US20030166116A1 - Nucleotide sequences for the control of the expression of DNA sequences in a cell host - Google Patents
Nucleotide sequences for the control of the expression of DNA sequences in a cell host Download PDFInfo
- Publication number
- US20030166116A1 US20030166116A1 US10/174,992 US17499202A US2003166116A1 US 20030166116 A1 US20030166116 A1 US 20030166116A1 US 17499202 A US17499202 A US 17499202A US 2003166116 A1 US2003166116 A1 US 2003166116A1
- Authority
- US
- United States
- Prior art keywords
- sequence
- dna
- coding
- expression
- fragment
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 108091028043 Nucleic acid sequence Proteins 0.000 title claims abstract description 100
- 241000193830 Bacillus <bacterium> Species 0.000 claims abstract description 25
- 239000002773 nucleotide Substances 0.000 claims description 164
- 125000003729 nucleotide group Chemical group 0.000 claims description 149
- 108090000623 proteins and genes Proteins 0.000 claims description 138
- 239000012634 fragment Substances 0.000 claims description 135
- 101150066555 lacZ gene Proteins 0.000 claims description 104
- 239000013612 plasmid Substances 0.000 claims description 92
- 241000193388 Bacillus thuringiensis Species 0.000 claims description 67
- 108020004414 DNA Proteins 0.000 claims description 58
- 210000004027 cell Anatomy 0.000 claims description 47
- 108091026890 Coding region Proteins 0.000 claims description 45
- 238000011144 upstream manufacturing Methods 0.000 claims description 32
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 28
- 238000013518 transcription Methods 0.000 claims description 25
- 230000035897 transcription Effects 0.000 claims description 25
- 241000894006 Bacteria Species 0.000 claims description 23
- 230000028070 sporulation Effects 0.000 claims description 23
- 230000001580 bacterial effect Effects 0.000 claims description 22
- 239000013598 vector Substances 0.000 claims description 16
- 108020004465 16S ribosomal RNA Proteins 0.000 claims description 15
- 230000001124 posttranscriptional effect Effects 0.000 claims description 15
- 230000000295 complement effect Effects 0.000 claims description 14
- 229940097012 bacillus thuringiensis Drugs 0.000 claims description 12
- 239000013604 expression vector Substances 0.000 claims description 11
- 230000012010 growth Effects 0.000 claims description 10
- 238000004519 manufacturing process Methods 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- 230000005526 G1 to G0 transition Effects 0.000 claims description 8
- 108090000765 processed proteins & peptides Proteins 0.000 claims description 8
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 8
- 244000063299 Bacillus subtilis Species 0.000 claims description 7
- 229920001184 polypeptide Polymers 0.000 claims description 7
- 108020004511 Recombinant DNA Proteins 0.000 claims description 6
- 230000029087 digestion Effects 0.000 claims description 6
- 230000002588 toxic effect Effects 0.000 claims description 6
- 241000238631 Hexapoda Species 0.000 claims description 5
- 230000003362 replicative effect Effects 0.000 claims description 5
- 231100000331 toxic Toxicity 0.000 claims description 5
- 238000013519 translation Methods 0.000 claims description 5
- 102000004190 Enzymes Human genes 0.000 claims description 4
- 108090000790 Enzymes Proteins 0.000 claims description 4
- 230000008092 positive effect Effects 0.000 claims description 4
- 108020004418 ribosomal RNA Proteins 0.000 claims description 4
- 238000012163 sequencing technique Methods 0.000 claims description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 claims 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 claims 2
- LWGJTAZLEJHCPA-UHFFFAOYSA-N n-(2-chloroethyl)-n-nitrosomorpholine-4-carboxamide Chemical compound ClCCN(N=O)C(=O)N1CCOCC1 LWGJTAZLEJHCPA-UHFFFAOYSA-N 0.000 claims 2
- 239000000427 antigen Substances 0.000 claims 1
- 102000036639 antigens Human genes 0.000 claims 1
- 108091007433 antigens Proteins 0.000 claims 1
- 230000000974 larvacidal effect Effects 0.000 claims 1
- 238000011084 recovery Methods 0.000 claims 1
- 230000000694 effects Effects 0.000 description 43
- 108010005774 beta-Galactosidase Proteins 0.000 description 32
- 235000018102 proteins Nutrition 0.000 description 32
- 102000004169 proteins and genes Human genes 0.000 description 32
- 102000005936 beta-Galactosidase Human genes 0.000 description 31
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- 102000039446 nucleic acids Human genes 0.000 description 17
- 108020004707 nucleic acids Proteins 0.000 description 17
- 150000007523 nucleic acids Chemical class 0.000 description 17
- 239000003053 toxin Substances 0.000 description 15
- 231100000765 toxin Toxicity 0.000 description 15
- 108700012359 toxins Proteins 0.000 description 15
- 238000010276 construction Methods 0.000 description 14
- 239000013078 crystal Substances 0.000 description 14
- 239000013615 primer Substances 0.000 description 14
- 238000004458 analytical method Methods 0.000 description 13
- 230000004927 fusion Effects 0.000 description 13
- 238000009396 hybridization Methods 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 108020004999 messenger RNA Proteins 0.000 description 10
- 230000000977 initiatory effect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 102000040650 (ribonucleotides)n+m Human genes 0.000 description 7
- 108091034117 Oligonucleotide Proteins 0.000 description 7
- 150000001413 amino acids Chemical group 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 210000003705 ribosome Anatomy 0.000 description 7
- 101710151559 Crystal protein Proteins 0.000 description 6
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 6
- 241000588724 Escherichia coli Species 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- 238000010367 cloning Methods 0.000 description 6
- 238000012217 deletion Methods 0.000 description 6
- 230000037430 deletion Effects 0.000 description 6
- 238000004520 electroporation Methods 0.000 description 6
- 230000003993 interaction Effects 0.000 description 6
- 239000000047 product Substances 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- UXVMQQNJUSDDNG-UHFFFAOYSA-L Calcium chloride Chemical compound [Cl-].[Cl-].[Ca+2] UXVMQQNJUSDDNG-UHFFFAOYSA-L 0.000 description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 5
- 101100297421 Homarus americanus phc-2 gene Proteins 0.000 description 5
- 229910021380 Manganese Chloride Inorganic materials 0.000 description 5
- GLFNIEUTAYBVOC-UHFFFAOYSA-L Manganese chloride Chemical compound Cl[Mn]Cl GLFNIEUTAYBVOC-UHFFFAOYSA-L 0.000 description 5
- 230000004913 activation Effects 0.000 description 5
- FRHBOQMZUOWXQL-UHFFFAOYSA-L ammonium ferric citrate Chemical compound [NH4+].[Fe+3].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O FRHBOQMZUOWXQL-UHFFFAOYSA-L 0.000 description 5
- 239000001110 calcium chloride Substances 0.000 description 5
- 229910001628 calcium chloride Inorganic materials 0.000 description 5
- 239000008103 glucose Substances 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 239000004313 iron ammonium citrate Substances 0.000 description 5
- 235000000011 iron ammonium citrate Nutrition 0.000 description 5
- 239000011565 manganese chloride Substances 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- 230000004048 modification Effects 0.000 description 5
- 230000002103 transcriptional effect Effects 0.000 description 5
- 241000254173 Coleoptera Species 0.000 description 4
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- 230000002950 deficient Effects 0.000 description 4
- 229930027917 kanamycin Natural products 0.000 description 4
- 229960000318 kanamycin Drugs 0.000 description 4
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 4
- 229930182823 kanamycin A Natural products 0.000 description 4
- 239000012528 membrane Substances 0.000 description 4
- 239000011780 sodium chloride Substances 0.000 description 4
- 239000001509 sodium citrate Substances 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 108020004705 Codon Proteins 0.000 description 3
- 108010017826 DNA Polymerase I Proteins 0.000 description 3
- 102000004594 DNA Polymerase I Human genes 0.000 description 3
- 241000192125 Firmicutes Species 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- 238000000636 Northern blotting Methods 0.000 description 3
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 3
- 108091081024 Start codon Proteins 0.000 description 3
- 239000011543 agarose gel Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 230000033228 biological regulation Effects 0.000 description 3
- 230000000853 biopesticidal effect Effects 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 210000000349 chromosome Anatomy 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 101150016744 ermC gene Proteins 0.000 description 3
- 229960003276 erythromycin Drugs 0.000 description 3
- 239000000499 gel Substances 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 230000007246 mechanism Effects 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000035772 mutation Effects 0.000 description 3
- 230000010076 replication Effects 0.000 description 3
- 239000007244 sp - medium Substances 0.000 description 3
- OPIFSICVWOWJMJ-AEOCFKNESA-N 5-bromo-4-chloro-3-indolyl beta-D-galactoside Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1OC1=CNC2=CC=C(Br)C(Cl)=C12 OPIFSICVWOWJMJ-AEOCFKNESA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241000276408 Bacillus subtilis subsp. subtilis str. 168 Species 0.000 description 2
- 102000053602 DNA Human genes 0.000 description 2
- 241001524679 Escherichia virus M13 Species 0.000 description 2
- 101100297420 Homarus americanus phc-1 gene Proteins 0.000 description 2
- 102100034343 Integrase Human genes 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 239000000020 Nitrocellulose Substances 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 108700026244 Open Reading Frames Proteins 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 2
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- 108700009124 Transcription Initiation Site Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 108010079058 casein hydrolysate Proteins 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- SUYVUBYJARFZHO-UHFFFAOYSA-N dATP Natural products C1=NC=2C(N)=NC=NC=2N1C1CC(O)C(COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 2
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 2
- 238000001962 electrophoresis Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 230000002779 inactivation Effects 0.000 description 2
- 230000000749 insecticidal effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 229920001220 nitrocellulos Polymers 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 230000006798 recombination Effects 0.000 description 2
- 239000013605 shuttle vector Substances 0.000 description 2
- 101150005228 sigE gene Proteins 0.000 description 2
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 2
- 101150002464 spoVG gene Proteins 0.000 description 2
- 239000007362 sporulation medium Substances 0.000 description 2
- 210000000130 stem cell Anatomy 0.000 description 2
- 230000001360 synchronised effect Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- HRXKRNGNAMMEHJ-UHFFFAOYSA-K trisodium citrate Chemical compound [Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O HRXKRNGNAMMEHJ-UHFFFAOYSA-K 0.000 description 2
- 229940038773 trisodium citrate Drugs 0.000 description 2
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- FVFVNNKYKYZTJU-UHFFFAOYSA-N 6-chloro-1,3,5-triazine-2,4-diamine Chemical compound NC1=NC(N)=NC(Cl)=N1 FVFVNNKYKYZTJU-UHFFFAOYSA-N 0.000 description 1
- 241000972773 Aulopiformes Species 0.000 description 1
- 108700003918 Bacillus Thuringiensis insecticidal crystal Proteins 0.000 description 1
- 241001147758 Bacillus thuringiensis serovar kurstaki Species 0.000 description 1
- 101100061321 Bacillus thuringiensis subsp. japonensis cry8Ca gene Proteins 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108020003215 DNA Probes Proteins 0.000 description 1
- 239000003155 DNA primer Substances 0.000 description 1
- 239000003298 DNA probe Substances 0.000 description 1
- 230000007023 DNA restriction-modification system Effects 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 241001646716 Escherichia coli K-12 Species 0.000 description 1
- 241001288713 Escherichia coli MC1061 Species 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108700039691 Genetic Promoter Regions Proteins 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 101000585534 Homo sapiens RNA polymerase II-associated factor 1 homolog Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 241001625930 Luria Species 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- 102100025516 Peroxisome biogenesis factor 2 Human genes 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 108050006002 RNA polymerase sigma factor FliA Proteins 0.000 description 1
- 108091081062 Repeated sequence (DNA) Proteins 0.000 description 1
- 108700008625 Reporter Genes Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 230000006978 adaptation Effects 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 229960000723 ampicillin Drugs 0.000 description 1
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 108010058966 bacteriophage T7 induced DNA polymerase Proteins 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- -1 bla Proteins 0.000 description 1
- 101150049515 bla gene Proteins 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 229940041514 candida albicans extract Drugs 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000003593 chromogenic compound Substances 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 101150086784 cry gene Proteins 0.000 description 1
- 101150085721 cry2Aa gene Proteins 0.000 description 1
- SUYVUBYJARFZHO-RRKCRQDMSA-N dATP Chemical compound C1=NC=2C(N)=NC=NC=2N1[C@H]1C[C@H](O)[C@@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)O1 SUYVUBYJARFZHO-RRKCRQDMSA-N 0.000 description 1
- 239000005549 deoxyribonucleoside Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008034 disappearance Effects 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 230000001036 exonucleolytic effect Effects 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 101150045500 galK gene Proteins 0.000 description 1
- 101150041954 galU gene Proteins 0.000 description 1
- 238000001502 gel electrophoresis Methods 0.000 description 1
- 230000004034 genetic regulation Effects 0.000 description 1
- 239000001963 growth medium Substances 0.000 description 1
- 101150096208 gtaB gene Proteins 0.000 description 1
- 101150085823 hsdR gene Proteins 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000011534 incubation Methods 0.000 description 1
- BAUYGSIQEAFULO-UHFFFAOYSA-L iron(2+) sulfate (anhydrous) Chemical compound [Fe+2].[O-]S([O-])(=O)=O BAUYGSIQEAFULO-UHFFFAOYSA-L 0.000 description 1
- 229910000359 iron(II) sulfate Inorganic materials 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 101150079876 mcrB gene Proteins 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000013208 measuring procedure Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- YWAKXRMUMFPDSH-UHFFFAOYSA-N pentene Chemical group CCCC=C YWAKXRMUMFPDSH-UHFFFAOYSA-N 0.000 description 1
- 230000002688 persistence Effects 0.000 description 1
- 238000002135 phase contrast microscopy Methods 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000002285 radioactive effect Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 108091008146 restriction endonucleases Proteins 0.000 description 1
- 101150098466 rpsL gene Proteins 0.000 description 1
- 235000019515 salmon Nutrition 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 108010088768 sporulation-specific sigma factors Proteins 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 230000005026 transcription initiation Effects 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 101150079396 trpC2 gene Proteins 0.000 description 1
- 239000012137 tryptone Substances 0.000 description 1
- 230000009105 vegetative growth Effects 0.000 description 1
- 108700026220 vif Genes Proteins 0.000 description 1
- 239000012138 yeast extract Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
- C07K14/32—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria from Bacillus (G)
- C07K14/325—Bacillus thuringiensis crystal peptides, i.e. delta-endotoxins
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/74—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
- C12N15/75—Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora for Bacillus
Definitions
- the object of the invention is nucleotide sequences of bacteria, in particular Gram + bacteria such as bacteria of the Bacillus type and more particularly nucleotide sequence of the cryIIIA gene for the control of the expression of DNA sequences in a cell host.
- cryIIIA gene codes for a toxin specific for the Coleoptera and is weakly expressed by Bacillus thuringiensis when it is cloned in a low copy number plasmid.
- Bacillus thuringiensis is a Gram-positive bacterium which produces significant quantities of proteins in the form of crystals having a toxic activity towards insect larvae.
- Two groups of crystal proteins are known, based on the amino acid sequences and the toxicity specificities:
- sigma 35 and sigma 28 which specifically direct the transcription of the cryIA genes have been isolated and characterized. These amino acid sequences exhibit an identity of 88 and 85% with the sigma factors E and K of Bacillus subtilis, respectively (Adams, L. F., 1991, J. Bacteriol. 173: 3846-3854). These sigma factors are produced exclusively in sporulating cells and are capable of functioning in the mother cell compartment, confirming that the expression of the genes for the crystal protein is controlled in time and space. Thus, in the prior art it has been concluded that the expression of the gene with time is, at least in part, ensured by the successive activation of the sigma factors specific for sporulation.
- the copy number of the plasmid bearing the gene seems to be an important factor for the expression of the cry gene in B. thuringiensis.
- the cry genes are localized on large plasmids, present in a low number of copies.
- the object of the invention is agents making it possible to obtain a high level of expression of the protein encoded in the cryIIIA gene and more generally agents making it possible to control the level of expression of DNA sequences coding for a specific protein of interest in bacterial strains, preferably Gram + strains such as Bacillus strains, since it is possible to obtain this expression when the coding DNA sequence is located on a vector, in particular on a plasmid of low copy number.
- the invention relates to an expression system comprising a DNA sequence, able to intervene in the control of the expression of a coding nucleotide sequence and obtained by associating two distinct nucleotide sequences intervening in different but, preferably, not dissociable ways in the control of the expression of the coding sequence.
- the first nucleotide sequence exhibits a promoter activity whereas the second sequence, initiated by the promoter activity of the first, intervenes to enhance the expression of the gene.
- the DNA sequence of the invention makes it possible to attain a high level of expression of the coding part of a gene in a bacterium, in particular a Gram + type of bacterium.
- the first nucleotide sequence of the expression system of the present invention identified in the framework of the present demand as being the promoter consists of either the promoter of the host strain in which the gene of interest to be expressed is introduced, or of an exogenous promoter, functional in the host used.
- the second nucleotide sequence of the expression system of the invention identified in the present application as being the “downstream region” designates any sequence preferably situated between the promoter and the sequence coding for a gene to be expressed, able to play a role particularly at the post-transcriptional level when the gene is expressed. More particularly, the downstream region does not act directly on the translation of the coding sequence to be expressed.
- the “downstream region” consists of a nucleotide sequence, particularly an S2 sequence or a sequence analogous to S2, containing a region essentially complementary to the 3′ end of the RNA, particularly the 16S RNA, of the ribosomes of bacteria, particularly of Gram + bacteria of the Bacillus type.
- nucleotides forming the DNA sequence according to the invention may or may not be consecutive in the sequence from which the DNA sequence is defined.
- DNA sequence able to intervene in the control of the expression of a coding nucleotide sequence expresses the capacity of this DNA sequence to initiate or prevent the expression of the coding sequence or to regulate this expression in particular at the level of the quantity of the product expressed.
- a DNA sequence according to the invention is such that the coding nucleotide sequence that it controls is placed immediately downstream, in phase with the same reading frame as it or, on the other hand, it is separated from this DNA sequence by a nucleotide fragment.
- the invention relates to a DNA sequence for the control of the expression of a coding sequence for a gene in a cell host, the DNA sequence is characterized in that it includes a promoter and a nucleotide sequence or downstream region situated in particular downstream of the promoter and upstream at said coding sequence.
- the nucleotide sequence or downstream region contains a region essentially complementary to the 3′ end of a bacterial ribosomal RNA.
- the DNA sequence of the invention is capable of intervening to enhance the expression of the coding sequence placed downstream in a cell host.
- the inventors have identified a DNA sequence of the type previously described, capable of intervening in the control of the expression of the coding sequence of the cryIIIA gene, and making it possible in particular to obtain a high level of expression when the coding sequence is placed on a low copy number plasmid.
- the invention also relates to a DNA sequence characterized by the following properties:
- a coding nucleotide sequence placed downstream in a host cell, in particular a bacterial cell host of the Bacillus thuringiensis and/or Bacillus subtilis type.
- H n will be used to designate the HindIII site having the position “n” with respect to the first HindIII site of the BamHI fragment.
- P n designates the PstI site at position “n” with respect to the first PstI site on the BamHI fragment.
- DNA sequence defined above can be isolated and purified for example from the plasmid bearing the cryIIIA gene of Bacillus thuringiensis.
- the expression system for cryIIIA comprises a first nucleotide sequence or promoter situated between the TaqI and PacI sites (positions 907 to 990) and a second nucleotide sequence or “downstream region” included between the XmnI and TaqI sites (positions 1179 to 1559) as shown in FIG. 6.
- the presence of two sequences of this type is preferred to obtain an optimal level of expression of the cryIIIA gene or of another gene placed under the control of this expression system.
- an expression vector characterized in that it is modified at one of its sites by a DNA sequence such as that described above so that said DNA sequence intervenes in the control of the expression of a specific coding nucleotide sequence.
- a vector of the invention may preferably be a plasmid, for example a plasmid of the replicative type.
- a particularly useful vector is the plasmid pHT7902′lacZ deposited with the CNCM (Collection Nationale de Cultures de Micro-organismes-Paris-France) on Apr. 20, 1993 under No. I-1301.
- the object of the invention is also a recombinant cell host characterized in that it is modified by a DNA sequence such as that previously defined or by an expression vector described above.
- a particularly useful cell host is the strain 407-OA:Km R (pHT305P) deposited with the CNCM on May 3, 1994 under No I-1412.
- the object of the invention is a DNA sequence capable of influencing the expression of the coding part of a gene in a bacterial cell host. More particularly, the invention relates to the association of two nucleotide sequences, namely a promoter and a downstream region capable of intervening at the post-transcriptional level when the coding part of the gene is expressed.
- the expression system of the invention which, as will be described in detail hereafter, probably involves the hybridization of a part of the downstream region with the 3′ end of the 16S RNA of a bacterial ribosome, may be used for the expression of genes in a wide range of host cells.
- This extensive use of the expression system of the invention is possible, given the considerable homology observed at the level of the various 16S RNAs of bacterial ribosomes. Since the inventors have defined the regions essential for its functioning, the expression system of the present invention can thus be used in any type of bacterial host, the necessary adaptations forming part of the knowledge of the specialist.
- the expression system of the present invention when used for the expression of genes in Gram + bacteria of the Bacillus type is situated upstream from the coding part of the gene to be expressed. More particularly, the downstream region is normally situated immediately upstream from the gene whereas the promoter is located upstream from the downstream region, although another position might be envisaged for this latter. It is possible to envisage the displacement of the downstream region when the system is used in a cell host of the E. coli type in which the mRNAs are degraded in the reverse sense. It is possible to envisage the use of a downstream region downstream and upstream of the coding sequence which would permit the “protection” of the coding region by a mechanism which will be described in detail below.
- the DNA sequence corresponds to the HindIII-PstI (H 2 -P 1 ) sequence described above and comprises two nucleotide sequences (a promoter and a downstream region) having distinct functions.
- the DNA sequence corresponds to the nucleotide sequence designated by the expression Seq. No. b 1 and corresponding to the DNA fragment comprising the nucleotides 1 to 1692 of the sequence shown in FIG. 3.
- a DNA sequence of the invention intervenes at the level of the control of transcription.
- the promoter is a nucleotide sequence previously identified as being the promoter.
- the promoter is situated upstream from the downstream region and hence at a certain distance from the coding region of the gene.
- promoters such as the promoters of the degO, ⁇ PL, lacZ, cryI, cryIV or ⁇ -amylene genes may be used.
- fragments comprising a promoter region are the following fragments, shown in FIG. 1:
- any part of at least 10 nucleotides of this sequence, naturally consecutive or not, capable of intervening in the control of the expression of a coding nucleotide sequence placed downstream in a cell host constitutes a preferred embodiment of the invention.
- TTGCAA ⁇ 35
- TAAGCT TAAGCT boxes of the promoter.
- control DNA sequences comprising the promoter mentioned above are characterized by their nucleotide sequence.
- object of the invention in particular is the DNA sequences corresponding to the following sequences:
- the object of the invention is also DNA sequences hybridizing under non-stringent conditions, such as those defined below, with one of the sequences described above. In this case, one of the above sequences in question is used as probe.
- a sequence of the invention included in the downstream region is selected for its capacity to intervene in order to enhance the expression of a gene which would be initiated by a promoter situated upstream from this sequence. It is probably a sequence capable of intervening at the post-transcriptional level when the coding sequence is expressed.
- the experimental results obtained by the inventors seem to indicate that the post-transcriptional effect of the downstream region previously defined results, at least when the cryIIIA gene is being expressed, from the hybridization between the 16S ribosomal RNA of the host cell and an S2 sequence of the cryIIIA messenger RNA. It seems that the ribosome or a part of the ribosome binds to this downstream region and thus protects the mRNA from exonuclease degradation initiated at the 5′. This binding is thus expected to have the effect of increasing the stability of the messengers and of thus enhancing the level of expression of the cloned gene.
- FIG. 1 One of the particularly preferred fragments in the context of the embodiment of the invention and one which may be used as downstream region is the following fragment, shown in FIG. 1:
- control DNA sequences comprising the downstream region mentioned above are characterized by their nucleotide sequence.
- object of the invention is in particular the DNA sequences corresponding to the following sequences:
- the object of the invention is also DNA sequences hybridizing under non-stringent conditions such as those defined hereafter, with one of the sequences described above. In this case, the relevant sequence defined above is used as probe.
- downstream region consists initially of a region said to be “essential”, sufficiently complementary to the 3′ end of a 16S bacterial ribosomal RNA to allow the binding of the ribosome to this essential region.
- a second region is assumed to be situated comprising an additional structure capable of having an additional positive effect at the level of the expression of the coding sequence. It is possible that this second sequence prevents the movement of the ribosome once this latter is bound to the essential region.
- the nucleotide sequence situated between the positions 1413 and 1556 of the sequence shown in FIG. 3 comprises the region essential for ribosomal binding as well as the second region downstream from the binding site.
- the second region is not absolutely essential for obtaining an enhanced expression of the coding sequence, it seems that its deletion reduces the expression yields.
- experimental results have shown that the deletion of the region situated between the nucleotides 1462 and 1556 of the sequence shown in FIG. 3 leads to a slight diminution of the expression of the coding sequence.
- the minimal length of the nucleotide sequence making possible adequate binding to the ribosome is about 10 nucleotides.
- the object of the invention is thus also any part of at least 10 nucleotides of the H 2 -P 1 sequence, naturally or not consecutive, capable of controlling in a cell host of the Bacillus type the expression of a coding nucleotide sequence placed downstream or this part of the H 2 -P 1 sequence.
- the expression system of the present invention may thus be used in a large number of bacterial hosts without substantial modifications having to be made.
- the object of the invention is thus also a DNA sequence characterized by the following properties:
- a coding sequence in particular a sequence coding for a Bacillus polypeptide, toxic towards insects or a sequence coding for a polypeptide expressed during the stationary phase in Bacillus.
- a sequence coding for a Bacillus polypeptide, toxic towards insect larvae is for example a sequence included in the cryIIIB gene of B. thuringiensis.
- a DNA sequence corresponding to this definition can be identified by using oligonucleotide primers.
- Hybridization under non-stringent conditions between the test DNA sequence and the DNA fragment included between the nucleotides 1413 and 1559 of the sequence of FIG. 3 used as probe will be conducted as follows:
- the DNA probe and the sequences bound to the nitrocellulose filter or to the nylon filter are hybridized at 42° C. for 18 h with shaking in the presence of formamide (30%), 5 ⁇ SSC of the 1 ⁇ Denhardt solution.
- the 1 ⁇ Denhardt solution is composed of 0.02% Ficoll, 0.02% polyvinylpyrrolidone and 0.02% bovine serum albumin.
- the 1 ⁇ SSC is composed of 0.15M NaCl and 0.015 M sodium citrate. After hybridization, the filter is successively washed at 42° C. for 10 minutes in each of the following solutions:
- the DNA sequences according to the invention may be optionally recombinant among themselves or associated on a vector at different sites.
- the TaqI-PacI fragment is advantageously associated with the XmnI-TaqI fragment defined above in the form of a single sequence and also the TaqI-PacI fragment with the sequence Seq No.8.
- Such sequences have the advantageous property of making possible a high level of expression (up to 60,000 Miller units) of the coding nucleotide sequence, a level of expression which may be observed with the beta-galactosidase gene.
- fragments shown in FIG. 8B are the following fragments shown in FIG. 8B:
- the DNA sequences referred to above are characterized by their nucleotide sequence.
- the object of the invention is in particular the DNA sequences corresponding to the following sequences:
- the object of the invention is also DNA sequences hybridizing under non-stringent conditions such as those defined above with one of the sequences described above. In this case, one of the above sequences is used as probe.
- DNA sequences of the invention can be isolated and purified from Bacillus, in particular from B. thuringiensis; they can also be prepared by synthesis according to known procedures.
- RNA sequences corresponding to the DNA sequences described above.
- the object of the invention is also a recombinant DNA sequence characterized in that it comprises a defined coding sequence under the control of a DNA sequence corresponding to one of the preceding specifications.
- the DNA sequence of the invention whose capacity to intervene in the control of the expression of a coding sequence it is desired to evaluate is inserted in a low copy number plasmid upstream from a coding nucleotide sequence.
- the plasmid thus prepared is used to transform (for example by electroporation) a strain of Bacillus thuringiensis for example a B. thuringiensis strain HD1 cry ⁇ B;
- the Bacillus strain thus transformed is cultured under conditions permitting the expression of the coding nucleotide sequence
- the expression product of this coding nucleotide sequence is detected by current qualitative and/or quantitative measuring procedures.
- the coding nucleotide sequence should advantageously be the coding sequence of the cryIIIA gene of Bacillus thuringiensis or for example a sequence coding for beta-galactosidase.
- Different types of cell host may be used in the framework of the invention. Mention should be made as an example of Bacillus, for example Bacillus thuringiensis or Bacillus subtilis. It is also possible to envisage the use of cells such as E. coli.
- the coding sequence may be expressed during the vegetative phase or the stationary phase of growth or during sporulation.
- a interesting cell host in the framework of the invention may also be constituted by a vegetal or animal cell.
- a signal sequence can also be inserted in the expression vector of the invention so that the expression product of the coding sequence is exposed at the surface of the cell host, or even exported from this cell host.
- an asporogenic host may offer the advantage of providing agents of expression of coding sequences to be included in biopesticide compositions whose possible negative effects vis-a-vis the environment would be expected to be attenuated, and even eliminated.
- the asporogenic host selected is particularly advantageous for expressing a coding sequence during its stationary phase of growth, when the coding sequence is under the control of one of the sequences of the invention.
- proteins for example, biopesticides
- FIG. 1 Schematic restriction map of the plasmids used (A)—Physical map of the shuttle vector pHT304.
- the arrows above Erm R and Ap R indicate the direction of transcription of the ermC and bla gene, respectively.
- the arrow and the expression LacZ indicate the direction of transcription from the promoter of the LacZ gene.
- ori Bt is the replication region of the plasmid pHT1030 of B. thuringiensis (B)—Simplified restriction map of the fragments bearing the cryIIIA gene.
- the A fragment is a 6 kb BamHI fragment of B.
- pHT304 thuringiensis LM79; the restriction fragments G, P and H were obtained by partial digestion with HindIII and C was obtained after total digestion of fragment A with HindIII.
- These fragments were cloned in pHT304 to give the derivatives pHT305A, pHT305G, pHT305P, pHT305H and pHT305C, respectively.
- the cryIIIA gene hatchched box
- the numbers under each site indicate their order from left to right.
- FIG. 2 Analysis of the proteins of the transformants of B. thuringiensis expressing the cryIIIA gene. An identical volume (20 ⁇ l) of samples was loaded into each well. The lines 1 to 4 and 6 to 8 of B. thuringiensis Kurstaki HD1 Cry ⁇ B bearing pHT305A, pHT305G, pHT305H, pHT305P, pHT305H ⁇ H 2 -H 3 , pHT305C and pHT304, respectively. Column 5 corresponds to the molecular weight markers (from top to bottom 97, 66, 60, 43 and 30 kDa). The arrows indicate the crystal components of 73 and 67 kDa.
- FIG. 3 Nucleotide sequence of the 5′ end of the region upstream from the cryIIIA gene.
- the ATG initiation codon is indicated in bold characters and the end of the major transcript on the gel, specific for the cryIIIA, corresponds to the T located at position 1413 Another transcript starts at nucleotide 983.; it is apparently a minor component on the gel.
- the sequence comprises at least two inverted repeats. The numbering of the nucleotides starts from the second HindIII site and ends at the PstI site shown in FIG. 3A.
- FIG. 4 Representation of the plasmids PAF1, pHT304′lacZ, pHT7901′lacZ and pHT7902′lacZ.
- FIG. 5 Profile of beta-galactosidase activity. The growth of the Bt cells and the conditions for preparing the samples as well as the test are described in “Materials and Methods”. the time t 0 indicates the end of the exponential phase and t n is the number of hours before ( ⁇ ) or after time zero.
- FIG. 6 Detailed restriction map of the plasmids pHT7902′lacZ, 7903′lacZ, 7907′lacZ, 7909′lacZ, 7930′lacZ and 7931′lacZ. These plasmids were inserted into B. thuringiensis and the beta-galactosidase activity was measured at time t 6 of sporulation (in Miller units). The activities of 30,000, 30,000, 3.500, 2,000, 35,000 and 60,000 respectively are observed.
- FIG. 7 Beta-galactosidase activity in B. subtilis strains Spo ⁇ and Spo + ; the cultures are grown in SP medium.
- FIG. 8 Schematic restriction map of the constructions used to measured the transcriptional activity of the regions of the expression system at cryIIIA in B. thuringiensis strain kurstaki HD1 Cry ⁇ B.
- the arrows indicate the direction of transcription of the genes ermC, bla, lacZ and the promoter placZ; and the orientation of the replication in E. coli (oriEc).
- ori1030 indicates the region of replication of the plasmid pHT1030 (Lereclus and Arantes, Mol. Microbiol. 1992, 7: 35-46).
- SD indicates the ribosomal binding site of the spoVG gene placed in front of the lacZ gene (Perkins and Youngman, 1986, Proc. Natl. Acad. Sci. USA, 83: 140-144).
- B Physical representation and transcriptional activity of the different regions of the cryIIIA expression system fused with the lacZ gene.
- the numbering of the nucleotides is established according to the DNA sequence of the H 2 -P 1 fragment presented in FIG. 3B.
- the arrows indicate the position of the 5′ ends of the transcripts as they are identified by primer extension.
- the dotted lines indicate the localization of the deleted fragments.
- the beta-galactosidase activity of the different constructions was measured at times t 0 and t 6 of sporulation and is indicated in Miller units.
- FIG. 9 Determination of the 5′ end of the cryIIIA/lacZ transcript produced by the B. thuringiensis strain bearing the plasmid pHT7815/8′lacZ.
- the total RNA of the cells was extracted at t 3 and subjected to a primer extension experiment with the reverse transcriptase using as primer the following oligonucleotide: 5′-CGTAATCTTACGTCAGTAACTTCCACAG> ⁇ 3′.
- This oligonucleotide is complementary to the region localized between the ribosomal binding site of the spoVG gene and the initiation codon of the lacZ gene.
- the same oligonucleotide was used to determined the nucleotide sequence of the corresponding region of the plasmid pHT7815/8.
- the 5′ end is numbered according to the DNA sequence of the H 2 /P 1 fragment presented in FIG. 3B.
- FIG. 10 Schematic physical map of the constructions used to measure the post-transcriptional activity of the downstream region of the cryIIIA expression system in B. subtilis strain 168.
- the numbering of the nucleotides is established according to the DNA sequence of the H 2 -P 1 fragment presented in FIG. 3B.
- the arrow indicates the starting position of transcription located at position +984.
- the asterisk at position 1421 indicates the replacement of GGA by CCC.
- the dashed lines indicate the location of the deleted DNA fragments.
- the beta-galactosidase activity of the different constructions was measured at the time t 3 of sporulation and is indicated in Miller units.
- FIG. 11 Nucleotide sequence of the spoOA gene of B. thuringiensis strain 407.
- the arrow indicates the orientation of the transcription of the spoOA gene.
- B Nucleotide sequence of the open reading frame comprising the coding sequence of the spoOA gene.
- the initiation codon GTG is indicated in bold characters.
- the two HincII sites are underlined.
- the three dots represent the stop codon.
- Escherichia coli K-12 TG1 [ ⁇ (lac-proAB) supE thi hdsD (F′ traD36 proA + proB + lacI lacZ ⁇ DM15)] Gibson, T. J. et al. 1984 Thesis, University of Cambridge, Cambridge was used as host for the construction of the plasmids represented in FIG. 1B and for the bacteriophage M13.
- B. thuringiensis strain LM 79 which contains the cryIIIA gene was isolated and characterized by Chaufaux J. et al. 1991. INRA colloquia 58: 317-324.
- This strain belongs to the serotype 8 and produces quantities of toxins similar to those produced by other strains of B. thuringiensis bearing the cryIIIA gene (Donovan, V. P. et. al. 1988 Mol. Gen. Genet. 214, 365-372-Sekar, V. et al. 1987 Proc. Natl. Acad. Sci. USA 84: 7036-7040).
- B. thuringiensis of the subspecies Kurstaki HD1 Cry ⁇ B was used as host for the studies of regulation of the cryIIIA gene.
- the E. coli strains were cultured at 37° C. in a Luria medium and transformed according to the method described by Lederberg and Cohen (1974 Bacteriol. 119: 1072-1074).
- the antibiotic concentrations for the selection of the bacteria were 100 ⁇ g/ml for ampicillin and 25 ⁇ g/ml for erythromycin.
- the 6 kb BamHI fragment bearing the cryIIIA gene and the adjacent regions was isolated from B. thuringiensis LM79 and inserted into the unique BamHI site of pUC19 to produce pHT791 which was employed as DNA source for the construction of the various plasmids used here.
- the plasmid pHT305A was obtained by insertion of the 6 kb BamHI fragment into the unique BamHI site of the shuttle vector pHT304 (Arantes, O and Lereclus D 1991, Gene 108: 115-119) (FIG. 1A).
- the plasmid pHT304′lacZ used to construct the transcriptional fusions was obtained by cloning the 3.2 kb DraI-SmaI restriction fragment containing the lacZ gene lacking a promoter isolated from pMC11, at the unique SmaI site of pHT304.
- the plasmid pHT7901′lacZ was obtained by cloning the H 3 -P 1 fragment ⁇ (HindIIl-PstI) see FIG. 3A ⁇ between the unique HindIII and PstI sites of pHT304′lacZ.
- the plasmid pHT7902′lacZ was constructed by cloning the H 2 -H 3 fragment (FIG.
- the DNA restriction fragments were purified on agarose gels using the Prep A gene kit (Bio-Rad).
- the nucleotide sequences were determined by the dideoxy chain termination method (Sanger F. et al. 1977 Proc. Natl. Acad. Sci. vol. 175, 1993 USA 74: 5463-5467) using the M13mp18 and M13mp19 phages as matrices as well as the Sequenase kit version 2.0 (US Biochemical Cor. Cleveland Ohio) and ⁇ - 35 S ⁇ dATP (15 TBq; Amersham, United Kingdom).
- the B. thuringiensis subspecies Kurstaki HD1 Cry ⁇ B (pHT305P) was cultured in a HCT medium (Lecadet et al. 1980 J. Gen. Microbiol. 121: 203-212) at 30° C. by shaking. The samples were taken at t 0 , t 3 , t 6 and t 9 (t 0 is defined as being the start of sporulation and t n indicates the number of hours after the start of sporulation). The cells were recovered by centrifugation, resuspended in a HCO medium (Lecadet, M. M. et al., 1980 J. Gen Microbiol.
- a first oligonucleotide a 39-mer (3′-CTT AGG CTT GTT AGC TTC ACT TGT ACT ATG TTA TTT TTG-5′) complementary to the region 3′-1544 to 1583-5′ of the cryIIIA gene was synthesized and its 5′ 0 end was labeled with ( ⁇ -32P) dATP (110 TBq/mmol) by the T4 polynucleotide kinase.
- the 39-mer oligonucleotide was purified on a column of Sephadex G-25 (Pharmacia) (incorporation about 70%) and to be used as primer it was mixed with 50 ⁇ g of total RNA.
- a second oligonucleotide a 32-mer complementary to the region located between the positions 1090 and 1121 was also used as primer and made possible the detection of a second transcript, the start of transcription of which is situated at position 983.
- This oligonucleotide corresponds to the sequence
- a Northern blot analysis was performed with denatured RNA fractionated by electrophoresis on agarose gels containing 1.5% formaldehyde and transferred in a vacuum to Hybond-N + (Amersham) membranes in 20 ⁇ SSC for 1 h (1 ⁇ SSC corresponds to 150 mM NaCl plus 15 mM sodium citrate, pH 7.0).
- the PstI-EcoRI restriction fragment of 874 bp was labelled with 32 P with a nick translation kit (Boehringer Mannheim), then denatured and used as probe.
- a prehybridization was performed at 42° C.
- RNA of synchronous cultures of B. thuringiensis subspecies Kurstaki HD1 Cry ⁇ B bearing the plasmids pHT305P or pHT305H taken at t 3 were deposited on to Hybond-C Extra membranes (Amersham) with a manifold apparatus (Schleicher & Schueller) by using the dot blot protocol described by Sambrook et al. (Sambrook, J. et al. 1989 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). The probe and the hybridization conditions were those described in the Northern blot tests.
- the cells were cultured in a HCT medium at 30° C. with shaking for 48 hours and the crystals were prepared according to the method described in the publication by Lecadet, M. M. et al. (1992 Appl. Environ. Microbiol. 58: 840-849) with the exception of the fact that the NaCl concentration was 150 mM.
- the strains of E. coli and B. thuringiensis containing the lacZ transcription fusions were detected by depositing on the solid medium the chromogenic substrate 5-bromo-4-chloro-3-indolyl- ⁇ -D-galactopyranoside (X-Gal) (40 ⁇ g/ml) and suitable antibiotics.
- the isolated strains were cultured as indicated and recovered at t- 2 , t- 1 , t 0 , t 1.5 , t 3 , t 4.5 , t 6 and t 7.5 . After centrifugation, the pellets were immediately frozen at ⁇ 70° C.
- cryIIIA gene was only weakly expressed in the B. thuringiensis strain HD1 Cry ⁇ B when it was cloned in a low copy number vector such as pHT304 (4 copies per chromosome equivalent).
- the five recombinant plasmids were then introduced in B. thuringiensis subspecies Kurstaki HD1 Cry ⁇ B by electroporation and the transformants were cultured for two days at 30° C. in a HCT medium (Lecadet, M. M. et al. 1980 J. Gen. Microbiol. 121: 203-212) containing 25 ⁇ g of erythromycin per ml.
- the H 2 H 3 plasmid is located downstream from the cryIIIA gene.
- the synthesis of the CryIIIA toxin pHT305H ⁇ H 2 H 3 proved to be as weak as with the plasmid pHT305H (FIG. 2, line 6). This absence of effect might be due to either the new location of the H 2 -H 3 fragment, this location being inappropriate or to the disorganization of its functional structure.
- the functional element starting within the H 2 -H 3 fragment would be extended to a region beyond the HindIII site described and would potentially comprise the region of the promoter.
- the nucleotide sequence of the 979 b H 2 -H 3 fragment of the plasmid pHT791 was determined (FIG. 3B). Furthermore, the sequence of 713 bp extending from the third HindIII site to the first PstI site (H 3 -P 1 fragment) was determined (FIG. 3B). This second fragment bears the region upstream of the promoter, the promoter itself, the potential ribosomal binding site and the first 151 codons of the cryIIIA gene (Sekar, V et al., 1987 Proc. Natl; Acad. Sci. USA 84: 7036-7040).
- This region exhibits a high proportion of A+T bases (adenine-plus-thymine) corresponding to about 81% between the bases 770 and 990 and two inverted repeat sequences.
- the first inverted repeat sequence is imperfect (16 of the 17 bp are identical) with a centre of symmetry at nucleotide 858 and the second is a perfect inverted repeat of 12 bp with a centre of symmetry at nucleotide 1379.
- the free energies leading to the formation of the stem loop structures calculated according to the method of Tinoco et al. (Tinoco, J. J. et al., 1973 Nature (London) New Biol. 246: 40-41) were ⁇ 57.7 and ⁇ 66.1 kJ/mol., respectively.
- Sekar et al. have mapped the initiation site of the transcription of the cryIIIA gene starting from the RNAs isolated from early phase cells (stage II) and intermediary phase cells (stages III to IV) of sporulation by using the mung beam nuclease. These periods of growth correspond to t 2 to t 5 .
- the extension from the primers was performed on RNAs extracted from cells in culture at t 0 , t 3 , t 6 and t 9 to determine whether other initiation sites are involved during the early and late phases of growth and in order to determine at which stage maximal transcription occurs.
- a start site for transcription appeared in the form of a weakly radioactive signal in the samples taken at t 0 and t 9 and this signal proved to be more intense in the samples at t 3 and t 6 .
- This initiation site of transcription was mapped one nucleotide upstream from that described by Sekar et al.
- the reverse transcriptase is satisfactory for extension from the primers in the case of fragments containing only 100 to 150 bases in as much as this enzyme may stop or be interrupted in regions containing considerable secondary structures at the level of the RNA matrix.
- a Northern blot analysis was performed. The total RNA of the strain bearing pHT305P was recovered at t 0 , t 3 , t 6 and t 9 . The RNAs were separated by electrophoresis on agarose gels and hybridized with a probe corresponding to the labelled internal fragments of cryIIIA (PstI-EcoRI fragment at 874 bp).
- RNAs isolated from synchronous cultures recovered at t 3 were immobilized on a nitrocellulose membrane and hybridized with an excess of PstI-EcoRI probe of cryIIIA.
- the strain bearing pHT305P contained about 10 to 15 times more mRNA specific for cryIIIA than the strain containing pHT305H.
- Beta-galactosidase from the Fusion of H 2 -H 3 :: lacZ
- the vector pHT304′lacZ had a blue phenotype potentially attributable to the lacZ promoter or to another DNA region of pUC19 acting as promoter, located upstream from the cloning sites.
- the sporulation of each strain was induced and samples were taken at t ⁇ 2 and t ⁇ 1 (2 hours and 1 hour before the triggering of sporulation, respectively) and at to t 0 to t 7.5 at intervals of 1.5 hour and tested for beta-galactosidase activity (FIG. 5).
- the beta-galactosidase activity of the strain bearing pHT304′lacZ was constant at about 800 Miller units from t ⁇ 2 to t 7.5 .
- the level of the production of enzymes of the strain bearing pHT7901′lacZ rose from about 250 Miller units at t ⁇ 2 to about 1,200 Miller units at t 7.5 , indicating a small but significant increase of the beta-galactosidase activity during sporulation (this increase is not apparent because of the scale used in FIG. 5).
- the recombinant strain bearing pHT7902′lacZ produced much beta-galactosidase (33,000 Miller units at t 6 and t 7.5 ). Its beta-galactosidase activity increases from about 20 fold between t 0 and t 6 (FIG. 5).
- the ratio of the activities of the strains bearing pHT7901′lacZ and pHT7902′lacZ increased from 8 fold during the phase of vegetative growth to about 25 fold during the late phase of sporulation.
- the linker used here has a sequence such that five nucleotides naturally present after the PacI site are reconstituted in the plasmid pHT7931′lacZ.
- cryIIIA expression system requires the association of two distinct DNA sequences; one is included between the TaqI and PacI sites (positions 907 to 990), the other is included between the XmnI and TaqI sites (positions 1179 to 1559).
- RNAs by primer extension carried out by using an oligonucleotide complementary to the sequence included between the positions 1090 and 1121 in fact makes it possible to detect an initiation of transcription in this region.
- the latter is located in position 983 (FIG. 3) or more probably at position 984. It follows from this that a promoter must be situated several base pairs upstream from this start. Although there is no obvious homology with known promoters, the ⁇ 35 (TTGCAA) and ⁇ 10 (TAAGCT) boxes of the promoter would be expected to be found between the positions 945 to 980.
- a MunI-PstI DNA fragment (positions 952 to 1612) placed in front of lacZ (plasmid pHT7909′lacZ confers a weak beta-galactosidase activity comparable to that obtained with the plasmid pHT7901′lacZ (FIGS. 4 and 5).
- the DNA fragment containing the modified MunI site was introduced into the plasmid pHT7830′lacZ to give the plasmid pHT7830 ⁇ MunI′lacZ.
- the beta-galactosidase activity of the strain bearing pHT7830 ⁇ MunI′lacZ was about 25 U/mg of proteins at t 0 and about 450 U/mg of proteins at t 6 (FIG. 8B).
- the plasmid pHT7830′lacZ corresponds to the vector pHT304-18Z in which is cloned the TaqI fragment containing the entire cryIIIA expression system.
- the beta-galactosidase activity of the strain bearing pHT7815/8′lacZ was about 3,000 U/mg of proteins at t 0 and about 42,000 U/mg of proteins at t 6 (FIG. 8B). This result indicates that the region included between the nucleotides 1362 and 1412 does not play an essential role in the cryIIIA expression system and can not therefore be considered as the promoter of the cryIIIA gene.
- a primer extension experiment was carried out with the total RNAs extracted at t 3 from a B. thuringiensis strain bearing the plasmid pHT7815/8 ⁇ lacZ The 5′ end of the major transcript is detected as previously at position 1413 (FIG. 9). All of our results thus demonstrate that this end does not correspond to transcription initiation but to the end of a stable transcript initiated at position 984 starting from a upstream promoter localized in the DNA region included between the TaqI and PacI sites (positions 907 to 990) and defined by the ⁇ 35 and ⁇ 10 regions: TTGCAA and TAAGCT.
- the post-transcriptional effect of the downstream region is principally due to the nucleotide sequence included between the nucleotides 1413 and 1461.
- the nucleotides GGA in position 1421-1423 are important for conferring the post-transcriptional effect and might be modified only by considering replacement by a sequence ensuring an intensity of interaction with the 16S ribosomal RNA similar to the intensity of interaction measured for the nucleotides GGA.
- the replacement of the nucleotides GGA by the nucleotides CCC leads to the complete disappearance of the post-transcriptional effect, explained by a considerable modification of the intensity of interaction between this portion of the segment and the 16S RNA.
- the downstream region thus defined has as distinctive characteristic that of containing a nucleotide sequence complementary to the 3′ end of the 16S RNA of ribosome.
- This sequence posseses a region complementary to the 3′ end of the 16S ribosomal RNA.
- other elements characteristic of the downstream region of the cryIIIA expression system and which may accentuate this effect, in particular by preventing the movement of the ribosome are probably comprised in the nucleotide sequence included between positions 1462 and 1556. Their presence seems to explain the difference of beta-galactosidase activity observed between the B. subtilis strain containing the plasmid pHT7830′lacZ (50,000 U/mg of proteins at t 3 ) and the B. subtilis strain containing the plasmid pHT7816′lacZ (25,000 U/mg of proteins at t 3 ; see FIG. 10).
- the vector pAF1 non-replicative in B. subtilis enables the fusions with the LacZ reporter gene to be introduced into the B. subtilis chromosome at the amyE locus (J. Bact. 1990, 172: 835-844).
- the plasmid pHC1 is obtained by insertion of the HindIII-SacI fragment (2.7 kb) of the pHT7901′LacZ between the HindIII-SacI sites of pAF1.
- the plasmid pHC2 is obtained by insertion of the HindIII-SacI fragment (3.7 kb) of the pHT7902′LacZ between the HindIII and SacI sites of pAF1.
- the fusions are introduced into the B. subtilis strain 168 trpC2 (Anagnostopoulos, C and Spizizen, J. 1961 J. Bacteriol. 81: 741-746) ( Bacillus subtilis 168) by transformation; the ⁇ amy- ⁇ phenotype accounts for the integration by double recombination.
- the strain ⁇ sigE is obtained by transforming a parental strain (Spo + ) with a plasmid non-replicative in Gram-positive bacteria and bearing a sigE gene, the internal region of which is deleted.
- the sigE gene was described by Stragier et al 1984 Nature 312: 376-378.
- the strain ⁇ sigE is transformed with the plasmid pHC2 and the resulting strain is ⁇ sigE ⁇ P ⁇ .
- the strain Bs 168 ⁇ P ⁇ was transformed with a “Km R cassette” which interrupts the SpoOA gene.
- the strain in which the SpoOA gene interrupted by a “KmR cassette” originates is obtained by transforming a parental strain (Spo + ) with a plasmid, non-replicative in Gram-positive bacteria and bearing a SpoOA gene (described by Ferrari, F. A. et al. 1985 PNAS USA 82: 2647-2651) interrupted by a gene for resistance to kanamycin.
- the chromosomal DNA of this strain was used to transform the strain Bs 168 ⁇ P ⁇ .
- the total DNA of the B. thuringiensis strain 407 of serotype 1 was purified and digested by the enzyme HindIII.
- the HindIII fragments were ligated with the vector pHT304 digested by HindIII and the ligation mixture was used to transform the B. subtilis strain 168.
- the transformant clones were selected for resistance to erythromycin. They were then transformed with the total DNA of the B. subtilis strain 168, the spoOA gene of which was interrupted by a “Km R cassette”.
- the transformant clones which had become resistant to kanamycin which still had a Spo + phenotype were studied.
- One of the clones carried a recombinant plasmid capable of compensating the spoOA mutation of B. subtilis. This plasmid was constituted by the vector pHT304 and a HindIII fragment of about 2.4 kb (FIG. 11A).
- the nucleotide sequence of the HindIII fragment was determined and revealed the presence of an open reading frame of 804 bp capable of coding for a protein of 264 amino acids homologous to the SpoOA protein of B. subtilis.
- the nucleotide sequence of 804 bp of the spoOA gene of B. thuringiensis strain 407 is shown in FIG. 11B.
- the HindIII DNA fragment of about 3.9 kb containing the spoOA gene interrupted by the “Km R cassette” was cloned in the thermosensitive vector pRN5101 (Villafane et al. 1987, J. Bacteriol. 169: 4822-4829). The resulting plasmid (designated pHT5120) was introduced in the B.
- the spoOA gene of the B. thuringiensis strain 407 Cry ⁇ was replaced by the copy interrupted with the “Km R cassette” by genetic recombination in vivo by using the protocol previously described (Lereclus et al., 1992, Bio/Technology 10: 418-421).
- the resultant B. thuringiensis strain (designated 407-OA::KmR) is resistant to kanamycin (300 ⁇ g/ml) and does not produce spores when it is cultured in HCT medium, usually favorable to the sporulation of B. thuringiensis .
- a DNA/DNA hybridization experiment performed with the 2.4 kb HindIII fragment as probe revealed that the spoOA gene of the B. thuringiensis strain 407 Cry ⁇ has indeed been replaced by the copy interrupted with the “Km R cassette”.
- the plasmid pHT305P bearing the cryIIIA gene was introduced into the B. thuringiensis strain 407-OA::KmR by electroporation.
- the recombinant clone obtained was deposited with the CNCM on Mar. 5, 1994 and to which the access number I-1412 was assigned.
- the recombinant clone obtained was cultured at 30° C. in HCT medium+glucose 3 g/l or in LB medium (NaCl, 5 g/l; yeast extract, 5 g/l; Bacto tryptone 10 g/l) to estimate the production of toxins. After about 48 hours the bacteria contained a crystal visible by examination with the optical microscope.
- This crystal was rhomboidal, characteristic of the crystals constituted by the CryIIIA protein.
- the crystals produced by the B. thuringiensis strain 407-OA::KmR ⁇ pHT315 ⁇ are of considerable size and remain included in the cells several days after the latter have ceased to develop in HCT medium; in LB medium a portion of the cells lyse and the crystals are released.
- the crystals are constituted of proteins of about 70 kDa (CryIIIA) specifically toxic for the Coleoptera.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Genetics & Genomics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- General Health & Medical Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Biotechnology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Plant Pathology (AREA)
- Physics & Mathematics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Gastroenterology & Hepatology (AREA)
- Medicinal Chemistry (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Saccharide Compounds (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
The present invention provides nucleotide sequences from Bacillus bacteria, which control the expression of other DNA sequences in a cell host.
Description
- The object of the invention is nucleotide sequences of bacteria, in particular Gram+ bacteria such as bacteria of the Bacillus type and more particularly nucleotide sequence of the cryIIIA gene for the control of the expression of DNA sequences in a cell host.
- The cryIIIA gene codes for a toxin specific for the Coleoptera and is weakly expressed byBacillus thuringiensis when it is cloned in a low copy number plasmid.
-
- 1) the class of the Cry toxins (I, II, III, etc. . . . ) which have similar structures;
- 2) the class of the Cyt toxins, which is not related to the Cry class (Höfte, H et al. 1989, Microbiol. Rev. 53: 242-255)
- These toxins ofB. thuringiensis are of general interest for the purpose of the development of bio-pesticides and also in as much as the synthesis of crystal proteins is known to be perfectly coordinated with the sporulation phase of the organism, making this organism interesting for the study of genetic regulation in sporulating Gram-positive bacteria.
- Various mechanisms implicated in the regulation of the synthesis of the crystal proteins ofB. thuringiensis have been described. The high level of expression of these proteins is attributed, at least in part, to the stability of the mRNA. Some authors have attributed the stability of this mRNA to the presence downstream from the gene for the toxin of a structure playing a terminator role which might act as a positive retro-regulator by protecting the 3′ end of the mRNA from degradation by nucleases, thus increasing the half-life of the transcripts (Wong, H. C. et al., 1986 Proc. Natl. Acad. Sci. USA 83: 3233-3237).
- A hypothesis has also been put forward concerning the presence of polypeptides implicated in the synthesis of crystal proteins, polypeptides which are supposed to act either by directing the folding of the protein in the form of a protein having a stable conformation or to protect these proteins from proteolytic degradation.
- Studies with the electron microscope and biochemical studies of sporulation inB. thuringiensis show that the production of the crystal protein is dependent on sporulation and is located in the mother cell compartment (Ribier, J. et al. 1973 Ann. Inst. Pasteur 124A: 311-344).
- Recently, two sigma factors, sigma 35 and sigma 28, which specifically direct the transcription of the cryIA genes have been isolated and characterized. These amino acid sequences exhibit an identity of 88 and 85% with the sigma factors E and K ofBacillus subtilis, respectively (Adams, L. F., 1991, J. Bacteriol. 173: 3846-3854). These sigma factors are produced exclusively in sporulating cells and are capable of functioning in the mother cell compartment, confirming that the expression of the genes for the crystal protein is controlled in time and space. Thus, in the prior art it has been concluded that the expression of the gene with time is, at least in part, ensured by the successive activation of the sigma factors specific for sporulation. Hitherto, three groups of promoters have been identified. Two of these groups include promoters recognized by specific sigma factors and, according to the prior art, the sigma factors associated with the third group if promoters (including that of the cryIIIA gene) have not been identified (Lereclus, D., et al. 1989 American Society for Microbiology, Washington, D.C.).
- Finally, the copy number of the plasmid bearing the gene seems to be an important factor for the expression of the cry gene inB. thuringiensis. In the B. thuringiensis wild type strain, the cry genes are localized on large plasmids, present in a low number of copies.
- Cloning experiments with a 3 kb HindIII fragment cloned in a low copy number plasmid lead to a low production of toxins in a non-crystal-forming strain (cry−) of B. thuringiensis. On the other hand, large quantities of toxins are synthesized when the gene is cloned in plasmids of high copy number (Arantes, O et al. 1991, Gene 108: 115-119).
- The object of the invention is agents making it possible to obtain a high level of expression of the protein encoded in the cryIIIA gene and more generally agents making it possible to control the level of expression of DNA sequences coding for a specific protein of interest in bacterial strains, preferably Gram+ strains such as Bacillus strains, since it is possible to obtain this expression when the coding DNA sequence is located on a vector, in particular on a plasmid of low copy number.
- Generally speaking, the invention relates to an expression system comprising a DNA sequence, able to intervene in the control of the expression of a coding nucleotide sequence and obtained by associating two distinct nucleotide sequences intervening in different but, preferably, not dissociable ways in the control of the expression of the coding sequence. The first nucleotide sequence exhibits a promoter activity whereas the second sequence, initiated by the promoter activity of the first, intervenes to enhance the expression of the gene. The DNA sequence of the invention makes it possible to attain a high level of expression of the coding part of a gene in a bacterium, in particular a Gram+ type of bacterium.
- The first nucleotide sequence of the expression system of the present invention identified in the framework of the present demand as being the promoter consists of either the promoter of the host strain in which the gene of interest to be expressed is introduced, or of an exogenous promoter, functional in the host used. The second nucleotide sequence of the expression system of the invention identified in the present application as being the “downstream region” designates any sequence preferably situated between the promoter and the sequence coding for a gene to be expressed, able to play a role particularly at the post-transcriptional level when the gene is expressed. More particularly, the downstream region does not act directly on the translation of the coding sequence to be expressed.
- In a preferred manner, the “downstream region” consists of a nucleotide sequence, particularly an S2 sequence or a sequence analogous to S2, containing a region essentially complementary to the 3′ end of the RNA, particularly the 16S RNA, of the ribosomes of bacteria, particularly of Gram+ bacteria of the Bacillus type.
- The nucleotides forming the DNA sequence according to the invention may or may not be consecutive in the sequence from which the DNA sequence is defined.
- In the context of the present application the expression “DNA sequence able to intervene in the control of the expression of a coding nucleotide sequence” expresses the capacity of this DNA sequence to initiate or prevent the expression of the coding sequence or to regulate this expression in particular at the level of the quantity of the product expressed.
- A DNA sequence according to the invention is such that the coding nucleotide sequence that it controls is placed immediately downstream, in phase with the same reading frame as it or, on the other hand, it is separated from this DNA sequence by a nucleotide fragment.
- Hence the invention relates to a DNA sequence for the control of the expression of a coding sequence for a gene in a cell host, the DNA sequence is characterized in that it includes a promoter and a nucleotide sequence or downstream region situated in particular downstream of the promoter and upstream at said coding sequence. The nucleotide sequence or downstream region contains a region essentially complementary to the 3′ end of a bacterial ribosomal RNA. The DNA sequence of the invention is capable of intervening to enhance the expression of the coding sequence placed downstream in a cell host.
- The inventors have identified a DNA sequence of the type previously described, capable of intervening in the control of the expression of the coding sequence of the cryIIIA gene, and making it possible in particular to obtain a high level of expression when the coding sequence is placed on a low copy number plasmid.
- The invention also relates to a DNA sequence characterized by the following properties:
- it is included in a DNA sequence about 1692 bp long, defined by the restriction sites HindIII-PstI (H2-P1 fragment), such as that obtained by partial digestion of the 6 kb BamHI fragment borne by the cryIIIA gene of Bacillus thuringiensis strain LM79;
- it is capable of intervening in the control of the expression of a coding nucleotide sequence placed downstream in a host cell, in particular a bacterial cell host of theBacillus thuringiensis and/or Bacillus subtilis type.
- The restriction sites referred to above are shown in FIG. 1.
- In the remainder of the text the abbreviations Hn will be used to designate the HindIII site having the position “n” with respect to the first HindIII site of the BamHI fragment. Similarly, the expression Pn designates the PstI site at position “n” with respect to the first PstI site on the BamHI fragment.
- The DNA sequence defined above can be isolated and purified for example from the plasmid bearing the cryIIIA gene ofBacillus thuringiensis.
- The expression system for cryIIIA comprises a first nucleotide sequence or promoter situated between the TaqI and PacI sites (
positions 907 to 990) and a second nucleotide sequence or “downstream region” included between the XmnI and TaqI sites (positions 1179 to 1559) as shown in FIG. 6. The presence of two sequences of this type is preferred to obtain an optimal level of expression of the cryIIIA gene or of another gene placed under the control of this expression system. - Also included in the framework of the invention is an expression vector characterized in that it is modified at one of its sites by a DNA sequence such as that described above so that said DNA sequence intervenes in the control of the expression of a specific coding nucleotide sequence.
- A vector of the invention may preferably be a plasmid, for example a plasmid of the replicative type.
- A particularly useful vector is the plasmid pHT7902′lacZ deposited with the CNCM (Collection Nationale de Cultures de Micro-organismes-Paris-France) on Apr. 20, 1993 under No. I-1301.
- The object of the invention is also a recombinant cell host characterized in that it is modified by a DNA sequence such as that previously defined or by an expression vector described above. A particularly useful cell host is the strain 407-OA:KmR (pHT305P) deposited with the CNCM on May 3, 1994 under No I-1412.
- The object of the invention is a DNA sequence capable of influencing the expression of the coding part of a gene in a bacterial cell host. More particularly, the invention relates to the association of two nucleotide sequences, namely a promoter and a downstream region capable of intervening at the post-transcriptional level when the coding part of the gene is expressed.
- The expression system of the invention which, as will be described in detail hereafter, probably involves the hybridization of a part of the downstream region with the 3′ end of the 16S RNA of a bacterial ribosome, may be used for the expression of genes in a wide range of host cells. This extensive use of the expression system of the invention is possible, given the considerable homology observed at the level of the various 16S RNAs of bacterial ribosomes. Since the inventors have defined the regions essential for its functioning, the expression system of the present invention can thus be used in any type of bacterial host, the necessary adaptations forming part of the knowledge of the specialist.
- In general and without wishing to restrict it for reasons which will become evident below, the expression system of the present invention when used for the expression of genes in Gram+ bacteria of the Bacillus type is situated upstream from the coding part of the gene to be expressed. More particularly, the downstream region is normally situated immediately upstream from the gene whereas the promoter is located upstream from the downstream region, although another position might be envisaged for this latter. It is possible to envisage the displacement of the downstream region when the system is used in a cell host of the E. coli type in which the mRNAs are degraded in the reverse sense. It is possible to envisage the use of a downstream region downstream and upstream of the coding sequence which would permit the “protection” of the coding region by a mechanism which will be described in detail below.
- According to a first preferred embodiment of the invention, the DNA sequence corresponds to the HindIII-PstI (H2-P1) sequence described above and comprises two nucleotide sequences (a promoter and a downstream region) having distinct functions.
- According to a particularly useful embodiment of the invention, the DNA sequence corresponds to the nucleotide sequence designated by the expression Seq.
No. b 1 and corresponding to the DNA fragment comprising thenucleotides 1 to 1692 of the sequence shown in FIG. 3. - The promoter and the downstream region of the DNA sequence of the invention are described in detail below.
- Preferably, a DNA sequence of the invention intervenes at the level of the control of transcription.
- In this case it is a nucleotide sequence previously identified as being the promoter. Generally speaking as mentioned previously, the promoter is situated upstream from the downstream region and hence at a certain distance from the coding region of the gene. However, it is possible to envisage the relocation of the promoter provided it remains localized upstream from the downstream region.
- As to the nature of the promoter, it seems preferable to use a promoter derived from the host cell used for the expression of the gene of interest. However, in certain situations the use of an exogenous promoter may be indicated. For example, promoters such as the promoters of the degO, λPL, lacZ, cryI, cryIV or α-amylene genes may be used.
- In the context of the present invention particularly preferred fragments comprising a promoter region are the following fragments, shown in FIG. 1:
- the sequence defined by the TaqI-PacI restriction sites; for the sake of convenience, PacI is taken to designate the end of this fragment which is in reality found at
nucleotide 990 of the sequence shown in FIG. 3, whereas the PacI site ends at position 985, - or any fragment of this sequence, which conserves the properties of this sequence with respect to the control of the expression of coding nucleotide sequence.
- More particularly, any part of at least 10 nucleotides of this sequence, naturally consecutive or not, capable of intervening in the control of the expression of a coding nucleotide sequence placed downstream in a cell host constitutes a preferred embodiment of the invention. For example, within the sequence mentioned previously are found the −35 (TTGCAA) and −10 (TAAGCT) boxes of the promoter.
- According to another embodiment of the invention the “control” DNA sequences comprising the promoter mentioned above are characterized by their nucleotide sequence. In this respect, the object of the invention in particular is the DNA sequences corresponding to the following sequences:
- the DNA sequence corresponding to the Seq No. 3 sequence corresponding to the fragment comprising the
nucleotides 907 to 990 of the sequence shown in FIG. 3, or a variant comprising thenucleotides 907 to 985. - The object of the invention is also DNA sequences hybridizing under non-stringent conditions, such as those defined below, with one of the sequences described above. In this case, one of the above sequences in question is used as probe.
- A sequence of the invention included in the downstream region is selected for its capacity to intervene in order to enhance the expression of a gene which would be initiated by a promoter situated upstream from this sequence. It is probably a sequence capable of intervening at the post-transcriptional level when the coding sequence is expressed.
- In fact, the experimental results obtained by the inventors seem to indicate that the post-transcriptional effect of the downstream region previously defined results, at least when the cryIIIA gene is being expressed, from the hybridization between the 16S ribosomal RNA of the host cell and an S2 sequence of the cryIIIA messenger RNA. It seems that the ribosome or a part of the ribosome binds to this downstream region and thus protects the mRNA from exonuclease degradation initiated at the 5′. This binding is thus expected to have the effect of increasing the stability of the messengers and of thus enhancing the level of expression of the cloned gene.
- One of the particularly preferred fragments in the context of the embodiment of the invention and one which may be used as downstream region is the following fragment, shown in FIG. 1:
- the sequence defined by the restriction sites XmnI-TaqI (
positions 1179 to 1556), - or any fragment of this sequence conserving the properties of this sequence with respect to the control of the expression of a coding nucleotide sequence.
- According to another embodiment of the invention, the “control” DNA sequences comprising the downstream region mentioned above are characterized by their nucleotide sequence. In this respect, the object of the invention is in particular the DNA sequences corresponding to the following sequences:
- the DNA sequence corresponding to the sequence Seq No.4 corresponding to the fragment comprising the
nucleotides 1179 to 1559 of the sequence shown in FIG. 3, - the DNA sequence corresponding to the sequence Seq No.5 corresponding to the fragment comprising the
nucleotides 1179 to 1556 of the sequence shown in FIG. 3, - the DNA sequence corresponding to the sequence Seq No.11 corresponding to the fragment comprising the
nucleotides 1413 to 1556 of the sequence shown in FIG. 3, - the DNA sequence corresponding to sequence Seq No.8 corresponding to the fragment comprising the
nucleotides 1413 to 1461 of the sequence shown in FIG. 3, - the DNA sequence corresponding to the sequence Seq No.9 corresponding to the following DNA fragment:
5′-AGCTTGAAAGGAGGGATGCCTAAAAACGAAGAACTGCA-3′ 3′-ACTTTCCTCCCTACGGATTTTTGCTTCTTG-5′ - the DNA sequence corresponding to the sequence Seq No.10 corresponding to the following DNA fragment:
5′-CTTGAAAGGAGGGATGCCTAAAAACGAAGAAC-3′ 3′-GAACTTTCCTCCCTACGGATTTTTGCTTCTTG-5′ - The object of the invention is also DNA sequences hybridizing under non-stringent conditions such as those defined hereafter, with one of the sequences described above. In this case, the relevant sequence defined above is used as probe.
- It seems that the downstream region consists initially of a region said to be “essential”, sufficiently complementary to the 3′ end of a 16S bacterial ribosomal RNA to allow the binding of the ribosome to this essential region. Downstream from this essential region bearing the ribosomal binding site, a second region is assumed to be situated comprising an additional structure capable of having an additional positive effect at the level of the expression of the coding sequence. It is possible that this second sequence prevents the movement of the ribosome once this latter is bound to the essential region.
- For example, in the expression system of the cryIIIA gene, it seems that the nucleotide sequence situated between the
positions nucleotides - It seems that the minimal length of the nucleotide sequence making possible adequate binding to the ribosome is about 10 nucleotides. The object of the invention is thus also any part of at least 10 nucleotides of the H2-P1 sequence, naturally or not consecutive, capable of controlling in a cell host of the Bacillus type the expression of a coding nucleotide sequence placed downstream or this part of the H2-P1 sequence.
- In the specific case of the expression system of the cryIIIA gene, it would seem that the sequence of the “essential” region including the binding site is the following:
5′ - GAAAGGAGG - 3′ 3′ - CTTTCCTCC - 5′ - It is possible to make minor modifications at the binding site in as much as the intensity of the interaction between the 3′ end of the 16S ribosomal RNA and this “essential” region is sufficiently strong for there to be hybridization between the ribosome and the binding site. From the calculations of the interaction energy which may be carried out by the specialist skilled in the art, modifications to the binding site can be envisaged if the intensity of the binding remains about the same as the the intensity measured when the natural “essential” region is used.
- In the case of the binding site previously illustrated, it is possible to envisage certain modifications to the first four nucleotides as well as to the seventh nucleotide. However, it seems that the nucleotides in
positions - Since the 3′ end of the 16S bacterial ribosomal RNA is relatively well conserved from one bacterial species to another, the expression system of the present invention may thus be used in a large number of bacterial hosts without substantial modifications having to be made.
- The object of the invention is thus also a DNA sequence characterized by the following properties:
- it is contained in a nucleotide sequence hybridizing under non-stringent conditions with the DNA fragment included between the
nucleotides - it is capable of intervening in the control of the expression in a host cell of a coding sequence, in particular a sequence coding for a Bacillus polypeptide, toxic towards insects or a sequence coding for a polypeptide expressed during the stationary phase in Bacillus.
- A sequence coding for a Bacillus polypeptide, toxic towards insect larvae is for example a sequence included in the cryIIIB gene ofB. thuringiensis.
- A DNA sequence corresponding to this definition can be identified by using oligonucleotide primers.
- Hybridization under non-stringent conditions between the test DNA sequence and the DNA fragment included between the
nucleotides - The DNA probe and the sequences bound to the nitrocellulose filter or to the nylon filter are hybridized at 42° C. for 18 h with shaking in the presence of formamide (30%), 5× SSC of the 1× Denhardt solution. The 1× Denhardt solution is composed of 0.02% Ficoll, 0.02% polyvinylpyrrolidone and 0.02% bovine serum albumin. The 1× SSC is composed of 0.15M NaCl and 0.015 M sodium citrate. After hybridization, the filter is successively washed at 42° C. for 10 minutes in each of the following solutions:
- formamide (30%), 5× SSC
- 2× SSC
- 1× SSC
- 0.5× SSC
- The hybridization conditions just described are those which are used for all the applications of the present invention when necessary.
- The DNA sequences according to the invention may be optionally recombinant among themselves or associated on a vector at different sites. In particular, the TaqI-PacI fragment is advantageously associated with the XmnI-TaqI fragment defined above in the form of a single sequence and also the TaqI-PacI fragment with the sequence Seq No.8. Such sequences have the advantageous property of making possible a high level of expression (up to 60,000 Miller units) of the coding nucleotide sequence, a level of expression which may be observed with the beta-galactosidase gene.
- Furthermore, particularly preferred fragments in the context of the embodiment of the invention are the following fragments shown in FIG. 8B:
- the sequence defined by the TaqI-TaqI restriction sites,
- or any fragment of these sequences conserving the properties of these sequences with respect to the control of the expression of a nucleotide coding sequence.
- According to another embodiment of the invention, the DNA sequences referred to above are characterized by their nucleotide sequence. In this respect, the object of the invention is in particular the DNA sequences corresponding to the following sequences:
- the sequence Seq No.2, corresponding to the fragment comprising the
nucleotides 907 to 1559 of the sequence shown in FIG. 3, - the DNA sequence corresponding to the sequence Seq No.6 corresponding to the fragment comprising the
nucleotides 907 to 1353 and 1413 to 1556 of the sequence shown in FIG. 3, - the DNA sequence corresponding to the sequence Seq No.7 corresponding to the fragment comprising the
nucleotides 907 to 990 and 1179 to 1559 of the sequence shown in FIG. 3. - The object of the invention is also DNA sequences hybridizing under non-stringent conditions such as those defined above with one of the sequences described above. In this case, one of the above sequences is used as probe.
- The DNA sequences of the invention can be isolated and purified from Bacillus, in particular fromB. thuringiensis; they can also be prepared by synthesis according to known procedures.
- Also included in the framework of the invention are the RNA sequences corresponding to the DNA sequences described above.
- The object of the invention is also a recombinant DNA sequence characterized in that it comprises a defined coding sequence under the control of a DNA sequence corresponding to one of the preceding specifications.
- The capacity of the DNAs of the invention to intervene in the control of the expression of nucleotide sequences can be verified by implementing the following test:
- the DNA sequence of the invention whose capacity to intervene in the control of the expression of a coding sequence it is desired to evaluate is inserted in a low copy number plasmid upstream from a coding nucleotide sequence.
- the plasmid thus prepared is used to transform (for example by electroporation) a strain ofBacillus thuringiensis for example a B. thuringiensis strain HD1 cry−B;
- the Bacillus strain thus transformed is cultured under conditions permitting the expression of the coding nucleotide sequence;
- the expression product of this coding nucleotide sequence is detected by current qualitative and/or quantitative measuring procedures.
- In order to carry out this test, the coding nucleotide sequence should advantageously be the coding sequence of the cryIIIA gene ofBacillus thuringiensis or for example a sequence coding for beta-galactosidase.
- Different types of cell host may be used in the framework of the invention. Mention should be made as an example of Bacillus, for exampleBacillus thuringiensis or Bacillus subtilis. It is also possible to envisage the use of cells such as E. coli.
- In cell hosts capable of sporulating, the coding sequence may be expressed during the vegetative phase or the stationary phase of growth or during sporulation.
- A interesting cell host in the framework of the invention may also be constituted by a vegetal or animal cell.
- If it is necessary or desired, depending on the nature of the coding nucleotide sequence expressed, a signal sequence can also be inserted in the expression vector of the invention so that the expression product of the coding sequence is exposed at the surface of the cell host, or even exported from this cell host.
- In a really interesting manner it will be possible to use strains of Bacillus which have become asporogenic either naturally or as a result of mutation and in particular strains ofBacillus subtilis or Bacillus thuringiensis.
- Since the inventors have demonstrated that the DNA sequences of the invention permit the expression of a defined coding sequence independently of the sporulation phase of strains of the Bacillus type, an asporogenic host may offer the advantage of providing agents of expression of coding sequences to be included in biopesticide compositions whose possible negative effects vis-a-vis the environment would be expected to be attenuated, and even eliminated.
- The asporogenic host selected is particularly advantageous for expressing a coding sequence during its stationary phase of growth, when the coding sequence is under the control of one of the sequences of the invention.
- In the case of asporogenic strains of Bacillus obtained by mutation, an example illustrating the particular efficacy of this type of strain for the expression of a coding sequence during the stationary phase of growth is the construction of aB. thuringiensis strain mutated in the SpoOA gene. A B. thuringiensis strain in which the spoOA gene is inactivated and which bears a gene, for example a gene for an insecticidal toxin cryI, cryII, cryIII or cryIV or also a gene of industrial interest whose expression is placed under the control of the cryIIIA expression system offers advantageous characteristics. In particular, the B. thuringiensis strain 407.OA:KmR ((pHT305P) whose construction is described in detail below has at least the following advantages:
- a) oveproduction of proteins during the stationary phase of growth;
- b) the proteins (for example, biopesticides) remain enclosed in the cell and thus would be expected to have an increased persistence in the environment; and
- c) the potential problems linked to the dissemination of spores are thus avoided.
- Other characteristics and advantages of the invention follow from the Examples which follow as well as from the Figures:
- FIG. 1: Schematic restriction map of the plasmids used (A)—Physical map of the shuttle vector pHT304. The arrows above ErmR and ApR indicate the direction of transcription of the ermC and bla gene, respectively. The arrow and the expression LacZ indicate the direction of transcription from the promoter of the LacZ gene. ori Bt is the replication region of the plasmid pHT1030 of B. thuringiensis (B)—Simplified restriction map of the fragments bearing the cryIIIA gene. The A fragment is a 6 kb BamHI fragment of B. thuringiensis LM79; the restriction fragments G, P and H were obtained by partial digestion with HindIII and C was obtained after total digestion of fragment A with HindIII. These fragments were cloned in pHT304 to give the derivatives pHT305A, pHT305G, pHT305P, pHT305H and pHT305C, respectively. The cryIIIA gene (hatched box) and the direction of transcription are indicated. The numbers under each site indicate their order from left to right.
- FIG. 2: Analysis of the proteins of the transformants ofB. thuringiensis expressing the cryIIIA gene. An identical volume (20 μl) of samples was loaded into each well. The
lines 1 to 4 and 6 to 8 of B. thuringiensis Kurstaki HD1 Cry− B bearing pHT305A, pHT305G, pHT305H, pHT305P, pHT305HΩH2-H3, pHT305C and pHT304, respectively.Column 5 corresponds to the molecular weight markers (from top to bottom 97, 66, 60, 43 and 30 kDa). The arrows indicate the crystal components of 73 and 67 kDa. - FIG. 3: Nucleotide sequence of the 5′ end of the region upstream from the cryIIIA gene.
- (A)—Physical map of the H2-P1 (H2-H3+H3-P1) fragment in the 5′ to 3′ orientation. The positions of the nucleotides of the two HindIII sites (H2+H3) which define the grey tinted fragment are indicated. The second sequenced segment (H3-P1 fragment) was the fragment between the third HindIII site and the PstI site (P1). An ATG transcription initiation site for the CryIIIA toxin is shown. The numbering of the nucleotides is reported with respect to the sequenced fragment and not with respect to the initiation of transcription.
- (B)—Nucleotide sequence of the fragment H2-P1. The ATG initiation codon is indicated in bold characters and the end of the major transcript on the gel, specific for the cryIIIA, corresponds to the T located at
position 1413 Another transcript starts at nucleotide 983.; it is apparently a minor component on the gel. The sequence comprises at least two inverted repeats. The numbering of the nucleotides starts from the second HindIII site and ends at the PstI site shown in FIG. 3A. - FIG. 4: Representation of the plasmids PAF1, pHT304′lacZ, pHT7901′lacZ and pHT7902′lacZ.
- FIG. 5: Profile of beta-galactosidase activity. The growth of the Bt cells and the conditions for preparing the samples as well as the test are described in “Materials and Methods”. the time t0 indicates the end of the exponential phase and tn is the number of hours before (−) or after time zero.
- FIG. 6: Detailed restriction map of the plasmids pHT7902′lacZ, 7903′lacZ, 7907′lacZ, 7909′lacZ, 7930′lacZ and 7931′lacZ. These plasmids were inserted intoB. thuringiensis and the beta-galactosidase activity was measured at time t6 of sporulation (in Miller units). The activities of 30,000, 30,000, 3.500, 2,000, 35,000 and 60,000 respectively are observed.
- FIG. 7: Beta-galactosidase activity inB. subtilis strains Spo− and Spo+; the cultures are grown in SP medium.
- FIG. 8: Schematic restriction map of the constructions used to measured the transcriptional activity of the regions of the expression system at cryIIIA inB. thuringiensis strain kurstaki HD1 Cry−B.
- A—Physical map of the vector pHT304-18Z. The arrows indicate the direction of transcription of the genes ermC, bla, lacZ and the promoter placZ; and the orientation of the replication inE. coli (oriEc). ori1030 indicates the region of replication of the plasmid pHT1030 (Lereclus and Arantes, Mol. Microbiol. 1992, 7: 35-46). SD indicates the ribosomal binding site of the spoVG gene placed in front of the lacZ gene (Perkins and Youngman, 1986, Proc. Natl. Acad. Sci. USA, 83: 140-144).
- B—Physical representation and transcriptional activity of the different regions of the cryIIIA expression system fused with the lacZ gene. The numbering of the nucleotides is established according to the DNA sequence of the H2-P1 fragment presented in FIG. 3B. The arrows indicate the position of the 5′ ends of the transcripts as they are identified by primer extension. The dotted lines indicate the localization of the deleted fragments. The beta-galactosidase activity of the different constructions was measured at times t0 and t6 of sporulation and is indicated in Miller units.
- FIG. 9: Determination of the 5′ end of the cryIIIA/lacZ transcript produced by theB. thuringiensis strain bearing the plasmid pHT7815/8′lacZ. The total RNA of the cells was extracted at t3 and subjected to a primer extension experiment with the reverse transcriptase using as primer the following oligonucleotide: 5′-CGTAATCTTACGTCAGTAACTTCCACAG> −3′. This oligonucleotide is complementary to the region localized between the ribosomal binding site of the spoVG gene and the initiation codon of the lacZ gene. The same oligonucleotide was used to determined the nucleotide sequence of the corresponding region of the plasmid pHT7815/8. The 5′ end is numbered according to the DNA sequence of the H2/P1 fragment presented in FIG. 3B.
- FIG. 10: Schematic physical map of the constructions used to measure the post-transcriptional activity of the downstream region of the cryIIIA expression system in
B. subtilis strain 168. The numbering of the nucleotides is established according to the DNA sequence of the H2-P1 fragment presented in FIG. 3B. The arrow indicates the starting position of transcription located at position +984. The asterisk atposition 1421 indicates the replacement of GGA by CCC. The dashed lines indicate the location of the deleted DNA fragments. The beta-galactosidase activity of the different constructions was measured at the time t3 of sporulation and is indicated in Miller units. - FIG. 11: Nucleotide sequence of the spoOA gene ofB. thuringiensis strain 407.
- A—Schematic restriction map of the 2.4 kb DNA fragment bearing the spoOA gene. The arrow indicates the orientation of the transcription of the spoOA gene.
- B—Nucleotide sequence of the open reading frame comprising the coding sequence of the spoOA gene. The initiation codon GTG is indicated in bold characters. The two HincII sites are underlined. The three dots represent the stop codon.
-
-
-
- This strain belongs to the
serotype 8 and produces quantities of toxins similar to those produced by other strains of B. thuringiensis bearing the cryIIIA gene (Donovan, V. P. et. al. 1988 Mol. Gen. Genet. 214, 365-372-Sekar, V. et al. 1987 Proc. Natl. Acad. Sci. USA 84: 7036-7040). -
- TheB. thuringiensis strain subspecies Kurstaki HD1 Cry−B was cultured and transformed by electroporation according to the procedure described by Lereclus et al. (1989 FEMS Microbiol. Lett. 60: 211-218).
- The antibiotic concentrations for the selection of the bacteria were 100 μg/ml for ampicillin and 25 μg/ml for erythromycin.
- The 6 kb BamHI fragment bearing the cryIIIA gene and the adjacent regions was isolated fromB. thuringiensis LM79 and inserted into the unique BamHI site of pUC19 to produce pHT791 which was employed as DNA source for the construction of the various plasmids used here. The plasmid pHT305A was obtained by insertion of the 6 kb BamHI fragment into the unique BamHI site of the shuttle vector pHT304 (Arantes, O and Lereclus D 1991, Gene 108: 115-119) (FIG. 1A). Samples of the 6 kb BamHI fragment were partially or completely digested with HindIII and the resulting fragments were cloned between the BamHI and HindIII sites or at the HindIII site of pHT304 to give the derivatives pHT305G, pHT305H, pHT305P and pHT305C (FIG. 1). The plasmid pHT305HΩH2H3 was obtained by inserting the H2-H3 fragment filled at the ends in the SmaI site of pHT305H (fragment defined respectively by the second and third HindIII sites of the 6 kb fragment).
- The 45 kb SmaI-KpnI fragment of the pTV32 plasmid (Perkins, J. B. et al; 1986 Proc. Natl. Acad. Sci. USA 83: 140-144) containing the lacZ and ermC genes was cloned in pEB111 (Leonhardt, H. et al. 1988 J. Gen. Microbiol. 134: 605-609) to give the plasmid pMC11. The plasmid pHT304′lacZ used to construct the transcriptional fusions was obtained by cloning the 3.2 kb DraI-SmaI restriction fragment containing the lacZ gene lacking a promoter isolated from pMC11, at the unique SmaI site of pHT304. The plasmid pHT7901′lacZ was obtained by cloning the H3-P1 fragment {(HindIIl-PstI) see FIG. 3A} between the unique HindIII and PstI sites of pHT304′lacZ. The plasmid pHT7902′lacZ was constructed by cloning the H2-H3 fragment (FIG. 3A) into the unique HindIII site of phT7901′lacZ. The orientation of the H2-H3 fragment was determined by mapping the HpaI and BalI restriction sites with respect to the PstI site. Two HpaI sites are located at the nucleotide positions of 50 and 392; the BalI site is located at nucleotide position 670 (FIG. 3). The general structure of the recombinant plasmids bearing the lacZ fusion is given in FIG. 4.
- The standard procedures were used to extract the plasmids fromE. coli to transfect the recombinant DNA of phage M13 and to purify the single-stranded DNA (Sambrook J et al., 1989 A laboratory manual, 2nd ed. Cold Spring Harbor Laboratory-Cold Spring Harbor, N.Y.). The restriction enzymes, the T4 DNA ligase and the T4 polynucleotide kinase were used in accordance with the manufacturer's instructions. The Klenow fragment of the DNA polymerase I and deoxyribonucleoside triphosphates were used to provide the H2-H3 fragment with blunt ends. The DNA restriction fragments were purified on agarose gels using the Prep A gene kit (Bio-Rad). The nucleotide sequences were determined by the dideoxy chain termination method (Sanger F. et al. 1977 Proc. Natl. Acad. Sci. vol. 175, 1993 USA 74: 5463-5467) using the M13mp18 and M13mp19 phages as matrices as well as the Sequenase kit version 2.0 (US Biochemical Cor. Cleveland Ohio) and {α-35S} dATP (15 TBq; Amersham, United Kingdom).
- The DNA sequences were analysed by using the programs of the Pasteur Institute on a general data-processing computer MV10000.
- TheB. thuringiensis subspecies Kurstaki HD1 Cry−B (pHT305P) was cultured in a HCT medium (Lecadet et al. 1980 J. Gen. Microbiol. 121: 203-212) at 30° C. by shaking. The samples were taken at t0, t3, t6 and t9 (t0 is defined as being the start of sporulation and tn indicates the number of hours after the start of sporulation). The cells were recovered by centrifugation, resuspended in a HCO medium (Lecadet, M. M. et al., 1980 J. Gen Microbiol. 121: 203-212) containing 50 mM of sodium azide and immediately frozen at −70° C. until the RNA was extracted (Glatron, M. F. et al., 1972, Biochemie 54: 1291-1301). For the elongation test of the primer, a first oligonucleotide—a 39-mer (3′-CTT AGG CTT GTT AGC TTC ACT TGT ACT ATG TTA TTT TTG-5′) complementary to the
region 3′-1544 to 1583-5′ of the cryIIIA gene was synthesized and its 5′0 end was labeled with (γ-32P) dATP (110 TBq/mmol) by the T4 polynucleotide kinase. The 39-mer oligonucleotide was purified on a column of Sephadex G-25 (Pharmacia) (incorporation about 70%) and to be used as primer it was mixed with 50 μg of total RNA. - A second oligonucleotide, a 32-mer complementary to the region located between the positions 1090 and 1121 was also used as primer and made possible the detection of a second transcript, the start of transcription of which is situated at position 983. This oligonucleotide corresponds to the sequence
- 5′-GTTAGATAAGCATTTGAGGTAGAGTCCGTCCG-3′
- The hybridization (at 30° C.), the extension of the primer and the analysis of the products were carried out as described by Debarbouillé, M et al., (1983, J. Bacteriol. 153: 1221-1227). The primers of the 39-mer and the 32-mer were used for the elongation of the fragment H3-P1 cloned in M13mp19 and for the elongation of the H2-P1 fragment cloned in pHT7902′lacZ, respectively. The products resulting from the reactions were placed on gels in parallel with transcription products to determine the 5′ ends of the transcripts.
- A Northern blot analysis was performed with denatured RNA fractionated by electrophoresis on agarose gels containing 1.5% formaldehyde and transferred in a vacuum to Hybond-N+ (Amersham) membranes in 20×SSC for 1 h (1×SSC corresponds to 150 mM NaCl plus 15 mM sodium citrate, pH 7.0). The PstI-EcoRI restriction fragment of 874 bp (internal to the cryIIIA gene) was labelled with 32P with a nick translation kit (Boehringer Mannheim), then denatured and used as probe. A prehybridization was performed at 42° C. for 4 hours in a medium containing 50% formamide-1M NaCl-1% sodium dodecyl sulfate (SDS)-10×Denhardt's solution-50 mM Tris HCl (pH 7.5) −0.1% sodium PP, denatured salmon sperm DNA (>100 μg/ml) and the labelled probe (108 cpm/μg) was added to the prehybridization solution and the incubation was continued overnight. The membrane was washed at 65° C. for 30 minutes twice with 2×SSC-0.5% SDS, and once with 0.5×SSC-0.5% SDS.
- Equal quantities of RNA of synchronous cultures ofB. thuringiensis subspecies Kurstaki HD1 Cry−B bearing the plasmids pHT305P or pHT305H taken at t3 were deposited on to Hybond-C Extra membranes (Amersham) with a manifold apparatus (Schleicher & Schueller) by using the dot blot protocol described by Sambrook et al. (Sambrook, J. et al. 1989 Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.). The probe and the hybridization conditions were those described in the Northern blot tests.
- The cells were cultured in a HCT medium at 30° C. with shaking for 48 hours and the crystals were prepared according to the method described in the publication by Lecadet, M. M. et al. (1992 Appl. Environ. Microbiol. 58: 840-849) with the exception of the fact that the NaCl concentration was 150 mM. For gel electrophoresis on polyacrylamide-SDS (PAGE) 20 μl of each sample were used (Lereclus, D. et al. 1989 (FEMS Microbiol. Lett. 66: 211-218).
- The strains ofE. coli and B. thuringiensis containing the lacZ transcription fusions were detected by depositing on the solid medium the chromogenic substrate 5-bromo-4-chloro-3-indolyl-β-D-galactopyranoside (X-Gal) (40 μg/ml) and suitable antibiotics. The isolated strains were cultured as indicated and recovered at t-2, t-1, t0, t1.5, t3, t4.5, t6 and t7.5. After centrifugation, the pellets were immediately frozen at −70° C. (in order to prevent the inactivation of the beta-galactosidase) and thawed just before the treatment with ultrasonics to detect the beta-galactosidase (Msadek, T. et al. 1990 J. Bacteriol. 172: 824-834). The specific activities presented (expressed in Miller units per milligram of protein) correspond to the mean values of at least two independent experiments.
- Arantes and Lereclus (1991 Gene 108: 115-119) have shown that the cryIIIA gene was only weakly expressed in theB. thuringiensis strain HD1 Cry−B when it was cloned in a low copy number vector such as pHT304 (4 copies per chromosome equivalent).
- Starting from a 6 kb BamHI fragment bearing the cryIIIA gene and the adjacent regions (FIG. 1B) isolated from theB. thuringiensis strain LM79 specific for the Coleoptera, it has been investigated whether regions upstream from the gene might be implicated in the regulation of the expression of this gene. The 6 kb fragment was cloned into the unique BamHI site of the vector pHT304 (FIG. 1A); fragments obtained after partial or total digestion by HindIII of the 6 kb BamHI fragment were also inserted independently in the same plasmid to give the derivatives pHT305A, pHT305G, pHT305H, pHT305P and pHT305C (FIG. 1B). The five recombinant plasmids were then introduced in B. thuringiensis subspecies Kurstaki HD1 Cry−B by electroporation and the transformants were cultured for two days at 30° C. in a HCT medium (Lecadet, M. M. et al. 1980 J. Gen. Microbiol. 121: 203-212) containing 25 μg of erythromycin per ml.
- Preparations of spores containing crystals were recovered from cultures and examined by phase contrast microscopy and SDS-PAGE (FIG. 2). The recombinant strains bearing the vectors pHT305A, pHT305G and pHT305P (FIG. 2,
lines - On the other hand, no production of crystal was detected with the strains bearing pHT305H or pHT305C (FIG. 2,
lines - The nucleotide sequence of the 979 b H2-H3 fragment of the plasmid pHT791 was determined (FIG. 3B). Furthermore, the sequence of 713 bp extending from the third HindIII site to the first PstI site (H3-P1 fragment) was determined (FIG. 3B). This second fragment bears the region upstream of the promoter, the promoter itself, the potential ribosomal binding site and the first 151 codons of the cryIIIA gene (Sekar, V et al., 1987 Proc. Natl; Acad. Sci. USA 84: 7036-7040). There is no difference between the sequence of the H3-P1 fragment isolated from the strain LM79 and the corresponding regions of the cryIIIA genes isolated from B. thuringiensis subspecies tenebrionis, B. thuringiensis subspecies san diego and the strain EG2158 (Donovan W. P. et al., Herrnstadt C. et al., Höfte H. J. et al., Sekar V. et al.). No sequence potentially coding for a protein other than that corresponding to the 5′ end of cryIIIA was found. This region exhibits a high proportion of A+T bases (adenine-plus-thymine) corresponding to about 81% between the
bases 770 and 990 and two inverted repeat sequences. The first inverted repeat sequence is imperfect (16 of the 17 bp are identical) with a centre of symmetry at nucleotide 858 and the second is a perfect inverted repeat of 12 bp with a centre of symmetry at nucleotide 1379. The free energies leading to the formation of the stem loop structures calculated according to the method of Tinoco et al. (Tinoco, J. J. et al., 1973 Nature (London) New Biol. 246: 40-41) were −57.7 and −66.1 kJ/mol., respectively. - Sekar et al. have mapped the initiation site of the transcription of the cryIIIA gene starting from the RNAs isolated from early phase cells (stage II) and intermediary phase cells (stages III to IV) of sporulation by using the mung beam nuclease. These periods of growth correspond to t2 to t5. The extension from the primers was performed on RNAs extracted from cells in culture at t0, t3, t6 and t9 to determine whether other initiation sites are involved during the early and late phases of growth and in order to determine at which stage maximal transcription occurs. A start site for transcription appeared in the form of a weakly radioactive signal in the samples taken at t0 and t9 and this signal proved to be more intense in the samples at t3 and t6. This initiation site of transcription was mapped one nucleotide upstream from that described by Sekar et al.
- These results show that the major transcript has as its 5′ end the T located at position 1413 (FIG. 3). However, the T located at position 1413 (FIG. 3) might constitute the end of a stable messenger whose true initiation site is located upstream.
- The reverse transcriptase is satisfactory for extension from the primers in the case of fragments containing only 100 to 150 bases in as much as this enzyme may stop or be interrupted in regions containing considerable secondary structures at the level of the RNA matrix. In order to study the presence of a potential initiation site for transcription located very far upstream from the 5′ end of the cryIIIA gene, a Northern blot analysis was performed. The total RNA of the strain bearing pHT305P was recovered at t0, t3, t6 and t9. The RNAs were separated by electrophoresis on agarose gels and hybridized with a probe corresponding to the labelled internal fragments of cryIIIA (PstI-EcoRI fragment at 874 bp). In all of the samples a principal transcript of about 2.5 kb was detected. This is consistent with the size of the transcript defined by the initiation site for transcription described above and a potential termination sequence located about 400 bp downstream from the stop codon of cryIIIA described by Donovan et al.
- The relative quantities of specific mRNA of the CryIIIA toxin synthesized by the strain bearing pHT305P and by the strain bearing pHT305H were compared by a dot blot procedure RNAs isolated from synchronous cultures recovered at t3 were immobilized on a nitrocellulose membrane and hybridized with an excess of PstI-EcoRI probe of cryIIIA. The strain bearing pHT305P contained about 10 to 15 times more mRNA specific for cryIIIA than the strain containing pHT305H.
- The relative synthesis of the cryIIIA transcript in the presence and in the absence of the H2-H3 fragment indicated that this DNA segment regulates the expression of the cryIIIA gene at the level of the transcription rather than at the level of translation. Fusion with the lacZ gene was carried out to test the effect produced on transcription by the H2-H3 fragment. The lacZ gene lacking the promoter was subcloned in to the SmaI site of pHT304. The resulting plasmid pHT304′lacZ constitutes a system making it possible to generate fusion transcripts and to study their expression in B. thuringiensis under conditions approaching those taking place naturally with the cry genes (low copy number plasmid). Consequently, the 713 bp H3-P1 fragment was cloned between the HindIII and PstI sites of pHT304′lacZ to give pHT7901′lacZ. Finally, the H2-H3 fragment was cloned into the HindIII site of pHT7901′lacZ to give pHT7902′lacZ which bears the H2-H3 fragment in its original orientation with respect to the H3-P1 fragment (FIG. 4). The plasmids pHT7901′lacZ, pHT7902′lacZ and pHT7902′lacZ were introduced into B. thuringiensis subspecies Kurstaki HD1 Cry−B by electroporation. The vector pHT304′lacZ had a blue phenotype potentially attributable to the lacZ promoter or to another DNA region of pUC19 acting as promoter, located upstream from the cloning sites. The sporulation of each strain was induced and samples were taken at t−2 and t−1 (2 hours and 1 hour before the triggering of sporulation, respectively) and at to t0 to t7.5 at intervals of 1.5 hour and tested for beta-galactosidase activity (FIG. 5). The beta-galactosidase activity of the strain bearing pHT304′lacZ was constant at about 800 Miller units from t−2 to t7.5. The level of the production of enzymes of the strain bearing pHT7901′lacZ rose from about 250 Miller units at t−2 to about 1,200 Miller units at t7.5, indicating a small but significant increase of the beta-galactosidase activity during sporulation (this increase is not apparent because of the scale used in FIG. 5). On the other hand, the recombinant strain bearing pHT7902′lacZ produced much beta-galactosidase (33,000 Miller units at t6 and t7.5). Its beta-galactosidase activity increases from about 20 fold between t0 and t6 (FIG. 5). The ratio of the activities of the strains bearing pHT7901′lacZ and pHT7902′lacZ increased from 8 fold during the phase of vegetative growth to about 25 fold during the late phase of sporulation.
- The results presented above and more precisely the FIGS. 4 and 5 indicate that the cryIIIA expression system is functional (at low copy number) if the H2-H3 region is present upstream from the H3-H1 region. If this is the case, very high levels of expression are obtained whether with the cryIIIA gene or with the lacZ gene.
- 1) Precise Definition of the Enhancer Region
- Deletions from the H2-P1 fragment (FIG. 3A) showed that a TaqI-TaqI fragment (
positions 907 to 1559, FIG. 3) was sufficient to obtain the strong expression of the lacZ gene (plasmid pHT7930′lacZ, FIG. 6). - Furthermore, an internal deletion from the fragment between the PacI and Xmn I sites (
positions 990 to 1179) does not reduce the expression of the lacZ gene. - This internal deletion led to the introduction of a linker between the PacI and XmnI sites.
- The following two nucleotides were synthesized and hybridized together to construct a double-stranded DNA sequence capable of serving as linker between the PacI and XmnI sites:
-5′- TAAAGATATCTTTGAAGCTTCACGTGTTTAAACAGGCCT GCAG -3′- -3′- TAATTTCTATAGAAACTTCGAAGTGCACAAATTTGTCCG GACGTC -5′- - The linker used here has a sequence such that five nucleotides naturally present after the PacI site are reconstituted in the plasmid pHT7931′lacZ.
- In the presence of this deletion, a better expression seems to be obtained by bringing closer together the two regions TaqI-PacI (
positions 907 to 990) and XmnI-TaqI (positions 1179 to 1559) (plasmid pHT7931′lacZ, FIG. 6). - It follows that the cryIIIA expression system requires the association of two distinct DNA sequences; one is included between the TaqI and PacI sites (
positions 907 to 990), the other is included between the XmnI and TaqI sites (positions 1179 to 1559). - This conclusion is reinforced by the fact that in the absence of the XmnI-TaqI region (
positions 1179 to 1559), the region situated upstream from the XmnI site is not sufficient to obtain the high level of expression of the lacZ gene (plasmid pHT7907′lacZ, FIG. 6). In fact, the DraI-XmnI DNA sequence (positions 806 to 1179) placed upstream from the lacZ gene (plasmid pHT7907′lacZ makes it possible to obtain in Bt (B. thuringiensis) a beta-galactosidase activity of only about 3500 Miller units (to be compared with 30,000 Mu obtained with the plasmid pHT7902′lacZ and pHT7903′lacZ). - Hence this result confirms that the association of the two sequences TaqI-PacI (
positions 907 to 990) and XmnI-TaqI (positions 1179 to 1559) is necessary in order for the cryIIIA expression system to be fully functional. - The experiment performed with the DraI-XmnI fragment upstream from lacZ (plasmid pHT7907′lacZ) indicates that a promoter activity is included between DraI and XmnI, and even between TaqI and PacI (
positions 907 to 990) since the high beta-galactosidase activity is obtained when the PacI-XmnI fragment (positions 991 to 1179) is absent. - The analysis of the RNAs by primer extension carried out by using an oligonucleotide complementary to the sequence included between the positions 1090 and 1121 in fact makes it possible to detect an initiation of transcription in this region. The latter is located in position 983 (FIG. 3) or more probably at position 984. It follows from this that a promoter must be situated several base pairs upstream from this start. Although there is no obvious homology with known promoters, the −35 (TTGCAA) and −10 (TAAGCT) boxes of the promoter would be expected to be found between the positions 945 to 980.
- A MunI-PstI DNA fragment (
positions 952 to 1612) placed in front of lacZ (plasmid pHT7909′lacZ confers a weak beta-galactosidase activity comparable to that obtained with the plasmid pHT7901′lacZ (FIGS. 4 and 5). - This result suggests that the promoter situated at positions 945 and 980 may be inactivated in a construction starting at MunI (position 952).
- However, it is known that the minimal sequence necessary for the expression has been defined as starting at the TaqI site (position 907).
- It follows from these different experiments that a DNA sequence located between the TaqI and PacI sites (
positions 907 to 990) is required in order to obtain a high expression of lacZ and, consequently, a high level of transcription of cryIIIA. - In order to measure the activity of the upstream promoter, a transcriptional fusion was constructed with the DNA fragment containing this promoter and the lacZ gene. For this the expression vector pHT304-18Z was first constructed (FIG. 8A). The DNA fragment included between the
positions - The role of the upstream promoter in the global activity of the cryIIIA expression system was evaluated by analyzing the effect produced by its inactivation. The MunI restriction site was filled in with the aid of the Klenow fragment of the DNA polymerase in the presence of deoxynucleotides to give the plasmid pHT7832ΔMunI′lacZ. This leads to the addition of 4 nucleotides between the −35 and −10 regions of the promoter (CAATTAATTG versus CAATTG). The beta-galactosidase activity of the strain bearing pHT7832ΔMunI′lacZ was about 10 U/mg of proteins at t0 and about 30 U/mg of proteins at t6 (FIG. 8B). This result indicates that the upstream promoter is then inactivated. The DNA fragment containing the modified MunI site was introduced into the plasmid pHT7830′lacZ to give the plasmid pHT7830ΔMunI′lacZ. The beta-galactosidase activity of the strain bearing pHT7830ΔMunI′lacZ was about 25 U/mg of proteins at t0 and about 450 U/mg of proteins at t6 (FIG. 8B). By comparison with the strain bearing the plasmid pHT7830′lacZ, it follows that the upstream promoter is necessary for the optimal functioning of the cryIIIA expression system. The plasmid pHT7830′lacZ corresponds to the vector pHT304-18Z in which is cloned the TaqI fragment containing the entire cryIIIA expression system.
- The preceding results confirm that the upstream promoter is necessary for the optimal functioning of the cryIIIA expression system; on the other hand, it is not sufficient to account for the maximal activity of the entire system. This latter aspect had been mentioned previously (compare the beta-galactosidase activity of the strains bearing the plasmids pHT7832′lacZ and pHT7831′lacZ (FIG. 8B). The plasmid pHT7831′lacZ corresponds to the plasmid pHT7830′lacZ, the internal fragment PacI-XmnI of which is deleted. It follows that a region called “downstream” is required to explain the maximal activity of the cryIIIA expression system.
- The transcription initiation site of the cryIIIA gene had been previously localized in
position 1413, the −35 and −10 regions of the putative promoter ought to be included between the nucleotides 1370 and 1412 (Sekar et al., 1987, Proc. Natl. Acad. Sci. USA, 84: 7036-7040). In order to assess the efficacy of this putative promoter, we have constructed the plasmid pHT7815/8′lacZ in which the DNA fragment included between the nucleotides 1352 and 1412 was deleted. The beta-galactosidase activity of the strain bearing pHT7815/8′lacZ was about 3,000 U/mg of proteins at t0 and about 42,000 U/mg of proteins at t6 (FIG. 8B). This result indicates that the region included between the nucleotides 1362 and 1412 does not play an essential role in the cryIIIA expression system and can not therefore be considered as the promoter of the cryIIIA gene. - A primer extension experiment was carried out with the total RNAs extracted at t3 from a B. thuringiensis strain bearing the plasmid pHT7815/8∝lacZ The 5′ end of the major transcript is detected as previously at position 1413 (FIG. 9). All of our results thus demonstrate that this end does not correspond to transcription initiation but to the end of a stable transcript initiated at position 984 starting from a upstream promoter localized in the DNA region included between the TaqI and PacI sites (
positions 907 to 990) and defined by the −35 and −10 regions: TTGCAA and TAAGCT. Since the 5′ end of the major cryIIIA transcript is invariably inposition 1413, in the presence or in the absence of the DNA fragment included between the positions 1362 and 1412, it follows that this end is defined by the presence of a DNA sequence which is found downstream of theposition 1413. The role of this region is thus exerted at the post-transcriptional level. The analysis of this downstream sequence was made in B. subtilis with the aid of transcriptional fusions with the lacZ gene. The various constructions presented in FIG. 10 have enabled us to define more precisely the downstream region and to measure its post-transcriptional effect: - 1. The DNA fragment included between the
nucleotides - 2. The DNA fragment included between the
nucleotides - 3. The nucleotides GGA in position 1421-1423 of the plasmid pHT7830′lacZ were replaced by the nucleotides CCC to give the plasmid pHT7830Rm′lacZ. The beta-galactosidase activity of the strain bearing pHT7830Rm′lacZ was about 5,000 U/mg of proteins at t3 (FIG. 10).
- 4. A primer extension experiment was carried out with the total RNAs extracted at t3 from a B. thuringiensis strain bearing the plasmid pHT7830Rm′lacZ. The 5′ end of the major transcript is detected at position 984 and no transcript having a 5′ end at
position 1413 is detected. - These four results indicate that the post-transcriptional effect of the downstream region is principally due to the nucleotide sequence included between the
nucleotides 1413 and 1461. Furthermore, the nucleotides GGA in position 1421-1423 are important for conferring the post-transcriptional effect and might be modified only by considering replacement by a sequence ensuring an intensity of interaction with the 16S ribosomal RNA similar to the intensity of interaction measured for the nucleotides GGA. For example, the replacement of the nucleotides GGA by the nucleotides CCC leads to the complete disappearance of the post-transcriptional effect, explained by a considerable modification of the intensity of interaction between this portion of the segment and the 16S RNA. The downstream region thus defined has as distinctive characteristic that of containing a nucleotide sequence complementary to the 3′ end of the 16S RNA of ribosome. - The post-transcriptional effect of this DNA sequence has then been evaluated by using a heterologous expression system: the following DNA sequence (S1):
5′-AGCTTGAAAGGAGGGATGCCTAAAAACGAAGAACTGCA-3′ 3′-ACTTTCCTCCCTACGGATTTTTGCTTCTTG-5′ - was synthesized and cloned between the HindIII and PstI sites of the vector pHT304′lacZ to give the plasmid pHT304ΠRS1′lacZ. This DNA sequence is thus intercalated between the promoter of the lacZ gene and the sequence coding forthe lacZ gene. The beta-galactosidase activity of the
strain 168 of B. subtilis bearing pHT304ΠRS1′lacZ was about 4,000 U/mg of proteins at t3. It follows that the sequence described above increases by a factor of 4 the expression of the lacZ gene. This increase is comparable to the increase due to the region included between thenucleotides 1413 and 1461, i.e by a factor of 5 (compare the beta-galactosidase activity of the B. subtilis strains containing the plasmids pHT7816′lacZ or pHT7805′lacZ). The following DNA region is thus sufficient to confer the post-transcriptional effect to the cryIIIA expression system:5′-CTTGAAAGGAGGGATGCCTAAAAACGAAGAAC-3′ 3′-GAACTTTCCTCCCTACGGATTTTTGCTTCTTG-5′ - This sequence posseses a region complementary to the 3′ end of the 16S ribosomal RNA. However, other elements characteristic of the downstream region of the cryIIIA expression system and which may accentuate this effect, in particular by preventing the movement of the ribosome, are probably comprised in the nucleotide sequence included between
positions - These results thus seem to confirm that the post-transcriptional effect of the downstream region results from the hybridization between the 16S ribosomal RNA and the S2 sequence of the messenger RNA of cryIIIA. It is hence probable that the ribosome or a part of the ribosome binds to this downstream region of the RNA and thus protects it from exonucleolytic degradation initiated at 5′. As previously mentioned, this binding would thus have the effect of enhancing the stability of the messengers and thus of increasing the level of expression of a given gene. That explains why the 5′ end of the cryIIIA transcripts is invariably at
position 1413 irrespective of where transcription is initiated. This mechanism also seems to be confirmed by the positive effect of the S1 sequence on a heterologous expression system (plasmid pHT304′ΠRS1lacZ in thestrain 168 of B. subtilis). - The vector pAF1, non-replicative inB. subtilis enables the fusions with the LacZ reporter gene to be introduced into the B. subtilis chromosome at the amyE locus (J. Bact. 1990, 172: 835-844). The plasmid pHC1 is obtained by insertion of the HindIII-SacI fragment (2.7 kb) of the pHT7901′LacZ between the HindIII-SacI sites of pAF1.
- The plasmid pHC2 is obtained by insertion of the HindIII-SacI fragment (3.7 kb) of the pHT7902′LacZ between the HindIII and SacI sites of pAF1.
- The fusions are introduced into the
B. subtilis strain 168 trpC2 (Anagnostopoulos, C and Spizizen, J. 1961 J. Bacteriol. 81: 741-746) (Bacillus subtilis 168) by transformation; the {amy-} phenotype accounts for the integration by double recombination. - TheB. subtilis strains obtained after transformation and integration of the pHC1 and pHC2 plasmids are called respectively:
- Bs168 {H} and Bs168 {P}
- The construction contained in the plasmid pHC2, i.e bearing the H2-P1 fragment upstream from the lacZ, was also introduced into the B. subtilis strain Δ sigE.
- The strain ΔsigE is obtained by transforming a parental strain (Spo+) with a plasmid non-replicative in Gram-positive bacteria and bearing a sigE gene, the internal region of which is deleted. The sigE gene was described by Stragier et al 1984 Nature 312: 376-378.
- The strain Δ sigE is transformed with the plasmid pHC2 and the resulting strain is Δ sigE {P}.
- The gene coding for the sigmaE factor specific for sporulation has been deleted from this strain. This strain is hence asporogenic (Spo−).
- Similarly, the strain Bs 168 {P} was transformed with a “KmR cassette” which interrupts the SpoOA gene. The strain in which the SpoOA gene interrupted by a “KmR cassette” originates is obtained by transforming a parental strain (Spo+) with a plasmid, non-replicative in Gram-positive bacteria and bearing a SpoOA gene (described by Ferrari, F. A. et al. 1985 PNAS USA 82: 2647-2651) interrupted by a gene for resistance to kanamycin. The chromosomal DNA of this strain was used to transform the strain Bs 168 {P}.
- Thus, the resulting Spo-strain was called
Bs 168 SpoOA {P}. - Firstly, it appears that the production of beta-galactosidase obtained with the strain ofB. subtilis 168 {H} is very low (<100 μM) by comparison with the strain 168 {P} (about 15,000 μM). These results are similar to those obtained in Bt.
- Furthermore, a very surprising result was obtained: the expression in the strain BsΔsigE is identical with the expression in the wild
type strain Bs 168. This result indicates that the cryIIIA gene is not controlled by a specific promoter of the sigma E factor as is the case for the cryIA gene. - It is even more surprising that the expression in the strain Bs SpoOA {P} is higher than that obtained in the strain Bs 168 {P}. This result shows that the expression of cryIIIA is independent of sporulation since the spoOA gene is implicated in the first stage of sporulation.
- These results are very important for the development and the applications of the cryIIIA expression system. They in fact indicate that it is possible to envisage the production of the insecticidal toxins or of any other protein of commercial interest in Spo− strains of B. subtilis or B. thuringiensis.
- It is possible to make the following observations as regards the expression of the fusion in the
media 1 to 5, respectively, the composition of which is given below, - Expression (although weak) occurs during the vegetative phase.
- Expression increases at the beginning of the stationary phase.
- The comparison of media 2 (deficient in phosphate) and 5 (deficient in amino acids) show that the CryIIIA expression system is activated by the amino acids deficency.
- The expression in
medium 4 shows that this activation requires the presence of salts: CaCl2, MnCl2, AFC - The activation is independent of sporulation:
- In sporulation medium 1 (Sp medium) expression stops at t2.
- In the medium 5 the cells cannot sporulate (glucose inhibits sporulation) and activation is maximum.
- When the only nitrogen source is NH+ 4, the activation is lower, expression, however, remains considerable (medium 3).
- 1/Sp Medium: sporulation medium
- 8 g nutrient broth (Difco)/liter
- 1 mM MgSO4
- 13 mM KCl
- 10 μM MnCl2
- 1 μM FeSO4
- 1 mM CaCl2
-
-
HEPES buffer pH 7; 50 mM - 1 mM MgSO4
- 0.5 mM CaCl2
- 10 M MnCl2
- 4.4 mg/liter ammonium ferric citrate (AFC)
- 2% glucose
- 10mM KCl
- 100 mg/liter of each amino acid
- 50 mg/liter tryptophan
- 0.45 mM phosphate buffer,
pH 7 - 3/Minimal Medium
- 44 mM KH2PO4
- 60 mM K2HPO4
- 2.9 mM Trisodium citrate
- 15 mM (NH4)2SO4
- 2% glucose
- 4/Amino Acid Deficient Medium Without CaCl2, MnCl2, AFC
- 44 mM KH2PO4
- 60 mM K2HPO4
- 2.9 mM Trisodium citrate
- 2% glucose
- 1 mM MgSO4
- 50 mg/liter tryptophan
- 0.5 casein hydrolysate (CH)
- 5/4 Idem by Adding:
- 0.5 mM CaCl2
- 10 M MnCl2
- 4.4 mg/liter AFC
- Cloning of the spoOA Gene ofB. thuringiensis:
- The total DNA of theB. thuringiensis strain 407 of
serotype 1 was purified and digested by the enzyme HindIII. The HindIII fragments were ligated with the vector pHT304 digested by HindIII and the ligation mixture was used to transform theB. subtilis strain 168. The transformant clones were selected for resistance to erythromycin. They were then transformed with the total DNA of theB. subtilis strain 168, the spoOA gene of which was interrupted by a “KmR cassette”. The transformant clones which had become resistant to kanamycin which still had a Spo+ phenotype were studied. One of the clones carried a recombinant plasmid capable of compensating the spoOA mutation of B. subtilis. This plasmid was constituted by the vector pHT304 and a HindIII fragment of about 2.4 kb (FIG. 11A). - Determination of the Nucleotide Sequence of the SpoOA Gene ofB. thuringiensis:
- The nucleotide sequence of the HindIII fragment was determined and revealed the presence of an open reading frame of 804 bp capable of coding for a protein of 264 amino acids homologous to the SpoOA protein ofB. subtilis. The nucleotide sequence of 804 bp of the spoOA gene of B. thuringiensis strain 407 is shown in FIG. 11B.
- Interruption of the SpoOA Gene ofB. thuringiensis:
- A 1.5 kb DNA fragment bearing an aphIII gene, conferring resistance of kanamycin (“cassette KmR”), was inserted between the two HincII sites of the spoOA gene (FIG. 11) A 40 bp fragment included between the positions 267 and 307 of the spoOA gene was thus replaced by the “KmR cassette”. The HindIII DNA fragment of about 3.9 kb containing the spoOA gene interrupted by the “KmR cassette” was cloned in the thermosensitive vector pRN5101 (Villafane et al. 1987, J. Bacteriol. 169: 4822-4829). The resulting plasmid (designated pHT5120) was introduced in the B. thuringiensis strain 407 Cry− by electroporation. The spoOA gene of the B. thuringiensis strain 407 Cry− was replaced by the copy interrupted with the “KmR cassette” by genetic recombination in vivo by using the protocol previously described (Lereclus et al., 1992, Bio/Technology 10: 418-421). The resultant B. thuringiensis strain (designated 407-OA::KmR) is resistant to kanamycin (300 μg/ml) and does not produce spores when it is cultured in HCT medium, usually favorable to the sporulation of B. thuringiensis. A DNA/DNA hybridization experiment performed with the 2.4 kb HindIII fragment as probe revealed that the spoOA gene of the B. thuringiensis strain 407 Cry− has indeed been replaced by the copy interrupted with the “KmR cassette”.
- Production of the CryIIIA Toxin in theB. thuringiensis Strain 407-OA::KmR:
- The plasmid pHT305P bearing the cryIIIA gene was introduced into theB. thuringiensis strain 407-OA::KmR by electroporation. The recombinant clone obtained was deposited with the CNCM on Mar. 5, 1994 and to which the access number I-1412 was assigned. The recombinant clone obtained was cultured at 30° C. in HCT medium+glucose 3 g/l or in LB medium (NaCl, 5 g/l; yeast extract, 5 g/l; Bacto tryptone 10 g/l) to estimate the production of toxins. After about 48 hours the bacteria contained a crystal visible by examination with the optical microscope. This crystal was rhomboidal, characteristic of the crystals constituted by the CryIIIA protein. The crystals produced by the B. thuringiensis strain 407-OA::KmR {pHT315} are of considerable size and remain included in the cells several days after the latter have ceased to develop in HCT medium; in LB medium a portion of the cells lyse and the crystals are released. The crystals are constituted of proteins of about 70 kDa (CryIIIA) specifically toxic for the Coleoptera.
-
1 17 1692 base pairs nucleic acid single linear DNA (genomic) 1 AAGCTTTCAG TGAAGTACGT GATTATACGG AGATGAAAAT TCGTACACTG TTAACGAGAA 60 GGAAACGCCG ACGAAAGCGT AGCATCGGAT GGCAAAGATG GAGTAACGAA TATCTCTACG 120 GTGTACTGGG GCTTTACTGA GACTAGAAAG TCCTTCCCTT GAAAAGTGCA GAGAGTTTTC 180 GATAAAAGTG TCAGCCATTT GATAAGTCTC ATTCTCATAA CCTATTGATG AAGTTTATAG 240 GGAAGCTGCT TGAGAGGGAA AACCTCACGA ACAGTTCTTA TGGGGAGAGA CTGGAAACAG 300 GTCACAATTG ATACCTCGCT AATCTTTTAA CCGACAAAGT TTTTTTAAAC CGTGGAAGTC 360 ATAATAACCT GGATATTGTG AATTTATAAA AGTTAACAAA TGGTTTATAT TAAGACAGTC 420 ATAAACCAAA GATTTTTCTT CTAAAGCTAC GATAGCAAAA ATTTCACTAG AAATTAGTTA 480 TACAAGCATT TTGTAAGAAT TATTAAAAAG ATAAATCCTG CTATTACGAG ATTAGTAGGA 540 TGATATTGTG AAAAATTTTT TATCTATTCG ATTTAAAATA TTTATGAATT TTACATAAAC 600 CTCATAAGAA AAAATACTAT CTATACTATT TTAAGAAATT TATTAGAATA AGCGGATTCA 660 AAATAGCCCT GGCCATAAAA GTACCTCAGC AGTAGAAGTT TTGACCAAAA TTAAAAAAAT 720 ACCCAATCAA GAGAATATTC TTAATTACAA TACGTTTTGC GAGGAACATA TTGATTGAAA 780 TTTAATAAAT TTAGTCCTAA AATTTAAAGA AATTTAAGTT TTTCATATTT TTATGAACTA 840 ACAAGAATAA AAATTGTGTT TATTTATTAT TCTTGTTAAA TATTTGATAA AGAGATATAT 900 TTTTGGTCGA AACGTAAGAT GAAACCTTAG ATAAAAGTGC TTTTTTTGTT GCAATTGAAG 960 AATTATTAAT GTTAAGCTTA ATTAAAGATA ATATCTTTGA ATTGTAACGC CCCTCAAAAG 1020 TAAGAACTAC AAAAAAAGAA TACGTTATAT AGAAATATGT TTGAACCTTC TTCAGATTAC 1080 AAATATATTC GGACGGACTC TACCTCAAAT GCTTATCTAA CTATAGAATG ACATACAAGC 1140 ACAACCTTGA AAATTTGAAA ATATAACTAC CAATGAACTT GTTCATGTGA ATTATCGCTG 1200 TATTTAATTT TCTCAATTCA ATATATAATA TGCCAATACA TTGTTACAAG TAGAAATTAA 1260 GACACCCTTG ATAGCCTTAC TATACCTAAC ATGATGTAGT ATTAAATGAA TATGTAAATA 1320 TATTTATGAT AAGAAGCGAC TTATTTATAA TCATTACATA TTTTTCTATT GGAATGATTA 1380 AGATTCCAAT AGAATAGTGT ATAAATTATT TATCTTGAAA GGAGGGATGC CTAAAAACGA 1440 AGAACATTAA AAACATATAT TTGCACCGTC TAATGGATTT ATGAAAAATC ATTTTATCAG 1500 TTTGAAAATT ATGTATTATG ATAAGAAAGG GAGGAAGAAA AATGAATCCG AACAATCGAA 1560 GTGAACATGA TACAATAAAA ACTACTGAAA ATAATGAGGT GCCAACTAAC CATGTTCAAT 1620 ATCCTTTAGC GGAAACTCCA AATCCAACAC TAGAAGATTT AAATTATAAA GAGTTTTTAA 1680 GAATGACTGC AG 1692 653 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..653 /note= “NUCLEOTIDES 907 TO 1559 OF SEQ ID NO1” 2 TCGAAACGTA AGATGAAACC TTAGATAAAA GTGCTTTTTT TGTTGCAATT GAAGAATTAT 60 TAATGTTAAG CTTAATTAAA GATAATATCT TTGAATTGTA ACGCCCCTCA AAAGTAAGAA 120 CTACAAAAAA AGAATACGTT ATATAGAAAT ATGTTTGAAC CTTCTTCAGA TTACAAATAT 180 ATTCGGACGG ACTCTACCTC AAATGCTTAT CTAACTATAG AATGACATAC AAGCACAACC 240 TTGAAAATTT GAAAATATAA CTACCAATGA ACTTGTTCAT GTGAATTATC GCTGTATTTA 300 ATTTTCTCAA TTCAATATAT AATATGCCAA TACATTGTTA CAAGTAGAAA TTAAGACACC 360 CTTGATAGCC TTACTATACC TAACATGATG TAGTATTAAA TGAATATGTA AATATATTTA 420 TGATAAGAAG CGACTTATTT ATAATCATTA CATATTTTTC TATTGGAATG ATTAAGATTC 480 CAATAGAATA GTGTATAAAT TATTTATCTT GAAAGGAGGG ATGCCTAAAA ACGAAGAACA 540 TTAAAAACAT ATATTTGCAC CGTCTAATGG ATTTATGAAA AATCATTTTA TCAGTTTGAA 600 AATTATGTAT TATGATAAGA AAGGGAGGAA GAAAAATGAA TCCGAACAAT CGA 653 84 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..84 /note= “NUCLEOTIDES 907 TO 990 OF SEQ ID NO1” 3 TCGAAACGTA AGATGAAACC TTAGATAAAA GTGCTTTTTT TGTTGCAATT GAAGAATTAT 60 TAATGTTAAG CTTAATTAAA GATA 84 381 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..381 /note= “NUCLEOTIDES 1179 TO 1559 OF SEQ ID NO1” 4 TTGTTCATGT GAATTATCGC TGTATTTAAT TTTCTCAATT CAATATATAA TATGCCAATA 60 CATTGTTACA AGTAGAAATT AAGACACCCT TGATAGCCTT ACTATACCTA ACATGATGTA 120 GTATTAAATG AATATGTAAA TATATTTATG ATAAGAAGCG ACTTATTTAT AATCATTACA 180 TATTTTTCTA TTGGAATGAT TAAGATTCCA ATAGAATAGT GTATAAATTA TTTATCTTGA 240 AAGGAGGGAT GCCTAAAAAC GAAGAACATT AAAAACATAT ATTTGCACCG TCTAATGGAT 300 TTATGAAAAA TCATTTTATC AGTTTGAAAA TTATGTATTA TGATAAGAAA GGGAGGAAGA 360 AAAATGAATC CGAACAATCG A 381 378 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..378 /note= “NUCLEOTIDES 1179 TO 1556 OF SEQ ID NO1” 5 TTGTTCATGT GAATTATCGC TGTATTTAAT TTTCTCAATT CAATATATAA TATGCCAATA 60 CATTGTTACA AGTAGAAATT AAGACACCCT TGATAGCCTT ACTATACCTA ACATGATGTA 120 GTATTAAATG AATATGTAAA TATATTTATG ATAAGAAGCG ACTTATTTAT AATCATTACA 180 TATTTTTCTA TTGGAATGAT TAAGATTCCA ATAGAATAGT GTATAAATTA TTTATCTTGA 240 AAGGAGGGAT GCCTAAAAAC GAAGAACATT AAAAACATAT ATTTGCACCG TCTAATGGAT 300 TTATGAAAAA TCATTTTATC AGTTTGAAAA TTATGTATTA TGATAAGAAA GGGAGGAAGA 360 AAAATGAATC CGAACAAT 378 591 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..447 /note= “NUCLEOTIDES 1 TO 447 CORRESPOND TO NUCLEOTIDES 907 TO 1353 OF SEQ ID NO1” misc_feature 448..591 /note= “NUCLEOTIDES 448 TO 591 CORRESPOND TO NUCLEOTIDES 1413 TO 1556 OF SEQ ID NO1” 6 TCGAAACGTA AGATGAAACC TTAGATAAAA GTGCTTTTTT TGTTGCAATT GAAGAATTAT 60 TAATGTTAAG CTTAATTAAA GATAATATCT TTGAATTGTA ACGCCCCTCA AAAGTAAGAA 120 CTACAAAAAA AGAATACGTT ATATAGAAAT ATGTTTGAAC CTTCTTCAGA TTACAAATAT 180 ATTCGGACGG ACTCTACCTC AAATGCTTAT CTAACTATAG AATGACATAC AAGCACAACC 240 TTGAAAATTT GAAAATATAA CTACCAATGA ACTTGTTCAT GTGAATTATC GCTGTATTTA 300 ATTTTCTCAA TTCAATATAT AATATGCCAA TACATTGTTA CAAGTAGAAA TTAAGACACC 360 CTTGATAGCC TTACTATACC TAACATGATG TAGTATTAAA TGAATATGTA AATATATTTA 420 TGATAAGAAG CGACTTATTT ATAATCATCT TGAAAGGAGG GATGCCTAAA AACGAAGAAC 480 ATTAAAAACA TATATTTGCA CCGTCTAATG GATTTATGAA AAATCATTTT ATCAGTTTGA 540 AAATTATGTA TTATGATAAG AAAGGGAGGA AGAAAAATGA ATCCGAACAA T 591 465 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..84 /note= “NUCLEOTIDES 1 TO 84 CORRESPOND TO NUCLEOTIDES 907 TO 990 OF SEQ ID NO1” misc_feature 85..465 /note= “NUCLEOTIDES 85 TO 465 CORRESPOND TO NUCLEOTIDES 1179 TO 1559 OF SEQ ID NO1” 7 TCGAAACGTA AGATGAAACC TTAGATAAAA GTGCTTTTTT TGTTGCAATT GAAGAATTAT 60 TAATGTTAAG CTTAATTAAA GATATTGTTC ATGTGAATTA TCGCTGTATT TAATTTTCTC 120 AATTCAATAT ATAATATGCC AATACATTGT TACAAGTAGA AATTAAGACA CCCTTGATAG 180 CCTTACTATA CCTAACATGA TGTAGTATTA AATGAATATG TAAATATATT TATGATAAGA 240 AGCGACTTAT TTATAATCAT TACATATTTT TCTATTGGAA TGATTAAGAT TCCAATAGAA 300 TAGTGTATAA ATTATTTATC TTGAAAGGAG GGATGCCTAA AAACGAAGAA CATTAAAAAC 360 ATATATTTGC ACCGTCTAAT GGATTTATGA AAAATCATTT TATCAGTTTG AAAATTATGT 420 ATTATGATAA GAAAGGGAGG AAGAAAAATG AATCCGAACA ATCGA 465 49 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..49 /note= “CORRESPONDS WITH NUCLEOTIDES 1413 TO 1461 OF SEQ ID NO1” 8 TCTTGAAAGG AGGGATGCCT AAAAACGAAG AACATTAAAA ACATATATT 49 38 base pairs nucleic acid double linear DNA (genomic) 9 AGCTTGAAAG GAGGGATGCC TAAAAACGAA GAACTGCA 38 32 base pairs nucleic acid double linear DNA (genomic) 10 CTTGAAAGGA GGGATGCCTA AAAACGAAGA AC 32 144 base pairs nucleic acid single linear DNA (genomic) misc_feature 1..144 /note= “CORRESPONDS TO NUCLEOIDES 1413 TO 1556 OF SEQ ID NO1” 11 TCTTGAAAGG AGGGATGCCT AAAAACGAAG AACATTAAAA ACATATATTT GCACCGTCTA 60 ATGGATTTAT GAAAAATCAT TTTATCAGTT TGAAAATTAT GTATTATGAT AAGAAAGGGA 120 GGAAGAAAAA TGAATCCGAA CAAT 144 28 base pairs nucleic acid single linear DNA (genomic) 12 CGTAATCTTA CGTCAGTAAC TTCCACAG 28 39 base pairs nucleic acid single linear DNA (genomic) 13 CTTAGGCTTG TTAGCTTCAC TTGTACTATG TTATTTTTG 39 32 base pairs nucleic acid single linear DNA (genomic) 14 GTTAGATAAG CATTTGAGGT AGAGTCCGTC CG 32 88 base pairs nucleic acid double linear DNA (genomic) 15 TAAAGATATC TTTGAAGCTT CACGTGTTTA AACAGGCCTG CAGTAATTTC TATAGAAACT 60 TCGAAGTGCA CAAATTTGTC CGGACGTC 88 804 base pairs nucleic acid single linear DNA (genomic) 16 GGAGGAAAAG CTGTGGAGAA AATTAAAGTA TGTCTTGTGG ATGATAATAA AGAATTAGTA 60 TCAATGTTAG AGAGCTATGT AGCCGCCCAA GATGATATGG AAGTAATCGG TACTGCTTAT 120 AATGGTCAAG AGTGTTTAAA CTTATTAACA GATAAGCAAC CTGATGTACT CGTTTTAGAC 180 ATTATTATGC CACACTTAGA TGGTTTAGCT GTATTGGAAA AAATGCGACA TATTGAAAGG 240 TTAAAACAGC CTAGCGTAAT TATGTTGACA GCATTCGGGC AAGAAGATGT GACGAAAAAA 300 GCAGTTGACT TAGGTGCCTC GTATTTCATA TTAAAACCAT TTGATATGGA GAATTTAACG 360 AGTCATATTC GTCAAGTGAG TGGTAAAGCA AACGCTATGA TTAAGCGTCC ACTACCATCA 420 TTCCGATCAG CAACAACAGT AGATGGAAAA CCGAAAAACT TAGATGCGAG TATTACGAGT 480 ATCATTCATG AAATTGGTGT ACCCGCTCAT ATTAAAGGAT ATATGTATTT ACGAGAAGCA 540 ATCTCCATGG TATACAATGA TATCGAATTA TTAGGATCGA TTACGAAAGT ATTGTATCCA 600 GATATCGCAA AGAAATATAA TACAACAGCC AGCCGTGTGG AGCGCGCAAT TCGTCACGCA 660 ATTGAAGTAG CTTGGAGCCG TGGGAATATT GATTCTATTT CGTCCTTATT CGGTTATACA 720 GTATCCATGT CAAAAGCAAA ACCTACGAAC TCTGAGTTTA TCGCAATGGT TGCGGATAAG 780 CTGAGACTTG AACATAAAGC TAGT 804 10 base pairs nucleic acid double linear DNA (genomic) 17 CAATTAATTG 10
Claims (43)
1. DNA sequence for the control of the expression of a sequence coding for a gene in a host cell, said sequence being characterized in that it comprises a promoter and a nucleotide sequence or downstream region under the control of said promoter, and in particular situated downstream from said promoter and upstream from said coding sequence, said nucleotide sequence or downstream region containing a region essentially complementary to the 3′ end of a bacterial ribosomal RNA, said DNA sequence being capable of intervening in order to increase the expression of said coding sequence, placed downstream in a cell host.
2. DNA sequence according to claim 1 , characterized by the following properties:
it is included in a DNA sequence about 1692 bp long, defined by the restriction sites HindIII-PstI (H2-P1 fragment) such as obtained by partial digestion of the 6 kb BamHI fragment borne by the cryIIIA gene of Bacillus thuringiensis strain LM79;
it is capable of intervening in the control of the expression of a coding nucleotide sequence placed downstream in a bacterial cell host, in particular of the Bacillus thuringiensis and/or Bacillus subtilis type.
3. DNA sequence according to claim 2 characterized in that it corresponds to the HindIII-PstI sequence about 1692 bp long (H2-P1 fragment) such as that obtained by partial digestion of the 6 kb BamHI fragment bearing the cryIIIA gene of Bacillus thuringiensis strain LM79.
4. DNA sequence according to claim 1 , characterized in that it corresponds to the following nucleotide sequence designated by the expression Seq. No.1 included between nucleotides 1 and 1692 of the sequence shown in FIG. 3.
5. DNA sequence according to any one of the claims 2 to 4 , characterized in that it corresponds to the sequence defined by the restriction site TaqI-TaqI.
6. DNA sequence according to any one of the claims 1 to 5 , characterized in that it corresponds to the following nucleotide sequence designated by the expression Seq No.2 included between nucleotides 907 and 1559 of the sequence shown in FIG. 3.
7. DNA sequence according to any one of the claims 2 to 4 , characterized in that it comprises the TaqI-PacI fragment corresponding to the sequence Seq No.3, in combination with the XmnI-TaqI fragment corresponding to sequence Seq No.4.
8. DNA sequence according to any one of the claims 2 to 7 , characterized in that it is a sequence intervening in the control of the transcription of the coding nucleotide sequence or a sequence intervening to increase the expression of a coding sequence.
9. DNA sequence according to claims 1 to 18 , characterized by:
its capacity to hybridize under non-stringent conditions with a nucleotide sequence selected from the sequences Seq No.1, Seq. No.2 and Seq. No.3 and Seq. No.4 and by
its capacity to intervene in the control of the expression in a cell host, in particular of the Bacillus type, of a coding nucleotide sequence placed downstream.
10. Sequence according to claim 1 , characterized in that said nucleotide sequence or downstream region is the sequence S2 isolated from a bacterium, in particular from a Gram+ bacterium, more particularly from a bacterium of the Bacillus type, or a sequence derived from said sequence S2, said S2 sequence being characterized in that it contains a region essentially complementary to the 3′ end of the 16S RNA of a bacterial ribosome, it is capable of intervening at the post-transcriptional level when said coding sequence is expressed, in particular without acting directly on the translation of the coding sequence to be expressed, in particular when said S2 sequence is situated between said promoter and said coding sequence for a gene so as to enhance the expression of said coding sequence in a bacterium, in particular a bacterium of the Bacillus type.
11. DNA sequence according to claim 10 , characterized in that said sequence S2 contains a first region sufficiently complementary to the 3′ end of the 16S RNA of a bacterial ribosome, in particular of a Gram+ bacterium, more particularly of a bacterium of the Bacillus type so that said first region is capable of hybridizing to a bacterial ribosome or to a part of said ribosome, and a second region downstream from the first region, said second region containing a sequence capable of having an additional positive effect at the level of the expression of the coding sequence.
12. DNA sequence according to claim 10 , characterized in that the nucleotide sequence or the downstream region exhibits the following properties:
it is contained in a nucleotide sequence hybridizing under non-stringent conditions with the DNA fragment included between the nucleotides 1413 and 1559 of the sequence shown in FIG. 3;
it is capable of intervening in the control of the expression of the coding sequence of a gene in a host cell, in particular of a sequence coding for Bacillus polypeptide toxic towards insects or a sequence coding for a polypeptide expressed during the vegetative phase, during the stationary phase or during the sporulation of the Bacillus.
13. DNA sequence according to any one of the claims 2 to 12 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence defined by the XmnI-TaqI restriction sites.
14. DNA sequence according to claim 13 , characterized in that the nucleotide sequence or downstream region corresponds to the sequence Seq. No.4 included between the nucleotides 1179 and 1559 of the sequence shown in FIG. 3, or in that it corresponds to any part of at least ten nucleotides of this sequence, naturally consecutive or not, capable of intervening in the control of the expression of a coding nucleotide sequence placed downstream in a cell host.
15. DNA sequence according to claim 13 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence Seq No.5 corresponding to the fragment comprising the nucleotides 1179 to 1556 of the sequence shown in FIG. 3.
16. DNA sequence according to claim 13 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence Seq No.11 corresponding to the fragment comprising the nucleotides 1413 to 1556 of the sequence shown in FIG. 3.
17. DNA sequence according to claim 13 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence Seq No.8 corresponding to the fragment comprising the nucleotides 1413 to 1461 of the sequence shown in FIG. 3.
18. DNA sequence according to claim 13 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence Seq No.9 corresponding to the following DNA fragment
19. Sequence according to claim 13 , characterized in that the nucleotide sequence or downstream region corresponds to the sequence Seq No.10 corresponding to the following DNA fragment
20. Sequence according to claim 13 , characterized in that the nucleotide sequence or downstream region corresponds to the following DNA fragment:
21. DNA sequence according to any one of the claims 1 to 20 , characterized in that the promoter is included in the sequence defined by the TaqI-PacI restriction sites.
22. DNA sequence according to claim 21 , characterized in that the promoter corresponds to the sequence Seq. No.3 included between the nucleotides 907 and 990 of the sequence shown in FIG. 3, or a variant comprising the nucleotides 907 to 985, or characterized in that the promoter corresponds to any part of at least ten nucleotides of this sequence, naturally consecutive or not, capable of intervening in the control of the expression of a coding nucleotide sequence placed downstream in a bacterial cell host.
23. Nucleotide sequence characterized in that it contains a region essentially complementary to the 3′ end of the 16S RNA of a bacterial ribosome, said sequence being capable of intervening at the post-transcriptional level when the sequencing coding for a gene is being expressed, in particular without acting directly on the translation of the coding sequence to be expressed, said nucleotide sequence being under the control of a promoter controlling said coding sequence.
24. Nucleotide sequence according to claim 23 , characterized in that said sequence is isolated from a bacterium, in particular from a Gram+ bacterium and more particularly from a bacterium of the Bacillus type.
25. Nucleotide sequence according to claim 23 , characterized in that said sequence is an S2 sequence containing a first region sufficiently complementary to the 3′ end of the 16S RNA of a bacterial ribosome, in particular of a Gram+ bacterium, more particularly of a bacterium of the Bacillus type so that said first region is capable of hybridizing with a bacterial ribosome or a part of a bacterial ribosome and a second region downstream from the first region, said second region containing a sequence capable of having an additional positive effect at the level of the expression of the coding sequence.
26. Nucleotide sequence according to claim 24 , characterized in that the nucleotide sequence corresponds to the sequence Seq No.5 corresponding to the fragment comprising the nucleotides 1179 to 1556 of the sequence shown in FIG. 3.
27. Nucleotide sequence according to claim 24 , characterized in that the nucleotide sequence corresponds to the sequence Seq No.11 corresponding to the fragment comprising the nucleotides 1413 to 1556 of the sequence shown in FIG. 3.
28. Nucleotide sequence according to claim 24 , characterized in that the nucleotide sequence corresponds to the sequence Seq No.8 corresponding to the fragment comprising the nucleotides 1413 to 1461 of the sequence shown in FIG. 3.
29. Nucleotide sequence according to claim 24 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence Seq No.9 corresponding to the following DNA fragment:
30. Nucleotide sequence according to claim 24 , characterized in that the nucleotide sequence or the downstream region corresponds to the sequence Seq No.10 corresponding to the following DNA fragment:
31. Nucleotide sequence according to claim 24 , characterized in that the nucleotide sequence corresponds to the following DNA fragment:
32. Recombinant DNA sequence, characterized in that it comprises a defined coding sequence under the control of a DNA sequence according to any one of the claims 1 to 22 .
33. Expression vector characterized in that it is modified at one of its sites by a DNA sequence according to any one of the claims 1 to 22 , such that said DNA sequence intervenes in the control of the expression of defined nucleotide coding sequence.
34. Expression vector according to claim 32 , characterized in that it is a plasmid, for example an integrative plasmid or a replicative plasmid.
35. Expression vector according to claim 34 , characterized in that it is the plasmid pHT7902′lacZ deposited with the CNCM on Apr. 20, 1993 under the No. I-1301.
36. Recombinant DNA sequence according to claim 32 or expression vector according to claim 33 or 34, characterized in that the coding nucleotide sequence which it contains is a toxic sequence towards insects and in particular a sequence with larvicidal activity, for example the sequence coding for the cryIIIA gene of B. thuringiensis.
37. Recombinant DNA sequence according to claim 32 or expression vector according to claim 33 or 34, characterized in that the nucleotide coding sequence which it contains is a sequence coding for an enzyme.
38. Recombinant DNA sequence according to claim 32 or expression vector according to claim 33 or 34, characterized in that the nucleotide coding sequence which it contains is a sequence coding for an antigen.
39. Recombinant cell host, characterized in that it is modified by a DNA sequence according to any one of the claims 1 to 32 or by an expression vector according to any one of the claims 33 or 34.
40. Cell host according to claim 39 , characterized in that it is a Bacillus, for example B. thuringiensis or B. subtilis.
41. Cell host according to claim 40 , characterized in that it is an asporogenic strain of Bacillus, for sample an asporogenic strain of B. subtilis in particular a strain capable of expressing the coding sequence of the DNA sequence according to any one of the claims 14 to 18 during the stationary phase of growth.
42. Cell host, characterized in that it is the strain 407-OA::KmR (pHT305D) deposited with the CNCM on May 3, 1994 under No. I-1412.
43. Production process for a recombinant protein encoded in a defined nucleotide sequence, said process being characterized in that it comprises:
the introduction into a cell host of a vector according to any one of the claims 33 to 38 ,
the growth of said cell host under conditions permitting the expression of said defined nucleotide sequence, and
the recovery of the recombinant protein.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/174,992 US20030166116A1 (en) | 1993-05-05 | 2002-06-20 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US11/174,485 US20060014942A1 (en) | 1993-05-05 | 2005-07-06 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
FR93/05387 | 1993-05-05 | ||
FR9305387A FR2704860B1 (en) | 1993-05-05 | 1993-05-05 | NUCLEOTIDE SEQUENCES OF THE LOCUS CRYIIIA FOR THE CONTROL OF THE EXPRESSION OF DNA SEQUENCES IN A CELL HOST. |
US08/535,057 US6140104A (en) | 1993-05-05 | 1994-05-05 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
PCT/FR1994/000525 WO1994025612A2 (en) | 1993-05-05 | 1994-05-05 | Nucleotide sequences for the control of the expression of dna sequences in a cellular host |
US09/503,252 US6555366B1 (en) | 1993-05-05 | 2000-02-14 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US10/174,992 US20030166116A1 (en) | 1993-05-05 | 2002-06-20 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/503,252 Continuation US6555366B1 (en) | 1993-05-05 | 2000-02-14 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/174,485 Continuation US20060014942A1 (en) | 1993-05-05 | 2005-07-06 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030166116A1 true US20030166116A1 (en) | 2003-09-04 |
Family
ID=9446802
Family Applications (4)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/535,057 Expired - Lifetime US6140104A (en) | 1993-05-05 | 1994-05-05 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US09/503,252 Expired - Lifetime US6555366B1 (en) | 1993-05-05 | 2000-02-14 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US10/174,992 Abandoned US20030166116A1 (en) | 1993-05-05 | 2002-06-20 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US11/174,485 Abandoned US20060014942A1 (en) | 1993-05-05 | 2005-07-06 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/535,057 Expired - Lifetime US6140104A (en) | 1993-05-05 | 1994-05-05 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US09/503,252 Expired - Lifetime US6555366B1 (en) | 1993-05-05 | 2000-02-14 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/174,485 Abandoned US20060014942A1 (en) | 1993-05-05 | 2005-07-06 | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
Country Status (12)
Country | Link |
---|---|
US (4) | US6140104A (en) |
EP (1) | EP0698105B1 (en) |
JP (1) | JPH08509609A (en) |
AT (1) | ATE320500T1 (en) |
AU (1) | AU693790B2 (en) |
CA (1) | CA2162158A1 (en) |
DE (1) | DE69434663T2 (en) |
DK (1) | DK0698105T3 (en) |
ES (1) | ES2260757T3 (en) |
FR (1) | FR2704860B1 (en) |
PT (1) | PT698105E (en) |
WO (1) | WO1994025612A2 (en) |
Families Citing this family (403)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2704860B1 (en) * | 1993-05-05 | 1995-07-13 | Pasteur Institut | NUCLEOTIDE SEQUENCES OF THE LOCUS CRYIIIA FOR THE CONTROL OF THE EXPRESSION OF DNA SEQUENCES IN A CELL HOST. |
FR2740472B1 (en) * | 1995-10-27 | 1998-01-16 | Pasteur Institut | NOVEL STRAINS OF BACILLUS THURINGIENSIS AND PESTICIDE COMPOSITION CONTAINING THEM |
US5955310A (en) * | 1998-02-26 | 1999-09-21 | Novo Nordisk Biotech, Inc. | Methods for producing a polypeptide in a bacillus cell |
US6720167B1 (en) | 2000-08-14 | 2004-04-13 | The Regents Of The University Of California | Insecticidal bacteria, and methods for making and using them |
KR100405991B1 (en) * | 2000-12-15 | 2003-11-15 | 한국생명공학연구원 | A producing method of target proteins using sporulation-dependent promoter |
JP2007518400A (en) * | 2003-12-04 | 2007-07-12 | バイオフィルムズ ストラテジーズ, インコーポレイテッド | Methods and compositions for preventing biofilm formation, reducing existing biofilm, and reducing bacterial populations |
WO2008067423A2 (en) | 2006-11-29 | 2008-06-05 | Novozymes, Inc. | Methods of improving the introduction of dna into bacterial cells |
WO2008140615A2 (en) | 2006-12-21 | 2008-11-20 | Novozymes, Inc. | Modified messenger rna stabilizing sequences for expressing genes in bacterial cells |
WO2011084695A1 (en) | 2009-12-21 | 2011-07-14 | Novozymes, Inc. | Methods for producing heterologous polypeptides in thiol-disulfide oxidoreductase-deficient bacterial mutant cells |
KR101280503B1 (en) | 2010-02-03 | 2013-07-02 | 한국생명공학연구원 | A promoter variant and a method for protein production using the same |
US20130014293A1 (en) | 2010-03-03 | 2013-01-10 | Novozymes A/S | Xylanase Variants and Polynucleotides Encoding Same |
US8875544B2 (en) | 2011-10-07 | 2014-11-04 | Johns Manville | Burner apparatus, submerged combustion melters including the burner, and methods of use |
DK2588604T3 (en) | 2010-06-30 | 2016-09-26 | Novozymes Inc | Polypeptides having beta-glucosidase activity and polynucleotides encoding them |
US9187742B2 (en) | 2010-08-30 | 2015-11-17 | Novozymes, Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012030799A1 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
US9267126B2 (en) | 2010-08-30 | 2016-02-23 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
US8624082B2 (en) | 2010-08-30 | 2014-01-07 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2012030858A2 (en) | 2010-08-30 | 2012-03-08 | Novozymes A/S | Polypeptides having hemicellulolytic activity and polynucleotides encoding same |
US8629325B2 (en) | 2010-08-30 | 2014-01-14 | Novozymes A/S | Polypeptides having beta-glucosidase activity and polynucleotides encoding same |
MX2013003236A (en) | 2010-09-30 | 2013-05-30 | Novozymes Inc | Variants of polypeptides having cellulolytic enhancing activity and polynucleotides encoding same. |
DK2622070T3 (en) | 2010-09-30 | 2016-11-21 | Novozymes Inc | Variants of polypeptides having cellulolytic enhancing ACTIVITY AND POLYNUCLEOTIDES ENCODING THEM |
US9688975B2 (en) | 2010-10-01 | 2017-06-27 | Novozymes, Inc. | Beta-glucosidase variants and polynucleotides encoding same |
BR112013009817B1 (en) | 2010-10-26 | 2020-02-04 | Novozymes As | methods to degrade or convert sugar cane refuse, to produce a fermentation product, and to ferment sugar cane refuse |
BR112013010008B1 (en) | 2010-11-02 | 2020-09-08 | Novozymes, Inc. | METHODS FOR DEGRADING AND FERMENTING A CELLULOSIC MATERIAL, AND FOR PRODUCING A FERMENTATION PRODUCT |
EP2635594B1 (en) | 2010-11-04 | 2017-01-11 | Novozymes Inc. | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012062220A1 (en) | 2010-11-12 | 2012-05-18 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
MX2013004758A (en) | 2010-11-18 | 2013-06-28 | Novozymes Inc | Chimeric polypeptides having cellulolytic enhancing activity and polynucleotides encoding same. |
WO2012103350A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
BR112013018695B1 (en) | 2011-01-26 | 2021-03-30 | Novozymes A / S | RECOMBINANT MICROBIAL HOSTING CELL, PROCESSES TO PRODUCE A POLYPEPTIDE, TO PRODUCE A PROTEIN, TO DEGRAD A CELLULOSIC MATERIAL, AND, NUCLEIC ACID CONSTRUCT OR VECTOR OF EXPRESSION |
WO2012103322A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
CN105838698B (en) | 2011-01-26 | 2019-10-11 | 诺维信公司 | Polypeptide with cellobiohydrolase activity and polynucleotide encoding the polypeptide |
CA2834023A1 (en) | 2011-01-26 | 2012-08-02 | Novozymes A/S | Polypeptides having cellobiohydrolase activity and polynucleotides encoding same |
WO2012113340A1 (en) | 2011-02-23 | 2012-08-30 | Novozymes Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2012122518A1 (en) | 2011-03-09 | 2012-09-13 | Novozymes A/S | Methods of increasing the cellulolytic enhancing activity of a polypeptide |
US9409958B2 (en) | 2011-03-10 | 2016-08-09 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
CN103443278B (en) | 2011-03-23 | 2017-07-04 | 诺维信公司 | The method for producing secreted polypeptides |
WO2012130120A1 (en) | 2011-03-25 | 2012-10-04 | Novozymes A/S | Method for degrading or converting cellulosic material |
WO2012135659A2 (en) | 2011-03-31 | 2012-10-04 | Novozymes A/S | Methods for enhancing the degradation or conversion of cellulosic material |
WO2012135719A1 (en) | 2011-03-31 | 2012-10-04 | Novozymes, Inc. | Cellulose binding domain variants and polynucleotides encoding same |
CA2834513A1 (en) | 2011-04-28 | 2012-11-01 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
CN103797126A (en) | 2011-04-29 | 2014-05-14 | 诺维信股份有限公司 | Methods for enhancing the degradation or conversion of cellulosic material |
EP2710132A1 (en) | 2011-05-19 | 2014-03-26 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
US8993286B2 (en) | 2011-05-19 | 2015-03-31 | Novozymes, Inc. | Methods for enhancing the degradation of cellulosic material with chitin binding proteins |
WO2013010783A1 (en) | 2011-07-15 | 2013-01-24 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
DK2734633T3 (en) | 2011-07-22 | 2019-06-11 | Novozymes North America Inc | PROCEDURES FOR PREPARING CELLULOSE MATERIALS AND IMPROVING HYDROLYSIS THEREOF |
EP3382016B1 (en) | 2011-08-04 | 2019-10-09 | Novozymes, Inc. | Polypeptides having xylanase activity and polynucleotides encoding same |
WO2013019780A2 (en) | 2011-08-04 | 2013-02-07 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2013021059A1 (en) | 2011-08-10 | 2013-02-14 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
WO2013021064A1 (en) | 2011-08-10 | 2013-02-14 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
WO2013021062A1 (en) | 2011-08-10 | 2013-02-14 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
US9487761B2 (en) | 2011-08-10 | 2016-11-08 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
WO2013021061A1 (en) | 2011-08-10 | 2013-02-14 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
WO2013021065A1 (en) | 2011-08-10 | 2013-02-14 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
EP2742130B1 (en) | 2011-08-10 | 2017-11-01 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
ES2656556T3 (en) | 2011-09-06 | 2018-02-27 | Novozymes A/S | Variants of glucoamylase and polynucleotides encoding them |
WO2013034106A1 (en) | 2011-09-09 | 2013-03-14 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
WO2013043910A1 (en) | 2011-09-20 | 2013-03-28 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
MX350391B (en) | 2011-09-22 | 2017-09-06 | Novozymes As | Polypeptides having protease activity and polynucleotides encoding same. |
WO2013044867A1 (en) | 2011-09-30 | 2013-04-04 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
CN103930438A (en) | 2011-09-30 | 2014-07-16 | 诺维信股份有限公司 | Chimeric polypeptides having beta-glucosidase activity and polynucleotides encoding same |
CA2849303C (en) | 2011-09-30 | 2019-09-17 | Novozymes, Inc. | Dehydrogenase variants and polynucleotides encoding same |
IN2014CN03468A (en) | 2011-10-11 | 2015-07-03 | Novozymes As | |
US20140220635A1 (en) | 2011-10-17 | 2014-08-07 | Novozymes A/S | Alpha-Amylase Variants and Polynucleotides Encoding Same |
CA2852601C (en) | 2011-10-17 | 2023-05-23 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2013064075A1 (en) | 2011-10-31 | 2013-05-10 | Novozymes, Inc. | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
WO2013068309A1 (en) | 2011-11-08 | 2013-05-16 | Novozymes A/S | Methods for production of archeae protease in yeast |
EP3382017A1 (en) | 2011-11-18 | 2018-10-03 | Novozymes A/S | Polypeptides having beta-glucosidase activity, beta-xylosidase activity, or beta-glucosidase and beta-xylosidase activity and polynucleotides encoding same |
US10351834B2 (en) | 2011-11-21 | 2019-07-16 | Novozymes, Inc. | GH61 polypeptide variants and polynucleotides encoding same |
US9695433B2 (en) | 2011-11-22 | 2017-07-04 | Novozymes Inc. | Polypeptides having beta-xylosidase activity and polynucleotides encoding same |
WO2013076269A1 (en) | 2011-11-25 | 2013-05-30 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
MX351916B (en) | 2011-11-25 | 2017-11-03 | Novozymes As | Polypeptides having lysozyme activity and polynucleotides encoding same. |
BR112014012417A2 (en) | 2011-12-01 | 2017-06-06 | Novozymes Inc | isolated polypeptide and polynucleotide, recombinant host cell, methods for producing a polypeptide, a mutant of a source cell, and a protein, and for inhibiting expression of a polypeptide, transgenic plant, part of the plant or cell of plant, rna molecule, processes for degrading or converting a cellulosic or xylan-containing material, to produce a fermentation product, and fermentation of a cellulosic or xylan-containing material, and integral broth formulation or cell culture composition |
WO2013079531A2 (en) | 2011-12-02 | 2013-06-06 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
US9404093B2 (en) | 2011-12-02 | 2016-08-02 | Novozymes A/S | Polypeptides having peroxygenase activity and polynucleotides encoding same |
WO2013087027A1 (en) | 2011-12-16 | 2013-06-20 | Novozymes, Inc. | Polypeptides having laccase activity and polynucleotides encoding same |
WO2013091547A1 (en) | 2011-12-19 | 2013-06-27 | Novozymes, Inc. | Polypeptides having catalase activity and polynucleotides encoding same |
US10036050B2 (en) | 2011-12-20 | 2018-07-31 | Novozymes, Inc. | Cellobiohydrolase variants and polynucleotides encoding same |
EP2794874A1 (en) | 2011-12-20 | 2014-10-29 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
IN2014DN06191A (en) | 2012-02-03 | 2015-10-23 | Procter & Gamble | |
CN104080908B (en) | 2012-02-03 | 2018-02-06 | 诺维信公司 | Lipase Variant and the polynucleotides for encoding them |
CN104114698A (en) | 2012-02-17 | 2014-10-22 | 诺维信公司 | Subtilisin variants and polynucleotides encoding same |
EP2817325B1 (en) | 2012-02-20 | 2019-06-26 | Novozymes A/S | Polypeptides having endoglucanase activity and polynucleotides encoding same |
US9909109B2 (en) | 2012-04-02 | 2018-03-06 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
DK2841567T3 (en) | 2012-04-27 | 2017-10-16 | Novozymes Inc | GH61 polypeptide variants and polynucleotides encoding them |
EP2847308B1 (en) | 2012-05-07 | 2017-07-12 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
JP6449763B2 (en) | 2012-05-31 | 2019-01-09 | ノボザイムス アクティーゼルスカブ | Improved selection in fungi |
CN109234250A (en) | 2012-05-31 | 2019-01-18 | 诺维信公司 | With the active polypeptide of organophosphor hydrolytic enzyme |
CN104471048B (en) | 2012-07-12 | 2018-11-16 | 诺维信公司 | Polypeptide with lipase active and the polynucleotides for encoding it |
MX2015001969A (en) | 2012-08-17 | 2015-05-15 | Novozymes As | Thermostable asparaginase variants and polynucleotides encoding same. |
CN104619838A (en) | 2012-08-22 | 2015-05-13 | 诺维信公司 | Metalloprotease from exiguobacterium |
MX357022B (en) | 2012-08-22 | 2018-06-25 | Novozymes As | Metalloproteases from alicyclobacillus sp. |
AU2013311668B2 (en) | 2012-09-05 | 2019-02-28 | Novozymes A/S | Polypeptides having protease activity |
BR112015005884A2 (en) | 2012-09-19 | 2017-08-08 | Novozymes Inc E Novozymes As | processes for degradation of a cellulosic material, for production of a fermentation product, and fermentation of a cellulosic material, composition, and whole broth formulation or cell culture composition |
BR112015007628B1 (en) | 2012-10-08 | 2023-01-31 | Novozymes A/S | TRANSGENIC MICROBIAL HOST CELL, METHOD OF PRODUCTION OF A POLYPEPTIDE, PROCESSES FOR DEGRADING A CELLULOSIC MATERIAL, OF PRODUCING A PRODUCT FROM FERMENTATION, AND OF FERMENTATION OF A CELLULOSIC MATERIAL, AND, CONSTRUCTION OF NUCLEIC ACID OR EXPRESSION VECTOR |
CN104704116B (en) | 2012-10-12 | 2018-09-28 | 诺维信公司 | With the active polypeptide of peroxygenases |
CN104718287B (en) | 2012-10-12 | 2018-02-06 | 诺维信公司 | Polypeptide with peroxygenases activity |
EP2906689B1 (en) | 2012-10-12 | 2018-12-12 | Novozymes A/S | Polypeptides having peroxygenase activity |
WO2014056916A2 (en) | 2012-10-12 | 2014-04-17 | Novozymes A/S | Polypeptides having peroxygenase activity |
WO2014056917A2 (en) | 2012-10-12 | 2014-04-17 | Novozymes A/S | Polypeptides having peroxygenase activity |
US9453207B2 (en) | 2012-10-12 | 2016-09-27 | Novozymes A/S | Polypeptides having peroxygenase activity |
WO2014056922A2 (en) | 2012-10-12 | 2014-04-17 | Novozymes A/S | Polypeptides having peroxygenase activity |
US20150275194A1 (en) | 2012-10-24 | 2015-10-01 | Novozymes A/S | Polypeptides Having Cellulolytic Enhancing Activity And Polynucleotides Encoding Same |
US20150307871A1 (en) | 2012-12-07 | 2015-10-29 | Novozymes A/S | Method for generating site-specific mutations in filamentous fungi |
CN104884464B (en) | 2012-12-11 | 2021-02-02 | 诺维信公司 | Polypeptides having phospholipase C activity and polynucleotides encoding same |
AU2013358981A1 (en) | 2012-12-14 | 2015-06-04 | Novozymes A/S | Polypeptides having cellulolytic enhancing activity and polynucleotides encoding same |
CN113151219A (en) | 2012-12-17 | 2021-07-23 | 诺维信公司 | Alpha-amylases and polynucleotides encoding same |
WO2014099798A1 (en) | 2012-12-19 | 2014-06-26 | Novozymes A/S | Polypeptides having cellulolytic enhancinc activity and polynucleotides encoding same |
ES2655032T3 (en) | 2012-12-21 | 2018-02-16 | Novozymes A/S | Polypeptides that possess protease activity and polynucleotides that encode them |
EP2938628A4 (en) | 2012-12-24 | 2016-10-19 | Novozymes As | POLYPEPTIDES HAVING ENDOGLUCANASE ACTIVITY AND POLYNUCLEOTIDES ENCODING SAME |
WO2014106593A1 (en) | 2013-01-03 | 2014-07-10 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
CN104968211A (en) | 2013-02-06 | 2015-10-07 | 诺维信公司 | Use of polypeptide with protease activity in animal feed |
EP2964760B1 (en) | 2013-03-08 | 2021-05-12 | Novozymes A/S | Cellobiohydrolase variants and polynucleotides encoding same |
MX360759B (en) | 2013-03-21 | 2018-11-15 | Novozymes As | Polypeptides with lipase activity and polynucleotides encoding same. |
WO2014170218A1 (en) | 2013-04-18 | 2014-10-23 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
US10550374B2 (en) | 2013-04-30 | 2020-02-04 | Novozymes A/S | Glucoamylase variants and polynucleotides encoding same |
US9963690B2 (en) | 2013-04-30 | 2018-05-08 | Novozymes A/S | Glucoamylase variants and polynucleotides encoding same |
AR096270A1 (en) | 2013-05-14 | 2015-12-16 | Novozymes As | DETERGENT COMPOSITIONS |
WO2014183921A1 (en) | 2013-05-17 | 2014-11-20 | Novozymes A/S | Polypeptides having alpha amylase activity |
CN105264058B (en) | 2013-06-06 | 2022-03-29 | 诺维信公司 | Alpha-amylase variants and polynucleotides encoding same |
WO2014202793A1 (en) | 2013-06-21 | 2014-12-24 | Novozymes A/S | Production of polypeptides without secretion signal in bacillus |
EP3013953A1 (en) | 2013-06-24 | 2016-05-04 | Novozymes A/S | Method for producing a food product |
EP3013952A1 (en) | 2013-06-24 | 2016-05-04 | Novozymes A/S | Method for producing a food product |
WO2014206913A1 (en) | 2013-06-24 | 2014-12-31 | Novozymes A/S | Method for producing a food product |
CN105874067A (en) | 2013-06-27 | 2016-08-17 | 诺维信公司 | Subtilase variants and polynucleotides encoding same |
US20160145596A1 (en) | 2013-06-27 | 2016-05-26 | Novozymes A/S | Subtilase Variants and Polynucleotides Encoding Same |
CN105358670A (en) | 2013-07-04 | 2016-02-24 | 诺维信公司 | Polypeptides with xanthan lyase activity having anti-redeposition effect and polynucleotides encoding same |
US20160160196A1 (en) | 2013-07-09 | 2016-06-09 | Novozymes A/S | Polypeptides with Lipase Activity And Polynucleotides Encoding Same |
WO2015007639A1 (en) | 2013-07-17 | 2015-01-22 | Novozymes A/S | Pullulanase chimeras and polynucleotides encoding same |
CA2917690A1 (en) | 2013-07-26 | 2015-01-29 | Biomethodes | Novel variant trichoderma reesei endoglucanases |
WO2015014790A2 (en) | 2013-07-29 | 2015-02-05 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2015014803A1 (en) | 2013-07-29 | 2015-02-05 | Novozymes A/S | Protease variants and polynucleotides encoding same |
EP3033420B1 (en) | 2013-08-15 | 2018-02-21 | Novozymes A/S | Polypeptides having beta-1,3-galactanase activity and polynucleotides encoding same |
WO2015059133A1 (en) | 2013-10-22 | 2015-04-30 | Novozymes A/S | Cellobiose dehydrogenase variants and polynucleotides encoding same |
CN111851077A (en) | 2013-10-25 | 2020-10-30 | 诺维信公司 | Polypeptides with endoglucanase activity and polynucleotides encoding them |
EP2876156A1 (en) | 2013-11-26 | 2015-05-27 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | New enzymes and method for preparing hydroxylated L-lysine or L-ornithine and analogs thereof |
US10465172B2 (en) | 2013-11-29 | 2019-11-05 | Novozymes A/S | Peroxygenase variants |
WO2015085920A1 (en) | 2013-12-11 | 2015-06-18 | Novozymes A/S | Cutinase variants and polynucleotides encoding same |
EP2886656A1 (en) | 2013-12-18 | 2015-06-24 | Commissariat A L'energie Atomique Et Aux Energies Alternatives | New enzyme and method for preparing 4-hydroxyl benzyl alcohol and derivatives thereof |
WO2015091989A1 (en) | 2013-12-20 | 2015-06-25 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
DK3097192T3 (en) | 2014-01-22 | 2018-11-19 | Novozymes As | PULLULANASE VARIATIONS AND POLYNUCLEOTIDES CODING THEM |
CN105849121B (en) | 2014-01-22 | 2020-12-29 | 诺维信公司 | Polypeptides with lipase activity and polynucleotides encoding them |
EP3114272A1 (en) | 2014-03-05 | 2017-01-11 | Novozymes A/S | Compositions and methods for improving properties of cellulosic textile materials with xyloglucan endotransglycosylase |
WO2015134773A1 (en) | 2014-03-05 | 2015-09-11 | Novozymes A/S | Compositions and methods for functionalizing and linking materials |
US10123535B2 (en) | 2014-03-05 | 2018-11-13 | Novozymes A/S | Compositions and methods for improving post-harvest properties of agricultural crops |
EP3113611A1 (en) | 2014-03-05 | 2017-01-11 | Novozymes A/S | Formulations comprising polymeric xyloglucan as a carrier for agriculturally beneficial agents |
EP3114219A1 (en) | 2014-03-05 | 2017-01-11 | Novozymes A/S | Compositions and methods for improving properties of non-cellulosic textile materials with xyloglucan endotransglycosylase |
CN106103721B (en) | 2014-03-12 | 2020-01-03 | 诺维信公司 | Polypeptides having lipase activity and polynucleotides encoding same |
EP3119862B1 (en) | 2014-03-19 | 2022-09-07 | Novozymes A/S | Polypeptides having phospholipase c activity and polynucleotides encoding same |
CN106103708A (en) | 2014-04-01 | 2016-11-09 | 诺维信公司 | There is the polypeptide of alpha amylase activity |
CN106170545A (en) | 2014-04-10 | 2016-11-30 | 诺维信公司 | Alpha-amylase variants and the polynucleotide that it is encoded |
US10131863B2 (en) | 2014-04-11 | 2018-11-20 | Novozymes A/S | Detergent composition |
US10030215B2 (en) | 2014-04-15 | 2018-07-24 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
EP3760713A3 (en) | 2014-05-27 | 2021-03-31 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
EP3878957A1 (en) | 2014-05-27 | 2021-09-15 | Novozymes A/S | Methods for producing lipases |
EP3149028B1 (en) | 2014-05-30 | 2021-09-15 | Novozymes A/S | Variants of gh family 11 xylanase and polynucleotides encoding same |
WO2015189371A1 (en) | 2014-06-12 | 2015-12-17 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
EP3161133B1 (en) | 2014-06-25 | 2018-12-12 | Novozymes A/S | Xylanase variants and polynucleotides encoding same |
CN116240202A (en) | 2014-07-04 | 2023-06-09 | 诺维信公司 | Subtilase variants and polynucleotides encoding them |
WO2016001450A2 (en) | 2014-07-04 | 2016-01-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US10940170B2 (en) | 2014-07-07 | 2021-03-09 | University Of Massachusetts | Anthelmintic probiotic compositions and methods |
PL3594335T3 (en) | 2014-09-05 | 2024-09-16 | Novozymes A/S | Carbohydrate binding module variants and polynucleotides encoding same |
WO2016050680A1 (en) | 2014-09-29 | 2016-04-07 | Novozymes A/S | Yoqm-inactivation in bacillus |
ES2743515T3 (en) | 2014-10-23 | 2020-02-19 | Novozymes As | Variants of glucoamylase and polynucleotides encoding them |
EP3221447A1 (en) | 2014-11-20 | 2017-09-27 | Novozymes A/S | Alicyclobacillus variants and polynucleotides encoding same |
WO2016087327A1 (en) | 2014-12-01 | 2016-06-09 | Novozymes A/S | Polypeptides having pullulanase activity comprising the x25, x45 and cbm41 domains |
CA2963331A1 (en) | 2014-12-04 | 2016-06-09 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
WO2016087401A1 (en) | 2014-12-05 | 2016-06-09 | Novozymes A/S | Lipase variants and polynucleotides encoding same |
DK3234123T3 (en) | 2014-12-19 | 2020-08-24 | Novozymes As | PROTEASE VARIANTS AND POLYNUCLEOTIDES ENCODING THEM |
US10711259B2 (en) | 2014-12-19 | 2020-07-14 | Novozymes A/S | Compositions comprising polypeptides having xylanase activity and polypeptides having arabinofuranosidase activity |
CN117904083A (en) | 2014-12-19 | 2024-04-19 | 诺维信公司 | Protease variants and polynucleotides encoding the same |
WO2016100910A1 (en) | 2014-12-19 | 2016-06-23 | Novozymes A/S | Recombinant host cells for the production of 3-hydroxypropionic acid |
DK3262165T3 (en) | 2015-02-24 | 2020-08-24 | Novozymes As | CELLOBIOHYDROLASE VARIANTS AND POLYNUCLEOTIDES ENCODING THEM |
DK3262161T3 (en) | 2015-02-27 | 2021-09-13 | Novozymes As | Recombinant host cells for the production of 3-hydroxypropionic acid |
US10883102B2 (en) | 2015-03-20 | 2021-01-05 | Novozymes A/S | Droplet-based selection by injection |
CN107667177A (en) | 2015-04-07 | 2018-02-06 | 诺维信公司 | Method for selecting the enzyme with enhancing activity |
CN107864658A (en) | 2015-04-07 | 2018-03-30 | 诺维信公司 | Method for selecting the enzyme with lipase active |
WO2016180928A1 (en) | 2015-05-12 | 2016-11-17 | Novozymes A/S | Bacillus licheniformis host cell with deleted lantibiotic gene(s) |
WO2016196202A1 (en) | 2015-05-29 | 2016-12-08 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
US10858637B2 (en) | 2015-06-16 | 2020-12-08 | Novozymes A/S | Polypeptides with lipase activity and polynucleotides encoding same |
WO2016205127A1 (en) | 2015-06-18 | 2016-12-22 | Novozymes A/S | Polypeptides having trehalase activity and the use thereof in process of producing fermentation products |
WO2016202839A2 (en) | 2015-06-18 | 2016-12-22 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
US10392742B2 (en) | 2015-06-26 | 2019-08-27 | Novozymes A/S | Biofinishing system |
AU2016282355B2 (en) | 2015-06-26 | 2020-04-09 | Novozymes A/S | Method for producing a coffee extract |
WO2016207373A1 (en) | 2015-06-26 | 2016-12-29 | Novozymes A/S | Polypeptides having peroxygenase activity |
CN107922930A (en) | 2015-07-01 | 2018-04-17 | 诺维信公司 | The method for reducing smell |
US10945449B2 (en) | 2015-07-02 | 2021-03-16 | Novozymes A/S | Animal feed compositions and uses thereof |
CN107969136B (en) | 2015-07-06 | 2021-12-21 | 诺维信公司 | Lipase variants and polynucleotides encoding same |
US20180208916A1 (en) | 2015-07-23 | 2018-07-26 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
US20180216089A1 (en) | 2015-07-24 | 2018-08-02 | Novozymes, Inc. | Polypeptides Having Beta-Xylosidase Activity And Polynucleotides Encoding Same |
CN108138153A (en) | 2015-07-24 | 2018-06-08 | 诺维信股份有限公司 | Polypeptide with nofuranosidase activity and encode their polynucleotides |
WO2017017292A1 (en) | 2015-07-29 | 2017-02-02 | Abengoa Bioenergía Nuevas Tecnologías, S. A. | Expression of recombinant beta-xylosidase enzymes |
WO2017035270A1 (en) | 2015-08-24 | 2017-03-02 | Novozymes A/S | Beta-alanine aminotransferases for the production of 3-hydroxypropionic acid |
WO2017046260A1 (en) | 2015-09-17 | 2017-03-23 | Novozymes A/S | Polypeptides having xanthan degrading activity and polynucleotides encoding same |
US10934535B2 (en) | 2015-10-07 | 2021-03-02 | Novozymes A/S | Detergent composition comprising a DNase |
CN108291212A (en) | 2015-10-14 | 2018-07-17 | 诺维信公司 | Polypeptide variants |
EP3362558A1 (en) | 2015-10-14 | 2018-08-22 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
WO2017075426A1 (en) | 2015-10-30 | 2017-05-04 | Novozymes A/S | Polynucleotide constructs for in vitro and in vivo expression |
CN108473974A (en) | 2015-11-24 | 2018-08-31 | 诺维信公司 | Polypeptide with proteinase activity and encode its polynucleotides |
EP3384019B1 (en) | 2015-12-01 | 2020-06-24 | Novozymes A/S | Methods for producing lipases |
CA3006403A1 (en) | 2015-12-02 | 2017-06-08 | Institut National De La Recherche Agronomique | New peptides having antimicrobial activity and new enzyme capable of converting l-configured residue in d-configured amino acid in a peptide |
WO2017114891A1 (en) | 2015-12-30 | 2017-07-06 | Novozymes A/S | Enzyme variants and polynucleotides encoding the same |
MX2018008051A (en) | 2016-01-29 | 2018-08-23 | Novozymes As | Beta-glucanase variants and polynucleotides encoding same. |
EP3420104A1 (en) | 2016-02-23 | 2019-01-02 | Novozymes A/S | Improved next-generation sequencing |
CN109415712A (en) | 2016-03-02 | 2019-03-01 | 诺维信公司 | Cellobiohydrolase variant and the polynucleotides for encoding them |
CN109072209A (en) | 2016-03-24 | 2018-12-21 | 诺维信公司 | Cellobiohydrolase variant and the polynucleotides for encoding it |
CN109312333A (en) | 2016-04-07 | 2019-02-05 | 诺维信公司 | Method for selecting enzymes with protease activity |
EP3448978B1 (en) | 2016-04-29 | 2020-03-11 | Novozymes A/S | Detergent compositions and uses thereof |
US20240218340A1 (en) | 2016-05-03 | 2024-07-04 | Novozymes A/S | Enzyme Variants and Polynucleotides Encoding Same |
WO2017194487A1 (en) | 2016-05-09 | 2017-11-16 | Novozymes A/S | Variant polypeptides with improved performance and use of the same |
EP3246401A1 (en) | 2016-05-20 | 2017-11-22 | Commissariat À L'Énergie Atomique Et Aux Énergies Alternatives | New fatty acid decarboxylase and its uses |
US10947520B2 (en) | 2016-05-24 | 2021-03-16 | Novozymes A/S | Compositions comprising polypeptides having galactanase activity and polypeptides having beta-galactosidase activity |
ES3014057T3 (en) | 2016-05-24 | 2025-04-16 | Novozymes As | Gastric stable polypeptides having alpha-galactosidase activity and polynucleotides encoding same |
EP3464579B1 (en) | 2016-05-24 | 2024-07-17 | Novozymes A/S | Compositions comprising polypeptides having galactanase activity and polypeptides having beta-galactosidase activity |
WO2017202966A1 (en) | 2016-05-24 | 2017-11-30 | Novozymes A/S | Polypeptides having alpha-galactosidase activity and polynucleotides encoding same |
WO2017205535A1 (en) | 2016-05-27 | 2017-11-30 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
WO2017207762A1 (en) | 2016-06-03 | 2017-12-07 | Novozymes A/S | Subtilase variants and polynucleotides encoding same |
EP3263699B1 (en) | 2016-06-30 | 2020-07-01 | Fornia BioSolutions, Inc. | Novel phytases and uses thereof |
WO2018002261A1 (en) | 2016-07-01 | 2018-01-04 | Novozymes A/S | Detergent compositions |
MX2019000133A (en) | 2016-07-05 | 2019-04-22 | Novozymes As | Pectate lyase variants and polynucleotides encoding same. |
WO2018009520A1 (en) | 2016-07-06 | 2018-01-11 | Novozymes A/S | Improving a microorganism by crispr-inhibition |
WO2018007573A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Detergent compositions with galactanase |
WO2018007154A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Xylanase variants and polynucleotides encoding same |
WO2018007153A1 (en) | 2016-07-08 | 2018-01-11 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
US10774293B2 (en) | 2016-07-13 | 2020-09-15 | Novozymes A/S | Polypeptide variants |
US11326152B2 (en) | 2016-07-18 | 2022-05-10 | Novozymes A/S | Lipase variants, polynucleotides encoding same and the use thereof |
CN109477083B (en) | 2016-07-20 | 2023-06-06 | 诺维信公司 | Thermostable metagenomic carbonic anhydrases and uses thereof |
WO2018017105A1 (en) | 2016-07-21 | 2018-01-25 | Fornia Biosolutions, Inc. | G24 glucoamylase compositions and methods |
EP3272767B1 (en) | 2016-07-21 | 2020-11-25 | Fornia BioSolutions, Inc. | G24 glucoamylase compositions and methods |
WO2018026868A1 (en) | 2016-08-01 | 2018-02-08 | Novozymes, Inc. | Polypeptides having endoglucanase activity and polynucleotides encoding same |
US9598680B1 (en) | 2016-08-05 | 2017-03-21 | Fornia Biosolutions, Inc. | G16 glucoamylase compositions and methods |
EP3504329A1 (en) | 2016-08-24 | 2019-07-03 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
AU2017317563B8 (en) | 2016-08-24 | 2023-03-23 | Henkel Ag & Co. Kgaa | Detergent compositions comprising xanthan lyase variants I |
WO2018037062A1 (en) | 2016-08-24 | 2018-03-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
EP3504313A1 (en) | 2016-08-24 | 2019-07-03 | Henkel AG & Co. KGaA | Detergent composition comprising gh9 endoglucanase variants i |
WO2018077796A1 (en) | 2016-10-25 | 2018-05-03 | Novozymes A/S | Flp-mediated genomic integrationin bacillus licheniformis |
US20210284933A1 (en) | 2016-10-25 | 2021-09-16 | Novozymes A/S | Detergent compositions |
US20210284991A1 (en) | 2016-11-21 | 2021-09-16 | Novozymes A/S | Yeast Cell Extract Assisted Construction of DNA Molecules |
WO2018098124A1 (en) | 2016-11-23 | 2018-05-31 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
EP3548615A1 (en) | 2016-11-29 | 2019-10-09 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2018106792A1 (en) | 2016-12-06 | 2018-06-14 | Novozymes A/S | Improved processes for production of ethanol from xylose-containing cellulosic substrates using engineered yeast strains |
WO2018134386A1 (en) | 2017-01-23 | 2018-07-26 | Novozymes A/S | Host cells and methods for producing double-stranded rna |
JP2018139542A (en) * | 2017-02-28 | 2018-09-13 | 株式会社Mizkan Holdings | Novel temperature sensitive bacillus natto, and natto products with low spore content |
EP3601549A1 (en) | 2017-03-31 | 2020-02-05 | Novozymes A/S | Polypeptides having dnase activity |
CN110651039A (en) | 2017-03-31 | 2020-01-03 | 诺维信公司 | Polypeptides having rnase activity |
CN110651041A (en) | 2017-03-31 | 2020-01-03 | 诺维信公司 | Polypeptides having DNase activity |
WO2018185150A1 (en) | 2017-04-04 | 2018-10-11 | Novozymes A/S | Polypeptides |
US20200109352A1 (en) | 2017-04-04 | 2020-04-09 | Novozymes A/S | Polypeptide compositions and uses thereof |
EP3607041A1 (en) | 2017-04-04 | 2020-02-12 | Novozymes A/S | Glycosyl hydrolases |
CN110651038B (en) | 2017-05-05 | 2025-02-18 | 诺维信公司 | Composition comprising lipase and sulfite |
WO2018206535A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Carbohydrate-binding domain and polynucleotides encoding the same |
EP3401385A1 (en) | 2017-05-08 | 2018-11-14 | Henkel AG & Co. KGaA | Detergent composition comprising polypeptide comprising carbohydrate-binding domain |
WO2018206302A1 (en) | 2017-05-08 | 2018-11-15 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
EP3622064B1 (en) | 2017-05-08 | 2025-05-14 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
CN117752694A (en) | 2017-05-23 | 2024-03-26 | 马萨诸塞大学 | Purified anthelmintic compositions and related methods |
US11091753B2 (en) | 2017-05-31 | 2021-08-17 | Novozymes A/S | Xylose fermenting yeast strains and processes thereof for ethanol production |
US20200157581A1 (en) | 2017-06-02 | 2020-05-21 | Novozymes A/S | Improved Yeast For Ethanol Production |
WO2018234465A1 (en) | 2017-06-22 | 2018-12-27 | Novozymes A/S | XYLANASE VARIANTS AND POLYNUCLEOTIDES ENCODING THE SAME |
ES2908190T3 (en) | 2017-06-28 | 2022-04-28 | Novozymes As | Polypeptides with trehalase activity and polynucleotides encoding them |
US10081800B1 (en) | 2017-08-03 | 2018-09-25 | Fornia Biosolutions, Inc. | Lactonase enzymes and methods of using same |
EP3673057A1 (en) | 2017-08-24 | 2020-07-01 | Novozymes A/S | Xanthan lyase variants and polynucleotides encoding same |
EP3673060A1 (en) | 2017-08-24 | 2020-07-01 | Henkel AG & Co. KGaA | Detergent composition comprising xanthan lyase variants ii |
WO2019038059A1 (en) | 2017-08-24 | 2019-02-28 | Henkel Ag & Co. Kgaa | Detergent compositions comprising gh9 endoglucanase variants ii |
EP3673058A1 (en) | 2017-08-24 | 2020-07-01 | Novozymes A/S | Gh9 endoglucanase variants and polynucleotides encoding same |
WO2019042971A1 (en) | 2017-08-29 | 2019-03-07 | Novozymes A/S | Baker's yeast expressing anti-staling/freshness amylases |
WO2019043088A1 (en) | 2017-08-31 | 2019-03-07 | Novozymes A/S | Polypeptides having d-psicose 3-epimerase activity and polynucleotides encoding same |
JP7515396B2 (en) | 2017-09-01 | 2024-07-12 | ノボザイムス アクティーゼルスカブ | Animal feed additive containing polypeptide having protease activity and use thereof |
CN111050565A (en) | 2017-09-01 | 2020-04-21 | 诺维信公司 | Animal feed additive comprising polypeptide with protease activity and use thereof |
US11332725B2 (en) | 2017-09-27 | 2022-05-17 | Novozymes A/S | Lipase variants and microcapsule compositions comprising such lipase variants |
WO2019067390A1 (en) | 2017-09-27 | 2019-04-04 | The Procter & Gamble Company | Detergent compositions comprising lipases |
EP3692147A1 (en) | 2017-10-02 | 2020-08-12 | Novozymes A/S | Polypeptides having mannanase activity and polynucleotides encoding same |
BR112020006621A2 (en) | 2017-10-02 | 2020-10-06 | Novozymes A/S | polypeptides with mannanase activity and polynucleotides encoding the same |
BR112020006356A2 (en) | 2017-10-04 | 2020-09-29 | Novozymes A/S | polypeptide with protease activity, polynucleotide, nucleic acid construct, or recombinant expression vector, recombinant host cell, method for producing a polypeptide with protease activity, processes for liquefying material containing starch, to produce fermentation products from material containing starch and for oil recovery from a fermentation product production, enzymatic composition, and use of a s8a protease from palaeococcus ferrophilus. |
WO2019083818A1 (en) | 2017-10-23 | 2019-05-02 | Novozymes A/S | Improving expression of a protease by co-expression with propeptide |
EP3476935B1 (en) | 2017-10-27 | 2022-02-09 | The Procter & Gamble Company | Detergent compositions comprising polypeptide variants |
US11441136B2 (en) | 2017-10-27 | 2022-09-13 | Novozymes A/S | DNase variants |
DE102017125559A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE II |
DE102017125558A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANING COMPOSITIONS CONTAINING DISPERSINE I |
DE102017125560A1 (en) | 2017-11-01 | 2019-05-02 | Henkel Ag & Co. Kgaa | CLEANSING COMPOSITIONS CONTAINING DISPERSINE III |
CN111511908A (en) | 2017-11-10 | 2020-08-07 | 诺维信公司 | Temperature sensitive CAS9 protein |
WO2019096903A1 (en) | 2017-11-20 | 2019-05-23 | Novozymes A/S | New galactanases (ec 3.2.1.89) for use in soy processing |
CN111670248A (en) | 2017-12-04 | 2020-09-15 | 诺维信公司 | Lipase variants and polynucleotides encoding the same |
WO2019113413A1 (en) | 2017-12-08 | 2019-06-13 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
FI3720956T3 (en) | 2017-12-08 | 2023-08-11 | Novozymes As | Alpha-amylase variants and polynucleotides encoding same |
US20210017544A1 (en) | 2017-12-22 | 2021-01-21 | Novozymes A/S | Counter-Selection by Inhibition of Conditionally Essential Genes |
BR112020015348A2 (en) | 2018-01-29 | 2020-12-08 | Novozymes A/S | MICRO-ORGANISMS WITH THE USE OF IMPROVED NITROGEN FOR ETHANOL PRODUCTION |
WO2019154951A1 (en) | 2018-02-08 | 2019-08-15 | Novozymes A/S | Lipases, lipase variants and compositions thereof |
CN111788305A (en) | 2018-02-08 | 2020-10-16 | 诺维信公司 | Lipase variants and compositions thereof |
EP3775190A1 (en) | 2018-03-29 | 2021-02-17 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2019201785A1 (en) | 2018-04-19 | 2019-10-24 | Novozymes A/S | Stabilized cellulase variants |
EP3781679A1 (en) | 2018-04-19 | 2021-02-24 | Novozymes A/S | Stabilized cellulase variants |
CA3098718A1 (en) | 2018-05-31 | 2019-12-05 | Novozymes A/S | Processes for enhancing yeast growth and productivity |
US11866751B2 (en) | 2018-07-25 | 2024-01-09 | Novozymes A/S | Yeast expressing a heterologous alpha-amylase for ethanol production |
EP3843552A1 (en) | 2018-08-31 | 2021-07-07 | Novozymes A/S | Polypeptides having protease activity and polynucleotides encoding same |
US12146123B2 (en) | 2018-10-02 | 2024-11-19 | Novozymes A/S | Endonuclease 1 ribonucleases for cleaning |
US11993762B2 (en) | 2018-10-03 | 2024-05-28 | Novozymes A/S | Polypeptides having alpha-mannan degrading activity and polynucleotides encoding same |
MX2021003955A (en) | 2018-10-08 | 2021-05-27 | Novozymes As | Enzyme-expressing yeast for ethanol production. |
EP3874051A1 (en) | 2018-10-31 | 2021-09-08 | Novozymes A/S | Genome editing by guided endonuclease and single-stranded oligonucleotide |
WO2020123463A1 (en) | 2018-12-12 | 2020-06-18 | Novozymes A/S | Polypeptides having xylanase activity and polynucleotides encoding same |
US11535836B2 (en) | 2018-12-21 | 2022-12-27 | Fornia Biosolutions, Inc. | Variant G6P G7P glucoamylase compositions and methods |
WO2020127796A2 (en) | 2018-12-21 | 2020-06-25 | Novozymes A/S | Polypeptides having peptidoglycan degrading activity and polynucleotides encoding same |
WO2020150386A1 (en) | 2019-01-16 | 2020-07-23 | Fornia Biosolutions, Inc. | Endoglucanase compositions and methods |
CN113366113A (en) | 2019-01-30 | 2021-09-07 | 诺维信公司 | Co-expression of homologous folding enzymes |
CN113302294A (en) | 2019-01-31 | 2021-08-24 | 诺维信公司 | Polypeptides having xylanase activity and their use for improving the nutritional quality of animal feed |
US20220186177A1 (en) | 2019-02-20 | 2022-06-16 | Basf Se | Industrial fermentation process for bacillus using defined medium and magnesium feed |
WO2020169564A1 (en) | 2019-02-20 | 2020-08-27 | Basf Se | Industrial fermentation process for bacillus using defined medium and trace element feed |
WO2020173817A1 (en) | 2019-02-28 | 2020-09-03 | Novozymes A/S | Calcite binding proteins |
CN113785056A (en) | 2019-03-08 | 2021-12-10 | 诺维信公司 | Means and methods for improving protease expression |
WO2020187883A1 (en) | 2019-03-18 | 2020-09-24 | Novozymes A/S | Polypeptides having pullulanase activity suitable for use in liquefaction |
EP3737751A1 (en) | 2019-03-21 | 2020-11-18 | Fornia BioSolutions, Inc. | Additional phytase variants and methods |
CN113785039B (en) | 2019-04-03 | 2024-06-18 | 诺维信公司 | Polypeptides having beta-glucanase activity, polynucleotides encoding the same, and their use in cleaning and detergent compositions |
CN113874499B (en) | 2019-04-10 | 2025-01-14 | 诺维信公司 | Peptide variants |
WO2020208056A1 (en) | 2019-04-12 | 2020-10-15 | Novozymes A/S | Stabilized glycoside hydrolase variants |
US20220275354A1 (en) | 2019-05-15 | 2022-09-01 | Novozymes A/S | TEMPERATURE-SENSITIVE RNA- Guided Endonuclease |
US20220298517A1 (en) | 2019-06-25 | 2022-09-22 | Novozymes A/S | Counter-selection by inhibition of conditionally essential genes |
CN114207123A (en) | 2019-07-02 | 2022-03-18 | 诺维信公司 | Lipase variants and compositions thereof |
US20220267783A1 (en) | 2019-07-25 | 2022-08-25 | Novozymes A/S | Filamentous fungal expression system |
BR112021026761A2 (en) | 2019-07-26 | 2022-02-15 | Novozymes As | Yeast cell, composition, and methods of producing a derivative of a yeast strain, producing ethanol, and producing a fermentation product from a starch-containing or cellulose-containing material |
CA3144423A1 (en) | 2019-08-05 | 2021-02-11 | Kurt Creamer | Enzyme blends and processes for producing a high protein feed ingredient from a whole stillage byproduct |
CN114127124A (en) | 2019-08-06 | 2022-03-01 | 诺维信公司 | Fusion proteins for enhanced enzyme expression |
WO2021055395A1 (en) | 2019-09-16 | 2021-03-25 | Novozymes A/S | Polypeptides having beta-glucanase activity and polynucleotides encoding same |
WO2021064068A1 (en) | 2019-10-03 | 2021-04-08 | Novozymes A/S | Polypeptides comprising at least two carbohydrate binding domains |
BR112022011271A2 (en) | 2019-12-10 | 2022-09-06 | Novozymes As | RECOMBINANT HOST CELL, COMPOSITION, METHODS FOR PRODUCING A CELL DERIVATIVE AND FERMENTATION PRODUCT, AND, USE OF A RECOMBINANT HOST CELL |
WO2021122867A2 (en) | 2019-12-19 | 2021-06-24 | Novozymes A/S | Xylanase variants and polynucleotides encoding same |
WO2021123307A2 (en) | 2019-12-20 | 2021-06-24 | Novozymes A/S | Polypeptides having proteolytic activity and use thereof |
US20250002888A1 (en) | 2020-01-31 | 2025-01-02 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
MX2022008955A (en) | 2020-01-31 | 2022-08-15 | Novozymes As | VARIANTS OF MANANASES AND POLINUCLEOTIDES THAT CODE THEM. |
EP4103703A2 (en) | 2020-02-10 | 2022-12-21 | Novozymes A/S | Alpha-amylase variants and polynucleotides encoding same |
WO2021163030A2 (en) | 2020-02-10 | 2021-08-19 | Novozymes A/S | Polypeptides having alpha-amylase activity and polynucleotides encoding same |
US20230235367A1 (en) | 2020-02-10 | 2023-07-27 | Novozymes A/S | Process for producing ethanol from raw starch using alpha-amylase variants |
EP4110909A1 (en) | 2020-02-26 | 2023-01-04 | Novozymes A/S | Polypeptide variants |
EP4114954A1 (en) * | 2020-03-04 | 2023-01-11 | Basf Se | Method for the production of constitutive bacterial promoters conferring low to medium expression |
KR20220149567A (en) | 2020-03-04 | 2022-11-08 | 바스프 에스이 | this. Shuttle Vectors for Expression in E. coli and Bacillus |
CN115427560A (en) | 2020-03-12 | 2022-12-02 | 诺维信公司 | CRISPR-AID Using catalytically inactive RNA-guided endonucleases |
EP3892708A1 (en) | 2020-04-06 | 2021-10-13 | Henkel AG & Co. KGaA | Cleaning compositions comprising dispersin variants |
EP4133066A1 (en) | 2020-04-08 | 2023-02-15 | Novozymes A/S | Carbohydrate binding module variants |
EP4139431A1 (en) | 2020-04-21 | 2023-03-01 | Novozymes A/S | Cleaning compositions comprising polypeptides having fructan degrading activity |
MX2023001017A (en) | 2020-07-24 | 2023-03-01 | Basf Se | Alanine racemase double deletion and transcomplementation. |
WO2022023371A1 (en) | 2020-07-28 | 2022-02-03 | Basf Se | Industrial fermentation process for bacillus using partial harvest |
CA3186911A1 (en) | 2020-07-28 | 2022-02-03 | Andreas Daub | Industrial fermentation process for bacillus using temperature shift |
KR20230042509A (en) | 2020-07-28 | 2023-03-28 | 바스프 에스이 | Method for Industrial Fermentation of Bacillus Using Feed Rate Shift |
US20230313209A1 (en) | 2020-08-18 | 2023-10-05 | Novozymes A/S | Dispersins expressed with amylase signal peptides |
BR112023003468A2 (en) | 2020-08-25 | 2023-04-11 | Novozymes As | VARIANTS OF A XYLOGLUCANASE FROM FAMILY 44 |
US20230323330A1 (en) | 2020-08-28 | 2023-10-12 | Novozymes A/S | Polyester degrading protease variants |
MX2023003276A (en) | 2020-09-22 | 2023-05-03 | Basf Se | Method for recovering a protein from a fermentation broth comprising a high degree of lysed cells. |
US20240060110A1 (en) | 2020-10-07 | 2024-02-22 | Basf Se | Bacillus cell with reduced lipase and/or esterase side activities |
WO2022078910A1 (en) | 2020-10-13 | 2022-04-21 | Novozymes A/S | Glycosyltransferase variants for improved protein production |
EP4237552A2 (en) | 2020-10-29 | 2023-09-06 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
JP2023547457A (en) | 2020-11-02 | 2023-11-10 | ノボザイムス アクティーゼルスカブ | Glucoamylase variants and polynucleotides encoding them |
US20240271175A1 (en) | 2020-11-02 | 2024-08-15 | Novozymes A/S | Leader peptides and polynucleotides encoding the same |
US20240052000A1 (en) | 2020-12-15 | 2024-02-15 | Novozymes A/S | Mutated host cells with reduced cell motility on |
EP4026900A3 (en) | 2020-12-17 | 2022-10-05 | Fornia BioSolutions, Inc. | Xylanase variants and methods |
WO2023288294A1 (en) | 2021-07-16 | 2023-01-19 | Novozymes A/S | Compositions and methods for improving the rainfastness of proteins on plant surfaces |
US11987824B2 (en) | 2020-12-22 | 2024-05-21 | Fornia Biosolutions, Inc. | Additional endoglucanase variants and methods |
WO2022161914A1 (en) | 2021-01-26 | 2022-08-04 | Basf Se | High temperature fermentation process and microorganisms |
AR124921A1 (en) | 2021-02-18 | 2023-05-17 | Novozymes As | INACTIVE HEME-CONTAINING POLYPEPTIDES |
EP4305146A1 (en) | 2021-03-12 | 2024-01-17 | Novozymes A/S | Polypeptide variants |
EP4060036A1 (en) | 2021-03-15 | 2022-09-21 | Novozymes A/S | Polypeptide variants |
US20240060061A1 (en) | 2021-03-15 | 2024-02-22 | Novozymes A/S | Dnase variants |
JP2023548846A (en) | 2021-03-15 | 2023-11-21 | ザ プロクター アンド ギャンブル カンパニー | Cleaning compositions containing polypeptide variants |
MX2023014545A (en) | 2021-06-07 | 2024-03-01 | Novozymes As | Engineered microorganism for improved ethanol fermentation. |
EP4359518A1 (en) | 2021-06-23 | 2024-05-01 | Novozymes A/S | Alpha-amylase polypeptides |
BR112023027016A2 (en) | 2021-06-24 | 2024-03-12 | Basf Se | MODIFIED BACILLUS HOST CELL COMPRISING AN ALTERED EXTRACELLULAR MATRIX REGULATORY PROTEIN A AND/OR AN ALTERED EXTRACELLULAR MATRIX REGULATORY PROTEIN B, METHOD FOR PRODUCING A COMPOUND OF INTEREST, AND, ALTERED EXTRACELLULAR MATRIX REGULATORY PROTEINS A AND B |
EP4359423A1 (en) | 2021-06-24 | 2024-05-01 | Basf Se | Bacillus licheniformis host cell for production of a compound of interest with increased purity |
MX2023015455A (en) | 2021-06-24 | 2024-02-23 | Basf Se | Improved bacillus production host. |
EP4370534A1 (en) | 2021-07-13 | 2024-05-22 | Novozymes A/S | Recombinant cutinase expression |
EP4430178A1 (en) | 2021-11-09 | 2024-09-18 | AB Enzymes GmbH | Improved xylanases |
US20250034535A1 (en) | 2021-12-10 | 2025-01-30 | Novozymes A/S | Improved protein production in recombinant bacteria |
WO2023117970A1 (en) | 2021-12-20 | 2023-06-29 | Basf Se | Method for improved production of intracellular proteins in bacillus |
WO2023152220A1 (en) | 2022-02-10 | 2023-08-17 | Novozymes A/S | Improved expression of recombinant proteins |
EP4242303A1 (en) | 2022-03-08 | 2023-09-13 | Novozymes A/S | Fusion polypeptides with deamidase inhibitor and deamidase domains |
WO2023170177A1 (en) | 2022-03-08 | 2023-09-14 | Novozymes A/S | Fusion polypeptides with deamidase inhibitor and deamidase domains |
WO2023194388A1 (en) | 2022-04-07 | 2023-10-12 | Novozymes A/S | Fusion proteins and their use against eimeria |
AU2023272468A1 (en) | 2022-05-14 | 2024-11-14 | Novonesis Plant Biosolutions A/S | Compositions and methods for preventing, treating, supressing and/or eliminating phytopathogenic infestations and infections |
EP4544036A1 (en) | 2022-06-21 | 2025-04-30 | Novozymes A/S | Mannanase variants and polynucleotides encoding same |
WO2023247514A1 (en) | 2022-06-22 | 2023-12-28 | Novozymes A/S | Recombinant mannanase expression |
WO2023247664A2 (en) | 2022-06-24 | 2023-12-28 | Novozymes A/S | Lipase variants and compositions comprising such lipase variants |
EP4547210A1 (en) | 2022-06-30 | 2025-05-07 | Novozymes A/S | Mutanases and oral care compositions comprising same |
CN119156397A (en) | 2022-07-15 | 2024-12-17 | 诺维信公司 | Polypeptides having deamidase inhibitor activity |
CN119630806A (en) | 2022-08-02 | 2025-03-14 | 巴斯夫欧洲公司 | Stable protein production process using bacillus host cells with salt feed |
CN119948159A (en) | 2022-09-15 | 2025-05-06 | 诺维信公司 | Fungal signal peptides |
WO2024118901A2 (en) | 2022-11-30 | 2024-06-06 | Novozymes A/S | Carbonic anhydrase variants and polynucleotides encoding same |
AU2023388516A1 (en) | 2022-12-05 | 2025-04-10 | Novozymes A/S | Protease variants and polynucleotides encoding same |
WO2024120767A1 (en) | 2022-12-05 | 2024-06-13 | Novozymes A/S | Modified rna polymerase activities |
WO2024121357A1 (en) | 2022-12-08 | 2024-06-13 | Novozymes A/S | Fiber-degrading enzymes for animal feed comprising an oil seed material |
WO2024121324A1 (en) | 2022-12-08 | 2024-06-13 | Novozymes A/S | Polypeptide having lysozyme activity and polynucleotides encoding same |
AU2023393689A1 (en) | 2022-12-14 | 2025-05-01 | Novozymes A/S | Improved lipase (gcl1) variants |
WO2024137704A2 (en) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Processes for producing fermentation products using fiber-degrading enzymes with engineered yeast |
WO2024137250A1 (en) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Carbohydrate esterase family 3 (ce3) polypeptides having acetyl xylan esterase activity and polynucleotides encoding same |
WO2024137246A1 (en) | 2022-12-19 | 2024-06-27 | Novozymes A/S | Carbohydrate esterase family 1 (ce1) polypeptides having ferulic acid esterase and/or acetyl xylan esterase activity and polynucleotides encoding same |
WO2024133344A1 (en) | 2022-12-20 | 2024-06-27 | Novozymes A/S | A method for providing a candidate biological sequence and related electronic device |
WO2024133495A1 (en) | 2022-12-21 | 2024-06-27 | Novozymes A/S | Microbial proteases for cell detachment |
WO2024133497A1 (en) | 2022-12-21 | 2024-06-27 | Novozymes A/S | Recombinant protease for cell detachment |
EP4389865A1 (en) | 2022-12-21 | 2024-06-26 | Novozymes A/S | Recombinant protease for cell detachment |
WO2024146919A1 (en) | 2023-01-05 | 2024-07-11 | Basf Se | Use of foldases to improve heterologous expression of secreted molecules |
WO2024175631A1 (en) | 2023-02-22 | 2024-08-29 | Novozymes A/S | Oral care composition comprising invertase |
WO2024180163A1 (en) | 2023-03-02 | 2024-09-06 | Novozymes A/S | Nutritional compositions comprising a recombinant polypeptide which has a nutritionally complete amino acid profile |
WO2024218234A1 (en) | 2023-04-21 | 2024-10-24 | Novozymes A/S | Generation of multi-copy host cells |
WO2024258820A2 (en) | 2023-06-13 | 2024-12-19 | Novozymes A/S | Processes for producing fermentation products using engineered yeast expressing a beta-xylosidase |
EP4273249A3 (en) | 2023-07-07 | 2024-05-22 | Novozymes A/S | Improved expression of recombinant proteins |
WO2025012213A1 (en) | 2023-07-10 | 2025-01-16 | Novozymes A/S | Artificial signal peptides |
CN117024569B (en) | 2023-07-18 | 2024-05-10 | 山西锦波生物医药股份有限公司 | Method for biosynthesis of human structural material VIII type collagen |
CN117126874B (en) | 2023-09-28 | 2024-04-16 | 山西锦波生物医药股份有限公司 | Biological method for preparing 164.88 DEG triple-helix structure collagen on large scale |
WO2024240965A2 (en) | 2023-09-29 | 2024-11-28 | Novozymes A/S | Droplet-based screening method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766586A (en) * | 1991-07-22 | 1998-06-16 | Institut Pasteur | Gram-positive bacteria replicon |
US6096306A (en) * | 1995-10-27 | 2000-08-01 | Institut Pasteur | Strains of Bacillus thuringiensis and pesticide composition containing them |
US6140104A (en) * | 1993-05-05 | 2000-10-31 | Institut Pasteur | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US6344338B1 (en) * | 1994-10-11 | 2002-02-05 | Valent Biosciences Corporation | Deposit assessment of Bacillus thuringiensis delta-endotoxin |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5024837A (en) * | 1987-05-06 | 1991-06-18 | Donovan William P | Coleopteran active microorganisms, related insecticide compositions and methods for their production and use |
NZ226442A (en) * | 1987-10-13 | 1991-08-27 | Lubrizol Genetics Inc | Anti-coleopteran toxin and gene |
-
1993
- 1993-05-05 FR FR9305387A patent/FR2704860B1/en not_active Expired - Lifetime
-
1994
- 1994-05-05 US US08/535,057 patent/US6140104A/en not_active Expired - Lifetime
- 1994-05-05 DE DE69434663T patent/DE69434663T2/en not_active Expired - Lifetime
- 1994-05-05 CA CA002162158A patent/CA2162158A1/en not_active Abandoned
- 1994-05-05 ES ES94915589T patent/ES2260757T3/en not_active Expired - Lifetime
- 1994-05-05 DK DK94915589T patent/DK0698105T3/en active
- 1994-05-05 EP EP94915589A patent/EP0698105B1/en not_active Expired - Lifetime
- 1994-05-05 JP JP6523982A patent/JPH08509609A/en active Pending
- 1994-05-05 AU AU67241/94A patent/AU693790B2/en not_active Expired
- 1994-05-05 AT AT94915589T patent/ATE320500T1/en active
- 1994-05-05 WO PCT/FR1994/000525 patent/WO1994025612A2/en active IP Right Grant
- 1994-05-05 PT PT94915589T patent/PT698105E/en unknown
-
2000
- 2000-02-14 US US09/503,252 patent/US6555366B1/en not_active Expired - Lifetime
-
2002
- 2002-06-20 US US10/174,992 patent/US20030166116A1/en not_active Abandoned
-
2005
- 2005-07-06 US US11/174,485 patent/US20060014942A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5766586A (en) * | 1991-07-22 | 1998-06-16 | Institut Pasteur | Gram-positive bacteria replicon |
US5928897A (en) * | 1991-07-22 | 1999-07-27 | Institut Pasteur | Expression of a gram-positive bacteria replicon |
US6258604B1 (en) * | 1991-07-22 | 2001-07-10 | Institut Pasteur | Gram-positive bacterium transformed with a replicon |
US6140104A (en) * | 1993-05-05 | 2000-10-31 | Institut Pasteur | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US6555366B1 (en) * | 1993-05-05 | 2003-04-29 | Institut Pasteur | Nucleotide sequences for the control of the expression of DNA sequences in a cell host |
US6344338B1 (en) * | 1994-10-11 | 2002-02-05 | Valent Biosciences Corporation | Deposit assessment of Bacillus thuringiensis delta-endotoxin |
US6096306A (en) * | 1995-10-27 | 2000-08-01 | Institut Pasteur | Strains of Bacillus thuringiensis and pesticide composition containing them |
Also Published As
Publication number | Publication date |
---|---|
US6555366B1 (en) | 2003-04-29 |
ES2260757T3 (en) | 2006-11-01 |
DE69434663T2 (en) | 2007-01-04 |
ATE320500T1 (en) | 2006-04-15 |
EP0698105B1 (en) | 2006-03-15 |
AU6724194A (en) | 1994-11-21 |
PT698105E (en) | 2006-07-31 |
EP0698105A1 (en) | 1996-02-28 |
JPH08509609A (en) | 1996-10-15 |
WO1994025612A2 (en) | 1994-11-10 |
AU693790B2 (en) | 1998-07-09 |
FR2704860A1 (en) | 1994-11-10 |
CA2162158A1 (en) | 1994-11-10 |
WO1994025612A3 (en) | 1995-01-05 |
US20060014942A1 (en) | 2006-01-19 |
FR2704860B1 (en) | 1995-07-13 |
DE69434663D1 (en) | 2006-05-11 |
US6140104A (en) | 2000-10-31 |
DK0698105T3 (en) | 2006-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6555366B1 (en) | Nucleotide sequences for the control of the expression of DNA sequences in a cell host | |
Lereclus et al. | Identification of a Bacillus thuringiensis gene that positively regulates transcription of the phosphatidylinositol-specific phospholipase C gene at the onset of the stationary phase | |
Zhong et al. | Characterization of a Bacillus thuringiensis δ-endotoxin which is toxic to insects in three orders | |
Bravo et al. | Analysis of cryIAa expression in sigE and sigK mutants of Bacillus thuringiensis | |
US5338544A (en) | CryIIB protein, insecticidal compositions and methods of use thereof | |
De Souza et al. | Full expression of the cryIIIA toxin gene of Bacillus thuringiensis requires a distant upstream DNA sequence affecting transcription | |
Dankocsik et al. | Activation of a cryptic crystal protein gene of Bacillus thuringiensis subspecies kurstaki by gene fusion and determination of the crystal protein insecticidal specificity | |
Donovan et al. | Molecular characterization of a gene encoding a 72-kilodalton mosquito-toxic crystal protein from Bacillus thuringiensis subsp. israelensis | |
Kalman et al. | Cloning of a novel cryIC-type gene from a strain of Bacillus thuringiensis subsp. galleriae | |
Koni et al. | Cloning and characterization of a novel Bacillus thuringiensis cytolytic delta-endotoxin | |
Lereclus et al. | spbA locus ensures the segregational stability of pTH1030, a novel type of Gram‐positive replicon | |
Schurter et al. | Efficient transformation of Bacillus thuringiensis and B. cereus via electroporation: transformation of acrystalliferous strains with a cloned delta-endotoxin gene | |
Bourgouin et al. | Characterization of the genes encoding the haemolytic toxin and the mosquitocidal delta-endotoxin of Bacillus thuringiensis israelensis | |
CA2166691C (en) | Bacillus thuringiensis transposon tn5401 and its use in a site-specific recombination system for bacillus thuringiensis strain development | |
Kalman et al. | Enhanced production of insecticidal proteins in Bacillus thuringiensis strains carrying an additional crystal protein gene in their chromosomes | |
Shivakumar et al. | Vegetative expression of the delta-endotoxin genes of Bacillus thuringiensis subsp. kurstaki in Bacillus subtilis | |
Sato et al. | Cloning, heterologous expression, and localization of a novel crystal protein gene from Bacillus thuringiensis serovar japonensis strain buibui toxic to scarabaeid insects | |
Aronson | The protoxin composition of Bacillus thuringiensis insecticidal inclusions affects solubility and toxicity | |
Menou et al. | Structural and genetic organization of IS232, a new insertion sequence of Bacillus thuringiensis | |
Cheong et al. | Cloning and characterization of a cytolytic and mosquitocidal delta-endotoxin from Bacillus thuringiensis subsp. jegathesan | |
US5073632A (en) | CryIIB crystal protein gene from Bacillus thuringiensis | |
Von Tersch et al. | Insecticidal toxins from Bacillus thuringiensis subsp. kenyae: gene cloning and characterization and comparison with B. thuringiensis subsp. kurstaki CryIA (c) toxins | |
Shimizu et al. | Cloning and expression in Escherichia coli of the 135-kDa insecticidal protein gene from Bacillus thuringiensis subsp. aizawai IPL7 | |
US6258604B1 (en) | Gram-positive bacterium transformed with a replicon | |
Galjart et al. | Plasmid location, cloning, and sequence analysis of the gene encoding a 27.3-kilodalton cytolytic protein from Bacillus thuringiensis subsp. morrisoni (PG-14) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |