0.000 description 4
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 4
- 239000007787 solid Substances 0.000 description 4
- 235000011044 succinic acid Nutrition 0.000 description 4
- 229960002317 succinimide Drugs 0.000 description 4
- 238000011282 treatment Methods 0.000 description 4
- XFNJVJPLKCPIBV-UHFFFAOYSA-N trimethylenediamine Chemical compound NCCCN XFNJVJPLKCPIBV-UHFFFAOYSA-N 0.000 description 4
- 229910052725 zinc Inorganic materials 0.000 description 4
- 239000011701 zinc Substances 0.000 description 4
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical compound C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 3
- YZUPZGFPHUVJKC-UHFFFAOYSA-N 1-bromo-2-methoxyethane Chemical compound COCCBr YZUPZGFPHUVJKC-UHFFFAOYSA-N 0.000 description 3
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Chemical class OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- WFDIJRYMOXRFFG-UHFFFAOYSA-N Acetic anhydride Chemical compound CC(=O)OC(C)=O WFDIJRYMOXRFFG-UHFFFAOYSA-N 0.000 description 3
- ZTQSAGDEMFDKMZ-UHFFFAOYSA-N Butyraldehyde Chemical compound CCCC=O ZTQSAGDEMFDKMZ-UHFFFAOYSA-N 0.000 description 3
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 3
- LCGLNKUTAGEVQW-UHFFFAOYSA-N Dimethyl ether Chemical compound COC LCGLNKUTAGEVQW-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 3
- AVXURJPOCDRRFD-UHFFFAOYSA-N Hydroxylamine Chemical compound ON AVXURJPOCDRRFD-UHFFFAOYSA-N 0.000 description 3
- 125000002435 L-phenylalanyl group Chemical group O=C([*])[C@](N([H])[H])([H])C([H])([H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 3
- 229920002873 Polyethylenimine Polymers 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 150000001336 alkenes Chemical class 0.000 description 3
- 125000003545 alkoxy group Chemical group 0.000 description 3
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 3
- 229910021529 ammonia Inorganic materials 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 235000010290 biphenyl Nutrition 0.000 description 3
- 238000005885 boration reaction Methods 0.000 description 3
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 3
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 3
- 238000005660 chlorination reaction Methods 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 3
- 238000005260 corrosion Methods 0.000 description 3
- 150000005690 diesters Chemical class 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- USIUVYZYUHIAEV-UHFFFAOYSA-N diphenyl ether Chemical class C=1C=CC=CC=1OC1=CC=CC=C1 USIUVYZYUHIAEV-UHFFFAOYSA-N 0.000 description 3
- NAGJZTKCGNOGPW-UHFFFAOYSA-N dithiophosphoric acid Chemical compound OP(O)(S)=S NAGJZTKCGNOGPW-UHFFFAOYSA-N 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 150000004665 fatty acids Chemical class 0.000 description 3
- 125000000524 functional group Chemical group 0.000 description 3
- 238000007306 functionalization reaction Methods 0.000 description 3
- 238000005227 gel permeation chromatography Methods 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 description 3
- 150000002440 hydroxy compounds Chemical class 0.000 description 3
- 239000003456 ion exchange resin Substances 0.000 description 3
- 229920003303 ion-exchange polymer Polymers 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 150000004780 naphthols Chemical class 0.000 description 3
- 150000002978 peroxides Chemical class 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920005652 polyisobutylene succinic anhydride Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 150000003871 sulfonates Chemical class 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 3
- 229960001124 trientine Drugs 0.000 description 3
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical group OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 239000004034 viscosity adjusting agent Substances 0.000 description 3
- 150000003752 zinc compounds Chemical class 0.000 description 3
- OOCCDEMITAIZTP-QPJJXVBHSA-N (E)-cinnamyl alcohol Chemical compound OC\C=C\C1=CC=CC=C1 OOCCDEMITAIZTP-QPJJXVBHSA-N 0.000 description 2
- CIRMGZKUSBCWRL-LHLOQNFPSA-N (e)-10-[2-(7-carboxyheptyl)-5,6-dihexylcyclohex-3-en-1-yl]dec-9-enoic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)C(\C=C\CCCCCCCC(O)=O)C1CCCCCC CIRMGZKUSBCWRL-LHLOQNFPSA-N 0.000 description 2
- 150000004782 1-naphthols Chemical class 0.000 description 2
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical class COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- TXBCBTDQIULDIA-UHFFFAOYSA-N 2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)CO TXBCBTDQIULDIA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RWSOTUBLDIXVET-UHFFFAOYSA-N Dihydrogen sulfide Chemical class S RWSOTUBLDIXVET-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 2
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 2
- AMQJEAYHLZJPGS-UHFFFAOYSA-N N-Pentanol Chemical compound CCCCCO AMQJEAYHLZJPGS-UHFFFAOYSA-N 0.000 description 2
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 229930040373 Paraformaldehyde Natural products 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- NBBJYMSMWIIQGU-UHFFFAOYSA-N Propionic aldehyde Chemical compound CCC=O NBBJYMSMWIIQGU-UHFFFAOYSA-N 0.000 description 2
- 239000005700 Putrescine Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- OXIKYYJDTWKERT-UHFFFAOYSA-N [4-(aminomethyl)cyclohexyl]methanamine Chemical compound NCC1CCC(CN)CC1 OXIKYYJDTWKERT-UHFFFAOYSA-N 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000003513 alkali Substances 0.000 description 2
- 150000001342 alkaline earth metals Chemical class 0.000 description 2
- 230000002152 alkylating effect Effects 0.000 description 2
- 125000005237 alkyleneamino group Chemical group 0.000 description 2
- XXROGKLTLUQVRX-UHFFFAOYSA-N allyl alcohol Chemical compound OCC=C XXROGKLTLUQVRX-UHFFFAOYSA-N 0.000 description 2
- 125000003368 amide group Chemical group 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 239000002518 antifoaming agent Substances 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 229950011260 betanaphthol Drugs 0.000 description 2
- ZDZHCHYQNPQSGG-UHFFFAOYSA-N binaphthyl group Chemical group C1(=CC=CC2=CC=CC=C12)C1=CC=CC2=CC=CC=C12 ZDZHCHYQNPQSGG-UHFFFAOYSA-N 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 239000004327 boric acid Substances 0.000 description 2
- 150000001639 boron compounds Chemical class 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 150000007942 carboxylates Chemical class 0.000 description 2
- 238000010538 cationic polymerization reaction Methods 0.000 description 2
- MVPPADPHJFYWMZ-UHFFFAOYSA-N chlorobenzene Chemical compound ClC1=CC=CC=C1 MVPPADPHJFYWMZ-UHFFFAOYSA-N 0.000 description 2
- 230000000052 comparative effect Effects 0.000 description 2
- VPUGDVKSAQVFFS-UHFFFAOYSA-N coronene Chemical compound C1=C(C2=C34)C=CC3=CC=C(C=C3)C4=C4C3=CC=C(C=C3)C4=C2C3=C1 VPUGDVKSAQVFFS-UHFFFAOYSA-N 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 2
- VJHINFRRDQUWOJ-UHFFFAOYSA-N dioctyl sebacate Chemical compound CCCCC(CC)COC(=O)CCCCCCCCC(=O)OCC(CC)CCCC VJHINFRRDQUWOJ-UHFFFAOYSA-N 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- LQZZUXJYWNFBMV-UHFFFAOYSA-N dodecan-1-ol Chemical compound CCCCCCCCCCCCO LQZZUXJYWNFBMV-UHFFFAOYSA-N 0.000 description 2
- 230000032050 esterification Effects 0.000 description 2
- 238000005886 esterification reaction Methods 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- XXUJMEYKYHETBZ-UHFFFAOYSA-N ethyl 4-nitrophenyl ethylphosphonate Chemical compound CCOP(=O)(CC)OC1=CC=C([N+]([O-])=O)C=C1 XXUJMEYKYHETBZ-UHFFFAOYSA-N 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 239000001530 fumaric acid Substances 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 description 2
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 229910052739 hydrogen Inorganic materials 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 2
- 150000004679 hydroxides Chemical class 0.000 description 2
- 239000005457 ice water Substances 0.000 description 2
- 150000002462 imidazolines Chemical class 0.000 description 2
- 125000002636 imidazolinyl group Chemical group 0.000 description 2
- 150000003949 imides Chemical class 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 2
- 239000011976 maleic acid Substances 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 239000010688 mineral lubricating oil Substances 0.000 description 2
- 235000010446 mineral oil Nutrition 0.000 description 2
- 229910052750 molybdenum Inorganic materials 0.000 description 2
- 239000011733 molybdenum Substances 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 150000002825 nitriles Chemical class 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 150000002918 oxazolines Chemical class 0.000 description 2
- 229920002866 paraformaldehyde Polymers 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- YNPNZTXNASCQKK-UHFFFAOYSA-N phenanthrene Chemical compound C1=CC=C2C3=CC=CC=C3C=CC2=C1 YNPNZTXNASCQKK-UHFFFAOYSA-N 0.000 description 2
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 2
- 125000000843 phenylene group Chemical group C1(=C(C=CC=C1)*)* 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 229920000333 poly(propyleneimine) Polymers 0.000 description 2
- 229920001748 polybutylene Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 229920000193 polymethacrylate Polymers 0.000 description 2
- 229920005862 polyol Polymers 0.000 description 2
- 235000013824 polyphenols Nutrition 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 230000003389 potentiating effect Effects 0.000 description 2
- AOHJOMMDDJHIJH-UHFFFAOYSA-N propylenediamine Chemical compound CC(N)CN AOHJOMMDDJHIJH-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 150000003444 succinic acids Chemical class 0.000 description 2
- RINCXYDBBGOEEQ-UHFFFAOYSA-N succinic anhydride Chemical group O=C1CCC(=O)O1 RINCXYDBBGOEEQ-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- UWHCKJMYHZGTIT-UHFFFAOYSA-N tetraethylene glycol Chemical compound OCCOCCOCCOCCO UWHCKJMYHZGTIT-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- OBETXYAYXDNJHR-SSDOTTSWSA-M (2r)-2-ethylhexanoate Chemical compound CCCC[C@@H](CC)C([O-])=O OBETXYAYXDNJHR-SSDOTTSWSA-M 0.000 description 1
- ALSTYHKOOCGGFT-KTKRTIGZSA-N (9Z)-octadecen-1-ol Chemical compound CCCCCCCC\C=C/CCCCCCCCO ALSTYHKOOCGGFT-KTKRTIGZSA-N 0.000 description 1
- ZQHJVIHCDHJVII-OWOJBTEDSA-N (e)-2-chlorobut-2-enedioic acid Chemical compound OC(=O)\C=C(\Cl)C(O)=O ZQHJVIHCDHJVII-OWOJBTEDSA-N 0.000 description 1
- XLYMOEINVGRTEX-ONEGZZNKSA-N (e)-4-ethoxy-4-oxobut-2-enoic acid Chemical compound CCOC(=O)\C=C\C(O)=O XLYMOEINVGRTEX-ONEGZZNKSA-N 0.000 description 1
- WBYWAXJHAXSJNI-VOTSOKGWSA-M .beta-Phenylacrylic acid Natural products [O-]C(=O)\C=C\C1=CC=CC=C1 WBYWAXJHAXSJNI-VOTSOKGWSA-M 0.000 description 1
- DXBHBZVCASKNBY-UHFFFAOYSA-N 1,2-Benz(a)anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C=CC2=C1 DXBHBZVCASKNBY-UHFFFAOYSA-N 0.000 description 1
- WSLDOOZREJYCGB-UHFFFAOYSA-N 1,2-Dichloroethane Chemical compound ClCCCl WSLDOOZREJYCGB-UHFFFAOYSA-N 0.000 description 1
- RDAGYWUMBWNXIC-UHFFFAOYSA-N 1,2-bis(2-ethylhexyl)benzene Chemical class CCCCC(CC)CC1=CC=CC=C1CC(CC)CCCC RDAGYWUMBWNXIC-UHFFFAOYSA-N 0.000 description 1
- YEYQUBZGSWAPGE-UHFFFAOYSA-N 1,2-di(nonyl)benzene Chemical class CCCCCCCCCC1=CC=CC=C1CCCCCCCCC YEYQUBZGSWAPGE-UHFFFAOYSA-N 0.000 description 1
- KNKRKFALVUDBJE-UHFFFAOYSA-N 1,2-dichloropropane Chemical compound CC(Cl)CCl KNKRKFALVUDBJE-UHFFFAOYSA-N 0.000 description 1
- RLPSARLYTKXVSE-UHFFFAOYSA-N 1-(1,3-thiazol-5-yl)ethanamine Chemical compound CC(N)C1=CN=CS1 RLPSARLYTKXVSE-UHFFFAOYSA-N 0.000 description 1
- VQOXUMQBYILCKR-UHFFFAOYSA-N 1-Tridecene Chemical compound CCCCCCCCCCCC=C VQOXUMQBYILCKR-UHFFFAOYSA-N 0.000 description 1
- RMSGQZDGSZOJMU-UHFFFAOYSA-N 1-butyl-2-phenylbenzene Chemical group CCCCC1=CC=CC=C1C1=CC=CC=C1 RMSGQZDGSZOJMU-UHFFFAOYSA-N 0.000 description 1
- JTPNRXUCIXHOKM-UHFFFAOYSA-N 1-chloronaphthalene Chemical compound C1=CC=C2C(Cl)=CC=CC2=C1 JTPNRXUCIXHOKM-UHFFFAOYSA-N 0.000 description 1
- AFFLGGQVNFXPEV-UHFFFAOYSA-N 1-decene Chemical compound CCCCCCCCC=C AFFLGGQVNFXPEV-UHFFFAOYSA-N 0.000 description 1
- CRSBERNSMYQZNG-UHFFFAOYSA-N 1-dodecene Chemical compound CCCCCCCCCCC=C CRSBERNSMYQZNG-UHFFFAOYSA-N 0.000 description 1
- GQEZCXVZFLOKMC-UHFFFAOYSA-N 1-hexadecene Chemical compound CCCCCCCCCCCCCCC=C GQEZCXVZFLOKMC-UHFFFAOYSA-N 0.000 description 1
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 description 1
- HFDVRLIODXPAHB-UHFFFAOYSA-N 1-tetradecene Chemical compound CCCCCCCCCCCCC=C HFDVRLIODXPAHB-UHFFFAOYSA-N 0.000 description 1
- TYRGTHQUZVMKOF-UHFFFAOYSA-N 16,17-dihydro-15h-cyclopenta[a]phenanthrene Chemical compound C1=CC=C2C3=CC=C4CCCC4=C3C=CC2=C1 TYRGTHQUZVMKOF-UHFFFAOYSA-N 0.000 description 1
- 239000000263 2,3-dihydroxypropyl (Z)-octadec-9-enoate Substances 0.000 description 1
- AIUDKCYIGXXGIL-UHFFFAOYSA-N 2,4,6-trihydroxy-1,3,5,2,4,6-trioxatriborinane Chemical compound OB1OB(O)OB(O)O1 AIUDKCYIGXXGIL-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- YEVQZPWSVWZAOB-UHFFFAOYSA-N 2-(bromomethyl)-1-iodo-4-(trifluoromethyl)benzene Chemical compound FC(F)(F)C1=CC=C(I)C(CBr)=C1 YEVQZPWSVWZAOB-UHFFFAOYSA-N 0.000 description 1
- PTJWCLYPVFJWMP-UHFFFAOYSA-N 2-[[3-hydroxy-2-[[3-hydroxy-2,2-bis(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propoxy]methyl]-2-(hydroxymethyl)propane-1,3-diol Chemical compound OCC(CO)(CO)COCC(CO)(CO)COCC(CO)(CO)CO PTJWCLYPVFJWMP-UHFFFAOYSA-N 0.000 description 1
- CDAWCLOXVUBKRW-UHFFFAOYSA-N 2-aminophenol Chemical compound NC1=CC=CC=C1O CDAWCLOXVUBKRW-UHFFFAOYSA-N 0.000 description 1
- YIWUKEYIRIRTPP-UHFFFAOYSA-N 2-ethylhexan-1-ol Chemical compound CCCCC(CC)CO YIWUKEYIRIRTPP-UHFFFAOYSA-N 0.000 description 1
- BKOOMYPCSUNDGP-UHFFFAOYSA-N 2-methylbut-2-ene Chemical group CC=C(C)C BKOOMYPCSUNDGP-UHFFFAOYSA-N 0.000 description 1
- KSJKFYTZUCKVFT-UHFFFAOYSA-N 2-pentadecyl-4,5-dihydro-1h-imidazole Chemical compound CCCCCCCCCCCCCCCC1=NCCN1 KSJKFYTZUCKVFT-UHFFFAOYSA-N 0.000 description 1
- NUCFNMOPTGEHQA-UHFFFAOYSA-N 3-bromo-2h-pyrazolo[4,3-c]pyridine Chemical compound C1=NC=C2C(Br)=NNC2=C1 NUCFNMOPTGEHQA-UHFFFAOYSA-N 0.000 description 1
- CXJAFLQWMOMYOW-UHFFFAOYSA-N 3-chlorofuran-2,5-dione Chemical compound ClC1=CC(=O)OC1=O CXJAFLQWMOMYOW-UHFFFAOYSA-N 0.000 description 1
- ZRJOUVOXPWNFOF-UHFFFAOYSA-N 3-dodecoxypropan-1-amine Chemical compound CCCCCCCCCCCCOCCCN ZRJOUVOXPWNFOF-UHFFFAOYSA-N 0.000 description 1
- UIKUBYKUYUSRSM-UHFFFAOYSA-N 3-morpholinopropylamine Chemical compound NCCCN1CCOCC1 UIKUBYKUYUSRSM-UHFFFAOYSA-N 0.000 description 1
- RZRNAYUHWVFMIP-GDCKJWNLSA-N 3-oleoyl-sn-glycerol Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OC[C@H](O)CO RZRNAYUHWVFMIP-GDCKJWNLSA-N 0.000 description 1
- CLPFFLWZZBQMAO-UHFFFAOYSA-N 4-(5,6,7,8-tetrahydroimidazo[1,5-a]pyridin-5-yl)benzonitrile Chemical compound C1=CC(C#N)=CC=C1C1N2C=NC=C2CCC1 CLPFFLWZZBQMAO-UHFFFAOYSA-N 0.000 description 1
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 1
- 238000006596 Alder-ene reaction Methods 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- FMMWHPNWAFZXNH-UHFFFAOYSA-N Benz[a]pyrene Chemical compound C1=C2C3=CC=CC=C3C=C(C=C3)C2=C2C3=CC=CC2=C1 FMMWHPNWAFZXNH-UHFFFAOYSA-N 0.000 description 1
- 125000006539 C12 alkyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WGJJLHXGRYVFHS-UHFFFAOYSA-N COP(C)(=S)S.[Zn] Chemical compound COP(C)(=S)S.[Zn] WGJJLHXGRYVFHS-UHFFFAOYSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-L Carbonate Chemical compound [O-]C([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-L 0.000 description 1
- WBYWAXJHAXSJNI-SREVYHEPSA-N Cinnamic acid Chemical compound OC(=O)\C=C/C1=CC=CC=C1 WBYWAXJHAXSJNI-SREVYHEPSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 239000005749 Copper compound Substances 0.000 description 1
- 229920000089 Cyclic olefin copolymer Polymers 0.000 description 1
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 1
- RAASUWZPTOJQAY-UHFFFAOYSA-N Dibenz[a,c]anthracene Chemical compound C1=CC=C2C3=CC4=CC=CC=C4C=C3C3=CC=CC=C3C2=C1 RAASUWZPTOJQAY-UHFFFAOYSA-N 0.000 description 1
- XTJFFFGAUHQWII-UHFFFAOYSA-N Dibutyl adipate Chemical compound CCCCOC(=O)CCCCC(=O)OCCCC XTJFFFGAUHQWII-UHFFFAOYSA-N 0.000 description 1
- ROSDSFDQCJNGOL-UHFFFAOYSA-N Dimethylamine Chemical compound CNC ROSDSFDQCJNGOL-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- IMROMDMJAWUWLK-UHFFFAOYSA-N Ethenol Chemical compound OC=C IMROMDMJAWUWLK-UHFFFAOYSA-N 0.000 description 1
- IAYPIBMASNFSPL-UHFFFAOYSA-N Ethylene oxide Chemical compound C1CO1 IAYPIBMASNFSPL-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- BAVYZALUXZFZLV-UHFFFAOYSA-N Methylamine Chemical compound NC BAVYZALUXZFZLV-UHFFFAOYSA-N 0.000 description 1
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- GOOHAUXETOMSMM-UHFFFAOYSA-N Propylene oxide Chemical compound CC1CO1 GOOHAUXETOMSMM-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- UCKMPCXJQFINFW-UHFFFAOYSA-N Sulphide Chemical compound [S-2] UCKMPCXJQFINFW-UHFFFAOYSA-N 0.000 description 1
- YSMRWXYRXBRSND-UHFFFAOYSA-N TOTP Chemical compound CC1=CC=CC=C1OP(=O)(OC=1C(=CC=CC=1)C)OC1=CC=CC=C1C YSMRWXYRXBRSND-UHFFFAOYSA-N 0.000 description 1
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 1
- LIWAQLJGPBVORC-UHFFFAOYSA-N [H]N(C)CC Chemical compound [H]N(C)CC LIWAQLJGPBVORC-UHFFFAOYSA-N 0.000 description 1
- PCIFXGOJRVVQGH-UHFFFAOYSA-N [H]NCN1CCN(CN[H])CC1 Chemical compound [H]NCN1CCN(CN[H])CC1 PCIFXGOJRVVQGH-UHFFFAOYSA-N 0.000 description 1
- IKHGUXGNUITLKF-XPULMUKRSA-N acetaldehyde Chemical compound [14CH]([14CH3])=O IKHGUXGNUITLKF-XPULMUKRSA-N 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 125000004442 acylamino group Chemical group 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 238000005054 agglomeration Methods 0.000 description 1
- 230000002776 aggregation Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 125000002877 alkyl aryl group Chemical group 0.000 description 1
- 150000008055 alkyl aryl sulfonates Chemical class 0.000 description 1
- 150000004996 alkyl benzenes Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 125000005263 alkylenediamine group Chemical group 0.000 description 1
- OOCCDEMITAIZTP-UHFFFAOYSA-N allylic benzylic alcohol Natural products OCC=CC1=CC=CC=C1 OOCCDEMITAIZTP-UHFFFAOYSA-N 0.000 description 1
- OBETXYAYXDNJHR-UHFFFAOYSA-N alpha-ethylcaproic acid Natural products CCCCC(CC)C(O)=O OBETXYAYXDNJHR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- IMUDHTPIFIBORV-UHFFFAOYSA-N aminoethylpiperazine Chemical compound NCCN1CCNCC1 IMUDHTPIFIBORV-UHFFFAOYSA-N 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 150000008378 aryl ethers Chemical class 0.000 description 1
- 125000004104 aryloxy group Chemical group 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- KCXMKQUNVWSEMD-UHFFFAOYSA-N benzyl chloride Chemical compound ClCC1=CC=CC=C1 KCXMKQUNVWSEMD-UHFFFAOYSA-N 0.000 description 1
- 125000006267 biphenyl group Chemical group 0.000 description 1
- 150000004074 biphenyls Chemical class 0.000 description 1
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 1
- WLLCYXDFVBWGBU-UHFFFAOYSA-N bis(8-methylnonyl) nonanedioate Chemical compound CC(C)CCCCCCCOC(=O)CCCCCCCC(=O)OCCCCCCCC(C)C WLLCYXDFVBWGBU-UHFFFAOYSA-N 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 150000001638 boron Chemical class 0.000 description 1
- 229910052810 boron oxide Inorganic materials 0.000 description 1
- 150000001642 boronic acid derivatives Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- 125000004369 butenyl group Chemical group C(=CCC)* 0.000 description 1
- OSMZVRQRVPLKTN-UHFFFAOYSA-N calcium;1-nonyl-7-thiabicyclo[4.1.0]hepta-2,4-dien-6-ol Chemical compound [Ca].C1=CC=CC2(CCCCCCCCC)C1(O)S2 OSMZVRQRVPLKTN-UHFFFAOYSA-N 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002843 carboxylic acid group Chemical group 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 229930016911 cinnamic acid Natural products 0.000 description 1
- 235000013985 cinnamic acid Nutrition 0.000 description 1
- HNEGQIOMVPPMNR-IHWYPQMZSA-N citraconic acid Chemical compound OC(=O)C(/C)=C\C(O)=O HNEGQIOMVPPMNR-IHWYPQMZSA-N 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 229920000891 common polymer Polymers 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000004148 curcumin Substances 0.000 description 1
- 125000000753 cycloalkyl group Chemical group 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- DZQISOJKASMITI-UHFFFAOYSA-N decyl-dioxido-oxo-$l^{5}-phosphane;hydron Chemical compound CCCCCCCCCCP(O)(O)=O DZQISOJKASMITI-UHFFFAOYSA-N 0.000 description 1
- 239000000412 dendrimer Substances 0.000 description 1
- 229920000736 dendritic polymer Polymers 0.000 description 1
- 230000000994 depressogenic effect Effects 0.000 description 1
- RAABOESOVLLHRU-UHFFFAOYSA-N diazene Chemical compound N=N RAABOESOVLLHRU-UHFFFAOYSA-N 0.000 description 1
- 229910000071 diazene Inorganic materials 0.000 description 1
- JKWMSGQKBLHBQQ-UHFFFAOYSA-N diboron trioxide Chemical compound O=BOB=O JKWMSGQKBLHBQQ-UHFFFAOYSA-N 0.000 description 1
- 229940100539 dibutyl adipate Drugs 0.000 description 1
- 150000001990 dicarboxylic acid derivatives Chemical class 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 description 1
- 229940043237 diethanolamine Drugs 0.000 description 1
- LVTYICIALWPMFW-UHFFFAOYSA-N diisopropanolamine Chemical compound CC(O)CNCC(C)O LVTYICIALWPMFW-UHFFFAOYSA-N 0.000 description 1
- 229940043276 diisopropanolamine Drugs 0.000 description 1
- 229960004419 dimethyl fumarate Drugs 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- IUNMPGNGSSIWFP-UHFFFAOYSA-N dimethylaminopropylamine Chemical compound CN(C)CCCN IUNMPGNGSSIWFP-UHFFFAOYSA-N 0.000 description 1
- 150000002009 diols Chemical class 0.000 description 1
- LTYMSROWYAPPGB-UHFFFAOYSA-N diphenyl sulfide Chemical class C=1C=CC=CC=1SC1=CC=CC=C1 LTYMSROWYAPPGB-UHFFFAOYSA-N 0.000 description 1
- WEHWNAOGRSTTBQ-UHFFFAOYSA-N dipropylamine Chemical compound CCCNCCC WEHWNAOGRSTTBQ-UHFFFAOYSA-N 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- KWKXNDCHNDYVRT-UHFFFAOYSA-N dodecylbenzene Chemical class CCCCCCCCCCCCC1=CC=CC=C1 KWKXNDCHNDYVRT-UHFFFAOYSA-N 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 239000010696 ester oil Substances 0.000 description 1
- 150000002168 ethanoic acid esters Chemical class 0.000 description 1
- 238000006266 etherification reaction Methods 0.000 description 1
- 230000007717 exclusion Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000013020 final formulation Substances 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005189 flocculation Methods 0.000 description 1
- 230000016615 flocculation Effects 0.000 description 1
- RMBPEFMHABBEKP-UHFFFAOYSA-N fluorene Chemical compound C1=CC=C2C3=C[CH]C=CC3=CC2=C1 RMBPEFMHABBEKP-UHFFFAOYSA-N 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 238000005194 fractionation Methods 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 235000011087 fumaric acid Nutrition 0.000 description 1
- XLYMOEINVGRTEX-UHFFFAOYSA-N fumaric acid monoethyl ester Natural products CCOC(=O)C=CC(O)=O XLYMOEINVGRTEX-UHFFFAOYSA-N 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000003502 gasoline Substances 0.000 description 1
- 239000010711 gasoline engine oil Substances 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 125000003976 glyceryl group Chemical group [H]C([*])([H])C(O[H])([H])C(O[H])([H])[H] 0.000 description 1
- 229920000578 graft copolymer Polymers 0.000 description 1
- 230000002140 halogenating effect Effects 0.000 description 1
- 230000026030 halogenation Effects 0.000 description 1
- 238000005658 halogenation reaction Methods 0.000 description 1
- 229910000037 hydrogen sulfide Inorganic materials 0.000 description 1
- 150000002432 hydroperoxides Chemical class 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000004356 hydroxy functional group Chemical group O* 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010699 lard oil Substances 0.000 description 1
- 239000011133 lead Substances 0.000 description 1
- 239000011968 lewis acid catalyst Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000003879 lubricant additive Substances 0.000 description 1
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- HNEGQIOMVPPMNR-NSCUHMNNSA-N mesaconic acid Chemical compound OC(=O)C(/C)=C/C(O)=O HNEGQIOMVPPMNR-NSCUHMNNSA-N 0.000 description 1
- 239000012968 metallocene catalyst Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- OCEGIAVTMAOYRD-UHFFFAOYSA-N methanol naphthalen-2-ol Chemical compound CO.C1=C(C=CC2=CC=CC=C12)O OCEGIAVTMAOYRD-UHFFFAOYSA-N 0.000 description 1
- DLKNNHPTSZLRIC-UHFFFAOYSA-N methanol;naphthalen-1-ol Chemical compound OC.C1=CC=C2C(O)=CC=CC2=C1 DLKNNHPTSZLRIC-UHFFFAOYSA-N 0.000 description 1
- WBYWAXJHAXSJNI-UHFFFAOYSA-N methyl p-hydroxycinnamate Natural products OC(=O)C=CC1=CC=CC=C1 WBYWAXJHAXSJNI-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 239000000693 micelle Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 150000002763 monocarboxylic acids Chemical class 0.000 description 1
- RZRNAYUHWVFMIP-UHFFFAOYSA-N monoelaidin Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC(O)CO RZRNAYUHWVFMIP-UHFFFAOYSA-N 0.000 description 1
- 150000002780 morpholines Chemical class 0.000 description 1
- 238000003541 multi-stage reaction Methods 0.000 description 1
- XMMDVXFQGOEOKH-UHFFFAOYSA-N n'-dodecylpropane-1,3-diamine Chemical compound CCCCCCCCCCCCNCCCN XMMDVXFQGOEOKH-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001280 n-hexyl group Chemical group C(CCCCC)* 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000005609 naphthenate group Chemical group 0.000 description 1
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 150000002829 nitrogen Chemical class 0.000 description 1
- 230000000269 nucleophilic effect Effects 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229940049964 oleate Drugs 0.000 description 1
- 229940055577 oleyl alcohol Drugs 0.000 description 1
- XMLQWXUVTXCDDL-UHFFFAOYSA-N oleyl alcohol Natural products CCCCCCC=CCCCCCCCCCCO XMLQWXUVTXCDDL-UHFFFAOYSA-N 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 125000005702 oxyalkylene group Chemical group 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- PJLHTVIBELQURV-UHFFFAOYSA-N pentadecene Natural products CCCCCCCCCCCCCC=C PJLHTVIBELQURV-UHFFFAOYSA-N 0.000 description 1
- 229940100684 pentylamine Drugs 0.000 description 1
- 238000005325 percolation Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 150000004885 piperazines Chemical class 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920001921 poly-methyl-phenyl-siloxane Polymers 0.000 description 1
- 229920013639 polyalphaolefin Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 150000008442 polyphenolic compounds Chemical class 0.000 description 1
- 229920006389 polyphenyl polymer Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 150000003138 primary alcohols Chemical class 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- 125000004368 propenyl group Chemical group C(=CC)* 0.000 description 1
- 235000019260 propionic acid Nutrition 0.000 description 1
- WGYKZJWCGVVSQN-UHFFFAOYSA-N propylamine Chemical compound CCCN WGYKZJWCGVVSQN-UHFFFAOYSA-N 0.000 description 1
- 229920001384 propylene homopolymer Polymers 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical class O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 150000003902 salicylic acid esters Chemical class 0.000 description 1
- 229940116351 sebacate Drugs 0.000 description 1
- CXMXRPHRNRROMY-UHFFFAOYSA-L sebacate(2-) Chemical compound [O-]C(=O)CCCCCCCCC([O-])=O CXMXRPHRNRROMY-UHFFFAOYSA-L 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 150000003333 secondary alcohols Chemical class 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 239000003079 shale oil Substances 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 229920002545 silicone oil Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000004611 spectroscopical analysis Methods 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000003900 succinic acid esters Chemical class 0.000 description 1
- 238000006277 sulfonation reaction Methods 0.000 description 1
- 150000003460 sulfonic acids Chemical class 0.000 description 1
- 125000004434 sulfur atom Chemical group 0.000 description 1
- 230000000153 supplemental effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 150000003505 terpenes Chemical class 0.000 description 1
- 235000007586 terpenes Nutrition 0.000 description 1
- 150000001911 terphenyls Chemical class 0.000 description 1
- JZALLXAUNPOCEU-UHFFFAOYSA-N tetradecylbenzene Chemical class CCCCCCCCCCCCCCC1=CC=CC=C1 JZALLXAUNPOCEU-UHFFFAOYSA-N 0.000 description 1
- MQHSFMJHURNQIE-UHFFFAOYSA-N tetrakis(2-ethylhexyl) silicate Chemical compound CCCCC(CC)CO[Si](OCC(CC)CCCC)(OCC(CC)CCCC)OCC(CC)CCCC MQHSFMJHURNQIE-UHFFFAOYSA-N 0.000 description 1
- ZUEKXCXHTXJYAR-UHFFFAOYSA-N tetrapropan-2-yl silicate Chemical compound CC(C)O[Si](OC(C)C)(OC(C)C)OC(C)C ZUEKXCXHTXJYAR-UHFFFAOYSA-N 0.000 description 1
- 150000003558 thiocarbamic acid derivatives Chemical class 0.000 description 1
- 150000003568 thioethers Chemical class 0.000 description 1
- 239000011135 tin Substances 0.000 description 1
- 229910052718 tin Inorganic materials 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 1
- ZAGXLQIHXTXRFW-UHFFFAOYSA-N tris(2-ethyl-4-methylhexyl)-tris(2-ethyl-4-methylhexyl)silyloxysilane Chemical compound CCC(C)CC(CC)C[Si](CC(CC)CC(C)CC)(CC(CC)CC(C)CC)O[Si](CC(CC)CC(C)CC)(CC(CC)CC(C)CC)CC(CC)CC(C)CC ZAGXLQIHXTXRFW-UHFFFAOYSA-N 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- HGBOYTHUEUWSSQ-UHFFFAOYSA-N valeric aldehyde Natural products CCCCC=O HGBOYTHUEUWSSQ-UHFFFAOYSA-N 0.000 description 1
- 238000000214 vapour pressure osmometry Methods 0.000 description 1
- 235000015112 vegetable and seed oil Nutrition 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 239000008096 xylene Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D265/00—Heterocyclic compounds containing six-membered rings having one nitrogen atom and one oxygen atom as the only ring hetero atoms
- C07D265/04—1,3-Oxazines; Hydrogenated 1,3-oxazines
- C07D265/12—1,3-Oxazines; Hydrogenated 1,3-oxazines condensed with carbocyclic rings or ring systems
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/04—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M133/06—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M133/08—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M133/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
- C10M133/02—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
- C10M133/38—Heterocyclic nitrogen compounds
- C10M133/48—Heterocyclic nitrogen compounds the ring containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M135/00—Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing sulfur, selenium or tellurium
- C10M135/32—Heterocyclic sulfur, selenium or tellurium compounds
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M169/00—Lubricating compositions characterised by containing as components a mixture of at least two types of ingredient selected from base-materials, thickeners or additives, covered by the preceding groups, each of these compounds being essential
- C10M169/04—Mixtures of base-materials and additives
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/02—Amines, e.g. polyalkylene polyamines; Quaternary amines
- C10M2215/04—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms
- C10M2215/042—Amines, e.g. polyalkylene polyamines; Quaternary amines having amino groups bound to acyclic or cycloaliphatic carbon atoms containing hydroxy groups; Alkoxylated derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/22—Heterocyclic nitrogen compounds
- C10M2215/225—Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2215/00—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions
- C10M2215/24—Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant Compositions having hydrocarbon substituents containing thirty or more carbon atoms, e.g. nitrogen derivatives of substituted succinic acid
- C10M2215/28—Amides; Imides
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2217/00—Organic macromolecular compounds containing nitrogen as ingredients in lubricant compositions
- C10M2217/04—Macromolecular compounds from nitrogen-containing monomers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- C10M2217/043—Mannich bases
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10M—LUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
- C10M2219/00—Organic non-macromolecular compounds containing sulfur, selenium or tellurium as ingredients in lubricant compositions
- C10M2219/09—Heterocyclic compounds containing no sulfur, selenium or tellurium compounds in the ring
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10N—INDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
- C10N2030/00—Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
- C10N2030/04—Detergent property or dispersant property
Definitions
- This invention relates to a novel class of Mannich base condensation products that act as potent soot dispersants in lubricating oil compositions.
- the invention is further directed to lubricating oil compositions containing said soot dispersants.
- Lubricating oil compositions comprise a major amount of base oil and additives that improve the performance and increase the useful life of the lubricant.
- Nitrogen-containing dispersants are commonly used lubricant additives.
- the function of a dispersant is to maintain in suspension within the oil, insoluble materials formed by oxidation and other mechanisms during use of the oil, to prevent sludge flocculation and precipitation of the insoluble materials.
- Another function of the dispersant is to reduce the agglomeration of soot particles, thus reducing increases in the viscosity of the lubricating oil upon use.
- Crankcase lubricants providing improved performance, including improved soot dispersancy, have been continuously demanded.
- U.S. Pat. No. 3,442,808 relates to lubricating oil additives prepared by reacting alkenyl succinic anhydride with a Mannich base condensation product prepared by condensing alkyl substituted phenol, formaldehyde and polyalkylene polyamine.
- U.S. Pat. No. 3,458,495 relates to oxidation inhibitors and dispersant-detergent oil additives comprising the reaction product of one equivalent of a phosphosulfurized hydrocarbon and about 0.5 to 4 equivalents of an alkylene amino phenol.
- the phosphosulfurized hydrocarbons are prepared by reacting a terpene, a petroleum fraction or a 500 to 200,000 molecular weight C 2 to C 6 olefin polymer (including polymers of ethylene, propylene, butylene, isobutylene or isoamylene) and from 5 to 40 wt % of a sulfide of phosphorous.
- the alkylene amino phenol is prepared by a Mannich base condensation of aldehyde, alkylene polyamine and alkyl phenol.
- R is hydrocarbyl of 25 to 200 carbon atoms
- R′ is H, alkyl or halogen
- n is 2 or 3
- m has a value of 1 to 5
- Y is H or a methylene hydroxyaryl succinimide radical
- x has a value of 1 to 2 when Y is H and a value of 1 when Y is a methylene hydroxyaryl succinimide radical.
- the above succinimides are formed in a stepwise reaction, e.g., by reacting a polyalkenyl succinic anhydride with an aminophenol to produce an intermediate N-(hydroxyaryl) hydrocarbyl succinimide, which is then reacted with an alkylene diamine and an aldehyde (e.g., formaldehyde) in a Mannich base reaction to produce the desired product.
- the resulting succinimides may be added to base oil of lubricating viscosity to form lubricant concentrates and lubricating oil formulations.
- U.S. Pat. Nos. 5,017,299; 5,186,851 and 5,345,002 describe Mannich base condensates of alkyl substituted hydroxy aromatic compounds with formaldehyde and an amine, wherein the alkyl-moiety of the aromatic compound is derived from ethylene alpha-olefin copolymer having a number average molecular weight of 300 to 10,000, and wherein at least 30% of the polymer's chains contain a terminal ethenylidene unsaturation.
- U.S. Pat. No. 5,580,484 describes a succinimide Mannich base condensate of an alkyl substituted hydroxy aromatic compound, an aldehyde and a “heavy polyamine” defined as a mixture of polyalkylenepolyamines comprising small amounts of lower polyamine oligomers, such as tetraethylene pentamine and pentahexamine, and a large majority of oligomers with 7 or more nitrogens and 2 or more primary amines per molecule, and a greater degree of branching compared to conventional polyamine mixtures.
- the alkyl-moiety of the aromatic compound is described as being derived from a polymer backbone having a number average molecular weight of greater than 300.
- novel Mannich base condensates of hydroxy aromatic compounds optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and an amine.
- a lubricating oil composition which comprises a base oil of lubricating viscosity and an effective amount of a soot dispersant which are Mannich base condensates of hydroxy aromatic compounds, optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and an amine.
- a soot dispersant which are Mannich base condensates of hydroxy aromatic compounds, optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and an amine.
- a lubricating oil composition or concentrate which comprises a base oil of lubricating viscosity and an effective amount of (1) certain Mannich base condensate of a hydroxy aromatic compound, optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and a primary or secondary amine, and (2) a high molecular weight nitrogen-containing dispersant.
- the lower molecular weight materials of the invention provide lubricating oils with superior soot dispersing characteristics and, when used in combination with conventional high molecular weight nitrogen-containing dispersant, synergistically enhance the inherent soot dispersing properties of the high molecular weight dispersant.
- the addition of the Mannich base materials of the present invention to a lubricating oil composition provides an antioxidancy credit.
- FIG. 1 illustrates graphically the synergistic effect on the soot handling capacity, as measured using a carbon black bench test, of lubricating oil compositions containing a combination of a compound of the invention and a conventional high molecular weight dispersant, compared to lubricating oil compositions containing comparable amounts of either a compound of the invention or a conventional high molecular weight dispersant.
- FIG. 2 illustrates graphically the reduction in soot-induced viscosity increase ,as measured using a Haake carbon black test, of lubricating oils containing a combination of a compound of the invention (2HT-naphtol) and a conventional high molecular weight dispersant.
- FIG. 3 illustrates graphically the antioxidancy properties of a compound of the invention compared to a commercially available antioxidant.
- the compounds of the present invention are the condensation products of mono- or polynuclear aromatic compounds optionally substituted with hydrocarbyl; a C 1 -C 10 aldehyde; and an amine containing from 1 to 60 carbon atoms and from 1 to about 12 nitrogens per molecule.
- Such compounds can be represented by formula (I):
- Ar is a mono- or polynuclear aromatic moiety
- R 1 and R 2 are independently selected from H and C 1 -C 30 straight or branched chain hydrocarbyl groups optionally containing one or more hetero atoms selected from N, O and S;
- R 3 is a straight or branched chain hydrocarbyl group
- R 4 is H or a C 1 to C 9 straight or branched chain hydrocarbyl group
- q is 1 or 2;
- x is 1 to 3;
- y is from 1 to 2 times the number of aromatic rings in Ar
- z is zero to a number equal to the number of remaining substitutable hydrogens on aromatic moiety Ar;
- a hydroxyl group attached to Ar can combine with N-R 1 to form a substituted or unsubstituted 6 membered oxazine ring, provided that, when a hydroxyl group attached to Ar combines with N-R 1 to form a substituted or unsubstituted 6 membered oxazine ring, and z is 0, R 2 is not H.
- Hydroxy aromatic compounds useful in the preparation of the materials of this invention include those compounds of formula (II):
- Ar represents a mono- or polynuclear aromatic moiety and y is from 1 to 2 times the number of aromatic rings in Ar.
- Polynuclear moieties may comprise two or more fused rings, each ring having 4 to 10 carbon atoms (e.g., naphthalene). Suitable polynuclear moieties may also be linked mononuclear aromatic moieties, such as biphenyl, or may comprise linked, fused rings (e.g., binaphthyl).
- polynuclear aromatic moieties examples include phenylene, bi-phenyl, tetralin, naphthalene, binaphthyl, anthracene, phenanthrene, fluorene, indene, cyclopentenophenanthrene, benzanthracene, dibenzanthracene, chrysene, pyrene, benzpyrene and coronene.
- Preferred aromatic moieties include phenylene and naphthalene with naphthalene being particularly preferred.
- the hydroxy aromatic compounds useful in the present invention are optionally substituted with one or more hydrocarbyl moieties.
- the selected hydrocarbyl moiety (a straight or branched chain hydrocarbyl group) and hydroxy aromatic compound can be contacted in the presence of a catalytically effective amount of at least one acidic alkylation catalyst under conditions effective to alkylate the aromatic group of the hydroxy aromatic compound.
- the alkylation catalyst is conventional and can comprise inorganic acids such as H 3 PO 4 , H 2 SO 4 , HF, BF 3 , HF-BF 3 and the like.
- the acid catalyst can also comprise an acidic ion exchange resin having acidic groups adsorbed or absorbed thereon, such as Amberlyst 15 resin (Rohm & Haas Co.), and the like. Also useful as catalysts are preformed complexes (or complexes formed in situ) of the foregoing with C 2 to C 10 ethers, C 1 to C 10 alcohols, C 2 to C 10 ketones, phenols and the like, such as BF 3 complexed with dimethyl ether, diethyl ether, phenol, and the like.
- an acidic ion exchange resin having acidic groups adsorbed or absorbed thereon such as Amberlyst 15 resin (Rohm & Haas Co.), and the like.
- Amberlyst 15 resin Amberlyst 15 resin
- catalysts are preformed complexes (or complexes formed in situ) of the foregoing with C 2 to C 10 ethers, C 1 to C 10 alcohols, C 2 to C 10 ketones, phenols and the
- alkylation catalysts include clay catalysts, such as Filterols F20X, F22, F105SF and the like (Englehard Chemical Corp.), and heteropoly acids catalysts, as described for example, in U.S. Pat. No. 5,334,775.
- the hydroxy aromatic compound and hydrocarbyl moiety will generally be contacted in a ratio of from about 0.1 to 10, preferably from about 1 to 7, more preferably from about 2 to 5, moles of the aromatic compound per mole of hydrocarbyl moiety.
- the selected acid catalyst can be employed in widely varying concentrations. Generally, when the acid catalyst comprises an inorganic catalyst, the acid catalyst will be charged to provide at least about 0.001, preferably from about 0.01 to 0.5, more preferably from about 0.1 to 0.3 moles of catalyst per mole of hydroxy aromatic compound charged to the alkylation reaction zone. The use of greater than 1 mole of the inorganic catalyst per mole of hydroxy aromatic compound is not generally required.
- the reactants can be contacted with the ion exchange resin employing any conventional solid-liquid contacting techniques, such as by passing the reactants through the resin (e.g., in a catalyst bed or through a membrane impregnated or otherwise containing the resin catalyst) and the upper limit on the moles of catalyst employed per mole of hydroxy aromatic compound is not critical.
- the temperature for alkylation can also vary widely, and will usually range from about 20 to about 250° C., preferably from about 30 to about 150° C., more preferably from about 50 to about 80° C.
- the alkylation reaction time can vary and will generally be from about 1 to 5 hours, although longer or shorter times can also be employed.
- the alkylation process can be practiced in a batchwise, continuous or semi-continuous manner.
- the acid catalyst is neutralized and/or removed prior to contacting the alkylation product mixture with the amine reagent (e.g., polyamine) and aldehyde reactant.
- the neutralization can be accomplished by contacting the crude alkylation product with gaseous ammonia or other basically reacting compound (e.g., aqueous NaOH, KOH and the like), followed by filtration to remove any precipitated neutralized catalyst solids.
- the hydrocarbyl moiety may be a single linear or branched chain hydrocarbyl group, or may comprise a mixture of such hydrocarbyl groups.
- Alkylation processes of the above types are known and are described for example, in U.S. Pat. Nos. 3,539,633 and 3,649,229.
- Alkylated hydroxy aromatic compounds useful in the practice of the present invention may alternatively be provided by first alkylating an aromatic compound (e.g. naphthalene), using, for example, the alkylation methods described above, and subsequently oxidating the alkylated aromatic compound. Methods for forming such compounds are well known and described for example, in U.S. Pat. Nos. 2,407,044; 2,407,055; 2,451,996 and 3,033,903.
- aromatic compound e.g. naphthalene
- the aldehyde reactant useful in the formation of the Mannich Base condensation products of the present invention will generally comprise formaldehyde or paraformaldehyde, although it will be understood that other aldehyde-group containing compounds, such as C 2 to C 10 hydrocarbyl aldehydes (e.g., butyraldehyde, acetaldehyde, propionaldehyde, and the like) can also be employed.
- a preferred group of aldehyde materials are compounds of the formula R′′CHO, wherein R′′ is H or aliphatic hydrocarbon radical having from 1 to 4 carbon atoms.
- Amine compounds useful for reaction with the selected hydroxyaromatic compound and aldehyde materials are primary or secondary amines, aliphatic or aromatic amines, or amine salts.
- Suitable amines include mono- and polyamines, of about 2 to 60, preferably 2 to 40 (e.g. 3 to 20), total carbon atoms and about 1 to 12, preferably 1 to 5, and most preferably 1 to 3 nitrogen atoms in the molecule. When more than 12 nitrogen atoms are present in the molecule, gelation of the reaction mixture may occur.
- amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g., hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Hydroxy amines with 1 to 6 hydroxy groups, preferably 1 to 3 hydroxy groups are particularly useful.
- Preferred arnines are aliphatic saturated amines, including those of the general formulas:
- R, R′, R′′ and R′′′ are independently selected from the group consisting of hydrogen; C 1 to C 25 straight or branched chain alkyl radicals; C 1 to C 12 alkoxy, C 2 to C 6 alkylene radicals; C 2 to C 12 hydroxy amino alkylene radicals; and C 1 to C 12 alkylamino C 2 to C 6 alkylene radicals; and wherein R′′′ can additionally comprise a moiety of the formula:
- R′ is as defined above, and wherein r and r′ can be the same or a different number of from about 2 to about 6, preferably about 2 to about 4; and t and t′ can be the same or different and are numbers of from 0 to about 10, preferably 0 to about 3, and most preferably about 0 to about 2, with the proviso that the sum of t and t′ is not greater than about 10.
- R, R′, R′′, R′′′, r, r′, t and t′ be selected in a manner sufficient to provide the compounds of Formulas III and IV with typically at least one primary or secondary amine group, preferably at least two primary or secondary amine groups.
- R, R′, R′′ or R′′′ groups can be hydrogen or by letting t in Formula IV be at least one when R′′′ is H or when the moiety of moiety V possesses a secondary amino group.
- the most preferred amines of the above formulas are represented by Formula III.
- Non-limiting examples of suitable amine compounds include: 1,2-diaminoethane; 1,3-diaminopropane; 1,4-diaminobutane; 1,6-diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; polypropylene amines such as 1,2-propylene diamine; di-(1,2-propylene)triamine; di-(1,3-propylene) triamine; N,N-dimethyl-1,3-diaminopropane; N,N-di-(2-aminoethyl) ethylene diamine; N,N-di(2-hydroxyethyl)-1,3-propylene diamine; 3-dodecyloxypropylamine; N-dodecyl-1,3-propane diamine; diisopropanol amine; diethanol amine; mono- and di-tallow amine
- alicyclic diamines such as 1,4-di(aminomethyl) cyclohexane
- heterocyclic nitrogen compounds such as imidazolines
- p 1 and P 2 are the same or different and are each integers of from about 1 to about 4
- n 1 , n 2 and n 3 are the same or different and are each integers of from 0 to about 3 with the proviso that the amine has no more than about 12 nitrogen atoms per molecule.
- Non-limiting examples of such amines include 2-pentadecyl imidazoline; N-(2-aminoethyl) piperazine; etc.
- alkylene amines Commercial mixtures of amine compounds may advantageously be used.
- one process for preparing alkylene amines involves the reaction of an alkylene dihalide (such as ethylene dichloride or propylene dichloride) with ammonia, which results in a complex mixture of alkylene amines wherein pairs of nitrogens are joined by alkylene groups, forming such compounds as diethylene triamine, triethylenetetramine, tetraethylene pentamine and isomeric piperazines.
- alkylene dihalide such as ethylene dichloride or propylene dichloride
- ammonia such as ethylene triamine, triethylenetetramine, tetraethylene pentamine and isomeric piperazines.
- Low cost poly(ethyleneamines) compounds averaging about 5 to 7 nitrogen atoms per molecule are available commercially under trade names such as “Polyamine H”, “Polyamine 400”, “Dow Polyamine E-100”, etc.
- “Heavy polyamine” mixtures as defined in U.
- Useful amines also include polyoxyalkylene polyamines such as those of the formula (VII) and (VIII):
- R′′′′ is H or C 1 -C 22 alkyl, preferably C 1 -C 5 alkyl, and n4 is 1 to 3.
- the Mannich base condensation products of this invention are prepared by condensing at least one of the above-described hydroxy aromatic compounds with an amine in the presence of an aldehyde.
- the reactants are contacted for a time and under conditions sufficient to form the desired dispersant product.
- the process employed in the condensation reaction can be any of those disclosed in U.S. Pat. Nos. 3,634,515; 3,649,229; 3,442,808; 3,798,165; 3,798,247 and 3,539,633.
- the amount of the reactants employed is not critical and can vary over a wide range. It is, however, preferred to react the hydroxy aromatic compound, aldehyde reactant and amine compound in the respective molar ratios of about 1:1-4:0.1-10. An excess of aldehyde reactant may be used. An excess of aldehyde reactant over amine reaction favor formation of compounds containing an oxazine ring.
- the hydroxy aromatic compound, aldehyde reactant and amine compound are preferably reacted in respective molar ratios of about 1:1-2:1, when x is 1, and 1:2-3:2, when x is 2.
- the reactions are exothermic, but it is desirable to heat the reaction to a temperature of above about 150° C., preferably in the range of form about 150-200° C. This additional heating drives the reaction to completion and removes water from the resulting condensation reaction product.
- R 1 and R 2 are as previously defined.
- a preferred group of Mannich base condensation products are those formed by condensing napthol, optionally substituted with hydrocarbyl, with formaldehyde and an aliphatic or aromatic substituted secondary amine, e.g., fatty amines such as hydrogenated mono- or di-tallow amine, mono- or di-coco amine; amines substituted with shorter alkyl moieties, such as mono- or di-nonyl amine, mono- or di-octyl amine, mono- or di-hexyl amine, mono- or di-pentyl amine, mono- or di-butyl amine, mono- or di-propyl amine, mono- or di-methyl amine; or mono- or di-phenyl or mono- or di-benzyl amine.
- fatty amines such as hydrogenated mono- or di-tallow amine, mono- or di-coco amine
- amines substituted with shorter alkyl moieties such as mono- or di
- di-alkyl amines derived from natural fatty acids such as di-coco amine, di-tallow amine and di-palmitic amine.
- a particularly preferred product of the present invention comprises the condensation reaction of (A) naphthol; (B) formaldehyde; and (C) a di-alkyl amine derived from a natural fatty acid; using about 1 to 2 moles of each of (B) and (C) per mole of (A).
- the naphthol is substituted with hydrocarbyl.
- the hydrocarbyl can comprise a low molecular alkyl moiety, such as methyl or ethyl, or can be oligomeric or polymeric (e.g., polyisobutene (PIB)).
- PIB polyisobutene
- the desired Mannich Base condensation product formed by the process of this invention will generally be present in the condensation reaction product mixture in a concentration of at least about 60 wt. % (e.g., from 65 to 95 wt. %), more preferably at least about 70 wt. %, and most preferably from about 75 to about 90 wt. %.
- the Mannich base condensation products of the present invention provide soot dispersing properties to lubricating oils when blended therewith.
- Oils of lubricating viscosity useful in the context of the present invention may be selected from natural lubricating oils, synthetic lubricating oils and mixtures thereof.
- the lubricating oil may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gasoline engine oils, mineral lubricating oils and heavy duty diesel oils.
- the viscosity of the oil ranges from about 2 centistokes to about 40 centistokes, especially from about 4 centistokes to about 20 centistokes, as measured at 100° C.
- Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
- Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and derivative, analogs and homologs thereof.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc. constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C 3 -C 8 fatty acid esters and C 13 Oxo acid diester of tetraethylene glycol.
- polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide
- alkyl and aryl ethers of polyoxyalkylene polymers e.g.
- Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol).
- dicarboxylic acids e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linole
- esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
- Esters useful as synthetic oils also include those made from C 5 to C 12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes.
- oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexy
- Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
- Unrefined, refined and re-refined oils can be used in lubricants of the present invention.
- Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment.
- a shale oil obtained directly from retorting operations; petroleum oil obtained directly from distillation; or ester oil obtained directly from an esterification and used without further treatment would be unrefined oil.
- Refined oils are similar to unrefined oils except that the oil is further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art.
- Re-refined oils are obtained by processes similar to those used to provide refined oils but begin with oil that has already been used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and are often subjected to additionally processing using techniques for removing spent additives and oil breakdown products.
- the Mannich base condensation products of the present invention can be incorporated into lubricating oil in any convenient way.
- the compounds of the invention can be added directly to the oil by dispersing or dissolving the same in the oil at the desired level of concentrations. Such blending into the lube oil can occur at room temperature or elevated temperatures.
- the compounds of the invention can be blended with a suitable oil-soluble solvent and base oil to form a concentrate, which concentrate can then be blended with a lubricating oil basestock to obtain the final formulation.
- Such concentrates will typically contain (on an active ingredient (A.I.)) basis from about 20 to about 60 wt. %, and preferably from about 40 to about 50 wt.
- the fully formulated lubricating oil composition should contain from about 0.01 to about 10 wt. %, preferably from about 0.1 to about 5 wt. %, most preferably from about 0.1 to about 1 wt. % of one or more compounds of the present invention.
- lubricating oil compositions containing the Mannich base condensation products of the present invention may also contain a conventional high molecular weight dispersant.
- the high molecular weight dispersants useful in the context of the present invention include the range of ashless (metal-free) dispersants known to be effective to reduce formation of deposits upon use in gasoline and diesel engines, when added to lubricating oils.
- the ashless, high molecular weight dispersant useful in the compositions of the present invention comprises an oil soluble polymeric long chain backbone having functional groups capable of associating with particles to be dispersed.
- such dispersants comprise amine, alcohol, amide or ester polar moieties attached to the polymer backbone, often via a bridging group.
- the ashless, high molecular weight dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides and oxazolines of long chain hydrocarbon-substituted mono- and polycarboxylic acids or anhydrides thereof; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having polyamine moieties attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
- a “high molecular weight” dispersant is one having a number average molecular weight greater than or equal to 450, such as between 450 and 20,000.
- the precise molecular weight ranges will depend on the type of polymer used to form the dispersant, the number of functional groups, and the type of polar functional group employed.
- a high molecular weight dispersant may be one formed with a polymer backbone having a number average molecular weight of from about 1700 to about 5600.
- Polymer molecular weight specifically ⁇ overscore (M) ⁇ n , can be determined by various known techniques.
- One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W. Yau, J. J. Kirkland and D. D. Bly, “Modern Size Exclusion Liquid Chromatography”, John Wiley and Sons, New York, 1979).
- GPC gel permeation chromatography
- a mixed solvent system such as tetrahydrofuran (THF) mixed with a minor amount of pyridine, as opposed to pure THF.
- THF tetrahydrofuran
- the problem may also be addressed by capping the amine with acetic anhydride and correcting the molecular weight based on the amount of capping groups.
- Another useful method for determining molecular weight, particularly for lower molecular weight polymers, is vapor pressure osmometry (see, e.g., ASTM D3592).
- Suitable hydrocarbons or polymers employed in the formation of conventional high molecular weight dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons.
- One family of such polymers comprise polymers of ethylene and/or at least one C 3 to C 28 alpha-olefin having the formula H 2 C ⁇ CHR 1 wherein R 1 is straight or branched chain alkyl radical comprising 1 to 26 carbon atoms and wherein the polymer contains carbon-to-carbon unsaturation, preferably a high degree of terminal ethenylidene unsaturation.
- such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R 1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms.
- useful alpha-olefin monomers and comonomers include, for example, propylene, butene-1, hexene-1, octene-1,4-methylpentene-1, decene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, and mixtures thereof (e.g., mixtures of propylene and butene-1, and the like).
- Exemplary of such polymers are propylene homopolymers, butene-1 homopolymers, ethylene-propylene copolymers, ethylene-butene-1 copolymers, propylene-butene copolymers and the like, wherein the polymer contains at least some terminal and/or internal unsaturation.
- Preferred polymers are unsaturated copolymers of ethylene and propylene and ethylene and butene-1.
- the interpolymers of this invention may contain a minor amount, e.g. 0.5 to 5 mole % of a C 4 to C 18 non-conjugated diolefin comonomer.
- the polymers of this invention comprise only alpha-olefin homopolymers, interpolymers of alpha-olefin comonomers and interpolymers of ethylene and alpha-olefin comonomers.
- the molar ethylene content of the polymers employed in this invention is preferably in the range of 20 to 80%, and more preferably 30 to 70%.
- the ethylene content of such copolymers is most preferably between 45 and 65%, although higher or lower ethylene contents may be present.
- These polymers may be prepared by polymerizing alpha-olefin monomer, or mixtures of alpha-olefin monomers, or mixtures comprising ethylene and at least one C 3 to C 28 alpha-olefin monomer, in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound.
- the percentage of polymer chains exhibiting terminal ethenylidene unsaturation may be determined by FTIR spectroscopic analysis, titration, or C 13 NMR.
- Interpolymers of this latter type may be characterized by the formula POLY-C(R 1 ) ⁇ CH 2 wherein R 1 is C 1 to C 26 alkyl, preferably C 1 to C 18 alkyl, more preferably C 1 to C 8 alkyl, and most preferably C 1 to C 2 alkyl, (e.g., methyl or ethyl) and wherein POLY represents the polymer chain.
- the chain length of the R 1 alkyl group will vary depending on the comonomer(s) selected for use in the polymerization.
- a minor amount of the polymer chains can contain terminal ethenyl, i.e., vinyl, unsaturation, i.e. POLY-CH ⁇ CH 2, and a portion of the polymers can contain internal monounsaturation, e.g. POLY-CH ⁇ CH(R 1 ), wherein R 1 is as defined above.
- terminally unsaturated interpolymers may be prepared by known metallocene chemistry and may also be prepared as described in U.S. Pat. Nos. 5,498,809; 5,663,130; 5,705,577; 5,814,715; 6,022,929 and 6,030,930.
- Another useful class of polymers is polymers prepared by cationic polymerization of isobutene, styrene, and the like.
- Common polymers from this class include polyisobutenes obtained by polymerization of a C 4 refinery stream having a butene content of about 35 to about 75% by wt., and an isobutene content of about 30 to about 60% by wt., in the presence of a Lewis acid catalyst, such as aluminum trichloride or boron trifluoride.
- a preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739.
- Polyisobutylene is a most preferred backbone of the present invention because it is readily available by cationic polymerization from butene streams (e.g., using AlCl 3 or BF 3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain.
- polyisobutylene polymers employed are generally based on a hydrocarbon chain of from about 900 to 2,300. Methods for making polyisobutylene are known. Polyisobutylene can be functionalized by halogenation (e.g. chlorination), the thermal “ene” reaction, or by free radical grafting using a catalyst (e.g. peroxide), as described below.
- halogenation e.g. chlorination
- the thermal “ene” reaction e.g. peroxide
- the polymer or hydrocarbon may be functionalized, for example, with carboxylic acid producing moieties (preferably acid or anhydride) by reacting the polymer or hydrocarbon under conditions that result in the addition of functional moieties or agents, i.e., acid, anhydride, ester moieties, etc., onto the polymer or hydrocarbon chains primarily at sites of carbon-to-carbon unsaturation (also referred to as ethylenic or olefinic unsaturation) using the halogen assisted functionalization (e.g. chlorination) process or the thermal “ene” reaction.
- carboxylic acid producing moieties preferably acid or anhydride
- the functionalization is randomly effected along the polymer chain.
- Selective functionalization can be accomplished by halogenating, e.g., chlorinating or brominating the unsaturated ⁇ -olefin polymer to about 1 to 8 wt. %, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight of polymer or hydrocarbon, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250° C., preferably 110 to 160° C., e.g., 120 to 140° C., for about 0.5 to 10, preferably 1 to 7 hours.
- the halogenated polymer or hydrocarbon (hereinafter backbone) is then reacted with sufficient monounsaturated reactant capable of adding functional moieties to the backbone, e.g., monounsaturated carboxylic reactant, at 100 to 250° C., usually about 180° C. to 235° C., for about 0.5 to 10, e.g., 3 to 8 hours, such that the product obtained will contain the desired number of moles of the monounsaturated carboxylic reactant per mole of the halogenated backbones.
- the backbone and the monounsaturated carboxylic reactant are mixed and heated while adding chlorine to the hot material.
- the hydrocarbon or polymer backbone can be functionalized, e.g., with carboxylic acid producing moieties (preferably acid or anhydride moieties) selectively at sites of carbon-to-carbon unsaturation on the polymer or hydrocarbon chains, or randomly along chains using the three processes mentioned above or combinations thereof in any sequence.
- carboxylic acid producing moieties preferably acid or anhydride moieties
- the preferred monounsaturated reactants that are used to functionalize the backbone comprise mono- and dicarboxylic acid material, i.e., acid, anhydride, or acid ester material, including (i) monounsaturated C 4 to C 10 dicarboxylic acid wherein (a) the carboxyl groups are vicinyl, (i.e., located on adjacent carbon atoms) and (b) at least one, preferably both, of said adjacent carbon atoms are part of said mono unsaturation; (ii) derivatives of (i) such as anhydrides or C 1 to C 5 alcohol derived mono- or diesters of (i); (iii) monounsaturated C 3 to C 10 monocarboxylic acid wherein the carbon-carbon double bond is conjugated with the carboxy group, i.e., of the structure —C ⁇ C—CO—; and (iv) derivatives of (iii) such as C 1 to C 5 alcohol derived mono- or diesters of (iii
- Mixtures of monounsaturated carboxylic materials (i)-(iv) also may be used.
- the monounsaturation of the monounsaturated carboxylic reactant becomes saturated.
- maleic anhydride becomes backbone-substituted succinic anhydride
- acrylic acid becomes backbone-substituted propionic acid.
- Such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C 1 to C 4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, and methyl fumarate.
- the monounsaturated carboxylic reactant, preferably maleic anhydride typically will be used in an amount ranging from about 0.01 to about 20 wt. %, preferably 0.5 to 10 wt. %, based on the weight of the polymer or hydrocarbon.
- chlorination normally helps increase the reactivity of starting olefin polymers with monounsaturated functionalizing reactant, it is not necessary with the polymers or hydrocarbons contemplated for use in the present invention, particularly those preferred polymers or hydrocarbons which possess a high terminal bond content and reactivity.
- the backbone and the monounsaturated functionality reactant e.g., carboxylic reactant, are contacted at elevated temperature to cause an initial thermal “ene” reaction to take place. Ene reactions are known.
- the hydrocarbon or polymer backbone can be functionalized by random attachment of functional moieties along the polymer chains by a variety of methods.
- the polymer in solution or in solid form, may be grafted with the monounsaturated carboxylic reactant, as described above, in the presence of a free-radical initiator.
- the grafting takes place at an elevated temperature in the range of about 100 to 260° C., preferably 120 to 240° C.
- free-radical initiated grafting would be accomplished in a mineral lubricating oil solution containing, e.g., 1 to 50 wt. %, preferably 5 to 30 wt. % polymer based on the initial total oil solution.
- the free-radical initiators that may be used are peroxides, hydroperoxides, and azo compounds, preferably those that have a boiling point greater than about 100° C. and decompose thermally within the grafting temperature range to provide free-radicals.
- Representative of these free-radical initiators are azobutyronitrile, 2,5-dimethylhex-3-ene-2,5-bis-tertiary-butyl peroxide and dicumene peroxide.
- the initiator when used, typically is used in an amount of between 0.005% and 1% by weight based on the weight of the reaction mixture solution.
- the aforesaid monounsaturated carboxylic reactant material and free-radical initiator are used in a weight ratio range of from about 1.0:1 to 30:1, preferably 3:1 to 6:1.
- the grafting is preferably carried out in an inert atmosphere, such as under nitrogen blanketing.
- the resulting grafted polymer is characterized by having carboxylic acid (or ester or anhydride) moieties randomly attached along the polymer chains: it being understood, of course, that some of the polymer chains remain ungrafted.
- the free radical grafting described above can be used for the other polymers and hydrocarbons of the present invention.
- the functionalized oil-soluble polymeric hydrocarbon backbone may then be further derivatized with a nucleophilic reactant, such as an amine, amino-alcohol, alcohol, metal compound, or mixture thereof, to form a corresponding derivative.
- a nucleophilic reactant such as an amine, amino-alcohol, alcohol, metal compound, or mixture thereof.
- Useful amine compounds for derivatizing functionalized polymers comprise at least one amine and can comprise one or more additional amine or other reactive or polar groups. These amines may be hydrocarbyl amines or may be predominantly hydrocarbyl amines in which the hydrocarbyl group includes other groups, e.g., hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like.
- Particularly useful amine compounds include mono- and polyamines, e.g., polyalkene and polyoxyalkylene polyamines of about 2 to 60, such as 2 to 40 (e.g., 3 to 20) total carbon atoms having about 1 to 12, such as 3 to 12, and preferably 3 to 9 nitrogen atoms per molecule.
- Mixtures of amine compounds may advantageously be used, such as those prepared by reaction of alkylene dihalide with ammonia.
- Preferred amines are aliphatic saturated amines, including, for example, 1,2-diaminoethane; 1,3-diaminopropane; 1,4-diaminobutane; 1,6-diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; and polypropyleneamines such as 1,2-propylene diamine; and di-(1,2-propylene)triamine.
- 1,2-diaminoethane 1,3-diaminopropane
- 1,4-diaminobutane 1,6-diaminohexane
- polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine
- polypropyleneamines such as 1,2-propylene diamine; and di-(1,2-propylene)triamine.
- Other useful amine compounds include: alicyclic diamines such as 1,4-di(aminomethyl) cyclohexane and heterocyclic nitrogen compounds such as imidazolines.
- Another useful class of amines is the polyamido and related amido-amines as disclosed in U.S. Pat. Nos. 4,857,217; 4,956,107; 4,963,275; and 5,229,022.
- TAM tris(hydroxymethyl)amino methane
- Dendrimers, star-like amines, and comb-structured amines may also be used.
- condensed amines as described in U.S. Pat. No. 5,053,152.
- the functionalized polymer is reacted with the amine compound using conventional techniques as described, for example, in U.S. Pat. Nos. 4,234,435 and 5,229,022, as well as in EP-A-208,560.
- the functionalized, oil-soluble polymeric hydrocarbon backbones may also be derivatized with hydroxy compounds such as monohydric and polyhydric alcohols, or with aromatic compounds such as phenols and naphthols.
- Preferred polyhydric alcohols include alkylene glycols in which the alkylene radical contains from 2 to 8 carbon atoms.
- Other useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof.
- An ester dispersant may also be derived from unsaturated alcohols, such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexane-3-ol, and oleyl alcohol.
- unsaturated alcohols such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexane-3-ol, and oleyl alcohol.
- Still other classes of alcohols capable of yielding ashless dispersants comprise ether-alcohols, including oxy-alkylene and oxy-arylene.
- Such ether-alcohols are exemplified by ether-alcohols having up to 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to 8 carbon atoms.
- the ester dispersants may be di-esters of succinic acids or acid-esters, i.e., partially esterified succinic acids, as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcohols or phenolic hydroxy radicals.
- An ester dispersant may be prepared by any one of several known methods as described, for example, in U.S. Pat. No. 3,381,022.
- Preferred groups of dispersant include polyamine-derivatized poly ⁇ -olefin, dispersants, particularly ethylene/butene alpha-olefin and polyisobutylene-based dispersants.
- Particularly preferred are ashless dispersants derived from polyisobutylene substituted with succinic anhydride groups and reacted with polyethylene amines, e.g., polyethylene diamine, tetraethylene pentamine; or a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, trimethylolaminomethane; a hydroxy compound, e.g., pentaerythritol; and combinations thereof.
- One particularly preferred dispersant combination is a combination of (A) polyisobutylene substituted with succinic anhydride groups and reacted with (B) a hydroxy compound, e.g., pentaerythritol; (C) a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, or (D) a polyalkylene diamine, e.g., polyethylene diamine and tetraethylene pentamine using about 0.3 to about 2 moles of (B), (C) and/or (D) per mole of (A).
- Another preferred dispersant combination comprises a combination of (A) polyisobutenyl succinic anhydride with (B) a polyalkylene polyamine, e.g., tetraethylene pentamine, and (C) a polyhydric alcohol or polyhydroxy-substituted aliphatic primary amine, e.g., pentaerythritol or trismethylolaminomethane, as described in U.S. Pat. No. 3,632,511.
- Another class of high molecular weight ashless dispersants comprises Mannich base condensation products. Generally, these products are prepared by condensing about one mole of a long chain alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compound(s) (e.g., formaldehyde and paraformaldehyde) and about 0.5 to 2 moles of polyalkylene polyamine, as disclosed, for example, in U.S. Pat. No. 3,442,808.
- carbonyl compound(s) e.g., formaldehyde and paraformaldehyde
- Such Mannich base condensation products may include a polymer product of a metallocene catalyzed polymerization as a substituent on the benzene group, or may be reacted with a compound containing such a polymer substituted on a succinic anhydride in a manner similar to that described in U.S. Pat. No. 3,442,808.
- Examples of functionalized and/or derivatized olefin polymers synthesized using metallocene catalyst systems are described in the publications identified supra.
- the high molecular weight dispersant can be further post treated by a variety of conventional post treatments such as boration, as generally taught in U.S. Pat. Nos. 3,087,936 and 3,254,025. Boration of the dispersant is readily accomplished by treating an acyl nitrogen-containing dispersant with a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids, in an amount sufficient to provide from about 0.1 to about 20 atomic proportions of boron for each mole of acylated nitrogen composition.
- Useful dispersants contain from about 0.05 to about 2.0 wt. %, e.g., from about 0.05 to about 0.7 wt. % boron.
- the boron which appears in the product as dehydrated boric acid polymers (primarily (HBO 2 ) 3 ), is believed to attach to the dispersant imides and diimides as amine salts, e.g., the metaborate salt of the diimide.
- Boration can be carried out by adding from about 0.5 to 4 wt. %, e.g., from about 1 to about 3 wt. % (based on the weight of acyl nitrogen compound) of a boron compound, preferably boric acid, usually as a slurry, to the acyl nitrogen compound and heating with stirring at from about 135° C. to about 190° C., e.g., 140° C.
- the boron treatment can be conducted by adding boric acid to a hot reaction mixture of the dicarboxylic acid material and amine, while removing water.
- Other post reaction processes known in the art can also be applied.
- a conventional lubricating oil composition will employ a high molecular weight dispersant in an amount of up to about 20 wt. %, more usually up to about 8 wt. %, based on the total mass of the finished lubricant.
- a lubricating oil composition containing about 0.01 to about 5 wt. %, preferably from about 0.05 to about 2 wt. %, more preferably from about 0.1 to about 1 wt. %, of a Mannich Base condensation product of the present invention a comparable level of sludge and soot dispersancy can be achieved with about 1 to about 12 wt.
- each 0.5 wt. % increase in the amount of the Mannich base condensation product of the present invention may allow for up to a 5 wt. % reduction in the amount of needed high molecular weight dispersant.
- additives may be incorporated in the compositions of the invention to enable them to meet particular requirements.
- additives which may be included in the lubricating oil compositions of the present invention are detergents, metal rust inhibitors, viscosity index improvers, corrosion inhibitors, oxidation inhibitors, friction modifiers, anti-foaming agents, anti-wear agents and pour point depressants. Some are discussed in further detail below.
- Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life.
- Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound.
- the salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80.
- a large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide).
- the resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle.
- Such overbased detergents may have a TBN of 150 or greater, and typically will have a TBN of from 250 to 450 or more.
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- a metal particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium.
- the most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium.
- Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450 TBN, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450. Combinations of detergents, whether overbased or neutral or both, may be used.
- Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene.
- the alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms.
- the alkylaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
- the oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal.
- the amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 wt. % (preferably at least 125 wt. %) of that stoichiometrically required.
- Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art.
- Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
- Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents.
- the metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper.
- the zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P 2 S 5 and then neutralizing the formed DDPA with a zinc compound.
- DDPA dihydrocarbyl dithiophosphoric acid
- a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols.
- multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character.
- any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed.
- Commercial additives frequently contain an excess of zinc due to the use of an excess of the basic zinc compound in the neutralization reaction.
- the preferred zinc dihydrocarbyl dithiophosphates are oil soluble salts of dihydrocarbyl dithiophosphoric acids and may be represented by the following formula:
- R and R′ may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals.
- Particularly preferred as R and R′ groups are alkyl groups of 2 to 8 carbon atoms.
- the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl.
- the total number of carbon atoms (i.e. R and R′) in the dithiophosphoric acid will generally be about 5 or greater.
- the zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates.
- the present invention may be particularly useful when used with lubricant compositions containing phosphorus levels of from about 0.02 to about 0.12 wt. %, preferably from about 0.03 to about 0.10 wt. %, more preferably from about 0.05 to about 0.08 wt. %,
- Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
- Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth.
- Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C 5 to C 12 alkyl side chains, calcium nonylphenol sulfide, oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons or esters, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in U.S. Pat. No. 4,867,890, and molybdenum-containing compounds.
- Aromatic amines having at least two aromatic groups attached directly to the nitrogen constitute another class of compounds that is frequently used for antioxidancy. While these materials may be used in small amounts, preferred embodiments of the present invention are free of these compounds. They are preferably used in only small amounts, i.e., up to 0.4 wt. %, or more preferably avoided altogether other than such amount as may result as an impurity from another component of the composition.
- Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms.
- the amines may contain more than two aromatic groups.
- Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an atom or group (e.g., an oxygen or sulfur atom, or a —CO—, —SO 2 — or alkylene group) and two are directly attached to one amine nitrogen also considered aromatic amines having at least two aromatic groups attached directly to the nitrogen.
- the aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups.
- the amount of any such oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen should preferably not exceed 0.4 wt. % active ingredient.
- Suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene, polymethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, interpolymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene.
- Friction modifiers and fuel economy agents that are compatible with the other ingredients of the final oil may also be included.
- examples of such materials include glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
- a viscosity index improver dispersant functions both as a viscosity index improver and as a dispersant.
- examples of viscosity index improver dispersants include reaction products of amines, for example polyamines, with a hydrocarbyl-substituted mono- or dicarboxylic acid in which the hydrocarbyl substituent comprises a chain of sufficient length to impart viscosity index improving properties to the compounds.
- the viscosity index improver dispersant may be, for example, a polymer of a C 4 to C 24 unsaturated ester of vinyl alcohol or a C 3 to C 10 unsaturated mono-carboxylic acid or a C 4 to C 10 di-carboxylic acid with an unsaturated nitrogen-containing monomer having 4 to 20 carbon atoms; a polymer of a C 2 to C 20 olefin with an unsaturated C 3 to C 10 mono- or di-carboxylic acid neutralized with an amine, hydroxyamine or an alcohol; or a polymer of ethylene with a C 3 to C 20 olefin further reacted either by grafting a C 4 to C 20 unsaturated nitrogen-containing monomer thereon or by grafting an unsaturated acid onto the polymer backbone and then reacting carboxylic acid groups of the grafted acid with an amine, hydroxy amine or alcohol.
- pour point depressants otherwise known as lube oil flow improvers (LOFI)
- LOFI lube oil flow improvers
- Such additives are well known. Typical of those additives that improve the low temperature fluidity of the fluid are C 8 to C 18 dialkyl fumarate/vinyl acetate copolymers, and polymethacrylates.
- Foam control can be provided by an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
- additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
- additives which maintains the stability of the viscosity of the blend.
- polar group-containing additives achieve a suitably low viscosity in the pre-blending stage it has been observed that some compositions increase in viscosity when stored for prolonged periods.
- Additives which are effective in controlling this viscosity increase include the long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides which are used in the preparation of the ashless dispersants as hereinbefore disclosed.
- each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function.
- additive concentrates comprising additives (concentrates sometimes being referred to as additive packages) whereby several additives can be added simultaneously to the oil to form the lubricating oil composition.
- the final composition may employ from 5 to 25 mass %, preferably 5 to 18 mass %, typically 10 to 15 mass % of the concentrate, the remainder being oil of lubricating viscosity.
- each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function.
- Representative effect amounts of such additives, when used in crankcase lubricant, are listed below. All the values listed are stated as mass percent active ingredient.
- the reaction is exothermic and the reaction temperature was maintained below 25-30° C. by cooling the reactor with an outside ice water bath and by controlling the formalin addition. Once the formalin was added and the exothermal reaction ceased, the reaction mixture was allowed to warm to room temperature. The temperature of the reaction mixture was slowly increased up to 90° C. while the methanol and water distilled out. Nitrogen flow was increased to strip the remaining water in the product at about 100° C. until all the water is removed. Vacuum could have been applied instead of nitrogen stripping. The naphthoxazine analyzed for 3.23% N (3.22 theory).
- the reaction is exothermic and the reaction temperature was maintained below 25-30° C. by cooling the reactor with an outside ice water bath and by controlling the formalin addition. Once the formalin was added and the exothermal reaction ceased, the reaction mixture was allowed to warm to room temperature. The temperature of the reaction mixture was slowly increased up to 90° C. while the methanol and water distilled out. Nitrogen flow was increased to strip the remaining water in the product at about 100° C. until all the water is removed. Vacuum could have been applied instead of nitrogen stripping. The naphthoxazine analyzed for 3.23% N (3.22 theory).
- a compound of the present invention (as a dispersant booster) and a primary, high molecular weight dispersant are blended into a simplified oil formulation containing the dispersant mixture, a detergent, antioxidant, and antiwear agent.
- the components of the oil formulation are subjected to an initial blending procedure.
- Carbon black, as a surrogate for soot, is added to the oil.
- the dispersion is mixed in a high-speed blender, followed by stirring to ensure proper mixing of the carbon black into the oil.
- the kinematic viscosity is then measured in a cross-arm tube at 100° C. Lower viscosity with respect to the appropriate control indicates better soot dispersancy.
- the Haake Carbon Black Test involves blending the dispersant into a formulated oil.
- the tested formulation contains a high molecular weight dispersant and a compound of the present invention together with detergent, viscosity modifier, antioxidant and antiwear agent.
- the components of the oil formulation are subjected to an initial blending.
- Carbon black powder is then added to a final concentration and the sample is blended overnight.
- the viscosity of the carbon black dispersion is then measured in a Haake rheometer over a range of shear rates from 0.1 sec ⁇ 1 to 30 sec ⁇ 1 . Typically, the viscosity at shear rates 0.26 sec ⁇ 1 and 0.45 sec ⁇ 1 are used for comparison.
- Lubricating oil formulations were formed by blending into a base oil, for 1 hour at 70° C., constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant (a PIBSA-PAM product derived from PIBSA having a number average molecular weight of about 2200, and having a succination ratio of about 1.1), and a compound of the present invention (alpha-napthol 2HT).
- the formulations were subjected to carbon black bench testing (CBBT) wherein carbon black was blended into the formulations at variable concentrations.
- the carbon black was added to the oil in the form of a 20% paste in basestock, to reduce flyaway dust and was dispersed into the formulation by blending using a high speed blender for 5 minutes, followed by stirring for 90 minutes at 100° C. The kinematic viscosity of the formulation was then measured in a cross-arm tube at 100° C.
- the Mannich base condensation products of the present invention act as potent soot dispersancy boosters when used in combination with high molecular weight dispersants.
- a formulated oil containing 9.8 wt. % of the high molecular weight dispersant and none of the Mannich base condensation product of the present invention is shown to reach a kinematic viscosity of 200 cSt at a soot content of only 3.4%.
- a formulation containing the same amount of the high molecular weigh dispersant, but further containing only 0.50% of the Mannich base condensation product of the present invention does not reach a viscosity of 200 cSt until the soot content reaches 8.8%.
- a viscosity of 200 cSt is not reached until the soot level is 15%.
- Lubricating oil formulations were formed by blending into a base oil (Mobil 700N) for 1 hour at 100° C., constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant (a PIBSA-PAM product derived from PIBSA having a number average molecular weight of about 2200 and having a succination ratio of about 1.1), and naphthoxazine compounds of the present invention. 4.76 wt. % of carbon black was blended into each of the formulations overnight at 90° C.
- the kinematic viscosity of each of the resulting carbon black dispersions was then measured in a Haake rheometer over a range of shear rates from 0.1 sec ⁇ 1 to 0.45 sec ⁇ 1 . As is typical, the viscosity at shear rates of 0.26 sec ⁇ 1 and 0.45 sec ⁇ 1 were used for comparison.
- Lubricating oil formulations were formed by blending into a base oil (Mobil 700N) for 1 hour at 100° C., constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant (a PIBSA-PAM product derived from PIBSA having a number average molecular weight of about 2200 and having a succination ratio of about 1.1), and a compound of the present invention (alpha-napthol 2HT). 4.76 wt. % of carbon black was blended into each of the formulations overnight at 90° C.
- a base oil Mobil 700N
- constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant derived from PIBSA having a number average molecular weight of about 2200 and having a succination ratio of about 1.1
- alpha-napthol 2HT alpha-napthol
- the kinematic viscosity of each of the resulting carbon black dispersions was then measured in a Haake rheometer over a range of shear rates from 0.1 sec ⁇ 1 to 0.45 sec ⁇ 1 . As is typical, the viscosity at shear rates of 0.26 sec ⁇ 1 and 0.45 sec ⁇ 1 were used for comparison.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Lubricants (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
Low molecular weight oxazine ring-containing Mannich base condensates of hydroxy aromatic compounds, aldehyde; and amine. Such compounds are useful as soot dispersants in lubricating oils when used alone, or in combination with high molecular weight dispersants.
Description
- This application is a continuation-in-part of U.S. patent application Ser. No. 09/746,038 filed Dec. 22, 2000 and U.S. patent application Ser. No. 10/209,522 filed Jul. 30, 2002.
- This invention relates to a novel class of Mannich base condensation products that act as potent soot dispersants in lubricating oil compositions. The invention is further directed to lubricating oil compositions containing said soot dispersants.
- Lubricating oil compositions comprise a major amount of base oil and additives that improve the performance and increase the useful life of the lubricant. Nitrogen-containing dispersants are commonly used lubricant additives. The function of a dispersant is to maintain in suspension within the oil, insoluble materials formed by oxidation and other mechanisms during use of the oil, to prevent sludge flocculation and precipitation of the insoluble materials. Another function of the dispersant is to reduce the agglomeration of soot particles, thus reducing increases in the viscosity of the lubricating oil upon use. Crankcase lubricants providing improved performance, including improved soot dispersancy, have been continuously demanded.
- To improve the sludge dispersing characteristic of lubricating oils, industry has moved to the use higher molecular weight materials, which have superior sludge dispersing properties compared to lower molecular weight materials, and have used such high molecular weight dispersants in ever increasing amounts. However, dispersants are expensive, may contain residual levels of chlorine, which leads to problems with the disposal of used lubricants, do not blend well in lubricants also containing overbased detergents and contain a high level of basic amine, which causes the deterioration of seals within the engine during service. In addition, high molecular weight dispersants, even when used in greater amounts, do not provide sufficient soot dispersing properties, particularly in high soot environments as are encountered with lubricating oils for heavy duty diesel engines. Therefore, it would be advantageous to be able to provide a lubricant with adequate soot dispersancy properties, and preferably, to do so using reduced amounts of high molecular weight dispersant.
- U.S. Pat. No. 3,442,808 relates to lubricating oil additives prepared by reacting alkenyl succinic anhydride with a Mannich base condensation product prepared by condensing alkyl substituted phenol, formaldehyde and polyalkylene polyamine.
- U.S. Pat. No. 3,458,495 relates to oxidation inhibitors and dispersant-detergent oil additives comprising the reaction product of one equivalent of a phosphosulfurized hydrocarbon and about 0.5 to 4 equivalents of an alkylene amino phenol. The phosphosulfurized hydrocarbons are prepared by reacting a terpene, a petroleum fraction or a 500 to 200,000 molecular weight C2 to C6 olefin polymer (including polymers of ethylene, propylene, butylene, isobutylene or isoamylene) and from 5 to 40 wt % of a sulfide of phosphorous. The alkylene amino phenol is prepared by a Mannich base condensation of aldehyde, alkylene polyamine and alkyl phenol.
-
- wherein R is hydrocarbyl of 25 to 200 carbon atoms, R′ is H, alkyl or halogen, “n” is 2 or 3, “m” has a value of 1 to 5, Y is H or a methylene hydroxyaryl succinimide radical, “x” has a value of 1 to 2 when Y is H and a value of 1 when Y is a methylene hydroxyaryl succinimide radical. The above succinimides are formed in a stepwise reaction, e.g., by reacting a polyalkenyl succinic anhydride with an aminophenol to produce an intermediate N-(hydroxyaryl) hydrocarbyl succinimide, which is then reacted with an alkylene diamine and an aldehyde (e.g., formaldehyde) in a Mannich base reaction to produce the desired product. The resulting succinimides may be added to base oil of lubricating viscosity to form lubricant concentrates and lubricating oil formulations.
- U.S. Pat. Nos. 5,017,299; 5,186,851 and 5,345,002 describe Mannich base condensates of alkyl substituted hydroxy aromatic compounds with formaldehyde and an amine, wherein the alkyl-moiety of the aromatic compound is derived from ethylene alpha-olefin copolymer having a number average molecular weight of 300 to 10,000, and wherein at least 30% of the polymer's chains contain a terminal ethenylidene unsaturation.
- U.S. Pat. No. 5,580,484 describes a succinimide Mannich base condensate of an alkyl substituted hydroxy aromatic compound, an aldehyde and a “heavy polyamine” defined as a mixture of polyalkylenepolyamines comprising small amounts of lower polyamine oligomers, such as tetraethylene pentamine and pentahexamine, and a large majority of oligomers with 7 or more nitrogens and 2 or more primary amines per molecule, and a greater degree of branching compared to conventional polyamine mixtures. Again, the alkyl-moiety of the aromatic compound is described as being derived from a polymer backbone having a number average molecular weight of greater than 300.
- In accordance with one aspect of the present invention, there are provided novel Mannich base condensates of hydroxy aromatic compounds, optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and an amine.
- In accordance with another aspect of the present invention, a lubricating oil composition is provided which comprises a base oil of lubricating viscosity and an effective amount of a soot dispersant which are Mannich base condensates of hydroxy aromatic compounds, optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and an amine.
- In accordance with still another aspect of the present invention, there is provided a lubricating oil composition or concentrate which comprises a base oil of lubricating viscosity and an effective amount of (1) certain Mannich base condensate of a hydroxy aromatic compound, optionally substituted with one or more hydrocarbyl moieties; an aldehyde; and a primary or secondary amine, and (2) a high molecular weight nitrogen-containing dispersant.
- Compared to the Mannich base materials of the prior art, the lower molecular weight materials of the invention provide lubricating oils with superior soot dispersing characteristics and, when used in combination with conventional high molecular weight nitrogen-containing dispersant, synergistically enhance the inherent soot dispersing properties of the high molecular weight dispersant. As an added benefit, the addition of the Mannich base materials of the present invention to a lubricating oil composition provides an antioxidancy credit.
- FIG. 1 illustrates graphically the synergistic effect on the soot handling capacity, as measured using a carbon black bench test, of lubricating oil compositions containing a combination of a compound of the invention and a conventional high molecular weight dispersant, compared to lubricating oil compositions containing comparable amounts of either a compound of the invention or a conventional high molecular weight dispersant.
- FIG. 2 illustrates graphically the reduction in soot-induced viscosity increase ,as measured using a Haake carbon black test, of lubricating oils containing a combination of a compound of the invention (2HT-naphtol) and a conventional high molecular weight dispersant.
- FIG. 3 illustrates graphically the antioxidancy properties of a compound of the invention compared to a commercially available antioxidant.
-
- wherein: Ar is a mono- or polynuclear aromatic moiety;
- R1 and R2 are independently selected from H and C1-C30 straight or branched chain hydrocarbyl groups optionally containing one or more hetero atoms selected from N, O and S;
- R3 is a straight or branched chain hydrocarbyl group;
- R4 is H or a C1 to C9 straight or branched chain hydrocarbyl group;
- q is 1 or 2;
- x is 1 to 3;
- y is from 1 to 2 times the number of aromatic rings in Ar; and
- z is zero to a number equal to the number of remaining substitutable hydrogens on aromatic moiety Ar;
- with the proviso that a hydroxyl group attached to Ar can combine with N-R1 to form a substituted or unsubstituted 6 membered oxazine ring, provided that, when a hydroxyl group attached to Ar combines with N-R1 to form a substituted or unsubstituted 6 membered oxazine ring, and z is 0, R2 is not H.
- Hydroxy aromatic compounds useful in the preparation of the materials of this invention include those compounds of formula (II):
- H—Ar—(OH)y (II)
- wherein Ar represents a mono- or polynuclear aromatic moiety and y is from 1 to 2 times the number of aromatic rings in Ar. Polynuclear moieties may comprise two or more fused rings, each ring having 4 to 10 carbon atoms (e.g., naphthalene). Suitable polynuclear moieties may also be linked mononuclear aromatic moieties, such as biphenyl, or may comprise linked, fused rings (e.g., binaphthyl). Examples of suitable polynuclear aromatic moieties include phenylene, bi-phenyl, tetralin, naphthalene, binaphthyl, anthracene, phenanthrene, fluorene, indene, cyclopentenophenanthrene, benzanthracene, dibenzanthracene, chrysene, pyrene, benzpyrene and coronene. Preferred aromatic moieties include phenylene and naphthalene with naphthalene being particularly preferred.
- The hydroxy aromatic compounds useful in the present invention are optionally substituted with one or more hydrocarbyl moieties. To alkylate the hydroxy aromatic compound, the selected hydrocarbyl moiety (a straight or branched chain hydrocarbyl group) and hydroxy aromatic compound can be contacted in the presence of a catalytically effective amount of at least one acidic alkylation catalyst under conditions effective to alkylate the aromatic group of the hydroxy aromatic compound. The alkylation catalyst is conventional and can comprise inorganic acids such as H3PO4, H2SO4, HF, BF3, HF-BF3 and the like. The acid catalyst can also comprise an acidic ion exchange resin having acidic groups adsorbed or absorbed thereon, such as Amberlyst 15 resin (Rohm & Haas Co.), and the like. Also useful as catalysts are preformed complexes (or complexes formed in situ) of the foregoing with C2 to C10 ethers, C1 to C10 alcohols, C2 to C10 ketones, phenols and the like, such as BF3 complexed with dimethyl ether, diethyl ether, phenol, and the like. Other useful alkylation catalysts include clay catalysts, such as Filterols F20X, F22, F105SF and the like (Englehard Chemical Corp.), and heteropoly acids catalysts, as described for example, in U.S. Pat. No. 5,334,775.
- The hydroxy aromatic compound and hydrocarbyl moiety will generally be contacted in a ratio of from about 0.1 to 10, preferably from about 1 to 7, more preferably from about 2 to 5, moles of the aromatic compound per mole of hydrocarbyl moiety. The selected acid catalyst can be employed in widely varying concentrations. Generally, when the acid catalyst comprises an inorganic catalyst, the acid catalyst will be charged to provide at least about 0.001, preferably from about 0.01 to 0.5, more preferably from about 0.1 to 0.3 moles of catalyst per mole of hydroxy aromatic compound charged to the alkylation reaction zone. The use of greater than 1 mole of the inorganic catalyst per mole of hydroxy aromatic compound is not generally required. When the acid catalyst comprises a supported catalyst, such as an acidic ion exchange resin, the reactants can be contacted with the ion exchange resin employing any conventional solid-liquid contacting techniques, such as by passing the reactants through the resin (e.g., in a catalyst bed or through a membrane impregnated or otherwise containing the resin catalyst) and the upper limit on the moles of catalyst employed per mole of hydroxy aromatic compound is not critical.
- The temperature for alkylation can also vary widely, and will usually range from about 20 to about 250° C., preferably from about 30 to about 150° C., more preferably from about 50 to about 80° C.
- The alkylation reaction time can vary and will generally be from about 1 to 5 hours, although longer or shorter times can also be employed. The alkylation process can be practiced in a batchwise, continuous or semi-continuous manner. Preferably, the acid catalyst is neutralized and/or removed prior to contacting the alkylation product mixture with the amine reagent (e.g., polyamine) and aldehyde reactant. The neutralization can be accomplished by contacting the crude alkylation product with gaseous ammonia or other basically reacting compound (e.g., aqueous NaOH, KOH and the like), followed by filtration to remove any precipitated neutralized catalyst solids. The hydrocarbyl moiety may be a single linear or branched chain hydrocarbyl group, or may comprise a mixture of such hydrocarbyl groups. Alkylation processes of the above types are known and are described for example, in U.S. Pat. Nos. 3,539,633 and 3,649,229.
- Alkylated hydroxy aromatic compounds useful in the practice of the present invention may alternatively be provided by first alkylating an aromatic compound (e.g. naphthalene), using, for example, the alkylation methods described above, and subsequently oxidating the alkylated aromatic compound. Methods for forming such compounds are well known and described for example, in U.S. Pat. Nos. 2,407,044; 2,407,055; 2,451,996 and 3,033,903.
- The aldehyde reactant useful in the formation of the Mannich Base condensation products of the present invention will generally comprise formaldehyde or paraformaldehyde, although it will be understood that other aldehyde-group containing compounds, such as C2 to C10 hydrocarbyl aldehydes (e.g., butyraldehyde, acetaldehyde, propionaldehyde, and the like) can also be employed. A preferred group of aldehyde materials are compounds of the formula R″CHO, wherein R″ is H or aliphatic hydrocarbon radical having from 1 to 4 carbon atoms.
- Amine compounds useful for reaction with the selected hydroxyaromatic compound and aldehyde materials are primary or secondary amines, aliphatic or aromatic amines, or amine salts. Suitable amines include mono- and polyamines, of about 2 to 60, preferably 2 to 40 (e.g. 3 to 20), total carbon atoms and about 1 to 12, preferably 1 to 5, and most preferably 1 to 3 nitrogen atoms in the molecule. When more than 12 nitrogen atoms are present in the molecule, gelation of the reaction mixture may occur. These amines may be hydrocarbyl amines or may be hydrocarbyl amines including other groups, e.g., hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Hydroxy amines with 1 to 6 hydroxy groups, preferably 1 to 3 hydroxy groups are particularly useful. Preferred arnines are aliphatic saturated amines, including those of the general formulas:
-
- wherein R′ is as defined above, and wherein r and r′ can be the same or a different number of from about 2 to about 6, preferably about 2 to about 4; and t and t′ can be the same or different and are numbers of from 0 to about 10, preferably 0 to about 3, and most preferably about 0 to about 2, with the proviso that the sum of t and t′ is not greater than about 10. To assure a facile reaction, it is preferred that R, R′, R″, R′″, r, r′, t and t′ be selected in a manner sufficient to provide the compounds of Formulas III and IV with typically at least one primary or secondary amine group, preferably at least two primary or secondary amine groups. This can be achieved by selecting at least one of said R, R′, R″ or R′″ groups to be hydrogen or by letting t in Formula IV be at least one when R′″ is H or when the moiety of moiety V possesses a secondary amino group. The most preferred amines of the above formulas are represented by Formula III.
- Non-limiting examples of suitable amine compounds include: 1,2-diaminoethane; 1,3-diaminopropane; 1,4-diaminobutane; 1,6-diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; polypropylene amines such as 1,2-propylene diamine; di-(1,2-propylene)triamine; di-(1,3-propylene) triamine; N,N-dimethyl-1,3-diaminopropane; N,N-di-(2-aminoethyl) ethylene diamine; N,N-di(2-hydroxyethyl)-1,3-propylene diamine; 3-dodecyloxypropylamine; N-dodecyl-1,3-propane diamine; diisopropanol amine; diethanol amine; mono- and di-tallow amines, mono- and di-coco amines, mono- and di-palmitic amines; di-phenyl amine, di-benzyl amine; morpholines such as N-(3-aminopropyl)morpholine; and mixtures thereof.
-
- wherein p1 and P2 are the same or different and are each integers of from about 1 to about 4, and n1, n2 and n3 are the same or different and are each integers of from 0 to about 3 with the proviso that the amine has no more than about 12 nitrogen atoms per molecule. Non-limiting examples of such amines include 2-pentadecyl imidazoline; N-(2-aminoethyl) piperazine; etc.
- Commercial mixtures of amine compounds may advantageously be used. For example, one process for preparing alkylene amines involves the reaction of an alkylene dihalide (such as ethylene dichloride or propylene dichloride) with ammonia, which results in a complex mixture of alkylene amines wherein pairs of nitrogens are joined by alkylene groups, forming such compounds as diethylene triamine, triethylenetetramine, tetraethylene pentamine and isomeric piperazines. Low cost poly(ethyleneamines) compounds averaging about 5 to 7 nitrogen atoms per molecule are available commercially under trade names such as “Polyamine H”, “Polyamine 400”, “Dow Polyamine E-100”, etc. “Heavy polyamine” mixtures, as defined in U.S. Pat. No. 5,580,484 described supra, may also be employed.
- Useful amines also include polyoxyalkylene polyamines such as those of the formula (VII) and (VIII):
- R″″—NHalkylene-NH (VII)
- R″″—Oalkylene-Nn4 H (VIII)
- where R″″ is H or C1-C22 alkyl, preferably C1-C5alkyl, and n4 is 1 to 3.
- The Mannich base condensation products of this invention are prepared by condensing at least one of the above-described hydroxy aromatic compounds with an amine in the presence of an aldehyde. The reactants are contacted for a time and under conditions sufficient to form the desired dispersant product. The process employed in the condensation reaction can be any of those disclosed in U.S. Pat. Nos. 3,634,515; 3,649,229; 3,442,808; 3,798,165; 3,798,247 and 3,539,633.
- The amount of the reactants employed is not critical and can vary over a wide range. It is, however, preferred to react the hydroxy aromatic compound, aldehyde reactant and amine compound in the respective molar ratios of about 1:1-4:0.1-10. An excess of aldehyde reactant may be used. An excess of aldehyde reactant over amine reaction favor formation of compounds containing an oxazine ring. When compounds containing an oxazine ring are desired, the hydroxy aromatic compound, aldehyde reactant and amine compound are preferably reacted in respective molar ratios of about 1:1-2:1, when x is 1, and 1:2-3:2, when x is 2. The reactions are exothermic, but it is desirable to heat the reaction to a temperature of above about 150° C., preferably in the range of form about 150-200° C. This additional heating drives the reaction to completion and removes water from the resulting condensation reaction product.
-
- wherein R1 and R2 are as previously defined.
- A preferred group of Mannich base condensation products are those formed by condensing napthol, optionally substituted with hydrocarbyl, with formaldehyde and an aliphatic or aromatic substituted secondary amine, e.g., fatty amines such as hydrogenated mono- or di-tallow amine, mono- or di-coco amine; amines substituted with shorter alkyl moieties, such as mono- or di-nonyl amine, mono- or di-octyl amine, mono- or di-hexyl amine, mono- or di-pentyl amine, mono- or di-butyl amine, mono- or di-propyl amine, mono- or di-methyl amine; or mono- or di-phenyl or mono- or di-benzyl amine. Particularly preferred are di-alkyl amines derived from natural fatty acids, such as di-coco amine, di-tallow amine and di-palmitic amine. A particularly preferred product of the present invention comprises the condensation reaction of (A) naphthol; (B) formaldehyde; and (C) a di-alkyl amine derived from a natural fatty acid; using about 1 to 2 moles of each of (B) and (C) per mole of (A). Preferably, the naphthol is substituted with hydrocarbyl. The hydrocarbyl can comprise a low molecular alkyl moiety, such as methyl or ethyl, or can be oligomeric or polymeric (e.g., polyisobutene (PIB)).The desired Mannich Base condensation product formed by the process of this invention will generally be present in the condensation reaction product mixture in a concentration of at least about 60 wt. % (e.g., from 65 to 95 wt. %), more preferably at least about 70 wt. %, and most preferably from about 75 to about 90 wt. %.
- The Mannich base condensation products of the present invention provide soot dispersing properties to lubricating oils when blended therewith. Oils of lubricating viscosity useful in the context of the present invention may be selected from natural lubricating oils, synthetic lubricating oils and mixtures thereof. The lubricating oil may range in viscosity from light distillate mineral oils to heavy lubricating oils such as gasoline engine oils, mineral lubricating oils and heavy duty diesel oils. Generally, the viscosity of the oil ranges from about 2 centistokes to about 40 centistokes, especially from about 4 centistokes to about 20 centistokes, as measured at 100° C.
- Natural oils include animal oils and vegetable oils (e.g., castor oil, lard oil); liquid petroleum oils and hydrorefined, solvent-treated or acid-treated mineral oils of the paraffinic, naphthenic and mixed paraffinic-naphthenic types. Oils of lubricating viscosity derived from coal or shale also serve as useful base oils.
- Synthetic lubricating oils include hydrocarbon oils and halo-substituted hydrocarbon oils such as polymerized and interpolymerized olefins (e.g., polybutylenes, polypropylenes, propylene-isobutylene copolymers, chlorinated polybutylenes, poly(1-hexenes), poly(1-octenes), poly(1-decenes)); alkylbenzenes (e.g., dodecylbenzenes, tetradecylbenzenes, dinonylbenzenes, di(2-ethylhexyl)benzenes); polyphenyls (e.g., biphenyls, terphenyls, alkylated polyphenols); and alkylated diphenyl ethers and alkylated diphenyl sulfides and derivative, analogs and homologs thereof.
- Alkylene oxide polymers and interpolymers and derivatives thereof where the terminal hydroxyl groups have been modified by esterification, etherification, etc., constitute another class of known synthetic lubricating oils. These are exemplified by polyoxyalkylene polymers prepared by polymerization of ethylene oxide or propylene oxide, and the alkyl and aryl ethers of polyoxyalkylene polymers (e.g., methyl-polyiso-propylene glycol ether having a molecular weight of 1000 or diphenyl ether of poly-ethylene glycol having a molecular weight of 1000 to 1500); and mono- and polycarboxylic esters thereof, for example, the acetic acid esters, mixed C3-C8 fatty acid esters and C13 Oxo acid diester of tetraethylene glycol.
- Another suitable class of synthetic lubricating oils comprises the esters of dicarboxylic acids (e.g., phthalic acid, succinic acid, alkyl succinic acids and alkenyl succinic acids, maleic acid, azelaic acid, suberic acid, sebasic acid, fumaric acid, adipic acid, linoleic acid dimer, malonic acid, alkylmalonic acids, alkenyl malonic acids) with a variety of alcohols (e.g., butyl alcohol, hexyl alcohol, dodecyl alcohol, 2-ethylhexyl alcohol, ethylene glycol, diethylene glycol monoether, propylene glycol). Specific examples of such esters includes dibutyl adipate, di(2-ethylhexyl) sebacate, di-n-hexyl fumarate, dioctyl sebacate, diisooctyl azelate, diisodecyl azelate, dioctyl phthalate, didecyl phthalate, dieicosyl sebacate, the 2-ethylhexyl diester of linoleic acid dimer, and the complex ester formed by reacting one mole of sebacic acid with two moles of tetraethylene glycol and two moles of 2-ethylhexanoic acid.
- Esters useful as synthetic oils also include those made from C5 to C12 monocarboxylic acids and polyols and polyol esters such as neopentyl glycol, trimethylolpropane, pentaerythritol, dipentaerythritol and tripentaerythritol.
- Silicon-based oils such as the polyalkyl-, polyaryl-, polyalkoxy- or polyaryloxysilicone oils and silicate oils comprise another useful class of synthetic lubricants; such oils include tetraethyl silicate, tetraisopropyl silicate, tetra-(2-ethylhexyl)silicate, tetra-(4-methyl-2-ethylhexyl)silicate, tetra-(p-tert-butyl-phenyl) silicate, hexa-(4-methyl-2-ethylhexyl)disiloxane, poly(methyl)siloxanes and poly(methylphenyl)siloxanes. Other synthetic lubricating oils include liquid esters of phosphorous-containing acids (e.g., tricresyl phosphate, trioctyl phosphate, diethyl ester of decylphosphonic acid) and polymeric tetrahydrofurans.
- Unrefined, refined and re-refined oils can be used in lubricants of the present invention. Unrefined oils are those obtained directly from a natural or synthetic source without further purification treatment. For example, a shale oil obtained directly from retorting operations; petroleum oil obtained directly from distillation; or ester oil obtained directly from an esterification and used without further treatment would be unrefined oil. Refined oils are similar to unrefined oils except that the oil is further treated in one or more purification steps to improve one or more properties. Many such purification techniques, such as distillation, solvent extraction, acid or base extraction, filtration and percolation are known to those skilled in the art. Re-refined oils are obtained by processes similar to those used to provide refined oils but begin with oil that has already been used in service. Such re-refined oils are also known as reclaimed or reprocessed oils and are often subjected to additionally processing using techniques for removing spent additives and oil breakdown products.
- The Mannich base condensation products of the present invention can be incorporated into lubricating oil in any convenient way. Thus, the compounds of the invention can be added directly to the oil by dispersing or dissolving the same in the oil at the desired level of concentrations. Such blending into the lube oil can occur at room temperature or elevated temperatures. Alternatively, the compounds of the invention can be blended with a suitable oil-soluble solvent and base oil to form a concentrate, which concentrate can then be blended with a lubricating oil basestock to obtain the final formulation. Such concentrates will typically contain (on an active ingredient (A.I.)) basis from about 20 to about 60 wt. %, and preferably from about 40 to about 50 wt. %, of the inventive compound, and typically from about 40 to 80 wt. %, preferably from about 40 to 60 wt. %, base oil, based on the concentrate weight. To provide sufficient soot dispersing characteristics, the fully formulated lubricating oil composition should contain from about 0.01 to about 10 wt. %, preferably from about 0.1 to about 5 wt. %, most preferably from about 0.1 to about 1 wt. % of one or more compounds of the present invention.
- Because the Mannich base condensation products of the present invention do not alone provide a lubricating oil composition with sufficient sludge dispersing properties, lubricating oil compositions containing the Mannich base condensation products of the present invention may also contain a conventional high molecular weight dispersant.
- The high molecular weight dispersants useful in the context of the present invention include the range of ashless (metal-free) dispersants known to be effective to reduce formation of deposits upon use in gasoline and diesel engines, when added to lubricating oils. The ashless, high molecular weight dispersant useful in the compositions of the present invention comprises an oil soluble polymeric long chain backbone having functional groups capable of associating with particles to be dispersed. Typically, such dispersants comprise amine, alcohol, amide or ester polar moieties attached to the polymer backbone, often via a bridging group. The ashless, high molecular weight dispersant may be, for example, selected from oil soluble salts, esters, amino-esters, amides, imides and oxazolines of long chain hydrocarbon-substituted mono- and polycarboxylic acids or anhydrides thereof; thiocarboxylate derivatives of long chain hydrocarbons; long chain aliphatic hydrocarbons having polyamine moieties attached directly thereto; and Mannich condensation products formed by condensing a long chain substituted phenol with formaldehyde and polyalkylene polyamine.
- A “high molecular weight” dispersant is one having a number average molecular weight greater than or equal to 450, such as between 450 and 20,000. The precise molecular weight ranges will depend on the type of polymer used to form the dispersant, the number of functional groups, and the type of polar functional group employed. For example, for a polyisobutylene derivatized dispersant, a high molecular weight dispersant may be one formed with a polymer backbone having a number average molecular weight of from about 1700 to about 5600. Typical commercially available polyisobutylene-based dispersants contain polyisobutylene polymers having a number average molecular weight ranging from about 900 to about 2300, functionalized by maleic anhydride (MW=98), and derivatized with polyamines having a molecular weight of from about 100 to about 350. Polymers of low molecular weight could also be used to form a high molecular weight dispersant by incorporating multiple polymer chains into the dispersant using methods known in the art.
- Polymer molecular weight, specifically {overscore (M)}n, can be determined by various known techniques. One convenient method is gel permeation chromatography (GPC), which additionally provides molecular weight distribution information (see W. W. Yau, J. J. Kirkland and D. D. Bly, “Modern Size Exclusion Liquid Chromatography”, John Wiley and Sons, New York, 1979). If the molecular weight of an amine-containing dispersant (e.g., PIBSA-polyamine) is being determined, the presence of the amine may cause the dispersant to be adsorbed by the column, leading to an inaccurate molecular weight determination. Persons familiar with the operation of GPC equipment understand that this problem may be eliminated by using a mixed solvent system, such as tetrahydrofuran (THF) mixed with a minor amount of pyridine, as opposed to pure THF. The problem may also be addressed by capping the amine with acetic anhydride and correcting the molecular weight based on the amount of capping groups. Another useful method for determining molecular weight, particularly for lower molecular weight polymers, is vapor pressure osmometry (see, e.g., ASTM D3592).
- Suitable hydrocarbons or polymers employed in the formation of conventional high molecular weight dispersants include homopolymers, interpolymers or lower molecular weight hydrocarbons. One family of such polymers comprise polymers of ethylene and/or at least one C3 to C28 alpha-olefin having the formula H2C═CHR1 wherein R1 is straight or branched chain alkyl radical comprising 1 to 26 carbon atoms and wherein the polymer contains carbon-to-carbon unsaturation, preferably a high degree of terminal ethenylidene unsaturation. Preferably, such polymers comprise interpolymers of ethylene and at least one alpha-olefin of the above formula, wherein R1 is alkyl of from 1 to 18 carbon atoms, and more preferably is alkyl of from 1 to 8 carbon atoms, and more preferably still of from 1 to 2 carbon atoms. Therefore, useful alpha-olefin monomers and comonomers include, for example, propylene, butene-1, hexene-1, octene-1,4-methylpentene-1, decene-1, dodecene-1, tridecene-1, tetradecene-1, pentadecene-1, hexadecene-1, heptadecene-1, octadecene-1, nonadecene-1, and mixtures thereof (e.g., mixtures of propylene and butene-1, and the like). Exemplary of such polymers are propylene homopolymers, butene-1 homopolymers, ethylene-propylene copolymers, ethylene-butene-1 copolymers, propylene-butene copolymers and the like, wherein the polymer contains at least some terminal and/or internal unsaturation. Preferred polymers are unsaturated copolymers of ethylene and propylene and ethylene and butene-1. The interpolymers of this invention may contain a minor amount, e.g. 0.5 to 5 mole % of a C4 to C18 non-conjugated diolefin comonomer. However, it is preferred that the polymers of this invention comprise only alpha-olefin homopolymers, interpolymers of alpha-olefin comonomers and interpolymers of ethylene and alpha-olefin comonomers. The molar ethylene content of the polymers employed in this invention is preferably in the range of 20 to 80%, and more preferably 30 to 70%. When propylene and/or butene-1 are employed as comonomer(s) with ethylene, the ethylene content of such copolymers is most preferably between 45 and 65%, although higher or lower ethylene contents may be present.
- These polymers may be prepared by polymerizing alpha-olefin monomer, or mixtures of alpha-olefin monomers, or mixtures comprising ethylene and at least one C3 to C28 alpha-olefin monomer, in the presence of a catalyst system comprising at least one metallocene (e.g., a cyclopentadienyl-transition metal compound) and an alumoxane compound. Using this process, a polymer in which 95% or more of the polymer chains possess terminal ethenylidene-type unsaturation can be provided. The percentage of polymer chains exhibiting terminal ethenylidene unsaturation may be determined by FTIR spectroscopic analysis, titration, or C13 NMR. Interpolymers of this latter type may be characterized by the formula POLY-C(R 1)═CH2 wherein R1 is C1 to C26 alkyl, preferably C1 to C18 alkyl, more preferably C1 to C8 alkyl, and most preferably C1 to C2 alkyl, (e.g., methyl or ethyl) and wherein POLY represents the polymer chain. The chain length of the R1 alkyl group will vary depending on the comonomer(s) selected for use in the polymerization. A minor amount of the polymer chains can contain terminal ethenyl, i.e., vinyl, unsaturation, i.e. POLY-CH═CH2, and a portion of the polymers can contain internal monounsaturation, e.g. POLY-CH═CH(R1), wherein R1 is as defined above. These terminally unsaturated interpolymers may be prepared by known metallocene chemistry and may also be prepared as described in U.S. Pat. Nos. 5,498,809; 5,663,130; 5,705,577; 5,814,715; 6,022,929 and 6,030,930.
- Another useful class of polymers is polymers prepared by cationic polymerization of isobutene, styrene, and the like. Common polymers from this class include polyisobutenes obtained by polymerization of a C4 refinery stream having a butene content of about 35 to about 75% by wt., and an isobutene content of about 30 to about 60% by wt., in the presence of a Lewis acid catalyst, such as aluminum trichloride or boron trifluoride. A preferred source of monomer for making poly-n-butenes is petroleum feedstreams such as Raffinate II. These feedstocks are disclosed in the art such as in U.S. Pat. No. 4,952,739. Polyisobutylene is a most preferred backbone of the present invention because it is readily available by cationic polymerization from butene streams (e.g., using AlCl3 or BF3 catalysts). Such polyisobutylenes generally contain residual unsaturation in amounts of about one ethylenic double bond per polymer chain, positioned along the chain.
- As noted above, the polyisobutylene polymers employed are generally based on a hydrocarbon chain of from about 900 to 2,300. Methods for making polyisobutylene are known. Polyisobutylene can be functionalized by halogenation (e.g. chlorination), the thermal “ene” reaction, or by free radical grafting using a catalyst (e.g. peroxide), as described below.
- Processes for reacting polymeric hydrocarbons with unsaturated carboxylic acids, anhydrides or esters and the preparation of derivatives from such compounds are disclosed in U.S. Pat. Nos. 3,087,936; 3,172,892; 3,215,707; 3,231,587; 3,272,746; 3,275,554; 3,381,022; 3,442,808; 3,565,804; 3,912,764; 4,110,349; 4,234,435; and GB-A-1,440,219. The polymer or hydrocarbon may be functionalized, for example, with carboxylic acid producing moieties (preferably acid or anhydride) by reacting the polymer or hydrocarbon under conditions that result in the addition of functional moieties or agents, i.e., acid, anhydride, ester moieties, etc., onto the polymer or hydrocarbon chains primarily at sites of carbon-to-carbon unsaturation (also referred to as ethylenic or olefinic unsaturation) using the halogen assisted functionalization (e.g. chlorination) process or the thermal “ene” reaction.
- When using the free radical grafting process using a catalyst (e.g. peroxide), the functionalization is randomly effected along the polymer chain. Selective functionalization can be accomplished by halogenating, e.g., chlorinating or brominating the unsaturated α-olefin polymer to about 1 to 8 wt. %, preferably 3 to 7 wt. % chlorine, or bromine, based on the weight of polymer or hydrocarbon, by passing the chlorine or bromine through the polymer at a temperature of 60 to 250° C., preferably 110 to 160° C., e.g., 120 to 140° C., for about 0.5 to 10, preferably 1 to 7 hours. The halogenated polymer or hydrocarbon (hereinafter backbone) is then reacted with sufficient monounsaturated reactant capable of adding functional moieties to the backbone, e.g., monounsaturated carboxylic reactant, at 100 to 250° C., usually about 180° C. to 235° C., for about 0.5 to 10, e.g., 3 to 8 hours, such that the product obtained will contain the desired number of moles of the monounsaturated carboxylic reactant per mole of the halogenated backbones. Alternatively, the backbone and the monounsaturated carboxylic reactant are mixed and heated while adding chlorine to the hot material.
- The hydrocarbon or polymer backbone can be functionalized, e.g., with carboxylic acid producing moieties (preferably acid or anhydride moieties) selectively at sites of carbon-to-carbon unsaturation on the polymer or hydrocarbon chains, or randomly along chains using the three processes mentioned above or combinations thereof in any sequence.
- The preferred monounsaturated reactants that are used to functionalize the backbone comprise mono- and dicarboxylic acid material, i.e., acid, anhydride, or acid ester material, including (i) monounsaturated C4 to C10 dicarboxylic acid wherein (a) the carboxyl groups are vicinyl, (i.e., located on adjacent carbon atoms) and (b) at least one, preferably both, of said adjacent carbon atoms are part of said mono unsaturation; (ii) derivatives of (i) such as anhydrides or C1 to C5 alcohol derived mono- or diesters of (i); (iii) monounsaturated C3 to C10 monocarboxylic acid wherein the carbon-carbon double bond is conjugated with the carboxy group, i.e., of the structure —C═C—CO—; and (iv) derivatives of (iii) such as C1 to C5 alcohol derived mono- or diesters of (iii). Mixtures of monounsaturated carboxylic materials (i)-(iv) also may be used. Upon reaction with the backbone, the monounsaturation of the monounsaturated carboxylic reactant becomes saturated. Thus, for example, maleic anhydride becomes backbone-substituted succinic anhydride, and acrylic acid becomes backbone-substituted propionic acid. Exemplary of such monounsaturated carboxylic reactants are fumaric acid, itaconic acid, maleic acid, maleic anhydride, chloromaleic acid, chloromaleic anhydride, acrylic acid, methacrylic acid, crotonic acid, cinnamic acid, and lower alkyl (e.g., C1 to C4 alkyl) acid esters of the foregoing, e.g., methyl maleate, ethyl fumarate, and methyl fumarate. The monounsaturated carboxylic reactant, preferably maleic anhydride, typically will be used in an amount ranging from about 0.01 to about 20 wt. %, preferably 0.5 to 10 wt. %, based on the weight of the polymer or hydrocarbon.
- While chlorination normally helps increase the reactivity of starting olefin polymers with monounsaturated functionalizing reactant, it is not necessary with the polymers or hydrocarbons contemplated for use in the present invention, particularly those preferred polymers or hydrocarbons which possess a high terminal bond content and reactivity. Preferably, therefore, the backbone and the monounsaturated functionality reactant, e.g., carboxylic reactant, are contacted at elevated temperature to cause an initial thermal “ene” reaction to take place. Ene reactions are known.
- The hydrocarbon or polymer backbone can be functionalized by random attachment of functional moieties along the polymer chains by a variety of methods. For example, the polymer, in solution or in solid form, may be grafted with the monounsaturated carboxylic reactant, as described above, in the presence of a free-radical initiator. When performed in solution, the grafting takes place at an elevated temperature in the range of about 100 to 260° C., preferably 120 to 240° C. Preferably, free-radical initiated grafting would be accomplished in a mineral lubricating oil solution containing, e.g., 1 to 50 wt. %, preferably 5 to 30 wt. % polymer based on the initial total oil solution.
- The free-radical initiators that may be used are peroxides, hydroperoxides, and azo compounds, preferably those that have a boiling point greater than about 100° C. and decompose thermally within the grafting temperature range to provide free-radicals. Representative of these free-radical initiators are azobutyronitrile, 2,5-dimethylhex-3-ene-2,5-bis-tertiary-butyl peroxide and dicumene peroxide. The initiator, when used, typically is used in an amount of between 0.005% and 1% by weight based on the weight of the reaction mixture solution. Typically, the aforesaid monounsaturated carboxylic reactant material and free-radical initiator are used in a weight ratio range of from about 1.0:1 to 30:1, preferably 3:1 to 6:1. The grafting is preferably carried out in an inert atmosphere, such as under nitrogen blanketing. The resulting grafted polymer is characterized by having carboxylic acid (or ester or anhydride) moieties randomly attached along the polymer chains: it being understood, of course, that some of the polymer chains remain ungrafted. The free radical grafting described above can be used for the other polymers and hydrocarbons of the present invention.
- The functionalized oil-soluble polymeric hydrocarbon backbone may then be further derivatized with a nucleophilic reactant, such as an amine, amino-alcohol, alcohol, metal compound, or mixture thereof, to form a corresponding derivative. Useful amine compounds for derivatizing functionalized polymers comprise at least one amine and can comprise one or more additional amine or other reactive or polar groups. These amines may be hydrocarbyl amines or may be predominantly hydrocarbyl amines in which the hydrocarbyl group includes other groups, e.g., hydroxy groups, alkoxy groups, amide groups, nitriles, imidazoline groups, and the like. Particularly useful amine compounds include mono- and polyamines, e.g., polyalkene and polyoxyalkylene polyamines of about 2 to 60, such as 2 to 40 (e.g., 3 to 20) total carbon atoms having about 1 to 12, such as 3 to 12, and preferably 3 to 9 nitrogen atoms per molecule. Mixtures of amine compounds may advantageously be used, such as those prepared by reaction of alkylene dihalide with ammonia. Preferred amines are aliphatic saturated amines, including, for example, 1,2-diaminoethane; 1,3-diaminopropane; 1,4-diaminobutane; 1,6-diaminohexane; polyethylene amines such as diethylene triamine; triethylene tetramine; tetraethylene pentamine; and polypropyleneamines such as 1,2-propylene diamine; and di-(1,2-propylene)triamine.
- Other useful amine compounds include: alicyclic diamines such as 1,4-di(aminomethyl) cyclohexane and heterocyclic nitrogen compounds such as imidazolines. Another useful class of amines is the polyamido and related amido-amines as disclosed in U.S. Pat. Nos. 4,857,217; 4,956,107; 4,963,275; and 5,229,022. Also usable is tris(hydroxymethyl)amino methane (TAM) as described in U.S. Pat. Nos. 4,102,798; 4,113,639; 4,116,876; and UK 989,409. Dendrimers, star-like amines, and comb-structured amines may also be used. Similarly, one may use condensed amines, as described in U.S. Pat. No. 5,053,152. The functionalized polymer is reacted with the amine compound using conventional techniques as described, for example, in U.S. Pat. Nos. 4,234,435 and 5,229,022, as well as in EP-A-208,560.
- The functionalized, oil-soluble polymeric hydrocarbon backbones may also be derivatized with hydroxy compounds such as monohydric and polyhydric alcohols, or with aromatic compounds such as phenols and naphthols. Preferred polyhydric alcohols include alkylene glycols in which the alkylene radical contains from 2 to 8 carbon atoms. Other useful polyhydric alcohols include glycerol, mono-oleate of glycerol, monostearate of glycerol, monomethyl ether of glycerol, pentaerythritol, dipentaerythritol, and mixtures thereof. An ester dispersant may also be derived from unsaturated alcohols, such as allyl alcohol, cinnamyl alcohol, propargyl alcohol, 1-cyclohexane-3-ol, and oleyl alcohol. Still other classes of alcohols capable of yielding ashless dispersants comprise ether-alcohols, including oxy-alkylene and oxy-arylene. Such ether-alcohols are exemplified by ether-alcohols having up to 150 oxy-alkylene radicals in which the alkylene radical contains from 1 to 8 carbon atoms. The ester dispersants may be di-esters of succinic acids or acid-esters, i.e., partially esterified succinic acids, as well as partially esterified polyhydric alcohols or phenols, i.e., esters having free alcohols or phenolic hydroxy radicals. An ester dispersant may be prepared by any one of several known methods as described, for example, in U.S. Pat. No. 3,381,022.
- Preferred groups of dispersant include polyamine-derivatized poly α-olefin, dispersants, particularly ethylene/butene alpha-olefin and polyisobutylene-based dispersants. Particularly preferred are ashless dispersants derived from polyisobutylene substituted with succinic anhydride groups and reacted with polyethylene amines, e.g., polyethylene diamine, tetraethylene pentamine; or a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, trimethylolaminomethane; a hydroxy compound, e.g., pentaerythritol; and combinations thereof. One particularly preferred dispersant combination is a combination of (A) polyisobutylene substituted with succinic anhydride groups and reacted with (B) a hydroxy compound, e.g., pentaerythritol; (C) a polyoxyalkylene polyamine, e.g., polyoxypropylene diamine, or (D) a polyalkylene diamine, e.g., polyethylene diamine and tetraethylene pentamine using about 0.3 to about 2 moles of (B), (C) and/or (D) per mole of (A). Another preferred dispersant combination comprises a combination of (A) polyisobutenyl succinic anhydride with (B) a polyalkylene polyamine, e.g., tetraethylene pentamine, and (C) a polyhydric alcohol or polyhydroxy-substituted aliphatic primary amine, e.g., pentaerythritol or trismethylolaminomethane, as described in U.S. Pat. No. 3,632,511.
- Another class of high molecular weight ashless dispersants comprises Mannich base condensation products. Generally, these products are prepared by condensing about one mole of a long chain alkyl-substituted mono- or polyhydroxy benzene with about 1 to 2.5 moles of carbonyl compound(s) (e.g., formaldehyde and paraformaldehyde) and about 0.5 to 2 moles of polyalkylene polyamine, as disclosed, for example, in U.S. Pat. No. 3,442,808. Such Mannich base condensation products may include a polymer product of a metallocene catalyzed polymerization as a substituent on the benzene group, or may be reacted with a compound containing such a polymer substituted on a succinic anhydride in a manner similar to that described in U.S. Pat. No. 3,442,808. Examples of functionalized and/or derivatized olefin polymers synthesized using metallocene catalyst systems are described in the publications identified supra.
- The high molecular weight dispersant can be further post treated by a variety of conventional post treatments such as boration, as generally taught in U.S. Pat. Nos. 3,087,936 and 3,254,025. Boration of the dispersant is readily accomplished by treating an acyl nitrogen-containing dispersant with a boron compound such as boron oxide, boron halide boron acids, and esters of boron acids, in an amount sufficient to provide from about 0.1 to about 20 atomic proportions of boron for each mole of acylated nitrogen composition. Useful dispersants contain from about 0.05 to about 2.0 wt. %, e.g., from about 0.05 to about 0.7 wt. % boron. The boron, which appears in the product as dehydrated boric acid polymers (primarily (HBO2)3), is believed to attach to the dispersant imides and diimides as amine salts, e.g., the metaborate salt of the diimide. Boration can be carried out by adding from about 0.5 to 4 wt. %, e.g., from about 1 to about 3 wt. % (based on the weight of acyl nitrogen compound) of a boron compound, preferably boric acid, usually as a slurry, to the acyl nitrogen compound and heating with stirring at from about 135° C. to about 190° C., e.g., 140° C. to 170° C., for from about 1 to about 5 hours, followed by nitrogen stripping. Alternatively, the boron treatment can be conducted by adding boric acid to a hot reaction mixture of the dicarboxylic acid material and amine, while removing water. Other post reaction processes known in the art can also be applied.
- Conventional high molecular weight dispersants, in addition to providing sludge dispersing properties, also imbue lubricating oils with soot dispersancy characteristics. Surprisingly, it has been found that the Mannich Base condensation products of the present invention synergistically boost the soot dispersancy properties of high molecular weight dispersants. Thus, the use of a small amount of the Mannich Base condensation products of the present invention allows one to reduce the amount of the relatively expensive high molecular weight dispersant used in the lubricating oil composition while maintaining, or actually increasing, the soot dispersant properties of the composition. To provide sufficient control of soot induced viscosity increase, a conventional lubricating oil composition will employ a high molecular weight dispersant in an amount of up to about 20 wt. %, more usually up to about 8 wt. %, based on the total mass of the finished lubricant. In contrast, in a lubricating oil composition containing about 0.01 to about 5 wt. %, preferably from about 0.05 to about 2 wt. %, more preferably from about 0.1 to about 1 wt. %, of a Mannich Base condensation product of the present invention, a comparable level of sludge and soot dispersancy can be achieved with about 1 to about 12 wt. %, preferably from about 1 to about 7 wt. %, more preferably from about 2 to about 5 wt. %, of the high molecular weight dispersant. In general, each 0.5 wt. % increase in the amount of the Mannich base condensation product of the present invention may allow for up to a 5 wt. % reduction in the amount of needed high molecular weight dispersant.
- Additional additives may be incorporated in the compositions of the invention to enable them to meet particular requirements. Examples of additives which may be included in the lubricating oil compositions of the present invention are detergents, metal rust inhibitors, viscosity index improvers, corrosion inhibitors, oxidation inhibitors, friction modifiers, anti-foaming agents, anti-wear agents and pour point depressants. Some are discussed in further detail below.
- Metal-containing or ash-forming detergents function both as detergents to reduce or remove deposits and as acid neutralizers or rust inhibitors, thereby reducing wear and corrosion and extending engine life. Detergents generally comprise a polar head with a long hydrophobic tail, with the polar head comprising a metal salt of an acidic organic compound. The salts may contain a substantially stoichiometric amount of the metal in which case they are usually described as normal or neutral salts, and would typically have a total base number or TBN (as can be measured by ASTM D2896) of from 0 to 80. A large amount of a metal base may be incorporated by reacting excess metal compound (e.g., an oxide or hydroxide) with an acidic gas (e.g., carbon dioxide). The resulting overbased detergent comprises neutralized detergent as the outer layer of a metal base (e.g. carbonate) micelle. Such overbased detergents may have a TBN of 150 or greater, and typically will have a TBN of from 250 to 450 or more.
- Detergents that may be used include oil-soluble neutral and overbased sulfonates, phenates, sulfurized phenates, thiophosphonates, salicylates, and naphthenates and other oil-soluble carboxylates of a metal, particularly the alkali or alkaline earth metals, e.g., sodium, potassium, lithium, calcium, and magnesium. The most commonly used metals are calcium and magnesium, which may both be present in detergents used in a lubricant, and mixtures of calcium and/or magnesium with sodium. Particularly convenient metal detergents are neutral and overbased calcium sulfonates having TBN of from 20 to 450 TBN, and neutral and overbased calcium phenates and sulfurized phenates having TBN of from 50 to 450. Combinations of detergents, whether overbased or neutral or both, may be used.
- Sulfonates may be prepared from sulfonic acids which are typically obtained by the sulfonation of alkyl substituted aromatic hydrocarbons such as those obtained from the fractionation of petroleum or by the alkylation of aromatic hydrocarbons. Examples included those obtained by alkylating benzene, toluene, xylene, naphthalene, diphenyl or their halogen derivatives such as chlorobenzene, chlorotoluene and chloronaphthalene. The alkylation may be carried out in the presence of a catalyst with alkylating agents having from about 3 to more than 70 carbon atoms. The alkylaryl sulfonates usually contain from about 9 to about 80 or more carbon atoms, preferably from about 16 to about 60 carbon atoms per alkyl substituted aromatic moiety.
- The oil soluble sulfonates or alkaryl sulfonic acids may be neutralized with oxides, hydroxides, alkoxides, carbonates, carboxylate, sulfides, hydrosulfides, nitrates, borates and ethers of the metal. The amount of metal compound is chosen having regard to the desired TBN of the final product but typically ranges from about 100 to 220 wt. % (preferably at least 125 wt. %) of that stoichiometrically required.
- Metal salts of phenols and sulfurized phenols are prepared by reaction with an appropriate metal compound such as an oxide or hydroxide and neutral or overbased products may be obtained by methods well known in the art. Sulfurized phenols may be prepared by reacting a phenol with sulfur or a sulfur containing compound such as hydrogen sulfide, sulfur monohalide or sulfur dihalide, to form products which are generally mixtures of compounds in which 2 or more phenols are bridged by sulfur containing bridges.
- Dihydrocarbyl dithiophosphate metal salts are frequently used as antiwear and antioxidant agents. The metal may be an alkali or alkaline earth metal, or aluminum, lead, tin, molybdenum, manganese, nickel or copper. The zinc salts are most commonly used in lubricating oil in amounts of 0.1 to 10, preferably 0.2 to 2 wt. %, based upon the total weight of the lubricating oil composition. They may be prepared in accordance with known techniques by first forming a dihydrocarbyl dithiophosphoric acid (DDPA), usually by reaction of one or more alcohol or a phenol with P2S5 and then neutralizing the formed DDPA with a zinc compound. For example, a dithiophosphoric acid may be made by reacting mixtures of primary and secondary alcohols. Alternatively, multiple dithiophosphoric acids can be prepared where the hydrocarbyl groups on one are entirely secondary in character and the hydrocarbyl groups on the others are entirely primary in character. To make the zinc salt, any basic or neutral zinc compound could be used but the oxides, hydroxides and carbonates are most generally employed. Commercial additives frequently contain an excess of zinc due to the use of an excess of the basic zinc compound in the neutralization reaction.
-
- wherein R and R′ may be the same or different hydrocarbyl radicals containing from 1 to 18, preferably 2 to 12, carbon atoms and including radicals such as alkyl, alkenyl, aryl, arylalkyl, alkaryl and cycloaliphatic radicals. Particularly preferred as R and R′ groups are alkyl groups of 2 to 8 carbon atoms. Thus, the radicals may, for example, be ethyl, n-propyl, i-propyl, n-butyl, i-butyl, sec-butyl, amyl, n-hexyl, i-hexyl, n-octyl, decyl, dodecyl, octadecyl, 2-ethylhexyl, phenyl, butylphenyl, cyclohexyl, methylcyclopentyl, propenyl, butenyl. In order to obtain oil solubility, the total number of carbon atoms (i.e. R and R′) in the dithiophosphoric acid will generally be about 5 or greater. The zinc dihydrocarbyl dithiophosphate can therefore comprise zinc dialkyl dithiophosphates. The present invention may be particularly useful when used with lubricant compositions containing phosphorus levels of from about 0.02 to about 0.12 wt. %, preferably from about 0.03 to about 0.10 wt. %, more preferably from about 0.05 to about 0.08 wt. %,
- Oxidation inhibitors or antioxidants reduce the tendency of mineral oils to deteriorate in service. Oxidative deterioration can be evidenced by sludge in the lubricant, varnish-like deposits on the metal surfaces, and by viscosity growth. Such oxidation inhibitors include hindered phenols, alkaline earth metal salts of alkylphenolthioesters having preferably C5 to C12 alkyl side chains, calcium nonylphenol sulfide, oil soluble phenates and sulfurized phenates, phosphosulfurized or sulfurized hydrocarbons or esters, phosphorous esters, metal thiocarbamates, oil soluble copper compounds as described in U.S. Pat. No. 4,867,890, and molybdenum-containing compounds.
- Aromatic amines having at least two aromatic groups attached directly to the nitrogen constitute another class of compounds that is frequently used for antioxidancy. While these materials may be used in small amounts, preferred embodiments of the present invention are free of these compounds. They are preferably used in only small amounts, i.e., up to 0.4 wt. %, or more preferably avoided altogether other than such amount as may result as an impurity from another component of the composition.
- Typical oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen contain from 6 to 16 carbon atoms. The amines may contain more than two aromatic groups. Compounds having a total of at least three aromatic groups in which two aromatic groups are linked by a covalent bond or by an atom or group (e.g., an oxygen or sulfur atom, or a —CO—, —SO2— or alkylene group) and two are directly attached to one amine nitrogen also considered aromatic amines having at least two aromatic groups attached directly to the nitrogen. The aromatic rings are typically substituted by one or more substituents selected from alkyl, cycloalkyl, alkoxy, aryloxy, acyl, acylamino, hydroxy, and nitro groups. The amount of any such oil soluble aromatic amines having at least two aromatic groups attached directly to one amine nitrogen should preferably not exceed 0.4 wt. % active ingredient.
- Representative examples of suitable viscosity modifiers are polyisobutylene, copolymers of ethylene and propylene, polymethacrylates, methacrylate copolymers, copolymers of an unsaturated dicarboxylic acid and a vinyl compound, interpolymers of styrene and acrylic esters, and partially hydrogenated copolymers of styrene/isoprene, styrene/butadiene, and isoprene/butadiene, as well as the partially hydrogenated homopolymers of butadiene and isoprene.
- Friction modifiers and fuel economy agents that are compatible with the other ingredients of the final oil may also be included. Examples of such materials include glyceryl monoesters of higher fatty acids, for example, glyceryl mono-oleate; esters of long chain polycarboxylic acids with diols, for example, the butane diol ester of a dimerized unsaturated fatty acid; oxazoline compounds; and alkoxylated alkyl-substituted mono-amines, diamines and alkyl ether amines, for example, ethoxylated tallow amine and ethoxylated tallow ether amine.
- A viscosity index improver dispersant functions both as a viscosity index improver and as a dispersant. Examples of viscosity index improver dispersants include reaction products of amines, for example polyamines, with a hydrocarbyl-substituted mono- or dicarboxylic acid in which the hydrocarbyl substituent comprises a chain of sufficient length to impart viscosity index improving properties to the compounds. In general, the viscosity index improver dispersant may be, for example, a polymer of a C4 to C24 unsaturated ester of vinyl alcohol or a C3 to C10 unsaturated mono-carboxylic acid or a C4 to C10 di-carboxylic acid with an unsaturated nitrogen-containing monomer having 4 to 20 carbon atoms; a polymer of a C2 to C20 olefin with an unsaturated C3 to C10 mono- or di-carboxylic acid neutralized with an amine, hydroxyamine or an alcohol; or a polymer of ethylene with a C3 to C20 olefin further reacted either by grafting a C4 to C20 unsaturated nitrogen-containing monomer thereon or by grafting an unsaturated acid onto the polymer backbone and then reacting carboxylic acid groups of the grafted acid with an amine, hydroxy amine or alcohol.
- Pour point depressants, otherwise known as lube oil flow improvers (LOFI), lower the minimum temperature at which the fluid will flow or can be poured. Such additives are well known. Typical of those additives that improve the low temperature fluidity of the fluid are C8 to C18 dialkyl fumarate/vinyl acetate copolymers, and polymethacrylates. Foam control can be provided by an antifoamant of the polysiloxane type, for example, silicone oil or polydimethyl siloxane.
- Some of the above-mentioned additives can provide a multiplicity of effects; thus for example, a single additive may act as a dispersant-oxidation inhibitor. This approach is well known and need not be further elaborated herein.
- In the present invention it may be necessary to include an additive which maintains the stability of the viscosity of the blend. Thus, although polar group-containing additives achieve a suitably low viscosity in the pre-blending stage it has been observed that some compositions increase in viscosity when stored for prolonged periods. Additives which are effective in controlling this viscosity increase include the long chain hydrocarbons functionalized by reaction with mono- or dicarboxylic acids or anhydrides which are used in the preparation of the ashless dispersants as hereinbefore disclosed.
- When lubricating compositions contain one or more of the above-mentioned additives, each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function.
- It may be desirable, although not essential, to prepare one or more additive concentrates comprising additives (concentrates sometimes being referred to as additive packages) whereby several additives can be added simultaneously to the oil to form the lubricating oil composition.
- The final composition may employ from 5 to 25 mass %, preferably 5 to 18 mass %, typically 10 to 15 mass % of the concentrate, the remainder being oil of lubricating viscosity.
- When lubricating compositions contain one or more of the above-mentioned additives, each additive is typically blended into the base oil in an amount that enables the additive to provide its desired function. Representative effect amounts of such additives, when used in crankcase lubricant, are listed below. All the values listed are stated as mass percent active ingredient.
MASS % MASS % ADDITIVE (Broad) (Preferred) Metal Detergents 0.1-15 0.2-9 Corrosion Inhibitor 0-5 0-1.5 Metal Dihydrocarbyl Dithiophosphate 0.1-6 0.1-4 Antioxidant 0-5 0.01-2 Pour Point Depressant 0.01-5 0.01-1.5 Antifoaming Agent 0-5 0.001-0.15 Supplemental Antiwear Agents 0-1.0 0-0.5 Friction Modifier 0-5 0-1.5 Viscosity Modifier 0.01-10 0.25-3 Basestock Balance Balance - All weight percents expressed herein (unless otherwise indicated) are based on active ingredient (A.I.) content of the additive, and/or upon the total weight of any additive-package, or formulation which will be the sum of the A.I. weight of each additive plus the weight of total oil or diluent.
- This invention will be further understood by reference to the following examples, wherein all parts are parts by weight, unless otherwise noted and which include preferred embodiments of the invention.
- 50 g (0.347 mol) of alpha-naphtol were added to a 1 liter four necked round bottomed flask equipped with an air stirrer, thermometer and nitrogen blanket. About 100 ml. of toluene (other neutral solvents such as heptane or a neutral diluent oil could also be used) were added and the mixture was stirred at room temperature while adding 347 g (0.694 mol) of hydrogenated di-tallow amine, commonly referred to as 2HT amine. The reaction mixture was then heated to 50° C. and 60 g (0.72 mol) of formalin (37% formaldehyde) was introduced. Thereafter, the toluene solution was heated to 90° C. and soaked at this temperature for 2 hours. The reaction mixture was then heated slowly to 150° C. while distilling off the water and toluene. Once the water was distilled off, the residue was stripped at 150° C. with nitrogen until constant weight. The product was collected and solidified while cooling to room temperature. Analytical results indicated that the product contained 2.44% nitrogen. C13 NMR showed the product as having a di-substituted structure substituted at the ortho/para position relative to the hydroxy group with an average of 1.5 to 1.7 sidechains per naphthol ring.
- 50 g (0.347 mol) of alpha-naphthol were charged into a reactor containing 175 g (0.694 mol) of 1-octadecene. While stirring under a nitrogen blanket, 100 g of dry Amberlyst 15 were added and the reaction mixture was heated to 110° C. for 9 hours. The product was diluted with 100 ml of heptane and filtered. The solvent was nitrogen stripped, and the residue was vacuum stripped at 200° C. until constant weight to insure that the unreacted olefin was removed. The product analyzed to be greater than 95% active ingredient. GC analysis showed that the product was a mixture of mono- and di-substituted naphthol with about 1.7 alkyl chains per naphthol ring. C-13 and proton analysis indicated that the alkyl-substituted napthol was primarily ortho/para alkylated naphthol.
- 20.59 g (0.0.143 mol) of alpha-naphthol were added to a 1 liter four necked round bottomed flask equipped with an air stirrer, thermometer, and nitrogen blanket containing 125.2 g of mineral oil Solvent 100 Neutral, FN 1365. Then, 100.96 g ( 0.286 mol) of di-coco amine, commercially sold as Adogen-260, were added and the mixture was stirred while heating to 80° C. At 80° C., 25.51 g (0.315 mol) of formalin (37% formaldehyde) were added slowly via an addition funnel. Thereafter, the reaction mixture was soaked at 80° C. for 2 hours. The reaction mixture was then heated slowly to 150° C. while distilling off the water and mineral oil. Once the water stopped distilling off, the residue was stripped at 150° C. with nitrogen until constant weight. A 50% oil solution product was collected. Analytical results show the product to contain 1.56% N. The FTIR spectrum of the product was identical to the spectrum of a product obtained when using toluene as the solvent.
- 36 g (0.25 mol) of beta-naphthol were added to a 2 liter four necked round bottomed flask equipped with an air stirrer, thermometer, and nitrogen blanket containing 500 ml of heptane. Then, 250 g (0.50 mol) of 2HT amine were added and the mixture was stirred while heating to 80° C. At 80° C., 45 g (0.55 mol) of formalin (37% formaldehyde) were added slowly via an addition funnel. Thereafter, the reaction mixture was soaked at 80° C. for 2 hours. The reaction mixture was then heated slowly to 150° C. while distilling the water and heptane. Once the water stopped distilling off, the residue was stripped at 150° C. with nitrogen until constant weight. The product was collected and solidified while cooling to room temperature. FTIR spectrum and C13 and proton NMR indicates that the desired product was provided
- 50 g (0.347 mol) of alpha-naphthol were charged into a reactor containing 175 g (0.694 mol) of 1-octadecene. While stirring under a nitrogen blanket, 100 g of dry Amberlyst 15 were added and the reaction mixture heated to 110° C. for 9 hours. The product was diluted with 100 ml of heptane and filtered. The solvent was nitrogen stripped and the residue was vacuum stripped at 200° C. until constant weight to insure that the unreacted olefin was stripped. The product analyzed to be greater than 95% active ingredient. GC analysis shows the product to be a mixture of mono- and di-substituted naphthol, with about 1.7 chains per naphthol ring. C13 and proton NMR analysis showed the product to be primarily ortho/para-alkylated naphthol.
- 28.2 g (0.30 mol) of phenol were added to a 250 ml four necked round bottomed flask equipped with an air stirrer, thermometer, and nitrogen blanket containing 100 ml of heptane. Then, 150 g (0.30 mol) of 2HT amine were added and the mixture was stirred while heating to 80° C. At 80° C., 26.75 g (0.33 mol) of formalin (37% formaldehyde) were added slowly via an addition funnel. Thereafter, the reaction mixture was soaked at 80° C. for 2 hours. The reaction mixture was then heated slowly to 150° C. while distilling the water and heptane. Once the water stopped distilling off, the residue was stripped at 150° C. with nitrogen until constant weight. The product was collected and solidified while cooling to room temperature. Analytical results show the product to contain 2.2% N. FTIR spectrum and C13 and proton NMR indicated that the desired product was provided.
- 18.8 g (0.20 mol) of phenol were added to a 250 ml four necked round bottomed flask equipped with an air stirrer, thermometer, and nitrogen blanket containing 100 ml of heptane. Then, 200 g (0.40 mol) of 2HT amine were added and the mixture was stirred while heating to 80° C. At 80° C., 35.7 g (0.44 mol) of formalin (37% formaldehyde) were added slowly via an addition funnel. Thereafter, the reaction mixture was soaked at 80° C. for 2 hours. The reaction mixture was then heated slowly to 150° C. while distilling the water and heptane. Once the water stopped distilling off, the residue was stripped at 150° C. with nitrogen until constant weight. The product was collected and solidified while cooling to room temperature. Analytical results show the product to contain 2.49 N. FTIR spectrum and C13 and proton NMR indicates that the desired product was provided.
- 14.1 g (0.15 mol) of phenol were added to a 250 ml four necked round bottomed flask equipped with an air stirrer, thermometer, and nitrogen blanket containing 100 ml of heptane. Then, 225 g (0.45 mol) of 2HT amine were added and the mixture was stirred while heating to 80° C. At 80° C., 40. 1 g (0.49 mol) of formalin (37% formaldehyde) were added slowly via an addition funnel. Thereafter, the reaction mixture was soaked at 80° C. for 2 hours. The reaction mixture was then heated slowly to 150° C. while distilling the water and heptane. Once the water stopped distilling off, the residue was stripped at 150° C. with nitrogen until constant weight. The product was collected and solidified while cooling to room temperature. Analytical results showed the product to contain 2.60 N. FTIR spectrum and C13 and proton NMR analysis indicated that the desired product was provided.
- 144 g (1 mol) of solid alpha-napthol was charged into a four-neck reaction flask equipped with mechanical stirrer, thermometer, Dean Stark trap with a water condenser, and nitrogen blanket. 200 ml of methanol was added to dissolve the α-naphthol at room temperature. Slowly, 276 g (1 mol) of oleyl amine (Armeen OL; Akzo Nobel) were added while stirring under nitrogen blanket. No exothermal observed during the addition of the amine to the alpha-naphthol-methanol solution. While stirring at about 20° C., 162.2 g (2 mol) of formalin (37wt % solution of formaldehyde in water) were slowly added. The reaction is exothermic and the reaction temperature was maintained below 25-30° C. by cooling the reactor with an outside ice water bath and by controlling the formalin addition. Once the formalin was added and the exothermal reaction ceased, the reaction mixture was allowed to warm to room temperature. The temperature of the reaction mixture was slowly increased up to 90° C. while the methanol and water distilled out. Nitrogen flow was increased to strip the remaining water in the product at about 100° C. until all the water is removed. Vacuum could have been applied instead of nitrogen stripping. The naphthoxazine analyzed for 3.23% N (3.22 theory).
- 144 g (1 mol) of solid beta-napthol was charged into a four-neck reaction flask equipped with mechanical stirrer, thermometer, Dean Stark trap with a water condenser, and nitrogen blanket. 200 ml of methanol was added to dissolve the β-naphthol at room temperature. Slowly, 276 g (1 mol) of oleyl amine (Armeen OL; Akzo Nobel) were added while stirring under nitrogen blanket. No exothermal observed during the addition of the amine to the beta-naphthol-methanol solution. While stirring at about 20° C., 162.2 g (2 mol) of formalin (37wt % solution of formaldehyde in water) were slowly added. The reaction is exothermic and the reaction temperature was maintained below 25-30° C. by cooling the reactor with an outside ice water bath and by controlling the formalin addition. Once the formalin was added and the exothermal reaction ceased, the reaction mixture was allowed to warm to room temperature. The temperature of the reaction mixture was slowly increased up to 90° C. while the methanol and water distilled out. Nitrogen flow was increased to strip the remaining water in the product at about 100° C. until all the water is removed. Vacuum could have been applied instead of nitrogen stripping. The naphthoxazine analyzed for 3.23% N (3.22 theory).
- Product Performance
- The ability of a composition to control soot-induced viscosity increase, and thus, the ability of a composition to maintain soot in suspension, can be measured using bench tests including the carbon black bench test (CBBT) and Haake Carbon Black Test. Procedures for performing these tests are industry standard and well known, but are summarized below:
- Carbon Black Bench Test (CBBT)
- In the carbon black bench tests performed in association herewith, a compound of the present invention (as a dispersant booster) and a primary, high molecular weight dispersant are blended into a simplified oil formulation containing the dispersant mixture, a detergent, antioxidant, and antiwear agent. The components of the oil formulation are subjected to an initial blending procedure. Carbon black, as a surrogate for soot, is added to the oil. The dispersion is mixed in a high-speed blender, followed by stirring to ensure proper mixing of the carbon black into the oil. The kinematic viscosity is then measured in a cross-arm tube at 100° C. Lower viscosity with respect to the appropriate control indicates better soot dispersancy.
- Haake Carbon Black Test
- The Haake Carbon Black Test involves blending the dispersant into a formulated oil. In the tests conducted in association herewith, the tested formulation contains a high molecular weight dispersant and a compound of the present invention together with detergent, viscosity modifier, antioxidant and antiwear agent. The components of the oil formulation are subjected to an initial blending. Carbon black powder is then added to a final concentration and the sample is blended overnight. The viscosity of the carbon black dispersion is then measured in a Haake rheometer over a range of shear rates from 0.1 sec−1 to 30 sec−1. Typically, the viscosity at shear rates 0.26 sec−1 and 0.45 sec−1 are used for comparison.
- Lubricating oil formulations were formed by blending into a base oil, for 1 hour at 70° C., constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant (a PIBSA-PAM product derived from PIBSA having a number average molecular weight of about 2200, and having a succination ratio of about 1.1), and a compound of the present invention (alpha-napthol 2HT). The formulations were subjected to carbon black bench testing (CBBT) wherein carbon black was blended into the formulations at variable concentrations. The carbon black was added to the oil in the form of a 20% paste in basestock, to reduce flyaway dust and was dispersed into the formulation by blending using a high speed blender for 5 minutes, followed by stirring for 90 minutes at 100° C. The kinematic viscosity of the formulation was then measured in a cross-arm tube at 100° C.
- The results achieved are shown in the 3-D plot of FIG. 1. As shown by FIG. 1, the Mannich base condensation products of the present invention act as potent soot dispersancy boosters when used in combination with high molecular weight dispersants. For example, a formulated oil containing 9.8 wt. % of the high molecular weight dispersant and none of the Mannich base condensation product of the present invention is shown to reach a kinematic viscosity of 200 cSt at a soot content of only 3.4%. In contrast, a formulation containing the same amount of the high molecular weigh dispersant, but further containing only 0.50% of the Mannich base condensation product of the present invention does not reach a viscosity of 200 cSt until the soot content reaches 8.8%. When 2% of the Mannich base condensation product of the present invention is provided, a viscosity of 200 cSt is not reached until the soot level is 15%.
- Lubricating oil formulations were formed by blending into a base oil (Mobil 700N) for 1 hour at 100° C., constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant (a PIBSA-PAM product derived from PIBSA having a number average molecular weight of about 2200 and having a succination ratio of about 1.1), and naphthoxazine compounds of the present invention. 4.76 wt. % of carbon black was blended into each of the formulations overnight at 90° C. The kinematic viscosity of each of the resulting carbon black dispersions was then measured in a Haake rheometer over a range of shear rates from 0.1 sec−1 to 0.45 sec−1. As is typical, the viscosity at shear rates of 0.26 sec−1 and 0.45 sec−1 were used for comparison.
- The comparative results of the Haake carbon black test are shown in FIG. 2. As shown by the data of FIG. 2, in formulations containing both 4% and 2% (AI) of high molecular weight dispersant, soot-induced viscosity increases are substantially eliminated when the oil formulation further contains from 0.5 to 1 wt. % of the Mannich base condensation product of the present invention.
- Lubricating oil formulations were formed by blending into a base oil (Mobil 700N) for 1 hour at 100° C., constant amounts of detergent, antioxidant and antiwear agent and variable amounts of a high molecular weight dispersant (a PIBSA-PAM product derived from PIBSA having a number average molecular weight of about 2200 and having a succination ratio of about 1.1), and a compound of the present invention (alpha-napthol 2HT). 4.76 wt. % of carbon black was blended into each of the formulations overnight at 90° C. The kinematic viscosity of each of the resulting carbon black dispersions was then measured in a Haake rheometer over a range of shear rates from 0.1 sec−1 to 0.45 sec−1. As is typical, the viscosity at shear rates of 0.26 sec−1 and 0.45 sec−1 were used for comparison.
- The comparative results of the Haake carbon black test are shown below in Table 1. As shown by the data of Table 1, in formulations containing both 4% and 2% (AI) of high molecular weight dispersant, soot-induced viscosity increases are substantially eliminated when the oil formulation further contains from 0.5 to 1 wt. % of the naphthoxazine Mannich base condensation products of the present invention.
TABLE 1 Disp. Concen- Naphthoxazine η (Vis, Pa-s) η (Vis, Pa-s) tration Concentration at 0.45 l/s at 1.25 l/ s Dispersant 4 wt % 0 4.17 1.54 2 wt % 0 6.95 3.13 β- Naphthoxazine 2 wt % 0.25 wt % 7.08 3.19 2 wt % 0.50 wt % 3.24 1.19 2 wt % 1.00 wt % 2.98 1.10 α- naphthoxazine 2 wt % 0.25 wt % 0.042 0.035 2 wt % 0.50 wt % 0.083 0.048 2 wt % 1.0 wt % 0.064 0.049 - As shown by the data of Table 1, in formulations containing both 4% and 2% (AI) of high molecular weight dispersant, soot-induced viscosity increases are substantially eliminated when the oil formulation further contains from 0.5 to 1 wt. % of the naphtoxazine Mannich base condensation products of the present invention.
- The efficacy of a Naphthol Mannich base product of the present invention as an antioxidant was determined relative to a commercial antioxidant (Irganox L135, Ciba Specialty Chemicals) by NOxidation test using High Pressure Scanning Calorimetric measurements. As shown in FIG. 3, an increase in concentration of Naphtol-2HT Mannich base increases the oil stability in NO2 and, at comparable treat rates, the antioxidancy effect of the compound of the present invention was similar to that of Irganox L135.
- The disclosures of all patents, articles and other materials described herein are hereby incorporated, in their entirety, into this specification by reference. The principles, preferred embodiments and modes of operation of the present invention have been described in the foregoing specification. What applicants submit is their invention, however, is not to be construed as limited to the particular embodiments disclosed, since the disclosed embodiments are regarded as illustrative rather than limiting. Changes may be made by those skilled in the art without departing from the spirit of the invention.
Claims (14)
1. A compound of the general formula (I):
wherein: Ar is a mono- or polynuclear aromatic moiety;
R1 and R2 are independently selected from H and C1-C30 straight or branched chain hydrocarbyl groups optionally containing one or more hetero atoms selected from N, O and S;
R3 is a straight or branched chain hydrocarbyl group;
R4 is H or a C1 to C9 straight or branched chain hydrocarbyl group;
q is 1 or 2;
x is 1 to 3;
y is from 1 to 2 times the number of aromatic rings in Ar; and
z is zero to a number equal to the number of remaining substitutable hydrogens on aromatic moiety Ar; wherein
a hydroxyl group attached to Ar combines with N-R1 to form a substituted or unsubstituted 6 membered oxazine ring, provided that, when z is 0, R2 is not H.
2. A compound of claim 1 , wherein Ar is a polynuclear aromatic moiety.
3. A compound of claim 2 , wherein Ar is selected from bi-phenyl, naphthyl, bi-naphthyl, pyrene, chrysene, anthracene, phenanthracine, fluorene and indene.
4. A compound of claim 3 , wherein Ar is naphthyl.
5. An oxazine ring-containing condensation product of (a) a mono- or polynuclear hydroxyaromatic compound optionally substituted with hydrocarbyl; (b) a C1-C10 aldehyde; and (c) an amine containing from 1 to 60 carbon atoms and from 1 to 12 nitrogen atoms per molecule.
6. A product of claim 5 , wherein said hydroxyaromatic compound comprises a polynuclear aromatic moiety.
7. A product of claim 6 , wherein said polynuclear aromatic moiety is selected from wherein Ar is selected from bi-phenyl, naphthyl, bi-naphthyl, pyrene, chrysene, anthracene, phenanthracine, fluorene and indene.
8. A product of claim 7 , wherein said polynuclear aromatic moiety is naphthyl.
9. A lubricating oil composition comprising a major amount of oil of lubricating viscosity and a minor amount of at least one compound of claim 1 .
10. A lubricating oil composition of claim 9 comprising from about 0.01 to about 10 wt. % of said compound, based on the total weight of said composition.
11. A lubricating oil composition of claim 10 comprising from about 0.1 to about 1 wt. % of said compound, based on the total weight of said composition.
12. A lubricating oil composition comprising a major amount of an oil of lubricating viscosity and minor amounts of at least one compound of claim 1 , and at least one high molecular weight dispersant.
13. A lubricating oil composition of claim 12 comprising from about 0.01 to about 5 wt %, based on the total weight of said composition, of said compound, and from about 1 to about 12 wt. %, based on the total weight of said composition, of said high molecular weight dispersant.
14. A lubricating oil composition of claim 13 comprising from about 0.1 to about 2 wt %, based on the total weight of said composition, of said compound, and from about 2 to about 5 wt. %, based on the total weight of said composition, of said high molecular weight dispersant.
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/265,948 US6855674B2 (en) | 2000-12-22 | 2002-12-02 | Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
EP03254549A EP1457548A1 (en) | 2002-07-30 | 2003-07-21 | Oxazines as such and as dispersants in lubricating compositions |
SG200304361A SG111136A1 (en) | 2002-07-30 | 2003-07-29 | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
CNA031523382A CN1472204A (en) | 2002-07-30 | 2003-07-29 | Condensed products of hydroxy aromatic mannich alkali and its use as ash disperser in lubricant composition |
CA002436347A CA2436347A1 (en) | 2002-07-30 | 2003-07-30 | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
JP2003203762A JP2004059593A (en) | 2002-07-30 | 2003-07-30 | Hydroxy aromatic mannich base condensation product and use thereof as soot dispersant in lubricating oil composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/746,038 US6495496B2 (en) | 2000-12-22 | 2000-12-22 | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
US10/209,522 US6715473B2 (en) | 2002-07-30 | 2002-07-30 | EGR equipped diesel engines and lubricating oil compositions |
US10/265,948 US6855674B2 (en) | 2000-12-22 | 2002-12-02 | Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/746,038 Continuation-In-Part US6495496B2 (en) | 2000-12-22 | 2000-12-22 | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
US10/209,522 Continuation-In-Part US6715473B2 (en) | 2000-12-22 | 2002-07-30 | EGR equipped diesel engines and lubricating oil compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030173251A1 true US20030173251A1 (en) | 2003-09-18 |
US6855674B2 US6855674B2 (en) | 2005-02-15 |
Family
ID=30448018
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/265,948 Expired - Fee Related US6855674B2 (en) | 2000-12-22 | 2002-12-02 | Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
Country Status (6)
Country | Link |
---|---|
US (1) | US6855674B2 (en) |
EP (1) | EP1457548A1 (en) |
JP (1) | JP2004059593A (en) |
CN (1) | CN1472204A (en) |
CA (1) | CA2436347A1 (en) |
SG (1) | SG111136A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100160192A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | lubricating oil additive composition and method of making the same |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6842459B1 (en) * | 2000-04-19 | 2005-01-11 | Serconet Ltd. | Network combining wired and non-wired segments |
US20050124509A1 (en) * | 2003-12-04 | 2005-06-09 | Antonio Gutierrez | Lubricating oil compositions |
EP2433947B1 (en) | 2007-09-11 | 2014-05-07 | Samsung Electronics Co., Ltd. | Phosphorous containing benzoxazine-based monomer |
EP2036910B1 (en) | 2007-09-11 | 2012-06-27 | Samsung Electronics Co., Ltd. | Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the same, electrolyte membrane for fuel cell includind the same, and fuel cell using the same |
KR101366808B1 (en) * | 2007-10-11 | 2014-02-25 | 삼성전자주식회사 | Polybenzimidazole-base complex, crosslinked material of polybenzoxazines formed thereof, and fuel cell using the same |
EP2058321B1 (en) | 2007-11-02 | 2014-01-08 | Samsung Electronics Co., Ltd. | Phosphorous containing monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode |
US8188210B2 (en) | 2007-11-02 | 2012-05-29 | Samsung Electronics Co., Ltd. | Naphthoxazine benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode |
KR101537311B1 (en) * | 2007-11-02 | 2015-07-17 | 삼성전자주식회사 | Electrolyte membrane for fuel cell and fuel cell using the same |
EP2062891B1 (en) * | 2007-11-06 | 2012-08-08 | Samsung Electronics Co., Ltd. | Benzoxazine-based monomer, polymer thereof, electrode for fuel cell including the polymer, electrolyte membrane for fuel cell including the polymer, and fuel cell using the electrode |
CN102336779A (en) * | 2011-10-17 | 2012-02-01 | 上海大学 | Dihydronaphtho or dihydroanthra-1,3-oxazine derivatives and synthesis method thereof |
JP2016117788A (en) * | 2014-12-18 | 2016-06-30 | Jxエネルギー株式会社 | Lubricant additive, and lubricant composition |
Citations (51)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2407055A (en) * | 1943-11-06 | 1946-09-03 | Clarence E Threedy | File drawer follower |
US2407044A (en) * | 1942-03-31 | 1946-09-03 | Tyrer Daniel | Manufacture of phenols |
US2451996A (en) * | 1942-08-13 | 1948-10-19 | Tyrer Daniel | Manufacture of phenols or salts thereof |
US2459112A (en) * | 1945-07-06 | 1949-01-11 | Socony Vacuum Oil Co Inc | Mineral oil composition |
US2806031A (en) * | 1956-04-30 | 1957-09-10 | Dow Chemical Co | 3, 4-dihydro-2h-1, 3-benzoxazines |
US2861991A (en) * | 1957-09-03 | 1958-11-25 | Dow Chemical Co | Substituted benzoxazines |
US3033903A (en) * | 1958-08-07 | 1962-05-08 | Union Carbide Corp | Oxidation of aromatic hydrocarbons |
US3082112A (en) * | 1961-05-03 | 1963-03-19 | Dow Chemical Co | Method for improving physical properties of clays and clay-containing soils and compositions resulting therefrom |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3172892A (en) * | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3215707A (en) * | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3231587A (en) * | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3272746A (en) * | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3275554A (en) * | 1963-08-02 | 1966-09-27 | Shell Oil Co | Polyolefin substituted polyamines and lubricants containing them |
US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3458495A (en) * | 1965-09-16 | 1969-07-29 | Exxon Research Engineering Co | Reaction product of a phosphosulfurized hydrocarbon and an alkylene amino phenol and method for preparing |
US3539633A (en) * | 1965-10-22 | 1970-11-10 | Standard Oil Co | Di-hydroxybenzyl polyamines |
US3565804A (en) * | 1965-08-23 | 1971-02-23 | Chevron Res | Lubricating oil additives |
US3632511A (en) * | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
US3634515A (en) * | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3649229A (en) * | 1969-12-17 | 1972-03-14 | Mobil Oil Corp | Liquid hydrocarbon fuels containing high molecular weight mannich bases |
US3726882A (en) * | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3798165A (en) * | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3798247A (en) * | 1970-07-13 | 1974-03-19 | Standard Oil Co | Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products |
US3912764A (en) * | 1972-09-29 | 1975-10-14 | Cooper Edwin Inc | Preparation of alkenyl succinic anhydrides |
US3980569A (en) * | 1974-03-15 | 1976-09-14 | The Lubrizol Corporation | Dispersants and process for their preparation |
US4102798A (en) * | 1974-03-27 | 1978-07-25 | Exxon Research & Engineering Co. | Oxazoline additives useful in oleaginous compositions |
US4110349A (en) * | 1976-06-11 | 1978-08-29 | The Lubrizol Corporation | Two-step method for the alkenylation of maleic anhydride and related compounds |
US4113639A (en) * | 1976-11-11 | 1978-09-12 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of an oxazoline compound and an acyl nitrogen compound |
US4116876A (en) * | 1977-01-28 | 1978-09-26 | Exxon Research & Engineering Co. | Borated oxazolines as varnish inhibiting dispersants in lubricating oils |
US4234435A (en) * | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4313738A (en) * | 1980-04-14 | 1982-02-02 | Phillips Petroleum Co. | Substituted dihydro oxazines as hydrocarbon antioxidants |
US4354950A (en) * | 1980-12-29 | 1982-10-19 | Texaco Inc. | Mannich base derivative of hydroxyaryl succinimide and hydrocarbon oil composition containing same |
US4396517A (en) * | 1981-08-10 | 1983-08-02 | Mobil Oil Corporation | Phenolic-containing mannich bases and lubricants containing same |
US4857217A (en) * | 1987-11-30 | 1989-08-15 | Exxon Chemical Patents Inc. | Dispersant additives derived from amido-amines |
US4867890A (en) * | 1979-08-13 | 1989-09-19 | Terence Colclough | Lubricating oil compositions containing ashless dispersant, zinc dihydrocarbyldithiophosphate, metal detergent and a copper compound |
US4952739A (en) * | 1988-10-26 | 1990-08-28 | Exxon Chemical Patents Inc. | Organo-Al-chloride catalyzed poly-n-butenes process |
US4956107A (en) * | 1987-11-30 | 1990-09-11 | Exxon Chemical Patents Inc. | Amide dispersant additives derived from amino-amines |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US5017299A (en) * | 1988-08-01 | 1991-05-21 | Exxon Chemical Patents, Inc. | Novel ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives |
US5053152A (en) * | 1985-03-14 | 1991-10-01 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US5186851A (en) * | 1988-08-01 | 1993-02-16 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives |
US5229022A (en) * | 1988-08-01 | 1993-07-20 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920) |
US5334775A (en) * | 1993-06-02 | 1994-08-02 | Exxon Chemical Patents Inc. | Polymer Alkylation of hydroxyaromatic compounds |
US5345002A (en) * | 1988-08-01 | 1994-09-06 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin copolymer substituted hydroxy aromatic compounds |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5580484A (en) * | 1994-12-30 | 1996-12-03 | Exxon Chemical Patents Inc. | Lubricating oil dispersants derived from hydroxy aromatic succinimide Mannich base condensates of heavy polyamine |
US5705577A (en) * | 1992-12-17 | 1998-01-06 | Exxon Chemical Patents Inc. | Dilute process for the polymerization of ethylene/α-olefin copolymer using metallocene catalyst systems |
US5814715A (en) * | 1992-12-17 | 1998-09-29 | Exxon Chemical Patents Inc | Amorphous olefin polymers, copolymers, methods of preparation and derivatives thereof |
US6495496B2 (en) * | 2000-12-22 | 2002-12-17 | Infineum International Ltd. | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB790202A (en) * | 1955-06-22 | 1958-02-05 | Wellcome Found | Improvements in and relating to naphthalene derivatives and the manufacture thereof |
GB989409A (en) | 1962-08-24 | 1965-04-14 | Gen Electric | Organopolysiloxane compositions |
DE1445855A1 (en) * | 1964-12-21 | 1968-12-19 | Grodziskie Zaklady Farmaceutyc | Process for the production of bacteriocides and bacteriostats |
US3368972A (en) * | 1965-01-06 | 1968-02-13 | Mobil Oil Corp | High molecular weight mannich bases as engine oil additives |
CA1262721A (en) | 1985-07-11 | 1989-11-07 | Jacob Emert | Oil soluble dispersant additives useful in oleaginous compositions |
GB9220876D0 (en) | 1992-10-05 | 1992-11-18 | Exxon Chemical Patetns Inc | Compounds useful in oleaginous compositions |
US5279627A (en) | 1992-11-06 | 1994-01-18 | The Lubrizol Corporation | Copper-containing aromatic mannich complexes and concentrates and diesel fuels containing same |
-
2002
- 2002-12-02 US US10/265,948 patent/US6855674B2/en not_active Expired - Fee Related
-
2003
- 2003-07-21 EP EP03254549A patent/EP1457548A1/en not_active Withdrawn
- 2003-07-29 CN CNA031523382A patent/CN1472204A/en active Pending
- 2003-07-29 SG SG200304361A patent/SG111136A1/en unknown
- 2003-07-30 CA CA002436347A patent/CA2436347A1/en not_active Abandoned
- 2003-07-30 JP JP2003203762A patent/JP2004059593A/en active Pending
Patent Citations (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2407044A (en) * | 1942-03-31 | 1946-09-03 | Tyrer Daniel | Manufacture of phenols |
US2451996A (en) * | 1942-08-13 | 1948-10-19 | Tyrer Daniel | Manufacture of phenols or salts thereof |
US2407055A (en) * | 1943-11-06 | 1946-09-03 | Clarence E Threedy | File drawer follower |
US2459112A (en) * | 1945-07-06 | 1949-01-11 | Socony Vacuum Oil Co Inc | Mineral oil composition |
US2806031A (en) * | 1956-04-30 | 1957-09-10 | Dow Chemical Co | 3, 4-dihydro-2h-1, 3-benzoxazines |
US2861991A (en) * | 1957-09-03 | 1958-11-25 | Dow Chemical Co | Substituted benzoxazines |
US3033903A (en) * | 1958-08-07 | 1962-05-08 | Union Carbide Corp | Oxidation of aromatic hydrocarbons |
US3172892A (en) * | 1959-03-30 | 1965-03-09 | Reaction product of high molecular weight succinic acids and succinic anhydrides with an ethylene poly- amine | |
US3231587A (en) * | 1960-06-07 | 1966-01-25 | Lubrizol Corp | Process for the preparation of substituted succinic acid compounds |
US3215707A (en) * | 1960-06-07 | 1965-11-02 | Lubrizol Corp | Lubricant |
US3082112A (en) * | 1961-05-03 | 1963-03-19 | Dow Chemical Co | Method for improving physical properties of clays and clay-containing soils and compositions resulting therefrom |
US3254025A (en) * | 1961-08-18 | 1966-05-31 | Lubrizol Corp | Boron-containing acylated amine and lubricating compositions containing the same |
US3087936A (en) * | 1961-08-18 | 1963-04-30 | Lubrizol Corp | Reaction product of an aliphatic olefinpolymer-succinic acid producing compound with an amine and reacting the resulting product with a boron compound |
US3381022A (en) * | 1963-04-23 | 1968-04-30 | Lubrizol Corp | Polymerized olefin substituted succinic acid esters |
US3275554A (en) * | 1963-08-02 | 1966-09-27 | Shell Oil Co | Polyolefin substituted polyamines and lubricants containing them |
US3565804A (en) * | 1965-08-23 | 1971-02-23 | Chevron Res | Lubricating oil additives |
US3458495A (en) * | 1965-09-16 | 1969-07-29 | Exxon Research Engineering Co | Reaction product of a phosphosulfurized hydrocarbon and an alkylene amino phenol and method for preparing |
US3539633A (en) * | 1965-10-22 | 1970-11-10 | Standard Oil Co | Di-hydroxybenzyl polyamines |
US3798165A (en) * | 1965-10-22 | 1974-03-19 | Standard Oil Co | Lubricating oils containing high molecular weight mannich condensation products |
US3272746A (en) * | 1965-11-22 | 1966-09-13 | Lubrizol Corp | Lubricating composition containing an acylated nitrogen compound |
US3442808A (en) * | 1966-11-01 | 1969-05-06 | Standard Oil Co | Lubricating oil additives |
US3634515A (en) * | 1968-11-08 | 1972-01-11 | Standard Oil Co | Alkylene polyamide formaldehyde |
US3726882A (en) * | 1968-11-08 | 1973-04-10 | Standard Oil Co | Ashless oil additives |
US3632511A (en) * | 1969-11-10 | 1972-01-04 | Lubrizol Corp | Acylated nitrogen-containing compositions processes for their preparationand lubricants and fuels containing the same |
US3649229A (en) * | 1969-12-17 | 1972-03-14 | Mobil Oil Corp | Liquid hydrocarbon fuels containing high molecular weight mannich bases |
US3798247A (en) * | 1970-07-13 | 1974-03-19 | Standard Oil Co | Oil soluble aliphatic acid derivatives of molecular weight mannich condensation products |
US3912764A (en) * | 1972-09-29 | 1975-10-14 | Cooper Edwin Inc | Preparation of alkenyl succinic anhydrides |
US3980569A (en) * | 1974-03-15 | 1976-09-14 | The Lubrizol Corporation | Dispersants and process for their preparation |
US4102798A (en) * | 1974-03-27 | 1978-07-25 | Exxon Research & Engineering Co. | Oxazoline additives useful in oleaginous compositions |
US4110349A (en) * | 1976-06-11 | 1978-08-29 | The Lubrizol Corporation | Two-step method for the alkenylation of maleic anhydride and related compounds |
US4113639A (en) * | 1976-11-11 | 1978-09-12 | Exxon Research & Engineering Co. | Lubricating oil composition containing a dispersing-varnish inhibiting combination of an oxazoline compound and an acyl nitrogen compound |
US4116876A (en) * | 1977-01-28 | 1978-09-26 | Exxon Research & Engineering Co. | Borated oxazolines as varnish inhibiting dispersants in lubricating oils |
US4234435A (en) * | 1979-02-23 | 1980-11-18 | The Lubrizol Corporation | Novel carboxylic acid acylating agents, derivatives thereof, concentrate and lubricant compositions containing the same, and processes for their preparation |
US4867890A (en) * | 1979-08-13 | 1989-09-19 | Terence Colclough | Lubricating oil compositions containing ashless dispersant, zinc dihydrocarbyldithiophosphate, metal detergent and a copper compound |
US4313738A (en) * | 1980-04-14 | 1982-02-02 | Phillips Petroleum Co. | Substituted dihydro oxazines as hydrocarbon antioxidants |
US4354950A (en) * | 1980-12-29 | 1982-10-19 | Texaco Inc. | Mannich base derivative of hydroxyaryl succinimide and hydrocarbon oil composition containing same |
US4396517A (en) * | 1981-08-10 | 1983-08-02 | Mobil Oil Corporation | Phenolic-containing mannich bases and lubricants containing same |
US5053152A (en) * | 1985-03-14 | 1991-10-01 | The Lubrizol Corporation | High molecular weight nitrogen-containing condensates and fuels and lubricants containing same |
US4963275A (en) * | 1986-10-07 | 1990-10-16 | Exxon Chemical Patents Inc. | Dispersant additives derived from lactone modified amido-amine adducts |
US4857217A (en) * | 1987-11-30 | 1989-08-15 | Exxon Chemical Patents Inc. | Dispersant additives derived from amido-amines |
US4956107A (en) * | 1987-11-30 | 1990-09-11 | Exxon Chemical Patents Inc. | Amide dispersant additives derived from amino-amines |
US5017299A (en) * | 1988-08-01 | 1991-05-21 | Exxon Chemical Patents, Inc. | Novel ethylene alpha-olefin copolymer substituted Mannich base lubricant dispersant additives |
US5186851A (en) * | 1988-08-01 | 1993-02-16 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin copolymer substituted mannich base lubricant dispersant additives |
US5229022A (en) * | 1988-08-01 | 1993-07-20 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin polymer substituted mono- and dicarboxylic acid dispersant additives (PT-920) |
US5345002A (en) * | 1988-08-01 | 1994-09-06 | Exxon Chemical Patents Inc. | Ethylene alpha-olefin copolymer substituted hydroxy aromatic compounds |
US4952739A (en) * | 1988-10-26 | 1990-08-28 | Exxon Chemical Patents Inc. | Organo-Al-chloride catalyzed poly-n-butenes process |
US6022929A (en) * | 1992-12-17 | 2000-02-08 | Exxon Chemical Patents Inc. | Amorphous olefin polymers, copolymers, methods of preparation and derivatives thereof |
US5498809A (en) * | 1992-12-17 | 1996-03-12 | Exxon Chemical Patents Inc. | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US6030930A (en) * | 1992-12-17 | 2000-02-29 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant disperant additives |
US5663130A (en) * | 1992-12-17 | 1997-09-02 | Exxon Chemical Patents Inc | Polymers derived from ethylene and 1-butene for use in the preparation of lubricant dispersant additives |
US5705577A (en) * | 1992-12-17 | 1998-01-06 | Exxon Chemical Patents Inc. | Dilute process for the polymerization of ethylene/α-olefin copolymer using metallocene catalyst systems |
US5814715A (en) * | 1992-12-17 | 1998-09-29 | Exxon Chemical Patents Inc | Amorphous olefin polymers, copolymers, methods of preparation and derivatives thereof |
US5334775A (en) * | 1993-06-02 | 1994-08-02 | Exxon Chemical Patents Inc. | Polymer Alkylation of hydroxyaromatic compounds |
US5580484A (en) * | 1994-12-30 | 1996-12-03 | Exxon Chemical Patents Inc. | Lubricating oil dispersants derived from hydroxy aromatic succinimide Mannich base condensates of heavy polyamine |
US6495496B2 (en) * | 2000-12-22 | 2002-12-17 | Infineum International Ltd. | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100160192A1 (en) * | 2008-12-22 | 2010-06-24 | Chevron Oronite LLC | lubricating oil additive composition and method of making the same |
WO2010075103A3 (en) * | 2008-12-22 | 2010-10-21 | Chevron Oronite Company Llc | A lubricating oil additive composition and method of making the same |
Also Published As
Publication number | Publication date |
---|---|
EP1457548A1 (en) | 2004-09-15 |
SG111136A1 (en) | 2005-05-30 |
CN1472204A (en) | 2004-02-04 |
JP2004059593A (en) | 2004-02-26 |
US6855674B2 (en) | 2005-02-15 |
CA2436347A1 (en) | 2004-01-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7786057B2 (en) | Soot dispersants and lubricating oil compositions containing same | |
US7485603B2 (en) | Soot dispersants and lubricating oil compositions containing same | |
EP2090642B1 (en) | Engine lubrication | |
US6495496B2 (en) | Hydroxy aromatic mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions | |
EP2155657B1 (en) | Additives and lubricating oil compositions containing same | |
JP4860035B2 (en) | Lubricating oil composition | |
EP1318189A1 (en) | Dispersants and lubricating oil compositions containing same | |
US6750183B2 (en) | Lubricating oil composition | |
US6855674B2 (en) | Hydroxy aromatic Mannich base condensation products and the use thereof as soot dispersants in lubricating oil compositions | |
CA2327829C (en) | Concentrates with high molecular weight dispersants and their preparation | |
US4839070A (en) | Polyolefinic succinimide polyamine alkyl acetoacetate adduct dispersants |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INFINEUM INTERNATIONAL LIMITED, UNITED KINGDOM Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:GUTIERREZ, ANTONIO;REEL/FRAME:014905/0511 Effective date: 20030627 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Expired due to failure to pay maintenance fee |
Effective date: 20090215 |