US20030156543A1 - Dynamic optimal path selection in multiple communications networks - Google Patents
Dynamic optimal path selection in multiple communications networks Download PDFInfo
- Publication number
- US20030156543A1 US20030156543A1 US10/079,096 US7909602A US2003156543A1 US 20030156543 A1 US20030156543 A1 US 20030156543A1 US 7909602 A US7909602 A US 7909602A US 2003156543 A1 US2003156543 A1 US 2003156543A1
- Authority
- US
- United States
- Prior art keywords
- description
- terminal
- cost
- content
- network
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004891 communication Methods 0.000 title description 19
- 238000000034 method Methods 0.000 claims abstract description 59
- 230000001419 dependent effect Effects 0.000 claims description 3
- 238000001914 filtration Methods 0.000 claims description 2
- 230000036962 time dependent Effects 0.000 claims description 2
- 230000006870 function Effects 0.000 description 29
- 230000006978 adaptation Effects 0.000 description 14
- 230000005540 biological transmission Effects 0.000 description 6
- 238000010586 diagram Methods 0.000 description 5
- 238000013459 approach Methods 0.000 description 3
- 230000008859 change Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 238000011144 upstream manufacturing Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 238000010295 mobile communication Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 230000002123 temporal effect Effects 0.000 description 2
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000013475 authorization Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000005286 illumination Methods 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 238000007726 management method Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 238000010187 selection method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L12/00—Data switching networks
- H04L12/54—Store-and-forward switching systems
- H04L12/56—Packet switching systems
- H04L12/5691—Access to open networks; Ingress point selection, e.g. ISP selection
- H04L12/5692—Selection among different networks
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/14—Session management
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/303—Terminal profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/2866—Architectures; Arrangements
- H04L67/30—Profiles
- H04L67/306—User profiles
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/52—Network services specially adapted for the location of the user terminal
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/56—Provisioning of proxy services
- H04L67/565—Conversion or adaptation of application format or content
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L9/00—Cryptographic mechanisms or cryptographic arrangements for secret or secure communications; Network security protocols
- H04L9/40—Network security protocols
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L69/00—Network arrangements, protocols or services independent of the application payload and not provided for in the other groups of this subclass
- H04L69/30—Definitions, standards or architectural aspects of layered protocol stacks
- H04L69/32—Architecture of open systems interconnection [OSI] 7-layer type protocol stacks, e.g. the interfaces between the data link level and the physical level
- H04L69/322—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions
- H04L69/329—Intralayer communication protocols among peer entities or protocol data unit [PDU] definitions in the application layer [OSI layer 7]
Definitions
- This invention relates generally to communications systems with multiple networks and terminals that can connect to any one of the networks, and in particular to a method and system for dynamically selecting and accessing multiple networks optimally.
- a path is defined as all physical links 101 and nodes 102 that connect two terminals 110 - 111 .
- the nodes can be routers, bridges, gateways, and the like.
- the transmission medium of the communication network 100 can be, for example, cable, fiber, wired, wireless, satellite, and the like.
- the terminals 110 - 111 can be any type of device capable of transmitting or receiving data via the network 100 .
- the terminal 110 in a cable network, the terminal 110 can be a content or Web server, and the terminal 111 can be a television connected to the network via a set-top box.
- the terminals can be telephones, computers, PDA's, etc.
- a terminal at any one time, can be source or a destination for communicated signals, or both.
- the conventional approach for selecting a path first selects a network, and then selects a path in the selected network on the basis of some desired cost or “objective.”
- the objective can be attained by evaluating some predetermined objective function.
- the objective function can consider multiple factors, such as, monetary cost, bandwidth, capacity, link utilization, quality of serve (QoS), and the like. Some factors may be minimized, while others are maximized. For example, some users want to maximize bandwidth and QoS, no matter what the cost, while others may be interested in minimizing cost, even if performance is degraded.
- the objective function is evaluated once, and an optimal path that best satisfies the objective function is selected, and a connection is established.
- the selected network and path are then used for all access by the terminals for the lifetime of the connection, i.e., a session providing data access services.
- this path is shown bolded. In other words, the selection of the path is static and for a single network.
- the Dijkstra's algorithm models the objective function as a graph with weighted links. Given a root vertex as its input, the function returns, as its output, a label for each vertex on the graph. In the case where the weights represent the length of the links, each vertex label represents the length of the shortest path from the root vertex to a particular vertex. Thus, the algorithm finds the shortest path for traveling from a given vertex on a graph to every other vertex.
- U.S. Pat. No. 6,343,122 “Method and apparatus for routing traffic in a circuit-switched network,” issued to Andersson on Jan. 29, 2002, describes a method and an apparatus for routing traffic in a circuit switched network.
- This patent relates to traffic switching in a single telecommunications network including a plurality of routes between a call originating and destination terminals with no concern of time variant cost parameters, but not to that in a system with multiple networks with the concern of time variant objectives for use in communication switching.
- the method includes offering a call between an origin node and a destination node to a preferred route between the nodes, and if the preferred route is not available, offering an alternative route via an intermediate node, and for links between two nodes, setting a first trunk reservation threshold for reserving a certain number of circuits for direct calls along the links between the two nodes, and setting a second trunk reservation threshold for calls between nodes connecting a second link of the alternative route.
- U.S. Pat. No. 6,327,245 “Automatic channel switching for jamming avoidance in burst-mode packet data wireless communication networks,” issued to Satyanarayana, et al. on Dec. 4, 2001, relates to the field of wireless networks in which a large number of nodes communicate with a central computer.
- the invention relates more particularly to avoiding jamming in such a system.
- the invention uses a single channel of communication.
- a portable terminal can be used continuously in the mobile system without substantially terminating a communication session even when the communication with the mobile terminal is transferred from one base station to another as the terminal moves around.
- U.S. Pat. No. 5,995,807 “Method of switching a channel from a first propagation path to a second propagation path,” issued to Magnier, et al. on Nov. 30, 1999, describes a satellite telecommunications network for mobile stations.
- the network operates in a “switched diversity” mode in which a call set up between a first station, e.g., a base station, and a second station, e.g., a mobile terminal, can be transmitted over either one of two propagation paths, i.e., via one of two distinct satellites based on the measurement of a value representative of signal-to-noise ratio for each of said propagation paths, namely the current path and a next path.
- U.S. Pat. No. 5,970,050 “Allocating communication traffic,” issued to Johnson on Oct. 19, 1999, describes a method for selecting one of a number of possible routes through a communications network from a first node to a second node.
- the method includes defining a relationship between a range of costs for routes and a traffic density for routes.
- the relationship is represented by a curve with at least one point of inflection.
- the method monitors and uses traffic density for each of the possible routes to establish the cost of each the possible route in accordance with the relationship.
- One of the possible routes is selected in dependence on the cost of each possible route as established by said relationship.
- U.S. Pat. No. 5,828,655 “Hybrid access system with quality-based channel switching,” issued to Moura, et al. on Oct. 27, 1998, describes an asymmetric network communication system for use in a client-server environment having independent forward and return channels operating at different speeds and/or under different protocols on the same or different communication media to provide efficient utilization of shared resources.
- a network manager such as a hybrid access system, effects transmission of packetized data on a forward (downstream) channel from a host server to multiple client devices coupled with a shared downstream media while simultaneously providing selectable multiple lower speeds of operation on shared or dedicated return (upstream) channels from the client devices to the host server depending on bandwidth availability, bandwidth demand, service level authorization, etc. for the return channel.
- Forward and return channels may be located on the same or different communication medium including a CATV network, direct broadcast satellite network, television or radio RF broadcast network, wireless or mobile cellular facilities or the like.
- the return channel may reside on a PSTN either directly coupled with the host server or connected with the network manager for subsequent transmission to the host server.
- the network manager handles or controls the forward and return communication to establish interactive full-duplex real-time network sessions between the host and a selected client device.
- the network manager switches upstream channel assignment based on quality of signals transmitted to the host.
- the system effects changes in the upstream transmitted power based on sensed conditions.
- the primary drawback of using the prior art methods is that other networks and other paths may, at a later time, better satisfy the objective function after the network and path have initially been selected. In that case, the selected path is no longer the optimal path. Based on prior art methods, there is no way to exploite the availability of multiple networks in an optimal way.
- RTP A Transport Protocol for Real Time Applications
- RFC 1889 January 1996 by Schulzrinne, et al.
- RTP Payload Format for MPEG-4 Audio/Visual Streams RFC 3016, November 2000 by Kikuchi, et al.
- MPEG-7 provides a standardized set of descriptors and descriptions schemes, see ISO/IEC 15938:2001, “Information Technology—Multimedia Content Description Interface.”
- a digital item is defined as a structured digital object with a standard representation and identification.
- the digital item includes resources (content) and associated descriptors.
- the resources can include individual multimedia assets, such as MPEG videos, MP3 audio files.
- the descriptors include descriptive information about the internals of the resources, such as content identification and content-based descriptors, e.g., an MPEG-7 description.
- the proposed framework currently does not consider external descriptions, such as network condition, terminal characteristics, and user preferences.
- DID Digital Item Declaration
- ISO/IEC 21000 Part 2 of ISO/IEC 21000
- the purpose of the DID is to declare the make-up and structure of a digital item.
- An XML-based Digital Item Language Declaration (DIDL) has been developed.
- the DIDL is a generic structure to provide hierarchical and flexible meta-data expression, as well as re-usable and configurable elements. To enable an interoperable framework and support various applications, it is important that these descriptors be specified in a standardized way.
- a method and system connects a first terminal via multiple networks to a second terminal.
- An environment description is acquired and parsed by a description parser into cost parameters using a set of rules.
- An objective function evaluates the cost parameters to determine an optimal path to connect the first terminal to the second terminal through the multiple networks using a switch. The selection of the optimal path can be done periodically during a particular application session.
- FIG. 1 is a diagram of a single network with static path selection according to the prior art
- FIG. 2 is a diagram of multiple networks with dynamic path selection according to the invention.
- FIG. 3 is a flow diagram of a system and method for dynamic path selection with multiple networks according to the invention.
- FIG. 4 is flow diagram of a system and method for dynamic path selection based on environment descriptions
- FIG. 5 is a table of multiple networks and multiple selection objectives
- FIG. 6 is timing diagram of cost as a function of time in a wireless network
- FIG. 7 a is a graph of channel capacity as a function of time
- FIG. 7 b is a graph of channel capacity as a function of network distance
- FIG. 8 is a graph of link utilization as a function of time.
- FIG. 9 is a lattice modeling an optimal switching method for multiple paths with a priori knowledge of traffic and channel characteristics
- FIG. 10 is a lattice modeling an optimal switching method for multiple paths without a priori knowledge of traffic and channel characteristics.
- the present invention describes a system and method for dynamically selecting an optimal communication path in multiple networks.
- Each network may have different capacity and available bandwidth at the time of a service request.
- each network is defined by time-variant and time-independent cost parameters.
- FIG. 2 shows multiple networks (Networks 1 , 2 , . . . , N) 200 with dynamic optimal path selection according to the invention.
- the optimal path connects terminals 201 - 202 .
- the invention models optimal path selection with a slotted time approach, as described in greater detail below.
- a time slot can be independent, or dependent on traffic characteristics, or based on a temporal cost changes in all available networks.
- a time slot can be the duration of a single video frame, or a group of pictures (GOP).
- the bold path 303 indicates the optimal path initially selected at the time the connection is established.
- the dashed path 304 indicates the optimal path dynamically selected at some later time.
- some optimal paths can include links that pass through multiple networks.
- FIG. 3 shows a system and method 300 for performing dynamic optimal path selection according to the invention.
- the system 300 includes the multiple (N) network 200 of FIG. 2 connecting the terminal 201 , e.g., a content server storing a multimedia database, to the terminal 202 , e.g., a client device, such as a television connected to the network via a set-top box.
- N multiple network 200 of FIG. 2 connecting the terminal 201 , e.g., a content server storing a multimedia database
- the terminal 202 e.g., a client device, such as a television connected to the network via a set-top box.
- the system 300 also includes a description parser 310 , a content adaptation engine 320 , an objective function evaluator 330 , and a switch 340 .
- the description parser 310 During operation of the system 300 for a particular application, e.g., video-on-demand (VOD), the description parser 310 periodically acquires an environment description 400 , for example, the operating characteristics of the multiple networks 200 .
- the environment description 400 is described in further detail below. Methods for acquiring characteristics that describe the operation of the networks' environment, such as cost, bandwidth, utilization, and capacity, are well known.
- the description 400 is parsed 310 according to a schema or a set of rules 311 .
- the rules define the grammar to be used to parse the environment description, and any other descriptions to be parsed.
- the parsed environment description 312 for example, cost parameters that describe the network characteristics, is passed forward to the objective function evaluator 330 .
- the evaluator minimizes an objective function using the parsed cost parameters in order to periodically select an optimal path, as described in greater detail below.
- the content server 201 provides the description parser 310 with a content description 302 , e.g., an MPEG-7 resource description of a digital item, as described above.
- the content description is also parsed 310 using the schema 311 .
- the schema can include a separate set of rules for each different description to be parsed.
- the content adapter 320 receives content 303 , and also the parsed environment description and the parsed content description 302 .
- the content adaptation engine 320 can adapt the content 303 according to the content and environment description. In some cases, the content adaptation can be a null operation.
- the adapted content 304 is passed to the switch 340 . Adapting the content will require some bandwidth 305 , which is passed to the evaluator 330 for consideration during the evaluation.
- the objective function evaluator 330 selects the optimal network and path within any of the networks 200 , using the switch 340 , to transfer the adapted content 304 to the terminal 202 , for a specified time period. This process is repeated periodically, e.g., each frame or GOP, using updated descriptions to dynamically select the optimal path over time.
- FIG. 4 shows the more general case for the above system 300 .
- the environment description 400 includes a network description 403 as described above, or combinations of any number of descriptions, for example, a user profile description 401 , and a terminal description 402 .
- the combined environment description 400 is used by the parser 310 , engine 320 , and evaluator 330 .
- Each of the N networks 200 is defined by certain descriptors 403 .
- the operating condition of each network is described by delay characteristics, such as end-to-end delay, delay variation, error characteristics, such as bit error rate, packet loss rate, and bandwidth characteristics, such as link capacity, available bandwidth, utilized bandwidth, etc.
- the cost descriptions can be classified according to two distinct costs: an application quality of service cost (QoS), and a connection cost. For instance, an application with a low connection cost may also suffer from low QoS. On the other hand, an application with a high quality of service may require connecting to a high cost network.
- QoS application quality of service cost
- connection cost For instance, an application with a low connection cost may also suffer from low QoS. On the other hand, an application with a high quality of service may require connecting to a high cost network.
- FIG. 5 shows a sample presentation of multiple networks 200 and cost parameters that make up the environment descriptions.
- the content server 201 can communicate with the terminal 202 over more than one network, each of which can have a different capacity 501 , utilization level 502 , usage cost, 503 .
- Other network conditions and cost parameters such as, delay and error characteristics can also be described. All of these can be evaluated during the selection of the optimal path. In addition, these cost parameters typically vary over time.
- the server 201 It is a responsibility of the server 201 to select and maintain the optimal path with the service-requesting remote terminal 202 .
- the system 300 In order to maintain an optimal path with given QoS constraints, the system 300 as described above, has the capability to switch paths from one network to another, or to other paths within a given network.
- a different path includes a least one different link in the same network, or a different network.
- FIG. 6 shows path cost as a function of time for an example wireless network.
- the cost 601 is high in the day time between 7 a.m. and 7 p.m., and low at night between 7 p.m. and 7 a.m., as shown in inset 602 .
- the cost 603 is constant over time.
- the costs can change at any time in response to changing operating and competitive conditions of the networks. This can change the server's decision on what network to use for a particular application during an on-going session while service is provided. The server may switch the session or the service to another access network at any time in order to reduce costs.
- the invention as describes herein enables this dynamic selection of the optimal connection path during a session.
- FIG. 7 a shows channel capacity as a function of time
- FIG. 7 b shows the channel capacity as a function of distance.
- Time and distance variant capacity can drastically effect the available bandwidth for a particular service. For example, a decrease in the bandwidth may degrade the performance of the service, and therefore, the service provider may want to switch to a better path, or another network.
- FIG. 8 shows link utilization as a function of time.
- Each link in any of the networks 200 can have its own optimum link utilization threshold, e.g., less than 0.8. Admission of an application to be serviced over a link with an already high utilization can increase to the point of driving the link to saturation. If saturation occurs, then the QoS of all the applications on the same link degrades.
- terminal descriptions can specify terminal capabilities include hardware properties, such as processor speed and memory capacity, software properties, such as type of operating system, display properties, such as screen resolution, and device profile, which may indicate the media formats supported, e.g., MPEG profile/level.
- hardware properties such as processor speed and memory capacity
- software properties such as type of operating system
- display properties such as screen resolution
- device profile which may indicate the media formats supported, e.g., MPEG profile/level.
- the delivery descriptions specify the type of transport protocols supported, such as MPEG-2 Systems, TCP/IP and RTP, as well as the types of connections supported, e.g., broadcast, unicast, multicast.
- User preferences include filtering and search preferences, browsing preferences, display preferences and QoS preferences, as well as demographic information, such as gender and age.
- Natural environment characteristics include location, such as GPS coordinates and locale, the type of location, e.g., indoor, outdoor, home or office, the velocity of a mobile terminal, as well as the illumination properties of the terminal.
- the environment descriptions can also specify service descriptions.
- the service description can specify service capabilities include a particular user's role, e.g., content creator, service provider, rights owner, billing party or end consumer, as well as the type of service that particular user provides, such as content creation, rights negotiation, billing, content adaptation and transcoding, use of the network and content consumption.
- the environment description can also include the permissible types of adaptations that are allowed, e.g., the bit-rate should not be less that 2Mb/sec, or the spatial resolution of a video should not be reduced by more than a factor of two.
- the operation of the content adaptation engine 320 is affected not only by environment description 400 , but also the content description 302 .
- Such descriptions include transcoding hints as specified in U.S. patent application Ser. No. 09/547,159, “Video transcoding using syntactic and semantic clues,” filed on Jun. 15, 1999, by Vetro et al., or ISO/IEC 15938-5:2001, “Information Technology—Multimedia Content Description Interface: Part 5 Multimedia Description Schemes.”
- the resource adaptation engine may consider bit rate reduction, see for example “Architectures for MPEG compressed bitstream scaling,” IEEE Transactions on Circuits and Systems for Video Technology, April 1996 by Sun et al., and spatial resolution reduction, see for example, U.S. patent application Ser. No. 09/853,394, “Video Transcoder with Spatial Resolution Reduction,” filed on May 11, 2001 by Vetro et al.
- Other types of adaptation may include a generation of video summaries, see for example U.S. patent application Ser. No. 09/845,009, “Method for summarizing a video using motion and color descriptors,” filed on Aug. 9, 2000 by Divakaran, et al., or changing the compression format, e.g., from MPEG-2 to MPEG-4.
- a transcoder operates in any one of a plurality of conversion modes.
- a manager is configured to select a particular mode depending on semantic content of the bitstream and network characteristics.
- the system also includes a content classifier to determine the content characteristics, and a model predictor to determine the network characteristics, and input is received on the user device characteristics.
- An integrator of the manager generates optimal rate-quality functions to be used for selecting the particular conversion model for the available bit-rate of the network.
- This invention can use any known methods for resource adaptation.
- the specific abilities of the content adaptation engine that are embedded into a particular device depend highly on the target application and target adaptation device.
- the optimum link switching criteria differs for two cases.
- first case see equation (1) and FIG. 9, there is a priori knowledge of traffic and channel characteristics.
- second case see equation (5) and FIG. 10, there is no a priori knowledge of traffic and channel characteristics, and these need to be predicted.
- Any conventional method in the literature, as well as new methods, can be used to predict traffic and channel characteristics.
- a playback application for example, servicing a video-on-demand (VOD) request
- traffic characteristics are known a priori. Therefore, throughout the duration of the playback, traffic bit rates and frame arrival rates for each time slot, and temporal bandwidth demand of the application can be predetermined.
- the path's cost parameters are also known, then it is possible to determine the minimum-cost switching pattern before the optimal is selected and the application request is serviced. This minimum-cost switching pattern is determined by equation (1), and the application is switched according to this already determined pattern. In this first case, it is possible that only a single decision is made during the entire run-time of the application.
- FIG. 9 models the selection of multiple possible paths, e.g., two paths i and j where traffic and channel characteristics are known a priori. This model can be evaluated as a Viterbi lattice with branches, as described in greater detail below.
- the paths can be in the same network, or in multiple networks with quite different transmission media between a source terminal and a destination terminal.
- the links of the paths are defined with associated time-variant and time-invariant objective functions.
- the dynamic optimal path selection according to the invention is modeled with a slotted time approach. A variable m is used to index time slots, and a variable n is the maximum number of time slots used for a particular periodic evaluation.
- R(n 1 , n 1 +1) Cost of meeting the QoS requirements of applications traffic between time slots n 1 and n 1 +1. This is a function of delay and bandwidth constraints, and other network characteristics;
- R(n 1 n 1 +1) is greater than C ij (n 1 , n 1 +1), then that branch is not considered for time interval (n 1 , n 1 +1), and is excluded from the above objection function.
- I ( n 1 ) min( I ( n 1 ⁇ 1)+( C 11 ( n 1 ⁇ 1 ,n 1 ) ⁇ R ( n 1 ⁇ 1 ,n 1 )) 2 , J ( n 1 ⁇ 1)+( C 21 ( n 1 ⁇ l ,n 1 ) ⁇ R ( n 1 ⁇ 1, n 1 )) 2 ) (2)
- J ( n 1 ) min( I ( n 1 ⁇ 1)+( C 12 ( n 1 ⁇ 1, n 1 ) ⁇ R ( n 1 ⁇ 1, n 1 )) 2 ,J ( n 1 ⁇ 1) +( C 22 ( n 1 ⁇ l ,n 1 ) ⁇ R ( n 1 ⁇ 1, n 1 )) 2 ) (3)
- the cost parameter C ii (n 1 , n 1 +1) is specifically expressed with two components: first, a time dependent link cost parameter f ii (n 1 , n 1 +1), and second a traffic dependent QoS cost parameter g ii (r n1 , u n1 , b n1 ), where r n1 is the applications bandwidth demand, u n1 link utilization, b n1 introduced delay at time slot n 1 :
- ⁇ and ⁇ are cost weight functions for f(.) and g(.).
- the following factors can be considered to make path selections: the number of networks that can connect a source and destination terminals, the client terminal capabilities, e.g., hardware properties (processor speed, memory architecture etc.), device type (encoder, decoder, gateway, router, camera etc.), display type and characteristics, measuring the utilization of each link as the ratio of a traffic rate to the link capacity, and processing user QoS preferences as an input for access network selection decision.
- the client terminal capabilities e.g., hardware properties (processor speed, memory architecture etc.), device type (encoder, decoder, gateway, router, camera etc.), display type and characteristics, measuring the utilization of each link as the ratio of a traffic rate to the link capacity, and processing user QoS preferences as an input for access network selection decision.
- the ability to measure and know delay characteristics of each path can be used by the content server can adapt the resolution of a video sequence, and convert the stream to another format. These resolution and format changes directly affect the selection of the network to deliver the content.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer Security & Cryptography (AREA)
- Data Exchanges In Wide-Area Networks (AREA)
Abstract
A method and system connects a first terminal via multiple networks to a second terminal. An environment description is acquired and parsed by a description parser into cost parameters using a set of rules. An objective function evaluates the cost parameters to determine an optimal path to connect the first terminal to the second terminal through the multiple networks using a switch. The selection of the optimal path can be done periodically during a particular application session.
Description
- This application is related to U.S. patent application Ser. No. xx/xxx,xxx (MH-5094), filed herewith, and incorporated herein by reference.
- This invention relates generally to communications systems with multiple networks and terminals that can connect to any one of the networks, and in particular to a method and system for dynamically selecting and accessing multiple networks optimally.
- As shown in FIG. 1, for a
communications network 100, a path is defined as allphysical links 101 andnodes 102 that connect two terminals 110-111. The nodes can be routers, bridges, gateways, and the like The transmission medium of thecommunication network 100 can be, for example, cable, fiber, wired, wireless, satellite, and the like. The terminals 110-111 can be any type of device capable of transmitting or receiving data via thenetwork 100. For example, in a cable network, theterminal 110 can be a content or Web server, and theterminal 111 can be a television connected to the network via a set-top box. In a wireless network, the terminals can be telephones, computers, PDA's, etc. Depending on the application, a terminal, at any one time, can be source or a destination for communicated signals, or both. - The conventional approach for selecting a path first selects a network, and then selects a path in the selected network on the basis of some desired cost or “objective.” The objective can be attained by evaluating some predetermined objective function. The objective function can consider multiple factors, such as, monetary cost, bandwidth, capacity, link utilization, quality of serve (QoS), and the like. Some factors may be minimized, while others are maximized. For example, some users want to maximize bandwidth and QoS, no matter what the cost, while others may be interested in minimizing cost, even if performance is degraded.
- In any case, the objective function is evaluated once, and an optimal path that best satisfies the objective function is selected, and a connection is established. The selected network and path are then used for all access by the terminals for the lifetime of the connection, i.e., a session providing data access services. In FIG. 1, this path is shown bolded. In other words, the selection of the path is static and for a single network.
- A variety of methods for selecting the optimal path are known, see for example, R. Bhandri, “Algorithms for Diverse Routing,” Kluwer Academic Publishers, 1999, D. Bertsakas, “Linear Network Optimization: The Algorithm and the Codes,” MIT press, 1991, U.S. Pat. No. 6,301,244, “QoS-oriented one-to-all route selection method for communication networks,” issued to Huang, et al. on Oct. 9, 2001, and U.S. Pat. No. 6,104,701, “Method and system for performing a least cost routing function for data communications between end users in a multi-network environment,” issued to Avargues, et al. on Aug. 15, 2000.
- Among the most popular methods are the well-known Dijkstra algorithm, the breath-first-search (BPF) shortest path algorithm, and the Belman-Ford algorithm. These methods basically operate on the same principle. The selection of the optimal path is based on the combined costs of the individual links that form the path.
- For instance, the Dijkstra's algorithm models the objective function as a graph with weighted links. Given a root vertex as its input, the function returns, as its output, a label for each vertex on the graph. In the case where the weights represent the length of the links, each vertex label represents the length of the shortest path from the root vertex to a particular vertex. Thus, the algorithm finds the shortest path for traveling from a given vertex on a graph to every other vertex.
- U.S. Pat. No. 6,343,122, “Method and apparatus for routing traffic in a circuit-switched network,” issued to Andersson on Jan. 29, 2002, describes a method and an apparatus for routing traffic in a circuit switched network. This patent relates to traffic switching in a single telecommunications network including a plurality of routes between a call originating and destination terminals with no concern of time variant cost parameters, but not to that in a system with multiple networks with the concern of time variant objectives for use in communication switching. The method includes offering a call between an origin node and a destination node to a preferred route between the nodes, and if the preferred route is not available, offering an alternative route via an intermediate node, and for links between two nodes, setting a first trunk reservation threshold for reserving a certain number of circuits for direct calls along the links between the two nodes, and setting a second trunk reservation threshold for calls between nodes connecting a second link of the alternative route.
- U.S. Pat. No. 6,327,245, “Automatic channel switching for jamming avoidance in burst-mode packet data wireless communication networks,” issued to Satyanarayana, et al. on Dec. 4, 2001, relates to the field of wireless networks in which a large number of nodes communicate with a central computer. The invention relates more particularly to avoiding jamming in such a system. The invention uses a single channel of communication.
- U.S. Pat. No. 6,278,878, “Mobile communications system with portable terminal for facilitating channel switching,” issued to Noda on Aug. 21, 2001, describes a mobile communications system. A portable terminal can be used continuously in the mobile system without substantially terminating a communication session even when the communication with the mobile terminal is transferred from one base station to another as the terminal moves around.
- U.S. Pat. No. 6,163,526, “Transmission system for switching connection from a working channel line to a protection channel line while avoiding instantaneous cutoff upon failure,” issued to Egoshi on Dec. 19, 2000, relates to a transmission system with multiple terminals linked by a working channel line and a protection channel line in a redundant structure wherein a connection is switched from the working channel line to the protection channel line while avoiding instantaneous cut off when the working channel line has failed. That system does not consider the possibility that even if there is no failure, it may be desired to switch from a working channel to the protection channel.
- U.S. Pat. No. 5,995,807, “Method of switching a channel from a first propagation path to a second propagation path,” issued to Magnier, et al. on Nov. 30, 1999, describes a satellite telecommunications network for mobile stations. The network operates in a “switched diversity” mode in which a call set up between a first station, e.g., a base station, and a second station, e.g., a mobile terminal, can be transmitted over either one of two propagation paths, i.e., via one of two distinct satellites based on the measurement of a value representative of signal-to-noise ratio for each of said propagation paths, namely the current path and a next path.
- U.S. Pat. No. 5,970,050, “Allocating communication traffic,” issued to Johnson on Oct. 19, 1999, describes a method for selecting one of a number of possible routes through a communications network from a first node to a second node. The method includes defining a relationship between a range of costs for routes and a traffic density for routes. The relationship is represented by a curve with at least one point of inflection. The method monitors and uses traffic density for each of the possible routes to establish the cost of each the possible route in accordance with the relationship. One of the possible routes is selected in dependence on the cost of each possible route as established by said relationship.
- U.S. Pat. No. 5,828,655, “Hybrid access system with quality-based channel switching,” issued to Moura, et al. on Oct. 27, 1998, describes an asymmetric network communication system for use in a client-server environment having independent forward and return channels operating at different speeds and/or under different protocols on the same or different communication media to provide efficient utilization of shared resources. A network manager, such as a hybrid access system, effects transmission of packetized data on a forward (downstream) channel from a host server to multiple client devices coupled with a shared downstream media while simultaneously providing selectable multiple lower speeds of operation on shared or dedicated return (upstream) channels from the client devices to the host server depending on bandwidth availability, bandwidth demand, service level authorization, etc. for the return channel. Forward and return channels may be located on the same or different communication medium including a CATV network, direct broadcast satellite network, television or radio RF broadcast network, wireless or mobile cellular facilities or the like. The return channel may reside on a PSTN either directly coupled with the host server or connected with the network manager for subsequent transmission to the host server. The network manager handles or controls the forward and return communication to establish interactive full-duplex real-time network sessions between the host and a selected client device. The network manager switches upstream channel assignment based on quality of signals transmitted to the host. The system effects changes in the upstream transmitted power based on sensed conditions.
- In U.S. patent application Ser. No. 09/862,899, “Method and system for assigning circuits to a new service request in a communications network,” filed on May 22, 2001 by Sahinoglu and Porikli, a method for admission decision of application service request to a network is described. It does not involve channel management after a service request is granted and placed on an available channel.
- In general, the primary drawback of using the prior art methods is that other networks and other paths may, at a later time, better satisfy the objective function after the network and path have initially been selected. In that case, the selected path is no longer the optimal path. Based on prior art methods, there is no way to exploite the availability of multiple networks in an optimal way.
- Many elements are known for building an infrastructure to generate, transmit and receive multimedia content over networks, such as the one shown in FIG. 1. For example, standards such as MPEG-2 and MPEG-4 play an important role in the efficient broadcast and distribution of audio and video content, see ISO/IEC 13818:1995, “Information Technology—Generic Coding of Moving Pictures and Associated Audio,” and “ISO/IEC 14496:1999, “Information Technology—Coding of Audio-Visual Objects,” respectively. For transport over IP networks, there exist a variety of specifications defined by the IETF, see for example, “RTP: A Transport Protocol for Real Time Applications,” RFC 1889, January 1996 by Schulzrinne, et al., and “RTP Payload Format for MPEG-4 Audio/Visual Streams,” RFC 3016, November 2000 by Kikuchi, et al. Furthermore, for the search and retrieval of multimedia contents, MPEG-7 provides a standardized set of descriptors and descriptions schemes, see ISO/IEC 15938:2001, “Information Technology—Multimedia Content Description Interface.”
- However, currently there is no standard that describes how these elements, either in existence or under development, relate to each other. The primary aim of the emerging MPEG-21 standard, officially referred to as ISO/IEC 21000, “Information Technology—Multimedia Framework,” is to describe how these relate to each other. It is expected that the various specifications that exist, or will be developed, will be integrated into a multimedia framework through collaboration between MPEG and other standardization bodies. The overall vision for MPEG-21 is to define a multimedia framework to enable transparent and augmented use of multimedia resources across a wide range of networks and devices.
- Within the MPEG-21 framework, the fundamental unit of transaction is referred to as a “digital item.” A digital item is defined as a structured digital object with a standard representation and identification. The digital item includes resources (content) and associated descriptors The resources can include individual multimedia assets, such as MPEG videos, MP3 audio files. The descriptors include descriptive information about the internals of the resources, such as content identification and content-based descriptors, e.g., an MPEG-7 description. The proposed framework currently does not consider external descriptions, such as network condition, terminal characteristics, and user preferences.
- MPEG-21 has recently developed a Digital Item Declaration (DID),
Part 2 of ISO/IEC 21000, which is scheduled to become an international standard in May 2002. The purpose of the DID is to declare the make-up and structure of a digital item. An XML-based Digital Item Language Declaration (DIDL) has been developed. The DIDL is a generic structure to provide hierarchical and flexible meta-data expression, as well as re-usable and configurable elements. To enable an interoperable framework and support various applications, it is important that these descriptors be specified in a standardized way. - It is desired to provide descriptors that can also be used for optimal network and path selection. Furthermore, it is desired that the selection can change dynamically while terminals actively transmit and receive resources within any available network.
- A method and system connects a first terminal via multiple networks to a second terminal. An environment description is acquired and parsed by a description parser into cost parameters using a set of rules. An objective function evaluates the cost parameters to determine an optimal path to connect the first terminal to the second terminal through the multiple networks using a switch. The selection of the optimal path can be done periodically during a particular application session.
- FIG. 1 is a diagram of a single network with static path selection according to the prior art;
- FIG. 2 is a diagram of multiple networks with dynamic path selection according to the invention;
- FIG. 3 is a flow diagram of a system and method for dynamic path selection with multiple networks according to the invention;
- FIG. 4 is flow diagram of a system and method for dynamic path selection based on environment descriptions;
- FIG. 5 is a table of multiple networks and multiple selection objectives;
- FIG. 6 is timing diagram of cost as a function of time in a wireless network;
- FIG. 7a is a graph of channel capacity as a function of time;
- FIG. 7b is a graph of channel capacity as a function of network distance;
- FIG. 8 is a graph of link utilization as a function of time; and
- FIG. 9 is a lattice modeling an optimal switching method for multiple paths with a priori knowledge of traffic and channel characteristics;
- FIG. 10 is a lattice modeling an optimal switching method for multiple paths without a priori knowledge of traffic and channel characteristics.
- Introduction
- The present invention describes a system and method for dynamically selecting an optimal communication path in multiple networks. Each network may have different capacity and available bandwidth at the time of a service request. Furthermore, each network is defined by time-variant and time-independent cost parameters.
- Multiple Networks
- FIG. 2 shows multiple networks (
Networks - The
bold path 303 indicates the optimal path initially selected at the time the connection is established. The dashedpath 304 indicates the optimal path dynamically selected at some later time. In contrast with the prior art, some optimal paths can include links that pass through multiple networks. - System Structure
- FIG. 3 shows a system and
method 300 for performing dynamic optimal path selection according to the invention. Thesystem 300 includes the multiple (N)network 200 of FIG. 2 connecting the terminal 201, e.g., a content server storing a multimedia database, to the terminal 202, e.g., a client device, such as a television connected to the network via a set-top box. - The
system 300 also includes adescription parser 310, acontent adaptation engine 320, anobjective function evaluator 330, and aswitch 340. - System Operation
- During operation of the
system 300 for a particular application, e.g., video-on-demand (VOD), thedescription parser 310 periodically acquires anenvironment description 400, for example, the operating characteristics of themultiple networks 200. Theenvironment description 400 is described in further detail below. Methods for acquiring characteristics that describe the operation of the networks' environment, such as cost, bandwidth, utilization, and capacity, are well known. - The
description 400 is parsed 310 according to a schema or a set ofrules 311 . The rules define the grammar to be used to parse the environment description, and any other descriptions to be parsed. The parsedenvironment description 312, for example, cost parameters that describe the network characteristics, is passed forward to theobjective function evaluator 330. The evaluator minimizes an objective function using the parsed cost parameters in order to periodically select an optimal path, as described in greater detail below. - The
content server 201 provides thedescription parser 310 with acontent description 302, e.g., an MPEG-7 resource description of a digital item, as described above. The content description is also parsed 310 using theschema 311. It should be understood that the schema can include a separate set of rules for each different description to be parsed. Thecontent adapter 320 receivescontent 303, and also the parsed environment description and the parsedcontent description 302. - The
content adaptation engine 320 can adapt thecontent 303 according to the content and environment description. In some cases, the content adaptation can be a null operation. The adaptedcontent 304 is passed to theswitch 340. Adapting the content will require somebandwidth 305, which is passed to theevaluator 330 for consideration during the evaluation. - Using the
bandwidth 305 and the parsedenvironment description 312, theobjective function evaluator 330 selects the optimal network and path within any of thenetworks 200, using theswitch 340, to transfer the adaptedcontent 304 to the terminal 202, for a specified time period. This process is repeated periodically, e.g., each frame or GOP, using updated descriptions to dynamically select the optimal path over time. - FIG. 4 shows the more general case for the
above system 300. Here, theenvironment description 400 includes anetwork description 403 as described above, or combinations of any number of descriptions, for example, auser profile description 401, and aterminal description 402. In the general case, the combinedenvironment description 400 is used by theparser 310,engine 320, andevaluator 330. - Network Description
- Each of the
N networks 200 is defined bycertain descriptors 403. The operating condition of each network is described by delay characteristics, such as end-to-end delay, delay variation, error characteristics, such as bit error rate, packet loss rate, and bandwidth characteristics, such as link capacity, available bandwidth, utilized bandwidth, etc. The cost descriptions can be classified according to two distinct costs: an application quality of service cost (QoS), and a connection cost. For instance, an application with a low connection cost may also suffer from low QoS. On the other hand, an application with a high quality of service may require connecting to a high cost network. - FIG. 5 shows a sample presentation of
multiple networks 200 and cost parameters that make up the environment descriptions. Thecontent server 201 can communicate with the terminal 202 over more than one network, each of which can have adifferent capacity 501,utilization level 502, usage cost, 503. Other network conditions and cost parameters, such as, delay and error characteristics can also be described. All of these can be evaluated during the selection of the optimal path. In addition, these cost parameters typically vary over time. - It is a responsibility of the
server 201 to select and maintain the optimal path with the service-requestingremote terminal 202. In order to maintain an optimal path with given QoS constraints, thesystem 300 as described above, has the capability to switch paths from one network to another, or to other paths within a given network. Hereinafter, a different path includes a least one different link in the same network, or a different network. - FIG. 6 shows path cost as a function of time for an example wireless network. For local services, the
cost 601 is high in the day time between 7 a.m. and 7 p.m., and low at night between 7 p.m. and 7 a.m., as shown ininset 602. For long distance services, thecost 603 is constant over time. In addition, the costs can change at any time in response to changing operating and competitive conditions of the networks. This can change the server's decision on what network to use for a particular application during an on-going session while service is provided. The server may switch the session or the service to another access network at any time in order to reduce costs. The invention as describes herein enables this dynamic selection of the optimal connection path during a session. - FIG. 7a shows channel capacity as a function of time, and FIG. 7b shows the channel capacity as a function of distance. Time and distance variant capacity can drastically effect the available bandwidth for a particular service. For example, a decrease in the bandwidth may degrade the performance of the service, and therefore, the service provider may want to switch to a better path, or another network.
- FIG. 8 shows link utilization as a function of time. Each link in any of the
networks 200 can have its own optimum link utilization threshold, e.g., less than 0.8. Admission of an application to be serviced over a link with an already high utilization can increase to the point of driving the link to saturation. If saturation occurs, then the QoS of all the applications on the same link degrades. - Environment Descriptions
- In addition to
network descriptions 403, there are a variety of other external or environmental factors that affect the operation of thesystem 300. These factors can be specified in terminal descriptions, delivery descriptions, user preference descriptions, and natural environment descriptions. All of these factors can be cost parameters of theenvironment description 400. - The terminal descriptions can specify terminal capabilities include hardware properties, such as processor speed and memory capacity, software properties, such as type of operating system, display properties, such as screen resolution, and device profile, which may indicate the media formats supported, e.g., MPEG profile/level.
- The delivery descriptions specify the type of transport protocols supported, such as MPEG-2 Systems, TCP/IP and RTP, as well as the types of connections supported, e.g., broadcast, unicast, multicast.
- User preferences include filtering and search preferences, browsing preferences, display preferences and QoS preferences, as well as demographic information, such as gender and age.
- Natural environment characteristics include location, such as GPS coordinates and locale, the type of location, e.g., indoor, outdoor, home or office, the velocity of a mobile terminal, as well as the illumination properties of the terminal.
- In addition to the above, the environment descriptions can also specify service descriptions. The service description can specify service capabilities include a particular user's role, e.g., content creator, service provider, rights owner, billing party or end consumer, as well as the type of service that particular user provides, such as content creation, rights negotiation, billing, content adaptation and transcoding, use of the network and content consumption. Assuming that a particular user is the right owner or content creator, the environment description can also include the permissible types of adaptations that are allowed, e.g., the bit-rate should not be less that 2Mb/sec, or the spatial resolution of a video should not be reduced by more than a factor of two.
- Content Adaptation Engine
- The operation of the
content adaptation engine 320 is affected not only byenvironment description 400, but also thecontent description 302. Such descriptions include transcoding hints as specified in U.S. patent application Ser. No. 09/547,159, “Video transcoding using syntactic and semantic clues,” filed on Jun. 15, 1999, by Vetro et al., or ISO/IEC 15938-5:2001, “Information Technology—Multimedia Content Description Interface: Part 5 Multimedia Description Schemes.” - There are a wide variety of resource adaptation engines that can be used with the present invention. For video transcoding, the resource adaptation engine may consider bit rate reduction, see for example “Architectures for MPEG compressed bitstream scaling,” IEEE Transactions on Circuits and Systems for Video Technology, April 1996 by Sun et al., and spatial resolution reduction, see for example, U.S. patent application Ser. No. 09/853,394, “Video Transcoder with Spatial Resolution Reduction,” filed on May 11, 2001 by Vetro et al. Other types of adaptation may include a generation of video summaries, see for example U.S. patent application Ser. No. 09/845,009, “Method for summarizing a video using motion and color descriptors,” filed on Aug. 9, 2000 by Divakaran, et al., or changing the compression format, e.g., from MPEG-2 to MPEG-4.
- In U.S. patent application Ser. No. 09/496,706, “Adaptable Compressed Bitstream Transcoder,” filed on Feb. 2, 2000 by Vetro et al., incorporated herein by reference, a transcoder operates in any one of a plurality of conversion modes. A manager is configured to select a particular mode depending on semantic content of the bitstream and network characteristics. The system also includes a content classifier to determine the content characteristics, and a model predictor to determine the network characteristics, and input is received on the user device characteristics. An integrator of the manager generates optimal rate-quality functions to be used for selecting the particular conversion model for the available bit-rate of the network.
- This invention can use any known methods for resource adaptation. The specific abilities of the content adaptation engine that are embedded into a particular device depend highly on the target application and target adaptation device.
- Objective Function Evaluator
- The optimum link switching criteria differs for two cases. In the first case, see equation (1) and FIG. 9, there is a priori knowledge of traffic and channel characteristics. In the second case, see equation (5) and FIG. 10, there is no a priori knowledge of traffic and channel characteristics, and these need to be predicted. Any conventional method in the literature, as well as new methods, can be used to predict traffic and channel characteristics.
- Evaluating with Known Traffic and Channel Characteristics
- For a playback application, for example, servicing a video-on-demand (VOD) request, traffic characteristics are known a priori. Therefore, throughout the duration of the playback, traffic bit rates and frame arrival rates for each time slot, and temporal bandwidth demand of the application can be predetermined. If the path's cost parameters are also known, then it is possible to determine the minimum-cost switching pattern before the optimal is selected and the application request is serviced. This minimum-cost switching pattern is determined by equation (1), and the application is switched according to this already determined pattern. In this first case, it is possible that only a single decision is made during the entire run-time of the application.
- FIG. 9 models the selection of multiple possible paths, e.g., two paths i and j where traffic and channel characteristics are known a priori. This model can be evaluated as a Viterbi lattice with branches, as described in greater detail below. The paths can be in the same network, or in multiple networks with quite different transmission media between a source terminal and a destination terminal. The links of the paths are defined with associated time-variant and time-invariant objective functions. The dynamic optimal path selection according to the invention is modeled with a slotted time approach. A variable m is used to index time slots, and a variable n is the maximum number of time slots used for a particular periodic evaluation.
- The parameters in FIG. 9 and10, and
equations 1 and 5 are defined as follows: - Cij(n1, n1+1): Cost of switching an application on a path i starting with a time slot m=n1to a path j for a time slot m=n1+1 when i≠j;
- Cij(n1, n1+1): Cost of keeping an application on path i starting from time slot m=n1to a path j for a time slot m=n1+1 when i=j;
- I(n1): Aggregate cost of path i during time slot m=n1;
- J(n1): Aggregate cost of path i during time slot m=n1;
- R(n1, n1+1): Cost of meeting the QoS requirements of applications traffic between time slots n1and n1+1. This is a function of delay and bandwidth constraints, and other network characteristics; and
- {circumflex over (·)}: predicted values, see equation (5) and FIG. 10 below.
-
- throughout the lifetime of the session. Because the system model is expressed as a lattice with multiple branches, a Viterbi decoder can be used to find the optimal solution.
- If R(n1n1+1) is greater than Cij(n1, n1+1), then that branch is not considered for time interval (n1, n1+1), and is excluded from the above objection function.
- The costs I(n1) and J(n1) at time slot m=n1are determined as follows:
- I(n 1)=min(I(n 1−1)+(C 11(n 1−1,n 1)−R(n 1−1,n 1))2 , J(n 1−1)+(C 21(n 1 −l ,n 1)−R(n 1−1,n 1))2) (2)
- J(n 1)=min(I(n 1−1)+(C 12 (n 1−1,n 1)−R(n 1−1, n 1))2 ,J(n 1−1) +(C 22(n 1 −l ,n 1)−R(n 1−1, n1))2) (3)
- Keeping an application or a session on the same path from time slot n to a next time slot (n1+1) can be expressed as I(n1)→I(n1+1)∥J(n1)→J(n1+1). In such a case, the cost of switching is zero.
- However, staying on the same path may induce other costs, e.g., as shown in FIG. 6, some connections are free after 7:00 p.m. Therefore, the cost parameter Cii(n1, n1+1) is specifically expressed with two components: first, a time dependent link cost parameter fii(n1, n1+1), and second a traffic dependent QoS cost parameter gii(rn1, un1, bn1), where rn1 is the applications bandwidth demand, un1 link utilization, bn1 introduced delay at time slot n1:
- C ii(n 1+1)=αfii(n 1 , n 1+1)+βg ii(r n1 , u n1 , b n1) (4)
- where α and β are cost weight functions for f(.) and g(.).
- Evaluating with Predicted Traffic and Channel Characteristics
- With no a priori knowledge of traffic and channel characteristics, the predicted values of the cost parameters for a next time slot have to be used as shown in FIG. 10, and the decision is made in favor of the switching direction which minimizes the objection function of equation (5) for each time slot.
- In this second case, at least as many decision as the number of time slots for each “butterfly” are made as shown in FIG. 10.
- Server Functionality
- In order to dynamically select and maintain the optimal path, the following factors can be considered to make path selections: the number of networks that can connect a source and destination terminals, the client terminal capabilities, e.g., hardware properties (processor speed, memory architecture etc.), device type (encoder, decoder, gateway, router, camera etc.), display type and characteristics, measuring the utilization of each link as the ratio of a traffic rate to the link capacity, and processing user QoS preferences as an input for access network selection decision.
- The ability to measure and know delay characteristics of each path (end-to-end delay, delay variation, etc.), error characteristics (bit error rate, packet loss, burstiness, self-similarity level of aggregate background traffic etc.), bandwidth characteristics (link capacities, bandwidth variation etc.) can be used by the content server can adapt the resolution of a video sequence, and convert the stream to another format. These resolution and format changes directly affect the selection of the network to deliver the content.
- Although the invention has been described by way of examples of preferred embodiments, it is to be understood that various other adaptations and modifications can be made within the spirit and scope of the invention. Therefore, it is the object of the appended claims to cover all such variations and modifications as come within the true spirit and scope of the invention.
Claims (31)
1. A method for connecting a first terminal via a plurality of networks to a second terminal, comprising:
acquiring an environment description;
parsing the environment description into cost parameters using a set of rules;
evaluating an objective function using the cost parameters; and
selecting an optimal path through the plurality of networks based on a minimum cost to connect the first terminal to the second terminal.
2. The method of claim 1 wherein the environment description includes a network description for each of the networks.
3. The method of claim 2 wherein each of the networks includes a plurality of links, and each network description includes connection cost, bandwidth, utilization, and capacity of each link.
4. The method of claim 2 wherein each network description includes end-to-end delay, delay variation, error characteristics, and packet loss rate for each network.
5. The method of claim 1 wherein the environment description includes a terminal description for each terminal.
6. The method of claim 5 wherein each terminal description includes hardware and sofware descriptions for each terminal.
7. The method of claim 1 wherein the environment description includes a delivery description.
8. The method of claim 7 wherein the delivery description specifies transport protocols.
9. The method of claim 1 wherein the environment description includes a user preference description.
10. The method of claim 9 wherein the user preference description includes filtering, search, browsing, and display preferences.
11. The method of claim 9 wherein the user preference description includes user demographic information.
12. The method of claim 1 wherein the environment description includes a natural environment description.
13. The method of claim 12 wherein the natural environment description specifies a location and a type of location of each terminal.
14. The method of claim 1 wherein the environment description includes a service description.
15. The method of claim 14 wherein the service description specifies service capabilities.
16. The method of claim 1 wherein the acquiring, parsing, evaluating, and selecting is performed periodically to dynamically select the optimal path for a particular time interval.
17. The method of claim 1 wherein the optimal path passes through a subset of the plurality of networks.
18. The method of claim 1 wherein the evaluating considers content bandwidth requirements.
19. The method of claim 1 further comprising:
acquiring a content description;
parsing the content into cost parameters of the content; and
evaluating the objective function using the cost parameters of the content; and
delivering the adapted content over the selected optimal path.
20. The method of claim 19 further comprising:
adapting the content according to the content description.
21. The method of claim 19 further comprising:
adapting the content according to the environment description.
22. The method of claim 19 further comprising:
adapting the content according to the content description and the environment description.
23. The method of claim 1 wherein the cost parameters are known.
24. The method of claim 1 wherein the cost parameters are predicted.
25. The method of claim 1 further comprising:
modeling the objective function as a lattice; and
solving for the minimum cost using a Viterbi decoder.
27. The method of claim 1 wherein the cost parameters include a time dependent path cost parameter, and a traffic dependent quality of service parameter.
28. The method of claim 1 wherein the networks have different capacity and different available bandwidth.
29. The method of claim 1 wherein each network is defined by time-variant and time-independent cost parameters.
30. The method of claim 1 wherein the first terminal is a content server configured to transmit a video and the second terminal is a client terminal configured to receive the video.
31. A system for connecting a first terminal via a plurality of networks to a second terminal, comprising:
an environment parser periodically acquiring and parsing an environment description of the plurality of networks into cost parameters;
an evaluator determining an optimal path through the plurality of networks using an objective function and the cost parameters; and
a switch connecting the first terminal to the second terminal via the optimal path for a predetermined time period.
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/079,096 US7099277B2 (en) | 2002-02-20 | 2002-02-20 | Dynamic optimal path selection in multiple communications networks |
CNB038029596A CN100370785C (en) | 2002-02-20 | 2003-02-13 | Method and system for connecting a first terminal to a second terminal via multiple networks |
JP2003570528A JP4255840B2 (en) | 2002-02-20 | 2003-02-13 | Method and system for connecting a first terminal to a second terminal via a plurality of networks |
EP20030705123 EP1476992A1 (en) | 2002-02-20 | 2003-02-13 | Selecting an optimal path between a first terminal and a second terminal via a plurality of communication networks |
PCT/JP2003/001500 WO2003071750A1 (en) | 2002-02-20 | 2003-02-13 | Selecting an optimal path between a first terminal and a second terminal via a plurality of communication networks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/079,096 US7099277B2 (en) | 2002-02-20 | 2002-02-20 | Dynamic optimal path selection in multiple communications networks |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030156543A1 true US20030156543A1 (en) | 2003-08-21 |
US7099277B2 US7099277B2 (en) | 2006-08-29 |
Family
ID=27732973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/079,096 Expired - Fee Related US7099277B2 (en) | 2002-02-20 | 2002-02-20 | Dynamic optimal path selection in multiple communications networks |
Country Status (5)
Country | Link |
---|---|
US (1) | US7099277B2 (en) |
EP (1) | EP1476992A1 (en) |
JP (1) | JP4255840B2 (en) |
CN (1) | CN100370785C (en) |
WO (1) | WO2003071750A1 (en) |
Cited By (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030202468A1 (en) * | 2002-04-29 | 2003-10-30 | Harris Corporation | Mobile ad-hoc network and methods for performing functions therein based upon weighted quality of service metrics |
US20030216141A1 (en) * | 2002-05-15 | 2003-11-20 | Nokia Corporation | Service-oriented protection scheme for a radio access network |
US20050114224A1 (en) * | 2003-11-24 | 2005-05-26 | Hodges Donna K. | Methods for providing communications services |
US20050138200A1 (en) * | 2003-12-17 | 2005-06-23 | Palo Alto Research Center, Incorporated | Information driven routing in ad hoc sensor networks |
US20050169183A1 (en) * | 2002-06-14 | 2005-08-04 | Jani Lakkakorpi | Method and network node for selecting a combining point |
US20060025149A1 (en) * | 2004-07-28 | 2006-02-02 | Jeyhan Karaoguz | Quality-of-service (QoS)-based association with a new network using background network scanning |
US20060025148A1 (en) * | 2004-07-28 | 2006-02-02 | Jeyhan Karaoguz | Quality-of-service (QoS)-based delivery of multimedia call sessions using multi-network simulcasting |
US20060062242A1 (en) * | 2004-09-23 | 2006-03-23 | Sony Corporation | Reliable audio-video transmission system using multi-media diversity |
US20060062243A1 (en) * | 2004-09-23 | 2006-03-23 | Dacosta Behram M | Reliable audio-video transmission system using multi-media diversity |
WO2006052171A1 (en) * | 2004-11-11 | 2006-05-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for routing packets |
US20060126495A1 (en) * | 2004-12-01 | 2006-06-15 | Guichard James N | System and methods for detecting network failure |
EP1675351A1 (en) * | 2004-12-24 | 2006-06-28 | Research In Motion Limited | Tailoring content for mobile electronic device based on network |
US20060143282A1 (en) * | 2004-12-27 | 2006-06-29 | Brown Michael K | Tailoring content for mobile electronic device based on network |
US20060187892A1 (en) * | 2003-08-07 | 2006-08-24 | Wenlin Zhang | Interactive method for determining network selection information for a user terminal in a wireless local area network |
US20060198321A1 (en) * | 2005-03-04 | 2006-09-07 | Nadeau Thomas D | System and methods for network reachability detection |
US20060215577A1 (en) * | 2005-03-22 | 2006-09-28 | Guichard James N | System and methods for identifying network path performance |
US20070140129A1 (en) * | 2005-12-21 | 2007-06-21 | Packethop, Inc. | Ad-hoc network routing metric optimization |
US20070230346A1 (en) * | 2006-03-28 | 2007-10-04 | Fujitsu Limited | Service quality management device and service quality management method |
US20080232243A1 (en) * | 2007-03-20 | 2008-09-25 | Amit Oren | Method and system for implementing redundancy for streaming data in audio video bridging networks |
US20080285574A1 (en) * | 2007-05-14 | 2008-11-20 | Michael Johas Teener | Method and system for proxy a/v bridging on an ethernet switch |
US20090003223A1 (en) * | 2007-06-29 | 2009-01-01 | Mccallum Gavin | Discovering configured tunnels between nodes on a path in a data communications network |
US20090022061A1 (en) * | 2007-07-20 | 2009-01-22 | John Walley | Method and system for quality of service management in a multi-standard mesh of networks |
US20090100191A1 (en) * | 2003-11-24 | 2009-04-16 | Hodges Donna K | Methods, Systems & Products for Providing Communications Services |
WO2009049701A1 (en) * | 2007-10-15 | 2009-04-23 | Institut für Rundfunktechnik GmbH | Method for selecting usable network connections for communication |
US20090232222A1 (en) * | 2006-03-17 | 2009-09-17 | Thomas Stockhammer | Method for decoding a data stream and a receiver |
US7643426B1 (en) * | 2006-04-27 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Path selection in a network |
US7912934B1 (en) | 2006-01-09 | 2011-03-22 | Cisco Technology, Inc. | Methods and apparatus for scheduling network probes |
US7983174B1 (en) | 2005-12-19 | 2011-07-19 | Cisco Technology, Inc. | Method and apparatus for diagnosing a fault in a network path |
US20110214059A1 (en) * | 2010-03-01 | 2011-09-01 | Ashley Edwardo King | Media Distribution in a Content Delivery Network |
US20110299546A1 (en) * | 2009-01-16 | 2011-12-08 | Rich Prodan | Method and System for Optimizing Communication in a Home Network Via a Gateway |
US20110310995A1 (en) * | 2009-12-31 | 2011-12-22 | Broadcom Corporation | Transcoding multiple media elements for independent wireless delivery |
CN102447975A (en) * | 2010-10-08 | 2012-05-09 | 中国联合网络通信集团有限公司 | Streaming media information processing method, system and server |
US20120192213A1 (en) * | 2009-09-08 | 2012-07-26 | Nds Limited | Delivering an Audio Video Asset |
US20130003548A1 (en) * | 2011-06-30 | 2013-01-03 | Kamakshi Sridhar | Method For Improved Load Balancing In Communication Systems |
CN103167318A (en) * | 2011-12-13 | 2013-06-19 | 中国电信股份有限公司 | Streaming media processing method, device, server and system |
US20130211706A1 (en) * | 2010-08-13 | 2013-08-15 | Wavemarket, Inc. | Systems, methods, and processor readable media for traffic flow measurement |
US8711868B2 (en) | 2003-11-24 | 2014-04-29 | At&T Intellectual Property I, L.P. | Methods, systems, and products for providing communications services |
US8942082B2 (en) | 2002-05-14 | 2015-01-27 | Genghiscomm Holdings, LLC | Cooperative subspace multiplexing in content delivery networks |
US9078039B2 (en) | 2010-06-04 | 2015-07-07 | Broadcom Corporation | Customized acquisition of content by a broadband gateway |
US9161204B2 (en) | 2010-03-22 | 2015-10-13 | Location Labs, Inc. | System and method for determining mobile device location |
US9240901B2 (en) | 2003-11-24 | 2016-01-19 | At&T Intellectual Property I, L.P. | Methods, systems, and products for providing communications services by determining the communications services require a subcontracted processing service and subcontracting to the subcontracted processing service in order to provide the communications services |
US9510152B2 (en) | 2014-04-11 | 2016-11-29 | Location Labs, Inc. | System and method for scheduling location measurements |
US9774505B2 (en) | 2004-08-02 | 2017-09-26 | Steve J Shattil | Content delivery in wireless wide area networks |
CN108881293A (en) * | 2018-07-23 | 2018-11-23 | 中国联合网络通信集团有限公司 | Access gateway, the method and its system of talk path selection |
US10419533B2 (en) | 2010-03-01 | 2019-09-17 | Genghiscomm Holdings, LLC | Edge server selection for device-specific network topologies |
US10824135B2 (en) * | 2017-01-17 | 2020-11-03 | Ebara Corporation | Scheduler, substrate processing apparatus, and substrate conveyance method |
US11330046B2 (en) | 2010-03-01 | 2022-05-10 | Tybalt, Llc | Content delivery in wireless wide area networks |
US11405823B2 (en) * | 2016-11-23 | 2022-08-02 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data processing method, and terminal device and network device |
CN116882714A (en) * | 2023-09-07 | 2023-10-13 | 中国铁路设计集团有限公司 | Multi-year intersection integrated scheme programming method considering line network construction time sequence |
Families Citing this family (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7339897B2 (en) * | 2002-02-22 | 2008-03-04 | Telefonaktiebolaget Lm Ericsson (Publ) | Cross-layer integrated collision free path routing |
AU2003210008A1 (en) * | 2002-03-05 | 2003-09-16 | Matsushita Electric Industrial Co., Ltd. | Method for implementing mpeg-21 ipmp |
US8675493B2 (en) * | 2002-07-02 | 2014-03-18 | Alcatel Lucent | Routing bandwidth guaranteed paths with local restoration in label switched networks |
US8204076B2 (en) | 2003-05-01 | 2012-06-19 | Genesis Microchip Inc. | Compact packet based multimedia interface |
US7620062B2 (en) * | 2003-05-01 | 2009-11-17 | Genesis Microchips Inc. | Method of real time optimizing multimedia packet transmission rate |
US7839860B2 (en) | 2003-05-01 | 2010-11-23 | Genesis Microchip Inc. | Packet based video display interface |
US8059673B2 (en) | 2003-05-01 | 2011-11-15 | Genesis Microchip Inc. | Dynamic resource re-allocation in a packet based video display interface |
US7733915B2 (en) * | 2003-05-01 | 2010-06-08 | Genesis Microchip Inc. | Minimizing buffer requirements in a digital video system |
US20040221312A1 (en) * | 2003-05-01 | 2004-11-04 | Genesis Microchip Inc. | Techniques for reducing multimedia data packet overhead |
US8068485B2 (en) * | 2003-05-01 | 2011-11-29 | Genesis Microchip Inc. | Multimedia interface |
US20040218599A1 (en) * | 2003-05-01 | 2004-11-04 | Genesis Microchip Inc. | Packet based video display interface and methods of use thereof |
US20040221315A1 (en) * | 2003-05-01 | 2004-11-04 | Genesis Microchip Inc. | Video interface arranged to provide pixel data independent of a link character clock |
US7405719B2 (en) * | 2003-05-01 | 2008-07-29 | Genesis Microchip Inc. | Using packet transfer for driving LCD panel driver electronics |
US7800623B2 (en) * | 2003-09-18 | 2010-09-21 | Genesis Microchip Inc. | Bypassing pixel clock generation and CRTC circuits in a graphics controller chip |
US7779065B2 (en) * | 2003-09-18 | 2010-08-17 | Sanyogita Gupta | Dynamic cost network routing |
US7634090B2 (en) * | 2003-09-26 | 2009-12-15 | Genesis Microchip Inc. | Packet based high definition high-bandwidth digital content protection |
US7725035B2 (en) * | 2004-04-20 | 2010-05-25 | Fujitsu Limited | Method and system for managing network traffic |
US7734801B2 (en) * | 2004-05-20 | 2010-06-08 | Intel Corporation | Method and apparatus for acquiring internet real-time media channels in a private network |
WO2007006090A1 (en) * | 2005-07-08 | 2007-01-18 | Smart Internet Technology Crc Pty Ltd | Systems and methods for use in transforming electronic information into a format |
US7474620B2 (en) * | 2005-07-10 | 2009-01-06 | Hewlett-Packard Development Company, L.P. | Communications network having transport diversity |
US7945678B1 (en) * | 2005-08-05 | 2011-05-17 | F5 Networks, Inc. | Link load balancer that controls a path for a client to connect to a resource |
CN100384130C (en) * | 2005-09-05 | 2008-04-23 | 华为技术有限公司 | Communication charging method |
US7978611B2 (en) * | 2005-09-06 | 2011-07-12 | At&T Intellectual Property I, L.P. | Systems and methods to determine network routes based on transmission medium length |
WO2007043180A1 (en) * | 2005-10-14 | 2007-04-19 | Fujitsu Limited | Access network selecting method |
US7613120B2 (en) * | 2005-12-30 | 2009-11-03 | Intel Corporation | Dynamic wide area network packet routing |
AU2007269842B2 (en) * | 2006-06-30 | 2011-08-04 | Vonage Network Llc | Method and system for network path discrimination |
US9071506B2 (en) * | 2006-07-31 | 2015-06-30 | Hewlett-Packard Development Company, L.P. | Accessing web services using network management information |
JP4737035B2 (en) | 2006-10-30 | 2011-07-27 | 日本電気株式会社 | QoS routing method and QoS routing apparatus |
US8760461B2 (en) | 2009-05-13 | 2014-06-24 | Stmicroelectronics, Inc. | Device, system, and method for wide gamut color space support |
US8860888B2 (en) * | 2009-05-13 | 2014-10-14 | Stmicroelectronics, Inc. | Method and apparatus for power saving during video blanking periods |
US8429440B2 (en) | 2009-05-13 | 2013-04-23 | Stmicroelectronics, Inc. | Flat panel display driver method and system |
US8156238B2 (en) | 2009-05-13 | 2012-04-10 | Stmicroelectronics, Inc. | Wireless multimedia transport method and apparatus |
US8370554B2 (en) * | 2009-05-18 | 2013-02-05 | Stmicroelectronics, Inc. | Operation of video source and sink with hot plug detection not asserted |
US8468285B2 (en) * | 2009-05-18 | 2013-06-18 | Stmicroelectronics, Inc. | Operation of video source and sink with toggled hot plug detection |
US8582452B2 (en) | 2009-05-18 | 2013-11-12 | Stmicroelectronics, Inc. | Data link configuration by a receiver in the absence of link training data |
US8291207B2 (en) * | 2009-05-18 | 2012-10-16 | Stmicroelectronics, Inc. | Frequency and symbol locking using signal generated clock frequency and symbol identification |
US8315519B2 (en) * | 2009-06-03 | 2012-11-20 | Nec Laboratories America, Inc. | Systems and methods for transmitting signals in communication networks |
JP5444566B2 (en) * | 2010-02-08 | 2014-03-19 | 日本電気株式会社 | Connection control device, connection control method and program |
US8384542B1 (en) * | 2010-04-16 | 2013-02-26 | Kontek Industries, Inc. | Autonomous and federated sensory subsystems and networks for security systems |
US8671234B2 (en) | 2010-05-27 | 2014-03-11 | Stmicroelectronics, Inc. | Level shifting cable adaptor and chip system for use with dual-mode multi-media device |
US8958439B2 (en) | 2010-08-03 | 2015-02-17 | F5 Networks, Inc. | Mediating method and system between signaling network peers |
CN102143089B (en) * | 2011-05-18 | 2013-12-18 | 广东凯通软件开发有限公司 | Routing method and routing device for multilevel transport network |
US9906567B2 (en) | 2012-09-26 | 2018-02-27 | Vonage Business Inc. | Systems and methods of routing IP telephony data packet communications |
US8553570B1 (en) | 2012-09-27 | 2013-10-08 | Jpmorgan Chase Bank, N.A. | Systems and methods of routing IP telephony data packet communications |
US8472342B1 (en) * | 2012-11-30 | 2013-06-25 | Vonage Network, Llc | Systems and methods of routing IP telephony data packet communications |
US9686189B2 (en) | 2012-12-26 | 2017-06-20 | Microsoft Technology Licensing, Llc | Routing data in a bi-directional communication session over an overlay network using relay nodes |
JP2016146512A (en) * | 2013-04-22 | 2016-08-12 | 株式会社日立製作所 | Network system, network resource management apparatus, and communication path creation method |
US11350254B1 (en) | 2015-05-05 | 2022-05-31 | F5, Inc. | Methods for enforcing compliance policies and devices thereof |
US11757946B1 (en) | 2015-12-22 | 2023-09-12 | F5, Inc. | Methods for analyzing network traffic and enforcing network policies and devices thereof |
US11178150B1 (en) | 2016-01-20 | 2021-11-16 | F5 Networks, Inc. | Methods for enforcing access control list based on managed application and devices thereof |
CN106210089A (en) * | 2016-07-18 | 2016-12-07 | 浪潮集团有限公司 | Media stream separation transmission method based on SPI and P2P network |
US10505792B1 (en) | 2016-11-02 | 2019-12-10 | F5 Networks, Inc. | Methods for facilitating network traffic analytics and devices thereof |
US10812266B1 (en) | 2017-03-17 | 2020-10-20 | F5 Networks, Inc. | Methods for managing security tokens based on security violations and devices thereof |
US11343237B1 (en) | 2017-05-12 | 2022-05-24 | F5, Inc. | Methods for managing a federated identity environment using security and access control data and devices thereof |
US11122042B1 (en) | 2017-05-12 | 2021-09-14 | F5 Networks, Inc. | Methods for dynamically managing user access control and devices thereof |
US11303560B2 (en) * | 2017-09-15 | 2022-04-12 | Nokia Technologies Oy | HCPE-based intelligent path selection over a multipath network |
CN113592474B (en) * | 2021-07-30 | 2024-11-12 | 中国工商银行股份有限公司 | Method and device for determining cross-border remittance service mode |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970050A (en) * | 1996-04-30 | 1999-10-19 | British Telecommunications Public Limited Company | Allocating communication traffic |
US6310883B1 (en) * | 1997-12-24 | 2001-10-30 | Nortel Networks Limited | Traffic route finder in communications network |
US20030088671A1 (en) * | 2001-11-02 | 2003-05-08 | Netvmg, Inc. | System and method to provide routing control of information over data networks |
US6618371B1 (en) * | 1999-06-08 | 2003-09-09 | Cisco Technology, Inc. | Butterfly network with switches set for two node disjoint paths and method for forming the paths |
US6778502B2 (en) * | 1999-06-18 | 2004-08-17 | Savvis, Inc. | On-demand overlay routing for computer-based communication networks |
US6925061B2 (en) * | 2001-12-26 | 2005-08-02 | Tropic Network Inc. | Multi-constraint routing system and method |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5586121A (en) | 1995-04-21 | 1996-12-17 | Hybrid Networks, Inc. | Asymmetric hybrid access system and method |
US6327245B1 (en) | 1995-06-30 | 2001-12-04 | Philips Electronics North America Corporation | Automatic channel switching for jamming avoidance in burst-mode packet data wireless communication networks |
SE504712C2 (en) | 1995-07-04 | 1997-04-07 | Ericsson Telefon Ab L M | Method and apparatus for routing traffic in a circuit-switched network |
FR2750820B1 (en) | 1996-07-04 | 1999-04-02 | Alcatel Espace | METHOD FOR SWITCHING A CHANNEL FROM A FIRST PROPAGATION PATH TO A SECOND PROPAGATION PATH |
US6016307A (en) * | 1996-10-31 | 2000-01-18 | Connect One, Inc. | Multi-protocol telecommunications routing optimization |
US6104701A (en) | 1996-12-13 | 2000-08-15 | International Business Machines Corporation | Method and system for performing a least cost routing function for data communications between end users in a multi-network environment |
JPH10257553A (en) | 1997-03-14 | 1998-09-25 | Rohm Co Ltd | Mobile communication system and its mobile terminal equipment |
US6104720A (en) * | 1997-04-28 | 2000-08-15 | Intel Corporation | Dynamic communication path selection for data transmission between computers |
US6349096B1 (en) * | 1997-09-22 | 2002-02-19 | Integrated Telecom Express, Inc. | Configurable digital subscriber loop access and end-to-end data and analog voice connection system |
NO326260B1 (en) * | 1997-09-29 | 2008-10-27 | Ericsson Telefon Ab L M | Method of routing calls from a terminal in a first telecommunications network to a terminal in a second telecommunications network |
JPH11112389A (en) | 1997-10-08 | 1999-04-23 | Fujitsu Ltd | Instantaneous interruption line switching system and transmission device |
US6301244B1 (en) | 1998-12-11 | 2001-10-09 | Nortel Networks Limited | QoS-oriented one-to-all route selection method for communication networks |
US6493556B1 (en) * | 1999-08-30 | 2002-12-10 | Motorola, Inc. | Apparatus and method for message routing using disparate communications networks |
JP4265087B2 (en) * | 2000-06-29 | 2009-05-20 | ソニー株式会社 | Data conversion apparatus and method, data transmission / reception apparatus and method, and network system |
-
2002
- 2002-02-20 US US10/079,096 patent/US7099277B2/en not_active Expired - Fee Related
-
2003
- 2003-02-13 JP JP2003570528A patent/JP4255840B2/en not_active Expired - Fee Related
- 2003-02-13 CN CNB038029596A patent/CN100370785C/en not_active Expired - Fee Related
- 2003-02-13 EP EP20030705123 patent/EP1476992A1/en not_active Withdrawn
- 2003-02-13 WO PCT/JP2003/001500 patent/WO2003071750A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5970050A (en) * | 1996-04-30 | 1999-10-19 | British Telecommunications Public Limited Company | Allocating communication traffic |
US6310883B1 (en) * | 1997-12-24 | 2001-10-30 | Nortel Networks Limited | Traffic route finder in communications network |
US6618371B1 (en) * | 1999-06-08 | 2003-09-09 | Cisco Technology, Inc. | Butterfly network with switches set for two node disjoint paths and method for forming the paths |
US6778502B2 (en) * | 1999-06-18 | 2004-08-17 | Savvis, Inc. | On-demand overlay routing for computer-based communication networks |
US20030088671A1 (en) * | 2001-11-02 | 2003-05-08 | Netvmg, Inc. | System and method to provide routing control of information over data networks |
US6925061B2 (en) * | 2001-12-26 | 2005-08-02 | Tropic Network Inc. | Multi-constraint routing system and method |
Cited By (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7764617B2 (en) * | 2002-04-29 | 2010-07-27 | Harris Corporation | Mobile ad-hoc network and methods for performing functions therein based upon weighted quality of service metrics |
US20030202468A1 (en) * | 2002-04-29 | 2003-10-30 | Harris Corporation | Mobile ad-hoc network and methods for performing functions therein based upon weighted quality of service metrics |
US8942082B2 (en) | 2002-05-14 | 2015-01-27 | Genghiscomm Holdings, LLC | Cooperative subspace multiplexing in content delivery networks |
US20030216141A1 (en) * | 2002-05-15 | 2003-11-20 | Nokia Corporation | Service-oriented protection scheme for a radio access network |
US6965775B2 (en) * | 2002-05-15 | 2005-11-15 | Nokia Corporation | Service-oriented protection scheme for a radio access network |
US20050169183A1 (en) * | 2002-06-14 | 2005-08-04 | Jani Lakkakorpi | Method and network node for selecting a combining point |
US20060187892A1 (en) * | 2003-08-07 | 2006-08-24 | Wenlin Zhang | Interactive method for determining network selection information for a user terminal in a wireless local area network |
US9240901B2 (en) | 2003-11-24 | 2016-01-19 | At&T Intellectual Property I, L.P. | Methods, systems, and products for providing communications services by determining the communications services require a subcontracted processing service and subcontracting to the subcontracted processing service in order to provide the communications services |
US8711868B2 (en) | 2003-11-24 | 2014-04-29 | At&T Intellectual Property I, L.P. | Methods, systems, and products for providing communications services |
US20090100191A1 (en) * | 2003-11-24 | 2009-04-16 | Hodges Donna K | Methods, Systems & Products for Providing Communications Services |
US10230658B2 (en) | 2003-11-24 | 2019-03-12 | At&T Intellectual Property I, L.P. | Methods, systems, and products for providing communications services by incorporating a subcontracted result of a subcontracted processing service into a service requested by a client device |
US8606929B2 (en) * | 2003-11-24 | 2013-12-10 | At&T Intellectual Property I, L.P. | Methods, systems, and products for subcontracting segments in communications services |
US20050114224A1 (en) * | 2003-11-24 | 2005-05-26 | Hodges Donna K. | Methods for providing communications services |
US7720993B2 (en) * | 2003-12-17 | 2010-05-18 | Palo Alto Research Center Incorporated | Information driven routing in ad hoc sensor networks |
US20050138200A1 (en) * | 2003-12-17 | 2005-06-23 | Palo Alto Research Center, Incorporated | Information driven routing in ad hoc sensor networks |
US20060025149A1 (en) * | 2004-07-28 | 2006-02-02 | Jeyhan Karaoguz | Quality-of-service (QoS)-based association with a new network using background network scanning |
US20060025148A1 (en) * | 2004-07-28 | 2006-02-02 | Jeyhan Karaoguz | Quality-of-service (QoS)-based delivery of multimedia call sessions using multi-network simulcasting |
US9089003B2 (en) * | 2004-07-28 | 2015-07-21 | Broadcom Corporation | Quality-of-service (QoS)-based delivery of multimedia call sessions using multi-network simulcasting |
US9774505B2 (en) | 2004-08-02 | 2017-09-26 | Steve J Shattil | Content delivery in wireless wide area networks |
US9806953B2 (en) | 2004-08-02 | 2017-10-31 | Steve J Shattil | Content delivery in wireless wide area networks |
US10021175B2 (en) | 2004-08-02 | 2018-07-10 | Genghiscomm Holdings, LLC | Edge server selection for device-specific network topologies |
US20060062242A1 (en) * | 2004-09-23 | 2006-03-23 | Sony Corporation | Reliable audio-video transmission system using multi-media diversity |
US8184657B2 (en) * | 2004-09-23 | 2012-05-22 | Sony Corporation | Reliable audio-video transmission system using multi-media diversity |
US8374087B2 (en) | 2004-09-23 | 2013-02-12 | Sony Corporation | Reliable audio-video transmission system using multi-media diversity |
US20060062243A1 (en) * | 2004-09-23 | 2006-03-23 | Dacosta Behram M | Reliable audio-video transmission system using multi-media diversity |
US8139587B2 (en) * | 2004-11-11 | 2012-03-20 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for routing packets |
US20090010269A1 (en) * | 2004-11-11 | 2009-01-08 | Peter Larsson | Method And Apparatus For Routing Packets |
WO2006052171A1 (en) * | 2004-11-11 | 2006-05-18 | Telefonaktiebolaget Lm Ericsson (Publ) | Method and apparatus for routing packets |
US20060126495A1 (en) * | 2004-12-01 | 2006-06-15 | Guichard James N | System and methods for detecting network failure |
EP1675351A1 (en) * | 2004-12-24 | 2006-06-28 | Research In Motion Limited | Tailoring content for mobile electronic device based on network |
CN100454823C (en) * | 2004-12-24 | 2009-01-21 | 捷讯研究有限公司 | Tailoring content for mobile electronic device based on network |
EP1892926A1 (en) * | 2004-12-24 | 2008-02-27 | Research In Motion Limited | Tailoring Content for Mobile Electronic Device Based on Network |
US20060143282A1 (en) * | 2004-12-27 | 2006-06-29 | Brown Michael K | Tailoring content for mobile electronic device based on network |
US20060198321A1 (en) * | 2005-03-04 | 2006-09-07 | Nadeau Thomas D | System and methods for network reachability detection |
US7990888B2 (en) | 2005-03-04 | 2011-08-02 | Cisco Technology, Inc. | System and methods for network reachability detection |
US20060215577A1 (en) * | 2005-03-22 | 2006-09-28 | Guichard James N | System and methods for identifying network path performance |
US7983174B1 (en) | 2005-12-19 | 2011-07-19 | Cisco Technology, Inc. | Method and apparatus for diagnosing a fault in a network path |
US20070140129A1 (en) * | 2005-12-21 | 2007-06-21 | Packethop, Inc. | Ad-hoc network routing metric optimization |
US7710896B2 (en) * | 2005-12-21 | 2010-05-04 | Sri International | Ad-hoc network routing metric optimization |
US7912934B1 (en) | 2006-01-09 | 2011-03-22 | Cisco Technology, Inc. | Methods and apparatus for scheduling network probes |
US8938010B2 (en) * | 2006-03-17 | 2015-01-20 | Qualcomm Incorporated | Method for decoding a data stream and a receiver |
US20090232222A1 (en) * | 2006-03-17 | 2009-09-17 | Thomas Stockhammer | Method for decoding a data stream and a receiver |
US7843868B2 (en) | 2006-03-28 | 2010-11-30 | Fujitsu Limited | Service quality management device and service quality management method |
US20070230346A1 (en) * | 2006-03-28 | 2007-10-04 | Fujitsu Limited | Service quality management device and service quality management method |
US7643426B1 (en) * | 2006-04-27 | 2010-01-05 | Hewlett-Packard Development Company, L.P. | Path selection in a network |
US8254248B2 (en) | 2007-03-20 | 2012-08-28 | Broadcom Corporation | Method and system for implementing redundancy for streaming data in audio video bridging networks |
US8797840B2 (en) | 2007-03-20 | 2014-08-05 | Broadcom Corporation | Redundancy for streaming data in audio video bridging networks |
US20080232243A1 (en) * | 2007-03-20 | 2008-09-25 | Amit Oren | Method and system for implementing redundancy for streaming data in audio video bridging networks |
US7860011B2 (en) * | 2007-05-14 | 2010-12-28 | Broadcom Corporation | Method and system for fault resilience in networks with Audio/Video Bridging aware Shortest Path Bridging |
US8077617B2 (en) | 2007-05-14 | 2011-12-13 | Broadcom Corporation | Method and system for proxy A/V bridging on an ethernet switch |
US20080285574A1 (en) * | 2007-05-14 | 2008-11-20 | Michael Johas Teener | Method and system for proxy a/v bridging on an ethernet switch |
US20080285459A1 (en) * | 2007-05-14 | 2008-11-20 | Wael William Diab | Method and system for audio/video bridging aware shortest path bridging |
US20110038381A1 (en) * | 2007-05-14 | 2011-02-17 | Amit Oren | Method and system for fault resilience in networks with audio/video bridging aware shortest path bridging |
US20080285460A1 (en) * | 2007-05-14 | 2008-11-20 | Amit Oren | Method and system for fault resilience in networks with audio/video bridging aware shortest path bridging |
US8111627B2 (en) | 2007-06-29 | 2012-02-07 | Cisco Technology, Inc. | Discovering configured tunnels between nodes on a path in a data communications network |
US20090003223A1 (en) * | 2007-06-29 | 2009-01-01 | Mccallum Gavin | Discovering configured tunnels between nodes on a path in a data communications network |
US8665735B2 (en) | 2007-07-20 | 2014-03-04 | Broadcom Corporation | Method and system for quality of service management in a multi-standard mesh of networks |
US20090022061A1 (en) * | 2007-07-20 | 2009-01-22 | John Walley | Method and system for quality of service management in a multi-standard mesh of networks |
WO2009049701A1 (en) * | 2007-10-15 | 2009-04-23 | Institut für Rundfunktechnik GmbH | Method for selecting usable network connections for communication |
US20110299546A1 (en) * | 2009-01-16 | 2011-12-08 | Rich Prodan | Method and System for Optimizing Communication in a Home Network Via a Gateway |
US9203869B2 (en) * | 2009-01-16 | 2015-12-01 | Broadcom Corporation | Method and system for optimizing communication in a home network via a gateway |
US9113184B2 (en) | 2009-09-08 | 2015-08-18 | Cisco Technology Inc. | Delivering an audio video asset |
US20120192213A1 (en) * | 2009-09-08 | 2012-07-26 | Nds Limited | Delivering an Audio Video Asset |
AU2010293919B2 (en) * | 2009-09-08 | 2014-08-21 | Nds Limited | Delivering an audio video asset |
US8429700B2 (en) * | 2009-09-08 | 2013-04-23 | Cisco Technology Inc. | Delivering an audio video asset |
US8897377B2 (en) * | 2009-12-31 | 2014-11-25 | Broadcom Corporation | Transcoding multiple media elements for independent wireless delivery |
US20110310995A1 (en) * | 2009-12-31 | 2011-12-22 | Broadcom Corporation | Transcoding multiple media elements for independent wireless delivery |
US11778019B2 (en) | 2010-03-01 | 2023-10-03 | Tybalt, Llc | Content delivery in wireless wide area networks |
US11330046B2 (en) | 2010-03-01 | 2022-05-10 | Tybalt, Llc | Content delivery in wireless wide area networks |
US20110214059A1 (en) * | 2010-03-01 | 2011-09-01 | Ashley Edwardo King | Media Distribution in a Content Delivery Network |
US10419533B2 (en) | 2010-03-01 | 2019-09-17 | Genghiscomm Holdings, LLC | Edge server selection for device-specific network topologies |
US10735503B2 (en) | 2010-03-01 | 2020-08-04 | Genghiscomm Holdings, LLC | Content delivery in wireless wide area networks |
US9161204B2 (en) | 2010-03-22 | 2015-10-13 | Location Labs, Inc. | System and method for determining mobile device location |
US8589591B2 (en) | 2010-06-04 | 2013-11-19 | Boadcom Corporation | Customized delivery of content by a broadband gateway |
US9288236B2 (en) * | 2010-06-04 | 2016-03-15 | Broadcom Corporation | Adaptive multimedia delivery via a broadband gateway |
US9294513B2 (en) | 2010-06-04 | 2016-03-22 | Broadcom Corporation | Method and system for providing emergency related services via a broadband gateway |
US9078039B2 (en) | 2010-06-04 | 2015-07-07 | Broadcom Corporation | Customized acquisition of content by a broadband gateway |
US8959247B2 (en) | 2010-06-04 | 2015-02-17 | Broadcom Corporation | Customized delivery of content by a broadband gateway |
US9577881B2 (en) | 2010-06-04 | 2017-02-21 | Broadcom Corporation | Method and system for managing quality of service via a broadband gateway |
US9762960B2 (en) | 2010-06-04 | 2017-09-12 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Customized acquisition of content by a broadband gateway |
US20110302276A1 (en) * | 2010-06-04 | 2011-12-08 | Jeyhan Karaoguz | Adaptive multimedia delivery via a broadband gateway |
US8886975B2 (en) | 2010-06-04 | 2014-11-11 | Broadcom Corporation | Method and system for managing power consumption utilizing inter-gateway communication |
US20130211706A1 (en) * | 2010-08-13 | 2013-08-15 | Wavemarket, Inc. | Systems, methods, and processor readable media for traffic flow measurement |
CN102447975A (en) * | 2010-10-08 | 2012-05-09 | 中国联合网络通信集团有限公司 | Streaming media information processing method, system and server |
US20130003548A1 (en) * | 2011-06-30 | 2013-01-03 | Kamakshi Sridhar | Method For Improved Load Balancing In Communication Systems |
US9485182B2 (en) * | 2011-06-30 | 2016-11-01 | Alcatel Lucent | Method for improved load balancing in communication systems |
CN103167318A (en) * | 2011-12-13 | 2013-06-19 | 中国电信股份有限公司 | Streaming media processing method, device, server and system |
US9510152B2 (en) | 2014-04-11 | 2016-11-29 | Location Labs, Inc. | System and method for scheduling location measurements |
US11405823B2 (en) * | 2016-11-23 | 2022-08-02 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Data processing method, and terminal device and network device |
US11974165B2 (en) | 2016-11-23 | 2024-04-30 | Guangdong Oppo Mobile Telecommunications Corp., Ltd. | Methods, terminal device and network device for code block segmentation |
US10824135B2 (en) * | 2017-01-17 | 2020-11-03 | Ebara Corporation | Scheduler, substrate processing apparatus, and substrate conveyance method |
US11099546B2 (en) | 2017-01-17 | 2021-08-24 | Ebara Corporation | Scheduler, substrate processing apparatus, and substrate conveyance method |
CN108881293A (en) * | 2018-07-23 | 2018-11-23 | 中国联合网络通信集团有限公司 | Access gateway, the method and its system of talk path selection |
CN116882714A (en) * | 2023-09-07 | 2023-10-13 | 中国铁路设计集团有限公司 | Multi-year intersection integrated scheme programming method considering line network construction time sequence |
Also Published As
Publication number | Publication date |
---|---|
WO2003071750A1 (en) | 2003-08-28 |
JP2005518716A (en) | 2005-06-23 |
EP1476992A1 (en) | 2004-11-17 |
CN1625873A (en) | 2005-06-08 |
JP4255840B2 (en) | 2009-04-15 |
US7099277B2 (en) | 2006-08-29 |
CN100370785C (en) | 2008-02-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7099277B2 (en) | Dynamic optimal path selection in multiple communications networks | |
US10609447B2 (en) | Method of unscrambling television content on a bandwidth | |
Thang et al. | Adaptive streaming of audiovisual content using MPEG DASH | |
KR100703399B1 (en) | Apparatus and method for continuously transmitting multimedia contents | |
US8589591B2 (en) | Customized delivery of content by a broadband gateway | |
CN100456678C (en) | Method for providing IPTV service for different type terminals, and IPTV service system | |
CN114449353B (en) | Session-based adaptive playback profile decision-making for video streaming | |
US12200277B2 (en) | Multiple protocol prediction and in-session adaptation in video streaming | |
US6650620B1 (en) | Resource constrained routing in active networks | |
US9078039B2 (en) | Customized acquisition of content by a broadband gateway | |
US8140702B2 (en) | System and method of maximizing utility in media delivery network | |
KR101091167B1 (en) | Method, system and computer-readable recording medium for providing multimedia data based on network coding | |
El-Khatib et al. | A QoS-based service composition for content adaptation | |
KR20050082340A (en) | Multi-transcoding web service method | |
Shakya | Optimal Placement of Video Caching Routers for Minimization of Retransmission Delay |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MITSUBISHI ELECTRIC RESEARCH LABORATORIES, INC., M Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:SAHINOGLU, ZAFER;VETRO, ANTHONY;REEL/FRAME:012645/0128 Effective date: 20020219 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20140829 |