US20030155603A1 - Finger metal-insulator-metal capacitor with local interconnect - Google Patents
Finger metal-insulator-metal capacitor with local interconnect Download PDFInfo
- Publication number
- US20030155603A1 US20030155603A1 US10/077,450 US7745002A US2003155603A1 US 20030155603 A1 US20030155603 A1 US 20030155603A1 US 7745002 A US7745002 A US 7745002A US 2003155603 A1 US2003155603 A1 US 2003155603A1
- Authority
- US
- United States
- Prior art keywords
- layer
- trenches
- conductive layer
- multilayer structure
- base conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003990 capacitor Substances 0.000 title claims abstract description 57
- 229910052751 metal Inorganic materials 0.000 title claims description 33
- 239000002184 metal Substances 0.000 title claims description 33
- 238000000034 method Methods 0.000 claims abstract description 57
- 239000012212 insulator Substances 0.000 claims description 23
- 238000000059 patterning Methods 0.000 claims description 15
- 238000004519 manufacturing process Methods 0.000 claims description 9
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 claims description 7
- 150000002739 metals Chemical class 0.000 claims description 6
- 238000004891 communication Methods 0.000 claims description 4
- 238000007740 vapor deposition Methods 0.000 claims description 4
- 239000010410 layer Substances 0.000 description 203
- 230000004888 barrier function Effects 0.000 description 16
- 230000015572 biosynthetic process Effects 0.000 description 8
- 238000004544 sputter deposition Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 6
- 238000005229 chemical vapour deposition Methods 0.000 description 5
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 5
- 229910052721 tungsten Inorganic materials 0.000 description 5
- 239000010937 tungsten Substances 0.000 description 5
- 239000004020 conductor Substances 0.000 description 4
- 238000005530 etching Methods 0.000 description 4
- 238000005137 deposition process Methods 0.000 description 3
- 238000005240 physical vapour deposition Methods 0.000 description 3
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- 238000013461 design Methods 0.000 description 1
- 238000012938 design process Methods 0.000 description 1
- 239000011229 interlayer Substances 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D1/00—Resistors, capacitors or inductors
- H10D1/60—Capacitors
- H10D1/68—Capacitors having no potential barriers
- H10D1/692—Electrodes
- H10D1/711—Electrodes having non-planar surfaces, e.g. formed by texturisation
- H10D1/716—Electrodes having non-planar surfaces, e.g. formed by texturisation having vertical extensions
Definitions
- capacitor One essential component of integrated circuits is a capacitor. Design and production of capacitors trades off capacity and footprint (together determining density) with manufacturing processes. There will always be an opportunity to introduce a better capacitor design and manufacturing process.
- the present invention includes methods to produce a finger metal-insulator-metal capacitor.
- One plate can either be a base conductive layer or overlaying) or an additional, deposited layer.
- Capacitor formation may be integrated with formation of interconnects for other components on the same die.
- the resulting capacitor has a novel geometry. Particular aspects of the present invention are described in the claims, specification and drawings.
- FIG. 1 is a cross section of a die with some devices already formed and covered by an insulator.
- FIG. 2 is a cross section of the same die, with contacts formed and a resist layer patterned.
- FIG. 3 is a cross section of the same die, with three layers formed for use as a capacitor.
- FIG. 4 is a cross section of the same die, with the capacitor layers isolated and covered by an insulator.
- FIG. 5 is a cross section of the same die, with local interconnect metal layers in place.
- FIG. 6 is a cross section of the same die, with local interconnect metal layers in place and an upper metal layer patterned.
- FIG. 7 is a cross section of the same die shown in FIG. 2, with two layers formed for use in a capacitor.
- FIG. 8 is a cross section of the same die, with the capacitor layers isolated and covered by an insulator.
- FIG. 9 is a cross section of the same die, with local interconnect metal layers in place.
- FIG. 10 is a cross section of the same die, with local interconnect metal layers in place and an upper metal layer patterned.
- FIG. 1 is a cross section of a die with some devices already formed and covered by a base insulator.
- the foundation level is divided into a plurality of regions 101 , 102 .
- a first region 101 will be an area in which metal-insulator-metal devices are formed and a second region 102 will be an area in which periphery devices are formed.
- the foundation level may be the substrate of the die or it may be a layer of devices.
- the foundation also may be a single region, instead of a plurality of regions.
- Several devices e.g., 104 are illustrated as being formed within the foundation level. These devices are covered by an insulator 105 .
- This insulator layer may be a so-called inter-layer dielectric.
- CMP planarization may be used to smooth the insulator, prior to additional processing steps.
- a patterning layer 106 such as a single or multi-layer resist has been formed over the insulator 105 .
- the patterning material is exposed by lithographic, direct write or other process and developed.
- An anisotropic etch such as a plasma or reactive ion etch (“RIE”) 107 is illustrated. This etch transfers an exposed pattern from the patterning layer 106 to the insulator 105 .
- RIE reactive ion etch
- FIG. 2 is a cross section of the same die, with contacts formed, a base conductive layer formed, and a resist layer patterned.
- This figure illustrates vias resulting from the anisotropic etch 107 . The vias are filled in one or more steps.
- This figure illustrates forming a barrier layer 211 in the vias, followed by forming a contact 210 over the barrier layer 211 and forming a base conductive or metal layer 212 over the contact layer 210 and the barrier layer 211 .
- a suitable barrier layer may include titanium nitride and titanium.
- Barrier or interface layers can readily be selected to control migration and/or adhesion of the contact and base conductive layers.
- formation of high density capacitors enables use of materials such as tungsten for a base conductive layer.
- Tungsten has a higher resistance than aluminum or copper and therefore is typically restricted to local interconnects, as opposed to long interconnects.
- the contact layer and metal, conductive layer may be any conductor, not necessarily limited to a metal.
- an additional patterned layer 216 and an anisotropic etch are illustrated.
- FIG. 3 is a cross section of the same die, with three layers formed for use as a capacitor.
- This figure illustrates trenches resulting from the anisotropic etch illustrated in FIG. 2.
- the trenches may, but do not necessarily need to, cut all the way through the base conductive and barrier layers. In one embodiment, the trenches cut at least substantially through the base conductive layer.
- the trenches need not cut all of the way through the base conductive and barrier layers in areas where the first plate layer is being formed, because the first plate layer 321 can effectively be formed on the base conductive layer 212 or the barrier layer 211 or the base insulator 105 .
- the trenches are filled to form at least three layers.
- a first plate layer 321 is formed, at least in part, on the contact 210 or base conductive layer 212 .
- the first plate layer is contoured to the undulation or wave shape of the plurality of trenches.
- the undulated or wave shape viewed in profile, may be rectangular, as illustrated, or may be more contoured, due to spacer formation along the trench edges, edge slope or other process factors.
- This first plate layer 321 may be formed by metal sputtering. Suitable metals include titanium nitride, or, more generally, any conductor.
- another technology such as chemical vapor deposition (“CVD”) or physical vapor deposition (“PVD”) may be adapted to deposit a conductive first plate layer 321 .
- CVD chemical vapor deposition
- PVD physical vapor deposition
- the thickness of the first plate layer may be less than the minimum feature size of the one or more lithographic, direct writing or other processes used to form the trenches, as deposition process dimensions are not limited by lithographic processes.
- One or more insulating layers 322 are contoured to the wave shape of the plurality of trenches, over the first plate layer 321 . Chemical vapor deposition may be used to deposit the non-conductive, insulating layer. The thickness of the insulating layer also may be less than the minimum feature size.
- the insulating layer 322 is followed by a second plate layer 323 .
- the second plate layer 323 may follow the contour of the insulating layer 322 , as illustrated, or, alternatively, it may fill in the contour.
- the second plate layer 323 may be formed by metal sputtering, using the same metal as the first plate layer or a different metal, or, more generally, any conductor.
- the second plate layer may be formed by sputtering, chemical vapor deposition, or any other contour following process.
- the thickness of the second plate layer also may be less than the minimum feature size of the trenches.
- the combined thickness of the first plate, insulating and second plate layers also may be less than the minimum feature size and may be less than half of the minimum feature size.
- the thicknesses of the various layers may be less along the vertical walls than in the bottom of the trenches or the higher areas between the trenches.
- triple plate capacitor In addition to these three layers, additional layers can be added to form a triple plate capacitor, wherein the middle layer serves as one plate opposed to layers above and below it, generally along the lines illustrated in U.S. Pat. No. 6,153,463, entitled “Triple Plate Capacitor and Method for Manufacturing.”
- a second insulating layer and a third plate layer are provided in a triple plate capacitor.
- the first and third plate layers may form separate capacitors or may be connected to form a single capacitor.
- the five layer structure of a triple plate capacitor may be less than the minimum feature size and may be less than half the minimum feature size.
- FIG. 3 further illustrates a further patterning layer 326 and an anisotropic etch.
- the illustrated patterning layer 326 is positioned so that an isolated capacitor will be formed including the illustrated trenches.
- the surface area of the first plate layer may be more than twice the die surface area occupied by the capacitor.
- the number of trenches and the die surface area allocated to the capacitor can be varied to produce the desired capacitance.
- the surface area of the effective second plate layer (counting both sides) may be more than three or four times the die surface area occupied by the capacitor.
- FIG. 4 is a cross section of the same die, with the multilayer structure isolated from adjacent structures and covered by an insulator.
- the multilayer structure 424 has been isolated by an anisotropic etch.
- the etch step is followed by applying an insulator 431 , which may be planarized.
- the insulator layer 431 may be referred to as an inter-metal dielectric.
- An additional patterning layer 436 is applied to define contacts with the base conductive layer 212 that was formed prior to the multilayer structure 424 .
- FIG. 5 is a cross section of the same die, with an interconnect layer in place, ready for further patterning.
- the interconnect layer may be a local interconnect layer. Tungsten may be suitable for local interconnects. This interconnect layer may be used not only to connect the capacitor, but also to connect other devices formed on the die.
- Vias and contact points 542 have been formed by and after the anisotropic etching of FIG. 4. The vias have first received a barrier layer 541 . Then, contacts have been formed in the vias 542 . A further conductive or metal layer 543 has been formed over the barrier layer 541 and contacts 542 . A further patterning layer 546 has been formed over the metal layer, to pattern interconnects.
- the materials and processes for forming these barrier, contact and conductive layers are similar to the materials and processes illustrated in FIG. 2.
- FIG. 6 is a cross section of the same die, with the interconnect layer in place and an upper conductive layer patterned to define the interconnects.
- the anisotropic etching of FIG. 5 patterns the upper conductive layer 543 in relationship to the contacts 542 .
- a process embodying the present invention may produce a wave-shaped capacitor over a base conductive layer, said base conductive layer over a base insulator layer on a die.
- the base conductive layer is patterned to form at least two adjacent trenches. In an alternate embodiment, at least three adjacent trenches may be formed. These trenches may be substantially as deep as the base conductive layer is thick and may substantially cut through the base conductive layer.
- a multilayer structure is formed, conformed to the trenches. The structure is isolated from adjacent structures, allowing it to effectively serve as a capacitor.
- the multilayer structure includes a first plate layer, an insulating layer over the first plate layer, and a second plate layer over the insulating layer. Additional layers may be interposed.
- a first plate layer is in electrical communication with the base conductive layer.
- An electrical contact is formed, directly or indirectly, between the base conductive layer and a part of the first plate layer.
- a multilayer structure may be formed with a thickness along sidewalls of the trench that is less than half of the trench's width and, more particularly, may be less than a minimum feature size of the lithographic or direct writing process used to form the trenches. It may even be less than half a minimum feature size of the process, especially where the trenches are at or near the minimum lithographic feature size. These dimensions apply at least to three and five layer multilayer structures.
- the first and second plate layers may be formed by sputtering of metal, such as titanium nitride.
- the insulating layer may be formed by vapor deposition.
- the three adjacent trenches, in cross-section, form an essentially rectangular wave shape.
- the formation the multilayer structure tends to smooth out the wave shape over the rectangular base.
- the process of producing these wave-shaped capacitors complements other production processes.
- Contacts and interconnects formed directly below and directly above the multilayer structure are tied to the multilayer structure.
- the contacts and interconnects that tie to the multilayer structure may be formed throughout the die in one or more layers that interconnect other devices, not just capacitors.
- the resulting capacitor may be wave shaped, formed over a base conductive layer, the base conductive layer being formed over a base insulator layer on a die. This capacitor includes a wave-shaped pattern in the base conductive layer comprising at least two adjacent trenches.
- At least three adjacent trenches may be included in the wave-shaped pattern.
- a multilayer structure is contoured over the base conductive layer.
- the multilayer structure includes at least a first plate layer in electrical communication or contact with the base conductive layer, an insulating layer formed over the first plate layer and a second plate layer formed over the insulating layer. It further includes an interconnect layer formed over the multilayer structure, including at least one interconnection with the second plate layer.
- the multilayer structure may include additional insulating and plate layers, forming a triple plate capacitor.
- the multilayer structure may have a thickness along sidewalls of the trenches that is less than a minimum lithographic feature size of a lithographic, direct writing or other process used to form the trenches.
- the multilayer structure may have a thickness along the sidewalls that is less than one-half of the minimum feature size.
- the interconnect layer may provide interconnections between other devices on the die, in addition to capacitors.
- FIG. 7 corresponds to FIG. 3.
- the initial foundation level, interconnects and trench formation are as shown in FIGS. 1 - 2 .
- the base conductive layer serves as a first plate, in this embodiment, reducing the number of layers needed to complete the capacitor.
- FIG. 7 is a cross section, with two layers formed for use as a capacitor. This figure illustrates trenches resulting from the anisotropic etch illustrated in FIG. 2. Either the base conductive or barrier layer serves as a first capacitor plate.
- the fingers 712 a - c are connected to one another to form a single plate, either by a part of the conductive layer not shown in the cross section, or by the barrier layer.
- the trenches are filled to form at least two layers.
- a first capacitor plate layer includes base conductive layer 212 which is in electrical communication with the contact 210 .
- the first plate layer may either be contoured to an undulation or wave shape of the plurality of trenches, if the trenches are not all of the way through the base conductive layer, or may form a wave shape when considered together with an underlying layer, if the trenches are etched all of the way through to form fingers of the base conductive layer.
- the undulated or wave shape may be rectangular, as illustrated, or may be more contoured, due to spacer formation along the trench edges, edge slope or other process factors.
- This base conductive layer may be formed by metal sputtering.
- One or more insulating layers 722 are contoured to the undulated or wave shape of the plurality of trenches, over the base conductive layer 212 . Chemical vapor deposition may be used to deposit the non-conductive, insulating layer. The thickness of the insulating layer may be less than the minimum feature size, as deposition process dimensions are not limited by lithographic or directing writing processes.
- the insulating layer 722 is followed by a second plate layer 723 .
- the second plate layer 723 may follow the contour of the insulating layer 722 , as illustrated, or, alternatively, it may fill in the contour.
- the second plate layer 723 may be formed by metal sputtering. Suitable metals include titanium nitride, or, more generally, any conductor. Alternatively, another technology such as chemical vapor deposition or physical vapor deposition may be adapted to deposit the conductive second plate layer 723 .
- the thickness of the second plate layer may be less than the minimum lithographic feature size of the trenches, as deposition process dimensions are not limited by lithographic processes.
- the combined thickness of the insulating and second plate layers also may be less than the minimum feature size and may be less than half the minimum feature size.
- the thicknesses of the various layers may be less along the vertical walls than in the bottom of the trenches or the higher areas between the trenches.
- additional insulating and plate layers may be supplied to form a triple plate capacitor.
- FIG. 7 further illustrates a further patterning layer 726 and an anisotropic etch.
- the illustrated patterning layer 726 is positioned so that an isolated capacitor will be formed including three illustrated trench features.
- the surface area of the first plate layer may be more than twice the die surface area occupied by the capacitor.
- the effective surface area may be more than four times the die surface area occupied.
- the number of trenches and the die surface area allocated to the capacitor can be varied to produce the desired capacitance.
- FIG. 8 is a cross section of the same die, with the multilayer structure isolated from adjacent structures and covered by an insulator.
- the multilayer structure 824 has been isolated by an anisotropic etch.
- the etch step is followed by applying an insulator 831 , which may be planarized.
- the insulator layer 831 may be referred to as an inter-metal dielectric.
- An additional patterning layer 836 is applied to define contacts with the base conductive layer 212 formed prior to the multilayer structure 824 .
- FIG. 9 is a cross section of the same die, with an interconnect layer in place, ready for further patterning.
- the interconnect layer may be a local interconnect layer.
- tungsten may be suitable.
- This interconnect layer may be used not only to connect the capacitor, but also to connect other devices formed on the die.
- Vias and contact points 942 have been formed by and after the anisotropic etching of FIG. 8. The vias have received a barrier layer 941 . Then, contacts have been formed in the vias 942 .
- a further conductive or metal layer 943 has been formed over the barrier layer 941 and contacts 942 .
- a further patterning layer 946 has been formed over the metal layer, to complete interconnects.
- the materials and processes for forming these barrier, contact and conductive layers are similar to the materials and processes illustrated in FIG. 2.
- FIG. 10 is a cross section of the same die, with the interconnect layer in place and the top conductive layer patterned to define the interconnects.
- the anisotropic etching of FIG. 9 patterns the top conductive layer 943 in relationship to the contacts 942 .
- a process embodying the present invention may produce a wave-shaped capacitor over a base conductive layer, said base conductive layer over a base insulator layer on a die.
- the base conductive layer is patterned to form at least two adjacent trenches, the sides of which are electrically connected. In an alternative embodiment, at least three adjacent trenches are formed. These trenches may be substantially as deep as the base conductive layer is thick and may substantially cut through the base conductive layer.
- a multilayer structure is formed, conformed to the trenches. The structure is isolated from adjacent structures, allowing it to effectively serve as a capacitor.
- the multilayer structure includes the base conductive layer, an insulating layer over the base conductive layer, and a second plate layer over the insulating layer.
- a multilayer structure may be formed with a thickness along sidewalls of the trench is which is less than half of the trench width and, more particularly, may be less than a minimum lithographic feature size of the lithographic process used to form the trenches. It may even be less than half a minimum lithographic feature size of the lithographic process, especially where the trenches are at or near the minimum lithographic feature size.
- the second plate layer may be formed by sputtering of metal, such as titanium nitride.
- the insulating layer may be formed by vapor deposition. The adjacent trenches, in cross-section, form an essentially rectangular wave shape.
- the formation the multilayer structure tends to smooth out the wave shape over the rectangular base.
- the process of producing these wave-shaped capacitors complements other production processes.
- Contacts and interconnects formed directly below and directly above the multilayer structure are tied to the multilayer structure.
- the contacts and interconnects that tie to the multilayer structure may be formed throughout the die in one or more layers that interconnect other devices, not just capacitors.
- the resulting capacitor may be wave shaped, formed over a base conductive layer, the base conductive layer being formed over a base insulator layer on a die.
- This capacitor includes a wave-shaped pattern in the base conductive layer comprising at least two adjacent trenches.
- the wave-shaped pattern includes at least three trenches.
- a multilayer structure is contoured over the base conductive layer.
- the multilayer structure includes at least an insulating layer formed over the base conductive layer and a second plate layer formed over the insulating layer, and may include additional insulating and plate layers. It further includes an interconnect layer formed over the multilayer structure, including at least one interconnection with the second plate layer.
- the multilayer structure of the device may have a thickness along sidewalls of the trenches that is less than a minimum feature size of a lithographic, direct writing or other process used to form the trenches.
- the multilayer structure may have a thickness along the sidewalls that is less than one-half of the minimum feature size.
- the interconnect layer may provide interconnections between other devices on the die, in addition to capacitors.
Landscapes
- Semiconductor Integrated Circuits (AREA)
- Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
Abstract
The present invention includes a method of constructing a novel capacitor and geometry for the capacitor. The method and device include forming a multilayer structure having what generally can be described as a wave shape. Particular aspects of the present invention are described in the claims, specification and drawings.
Description
- One essential component of integrated circuits is a capacitor. Design and production of capacitors trades off capacity and footprint (together determining density) with manufacturing processes. There will always be an opportunity to introduce a better capacitor design and manufacturing process.
- The present invention includes methods to produce a finger metal-insulator-metal capacitor. One plate can either be a base conductive layer or overlaying) or an additional, deposited layer. Capacitor formation may be integrated with formation of interconnects for other components on the same die. The resulting capacitor has a novel geometry. Particular aspects of the present invention are described in the claims, specification and drawings.
- FIG. 1 is a cross section of a die with some devices already formed and covered by an insulator.
- FIG. 2 is a cross section of the same die, with contacts formed and a resist layer patterned.
- FIG. 3 is a cross section of the same die, with three layers formed for use as a capacitor.
- FIG. 4 is a cross section of the same die, with the capacitor layers isolated and covered by an insulator.
- FIG. 5 is a cross section of the same die, with local interconnect metal layers in place.
- FIG. 6 is a cross section of the same die, with local interconnect metal layers in place and an upper metal layer patterned.
- FIG. 7 is a cross section of the same die shown in FIG. 2, with two layers formed for use in a capacitor.
- FIG. 8 is a cross section of the same die, with the capacitor layers isolated and covered by an insulator.
- FIG. 9 is a cross section of the same die, with local interconnect metal layers in place.
- FIG. 10 is a cross section of the same die, with local interconnect metal layers in place and an upper metal layer patterned.
- The following detailed description is made with reference to the figures. Preferred embodiments are described to illustrate the present invention, not to limit its scope, which is defined by the claims. Those of ordinary skill in the art will recognize a variety of equivalent variations on the description that follows.
- FIG. 1 is a cross section of a die with some devices already formed and covered by a base insulator. The foundation level is divided into a plurality of
regions first region 101 will be an area in which metal-insulator-metal devices are formed and asecond region 102 will be an area in which periphery devices are formed. The foundation level may be the substrate of the die or it may be a layer of devices. The foundation also may be a single region, instead of a plurality of regions. Several devices e.g., 104, are illustrated as being formed within the foundation level. These devices are covered by aninsulator 105. This insulator layer may be a so-called inter-layer dielectric. CMP planarization may be used to smooth the insulator, prior to additional processing steps. In preparation for patterning the insulator, apatterning layer 106, such as a single or multi-layer resist has been formed over theinsulator 105. In the case of resist, the patterning material is exposed by lithographic, direct write or other process and developed. An anisotropic etch such as a plasma or reactive ion etch (“RIE”) 107 is illustrated. This etch transfers an exposed pattern from thepatterning layer 106 to theinsulator 105. - FIG. 2 is a cross section of the same die, with contacts formed, a base conductive layer formed, and a resist layer patterned. This figure illustrates vias resulting from the
anisotropic etch 107. The vias are filled in one or more steps. This figure illustrates forming abarrier layer 211 in the vias, followed by forming acontact 210 over thebarrier layer 211 and forming a base conductive ormetal layer 212 over thecontact layer 210 and thebarrier layer 211. When tungsten, titanium, copper and aluminum are used ascontacts 210 andmetal layers 212, a suitable barrier layer may include titanium nitride and titanium. Barrier or interface layers can readily be selected to control migration and/or adhesion of the contact and base conductive layers. In some applications, formation of high density capacitors enables use of materials such as tungsten for a base conductive layer. Tungsten has a higher resistance than aluminum or copper and therefore is typically restricted to local interconnects, as opposed to long interconnects. More generally, the contact layer and metal, conductive layer may be any conductor, not necessarily limited to a metal. Above the contact and base conductive layers, an additional patternedlayer 216 and an anisotropic etch are illustrated. - FIG. 3 is a cross section of the same die, with three layers formed for use as a capacitor. This figure illustrates trenches resulting from the anisotropic etch illustrated in FIG. 2. The trenches may, but do not necessarily need to, cut all the way through the base conductive and barrier layers. In one embodiment, the trenches cut at least substantially through the base conductive layer. The trenches need not cut all of the way through the base conductive and barrier layers in areas where the first plate layer is being formed, because the
first plate layer 321 can effectively be formed on the baseconductive layer 212 or thebarrier layer 211 or thebase insulator 105. The trenches are filled to form at least three layers. Afirst plate layer 321 is formed, at least in part, on thecontact 210 or baseconductive layer 212. The first plate layer is contoured to the undulation or wave shape of the plurality of trenches. The undulated or wave shape, viewed in profile, may be rectangular, as illustrated, or may be more contoured, due to spacer formation along the trench edges, edge slope or other process factors. Thisfirst plate layer 321 may be formed by metal sputtering. Suitable metals include titanium nitride, or, more generally, any conductor. Alternatively, another technology such as chemical vapor deposition (“CVD”) or physical vapor deposition (“PVD”) may be adapted to deposit a conductivefirst plate layer 321. The thickness of the first plate layer may be less than the minimum feature size of the one or more lithographic, direct writing or other processes used to form the trenches, as deposition process dimensions are not limited by lithographic processes. One or moreinsulating layers 322 are contoured to the wave shape of the plurality of trenches, over thefirst plate layer 321. Chemical vapor deposition may be used to deposit the non-conductive, insulating layer. The thickness of the insulating layer also may be less than the minimum feature size. Theinsulating layer 322 is followed by asecond plate layer 323. Thesecond plate layer 323 may follow the contour of the insulatinglayer 322, as illustrated, or, alternatively, it may fill in the contour. Thesecond plate layer 323 may be formed by metal sputtering, using the same metal as the first plate layer or a different metal, or, more generally, any conductor. The second plate layer may be formed by sputtering, chemical vapor deposition, or any other contour following process. The thickness of the second plate layer also may be less than the minimum feature size of the trenches. The combined thickness of the first plate, insulating and second plate layers also may be less than the minimum feature size and may be less than half of the minimum feature size. The thicknesses of the various layers may be less along the vertical walls than in the bottom of the trenches or the higher areas between the trenches. In addition to these three layers, additional layers can be added to form a triple plate capacitor, wherein the middle layer serves as one plate opposed to layers above and below it, generally along the lines illustrated in U.S. Pat. No. 6,153,463, entitled “Triple Plate Capacitor and Method for Manufacturing.” In a triple plate capacitor, a second insulating layer and a third plate layer are provided. The first and third plate layers may form separate capacitors or may be connected to form a single capacitor. The five layer structure of a triple plate capacitor may be less than the minimum feature size and may be less than half the minimum feature size. - FIG. 3 further illustrates a
further patterning layer 326 and an anisotropic etch. The illustratedpatterning layer 326 is positioned so that an isolated capacitor will be formed including the illustrated trenches. Depending on the aspect ratio of the trenches, the surface area of the first plate layer may be more than twice the die surface area occupied by the capacitor. The number of trenches and the die surface area allocated to the capacitor can be varied to produce the desired capacitance. In a triple plate capacitor, depending on the aspect ratio of the trenches, the surface area of the effective second plate layer (counting both sides) may be more than three or four times the die surface area occupied by the capacitor. - FIG. 4 is a cross section of the same die, with the multilayer structure isolated from adjacent structures and covered by an insulator. The
multilayer structure 424 has been isolated by an anisotropic etch. The etch step is followed by applying aninsulator 431, which may be planarized. Theinsulator layer 431 may be referred to as an inter-metal dielectric. Anadditional patterning layer 436 is applied to define contacts with the baseconductive layer 212 that was formed prior to themultilayer structure 424. - FIG. 5 is a cross section of the same die, with an interconnect layer in place, ready for further patterning. In some embodiments, the interconnect layer may be a local interconnect layer. Tungsten may be suitable for local interconnects. This interconnect layer may be used not only to connect the capacitor, but also to connect other devices formed on the die. Vias and
contact points 542 have been formed by and after the anisotropic etching of FIG. 4. The vias have first received a barrier layer 541. Then, contacts have been formed in thevias 542. A further conductive ormetal layer 543 has been formed over the barrier layer 541 andcontacts 542. Afurther patterning layer 546 has been formed over the metal layer, to pattern interconnects. The materials and processes for forming these barrier, contact and conductive layers are similar to the materials and processes illustrated in FIG. 2. - FIG. 6 is a cross section of the same die, with the interconnect layer in place and an upper conductive layer patterned to define the interconnects. The anisotropic etching of FIG. 5 patterns the upper
conductive layer 543 in relationship to thecontacts 542. - A process embodying the present invention may produce a wave-shaped capacitor over a base conductive layer, said base conductive layer over a base insulator layer on a die. The base conductive layer is patterned to form at least two adjacent trenches. In an alternate embodiment, at least three adjacent trenches may be formed. These trenches may be substantially as deep as the base conductive layer is thick and may substantially cut through the base conductive layer. A multilayer structure is formed, conformed to the trenches. The structure is isolated from adjacent structures, allowing it to effectively serve as a capacitor. The multilayer structure includes a first plate layer, an insulating layer over the first plate layer, and a second plate layer over the insulating layer. Additional layers may be interposed. At least part is a first plate layer is in electrical communication with the base conductive layer. An electrical contact is formed, directly or indirectly, between the base conductive layer and a part of the first plate layer. In this embodiment, a multilayer structure may be formed with a thickness along sidewalls of the trench that is less than half of the trench's width and, more particularly, may be less than a minimum feature size of the lithographic or direct writing process used to form the trenches. It may even be less than half a minimum feature size of the process, especially where the trenches are at or near the minimum lithographic feature size. These dimensions apply at least to three and five layer multilayer structures. The first and second plate layers may be formed by sputtering of metal, such as titanium nitride. The insulating layer may be formed by vapor deposition. The three adjacent trenches, in cross-section, form an essentially rectangular wave shape. The formation the multilayer structure tends to smooth out the wave shape over the rectangular base. The process of producing these wave-shaped capacitors complements other production processes. Contacts and interconnects formed directly below and directly above the multilayer structure are tied to the multilayer structure. The contacts and interconnects that tie to the multilayer structure may be formed throughout the die in one or more layers that interconnect other devices, not just capacitors. The resulting capacitor may be wave shaped, formed over a base conductive layer, the base conductive layer being formed over a base insulator layer on a die. This capacitor includes a wave-shaped pattern in the base conductive layer comprising at least two adjacent trenches. In an alternate embodiment, at least three adjacent trenches may be included in the wave-shaped pattern. A multilayer structure is contoured over the base conductive layer. The multilayer structure includes at least a first plate layer in electrical communication or contact with the base conductive layer, an insulating layer formed over the first plate layer and a second plate layer formed over the insulating layer. It further includes an interconnect layer formed over the multilayer structure, including at least one interconnection with the second plate layer. In some embodiments, the multilayer structure may include additional insulating and plate layers, forming a triple plate capacitor. The multilayer structure may have a thickness along sidewalls of the trenches that is less than a minimum lithographic feature size of a lithographic, direct writing or other process used to form the trenches. For trenches that are near or at the minimum feature size of the process used to form the trenches, the multilayer structure may have a thickness along the sidewalls that is less than one-half of the minimum feature size. The interconnect layer may provide interconnections between other devices on the die, in addition to capacitors.
- For an alternative embodiment of a wave-shaped capacitor cross-section, FIG. 7 corresponds to FIG. 3. In the alternative embodiment, the initial foundation level, interconnects and trench formation are as shown in FIGS.1-2. Instead of forming three or five layers over the
fingers 712 a-c, the base conductive layer serves as a first plate, in this embodiment, reducing the number of layers needed to complete the capacitor. FIG. 7 is a cross section, with two layers formed for use as a capacitor. This figure illustrates trenches resulting from the anisotropic etch illustrated in FIG. 2. Either the base conductive or barrier layer serves as a first capacitor plate. Thefingers 712 a-c are connected to one another to form a single plate, either by a part of the conductive layer not shown in the cross section, or by the barrier layer. The trenches are filled to form at least two layers. A first capacitor plate layer includes baseconductive layer 212 which is in electrical communication with thecontact 210. The first plate layer may either be contoured to an undulation or wave shape of the plurality of trenches, if the trenches are not all of the way through the base conductive layer, or may form a wave shape when considered together with an underlying layer, if the trenches are etched all of the way through to form fingers of the base conductive layer. The undulated or wave shape, viewed in profile, may be rectangular, as illustrated, or may be more contoured, due to spacer formation along the trench edges, edge slope or other process factors. This base conductive layer may be formed by metal sputtering. One or moreinsulating layers 722 are contoured to the undulated or wave shape of the plurality of trenches, over the baseconductive layer 212. Chemical vapor deposition may be used to deposit the non-conductive, insulating layer. The thickness of the insulating layer may be less than the minimum feature size, as deposition process dimensions are not limited by lithographic or directing writing processes. The insulatinglayer 722 is followed by asecond plate layer 723. Thesecond plate layer 723 may follow the contour of the insulatinglayer 722, as illustrated, or, alternatively, it may fill in the contour. Thesecond plate layer 723 may be formed by metal sputtering. Suitable metals include titanium nitride, or, more generally, any conductor. Alternatively, another technology such as chemical vapor deposition or physical vapor deposition may be adapted to deposit the conductivesecond plate layer 723. The thickness of the second plate layer may be less than the minimum lithographic feature size of the trenches, as deposition process dimensions are not limited by lithographic processes. The combined thickness of the insulating and second plate layers also may be less than the minimum feature size and may be less than half the minimum feature size. The thicknesses of the various layers may be less along the vertical walls than in the bottom of the trenches or the higher areas between the trenches. Alternatively, additional insulating and plate layers may be supplied to form a triple plate capacitor. FIG. 7 further illustrates afurther patterning layer 726 and an anisotropic etch. The illustratedpatterning layer 726 is positioned so that an isolated capacitor will be formed including three illustrated trench features. Depending on the aspect ratio of the trenches, the surface area of the first plate layer may be more than twice the die surface area occupied by the capacitor. For a triple plate capacitor, the effective surface area may be more than four times the die surface area occupied. The number of trenches and the die surface area allocated to the capacitor can be varied to produce the desired capacitance. - FIG. 8 is a cross section of the same die, with the multilayer structure isolated from adjacent structures and covered by an insulator. The
multilayer structure 824 has been isolated by an anisotropic etch. The etch step is followed by applying aninsulator 831, which may be planarized. Theinsulator layer 831 may be referred to as an inter-metal dielectric. Anadditional patterning layer 836 is applied to define contacts with the baseconductive layer 212 formed prior to themultilayer structure 824. - FIG. 9 is a cross section of the same die, with an interconnect layer in place, ready for further patterning. In some embodiments, the interconnect layer may be a local interconnect layer. For local interconnects, tungsten may be suitable. This interconnect layer may be used not only to connect the capacitor, but also to connect other devices formed on the die. Vias and
contact points 942 have been formed by and after the anisotropic etching of FIG. 8. The vias have received a barrier layer 941. Then, contacts have been formed in thevias 942. A further conductive ormetal layer 943 has been formed over the barrier layer 941 andcontacts 942. Afurther patterning layer 946 has been formed over the metal layer, to complete interconnects. The materials and processes for forming these barrier, contact and conductive layers are similar to the materials and processes illustrated in FIG. 2. - FIG. 10 is a cross section of the same die, with the interconnect layer in place and the top conductive layer patterned to define the interconnects. The anisotropic etching of FIG. 9 patterns the top
conductive layer 943 in relationship to thecontacts 942. - A process embodying the present invention may produce a wave-shaped capacitor over a base conductive layer, said base conductive layer over a base insulator layer on a die. The base conductive layer is patterned to form at least two adjacent trenches, the sides of which are electrically connected. In an alternative embodiment, at least three adjacent trenches are formed. These trenches may be substantially as deep as the base conductive layer is thick and may substantially cut through the base conductive layer. A multilayer structure is formed, conformed to the trenches. The structure is isolated from adjacent structures, allowing it to effectively serve as a capacitor. The multilayer structure includes the base conductive layer, an insulating layer over the base conductive layer, and a second plate layer over the insulating layer. Additional layers may be interposed or added over the second plate layer, for instance, to form a triple plate capacitor. In this embodiment, a multilayer structure may be formed with a thickness along sidewalls of the trench is which is less than half of the trench width and, more particularly, may be less than a minimum lithographic feature size of the lithographic process used to form the trenches. It may even be less than half a minimum lithographic feature size of the lithographic process, especially where the trenches are at or near the minimum lithographic feature size. The second plate layer may be formed by sputtering of metal, such as titanium nitride. The insulating layer may be formed by vapor deposition. The adjacent trenches, in cross-section, form an essentially rectangular wave shape. The formation the multilayer structure tends to smooth out the wave shape over the rectangular base. The process of producing these wave-shaped capacitors complements other production processes. Contacts and interconnects formed directly below and directly above the multilayer structure are tied to the multilayer structure. The contacts and interconnects that tie to the multilayer structure may be formed throughout the die in one or more layers that interconnect other devices, not just capacitors.
- The resulting capacitor may be wave shaped, formed over a base conductive layer, the base conductive layer being formed over a base insulator layer on a die. This capacitor includes a wave-shaped pattern in the base conductive layer comprising at least two adjacent trenches. In an alternative embodiment, the wave-shaped pattern includes at least three trenches. A multilayer structure is contoured over the base conductive layer. The multilayer structure includes at least an insulating layer formed over the base conductive layer and a second plate layer formed over the insulating layer, and may include additional insulating and plate layers. It further includes an interconnect layer formed over the multilayer structure, including at least one interconnection with the second plate layer. The multilayer structure of the device may have a thickness along sidewalls of the trenches that is less than a minimum feature size of a lithographic, direct writing or other process used to form the trenches. For trenches that are near or at the minimum lithographic feature size of the lithographic process used to form the trenches, the multilayer structure may have a thickness along the sidewalls that is less than one-half of the minimum feature size. The interconnect layer may provide interconnections between other devices on the die, in addition to capacitors.
- While the present invention is disclosed by reference to the preferred embodiments and examples detailed above, it is understood that these examples are intended in an illustrative rather than in a limiting sense. It is contemplated that modifications and combinations will readily occur to those skilled in the art, which modifications and combinations will be within the spirit of the invention and the scope of the following claims.
Claims (23)
1. A method of manufacturing a wave-shaped capacitor over a base conductive layer, said base conductive layer over a base insulator layer on a die, including:
patterning the base conductive layer to form at least two adjacent trenches;
forming a multilayer structure, conformed to the trenches and isolated from adjacent structures, including at least a first plate layer, an insulating layer over the first plate layer, and a second plate layer over the insulating layer, wherein at least part of the first plate layer is in electrical communication with the base conductive layer;
2. forming interconnects on the die, including at least one interconnect with the second plate layer.
3. The method of claim 1 , in which the trenches are formed by one or more lithographic or direct writing processes and the multilayer structure has a thickness along the sidewalls of the trenches that is less than a minimum feature size of the lithographic or direct writing process.
4. The method of claim 1 , in which the trenches are formed by one or more lithographic or direct writing processes and the multilayer structure has a thickness along the sidewalls of the trenches that is less than half a minimum feature size of the lithographic or direct writing processes.
5. The method of claim 1 , wherein the first and second plate layers are sputtered metals.
6. The method of claim 5 , wherein one or more of the sputtered metals comprise titanium nitride.
7. The method of claim 5 , wherein the insulating layer is formed by vapor deposition.
8. The method of claim 1 , wherein the at least two adjacent trenches, in cross-section, form an essentially rectangular wave shape.
9. The method of claim 8 , wherein the at least two adjacent trenches are etched at least substantially through the base conductive layer.
10. The method of claim 1 , wherein the interconnects are formed in manufacturing steps that are the same for the multilayer structure and for other structures on the die.
11. The method of claim 11 , in which the trenches are formed by one or more lithographic or direct writing processes and the multilayer structure has a thickness along the sidewalls of the trenches that is less than a minimum feature size of the lithographic or direct writing process.
12. The method of claim 11 , in which the trenches are formed by one or more lithographic or direct writing processes and the multilayer structure has a thickness along the sidewalls of the trenches that is less than half a minimum feature size of the lithographic or direct writing processes.
13. The method of claim 11 , wherein the first and second plate layers are sputtered metals.
14. The method of claim 13 , wherein one or more of the sputtered metals comprise titanium nitride.
15. The method of claim 13 , wherein the insulating layer is formed by vapor deposition.
16. The method of claim 11 , wherein the at least two adjacent trenches, in cross-section, form an essentially rectangular wave shape.
17. The method of claim 16 , wherein the at least two adjacent trenches are at least substantially through the base conductive layer.
18. The method of claim 11 , wherein the interconnects are formed in manufacturing steps that are the same for the multilayer structure and for other structures on the die.
19. The method of claim 11 , wherein the base conductive layer and the first plate layer are the same structure.
20. A wave-shaped capacitor, formed over a base conductive layer, said base conductive layer over a base insulator layer on a die, the capacitor including:
a wave-shaped pattern in the base conductive layer comprising at least two adjacent trenches in the base conductive layer;
a multilayer structure contoured over the base conductive layer, the multilayer structure comprising:
a first plate layer in electrical contact with the base conductive layer;
an insulating layer over the first plate layer;
a second plate layer over the insulating layer; and
a interconnect layer over the multilayer structure, including at least one interconnection with the second plate layer.
21. The device of claim 20 , wherein the at least two adjacent trenches are formed by a lithographic or direct writing process and the multilayer structure has a thickness along the sidewalls of the trench that is less than half of a minimum feature size of the lithographic or direct writing process.
22. The device of claim 20 , wherein the base conductive layer and the first conductive layer are the same structure.
23. The device of claim 22 , wherein the at least two adjacent trenches are formed by a lithographic process and the multilayer structure has a thickness along the sidewalls of the trench that is less than half of a minimum feature size of the lithographic or direct writing process.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/077,450 US20030155603A1 (en) | 2002-02-15 | 2002-02-15 | Finger metal-insulator-metal capacitor with local interconnect |
JP2002225091A JP2003243524A (en) | 2002-02-15 | 2002-08-01 | Finger MIM capacitor with local interconnect |
TW091119764A TW544697B (en) | 2002-02-15 | 2002-08-30 | Wave shape capacitor and manufacturing method thereof |
US10/695,167 US7109565B2 (en) | 2002-02-15 | 2003-10-28 | Finger metal-insulator-metal capacitor device with local interconnect |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/077,450 US20030155603A1 (en) | 2002-02-15 | 2002-02-15 | Finger metal-insulator-metal capacitor with local interconnect |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/695,167 Division US7109565B2 (en) | 2002-02-15 | 2003-10-28 | Finger metal-insulator-metal capacitor device with local interconnect |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030155603A1 true US20030155603A1 (en) | 2003-08-21 |
Family
ID=27732658
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/077,450 Abandoned US20030155603A1 (en) | 2002-02-15 | 2002-02-15 | Finger metal-insulator-metal capacitor with local interconnect |
US10/695,167 Expired - Lifetime US7109565B2 (en) | 2002-02-15 | 2003-10-28 | Finger metal-insulator-metal capacitor device with local interconnect |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/695,167 Expired - Lifetime US7109565B2 (en) | 2002-02-15 | 2003-10-28 | Finger metal-insulator-metal capacitor device with local interconnect |
Country Status (3)
Country | Link |
---|---|
US (2) | US20030155603A1 (en) |
JP (1) | JP2003243524A (en) |
TW (1) | TW544697B (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050266652A1 (en) * | 2004-05-27 | 2005-12-01 | International Business Machines Corporation | High density mimcap with a unit repeatable structure |
US20060014356A1 (en) * | 2003-08-19 | 2006-01-19 | Hsu Louis L | Metal-insulator-metal capacitor and method of fabricating same |
DE102005038219A1 (en) * | 2005-08-12 | 2007-02-22 | Infineon Technologies Ag | Integrated circuit arrangement, has capacitor in conduction path layer and provided with ground electrode, dielectric, and cover electrode |
US20100129978A1 (en) * | 2008-11-21 | 2010-05-27 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor device having MIM capacitor |
US10109575B1 (en) * | 2017-03-30 | 2018-10-23 | International Business Machines Corporation | Non-planar metal-insulator-metal capacitor formation |
US20190148324A1 (en) * | 2017-04-21 | 2019-05-16 | Invensas Corporation | 3D-Interconnect |
US10748840B2 (en) | 2008-05-09 | 2020-08-18 | Invensas Corporation | Chip-size, double side connection package and method for manufacturing the same |
US12040284B2 (en) | 2021-11-12 | 2024-07-16 | Invensas Llc | 3D-interconnect with electromagnetic interference (“EMI”) shield and/or antenna |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100881488B1 (en) | 2007-09-06 | 2009-02-05 | 주식회사 동부하이텍 | Semiconductor element having MIM capacitor and manufacturing method thereof |
US20100224960A1 (en) * | 2009-03-04 | 2010-09-09 | Kevin John Fischer | Embedded capacitor device and methods of fabrication |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6281543B1 (en) * | 1999-08-31 | 2001-08-28 | Micron Technology, Inc. | Double layer electrode and barrier system on hemispherical grain silicon for use with high dielectric constant materials and methods for fabricating the same |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5192703A (en) * | 1991-10-31 | 1993-03-09 | Micron Technology, Inc. | Method of making tungsten contact core stack capacitor |
US5275974A (en) * | 1992-07-30 | 1994-01-04 | Northern Telecom Limited | Method of forming electrodes for trench capacitors |
US5583359A (en) * | 1995-03-03 | 1996-12-10 | Northern Telecom Limited | Capacitor structure for an integrated circuit |
US5712202A (en) * | 1995-12-27 | 1998-01-27 | Vanguard International Semiconductor Corporation | Method for fabricating a multiple walled crown capacitor of a semiconductor device |
US5804489A (en) * | 1996-07-12 | 1998-09-08 | Vanguard International Semiconductor Corporation | Method of manufacturing a crown shape capacitor in semiconductor memory using a single step etching |
EP0954030A1 (en) * | 1998-04-30 | 1999-11-03 | Siemens Aktiengesellschaft | Process of manufacturing a capacitor for a semiconductor memory |
KR100292689B1 (en) * | 1998-06-03 | 2001-07-12 | 김영환 | Capacitor and Formation Method |
TW388984B (en) * | 1998-07-09 | 2000-05-01 | United Microelectronics Corp | Dynamic random access memory manufacturing |
JP3439370B2 (en) * | 1999-04-21 | 2003-08-25 | Necエレクトロニクス株式会社 | Method for manufacturing semiconductor memory device |
US6297527B1 (en) * | 1999-05-12 | 2001-10-02 | Micron Technology, Inc. | Multilayer electrode for ferroelectric and high dielectric constant capacitors |
US6153463A (en) * | 1999-07-09 | 2000-11-28 | Macronix International Co., Ltd. | Triple plate capacitor and method for manufacturing |
US6303456B1 (en) * | 2000-02-25 | 2001-10-16 | International Business Machines Corporation | Method for making a finger capacitor with tuneable dielectric constant |
-
2002
- 2002-02-15 US US10/077,450 patent/US20030155603A1/en not_active Abandoned
- 2002-08-01 JP JP2002225091A patent/JP2003243524A/en not_active Withdrawn
- 2002-08-30 TW TW091119764A patent/TW544697B/en not_active IP Right Cessation
-
2003
- 2003-10-28 US US10/695,167 patent/US7109565B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6281543B1 (en) * | 1999-08-31 | 2001-08-28 | Micron Technology, Inc. | Double layer electrode and barrier system on hemispherical grain silicon for use with high dielectric constant materials and methods for fabricating the same |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7329939B2 (en) * | 2003-08-19 | 2008-02-12 | International Business Machines Corporation | Metal-insulator-metal capacitor and method of fabricating same |
US20060014356A1 (en) * | 2003-08-19 | 2006-01-19 | Hsu Louis L | Metal-insulator-metal capacitor and method of fabricating same |
US20080049378A1 (en) * | 2003-08-19 | 2008-02-28 | Hsu Louis L | Metal-insulator-metal capacitor and method of fabricating same |
US20050266652A1 (en) * | 2004-05-27 | 2005-12-01 | International Business Machines Corporation | High density mimcap with a unit repeatable structure |
US20100055862A1 (en) * | 2005-08-12 | 2010-03-04 | Infineon Technologies Ag | Method for producing an integrated circuit arrangement with capacitor in an interconnect layer |
US8546233B2 (en) | 2005-08-12 | 2013-10-01 | Infineon Technologies Ag | Method for producing an integrated circuit arrangement with capacitor in an interconnect layer |
DE102005038219B4 (en) * | 2005-08-12 | 2008-11-13 | Infineon Technologies Ag | Integrated circuit arrangement with capacitor in a track layer and method for producing the same |
US7635887B2 (en) | 2005-08-12 | 2009-12-22 | Infineon Technologies Ag | Integrated circuit arrangement with capacitor in an interconnect layer and method |
DE102005038219A1 (en) * | 2005-08-12 | 2007-02-22 | Infineon Technologies Ag | Integrated circuit arrangement, has capacitor in conduction path layer and provided with ground electrode, dielectric, and cover electrode |
US20070117340A1 (en) * | 2005-08-12 | 2007-05-24 | Anton Steltenpohl | Integrated circuit arrangement with capacitor in an interconnect layer and method |
US10748840B2 (en) | 2008-05-09 | 2020-08-18 | Invensas Corporation | Chip-size, double side connection package and method for manufacturing the same |
US20100129978A1 (en) * | 2008-11-21 | 2010-05-27 | Samsung Electronics Co., Ltd. | Method of fabricating semiconductor device having MIM capacitor |
US10109575B1 (en) * | 2017-03-30 | 2018-10-23 | International Business Machines Corporation | Non-planar metal-insulator-metal capacitor formation |
US10714419B2 (en) | 2017-03-30 | 2020-07-14 | International Business Machines Corporation | Non-planar metal-insulator-metal capacitor formation |
US20190148324A1 (en) * | 2017-04-21 | 2019-05-16 | Invensas Corporation | 3D-Interconnect |
US11031362B2 (en) * | 2017-04-21 | 2021-06-08 | Invensas Corporation | 3D-interconnect |
US11929337B2 (en) | 2017-04-21 | 2024-03-12 | Invensas Llc | 3D-interconnect |
US12040284B2 (en) | 2021-11-12 | 2024-07-16 | Invensas Llc | 3D-interconnect with electromagnetic interference (“EMI”) shield and/or antenna |
Also Published As
Publication number | Publication date |
---|---|
US7109565B2 (en) | 2006-09-19 |
JP2003243524A (en) | 2003-08-29 |
US20040084707A1 (en) | 2004-05-06 |
TW544697B (en) | 2003-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6884710B2 (en) | Semiconductor device having multi-layer copper line and method of forming same | |
US6025226A (en) | Method of forming a capacitor and a capacitor formed using the method | |
US6081021A (en) | Conductor-insulator-conductor structure | |
KR100413828B1 (en) | Semiconductor device and method of making the same | |
US5801094A (en) | Dual damascene process | |
US5055423A (en) | Planarized selective tungsten metallization system | |
US5891805A (en) | Method of forming contacts | |
US6838717B1 (en) | Stacked structure for parallel capacitors and method of fabrication | |
US6624040B1 (en) | Self-integrated vertical MIM capacitor in the dual damascene process | |
US4996133A (en) | Self-aligned tungsten-filled via process and via formed thereby | |
US20030164514A1 (en) | Damascene capacitor having a recessed plate | |
US6888220B2 (en) | Semiconductor device having a buried wiring lead structure | |
US6265308B1 (en) | Slotted damascene lines for low resistive wiring lines for integrated circuit | |
US7109565B2 (en) | Finger metal-insulator-metal capacitor device with local interconnect | |
US7074716B2 (en) | Method of manufacturing a semiconductor device | |
JP4671497B2 (en) | Semiconductor device and manufacturing method thereof | |
US6258709B1 (en) | Formation of electrical interconnect lines by selective metal etch | |
US7122440B2 (en) | Semiconductor device and fabrication method thereof | |
GB2325083A (en) | A dual damascene process | |
JP2001203329A (en) | Semiconductor device and its manufacturing method | |
US20090165706A1 (en) | Method for forming a plurality of metal lines in a semiconductor device using dual insulating layer | |
JP2004039724A (en) | Semiconductor device and its manufacturing method | |
KR100772073B1 (en) | MM capacitor manufacturing method | |
KR101106049B1 (en) | Method for manufacturing semiconductor device and semiconductor device thereby | |
US5212352A (en) | Self-aligned tungsten-filled via |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MACRONIX INTERNATIONAL CO., LTD., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:LIU, LENVIS;HWANG, CJ;REEL/FRAME:012608/0154 Effective date: 20020122 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |