US20030173681A1 - Supporting control gate connection on a package using additional bumps - Google Patents
Supporting control gate connection on a package using additional bumps Download PDFInfo
- Publication number
- US20030173681A1 US20030173681A1 US10/098,769 US9876902A US2003173681A1 US 20030173681 A1 US20030173681 A1 US 20030173681A1 US 9876902 A US9876902 A US 9876902A US 2003173681 A1 US2003173681 A1 US 2003173681A1
- Authority
- US
- United States
- Prior art keywords
- gate
- contact
- conducting
- source contact
- overlying
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004065 semiconductor Substances 0.000 claims abstract description 20
- 229910052751 metal Inorganic materials 0.000 claims description 47
- 239000002184 metal Substances 0.000 claims description 47
- 238000001465 metallisation Methods 0.000 claims description 33
- 238000002161 passivation Methods 0.000 claims description 29
- 239000010949 copper Substances 0.000 claims description 12
- 229910000679 solder Inorganic materials 0.000 claims description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 11
- 238000000034 method Methods 0.000 claims description 11
- 230000004224 protection Effects 0.000 claims description 11
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 7
- 238000000576 coating method Methods 0.000 claims description 7
- 229910052802 copper Inorganic materials 0.000 claims description 7
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 7
- 229920002120 photoresistant polymer Polymers 0.000 claims description 6
- 229910052814 silicon oxide Inorganic materials 0.000 claims description 3
- 238000004873 anchoring Methods 0.000 claims 12
- 238000007747 plating Methods 0.000 claims 11
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims 8
- IUYOGGFTLHZHEG-UHFFFAOYSA-N copper titanium Chemical compound [Ti].[Cu] IUYOGGFTLHZHEG-UHFFFAOYSA-N 0.000 claims 6
- 238000004544 sputter deposition Methods 0.000 claims 5
- 229910052782 aluminium Inorganic materials 0.000 claims 4
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims 4
- 229910052759 nickel Inorganic materials 0.000 claims 4
- 235000012239 silicon dioxide Nutrition 0.000 claims 4
- 239000000377 silicon dioxide Substances 0.000 claims 4
- UMIVXZPTRXBADB-UHFFFAOYSA-N benzocyclobutene Chemical compound C1=CC=C2CCC2=C1 UMIVXZPTRXBADB-UHFFFAOYSA-N 0.000 claims 3
- 229910052710 silicon Inorganic materials 0.000 claims 2
- 239000010703 silicon Substances 0.000 claims 2
- 238000004140 cleaning Methods 0.000 claims 1
- 238000005530 etching Methods 0.000 claims 1
- 238000004519 manufacturing process Methods 0.000 description 8
- 238000002955 isolation Methods 0.000 description 3
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 3
- 238000009413 insulation Methods 0.000 description 2
- 238000000637 aluminium metallisation Methods 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229910000765 intermetallic Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005476 soldering Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/10—Bump connectors ; Manufacturing methods related thereto
- H01L24/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L24/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/0556—Disposition
- H01L2224/05567—Disposition the external layer being at least partially embedded in the surface
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/02—Bonding areas; Manufacturing methods related thereto
- H01L2224/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L2224/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
- H01L2224/0554—External layer
- H01L2224/05573—Single external layer
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/12—Structure, shape, material or disposition of the bump connectors prior to the connecting process
- H01L2224/13—Structure, shape, material or disposition of the bump connectors prior to the connecting process of an individual bump connector
- H01L2224/13001—Core members of the bump connector
- H01L2224/13099—Material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/03—Manufacturing methods
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L24/00—Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
- H01L24/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L24/02—Bonding areas ; Manufacturing methods related thereto
- H01L24/04—Structure, shape, material or disposition of the bonding areas prior to the connecting process
- H01L24/05—Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01005—Boron [B]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01006—Carbon [C]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01013—Aluminum [Al]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01022—Titanium [Ti]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01023—Vanadium [V]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01029—Copper [Cu]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01033—Arsenic [As]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01057—Lanthanum [La]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01074—Tungsten [W]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01079—Gold [Au]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/0132—Binary Alloys
- H01L2924/01327—Intermediate phases, i.e. intermetallics compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/013—Alloys
- H01L2924/014—Solder alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/11—Device type
- H01L2924/13—Discrete devices, e.g. 3 terminal devices
- H01L2924/1304—Transistor
- H01L2924/1306—Field-effect transistor [FET]
- H01L2924/13091—Metal-Oxide-Semiconductor Field-Effect Transistor [MOSFET]
Definitions
- This invention relates to semiconductor fabrication, and more specifically to power MOSFET contact fabrication.
- UBM under-bump metal, the conductive metal used to connect a source or gate contact to an external circuit via a surface solder bump.
- Conductive bumps provide an interconnect between an active semiconductor device and a package which then is placed into an application.
- Discrete Field Effect Transistors usually have at least 3 connections: (1) a control gate; (2) a drain; and (3) a source.
- the drain is usually the back side of a die and the entire back side of the die is mechanically and electrically connected to the package.
- the source is usually on the front side of the die and has several bumps, which provide mechanical and electrical contact to the package.
- the control gate traditionally has only a single bump connected to the contact of the package on the front side of the die. The use of a single bump for the gate connection creates a significant probability of gate connection failure due to mechanical stress.
- Gate bump 10 is fabricated directly above gate metallization 50 , gate contact 51 , and under bump metal 52 and 53 , to make an external contact between gate metallization 50 of wafer 7 and package control gate connection 5 , via connection point 54 .
- Source bumps 11 , 12 are fabricated directly above source metallization 60 , source contact 61 , and under bump metal 62 and 63 , to make an external contact between source metallization 60 of wafer 7 and package source connection 6 , via connection points 64 .
- An insulating layer 40 provides electrical isolation between gate and source circuitry.
- a second insulating layer 90 provides added isolation and external protection.
- FIG. 2 shows the prior art approach in plan view. To simplify FIG. 2 without omitting essentials of the invention, the SiO or SiN passivating layers over gate and source metallizations are not shown in the figure.
- the single package control gate connection 5 connects at contact point 54 over bump 10 , with no additional mechanical support for the gate connection.
- the single gate bump 10 represents a single point of failure for the entire device. Gate bump 10 is the sole point of contact for package control gate connection 5 , at connection point 54 . If mechanical stress causes delamination of under bump metal 52 or 53 , the gate connection will fail. Some means of reducing the mechanical stresses on the gate bump connection is needed.
- the invention provides a more robust mechanical connection between a semiconductor device and the device package by adding one or more bumps to the gate connection without adding more gate pad area.
- the invention first provides a nonconductive layer covering the area around the gate pad and extending over the source area.
- the invention adds one or more bumps on the nonconductive layer to provide mechanical strength and support to the gate pad connection.
- the added bumps are not electrically connected to either the gate or the source.
- the package connections must be altered, both to fit the added bumps on the control gate, and to connect with fewer bumps on the source.
- FIG. 1 shows a cross-sectional view of a device manufactured according to the prior art.
- FIG. 2 shows a plan view of the prior art approach to gate bump connection design.
- FIG. 3 a shows a cross-sectional view of a device manufactured according to a first embodiment of the invention.
- FIG. 3 b shows a cross-sectional view of a device manufactured according to a second embodiment of the invention.
- FIG. 4 shows a plan view of the invention's approach to supporting gate bump connection design.
- FIG. 5 shows a plan view of an alternate embodiment of the invention's approach to supporting gate bump connection design.
- FIG. 6 shows a cutaway view of the invention's approach to supporting gate bump connection design.
- FIGS. 7 and 8 show the initial fabrication steps for the invention.
- FIGS. 9 a , 10 a , 11 a , 12 a , 13 a , 14 a , 15 a , and 16 a show further fabrication steps for a first embodiment of the invention.
- FIGS. 9 b , 10 b , 11 b , 12 b , 13 b , 14 b , 15 b , and 16 b show further fabrication steps for a second embodiment of the invention.
- FIG. 1 For convenience, a legend for the figures is shown on the drawing sheet with FIG. 1. To simplify FIGS. 2, 4, and 5 , the SiO or SiN passivating layers over gate and source metallizations are not shown in these figures.
- This invention improves the strength and durability of the mechanical connection between a semiconductor device and the device package by adding contact bumps to the gate connection without adding more gate pad area to the device. This is accomplished by providing a nonconductive layer covering the area around the gate pad and extending the nonconductive layer over the source area. The invention adds one or more bumps on this nonconductive layer to provide mechanical strength to the gate pad connection. The added bumps are not electrically connected to the gate or the source.
- Gate bump 10 is fabricated directly above gate metallization 50 , gate contact 51 , and under bump metal 52 , 53 , to make an external contact between gate metallization 50 of wafer 7 and package control gate connection 5 , via gate connection point 54 .
- the invention fabricates one or more unconnected support bumps 13 , 14 , with under bump metal 72 , 73 over insulating layer 40 , source passivation layer 65 , and source metallization 60 . Under bump metal 72 anchors to insulating layer 40 .
- Insulating layer 40 and source passivation layer 65 isolate support bumps 13 , 14 and under bump metal 72 , 73 from source metallization 60 and the source circuitry.
- Support bumps 13 , 14 have no electrical connection either to gate metallization 50 or to source metallization 60 .
- Support bumps 13 , 14 provide mechanical support for package control gate connection 5 at contact points 74 , partially relieving gate connection point 54 of excess pressure during package assembly and later use.
- Insulating layer 40 provides electrical isolation between gate and source circuitry.
- insulating layer 40 is fabricated via its mask layout with openings through which under bump metal 72 is partially or completely anchored to source passivation layer 65 . Since bumps adhere well either to an insulating layer such as BCB or a passivating layer such as oxinitride, the choice of support bump embodiments may be based on the results of bump shear tests.
- FIG. 4 shows the invention's approach in plan view. To simplify FIG. 4 without omitting essentials of the invention, the SiO or SiN passivating layers over gate and source metallizations are not shown.
- Package control gate connection 5 connects at contact point 54 to bump 10 , but here support bumps 13 , 14 supply mechanical support for the control gate connection at contact points 74 . Support bumps 13 , 14 do not make electrical contact with either the gate or the source circuitry.
- the invention's approach uses a set of support bumps 13 , 14 , 15 closely surrounding gate bump 10 to provide mechanical support at contact points 74 for the package control gate connection. Support bumps 13 , 14 , 15 make no electrical contact with either the gate or the source circuitry.
- FIG. 6 shows in cutaway detail the difference between the layers underlying gate bump 10 and a neighboring support bump 13 used for mechanical support for package control gate connection 5 .
- Bump 10 's electrical contact is made through metallization layer 50 , gate contact 51 , under bump metal 52 , 53 , and package control gate connection contact point 54 .
- Support bump 13 makes no electrical contact.
- Insulating layer 40 isolates support bump 13 and under bump metal 72 , 73 from source metallization 60 . Through contact point 74 , support bump 13 provides mechanical support for package control gate connection 5 .
- FIG. 7 shows a silicon oxide or silicon nitride passivation 55 layered over gate metal to provide physical protection, with an opening 56 fabricated in passivation layer 55 to expose gate contact 51 .
- Silicon oxide or silicon nitride passivation layer 65 is layered over source metallization 60 to provide protection for the metal layer.
- Source contacts 61 are exposed by openings 66 in source passivation layer 65 .
- a BCB layer 40 is coated and baked on the wafer as shown in FIG. 8. BCB layer 40 is exposed and developed to define the exposed gate contact 51 and exposed source contacts 61 as shown in FIGS. 9 a and 9 b . See FIG. 9 a .
- BCB layer 40 in area 79 , BCB layer 40 is left intact with source passivation layer 65 to act as support and insulation for an eventual gate support bump.
- FIG. 9 b showing a second embodiment, BCB layer 40 is removed to expose gate contact 51 and source contacts 61 , and in area 79 to expose only source passivation layer 65 .
- source passivation layer 65 acts directly as anchor and insulation for an eventual gate support bump.
- FIGS. 9 a , 10 a , 11 a , 12 a , 13 a , 14 a , 15 a , and 16 a show the process for the first embodiment
- FIGS. 9 b , 10 b , 11 b , 12 b , 13 b , 14 b , 15 b , and 16 b show the process for the second embodiment.
- FIG. 10 a See FIG. 10 a .
- An under bump metal 52 such as Ti followed by Cu, is then sputtered onto BCB layer 40 , gate contact 51 and source contacts 61 .
- the second embodiment's opening in BCB layer 40 in area 79 brings under bump metal 52 into contact with source passivation layer 65 .
- a thick photoresist coating 100 is added, UV-exposed and developed to expose UBM areas 59 , 69 , 79 (FIGS. 11 a and 11 b ) where Cu 53 is to be plated onto exposed UBM 52 .
- Cu 53 , 63 , 73 is plated onto exposed under bump metal 52 , as shown in FIGS. 12 a and 12 b , to ensure retention of bulk copper interconnect after the soldering process, since part of the copper is consumed with the formation of intermetallics with adjacent metal layers.
- Gate solder bump 101 , gate support solder bumps 111 , and source solder bumps 121 are plated onto Cu 53 , 73 , and 63 respectively (FIGS. 13 a and 13 b ), with photoresist 100 supporting the edges of the bumps around Cu 53 , 73 , and 63 .
- Photoresist 100 is stripped (FIGS. 14 a and 14 b ) to expose UBM 52 .
- UBM 52 is etched to define final UBM 52 , 72 , 62 (FIGS. 15 a and 15 b ) and plated solder bumps 101 , 111 , 121 are reflowed (FIGS. 16 a and 16 b ) to form final solder bumps.
- the device package connections must be altered to accommodate the extra bumps on the control gate and the smaller number of bumps used for the source.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
- Semiconductor Integrated Circuits (AREA)
Abstract
Description
- This invention relates to semiconductor fabrication, and more specifically to power MOSFET contact fabrication.
- UBM: under-bump metal, the conductive metal used to connect a source or gate contact to an external circuit via a surface solder bump.
- Conductive bumps provide an interconnect between an active semiconductor device and a package which then is placed into an application. Discrete Field Effect Transistors (FETs) usually have at least 3 connections: (1) a control gate; (2) a drain; and (3) a source. The drain is usually the back side of a die and the entire back side of the die is mechanically and electrically connected to the package. The source is usually on the front side of the die and has several bumps, which provide mechanical and electrical contact to the package. The control gate traditionally has only a single bump connected to the contact of the package on the front side of the die. The use of a single bump for the gate connection creates a significant probability of gate connection failure due to mechanical stress. This contrasts with a lower probability of such failure for a source connection, which has multiple bumps that continue to operate if any one of them fails. To put more bumps on a gate pad would reduce the likelihood of gate connection failure, but it would require a larger gate pad and therefore more area for the total die, increasing the cost of manufacturing the device.
- See FIG. 1, showing a cross section of the gate area of a prior art device.
Gate bump 10 is fabricated directly abovegate metallization 50,gate contact 51, and underbump metal gate metallization 50 ofwafer 7 and packagecontrol gate connection 5, viaconnection point 54.Source bumps source metallization 60,source contact 61, and underbump metal source metallization 60 ofwafer 7 andpackage source connection 6, viaconnection points 64. Aninsulating layer 40 provides electrical isolation between gate and source circuitry. A second insulating layer 90 provides added isolation and external protection. - FIG. 2 shows the prior art approach in plan view. To simplify FIG. 2 without omitting essentials of the invention, the SiO or SiN passivating layers over gate and source metallizations are not shown in the figure. The single package
control gate connection 5 connects atcontact point 54 overbump 10, with no additional mechanical support for the gate connection. - The
single gate bump 10 represents a single point of failure for the entire device.Gate bump 10 is the sole point of contact for packagecontrol gate connection 5, atconnection point 54. If mechanical stress causes delamination of underbump metal - The invention provides a more robust mechanical connection between a semiconductor device and the device package by adding one or more bumps to the gate connection without adding more gate pad area. The invention first provides a nonconductive layer covering the area around the gate pad and extending over the source area. The invention adds one or more bumps on the nonconductive layer to provide mechanical strength and support to the gate pad connection. The added bumps are not electrically connected to either the gate or the source. The package connections must be altered, both to fit the added bumps on the control gate, and to connect with fewer bumps on the source.
- FIG. 1 shows a cross-sectional view of a device manufactured according to the prior art.
- FIG. 2 shows a plan view of the prior art approach to gate bump connection design.
- FIG. 3a shows a cross-sectional view of a device manufactured according to a first embodiment of the invention.
- FIG. 3b shows a cross-sectional view of a device manufactured according to a second embodiment of the invention.
- FIG. 4 shows a plan view of the invention's approach to supporting gate bump connection design.
- FIG. 5 shows a plan view of an alternate embodiment of the invention's approach to supporting gate bump connection design.
- FIG. 6 shows a cutaway view of the invention's approach to supporting gate bump connection design.
- FIGS. 7 and 8 show the initial fabrication steps for the invention.
- FIGS. 9a, 10 a, 11 a, 12 a, 13 a, 14 a, 15 a, and 16 a show further fabrication steps for a first embodiment of the invention.
- FIGS. 9b, 10 b, 11 b, 12 b, 13 b, 14 b, 15 b, and 16 b show further fabrication steps for a second embodiment of the invention.
- For convenience, a legend for the figures is shown on the drawing sheet with FIG. 1. To simplify FIGS. 2, 4, and5, the SiO or SiN passivating layers over gate and source metallizations are not shown in these figures.
- This invention improves the strength and durability of the mechanical connection between a semiconductor device and the device package by adding contact bumps to the gate connection without adding more gate pad area to the device. This is accomplished by providing a nonconductive layer covering the area around the gate pad and extending the nonconductive layer over the source area. The invention adds one or more bumps on this nonconductive layer to provide mechanical strength to the gate pad connection. The added bumps are not electrically connected to the gate or the source.
- See FIG. 3a, showing a cross section of the gate contact area.
Gate bump 10 is fabricated directly abovegate metallization 50,gate contact 51, and underbump metal gate metallization 50 ofwafer 7 and packagecontrol gate connection 5, viagate connection point 54. In contrast to the prior art device, however, the invention fabricates one or moreunconnected support bumps bump metal insulating layer 40,source passivation layer 65, andsource metallization 60. Underbump metal 72 anchors to insulatinglayer 40.Insulating layer 40 andsource passivation layer 65isolate support bumps bump metal source metallization 60 and the source circuitry.Support bumps gate metallization 50 or tosource metallization 60.Support bumps control gate connection 5 atcontact points 74, partially relievinggate connection point 54 of excess pressure during package assembly and later use.Insulating layer 40 provides electrical isolation between gate and source circuitry. - In a second embodiment, shown in FIG. 3b, insulating
layer 40 is fabricated via its mask layout with openings through which underbump metal 72 is partially or completely anchored tosource passivation layer 65. Since bumps adhere well either to an insulating layer such as BCB or a passivating layer such as oxinitride, the choice of support bump embodiments may be based on the results of bump shear tests. - FIG. 4 shows the invention's approach in plan view. To simplify FIG. 4 without omitting essentials of the invention, the SiO or SiN passivating layers over gate and source metallizations are not shown. Package
control gate connection 5 connects atcontact point 54 to bump 10, but here support bumps 13, 14 supply mechanical support for the control gate connection at contact points 74. Support bumps 13, 14 do not make electrical contact with either the gate or the source circuitry. In an alternate embodiment, shown in FIG. 5, the invention's approach uses a set of support bumps 13, 14, 15 closelysurrounding gate bump 10 to provide mechanical support at contact points 74 for the package control gate connection. Support bumps 13, 14, 15 make no electrical contact with either the gate or the source circuitry. - FIG. 6 shows in cutaway detail the difference between the layers underlying
gate bump 10 and a neighboringsupport bump 13 used for mechanical support for packagecontrol gate connection 5.Bump 10's electrical contact is made throughmetallization layer 50,gate contact 51, underbump metal connection contact point 54.Support bump 13 makes no electrical contact. Insulatinglayer 40 isolates supportbump 13 and underbump metal source metallization 60. Throughcontact point 74,support bump 13 provides mechanical support for packagecontrol gate connection 5. - The invention's fabrication process is as follows. See FIG. 7. Gate
contact A1 metallization 50 and source contact Al metallization 60 are layered onsemiconductor wafer 7. FIG. 7 shows a silicon oxide orsilicon nitride passivation 55 layered over gate metal to provide physical protection, with anopening 56 fabricated inpassivation layer 55 to exposegate contact 51. Silicon oxide or siliconnitride passivation layer 65 is layered over source metallization 60 to provide protection for the metal layer.Source contacts 61 are exposed byopenings 66 insource passivation layer 65. - A
BCB layer 40 is coated and baked on the wafer as shown in FIG. 8.BCB layer 40 is exposed and developed to define the exposedgate contact 51 and exposedsource contacts 61 as shown in FIGS. 9a and 9 b. See FIG. 9a. In a first embodiment, inarea 79,BCB layer 40 is left intact withsource passivation layer 65 to act as support and insulation for an eventual gate support bump. In FIG. 9b, showing a second embodiment,BCB layer 40 is removed to exposegate contact 51 andsource contacts 61, and inarea 79 to expose onlysource passivation layer 65. In the second embodiment,source passivation layer 65 acts directly as anchor and insulation for an eventual gate support bump. - In the remaining figures showing the fabrication process, FIGS. 9a, 10 a, 11 a, 12 a, 13 a, 14 a, 15 a, and 16 a show the process for the first embodiment, and FIGS. 9b, 10 b, 11 b, 12 b, 13 b, 14 b, 15 b, and 16 b show the process for the second embodiment.
- See FIG. 10a. An under
bump metal 52, such as Ti followed by Cu, is then sputtered ontoBCB layer 40,gate contact 51 andsource contacts 61. As shown in FIG. 10b, the second embodiment's opening inBCB layer 40 inarea 79 brings underbump metal 52 into contact withsource passivation layer 65. Athick photoresist coating 100 is added, UV-exposed and developed to exposeUBM areas Cu 53 is to be plated onto exposedUBM 52.Cu bump metal 52, as shown in FIGS. 12a and 12 b, to ensure retention of bulk copper interconnect after the soldering process, since part of the copper is consumed with the formation of intermetallics with adjacent metal layers. -
Gate solder bump 101, gate support solder bumps 111, and source solder bumps 121 are plated ontoCu photoresist 100 supporting the edges of the bumps aroundCu Photoresist 100 is stripped (FIGS. 14a and 14 b) to exposeUBM 52.UBM 52 is etched to definefinal UBM - For all embodiments, the device package connections must be altered to accommodate the extra bumps on the control gate and the smaller number of bumps used for the source.
- From the above descriptions, figures and narratives, the invention's advantages in providing mechanically reliable, durable, and economical MOSFET gate contacts should be clear.
- Although the description, operation and illustrative material above contain many specificities, these specificities should not be construed as limiting the scope of the invention but as merely providing illustrations and examples of some of the preferred embodiments of this invention.
- Thus the scope of the invention should be determined by the appended claims and their legal equivalents, rather than by the examples given above.
Claims (44)
Priority Applications (8)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/098,769 US6617696B1 (en) | 2002-03-14 | 2002-03-14 | Supporting control gate connection on a package using additional bumps |
TW092103578A TW591777B (en) | 2002-03-14 | 2003-02-20 | Supporting control gate connection on a package using additional bumps |
AU2003228313A AU2003228313A1 (en) | 2002-03-14 | 2003-03-13 | Supporting control gate connection on a package using additional bumps |
KR1020047014068A KR100985683B1 (en) | 2002-03-14 | 2003-03-13 | Control gate connection support on package with additional bump |
JP2003577310A JP4374427B2 (en) | 2002-03-14 | 2003-03-13 | Support control gate connection on package using additional bumps |
PCT/US2003/007891 WO2003079410A2 (en) | 2002-03-14 | 2003-03-13 | Supporting control gate connection on a package using additional bumps |
DE10392391T DE10392391T5 (en) | 2002-03-14 | 2003-03-13 | Supporting control gate connection on a package using additional connection mounds |
US10/431,746 US6746949B2 (en) | 2002-03-14 | 2003-05-08 | Supporting control gate connection on a package using additional bumps |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/098,769 US6617696B1 (en) | 2002-03-14 | 2002-03-14 | Supporting control gate connection on a package using additional bumps |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/431,746 Division US6746949B2 (en) | 2002-03-14 | 2003-05-08 | Supporting control gate connection on a package using additional bumps |
Publications (2)
Publication Number | Publication Date |
---|---|
US6617696B1 US6617696B1 (en) | 2003-09-09 |
US20030173681A1 true US20030173681A1 (en) | 2003-09-18 |
Family
ID=27788318
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/098,769 Expired - Fee Related US6617696B1 (en) | 2002-03-14 | 2002-03-14 | Supporting control gate connection on a package using additional bumps |
US10/431,746 Expired - Lifetime US6746949B2 (en) | 2002-03-14 | 2003-05-08 | Supporting control gate connection on a package using additional bumps |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/431,746 Expired - Lifetime US6746949B2 (en) | 2002-03-14 | 2003-05-08 | Supporting control gate connection on a package using additional bumps |
Country Status (7)
Country | Link |
---|---|
US (2) | US6617696B1 (en) |
JP (1) | JP4374427B2 (en) |
KR (1) | KR100985683B1 (en) |
AU (1) | AU2003228313A1 (en) |
DE (1) | DE10392391T5 (en) |
TW (1) | TW591777B (en) |
WO (1) | WO2003079410A2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120068258A1 (en) * | 2010-09-17 | 2012-03-22 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing same |
US20130026614A1 (en) * | 2011-07-27 | 2013-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for bump to landing trace ratio |
WO2013091257A1 (en) * | 2011-12-23 | 2013-06-27 | 清华大学 | Method for preparing solder lug |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6768210B2 (en) * | 2001-11-01 | 2004-07-27 | Texas Instruments Incorporated | Bumpless wafer scale device and board assembly |
DE10239081B4 (en) * | 2002-08-26 | 2007-12-20 | Qimonda Ag | Method for producing a semiconductor device |
WO2004093184A1 (en) * | 2003-04-15 | 2004-10-28 | Fujitsu Limited | Semiconductor device and method of manufacturing the device |
DE10345247B4 (en) | 2003-09-29 | 2007-10-04 | Infineon Technologies Ag | Use of conductor tracks as Krallkörper |
US7910471B2 (en) * | 2004-02-02 | 2011-03-22 | Texas Instruments Incorporated | Bumpless wafer scale device and board assembly |
US7560808B2 (en) * | 2005-10-19 | 2009-07-14 | Texas Instruments Incorporated | Chip scale power LDMOS device |
JP2009524922A (en) * | 2006-01-24 | 2009-07-02 | エヌエックスピー ビー ヴィ | Stress buffer package for semiconductor components |
US20080054461A1 (en) * | 2006-08-30 | 2008-03-06 | Dennis Lang | Reliable wafer-level chip-scale package solder bump structure in a packaged semiconductor device |
US20080166837A1 (en) * | 2007-01-10 | 2008-07-10 | Tao Feng | Power MOSFET wafer level chip-scale package |
JP5387407B2 (en) * | 2007-07-25 | 2014-01-15 | 富士通セミコンダクター株式会社 | Semiconductor device |
US20130320451A1 (en) | 2012-06-01 | 2013-12-05 | Taiwan Semiconductor Manufacturing Company, Ltd., ("Tsmc") | Semiconductor device having non-orthogonal element |
DE102012019391A1 (en) * | 2012-10-02 | 2014-04-03 | Infineon Technologies Ag | Conductive semiconductor housing with redundant functionality |
KR102617086B1 (en) | 2018-11-15 | 2023-12-26 | 삼성전자주식회사 | Wafer-level package including under bump metal layer |
JP7322467B2 (en) * | 2019-03-29 | 2023-08-08 | 株式会社デンソー | semiconductor equipment |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306680B1 (en) * | 1999-02-22 | 2001-10-23 | General Electric Company | Power overlay chip scale packages for discrete power devices |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5912490A (en) * | 1997-08-04 | 1999-06-15 | Spectrian | MOSFET having buried shield plate for reduced gate/drain capacitance |
-
2002
- 2002-03-14 US US10/098,769 patent/US6617696B1/en not_active Expired - Fee Related
-
2003
- 2003-02-20 TW TW092103578A patent/TW591777B/en not_active IP Right Cessation
- 2003-03-13 KR KR1020047014068A patent/KR100985683B1/en not_active Expired - Fee Related
- 2003-03-13 DE DE10392391T patent/DE10392391T5/en not_active Withdrawn
- 2003-03-13 WO PCT/US2003/007891 patent/WO2003079410A2/en active Application Filing
- 2003-03-13 AU AU2003228313A patent/AU2003228313A1/en not_active Abandoned
- 2003-03-13 JP JP2003577310A patent/JP4374427B2/en not_active Expired - Fee Related
- 2003-05-08 US US10/431,746 patent/US6746949B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6306680B1 (en) * | 1999-02-22 | 2001-10-23 | General Electric Company | Power overlay chip scale packages for discrete power devices |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120068258A1 (en) * | 2010-09-17 | 2012-03-22 | Kabushiki Kaisha Toshiba | Semiconductor device and method for manufacturing same |
US20130026614A1 (en) * | 2011-07-27 | 2013-01-31 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for bump to landing trace ratio |
CN102956609A (en) * | 2011-07-27 | 2013-03-06 | 台湾积体电路制造股份有限公司 | Structure and method for bump to landing trace ratio |
US8643196B2 (en) * | 2011-07-27 | 2014-02-04 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for bump to landing trace ratio |
TWI474438B (en) * | 2011-07-27 | 2015-02-21 | Taiwan Semiconductor Mfg Co Ltd | Integrated circuit and method for fabricating ther same |
US8981576B2 (en) * | 2011-07-27 | 2015-03-17 | Taiwan Semiconductor Manufacturing Company, Ltd. | Structure and method for bump to landing trace ratio |
WO2013091257A1 (en) * | 2011-12-23 | 2013-06-27 | 清华大学 | Method for preparing solder lug |
Also Published As
Publication number | Publication date |
---|---|
WO2003079410A3 (en) | 2004-03-25 |
AU2003228313A8 (en) | 2003-09-29 |
AU2003228313A1 (en) | 2003-09-29 |
DE10392391T5 (en) | 2005-06-09 |
US6617696B1 (en) | 2003-09-09 |
JP2005521241A (en) | 2005-07-14 |
WO2003079410A2 (en) | 2003-09-25 |
TW200304210A (en) | 2003-09-16 |
TW591777B (en) | 2004-06-11 |
US20030173682A1 (en) | 2003-09-18 |
US6746949B2 (en) | 2004-06-08 |
KR20050002847A (en) | 2005-01-10 |
JP4374427B2 (en) | 2009-12-02 |
KR100985683B1 (en) | 2010-10-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6746949B2 (en) | Supporting control gate connection on a package using additional bumps | |
US6617655B1 (en) | MOSFET device with multiple gate contacts offset from gate contact area and over source area | |
US6538326B2 (en) | Semiconductor device and manufacturing method thereof | |
US20030036256A1 (en) | Integrated circuit with bonding layer over active circuitry | |
US7301231B2 (en) | Reinforced bond pad for a semiconductor device | |
US5707894A (en) | Bonding pad structure and method thereof | |
US6560862B1 (en) | Modified pad for copper/low-k | |
US6566239B2 (en) | Semiconductor device manufacturing method having a step of forming a post terminal on a wiring by electroless plating | |
US20050017355A1 (en) | Water level processing method and structure to manufacture two kinds of bumps, gold and solder, on one wafer | |
US20060017161A1 (en) | Semiconductor package having protective layer for re-routing lines and method of manufacturing the same | |
US6649961B2 (en) | Supporting gate contacts over source region on MOSFET devices | |
CN102832188B (en) | Solder ball protection structure with thick polymer layer | |
JP2007043072A (en) | Semiconductor device | |
KR100916721B1 (en) | Semiconductor device | |
JP3678239B2 (en) | Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus | |
US20070212867A1 (en) | Method and structure for improving bonding reliability in bond pads | |
US6838769B1 (en) | Dual damascene bond pad structure for lowering stress and allowing circuitry under pads | |
EP1003209A1 (en) | Process for manufacturing semiconductor device | |
JP5477599B2 (en) | Semiconductor device | |
US6509582B1 (en) | Semiconductor pad construction enabling pre-bump probing by planarizing the post-sort pad surface | |
US7767576B2 (en) | Wafer level package having floated metal line and method thereof | |
JP4352263B2 (en) | Semiconductor device and manufacturing method thereof, circuit board, and electronic apparatus | |
US20060014371A1 (en) | Method for forming an integrated semiconductor circuit arrangement | |
CN102543717B (en) | Semiconductor device | |
JPH04311045A (en) | Semiconductor integrated circuit device having barrier metal structure |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, MAINE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BENDAL, R. EVAN;REEL/FRAME:012724/0397 Effective date: 20020312 |
|
AS | Assignment |
Owner name: FAIRCHILD SEMICONDUCTOR CORPORATION, MAINE Free format text: CORRECTIVE ASSIGNMENT TO CORRECT THE NAME OF CONVEYING PARTY THAT WAS PREVIOUSLY RECORDED ON REEL 012724, FRAME 0397;ASSIGNOR:BENDALL, R. EVAN;REEL/FRAME:012971/0763 Effective date: 20020312 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150909 |
|
AS | Assignment |
Owner name: SEMICONDUCTOR COMPONENTS INDUSTRIES, LLC, ARIZONA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:FAIRCHILD SEMICONDUCTOR CORPORATION;REEL/FRAME:057694/0374 Effective date: 20210722 |