US20030166768A1 - Marine paint compositions - Google Patents
Marine paint compositions Download PDFInfo
- Publication number
- US20030166768A1 US20030166768A1 US10/204,491 US20449103A US2003166768A1 US 20030166768 A1 US20030166768 A1 US 20030166768A1 US 20449103 A US20449103 A US 20449103A US 2003166768 A1 US2003166768 A1 US 2003166768A1
- Authority
- US
- United States
- Prior art keywords
- monomer units
- polymer
- unsaturated carboxylic
- paint composition
- monomer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000003973 paint Substances 0.000 title claims abstract description 68
- 239000000203 mixture Substances 0.000 title claims abstract description 66
- 239000000178 monomer Substances 0.000 claims abstract description 77
- 229920000642 polymer Polymers 0.000 claims abstract description 70
- -1 silicium ester Chemical class 0.000 claims abstract description 21
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 claims abstract description 18
- 125000004432 carbon atom Chemical group C* 0.000 claims abstract description 18
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims abstract description 12
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims abstract description 12
- 150000001298 alcohols Chemical class 0.000 claims abstract description 11
- 239000010949 copper Substances 0.000 claims abstract description 11
- 229910052802 copper Inorganic materials 0.000 claims abstract description 11
- 239000002519 antifouling agent Substances 0.000 claims abstract description 10
- 150000002148 esters Chemical class 0.000 claims abstract description 10
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims abstract description 9
- 150000001735 carboxylic acids Chemical class 0.000 claims abstract description 9
- 229910052725 zinc Inorganic materials 0.000 claims abstract description 9
- 239000011701 zinc Substances 0.000 claims abstract description 9
- 150000003839 salts Chemical class 0.000 claims abstract description 8
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims abstract description 7
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 claims abstract description 7
- 239000011575 calcium Substances 0.000 claims abstract description 7
- 229910052791 calcium Inorganic materials 0.000 claims abstract description 7
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical class C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 claims abstract description 7
- 125000003118 aryl group Chemical group 0.000 claims abstract description 6
- 125000002877 alkyl aryl group Chemical group 0.000 claims abstract description 5
- 125000000217 alkyl group Chemical group 0.000 claims abstract description 5
- 125000000753 cycloalkyl group Chemical group 0.000 claims abstract description 5
- 229920002554 vinyl polymer Polymers 0.000 claims abstract description 5
- UYMKPFRHYYNDTL-UHFFFAOYSA-N ethenamine Chemical class NC=C UYMKPFRHYYNDTL-UHFFFAOYSA-N 0.000 claims abstract description 4
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 claims abstract description 3
- 239000002253 acid Substances 0.000 claims description 19
- 238000009835 boiling Methods 0.000 claims description 11
- 239000011347 resin Substances 0.000 claims description 10
- 229920005989 resin Polymers 0.000 claims description 10
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical group C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 claims description 6
- LPUCKLOWOWADAC-UHFFFAOYSA-M tributylstannyl 2-methylprop-2-enoate Chemical compound CCCC[Sn](CCCC)(CCCC)OC(=O)C(C)=C LPUCKLOWOWADAC-UHFFFAOYSA-M 0.000 claims description 4
- 239000011248 coating agent Substances 0.000 claims description 3
- 238000000576 coating method Methods 0.000 claims description 3
- 239000007787 solid Substances 0.000 description 22
- 239000000049 pigment Substances 0.000 description 21
- 230000003373 anti-fouling effect Effects 0.000 description 17
- 238000005498 polishing Methods 0.000 description 13
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 12
- 239000011230 binding agent Substances 0.000 description 11
- BERDEBHAJNAUOM-UHFFFAOYSA-N copper(I) oxide Inorganic materials [Cu]O[Cu] BERDEBHAJNAUOM-UHFFFAOYSA-N 0.000 description 11
- KRFJLUBVMFXRPN-UHFFFAOYSA-N cuprous oxide Chemical compound [O-2].[Cu+].[Cu+] KRFJLUBVMFXRPN-UHFFFAOYSA-N 0.000 description 11
- MQIUGAXCHLFZKX-UHFFFAOYSA-N Di-n-octyl phthalate Natural products CCCCCCCCOC(=O)C1=CC=CC=C1C(=O)OCCCCCCCC MQIUGAXCHLFZKX-UHFFFAOYSA-N 0.000 description 10
- BJQHLKABXJIVAM-UHFFFAOYSA-N bis(2-ethylhexyl) phthalate Chemical compound CCCCC(CC)COC(=O)C1=CC=CC=C1C(=O)OCC(CC)CCCC BJQHLKABXJIVAM-UHFFFAOYSA-N 0.000 description 10
- 239000013535 sea water Substances 0.000 description 10
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 9
- 229940112669 cuprous oxide Drugs 0.000 description 9
- UQSXHKLRYXJYBZ-UHFFFAOYSA-N iron oxide Inorganic materials [Fe]=O UQSXHKLRYXJYBZ-UHFFFAOYSA-N 0.000 description 9
- 239000008096 xylene Substances 0.000 description 9
- 229910052751 metal Inorganic materials 0.000 description 8
- 239000002184 metal Substances 0.000 description 8
- 239000002904 solvent Substances 0.000 description 8
- 125000001424 substituent group Chemical group 0.000 description 8
- PIILXFBHQILWPS-UHFFFAOYSA-N tributyltin Chemical compound CCCC[Sn](CCCC)CCCC PIILXFBHQILWPS-UHFFFAOYSA-N 0.000 description 8
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 description 7
- 230000007547 defect Effects 0.000 description 7
- 239000004615 ingredient Substances 0.000 description 7
- 238000000034 method Methods 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 6
- BAPJBEWLBFYGME-UHFFFAOYSA-N Methyl acrylate Chemical compound COC(=O)C=C BAPJBEWLBFYGME-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 6
- 229920001577 copolymer Polymers 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 150000002894 organic compounds Chemical class 0.000 description 6
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 230000009974 thixotropic effect Effects 0.000 description 6
- 239000011787 zinc oxide Substances 0.000 description 6
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 5
- 239000008199 coating composition Substances 0.000 description 5
- 239000002966 varnish Substances 0.000 description 5
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 4
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 4
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000000440 bentonite Substances 0.000 description 4
- 229910000278 bentonite Inorganic materials 0.000 description 4
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 4
- 239000003139 biocide Substances 0.000 description 4
- CQEYYJKEWSMYFG-UHFFFAOYSA-N butyl acrylate Chemical compound CCCCOC(=O)C=C CQEYYJKEWSMYFG-UHFFFAOYSA-N 0.000 description 4
- 230000000052 comparative effect Effects 0.000 description 4
- PDZKZMQQDCHTNF-UHFFFAOYSA-M copper(1+);thiocyanate Chemical compound [Cu+].[S-]C#N PDZKZMQQDCHTNF-UHFFFAOYSA-M 0.000 description 4
- OPQARKPSCNTWTJ-UHFFFAOYSA-L copper(ii) acetate Chemical compound [Cu+2].CC([O-])=O.CC([O-])=O OPQARKPSCNTWTJ-UHFFFAOYSA-L 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 239000013008 thixotropic agent Substances 0.000 description 4
- ZWEHNKRNPOVVGH-UHFFFAOYSA-N 2-Butanone Chemical compound CCC(C)=O ZWEHNKRNPOVVGH-UHFFFAOYSA-N 0.000 description 3
- 239000005749 Copper compound Substances 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- 230000000996 additive effect Effects 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 3
- AZHVQJLDOFKHPZ-UHFFFAOYSA-N oxathiazine Chemical class O1SN=CC=C1 AZHVQJLDOFKHPZ-UHFFFAOYSA-N 0.000 description 3
- WYKYCHHWIJXDAO-UHFFFAOYSA-N tert-butyl 2-ethylhexaneperoxoate Chemical compound CCCCC(CC)C(=O)OOC(C)(C)C WYKYCHHWIJXDAO-UHFFFAOYSA-N 0.000 description 3
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 3
- AMHNZOICSMBGDH-UHFFFAOYSA-L zineb Chemical compound [Zn+2].[S-]C(=S)NCCNC([S-])=S AMHNZOICSMBGDH-UHFFFAOYSA-L 0.000 description 3
- QEQBMZQFDDDTPN-UHFFFAOYSA-N (2-methylpropan-2-yl)oxy benzenecarboperoxoate Chemical compound CC(C)(C)OOOC(=O)C1=CC=CC=C1 QEQBMZQFDDDTPN-UHFFFAOYSA-N 0.000 description 2
- 125000006704 (C5-C6) cycloalkyl group Chemical group 0.000 description 2
- FMYSHKHSQFXYRS-UHFFFAOYSA-N 1,4,2-oxathiazine Chemical class O1C=CSC=N1 FMYSHKHSQFXYRS-UHFFFAOYSA-N 0.000 description 2
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 2
- YAUCKEPYKXHCFF-UHFFFAOYSA-N 2-carbamothioylsulfanylethyl carbamodithioate;manganese Chemical compound [Mn].NC(=S)SCCSC(N)=S YAUCKEPYKXHCFF-UHFFFAOYSA-N 0.000 description 2
- FFWSICBKRCICMR-UHFFFAOYSA-N 5-methyl-2-hexanone Chemical compound CC(C)CCC(C)=O FFWSICBKRCICMR-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- DKPFZGUDAPQIHT-UHFFFAOYSA-N Butyl acetate Natural products CCCCOC(C)=O DKPFZGUDAPQIHT-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 2
- JIGUQPWFLRLWPJ-UHFFFAOYSA-N Ethyl acrylate Chemical compound CCOC(=O)C=C JIGUQPWFLRLWPJ-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 2
- VVQNEPGJFQJSBK-UHFFFAOYSA-N Methyl methacrylate Chemical compound COC(=O)C(C)=C VVQNEPGJFQJSBK-UHFFFAOYSA-N 0.000 description 2
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-M Thiocyanate anion Chemical compound [S-]C#N ZMZDMBWJUHKJPS-UHFFFAOYSA-M 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 125000003545 alkoxy group Chemical group 0.000 description 2
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 2
- 125000004414 alkyl thio group Chemical group 0.000 description 2
- 125000003236 benzoyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)=O 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- TWFZGCMQGLPBSX-UHFFFAOYSA-N carbendazim Chemical compound C1=CC=C2NC(NC(=O)OC)=NC2=C1 TWFZGCMQGLPBSX-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- XPLSDXJBKRIVFZ-UHFFFAOYSA-L copper;prop-2-enoate Chemical compound [Cu+2].[O-]C(=O)C=C.[O-]C(=O)C=C XPLSDXJBKRIVFZ-UHFFFAOYSA-L 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- JHIVVAPYMSGYDF-UHFFFAOYSA-N cyclohexanone Chemical compound O=C1CCCCC1 JHIVVAPYMSGYDF-UHFFFAOYSA-N 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 230000018109 developmental process Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000003628 erosive effect Effects 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 125000002541 furyl group Chemical group 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- FUZZWVXGSFPDMH-UHFFFAOYSA-N hexanoic acid Chemical compound CCCCCC(O)=O FUZZWVXGSFPDMH-UHFFFAOYSA-N 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N hydrogen thiocyanate Natural products SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 150000002484 inorganic compounds Chemical class 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000002808 molecular sieve Substances 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- PNJWIWWMYCMZRO-UHFFFAOYSA-N pent‐4‐en‐2‐one Natural products CC(=O)CC=C PNJWIWWMYCMZRO-UHFFFAOYSA-N 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 239000011342 resin composition Substances 0.000 description 2
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 2
- 239000003381 stabilizer Substances 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 229910052623 talc Inorganic materials 0.000 description 2
- 239000000454 talc Substances 0.000 description 2
- 235000012222 talc Nutrition 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- KUAZQDVKQLNFPE-UHFFFAOYSA-N thiram Chemical compound CN(C)C(=S)SSC(=S)N(C)C KUAZQDVKQLNFPE-UHFFFAOYSA-N 0.000 description 2
- 239000004408 titanium dioxide Substances 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- 125000004665 trialkylsilyl group Chemical group 0.000 description 2
- 150000003918 triazines Chemical class 0.000 description 2
- WEAZWKYSTGLBSQ-UHFFFAOYSA-N tributylsilyl 2-methylprop-2-enoate Chemical compound CCCC[Si](CCCC)(CCCC)OC(=O)C(C)=C WEAZWKYSTGLBSQ-UHFFFAOYSA-N 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- 150000003751 zinc Chemical class 0.000 description 2
- DTGKSKDOIYIVQL-WEDXCCLWSA-N (+)-borneol Chemical group C1C[C@@]2(C)[C@@H](O)C[C@@H]1C2(C)C DTGKSKDOIYIVQL-WEDXCCLWSA-N 0.000 description 1
- JVVXZOOGOGPDRZ-UHFFFAOYSA-N (1,4a-dimethyl-7-propan-2-yl-2,3,4,9,10,10a-hexahydrophenanthren-1-yl)methanamine Chemical compound NCC1(C)CCCC2(C)C3=CC=C(C(C)C)C=C3CCC21 JVVXZOOGOGPDRZ-UHFFFAOYSA-N 0.000 description 1
- ADDAJJNRBDCPFR-UHFFFAOYSA-N (5-thiocyanatothiophen-2-yl) thiocyanate Chemical compound N#CSC1=CC=C(SC#N)S1 ADDAJJNRBDCPFR-UHFFFAOYSA-N 0.000 description 1
- 125000004400 (C1-C12) alkyl group Chemical group 0.000 description 1
- 125000004768 (C1-C4) alkylsulfinyl group Chemical group 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000004209 (C1-C8) alkyl group Chemical group 0.000 description 1
- TUBQDCKAWGHZPF-UHFFFAOYSA-N 1,3-benzothiazol-2-ylsulfanylmethyl thiocyanate Chemical compound C1=CC=C2SC(SCSC#N)=NC2=C1 TUBQDCKAWGHZPF-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- UOZNXGJVAWDLQK-UHFFFAOYSA-N 1-(2,3-dimethylphenyl)pyrrole-2,5-dione Chemical compound CC1=CC=CC(N2C(C=CC2=O)=O)=C1C UOZNXGJVAWDLQK-UHFFFAOYSA-N 0.000 description 1
- VHZJMAJCUAWIHV-UHFFFAOYSA-N 1-(2,4,6-trichlorophenyl)pyrrole-2,5-dione Chemical compound ClC1=CC(Cl)=CC(Cl)=C1N1C(=O)C=CC1=O VHZJMAJCUAWIHV-UHFFFAOYSA-N 0.000 description 1
- TUPMGRKCIDFTPF-UHFFFAOYSA-N 1-(2-anilinophenyl)pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C1=CC=CC=C1NC1=CC=CC=C1 TUPMGRKCIDFTPF-UHFFFAOYSA-N 0.000 description 1
- QDEQBRUNBFJJPW-UHFFFAOYSA-N 1-(3-chlorophenyl)pyrrole-2,5-dione Chemical compound ClC1=CC=CC(N2C(C=CC2=O)=O)=C1 QDEQBRUNBFJJPW-UHFFFAOYSA-N 0.000 description 1
- YLJPMCJDTAPPRX-UHFFFAOYSA-N 1-(4-butylphenyl)pyrrole-2,5-dione Chemical compound C1=CC(CCCC)=CC=C1N1C(=O)C=CC1=O YLJPMCJDTAPPRX-UHFFFAOYSA-N 0.000 description 1
- KCFXNGDHQPMIAQ-UHFFFAOYSA-N 1-(4-methylphenyl)pyrrole-2,5-dione Chemical compound C1=CC(C)=CC=C1N1C(=O)C=CC1=O KCFXNGDHQPMIAQ-UHFFFAOYSA-N 0.000 description 1
- XOILGBPDXMVFIP-UHFFFAOYSA-N 1-(diiodomethylsulfonyl)-4-methylbenzene Chemical compound CC1=CC=C(S(=O)(=O)C(I)I)C=C1 XOILGBPDXMVFIP-UHFFFAOYSA-N 0.000 description 1
- PBGPBHYPCGDFEZ-UHFFFAOYSA-N 1-ethenylpiperidin-2-one Chemical compound C=CN1CCCCC1=O PBGPBHYPCGDFEZ-UHFFFAOYSA-N 0.000 description 1
- XNWFRZJHXBZDAG-UHFFFAOYSA-N 2-METHOXYETHANOL Chemical compound COCCO XNWFRZJHXBZDAG-UHFFFAOYSA-N 0.000 description 1
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 1
- ZNQVEEAIQZEUHB-UHFFFAOYSA-N 2-ethoxyethanol Chemical compound CCOCCO ZNQVEEAIQZEUHB-UHFFFAOYSA-N 0.000 description 1
- 229940093475 2-ethoxyethanol Drugs 0.000 description 1
- SVONRAPFKPVNKG-UHFFFAOYSA-N 2-ethoxyethyl acetate Chemical compound CCOCCOC(C)=O SVONRAPFKPVNKG-UHFFFAOYSA-N 0.000 description 1
- ZVPQMESWKIQHGS-UHFFFAOYSA-N 3-(2,3-dichlorophenyl)-1,1-dimethylurea Chemical compound CN(C)C(=O)NC1=CC=CC(Cl)=C1Cl ZVPQMESWKIQHGS-UHFFFAOYSA-N 0.000 description 1
- XMTQQYYKAHVGBJ-UHFFFAOYSA-N 3-(3,4-DICHLOROPHENYL)-1,1-DIMETHYLUREA Chemical compound CN(C)C(=O)NC1=CC=C(Cl)C(Cl)=C1 XMTQQYYKAHVGBJ-UHFFFAOYSA-N 0.000 description 1
- GIHRSJHMOYLKNF-UHFFFAOYSA-N 3-(benzylideneamino)-1,3-thiazolidine-2,4-dione Chemical compound O=C1CSC(=O)N1N=CC1=CC=CC=C1 GIHRSJHMOYLKNF-UHFFFAOYSA-N 0.000 description 1
- JIKXZFMCVIDNHV-UHFFFAOYSA-N 3-[(2,4-dichlorophenyl)methylideneamino]-1,3-thiazolidine-2,4-dione Chemical compound ClC1=CC(Cl)=CC=C1C=NN1C(=O)SCC1=O JIKXZFMCVIDNHV-UHFFFAOYSA-N 0.000 description 1
- GTSOGRNBGAMGHJ-UHFFFAOYSA-N 3-[(2-hydroxyphenyl)methylideneamino]-1,3-thiazolidine-2,4-dione Chemical compound Oc1ccccc1C=NN1C(=O)CSC1=O GTSOGRNBGAMGHJ-UHFFFAOYSA-N 0.000 description 1
- CNUBZFRHJAATAR-UHFFFAOYSA-N 3-[(4-methylphenyl)methylideneamino]-1,3-thiazolidine-2,4-dione Chemical compound C1=CC(C)=CC=C1C=NN1C(=O)SCC1=O CNUBZFRHJAATAR-UHFFFAOYSA-N 0.000 description 1
- MXRGSJAOLKBZLU-UHFFFAOYSA-N 3-ethenylazepan-2-one Chemical compound C=CC1CCCCNC1=O MXRGSJAOLKBZLU-UHFFFAOYSA-N 0.000 description 1
- PORQOHRXAJJKGK-UHFFFAOYSA-N 4,5-dichloro-2-n-octyl-3(2H)-isothiazolone Chemical compound CCCCCCCCN1SC(Cl)=C(Cl)C1=O PORQOHRXAJJKGK-UHFFFAOYSA-N 0.000 description 1
- CDIJOYCNNFLOAX-UHFFFAOYSA-N 4-(trichloromethylsulfanyl)isoindole-1,3-dione Chemical compound ClC(Cl)(Cl)SC1=CC=CC2=C1C(=O)NC2=O CDIJOYCNNFLOAX-UHFFFAOYSA-N 0.000 description 1
- PKZFIMKHVGYZID-UHFFFAOYSA-N 4-n-butyl-2-n-cyclopropyl-6-methylsulfanyl-1,3,5-triazine-2,4-diamine Chemical compound CSC1=NC(NCCCC)=NC(NC2CC2)=N1 PKZFIMKHVGYZID-UHFFFAOYSA-N 0.000 description 1
- RQCLKJICDPMGDH-UHFFFAOYSA-N 7-(dichloromethyl)-2-fluoro-3-sulfanylideneisoindol-1-one Chemical compound S=C1N(F)C(=O)C2=C1C=CC=C2C(Cl)Cl RQCLKJICDPMGDH-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-UHFFFAOYSA-N Abietic-Saeure Natural products C12CCC(C(C)C)=CC2=CCC2C1(C)CCCC2(C)C(O)=O RSWGJHLUYNHPMX-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- ONRNAOADXIPPQT-UHFFFAOYSA-N C(CNC(S)=S)NC(S)=S.CN(C(=O)[Zn]C(N(C)C)=O)C Chemical compound C(CNC(S)=S)NC(S)=S.CN(C(=O)[Zn]C(N(C)C)=O)C ONRNAOADXIPPQT-UHFFFAOYSA-N 0.000 description 1
- 0 CC1=[Y]C2=C(*1)C=CC=C2 Chemical compound CC1=[Y]C2=C(*1)C=CC=C2 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 241000238586 Cirripedia Species 0.000 description 1
- 229910000570 Cupronickel Inorganic materials 0.000 description 1
- 239000005510 Diuron Substances 0.000 description 1
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 1
- 239000005802 Mancozeb Substances 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 241000237502 Ostreidae Species 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 239000005823 Propineb Substances 0.000 description 1
- KHPCPRHQVVSZAH-HUOMCSJISA-N Rosin Natural products O(C/C=C/c1ccccc1)[C@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 KHPCPRHQVVSZAH-HUOMCSJISA-N 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 1
- 206010044038 Tooth erosion Diseases 0.000 description 1
- MQRWBMAEBQOWAF-UHFFFAOYSA-N acetic acid;nickel Chemical compound [Ni].CC(O)=O.CC(O)=O MQRWBMAEBQOWAF-UHFFFAOYSA-N 0.000 description 1
- ZOIORXHNWRGPMV-UHFFFAOYSA-N acetic acid;zinc Chemical compound [Zn].CC(O)=O.CC(O)=O ZOIORXHNWRGPMV-UHFFFAOYSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 125000001931 aliphatic group Chemical group 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 125000003342 alkenyl group Chemical group 0.000 description 1
- 125000004457 alkyl amino carbonyl group Chemical group 0.000 description 1
- 125000004448 alkyl carbonyl group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- FROZIYRKKUFAOC-UHFFFAOYSA-N amobam Chemical compound N.N.SC(=S)NCCNC(S)=S FROZIYRKKUFAOC-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 229940000489 arsenate Drugs 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 229910052797 bismuth Inorganic materials 0.000 description 1
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 description 1
- ALDCPEBFUITPFV-UHFFFAOYSA-N butyl n-(3-iodoprop-2-ynyl)carbamate Chemical compound CCCCOC(=O)NCC#CI ALDCPEBFUITPFV-UHFFFAOYSA-N 0.000 description 1
- AHVOFPQVUVXHNL-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate Chemical compound COC(=O)C(C)=C.CCCCOC(=O)C=C AHVOFPQVUVXHNL-UHFFFAOYSA-N 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000007942 carboxylates Chemical class 0.000 description 1
- CRQQGFGUEAVUIL-UHFFFAOYSA-N chlorothalonil Chemical compound ClC1=C(Cl)C(C#N)=C(Cl)C(C#N)=C1Cl CRQQGFGUEAVUIL-UHFFFAOYSA-N 0.000 description 1
- 150000001879 copper Chemical class 0.000 description 1
- CAPBTZLZGJIFGJ-UHFFFAOYSA-L copper 2-dodecylbenzenesulfonate ethane-1,2-diamine Chemical compound [Cu+2].NCCN.NCCN.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O.CCCCCCCCCCCCC1=CC=CC=C1S([O-])(=O)=O CAPBTZLZGJIFGJ-UHFFFAOYSA-L 0.000 description 1
- 229940116318 copper carbonate Drugs 0.000 description 1
- 150000001880 copper compounds Chemical class 0.000 description 1
- YOCUPQPZWBBYIX-UHFFFAOYSA-N copper nickel Chemical compound [Ni].[Cu] YOCUPQPZWBBYIX-UHFFFAOYSA-N 0.000 description 1
- 229910000365 copper sulfate Inorganic materials 0.000 description 1
- ORTQZVOHEJQUHG-UHFFFAOYSA-L copper(II) chloride Chemical compound Cl[Cu]Cl ORTQZVOHEJQUHG-UHFFFAOYSA-L 0.000 description 1
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 1
- QHNCWVQDOPICKC-UHFFFAOYSA-N copper;1-hydroxypyridine-2-thione Chemical compound [Cu].ON1C=CC=CC1=S.ON1C=CC=CC1=S QHNCWVQDOPICKC-UHFFFAOYSA-N 0.000 description 1
- RCYPBTYYGICSND-UHFFFAOYSA-L copper;2,3,4,5,6-pentachlorophenolate Chemical compound [Cu+2].[O-]C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl.[O-]C1=C(Cl)C(Cl)=C(Cl)C(Cl)=C1Cl RCYPBTYYGICSND-UHFFFAOYSA-L 0.000 description 1
- GEZOTWYUIKXWOA-UHFFFAOYSA-L copper;carbonate Chemical compound [Cu+2].[O-]C([O-])=O GEZOTWYUIKXWOA-UHFFFAOYSA-L 0.000 description 1
- 229940076286 cupric acetate Drugs 0.000 description 1
- NMCCNOZOBBWFMN-UHFFFAOYSA-N davicil Chemical compound CS(=O)(=O)C1=C(Cl)C(Cl)=NC(Cl)=C1Cl NMCCNOZOBBWFMN-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- WURGXGVFSMYFCG-UHFFFAOYSA-N dichlofluanid Chemical compound CN(C)S(=O)(=O)N(SC(F)(Cl)Cl)C1=CC=CC=C1 WURGXGVFSMYFCG-UHFFFAOYSA-N 0.000 description 1
- 229940116901 diethyldithiocarbamate Drugs 0.000 description 1
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 1
- 238000004090 dissolution Methods 0.000 description 1
- GMSCBRSQMRDRCD-UHFFFAOYSA-N dodecyl 2-methylprop-2-enoate Chemical compound CCCCCCCCCCCCOC(=O)C(C)=C GMSCBRSQMRDRCD-UHFFFAOYSA-N 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 239000011953 free-radical catalyst Substances 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 150000003949 imides Chemical class 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000002427 irreversible effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 150000003951 lactams Chemical group 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- YKSNLCVSTHTHJA-UHFFFAOYSA-L maneb Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S YKSNLCVSTHTHJA-UHFFFAOYSA-L 0.000 description 1
- 229920000940 maneb Polymers 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000006518 morpholino carbonyl group Chemical group [H]C1([H])OC([H])([H])C([H])([H])N(C(*)=O)C1([H])[H] 0.000 description 1
- BLCKKNLGFULNRC-UHFFFAOYSA-L n,n-dimethylcarbamodithioate;nickel(2+) Chemical compound [Ni+2].CN(C)C([S-])=S.CN(C)C([S-])=S BLCKKNLGFULNRC-UHFFFAOYSA-L 0.000 description 1
- MNQOPPDTVHYCEZ-UHFFFAOYSA-N n-(hydroxymethyl)formamide Chemical compound OCNC=O MNQOPPDTVHYCEZ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229940078494 nickel acetate Drugs 0.000 description 1
- LGQLOGILCSXPEA-UHFFFAOYSA-L nickel sulfate Chemical compound [Ni+2].[O-]S([O-])(=O)=O LGQLOGILCSXPEA-UHFFFAOYSA-L 0.000 description 1
- 229910000363 nickel(II) sulfate Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- IJGRMHOSHXDMSA-UHFFFAOYSA-N nitrogen Substances N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- QJGQUHMNIGDVPM-UHFFFAOYSA-N nitrogen group Chemical group [N] QJGQUHMNIGDVPM-UHFFFAOYSA-N 0.000 description 1
- NDLPOXTZKUMGOV-UHFFFAOYSA-N oxo(oxoferriooxy)iron hydrate Chemical compound O.O=[Fe]O[Fe]=O NDLPOXTZKUMGOV-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 235000020636 oyster Nutrition 0.000 description 1
- 239000012188 paraffin wax Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- KKMLIVYBGSAJPM-UHFFFAOYSA-L propineb Chemical compound [Zn+2].[S-]C(=S)NC(C)CNC([S-])=S KKMLIVYBGSAJPM-UHFFFAOYSA-L 0.000 description 1
- WJSXSXUHWBSPEP-UHFFFAOYSA-N pyridine;triphenylborane Chemical compound C1=CC=NC=C1.C1=CC=CC=C1B(C=1C=CC=CC=1)C1=CC=CC=C1 WJSXSXUHWBSPEP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical group O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000007655 standard test method Methods 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229910052717 sulfur Chemical group 0.000 description 1
- 239000011593 sulfur Chemical group 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- WJCNZQLZVWNLKY-UHFFFAOYSA-N thiabendazole Chemical compound S1C=NC(C=2NC3=CC=CC=C3N=2)=C1 WJCNZQLZVWNLKY-UHFFFAOYSA-N 0.000 description 1
- 229960002447 thiram Drugs 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- HYVWIQDYBVKITD-UHFFFAOYSA-N tolylfluanid Chemical compound CN(C)S(=O)(=O)N(SC(F)(Cl)Cl)C1=CC=C(C)C=C1 HYVWIQDYBVKITD-UHFFFAOYSA-N 0.000 description 1
- KHPCPRHQVVSZAH-UHFFFAOYSA-N trans-cinnamyl beta-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OCC=CC1=CC=CC=C1 KHPCPRHQVVSZAH-UHFFFAOYSA-N 0.000 description 1
- 125000004953 trihalomethyl group Chemical group 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
- 239000004246 zinc acetate Substances 0.000 description 1
- RKQOSDAEEGPRER-UHFFFAOYSA-L zinc diethyldithiocarbamate Chemical compound [Zn+2].CCN(CC)C([S-])=S.CCN(CC)C([S-])=S RKQOSDAEEGPRER-UHFFFAOYSA-L 0.000 description 1
- 229960001296 zinc oxide Drugs 0.000 description 1
- 229940043810 zinc pyrithione Drugs 0.000 description 1
- NWONKYPBYAMBJT-UHFFFAOYSA-L zinc sulfate Chemical compound [Zn+2].[O-]S([O-])(=O)=O NWONKYPBYAMBJT-UHFFFAOYSA-L 0.000 description 1
- 229910000368 zinc sulfate Inorganic materials 0.000 description 1
- 229960001763 zinc sulfate Drugs 0.000 description 1
- PICXIOQBANWBIZ-UHFFFAOYSA-N zinc;1-oxidopyridine-2-thione Chemical compound [Zn+2].[O-]N1C=CC=CC1=S.[O-]N1C=CC=CC1=S PICXIOQBANWBIZ-UHFFFAOYSA-N 0.000 description 1
- JRPGMCRJPQJYPE-UHFFFAOYSA-N zinc;carbanide Chemical group [CH3-].[CH3-].[Zn+2] JRPGMCRJPQJYPE-UHFFFAOYSA-N 0.000 description 1
- NRINZBKAERVHFW-UHFFFAOYSA-L zinc;dicarbamate Chemical compound [Zn+2].NC([O-])=O.NC([O-])=O NRINZBKAERVHFW-UHFFFAOYSA-L 0.000 description 1
- NDKWCCLKSWNDBG-UHFFFAOYSA-N zinc;dioxido(dioxo)chromium Chemical compound [Zn+2].[O-][Cr]([O-])(=O)=O NDKWCCLKSWNDBG-UHFFFAOYSA-N 0.000 description 1
- DUBNHZYBDBBJHD-UHFFFAOYSA-L ziram Chemical compound [Zn+2].CN(C)C([S-])=S.CN(C)C([S-])=S DUBNHZYBDBBJHD-UHFFFAOYSA-L 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/16—Antifouling paints; Underwater paints
- C09D5/1656—Antifouling paints; Underwater paints characterised by the film-forming substance
- C09D5/1662—Synthetic film-forming substance
- C09D5/1668—Vinyl-type polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D143/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and containing boron, silicon, phosphorus, selenium, tellurium, or a metal; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L39/00—Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a single or double bond to nitrogen or by a heterocyclic ring containing nitrogen; Compositions of derivatives of such polymers
Definitions
- This invention relates to marine anti-fouling (AF) paints generally used as topcoat paints for ships' hull, particularly to marine anti-fouling paints that polish at a predetermined rate and to a polymeric composition for a marine anti-fouling paint that hydrolyses at a predetermined rate in the presence of sea water.
- AF marine anti-fouling
- a topcoat paint comprising anti-fouling agents controls the extent of marine fouling.
- the anti-fouling agents are biocides that are freed from the paint surface at a rate such that their concentration is lethal to marine organisms.
- TBT tributyltin
- EP-A-51930 is a milestone patent disclosing such TBT copolymers.
- the “self-polishing” action leads to decrease in hull roughness during service. TBT systems have dominated the antifouling market for the last 20 years.
- TBT tributyltin
- EP-B-289 481 and EP-B-526 441 discloses marine paint compositions based on rosin or its copper or zinc derivatives and a copolymer of alkyl methacrylates and/or styrene with comonomers which are cyclic tertiary amides or imides having an alkenyl group.
- EP-A-342 276 relates to the preparation of metal (preferably zinc or copper) containing resin composition which is characterised by having hydrolysable metal ester bonding at the end portion of pendant chain.
- GB 2 311 070 also describes a composition comprising a resin having at least one metal carboxylate.
- EP-B-0131 626 describes antifouling paints based on film-forming water insoluble, seawater erodible, polymeric binders containing trialkylsilyl (meth)acrylates;
- EP-A-755 733 discloses antifouling coating compositions based on such a trialkylsilyl esters containing copolymer and a chlorinated paraffin.
- An object of the present invention is to provide such improved self-polishing and anti-fouling paint compositions for use as topcoat paints for ships' hull.
- Another object of the invention is to provide improved polymeric binders for a marine anti-fouling paint that hydrolyses at a predetermined rate in the presence of seawater.
- a yet further object of the present invention is to provide an anti-fouling marine paint composition with a high solids content.
- the present invention provides a marine paint comprising essentially:
- a first polymer comprising from 20 to 70 wt % of monomer units A of at least one hydrolysable either tin or silicium ester of an olefinically unsaturated carboxylic acid or salt of copper, zinc, calcium of an olefinically unsaturated carboxylic acid,
- the balance of the monomer units being monomer units C selected from the group consisting of the esters of ethylenically unsaturated carboxylic acids with C1-C18 alcohols, styrene, alpha-methyl styrene, vinyl toluenes, and mixtures thereof.
- a second polymer comprising from 5 to 40 wt % of at least one comonomer B selected from the group consisting of the N-vinyl lactam monomers of general formula CH2 ⁇ CH— NR′′′′′—CO—R′
- R′ is a n-alkylidene radical having 2 to 8 carbon atoms
- R′′ is selected from the group consisting of alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl radicals having a maximum of 18 carbon atoms,
- R′′′ is H or CH3
- R′′′′ is a n-alkylidene radical having from 1 to 8 carbon atoms
- R′′′′′ is H or R′′
- the balance of the monomer units being monomer units C selected from the group consisting of the esters of ethylenically unsaturated carboxylic acids with C1-C18 alcohols, styrene, alpha-methyl styrene, vinyl toluenes, and mixtures thereof.
- At least one antifoulant At least one antifoulant.
- the relative ratio of the first polymer comprising monomer units A to the second polymer comprising monomer units B is from 95:5 to 10:90.
- the two polymeric binders are sufficiently compatible to produce a stable paint composition but sufficiently incompatible to give such structure to the paint that it can be applied in desired layer thicknesses. There will thus be less need to add thixotropic agents in order to obtain a suitable structure. It is known in the art that the solids content of a paint composition decreases when the amount of thixotropic agent increases; the paint compositions of the present invention will thus keep a high solids content.
- the monomer units A used in the first polymer are of the formula R 3 SnOOCCR′ ⁇ CH 2 or R 3 SiOOCCR′ ⁇ CH 2 , wherein each R is an alkyl radical containing from 2 to 8 carbon atoms, or an aryl or aralkyl radical, R′ is H or CH 3 .
- the groups R can be different but are preferably the same.
- the first polymer comprises from 20 to 70 wt % of monomer units A, preferably from 30 to 65 wt %, and more preferably from 50 to 60 wt %, the balance being monomer units C.
- the first polymer comprising monomer units A is a metal containing resin composition that can be obtained as described in EP-A-342276 by reacting a mixture of
- an acid group containing base resin comprising essentially monomer units C and olefinically unsaturated carboxylic acids monomer units corresponding to monomer unit A;
- the metals are selected from the zinc, copper or calcium.
- the acid group containing base resin has an acid value of from 25 to 350 mg KOH/g, the low boiling organic basic acid has a boiling point of from 100 to 240° C. and the high boiling organic monobasic acid has a boiling point that is at least 20° C. higher than the boiling point of said low boiling organic basic acid.
- the first polymer comprising monomer units A has a number average molecular weight of from 1000 to 50000, and contains from 20 to 65 wt % of structural units derived from trialkylsilyl ester of polymerisable unsaturated carboxylic acid, as described in EP-A-775733.
- Monomer units B can be N-vinyl lactam monomers of general formula CH2 ⁇ CH— N—CO—R′
- the most preferred monomer unit B is N-vinyl pyrrolidone.
- Monomer units B can also be N-vinyl amides of general formula CH2 ⁇ CH—N—CO—R′′, wherein R′′ is selected from the group consisting of alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl radicals having a maximum of 18 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms.
- Monomer units B can further be monomers of general formula CH2 ⁇ CR′′′—COO—R′′′′— NR′′′′′—CO—R′
- R′′′ is CH3; examples of such monomers are described in Polymer 39(17), 4165-9, 1998.
- Monomer units B can still further be monomers of general formula CH2 ⁇ CR′′′—COO—R′′′′—N—CO—R′′, wherein R′′′ is H or CH3, R′′′′ is a n-alkylidene radical having from 1 to 8 carbon atoms, and R′′ is selected from the group consisting of alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl radicals having a maximum of 18 carbon atoms.
- N-vinyl lactams are being used, more preferably N-vinylpyrrolidone
- the second polymer comprises from 5 to 40 wt % of monomer units B, preferably from 10 to 30 wt % and more preferably from 15 to 30 wt %.
- Monomer units C are preferably selected from the group consisting of the esters of ethylenically unsaturated carboxylic acids with C1-C18 alcohols, styrene, alpha-methyl styrene, vinyl toluenes, and mixtures thereof.
- the ethylenically unsaturated carboxylic acid is more preferably selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, fumaric acid, and mixtures thereof, most preferably selected from the group consisting of acrylic acid, methacrylic acid, and mixtures thereof.
- the alcohol may be an aliphatic or a cycloaliphatic alcohol, and it may be linear or branched; it is more preferably selected from C1-C10 alcohols, more preferably from C1-C4 alcohols, most preferably from C1-C2 alcohols.
- Typical examples of monomer units of the ester type are stearyl (meth)acrylate, isobornyl (meth)acrylate, lauryl methacrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, ethyl (meth)acrylate and methyl (meth)acrylate.
- the polymer can be prepared by addition polymerisation of the appropriate monomers in the appropriate proportions at polymerisation conditions using a free radical catalyst such as e.g. benzoyl peroxide, tert-butyl peroxy 2-ethyl hexanoate (TBPEH), t-butyl peroxybenzoate (TBP), or azobisisobutyronitrile.
- a free radical catalyst such as e.g. benzoyl peroxide, tert-butyl peroxy 2-ethyl hexanoate (TBPEH), t-butyl peroxybenzoate (TBP), or azobisisobutyronitrile.
- TPEH tert-butyl peroxy 2-ethyl hexanoate
- TBP t-butyl peroxybenzoate
- azobisisobutyronitrile azobisisobutyronitrile
- Polymerisation is preferably carried out at a temperature in the range of 70-140° C. although higher temperatures may be used providing that the solvent and the catalyst are adapted thereto. Within this range the use of higher temperatures produces polymers of lower molecular weight. Polymerisation may be carried out by heating all the polymer ingredients in the solvent or preferably by gradually adding the monomers and catalyst to the heated solvent. The latter procedure produces polymers of lower molecular weight.
- the ratio of the two polymers used to prepare the paint composition can vary over a broad range of values depending upon the desired properties of the composition.
- the relative ratio of the first polymer comprising monomer units A to the second polymer comprising monomer units B is from 95:5 to 10:90, preferably from 80:20 to 40:60.
- the antifoulant used as the other essential component in the coating composition of the present invention may be any of conventionally known antifoulants.
- the known antifoulants are roughly divided into inorganic compounds, metal-containing organic compounds, and metal-free organic compounds.
- Examples of the inorganic compounds include copper compounds (e.g. copper sulfate, copper powder, cuprous thiocyanate, copper carbonate, copper chloride, and the traditionally preferred cuprous oxide), zinc sulfate, zinc oxide, nickel sulfate, and copper nickel alloys.
- copper compounds e.g. copper sulfate, copper powder, cuprous thiocyanate, copper carbonate, copper chloride, and the traditionally preferred cuprous oxide
- zinc sulfate zinc oxide
- nickel sulfate nickel alloys.
- Examples of the metal-containing organic compounds include organo-copper compounds, organo-nickel compounds, and organo-zinc compounds. Also usable are manganese ethylene bis dithiocarbamate (maneb), propineb, and the like.
- Examples of the organo-copper compounds include copper nonylphenolsulphonate, copper bis(ethylenediamine) bis(dodecylbenzenesulphonate), copper acetate, copper naphtenate, copper pyrithione and copper bis(pentachlorophenolate).
- Examples of the organo-nickel compounds include nickel acetate and nickel dimethyldithiocarbamate.
- organo-zinc compounds examples include zinc acetate, zinc carbamate, bis(dimethylcarbamoyl) zinc ethylene-bis(dithiocarbamate), zinc dimethyidithiocarbamate, zinc pyrithione, and zinc ethylene-bis(dithiocarbamate).
- mixed metal-containing organic compound one can cite (polymeric) manganese ethylene bis dithiocarbamate complexed with zinc salt (mancozeb).
- metal-free organic compounds examples include N-trihalomethylthiophthalimides, trihalomethylthiosulphamides, dithiocarbamic acids, N-arylmaleimides, 3-(substituted amino)-1,3 thiazolidine-2,4-diones, dithiocyano compounds, triazine compounds, oxathiazines and others.
- N-trihalomethylthiophthalimides examples include N-trichloromethylthiophthalimide and N-fluorodichloromethylthiophthalimide.
- dithiocarbamic acids examples include bis(dimethylthiocarbamoyl) disulphide, ammonium N-methyidithiocarbamate and ammonium ethylene-bis(dithiocarbamate).
- trihalomethylthiosulphamides examples include N-(dichlorofluoromethylthio)-N′,N′-dimethyl-N-phenylsulphamide and N-(dichlorofluoromethylthio)-N′,N′-dimethyl-N-(4-methylphenyl)sulphamide.
- N-arylmaleimides examples include N-(2,4,6-trichlorophenyl)maleimide, N-4 tolylmaleimide, N-3 chlorophenylmaleimide, N-(4-n-butylphenyl)maleimide, N-(anilinophenyl)maleimide, and N-(2,3-xylyl)maleimide.
- Examples of the 3-(substituted amino)-1,3-thiazolidine-2,4-diones include 2-(thiocyanomethylthio)-benzothiazole, 3-benzylideneamino-1,3-thiazolidine-2,4-dione, 3-(4-methylbenzylideneamino)-1,3-thiazolidine-2,4-dione, 3-(2-hydroxybenzylideneamino)-1,3-thiazolidine-2,4-dione, 3-(4-dimethylaminobenzylideamino)-1,3-thiazolidine-2,4-dione, and 3-(2,4-dichlorobenzylideneamino)-1,3-thiazolidine-2,4-dione.
- dithiocyano compounds examples include dithiocyanomethane, dithiocyanoethane, and 2,5-dithiocyanothiophene.
- triazine compounds examples include 2-methylthio-4-butylamino-6-cyclopropylamino-s-triazine.
- oxathiazines examples include 1,4,2-oxathiazines and their mono- and di-oxides such as disclosed in PCT patent WO 98/05719: mono- and di-oxides of 1,4,2-oxathiazines with a substituent in the 3 position representing (a) phenyl; phenyl substituted with 1 to 3 substituents independently selected from hydroxyl, halo, C1-12 alkyl, C5-6 cycloalkyl, trihalomethyl, phenyl, C1-C5 alkoxy, C1-5 alkylthio, tetrahydropyranyloxy, phenoxy, C1-4 alkylcarbonyl, phenylcarbonyl, C1-4 alkylsulfinyl, carboxy or its alkali metal salt, C1-4 alkoxycarbonyl, C1-4 alkylaminocarbonyl, phenylaminocarbonyl, tolylaminocarbonyl, morpholinocarbon
- X is oxygen or sulfur; Y is nitrogen, CH or C(C1-4 alkoxy); and the C6 ring may have one C1-4 alkyl substituent; a second substituent selected from C1-4 alkyl or benzyl being optionally present in position 5 or 6.
- metal-free organic compounds include 2,4,5,6-tetrachloroisophthalonitrile, N,N-dimethyl-dichlorophenylurea, 4,5-dichloro-2-n-octyl-4-isothiazoline-3-one, N,N-dimethyl-N′-phenyl-(N-fluorodichloromethylthio)-sulfamide, tetramethylthiuramdisulphide, 3-iodo-2-propinylbutyl carbamate, 2-(methoxycarbonylamino)benzimidazole, 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine, diiodomethyl-p-tolyl sulphone, phenyl(bispyridine)bismuth dichloride, 2-(4-thiazolyl)benzimidazole, dihydroabietyl amine, N-methylol formamide and pyridine triphenylborane
- the use as antifoulant of the oxathiazines disclosed in WO-A-9505739 has the added advantage (disclosed in EP-A-823462) of increasing the self-polishing properties of the paint.
- the paint formulation should preferably include at least an effective amount of at least one barnaclecide, such as cuprous oxide or thiocyanate.
- a preferred barnaclecide is disclosed in EP-A-831134.
- EP-A-831134 discloses the use of from 0.5 to 9.9 wt %, based on the total weight of the dry mass of the composition, of at least one 2-trihalogenomethyl-3-halogeno-4-cyano pyrrole derivative substituted in position 5 and optionally in position 1, the halogens in positions 2 and 3 being independently selected from the group consisting of fluorine, chlorine and bromine, the substituent in position 5 being selected from the group consisting of C1-8 alkyl, C1-8 monohalogenoalkyl, C5-6 cycloalkyl, C5-6 monohalogenocycloalkyl, benzyl, phenyl, mono- and di-halogenobenzyl, mono- and di-halogenophenyl, mono- and di-C1-4-alkyl benzyl, mono- and di-C1-4-alkyl phenyl, monohalogeno mono-C1-4-alkyl benzyl and monohalogeno mono-C1-4-alkyl phenyl
- One or more antifoulants selected from such antifoulants are employed in the present invention.
- the antifoulants are used in such an amount that the proportion thereof in the solids contents of the coating composition is usually from 0.1 to 90% by weight, preferably 0.1 to 80% by weight, and more preferably from 1 to 60% by weight. Too small antifoulant amounts do not produce an antifouling effect, while too large antifoulant amounts result in the formation of a coating film which is apt to develop defects such as cracking and peeling and thus becomes less effective in anti-fouling property.
- the paint further contains pigment(s), solvent(s) and additive(s).
- the paint composition contains one or more pigments (or fillers).
- the paint composition can contain one or more pigments which are “active” pigments, i.e. sparingly soluble in seawater. These pigments have a sea water solubility such that the pigment particles do not survive at the paint surface. These pigments have the effect of inducing the overall smoothing which the relatively-moving sea water exerts on the paint film, minimizing localized erosion and preferentially removing excrescencies formed during the application of the paint. Sparingly soluble pigments have long been used in self-polishing anti-fouling paints.
- Typical examples are cuprous thiocyanate, cuprous oxide, zinc oxide, cupric acetate meta-arsenate, zinc chromate, zinc dimethyl dithiocarbamate, zinc ethylene bis(dithiocarbamate) and zinc diethyl dithiocarbamate.
- the preferred sparingly soluble pigments are zinc oxide, cuprous oxide and cuprous thiocyanate. Mixtures of sparingly soluble pigments can be used, e.g.
- zinc oxide which is most effective at inducing the gradual dissolution of the paint, can be mixed with cuprous oxide, cuprous thiocyanate, zinc dimethyl or diethyl dithiocarbamate, or zinc ethylene bis-(dithiocarbamate) which are more effective marine biocides; the most preferred is a mixture of zinc oxide with cuprous oxide or thiocyanate.
- the paint composition can contain one or more pigments that are highly insoluble in seawater, such as titanium dioxide, talc or ferric oxide. Such highly insoluble pigments can be used at up to 40 percent by weight of the total pigment component of the paint. Highly insoluble pigments have the effect of retarding the erosion of the paint.
- the paint composition can contain one or more pigments or dyes that impart a color to the paint, e.g. titanium dioxide, cuprous oxide or iron oxide.
- the proportion of pigment to polymer is generally such as to give a pigment volume concentration of at least 25 percent, preferably at least 35 percent, in the dry paint film.
- the upper limit of pigment concentration is the critical pigment volume concentration. Paints having pigment volume concentrations of up to about 50 percent, for example, have been found very effective.
- organic solvent examples include aromatic hydrocarbons such as xylene and toluene; aliphatic hydrocarbons such as hexane and heptane, esters such as ethyl acetate and butyl acetate; amides such as N-methylpyrrolidone and N,N-dimethylformamide; alcohols such as isopropyl alcohol and butyl alcohol; ethers such as dioxane, THF and diethyl ether; and ketones such as methyl ethyl ketone, methyl isobutyl ketone and methyl isoamyl ketone.
- aromatic hydrocarbons such as xylene and toluene
- aliphatic hydrocarbons such as hexane and heptane
- esters such as ethyl acetate and butyl acetate
- amides such as N-methylpyrrolidone and N,N-dimethylformamide
- alcohols such as is
- Solvents are used to obtain the desired viscosity at the expected operating temperature for the application on the ship hull, preferably in the range of 10-50 dPa.s, more preferably of 2040 dPa.s, most preferably of about 25 dPa.s. Obviously, the nature of the solvents is also adapted to the expected operating temperature for the application on the ship hull, taking into account the desired drying time.
- Additive ingredients may optionally be incorporated into the coating composition of the present invention thus prepared.
- the additive ingredients are dehumidifiers, and additives ordinarily employed in coating compositions as stabilizers and anti-foaming agents.
- the solids content of binder solutions was determined by weighing before and after heating a sample for 1 hour at 120° C. [standard test methods ISO 3233/ASTM 2697/DIN 53219].
- the molecular weight distribution was determined by gel permeation chromatography (GPC) with tetrahydrofuran (THF) as solvent and polystyrene as reference.
- GPC gel permeation chromatography
- THF tetrahydrofuran
- the thixotropic factor is determined by measuring the viscosity with a rotation viscosimeter (Haake VT 181) at a low and a high speed. It is defined as the ratio of the viscosity at 5.66 rpm to the viscosity at 181 rpm. [standard methods DIN 53018, 53019, 53214]. The thixotropic factor was measured at standard conditions with paints that all had been thinned down to a viscosity between 11 and 13 dPa.s
- Stainless steels discs 20 cm in diameter, were protected with a standard anti-corrosive system (300 ⁇ m in dry film thickness). Two layers of the self-polishing paint to be tested were applied, to give a total dry film thickness between 200 and 300 ⁇ m. The tests were carried out in constantly refreshed natural seawater, at a constant temperature of 20° C. The discs were rotated at 1000 rpm, corresponding to about 34 km/hr (18 knots/hr) at 9 cm from the centre.
- the total dry film thickness was determined at 7-week intervals, after allowing the paint to dry during one day. It was measured at a number of fixed points, each located at 9 cm from the centre of the discs.
- the paint composition is acceptable if the following is observed:
- Polymer PA1 is a 53/47 (w/w) copolymer of tributyltin methacrylate (TBTMA) and methyl methacrylate (MMA).
- TTMA tributyltin methacrylate
- MMA methyl methacrylate
- Polymer PA2 was prepared following the procedure described in example 18 of EP-A-0,342,276.
- the resinous varnish obtained in reference resin R1 was treated with copper acetate and naphtenic acid.
- the copper acrylate varnish so obtained had a solids content of 43.9 wt % and a Brookfield viscosity of 34 dPa.s.
- Polymer PA3 was prepared similarly from reference resin R2; the copper acrylate varnish so obtained had a solids content of 47.4% and a Brookfield viscosity of 11 dPa.s
- Polymer PA4 was prepared following the procedure described in Examples S-1 to S-6 of EP-A-0,775,733 with 57 wt % of tributylsilylmethacrylate (TBSiMA) and 43 wt % of MMA.
- Polymer PB1 was obtained by polymerising 65 g of methylacrylate (MA), 25 g of vinylpyrrolidone (VP) and 10 g of butylacrylate (BA) in 100 g of xylene, using TBPEH as initiator.
- MA methylacrylate
- VP vinylpyrrolidone
- BA butylacrylate
- Comparative examples CP1 and CP2 have been prepared according to methods known in the art and disclosed for example in European Patent n° EP B-0,218,573 where monomers A and B are incorporated in the same polymer.
- Polymer CP1 has the same monomer composition (and a similar Mw) as the 5:4 mixture of polymers PA1 and PB2 (see Tables A and G)
- Polymer CP2 has the same monomer composition (and a similar Mw) as the 5:4 mixture of polymers PA1 and PB1 (see Tables A and G
- the first polymer PA1, the second polymer PB1 and dioctyl phthalate (DOP) were mixed respectively in solids volume ratio of 5:4:1.
- Pigments were added to the composition in an amount of 21 vol %, essentially under the form of Cu 2 O, that also acted as an antifoulant.
- the first polymer PA2 and the second polymer PB2 were mixed respectively in the volume ratio of 3:1.
- the first polymer PA4 and the second polymer PB2 were mixed respectively in the volume ratio of 1:1.
- the quantities, components and ratios are summarised in Table E. TABLE E Ingredient ⁇ ex. no. 14 C5 PA4 13.18 32.63 PB1 14.38 0.00 DOP 3.01 0.00 Thixatrol TM ST 0.00 0.67 Cuprous oxide 36.12 35.45 Seanine TM 8.39 6.45 Zinc oxide 13.70 13.07 Chalc 0.00 0.00 Iron oxide 1.05 0.81 Molecular sieve 1.40 1.07 Bentonite 0.94 0.73 Xylene 7.83 9.12 Total 100.00 100.00
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Organic Chemistry (AREA)
- Paints Or Removers (AREA)
Abstract
Description
- This invention relates to marine anti-fouling (AF) paints generally used as topcoat paints for ships' hull, particularly to marine anti-fouling paints that polish at a predetermined rate and to a polymeric composition for a marine anti-fouling paint that hydrolyses at a predetermined rate in the presence of sea water.
- The performance of a ship falls off, when marine organisms grow on the submarine part of the hull.
- Applying to the hull a topcoat paint comprising anti-fouling agents controls the extent of marine fouling. The anti-fouling agents are biocides that are freed from the paint surface at a rate such that their concentration is lethal to marine organisms.
- The use of self polishing copolymer (SPC) systems is nowadays the leading technology to protect ship hulls against fouling: in these systems the interaction with sea water produces soluble species but bulk hydrophobicity confines reaction to sea-water interface (ca 5 μm). This ˜5 μm leach layer is maintained throughout coating lifetime. This results in a zero order release rate and so the lifetime is directly related to film thickness.
- The best known SPC antifoulings are based on tributyltin (TBT) (meth)acrylate copolymers. EP-A-51930 is a milestone patent disclosing such TBT copolymers. The “self-polishing” action (rate is dependent on TBT content) leads to decrease in hull roughness during service. TBT systems have dominated the antifouling market for the last 20 years.
- By 1987, tributyltin (TBT) had been shown to leach into the water (it is indeed a potent marine biocide which gives an enhanced anti-fouling effect), harming sea life, possibly entering the food chain, and causing deformations in oysters and sex changes in whelks. Its use was banned for use on vessels with hulls of 25 m or less, but the 1987 ruling left an essential exemption for larger vessels until alternatives were found. In addition, many countries have implemented a maximum limit for the TBT release of antifoulings used on vessels with hulls that are longer than 25 m. The most frequently used limit is that of 4 μg/cm2/day determined according ASTM D 5108-90.
- These restrictions have resulted in new developments such as described for example in European patent EP-B-0,218,573 that discloses a marine paint comprising a film-forming polymer, prepared by polymerisation of monomer units A of at least one triorganotin salt of an olefinically unsaturated carboxylic acid and at least one comonomer B selected from the group comprising vinylpyrrolidone, vinylpiperidone and vinylcaprolactam, the balance being at least one C1-C4 alkylmethacrylate and/or styrene comonomer C.
- The ban on TBT in Japan will become world wide in the near future and has lead to many TBT-free developments as well:
- EP-B-289 481 and EP-B-526 441 discloses marine paint compositions based on rosin or its copper or zinc derivatives and a copolymer of alkyl methacrylates and/or styrene with comonomers which are cyclic tertiary amides or imides having an alkenyl group.
- EP-A-342 276 relates to the preparation of metal (preferably zinc or copper) containing resin composition which is characterised by having hydrolysable metal ester bonding at the end portion of pendant chain. GB 2 311 070 also describes a composition comprising a resin having at least one metal carboxylate.
- EP-B-0131 626 describes antifouling paints based on film-forming water insoluble, seawater erodible, polymeric binders containing trialkylsilyl (meth)acrylates; EP-A-755 733 discloses antifouling coating compositions based on such a trialkylsilyl esters containing copolymer and a chlorinated paraffin.
- There is however still a need in the art for improved erodible anti-fouling paint compositions.
- An object of the present invention is to provide such improved self-polishing and anti-fouling paint compositions for use as topcoat paints for ships' hull.
- Another object of the invention is to provide improved polymeric binders for a marine anti-fouling paint that hydrolyses at a predetermined rate in the presence of seawater.
- A yet further object of the present invention is to provide an anti-fouling marine paint composition with a high solids content.
- Accordingly, the present invention provides a marine paint comprising essentially:
- a first polymer comprising from 20 to 70 wt % of monomer units A of at least one hydrolysable either tin or silicium ester of an olefinically unsaturated carboxylic acid or salt of copper, zinc, calcium of an olefinically unsaturated carboxylic acid,
- the balance of the monomer units being monomer units C selected from the group consisting of the esters of ethylenically unsaturated carboxylic acids with C1-C18 alcohols, styrene, alpha-methyl styrene, vinyl toluenes, and mixtures thereof.
- a second polymer comprising from 5 to 40 wt % of at least one comonomer B selected from the group consisting of the N-vinyl lactam monomers of general formula CH2═CH—NR′″″—CO—R′|, the N-vinyl amides of general formula CH2═CH—N—CO—R″, the monomers of general formula CH2═CR′″—COO—R″″—NR′″″—CO—R′|, the monomers of general formula CH2═CR′″—COO—R″″—N—CO—R″, 2-pyrrolidone-1-isoprenyl ketone, and mixtures thereof, wherein
- R′ is a n-alkylidene radical having 2 to 8 carbon atoms,
- R″ is selected from the group consisting of alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl radicals having a maximum of 18 carbon atoms,
- R′″ is H or CH3,
- R″″ is a n-alkylidene radical having from 1 to 8 carbon atoms,
- R′″″ is H or R″,
- and the balance of the monomer units being monomer units C selected from the group consisting of the esters of ethylenically unsaturated carboxylic acids with C1-C18 alcohols, styrene, alpha-methyl styrene, vinyl toluenes, and mixtures thereof.
- At least one antifoulant.
- The relative ratio of the first polymer comprising monomer units A to the second polymer comprising monomer units B is from 95:5 to 10:90.
- Whilst not wishing to be bound by a theory, it is believed that the two polymeric binders are sufficiently compatible to produce a stable paint composition but sufficiently incompatible to give such structure to the paint that it can be applied in desired layer thicknesses. There will thus be less need to add thixotropic agents in order to obtain a suitable structure. It is known in the art that the solids content of a paint composition decreases when the amount of thixotropic agent increases; the paint compositions of the present invention will thus keep a high solids content.
- The applicant has now unexpectedly found that placing monomer units A and monomer units B respectively on two separate binders that are marginally compatible, produces a paint composition with an improved compromise of the following properties:
- a suitable structure indicated by the thixotropic factor;
- a high solids content;
- a suitable polishing rate;
- little or no blistering or flaking or detachment;
- good can stability.
- In a first embodiment, the monomer units A used in the first polymer are of the formula R3SnOOCCR′═CH2 or R3SiOOCCR′═CH2, wherein each R is an alkyl radical containing from 2 to 8 carbon atoms, or an aryl or aralkyl radical, R′ is H or CH3. The groups R can be different but are preferably the same.
- The first polymer comprises from 20 to 70 wt % of monomer units A, preferably from 30 to 65 wt %, and more preferably from 50 to 60 wt %, the balance being monomer units C.
- In another embodiment of the present invention, the first polymer comprising monomer units A is a metal containing resin composition that can be obtained as described in EP-A-342276 by reacting a mixture of
- an acid group containing base resin, comprising essentially monomer units C and olefinically unsaturated carboxylic acids monomer units corresponding to monomer unit A;
- a metallic salt of low boiling organic basic acid and
- a high boiling organic monobasic acid
- at elevated temperature while removing the formed low boiling organic basic acid out of the system.
- The metals are selected from the zinc, copper or calcium.
- The acid group containing base resin has an acid value of from 25 to 350 mg KOH/g, the low boiling organic basic acid has a boiling point of from 100 to 240° C. and the high boiling organic monobasic acid has a boiling point that is at least 20° C. higher than the boiling point of said low boiling organic basic acid.
- In yet another embodiment of the present invention, the first polymer comprising monomer units A has a number average molecular weight of from 1000 to 50000, and contains from 20 to 65 wt % of structural units derived from trialkylsilyl ester of polymerisable unsaturated carboxylic acid, as described in EP-A-775733.
- Monomer units B can be N-vinyl lactam monomers of general formula CH2═CH—N—CO—R′|, wherein R′ is a n-alkylidene radical having 2 to 8 carbon atoms, preferably 2 to 4 carbon atoms, more preferably 3 carbon atoms The most preferred monomer unit B is N-vinyl pyrrolidone.
- Monomer units B can also be N-vinyl amides of general formula CH2═CH—N—CO—R″, wherein R″ is selected from the group consisting of alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl radicals having a maximum of 18 carbon atoms, preferably 2 to 12 carbon atoms, more preferably 2 to 6 carbon atoms.
- Monomer units B can further be monomers of general formula CH2═CR′″—COO—R″″—NR′″″—CO—R′|, wherein R′″ is H or CH3, R′″″ is R″ (as defined above) or preferably H, R′ is a n-alkylidene radical having 2 to 8 carbon but preferably such that the terminal cycle is 2-pyrrolidone. Preferably, R′″ is CH3; examples of such monomers are described in Polymer 39(17), 4165-9, 1998.
- Monomer units B can still further be monomers of general formula CH2═CR′″—COO—R″″—N—CO—R″, wherein R′″ is H or CH3, R″″ is a n-alkylidene radical having from 1 to 8 carbon atoms, and R″ is selected from the group consisting of alkyl, cycloalkyl, aryl, alkylaryl and arylalkyl radicals having a maximum of 18 carbon atoms.
- Preferably the N-vinyl lactams are being used, more preferably N-vinylpyrrolidone
- The second polymer comprises from 5 to 40 wt % of monomer units B, preferably from 10 to 30 wt % and more preferably from 15 to 30 wt %.
- Monomer units C are preferably selected from the group consisting of the esters of ethylenically unsaturated carboxylic acids with C1-C18 alcohols, styrene, alpha-methyl styrene, vinyl toluenes, and mixtures thereof.
- The ethylenically unsaturated carboxylic acid is more preferably selected from the group consisting of acrylic acid, methacrylic acid, maleic acid, fumaric acid, and mixtures thereof, most preferably selected from the group consisting of acrylic acid, methacrylic acid, and mixtures thereof. The alcohol may be an aliphatic or a cycloaliphatic alcohol, and it may be linear or branched; it is more preferably selected from C1-C10 alcohols, more preferably from C1-C4 alcohols, most preferably from C1-C2 alcohols. Typical examples of monomer units of the ester type are stearyl (meth)acrylate, isobornyl (meth)acrylate, lauryl methacrylate, n-butyl (meth)acrylate, isobutyl (meth)acrylate, ethyl (meth)acrylate and methyl (meth)acrylate.
- The polymer can be prepared by addition polymerisation of the appropriate monomers in the appropriate proportions at polymerisation conditions using a free radical catalyst such as e.g. benzoyl peroxide, tert-butyl peroxy 2-ethyl hexanoate (TBPEH), t-butyl peroxybenzoate (TBP), or azobisisobutyronitrile. The reaction is carried out in an organic solvent such as e.g. xylene, toluene, butyl acetate, n-butanol, 2-ethoxyethanol, cyclohexanone, 2-methoxyethanol, 2-butoxyethanol, 2-ethoxyethyl acetate, N-methyl pyrrolidone, dimethylformamide and mixtures thereof.
- Polymerisation is preferably carried out at a temperature in the range of 70-140° C. although higher temperatures may be used providing that the solvent and the catalyst are adapted thereto. Within this range the use of higher temperatures produces polymers of lower molecular weight. Polymerisation may be carried out by heating all the polymer ingredients in the solvent or preferably by gradually adding the monomers and catalyst to the heated solvent. The latter procedure produces polymers of lower molecular weight.
- The ratio of the two polymers used to prepare the paint composition can vary over a broad range of values depending upon the desired properties of the composition. The relative ratio of the first polymer comprising monomer units A to the second polymer comprising monomer units B is from 95:5 to 10:90, preferably from 80:20 to 40:60. The antifoulant used as the other essential component in the coating composition of the present invention may be any of conventionally known antifoulants. The known antifoulants are roughly divided into inorganic compounds, metal-containing organic compounds, and metal-free organic compounds.
- Examples of the inorganic compounds include copper compounds (e.g. copper sulfate, copper powder, cuprous thiocyanate, copper carbonate, copper chloride, and the traditionally preferred cuprous oxide), zinc sulfate, zinc oxide, nickel sulfate, and copper nickel alloys.
- Examples of the metal-containing organic compounds include organo-copper compounds, organo-nickel compounds, and organo-zinc compounds. Also usable are manganese ethylene bis dithiocarbamate (maneb), propineb, and the like. Examples of the organo-copper compounds include copper nonylphenolsulphonate, copper bis(ethylenediamine) bis(dodecylbenzenesulphonate), copper acetate, copper naphtenate, copper pyrithione and copper bis(pentachlorophenolate). Examples of the organo-nickel compounds include nickel acetate and nickel dimethyldithiocarbamate. Examples of the organo-zinc compounds include zinc acetate, zinc carbamate, bis(dimethylcarbamoyl) zinc ethylene-bis(dithiocarbamate), zinc dimethyidithiocarbamate, zinc pyrithione, and zinc ethylene-bis(dithiocarbamate). As an example of mixed metal-containing organic compound, one can cite (polymeric) manganese ethylene bis dithiocarbamate complexed with zinc salt (mancozeb).
- Examples of the metal-free organic compounds include N-trihalomethylthiophthalimides, trihalomethylthiosulphamides, dithiocarbamic acids, N-arylmaleimides, 3-(substituted amino)-1,3 thiazolidine-2,4-diones, dithiocyano compounds, triazine compounds, oxathiazines and others.
- Examples of the N-trihalomethylthiophthalimides include N-trichloromethylthiophthalimide and N-fluorodichloromethylthiophthalimide. Examples of the dithiocarbamic acids include bis(dimethylthiocarbamoyl) disulphide, ammonium N-methyidithiocarbamate and ammonium ethylene-bis(dithiocarbamate).
- Examples of trihalomethylthiosulphamides include N-(dichlorofluoromethylthio)-N′,N′-dimethyl-N-phenylsulphamide and N-(dichlorofluoromethylthio)-N′,N′-dimethyl-N-(4-methylphenyl)sulphamide.
- Examples of the N-arylmaleimides include N-(2,4,6-trichlorophenyl)maleimide, N-4 tolylmaleimide, N-3 chlorophenylmaleimide, N-(4-n-butylphenyl)maleimide, N-(anilinophenyl)maleimide, and N-(2,3-xylyl)maleimide.
- Examples of the 3-(substituted amino)-1,3-thiazolidine-2,4-diones include 2-(thiocyanomethylthio)-benzothiazole, 3-benzylideneamino-1,3-thiazolidine-2,4-dione, 3-(4-methylbenzylideneamino)-1,3-thiazolidine-2,4-dione, 3-(2-hydroxybenzylideneamino)-1,3-thiazolidine-2,4-dione, 3-(4-dimethylaminobenzylideamino)-1,3-thiazolidine-2,4-dione, and 3-(2,4-dichlorobenzylideneamino)-1,3-thiazolidine-2,4-dione.
- Examples of the dithiocyano compounds include dithiocyanomethane, dithiocyanoethane, and 2,5-dithiocyanothiophene.
- Examples of the triazine compounds include 2-methylthio-4-butylamino-6-cyclopropylamino-s-triazine.
- Examples of oxathiazines include 1,4,2-oxathiazines and their mono- and di-oxides such as disclosed in PCT patent WO 98/05719: mono- and di-oxides of 1,4,2-oxathiazines with a substituent in the 3 position representing (a) phenyl; phenyl substituted with 1 to 3 substituents independently selected from hydroxyl, halo, C1-12 alkyl, C5-6 cycloalkyl, trihalomethyl, phenyl, C1-C5 alkoxy, C1-5 alkylthio, tetrahydropyranyloxy, phenoxy, C1-4 alkylcarbonyl, phenylcarbonyl, C1-4 alkylsulfinyl, carboxy or its alkali metal salt, C1-4 alkoxycarbonyl, C1-4 alkylaminocarbonyl, phenylaminocarbonyl, tolylaminocarbonyl, morpholinocarbonyl, amino, nitro, cyano, dioxolanyl or C1-4 alkyloxyiminomethyl; naphtyl; pyridinyl; thienyl; furanyl; or thienyl or furanyl substituted with one to three substituents independently selected from C1-C4 alkyl, C1-4 alkyloxy, C1-4 alkylthio, halo, cyano, formyl, acetyl, benzoyl, nitro, C1-C4 alkyloxycarbonyl, phenyl, phenylaminocarbonyl and C1-4 alkyloxyiminomethyl; or (b) a substituent of generic formula
- Wherein X is oxygen or sulfur; Y is nitrogen, CH or C(C1-4 alkoxy); and the C6 ring may have one C1-4 alkyl substituent; a second substituent selected from C1-4 alkyl or benzyl being optionally present in position 5 or 6. Other examples of the metal-free organic compounds include 2,4,5,6-tetrachloroisophthalonitrile, N,N-dimethyl-dichlorophenylurea, 4,5-dichloro-2-n-octyl-4-isothiazoline-3-one, N,N-dimethyl-N′-phenyl-(N-fluorodichloromethylthio)-sulfamide, tetramethylthiuramdisulphide, 3-iodo-2-propinylbutyl carbamate, 2-(methoxycarbonylamino)benzimidazole, 2,3,5,6-tetrachloro-4-(methylsulphonyl)pyridine, diiodomethyl-p-tolyl sulphone, phenyl(bispyridine)bismuth dichloride, 2-(4-thiazolyl)benzimidazole, dihydroabietyl amine, N-methylol formamide and pyridine triphenylborane.
- According to a preferred embodiment, the use as antifoulant of the oxathiazines disclosed in WO-A-9505739 has the added advantage (disclosed in EP-A-823462) of increasing the self-polishing properties of the paint.
- Among the fouling organisms, barnacles have proved to be the most troublesome, because they resist to most biocides. Accordingly, the paint formulation should preferably include at least an effective amount of at least one barnaclecide, such as cuprous oxide or thiocyanate. A preferred barnaclecide is disclosed in EP-A-831134. EP-A-831134 discloses the use of from 0.5 to 9.9 wt %, based on the total weight of the dry mass of the composition, of at least one 2-trihalogenomethyl-3-halogeno-4-cyano pyrrole derivative substituted in position 5 and optionally in position 1, the halogens in positions 2 and 3 being independently selected from the group consisting of fluorine, chlorine and bromine, the substituent in position 5 being selected from the group consisting of C1-8 alkyl, C1-8 monohalogenoalkyl, C5-6 cycloalkyl, C5-6 monohalogenocycloalkyl, benzyl, phenyl, mono- and di-halogenobenzyl, mono- and di-halogenophenyl, mono- and di-C1-4-alkyl benzyl, mono- and di-C1-4-alkyl phenyl, monohalogeno mono-C1-4-alkyl benzyl and monohalogeno mono-C1-4-alkyl phenyl, any halogen on the substituent in position 5 being selected from the group consisting of chlorine and bromine, the optional substituent in position 1 being selected from C1-4 alkyl and C1-4 alkoxy C1-4 alkyl.
- One or more antifoulants selected from such antifoulants are employed in the present invention. The antifoulants are used in such an amount that the proportion thereof in the solids contents of the coating composition is usually from 0.1 to 90% by weight, preferably 0.1 to 80% by weight, and more preferably from 1 to 60% by weight. Too small antifoulant amounts do not produce an antifouling effect, while too large antifoulant amounts result in the formation of a coating film which is apt to develop defects such as cracking and peeling and thus becomes less effective in anti-fouling property.
- The paint further contains pigment(s), solvent(s) and additive(s).
- The paint composition contains one or more pigments (or fillers).
- The paint composition can contain one or more pigments which are “active” pigments, i.e. sparingly soluble in seawater. These pigments have a sea water solubility such that the pigment particles do not survive at the paint surface. These pigments have the effect of inducing the overall smoothing which the relatively-moving sea water exerts on the paint film, minimizing localized erosion and preferentially removing excrescencies formed during the application of the paint. Sparingly soluble pigments have long been used in self-polishing anti-fouling paints. Typical examples are cuprous thiocyanate, cuprous oxide, zinc oxide, cupric acetate meta-arsenate, zinc chromate, zinc dimethyl dithiocarbamate, zinc ethylene bis(dithiocarbamate) and zinc diethyl dithiocarbamate. The preferred sparingly soluble pigments are zinc oxide, cuprous oxide and cuprous thiocyanate. Mixtures of sparingly soluble pigments can be used, e.g. zinc oxide, which is most effective at inducing the gradual dissolution of the paint, can be mixed with cuprous oxide, cuprous thiocyanate, zinc dimethyl or diethyl dithiocarbamate, or zinc ethylene bis-(dithiocarbamate) which are more effective marine biocides; the most preferred is a mixture of zinc oxide with cuprous oxide or thiocyanate.
- The paint composition can contain one or more pigments that are highly insoluble in seawater, such as titanium dioxide, talc or ferric oxide. Such highly insoluble pigments can be used at up to 40 percent by weight of the total pigment component of the paint. Highly insoluble pigments have the effect of retarding the erosion of the paint.
- The paint composition can contain one or more pigments or dyes that impart a color to the paint, e.g. titanium dioxide, cuprous oxide or iron oxide.
- The proportion of pigment to polymer is generally such as to give a pigment volume concentration of at least 25 percent, preferably at least 35 percent, in the dry paint film. The upper limit of pigment concentration is the critical pigment volume concentration. Paints having pigment volume concentrations of up to about 50 percent, for example, have been found very effective.
- Examples of the organic solvent include aromatic hydrocarbons such as xylene and toluene; aliphatic hydrocarbons such as hexane and heptane, esters such as ethyl acetate and butyl acetate; amides such as N-methylpyrrolidone and N,N-dimethylformamide; alcohols such as isopropyl alcohol and butyl alcohol; ethers such as dioxane, THF and diethyl ether; and ketones such as methyl ethyl ketone, methyl isobutyl ketone and methyl isoamyl ketone. The solvent may be used alone or in combination thereof.
- Solvents are used to obtain the desired viscosity at the expected operating temperature for the application on the ship hull, preferably in the range of 10-50 dPa.s, more preferably of 2040 dPa.s, most preferably of about 25 dPa.s. Obviously, the nature of the solvents is also adapted to the expected operating temperature for the application on the ship hull, taking into account the desired drying time.
- Additive ingredients may optionally be incorporated into the coating composition of the present invention thus prepared. Examples of the additive ingredients are dehumidifiers, and additives ordinarily employed in coating compositions as stabilizers and anti-foaming agents.
- Methods
- Determination of the Solids Content
- The solids content of binder solutions was determined by weighing before and after heating a sample for 1 hour at 120° C. [standard test methods ISO 3233/ASTM 2697/DIN 53219].
- Determination of the Viscosity
- The viscosity of binder solutions and of paints was determined with a Brookfield at 25° C. [ASTM test method D2196-86].
- Determination of the Molecular Weight Distribution of the Polymers
- The molecular weight distribution was determined by gel permeation chromatography (GPC) with tetrahydrofuran (THF) as solvent and polystyrene as reference. The weight average molecular weight (Mw) and the polydispersity (d=Mw/Mn) are reported in the Tables.
- Evaluation of the Thixotropic Factor
- The thixotropic factor is determined by measuring the viscosity with a rotation viscosimeter (Haake VT 181) at a low and a high speed. It is defined as the ratio of the viscosity at 5.66 rpm to the viscosity at 181 rpm. [standard methods DIN 53018, 53019, 53214]. The thixotropic factor was measured at standard conditions with paints that all had been thinned down to a viscosity between 11 and 13 dPa.s
- Evaluation of the Polishing of Paints
- The erosion rate is the average decrease in film thickness (expressed in um/month) per month over the whole test (1 month=30 days). The minimum duration of the test was 8 months.
- Stainless steels discs, 20 cm in diameter, were protected with a standard anti-corrosive system (300 μm in dry film thickness). Two layers of the self-polishing paint to be tested were applied, to give a total dry film thickness between 200 and 300 μm. The tests were carried out in constantly refreshed natural seawater, at a constant temperature of 20° C. The discs were rotated at 1000 rpm, corresponding to about 34 km/hr (18 knots/hr) at 9 cm from the centre.
- The total dry film thickness was determined at 7-week intervals, after allowing the paint to dry during one day. It was measured at a number of fixed points, each located at 9 cm from the centre of the discs.
- Surface Defects
- Surface defects were reported at the end of the polishing test period of all tested samples according ISO 4628/4. The test method was adapted. The to be reported data were reduced to:
- the type of surface defects given by the ISO categories;
- the size of the cracking has been reduced to two categories:
- a) not visible to the naked eye, represented by a small letter;
- b) visible to the naked eye, represented by a capital letter;
- Can Stability
- The stability of a paint composition was tested as follows:
- 250 l of the paint compositions were stored in a can at 40° C. during 6 months.
- The paint composition is acceptable if the following is observed:
- no large changes in viscosity;
- absence of irreversible sedimentation;
- no phase separation
- Preparation of Polymers
- I. Preparation of the First Polymer Comprising Monomer Units A.
- Polymer PA1.
- Polymer PA1 is a 53/47 (w/w) copolymer of tributyltin methacrylate (TBTMA) and methyl methacrylate (MMA). The xylene solution has a Brookfield viscosity of 10.6 dPa.s for a solids content of 56.5%, As determined by GPC, polymer PA1 has a molecular weight of 24100 and a polydispersity of d=2.1
- Polymers PA2 and PA3.
- “Acid group containing base resins” were prepared following the procedure described in reference examples 1 to 4 of EP-A-0,342,276:
- Reference resin R1.
- 58 parts of ethyl acrylate, 12 parts of butyl acrylate and 30 parts of acrylic acid were polymerised in order to obtain a resinous varnish having a Brookfield viscosity of 4 dPa.s, a solids content of 41.6 wt % and a solids acid value of 233 mg KOH/g.
- Reference resin R2.
- It was prepared in the same manner as resin R1. 68 parts of ethyl acrylate, 13 parts of butyl acrylate and 19 parts of acrylic acid were polymerised in order to obtain a resinous varnish having a Brookfield viscosity of 0.3 dPa.s, a solids content of 41.1 wt % and a solids acid value of 148 mg KOH/g.
- Polymer PA2 was prepared following the procedure described in example 18 of EP-A-0,342,276. The resinous varnish obtained in reference resin R1 was treated with copper acetate and naphtenic acid. The copper acrylate varnish so obtained had a solids content of 43.9 wt % and a Brookfield viscosity of 34 dPa.s.
- Polymer PA3 was prepared similarly from reference resin R2; the copper acrylate varnish so obtained had a solids content of 47.4% and a Brookfield viscosity of 11 dPa.s
- Polymer PA4.
- Polymer PA4 was prepared following the procedure described in Examples S-1 to S-6 of EP-A-0,775,733 with 57 wt % of tributylsilylmethacrylate (TBSiMA) and 43 wt % of MMA. Polymer PA4 has a viscosity of 9 dPa.s for a solids content of 56% in xylene. As determined by GPC, the molecular weight was 37600 and the polydispersity d=2.1
- II. Preparation of the Second Polymer Comprising Monomer Units B.
- Polymer PB1 was obtained by polymerising 65 g of methylacrylate (MA), 25 g of vinylpyrrolidone (VP) and 10 g of butylacrylate (BA) in 100 g of xylene, using TBPEH as initiator.
- Properties of Polymers PB1 to PB3 are given in Table A.
TABLE A Polymer Composition (w %) Properties Code TBTMA MMA BA MA VP w % solids dPa.s Mw d PB1 0.0 0.0 10.0 65.0 25.0 52.1 6 17700 2.6 PB2 0.0 22.5 10.0 42.5 25.0 51.3 14 36600 3.2 PB3 0.0 18.5 10.0 41.5 30.0 52.0 13 31700 2.7 CP1 29.4 36.1 4.5 18.9 11.1 54.5 10 23000 2.7 CP2 29.4 26.1 4.5 28.9 11.1 54.8 6 20200 2.3 - III. Preparation of Comparative Polymers
- Comparative examples CP1 and CP2 have been prepared according to methods known in the art and disclosed for example in European Patent n° EP B-0,218,573 where monomers A and B are incorporated in the same polymer.
- Polymer CP1 has the same monomer composition (and a similar Mw) as the 5:4 mixture of polymers PA1 and PB2 (see Tables A and G)
- Polymer CP2 has the same monomer composition (and a similar Mw) as the 5:4 mixture of polymers PA1 and PB1 (see Tables A and G
- The synthesis of polymers having the same monomer composition as a mixture of polymer PA2 (or PA3) with any of polymers PB was not possible; the reaction with the copper derivative destroyed the lactam ring.
- Preparation of Paints
- All the paints were prepared according to standard procedures and have the composition in weight percent given in Tables B, C, D and E.
- All paints were thinned down to a viscosity between 11-13 dPa.s
- The determined paint properties are given in Table E.
TABLE B Example\ Ingredient 1 2 3 4 5 6 7 8 C1 C2 C3 C4 PA1 16.81 6.67 23.83 17.21 6.67 23.94 16.96 13.77 30.59 0.00 31.51 0.00 PB1 12.85 22.30 6.57 12.94 22.57 0.00 0.00 16.17 0.00 29.94 0.00 0.00 PB2 0.00 0.00 0.00 0.00 0.00 6.60 12.77 0.00 0.00 0.00 0.00 29.87 DOP 1.51 1.50 1.55 1.55 1.54 1.55 1.52 1.50 1.53 1.56 1.58 1.59 Cuprous 37.90 37.60 33.42 33.57 33.28 33.45 32.91 33.00 38.49 39.30 34.06 34.46 oxide Iron oxide 0.90 0.90 0.93 0.93 0.92 0.93 0.91 0.92 0.92 0.94 0.95 0.96 Chalk 19.32 19.25 22.29 22.38 22.19 22.38 21.98 22.40 19.69 20.11 22.71 22.97 Molecular 1.20 1.20 1.24 1.24 1.23 1.24 1.22 1.24 1.22 1.25 1.26 1.27 sieve Bentonite 0.81 0.81 0.83 0.84 0.83 0.84 0.82 0.83 0.83 0.84 0.85 0.86 Xylene 8.70 9.77 9.34 9.34 10.77 9.07 10.91 10.17 6.73 6.06 7.08 8.02 Total 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0 -
TABLE C Example\ Ingredient C6 C7 C8 C9 C10 C11 CP1 31.86 31.86 31.07 0.00 0.00 0.00 CP2 0.00 0.00 0.00 32.51 32.40 31.59 DOP 1.59 1.59 1.55 1.63 1.62 1.58 Thixatrol ST 0.00 0.31 0.61 0.00 0.32 0.62 Cuprous 33.01 33.00 32.20 33.75 33.64 32.81 oxide Iron oxide 0.92 0.92 0.89 0.94 0.93 0.91 Chalk 22.05 21.22 19.88 22.49 21.58 20.22 Molecular 1.22 1.22 1.19 1.25 1.24 1.21 sieve Bentonite 0.83 0.83 0.81 0.84 0.84 0.82 Xylene 8.52 9.05 11.80 6.59 7.43 10.24 Total 100.0 100.0 100.0 100.0 100.0 100.0 -
TABLE D Ingredient\ex. no. 9 10 11 12 13 PA3 0.00 28.53 18.66 28.05 18.24 PB2 8.63 0.00 0.00 8.74 17.05 PB3 0.00 8.66 17.01 0.00 0.00 PA2 29.90 0.00 0.00 0.00 0.00 Cuprous oxide 35.66 36.72 36.05 36.11 35.22 Diuron 3.89 4.01 3.93 3.94 3.84 Titanium oxide 2.11 2.17 2.13 2.13 2.08 Talcum 4.01 4.13 4.06 4.06 3.96 Anti-settling 1.76 1.81 1.77 1.78 1.73 agents Xylene 14.05 13.98 16.38 15.18 17.88 Total 100.0 100.0 100.0 100.0 100.0 - The first polymer PA1, the second polymer PB1 and dioctyl phthalate (DOP) were mixed respectively in solids volume ratio of 5:4:1.
- Pigments were added to the composition in an amount of 21 vol %, essentially under the form of Cu2O, that also acted as an antifoulant.
- Anti-settling agents (Bentonite) and stabilisers (Molecular sieve) were also added to the paint composition.
- The total composition is given in Table B.
- They have been produced similarly to Example 1 by using two separate polymers: the amounts and nature of the two polymers used to prepare the paint composition are summarised in Table B.
- The first polymer PA2 and the second polymer PB2 were mixed respectively in the volume ratio of 3:1.
- They were obtained using the method described in Example 9. The quantities, components and ratios of Examples 9 to 13 are summarised in Table D.
- The first polymer PA4 and the second polymer PB2 were mixed respectively in the volume ratio of 1:1. The quantities, components and ratios are summarised in Table E.
TABLE E Ingredient\ex. no. 14 C5 PA4 13.18 32.63 PB1 14.38 0.00 DOP 3.01 0.00 Thixatrol ™ ST 0.00 0.67 Cuprous oxide 36.12 35.45 Seanine ™ 8.39 6.45 Zinc oxide 13.70 13.07 Chalc 0.00 0.00 Iron oxide 1.05 0.81 Molecular sieve 1.40 1.07 Bentonite 0.94 0.73 Xylene 7.83 9.12 Total 100.00 100.00 - For comparison, examples C1 to C5 have been prepared (Tables B and E) wherein one of the two polymers is missing while keeping all other parameters identical. This is reflected in the ratio polymer 1: polymer 2: DOP as shown in Table F.
- No thixotropic agent has been added to any of examples 1 to 8 and C1 to C5. Comparative examples C6 to C11 contain only one polymer with both monomeric units A and B. In these examples, various amounts of Thixatrol™ ST were used in order to increase the thixotropy to an acceptable level, respectively 0, 1 and 2 vol %. (Table G)
TABLE F Vol. Ratio Volume Polym 1/ polym 2/ Thix Solids Polishing Ex. Polym 1 Polym 2 DOP factor Cont. % μm/month Defects Stability 1 PA1 PB1 5:4:1 6.2 53.9 5.4 h4 Accept. 2 PA1 PB1 2:7:1 7.7 52.3 3.5 h4 Accept. 3 PA1 PB1 7:2:1 5.8 54.3 5.2 none Accept. 4 PA1 PB1 5:4:1 6.4 54.1 6.3 h4 Accept. 5 PA1 PB1 2:7:1 9.3 52.3 5.0 h3 Accept. 6 PA1 PB2 7:2:1 5.3 54.5 3.9 h3 Accept. 7 PA1 PB2 5:4:1 6.1 52.1 2.8 h3 Accept. 8 PA1 PB1 4:5:1 6.7 53.4 4.8 h4 Accept. 9 PA2 PB2 3:1:0 3.2 52.7 3.3 — Accept. 10 PA3 PB3 3:1:0 3.0 50.6 3.2 — Accept. 11 PA3 PB3 1:1:0 3.1 52.0 3.0 — Accept. 12 PA3 PB2 3:1:0 4.0 51.8 2.6 — Accept. 13 PA3 PB2 1:1:0 2.7 53.6 2.8 — Accept. 14 PA4 PB1 2:2:1 3.5 53.4 6.5 — Accept. C1 PA1 — 9:0:1 2.5 57.0 3.8 h4 not acc. C2 — PB1 0:9:1 5.6 56.5 1.4 detached not acc. C3 PA1 — 9:0:1 1.4 57.2 4.6 h5 not acc. C4 — PB2 0:9:1 5.6 55.4 0.8 detached Accept. C5 PA4 — 10:0:0 5.3 49.6 2.0 — Accept -
TABLE G Vol. Ratio Thix. ST Thix Solids Polishing* C. Ex. Polymer Polym:DOP Vol % factor Cont. % μm/month Defects Stability C6 CP1 9:1 0 1.3 53.6 3.8 (111) H5 not acc. C7 CP1 9:1 1 2.7 53.0 3.9 (111) h5 not acc. C8 CP1 9:1 2 5.3 50.0 7.0 (111) h5 not acc. C9 CP2 9:1 0 1.3 56.1 → detached not acc. C10 CP2 9:1 1 2.6 55.1 → detached not acc. C11 CP2 9:1 2 5.3 51.9 → detached not acc. - Comparison of Table F with Table G shows that the best compromise of desired properties is obtained with the paint compositions of the present invention. In all cases, the thixotropic factor ranges from 2.5 to 10, the solids content is larger than 50 wt % and the self polishing factor is from 3.5 to 6.5. These results are in contrast with the properties exhibited by the paint compositions of the prior art, wherein improving the thixotropic factor resulted in decreasing the solids content and last but not least an unacceptable bad can stability.
- These observations can be summarised in pairs of examples wherein the same percentages of monomer units A, B and C were placed
- either on two separate binders, one containing monomer units A and C and the other containing monomer units B and C;
- or on a single binder.
- No thixotropic agent was used, 18 vol % of Cu2O was added. DOP was added in the amount of 1 volume part in 10, the remaining 9 parts being either 5 parts of one binder and 4 parts of the other binder for the paint compositions of the present invention, or 9 parts of the single binder for the paint compositions of the prior art. The results are summarised in Table H.
TABLE H Vol. Ratio Polym:Polym Thix Solids Polishing* Ex. Polymers DOP factor Cont. % μ/month Defects Stability C9 CP2 9:0:1 1.3 56.1 → detached not acc. 1 PA1 PB1 5:4:1 6.2 53.9 5.4 (410) h4 acc. C6 CP1 9:0:1 1.3 53.6 3.8 (111) H5 not acc. 9 PA1 PB2 5:4:1 6.1 52.1 2.8 (288) h3 acc.
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/204,491 US6710117B2 (en) | 2000-02-25 | 2001-02-22 | Marine paint compositions |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP00200666 | 2000-02-25 | ||
EP00200666A EP1127925A1 (en) | 2000-02-25 | 2000-02-25 | Marine paint compositions |
US10/204,491 US6710117B2 (en) | 2000-02-25 | 2001-02-22 | Marine paint compositions |
PCT/EP2001/002172 WO2001062858A1 (en) | 2000-02-25 | 2001-02-22 | Improved marine paint compositions |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030166768A1 true US20030166768A1 (en) | 2003-09-04 |
US6710117B2 US6710117B2 (en) | 2004-03-23 |
Family
ID=29713315
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/204,491 Expired - Fee Related US6710117B2 (en) | 2000-02-25 | 2001-02-22 | Marine paint compositions |
Country Status (1)
Country | Link |
---|---|
US (1) | US6710117B2 (en) |
Families Citing this family (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1308484A1 (en) * | 2001-10-30 | 2003-05-07 | Sigma Coatings B.V. | Use of silylesters of rosin in self-polishing antifouling paints |
EP1475415A1 (en) * | 2003-05-07 | 2004-11-10 | SigmaKalon Services B.V. | Silyl esters, their use in binder systems and paint compositions and a process of production thereof |
US20060189708A1 (en) * | 2005-02-24 | 2006-08-24 | Michael Abrams | Benzylsilyl(meth)acryloyl-containing polymers for marine coating compositions |
US7393558B2 (en) * | 2005-10-20 | 2008-07-01 | Shellbond Llc | Methods for producing protective coatings |
US7893047B2 (en) | 2006-03-03 | 2011-02-22 | Arch Chemicals, Inc. | Biocide composition comprising pyrithione and pyrrole derivatives |
US7786186B2 (en) * | 2007-02-12 | 2010-08-31 | Nanohmics, Inc. | Optically transparent polymer with antibiofouling properties |
US7934888B2 (en) * | 2008-01-18 | 2011-05-03 | Viv Suppression, Inc. | Marine anti-foulant system and methods for using same |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0091039B1 (en) * | 1982-04-06 | 1986-10-01 | Nitto Kasei Co., Ltd. | Anti-fouling agent |
GB8414675D0 (en) * | 1984-06-08 | 1984-07-11 | Int Paint Plc | Marine antifouling paint |
DE69430444T2 (en) | 1993-09-27 | 2002-12-12 | Sanyo Chemical Industries, Ltd. | AQUEOUS DISPERSION OF A POLYMER COMPOSITION |
US5637745A (en) * | 1995-01-30 | 1997-06-10 | Elf Atochem North America, Inc. | Organometallic compounds and polymers made therefrom |
EP0841380B1 (en) * | 1996-11-07 | 1999-08-25 | Witco GmbH | Method of making polymeric binders and use thereof in antifouling paints |
-
2001
- 2001-02-22 US US10/204,491 patent/US6710117B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
US6710117B2 (en) | 2004-03-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
GB2559454B (en) | A silyl ester copolymer and use thereof in an antifouling composition | |
JP7161845B2 (en) | antifouling composition | |
KR20090089869A (en) | An antifouling coating composition, a method for producing the composition, an antifouling coating film formed using the composition, a coating material having the coating film on the surface, and an antifouling treatment method for forming the coating film | |
JP6765149B2 (en) | A method of forming an antifouling coating film on the surface of a ship using an antifouling coating composition containing a copolymer and an antifouling agent. | |
JPH06212099A (en) | Self-polishing antifouling coating material | |
AU2001240657B2 (en) | Metal-free binders for self-polishing antifouling paints | |
EP1263898B1 (en) | Improved marine paint compositions | |
EP4245815B1 (en) | Antifouling coating material composition | |
AU2001240657A1 (en) | Metal-free binders for self-polishing antifouling paints | |
EP1288234A1 (en) | Binders with low content in hydrolysable monomer suitable for selfpolishing antifouling paints | |
AU2001246479A1 (en) | Improved paint compositions | |
US6710117B2 (en) | Marine paint compositions | |
US20030162924A1 (en) | Metal-free binders for self-polishing antifouling paints | |
KR102645549B1 (en) | Copolymer for antifouling paint composition, antifouling paint composition containing this copolymer | |
KR102724555B1 (en) | Antifouling paint composition | |
JP2022069873A (en) | Antifouling coating composition | |
JP2024052641A (en) | Antifouling paint composition | |
AU2004242501A1 (en) | Improved paint compositions | |
AU2002336090A1 (en) | Binders with low content in hydrolysable monomer suitable for self-polishing antifouling paints |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SIGMA COATINGS B.V., NETHERLANDS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:GILLARD, MICHEL;VOS, MARCEL;PRINSEN, JOS G.M.;REEL/FRAME:013680/0259 Effective date: 20021203 |
|
AS | Assignment |
Owner name: SYNPHORA AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:STJERNSCHANTZ, JOHAN;RESUL, BAHRAM;REEL/FRAME:016873/0742 Effective date: 20051004 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20080323 |