US20030149193A1 - Curable composition - Google Patents
Curable composition Download PDFInfo
- Publication number
- US20030149193A1 US20030149193A1 US10/208,460 US20846002A US2003149193A1 US 20030149193 A1 US20030149193 A1 US 20030149193A1 US 20846002 A US20846002 A US 20846002A US 2003149193 A1 US2003149193 A1 US 2003149193A1
- Authority
- US
- United States
- Prior art keywords
- powder coating
- formula
- coating composition
- composition according
- group
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 62
- 239000000843 powder Substances 0.000 claims abstract description 84
- 239000008199 coating composition Substances 0.000 claims abstract description 74
- 239000004593 Epoxy Substances 0.000 claims abstract description 53
- 150000001875 compounds Chemical class 0.000 claims abstract description 51
- 229920000728 polyester Polymers 0.000 claims abstract description 18
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims abstract description 15
- 239000011230 binding agent Substances 0.000 claims abstract description 13
- 229920000193 polymethacrylate Polymers 0.000 claims abstract description 8
- 239000000126 substance Substances 0.000 claims abstract description 6
- 229920005862 polyol Polymers 0.000 claims description 23
- 150000003077 polyols Chemical class 0.000 claims description 19
- -1 aliphatic polyol Chemical class 0.000 claims description 16
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 14
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 claims description 10
- 125000003055 glycidyl group Chemical group C(C1CO1)* 0.000 claims description 10
- OUPZKGBUJRBPGC-UHFFFAOYSA-N 1,3,5-tris(oxiran-2-ylmethyl)-1,3,5-triazinane-2,4,6-trione Chemical compound O=C1N(CC2OC2)C(=O)N(CC2OC2)C(=O)N1CC1CO1 OUPZKGBUJRBPGC-UHFFFAOYSA-N 0.000 claims description 9
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 9
- 125000004432 carbon atom Chemical group C* 0.000 claims description 9
- WXZMFSXDPGVJKK-UHFFFAOYSA-N pentaerythritol Chemical compound OCC(CO)(CO)CO WXZMFSXDPGVJKK-UHFFFAOYSA-N 0.000 claims description 9
- 238000006735 epoxidation reaction Methods 0.000 claims description 8
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 7
- 238000005809 transesterification reaction Methods 0.000 claims description 7
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 6
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 6
- 235000010355 mannitol Nutrition 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 238000002360 preparation method Methods 0.000 claims description 6
- 229960002920 sorbitol Drugs 0.000 claims description 6
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 claims description 5
- YVWBQGFBSVLPIK-UHFFFAOYSA-N cyclohex-2-ene-1-carboxylic acid Chemical compound OC(=O)C1CCCC=C1 YVWBQGFBSVLPIK-UHFFFAOYSA-N 0.000 claims description 5
- 229910052736 halogen Inorganic materials 0.000 claims description 5
- 150000002367 halogens Chemical class 0.000 claims description 5
- 239000001257 hydrogen Substances 0.000 claims description 5
- 229910052739 hydrogen Inorganic materials 0.000 claims description 5
- 229910013698 LiNH2 Inorganic materials 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- AFRJJFRNGGLMDW-UHFFFAOYSA-N lithium amide Chemical compound [Li+].[NH2-] AFRJJFRNGGLMDW-UHFFFAOYSA-N 0.000 claims description 4
- 239000011541 reaction mixture Substances 0.000 claims description 4
- 229930195725 Mannitol Natural products 0.000 claims description 2
- FBPFZTCFMRRESA-GUCUJZIJSA-N galactitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-GUCUJZIJSA-N 0.000 claims description 2
- 239000000594 mannitol Substances 0.000 claims description 2
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 claims description 2
- 239000000600 sorbitol Substances 0.000 claims description 2
- 125000004435 hydrogen atom Chemical class [H]* 0.000 claims 2
- 239000000047 product Substances 0.000 description 26
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 21
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 20
- ISAOCJYIOMOJEB-UHFFFAOYSA-N benzoin Chemical compound C=1C=CC=CC=1C(O)C(=O)C1=CC=CC=C1 ISAOCJYIOMOJEB-UHFFFAOYSA-N 0.000 description 20
- 238000000576 coating method Methods 0.000 description 19
- 238000009472 formulation Methods 0.000 description 19
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 18
- KFSLWBXXFJQRDL-UHFFFAOYSA-N Peracetic acid Chemical compound CC(=O)OO KFSLWBXXFJQRDL-UHFFFAOYSA-N 0.000 description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 18
- 239000003054 catalyst Substances 0.000 description 13
- 244000028419 Styrax benzoin Species 0.000 description 11
- 235000000126 Styrax benzoin Nutrition 0.000 description 11
- 235000008411 Sumatra benzointree Nutrition 0.000 description 11
- 229960002130 benzoin Drugs 0.000 description 11
- 235000019382 gum benzoic Nutrition 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 10
- DCFDVJPDXYGCOK-UHFFFAOYSA-N cyclohex-3-ene-1-carbaldehyde Chemical compound O=CC1CCC=CC1 DCFDVJPDXYGCOK-UHFFFAOYSA-N 0.000 description 9
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 8
- 125000003700 epoxy group Chemical group 0.000 description 8
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 7
- 239000003822 epoxy resin Substances 0.000 description 7
- 229920000647 polyepoxide Polymers 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 6
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 239000000178 monomer Substances 0.000 description 6
- KJIFKLIQANRMOU-UHFFFAOYSA-N oxidanium;4-methylbenzenesulfonate Chemical compound O.CC1=CC=C(S(O)(=O)=O)C=C1 KJIFKLIQANRMOU-UHFFFAOYSA-N 0.000 description 6
- 239000004848 polyfunctional curative Substances 0.000 description 6
- ARCGXLSVLAOJQL-UHFFFAOYSA-N trimellitic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 ARCGXLSVLAOJQL-UHFFFAOYSA-N 0.000 description 6
- 238000004132 cross linking Methods 0.000 description 5
- 239000001632 sodium acetate Substances 0.000 description 5
- 235000017281 sodium acetate Nutrition 0.000 description 5
- AZUYLZMQTIKGSC-UHFFFAOYSA-N 1-[6-[4-(5-chloro-6-methyl-1H-indazol-4-yl)-5-methyl-3-(1-methylindazol-5-yl)pyrazol-1-yl]-2-azaspiro[3.3]heptan-2-yl]prop-2-en-1-one Chemical compound ClC=1C(=C2C=NNC2=CC=1C)C=1C(=NN(C=1C)C1CC2(CN(C2)C(C=C)=O)C1)C=1C=C2C=NN(C2=CC=1)C AZUYLZMQTIKGSC-UHFFFAOYSA-N 0.000 description 4
- MKBBSFGKFMQPPC-UHFFFAOYSA-N 2-propyl-1h-imidazole Chemical compound CCCC1=NC=CN1 MKBBSFGKFMQPPC-UHFFFAOYSA-N 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 4
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 4
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 4
- 239000002253 acid Substances 0.000 description 4
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 4
- 239000007795 chemical reaction product Substances 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 4
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000009257 reactivity Effects 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- GEHJYWRUCIMESM-UHFFFAOYSA-L sodium sulfite Chemical compound [Na+].[Na+].[O-]S([O-])=O GEHJYWRUCIMESM-UHFFFAOYSA-L 0.000 description 4
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 4
- 239000008096 xylene Substances 0.000 description 4
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 3
- 239000004925 Acrylic resin Substances 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 3
- 238000001125 extrusion Methods 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- IPUNVLFESXFVFH-UHFFFAOYSA-N methyl cyclohex-3-ene-1-carboxylate Chemical compound COC(=O)C1CCC=CC1 IPUNVLFESXFVFH-UHFFFAOYSA-N 0.000 description 3
- 150000004967 organic peroxy acids Chemical class 0.000 description 3
- 239000012074 organic phase Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 3
- 230000000087 stabilizing effect Effects 0.000 description 3
- GHYOCDFICYLMRF-UTIIJYGPSA-N (2S,3R)-N-[(2S)-3-(cyclopenten-1-yl)-1-[(2R)-2-methyloxiran-2-yl]-1-oxopropan-2-yl]-3-hydroxy-3-(4-methoxyphenyl)-2-[[(2S)-2-[(2-morpholin-4-ylacetyl)amino]propanoyl]amino]propanamide Chemical compound C1(=CCCC1)C[C@@H](C(=O)[C@@]1(OC1)C)NC([C@H]([C@@H](C1=CC=C(C=C1)OC)O)NC([C@H](C)NC(CN1CCOCC1)=O)=O)=O GHYOCDFICYLMRF-UTIIJYGPSA-N 0.000 description 2
- UNILWMWFPHPYOR-KXEYIPSPSA-M 1-[6-[2-[3-[3-[3-[2-[2-[3-[[2-[2-[[(2r)-1-[[2-[[(2r)-1-[3-[2-[2-[3-[[2-(2-amino-2-oxoethoxy)acetyl]amino]propoxy]ethoxy]ethoxy]propylamino]-3-hydroxy-1-oxopropan-2-yl]amino]-2-oxoethyl]amino]-3-[(2r)-2,3-di(hexadecanoyloxy)propyl]sulfanyl-1-oxopropan-2-yl Chemical compound O=C1C(SCCC(=O)NCCCOCCOCCOCCCNC(=O)COCC(=O)N[C@@H](CSC[C@@H](COC(=O)CCCCCCCCCCCCCCC)OC(=O)CCCCCCCCCCCCCCC)C(=O)NCC(=O)N[C@H](CO)C(=O)NCCCOCCOCCOCCCNC(=O)COCC(N)=O)CC(=O)N1CCNC(=O)CCCCCN\1C2=CC=C(S([O-])(=O)=O)C=C2CC/1=C/C=C/C=C/C1=[N+](CC)C2=CC=C(S([O-])(=O)=O)C=C2C1 UNILWMWFPHPYOR-KXEYIPSPSA-M 0.000 description 2
- 229920000178 Acrylic resin Polymers 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-OWOJBTEDSA-N Fumaric acid Chemical compound OC(=O)\C=C\C(O)=O VZCYOOQTPOCHFL-OWOJBTEDSA-N 0.000 description 2
- 239000004594 Masterbatch (MB) Substances 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- ZJCCRDAZUWHFQH-UHFFFAOYSA-N Trimethylolpropane Chemical compound CCC(CO)(CO)CO ZJCCRDAZUWHFQH-UHFFFAOYSA-N 0.000 description 2
- 239000001361 adipic acid Substances 0.000 description 2
- 235000011037 adipic acid Nutrition 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 229940040526 anhydrous sodium acetate Drugs 0.000 description 2
- UJMDYLWCYJJYMO-UHFFFAOYSA-N benzene-1,2,3-tricarboxylic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1C(O)=O UJMDYLWCYJJYMO-UHFFFAOYSA-N 0.000 description 2
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 2
- NEPKLUNSRVEBIX-UHFFFAOYSA-N bis(oxiran-2-ylmethyl) benzene-1,4-dicarboxylate Chemical compound C=1C=C(C(=O)OCC2OC2)C=CC=1C(=O)OCC1CO1 NEPKLUNSRVEBIX-UHFFFAOYSA-N 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 150000001991 dicarboxylic acids Chemical class 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 230000009477 glass transition Effects 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- SLCVBVWXLSEKPL-UHFFFAOYSA-N neopentyl glycol Chemical compound OCC(C)(C)CO SLCVBVWXLSEKPL-UHFFFAOYSA-N 0.000 description 2
- BDJRBEYXGGNYIS-UHFFFAOYSA-N nonanedioic acid Chemical compound OC(=O)CCCCCCCC(O)=O BDJRBEYXGGNYIS-UHFFFAOYSA-N 0.000 description 2
- 239000003960 organic solvent Substances 0.000 description 2
- 235000011007 phosphoric acid Nutrition 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- WLJVNTCWHIRURA-UHFFFAOYSA-N pimelic acid Chemical compound OC(=O)CCCCCC(O)=O WLJVNTCWHIRURA-UHFFFAOYSA-N 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- CYIDZMCFTVVTJO-UHFFFAOYSA-N pyromellitic acid Chemical compound OC(=O)C1=CC(C(O)=O)=C(C(O)=O)C=C1C(O)=O CYIDZMCFTVVTJO-UHFFFAOYSA-N 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 235000010265 sodium sulphite Nutrition 0.000 description 2
- 238000003756 stirring Methods 0.000 description 2
- TYFQFVWCELRYAO-UHFFFAOYSA-N suberic acid Chemical compound OC(=O)CCCCCCC(O)=O TYFQFVWCELRYAO-UHFFFAOYSA-N 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- CWERGRDVMFNCDR-UHFFFAOYSA-N thioglycolic acid Chemical compound OC(=O)CS CWERGRDVMFNCDR-UHFFFAOYSA-N 0.000 description 2
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 2
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical compound OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 description 2
- 150000003628 tricarboxylic acids Chemical class 0.000 description 2
- RIOQSEWOXXDEQQ-UHFFFAOYSA-N triphenylphosphine Chemical compound C1=CC=CC=C1P(C=1C=CC=CC=1)C1=CC=CC=C1 RIOQSEWOXXDEQQ-UHFFFAOYSA-N 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- SZUVGFMDDVSKSI-WIFOCOSTSA-N (1s,2s,3s,5r)-1-(carboxymethyl)-3,5-bis[(4-phenoxyphenyl)methyl-propylcarbamoyl]cyclopentane-1,2-dicarboxylic acid Chemical compound O=C([C@@H]1[C@@H]([C@](CC(O)=O)([C@H](C(=O)N(CCC)CC=2C=CC(OC=3C=CC=CC=3)=CC=2)C1)C(O)=O)C(O)=O)N(CCC)CC(C=C1)=CC=C1OC1=CC=CC=C1 SZUVGFMDDVSKSI-WIFOCOSTSA-N 0.000 description 1
- 0 *C12OC1(*)C(*)(*)C(*)(*)C(*)(*)C2(*)* Chemical compound *C12OC1(*)C(*)(*)C(*)(*)C(*)(*)C2(*)* 0.000 description 1
- RTBFRGCFXZNCOE-UHFFFAOYSA-N 1-methylsulfonylpiperidin-4-one Chemical compound CS(=O)(=O)N1CCC(=O)CC1 RTBFRGCFXZNCOE-UHFFFAOYSA-N 0.000 description 1
- SEULWJSKCVACTH-UHFFFAOYSA-N 1-phenylimidazole Chemical group C1=NC=CN1C1=CC=CC=C1 SEULWJSKCVACTH-UHFFFAOYSA-N 0.000 description 1
- GQHTUMJGOHRCHB-UHFFFAOYSA-N 2,3,4,6,7,8,9,10-octahydropyrimido[1,2-a]azepine Chemical compound C1CCCCN2CCCN=C21 GQHTUMJGOHRCHB-UHFFFAOYSA-N 0.000 description 1
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 1
- XMNIXWIUMCBBBL-UHFFFAOYSA-N 2-(2-phenylpropan-2-ylperoxy)propan-2-ylbenzene Chemical compound C=1C=CC=CC=1C(C)(C)OOC(C)(C)C1=CC=CC=C1 XMNIXWIUMCBBBL-UHFFFAOYSA-N 0.000 description 1
- ODGCZQFTJDEYNI-UHFFFAOYSA-N 2-methylcyclohex-3-ene-1,2-dicarboxylic acid Chemical class OC(=O)C1(C)C=CCCC1C(O)=O ODGCZQFTJDEYNI-UHFFFAOYSA-N 0.000 description 1
- WMRCTEPOPAZMMN-UHFFFAOYSA-N 2-undecylpropanedioic acid Chemical compound CCCCCCCCCCCC(C(O)=O)C(O)=O WMRCTEPOPAZMMN-UHFFFAOYSA-N 0.000 description 1
- UITKHKNFVCYWNG-UHFFFAOYSA-N 4-(3,4-dicarboxybenzoyl)phthalic acid Chemical compound C1=C(C(O)=O)C(C(=O)O)=CC=C1C(=O)C1=CC=C(C(O)=O)C(C(O)=O)=C1 UITKHKNFVCYWNG-UHFFFAOYSA-N 0.000 description 1
- NEQFBGHQPUXOFH-UHFFFAOYSA-N 4-(4-carboxyphenyl)benzoic acid Chemical compound C1=CC(C(=O)O)=CC=C1C1=CC=C(C(O)=O)C=C1 NEQFBGHQPUXOFH-UHFFFAOYSA-N 0.000 description 1
- SVLTVRFYVWMEQN-UHFFFAOYSA-N 5-methylcyclohex-3-ene-1,2-dicarboxylic acid Chemical compound CC1CC(C(O)=O)C(C(O)=O)C=C1 SVLTVRFYVWMEQN-UHFFFAOYSA-N 0.000 description 1
- LGNOJMOIZXJMGP-UHFFFAOYSA-N 6-methylcyclohex-4-ene-1,2,3-tricarboxylic acid Chemical compound CC1C=CC(C(O)=O)C(C(O)=O)C1C(O)=O LGNOJMOIZXJMGP-UHFFFAOYSA-N 0.000 description 1
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- 229920003319 Araldite® Polymers 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- XYUDJUPIUKXJMM-DZQPENOGSA-N C.C.CC(=O)O[2H]1OC(C)O1.CC1OC(C)OC(C)O1.CC1OCO1.COC(C)=O Chemical compound C.C.CC(=O)O[2H]1OC(C)O1.CC1OC(C)OC(C)O1.CC1OCO1.COC(C)=O XYUDJUPIUKXJMM-DZQPENOGSA-N 0.000 description 1
- FNOLQGXENJLFLA-UHFFFAOYSA-N C1=CCC(C2OC(C3CC=CCC3)OC(C3CC=CCC3)O2)CC1.[H]C(=O)C1CC=CCC1 Chemical compound C1=CCC(C2OC(C3CC=CCC3)OC(C3CC=CCC3)O2)CC1.[H]C(=O)C1CC=CCC1 FNOLQGXENJLFLA-UHFFFAOYSA-N 0.000 description 1
- FLROWVVDOZJRIZ-UHFFFAOYSA-N C1=CCC(C2OCC(C3OC(C4CC=CCC4)OC3C3COC(C4CC=CCC4)O3)O2)CC1.OCC(O)C(O)C(O)C(O)CO.[H]C(=O)C1CC=CCC1 Chemical compound C1=CCC(C2OCC(C3OC(C4CC=CCC4)OC3C3COC(C4CC=CCC4)O3)O2)CC1.OCC(O)C(O)C(O)C(O)CO.[H]C(=O)C1CC=CCC1 FLROWVVDOZJRIZ-UHFFFAOYSA-N 0.000 description 1
- KMLSNCBCRBFOEN-UHFFFAOYSA-N C1=CCC(C2OCC3(CO2)COC(C2CC=CCC2)OC3)CC1.OCC(CO)(CO)CO.[H]C(=O)C1CC=CCC1 Chemical compound C1=CCC(C2OCC3(CO2)COC(C2CC=CCC2)OC3)CC1.OCC(CO)(CO)CO.[H]C(=O)C1CC=CCC1 KMLSNCBCRBFOEN-UHFFFAOYSA-N 0.000 description 1
- CGWIWODINWPAFT-UHFFFAOYSA-N C1CC2OC2CC1C1OC(C2CCC3OC3C2)OC(C2CCC3OC3C2)O1 Chemical compound C1CC2OC2CC1C1OC(C2CCC3OC3C2)OC(C2CCC3OC3C2)O1 CGWIWODINWPAFT-UHFFFAOYSA-N 0.000 description 1
- WSLZJAIGNWYWGW-UHFFFAOYSA-N C1CC2OC2CC1C1OCC(C2OC(C3CCC4OC4C3)OC2C2COC(C3CCC4OC4C3)O2)O1 Chemical compound C1CC2OC2CC1C1OCC(C2OC(C3CCC4OC4C3)OC2C2COC(C3CCC4OC4C3)O2)O1 WSLZJAIGNWYWGW-UHFFFAOYSA-N 0.000 description 1
- RTUSWZXEHUATGQ-UHFFFAOYSA-N C1CC2OC2CC1C1OCC2(CO1)COC(C1CCC3OC3C1)OC2.CC(C)(C1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC(OC(=O)C2CCC3OC3C2)CC1.O=C(OC1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1.O=C(OCC1CCC(COC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1 Chemical compound C1CC2OC2CC1C1OCC2(CO1)COC(C1CCC3OC3C1)OC2.CC(C)(C1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC(OC(=O)C2CCC3OC3C2)CC1.O=C(OC1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1.O=C(OCC1CCC(COC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1 RTUSWZXEHUATGQ-UHFFFAOYSA-N 0.000 description 1
- CVTIDENELLTGAZ-UHFFFAOYSA-N CC(=O)OCC1(COC(C)=O)COC(C)OC1 Chemical compound CC(=O)OCC1(COC(C)=O)COC(C)OC1 CVTIDENELLTGAZ-UHFFFAOYSA-N 0.000 description 1
- ZHABQJYYPKBCAA-UHFFFAOYSA-N CC(=O)OO.O=C(OCC(COC(=O)C1CC=CCC1)(COC(=O)C1CC=CCC1)COC(=O)C1CC=CCC1)C1CC=CCC1.O=C(OCC(COC(=O)C1CCC2OC2C1)(COC(=O)C1CCC2OC2C1)COC(=O)C1CCC2OC2C1)C1CCC2OC2C1 Chemical compound CC(=O)OO.O=C(OCC(COC(=O)C1CC=CCC1)(COC(=O)C1CC=CCC1)COC(=O)C1CC=CCC1)C1CC=CCC1.O=C(OCC(COC(=O)C1CCC2OC2C1)(COC(=O)C1CCC2OC2C1)COC(=O)C1CCC2OC2C1)C1CCC2OC2C1 ZHABQJYYPKBCAA-UHFFFAOYSA-N 0.000 description 1
- OTKBFVJBKJCZHO-BHOTUEBXSA-N CC(=O)O[2H]1OC(C)O1.CC1OC(C)OC(C)O1.CC1OCO1.COC(C)=O Chemical compound CC(=O)O[2H]1OC(C)O1.CC1OC(C)OC(C)O1.CC1OCO1.COC(C)=O OTKBFVJBKJCZHO-BHOTUEBXSA-N 0.000 description 1
- GRNYBFUFYCGSNK-UHFFFAOYSA-N CC(C)(C1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC(OC(=O)C2CCC3OC3C2)CC1.O=C(OC1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1.O=C(OCC1CCC(COC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1 Chemical compound CC(C)(C1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC(OC(=O)C2CCC3OC3C2)CC1.O=C(OC1CCC(OC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1.O=C(OCC1CCC(COC(=O)C2CCC3OC3C2)CC1)C1CCC2OC2C1 GRNYBFUFYCGSNK-UHFFFAOYSA-N 0.000 description 1
- YIRURBOWFLWYOV-UHFFFAOYSA-N COC(=O)C1CC=CCC1.O=C(OCC(COC(=O)C1CC=CCC1)(COC(=O)C1CC=CCC1)COC(=O)C1CC=CCC1)C1CC=CCC1.OCC(CO)(CO)CO.[Li]N Chemical compound COC(=O)C1CC=CCC1.O=C(OCC(COC(=O)C1CC=CCC1)(COC(=O)C1CC=CCC1)COC(=O)C1CC=CCC1)C1CC=CCC1.OCC(CO)(CO)CO.[Li]N YIRURBOWFLWYOV-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 239000004386 Erythritol Substances 0.000 description 1
- UNXHWFMMPAWVPI-UHFFFAOYSA-N Erythritol Natural products OCC(O)C(O)CO UNXHWFMMPAWVPI-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229910002567 K2S2O8 Inorganic materials 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NKAMOXSSGPMIAU-UHFFFAOYSA-N O=C(OCC(COC(=O)C1CCC2OC2C1)(COC(=O)C1CCC2OC2C1)COC(=O)C1CCC2OC2C1)C1CCC2OC2C1 Chemical compound O=C(OCC(COC(=O)C1CCC2OC2C1)(COC(=O)C1CCC2OC2C1)COC(=O)C1CCC2OC2C1)C1CCC2OC2C1 NKAMOXSSGPMIAU-UHFFFAOYSA-N 0.000 description 1
- BPQQTUXANYXVAA-UHFFFAOYSA-N Orthosilicate Chemical compound [O-][Si]([O-])([O-])[O-] BPQQTUXANYXVAA-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical class CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- YIMQCDZDWXUDCA-UHFFFAOYSA-N [4-(hydroxymethyl)cyclohexyl]methanol Chemical compound OCC1CCC(CO)CC1 YIMQCDZDWXUDCA-UHFFFAOYSA-N 0.000 description 1
- RSWGJHLUYNHPMX-ONCXSQPRSA-N abietic acid Chemical compound C([C@@H]12)CC(C(C)C)=CC1=CC[C@@H]1[C@]2(C)CCC[C@@]1(C)C(O)=O RSWGJHLUYNHPMX-ONCXSQPRSA-N 0.000 description 1
- 150000001241 acetals Chemical class 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- HGINCPLSRVDWNT-UHFFFAOYSA-N acrylaldehyde Natural products C=CC=O HGINCPLSRVDWNT-UHFFFAOYSA-N 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000001476 alcoholic effect Effects 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000005210 alkyl ammonium group Chemical group 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- JFCQEDHGNNZCLN-UHFFFAOYSA-N anhydrous glutaric acid Natural products OC(=O)CCCC(O)=O JFCQEDHGNNZCLN-UHFFFAOYSA-N 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000001244 carboxylic acid anhydrides Chemical class 0.000 description 1
- 150000001735 carboxylic acids Chemical class 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 239000007859 condensation product Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- IFDVQVHZEKPUSC-UHFFFAOYSA-N cyclohex-3-ene-1,2-dicarboxylic acid Chemical compound OC(=O)C1CCC=CC1C(O)=O IFDVQVHZEKPUSC-UHFFFAOYSA-N 0.000 description 1
- QYQADNCHXSEGJT-UHFFFAOYSA-N cyclohexane-1,1-dicarboxylate;hydron Chemical class OC(=O)C1(C(O)=O)CCCCC1 QYQADNCHXSEGJT-UHFFFAOYSA-N 0.000 description 1
- PDXRQENMIVHKPI-UHFFFAOYSA-N cyclohexane-1,1-diol Chemical compound OC1(O)CCCCC1 PDXRQENMIVHKPI-UHFFFAOYSA-N 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 238000007872 degassing Methods 0.000 description 1
- XXBDWLFCJWSEKW-UHFFFAOYSA-N dimethylbenzylamine Chemical compound CN(C)CC1=CC=CC=C1 XXBDWLFCJWSEKW-UHFFFAOYSA-N 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- UNXHWFMMPAWVPI-ZXZARUISSA-N erythritol Chemical compound OC[C@H](O)[C@H](O)CO UNXHWFMMPAWVPI-ZXZARUISSA-N 0.000 description 1
- 235000019414 erythritol Nutrition 0.000 description 1
- 229940009714 erythritol Drugs 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 229940085942 formulation r Drugs 0.000 description 1
- 239000001530 fumaric acid Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical class CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 150000004820 halides Chemical class 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- TZMQHOJDDMFGQX-UHFFFAOYSA-N hexane-1,1,1-triol Chemical compound CCCCCC(O)(O)O TZMQHOJDDMFGQX-UHFFFAOYSA-N 0.000 description 1
- XXMIOPMDWAUFGU-UHFFFAOYSA-N hexane-1,6-diol Chemical compound OCCCCCCO XXMIOPMDWAUFGU-UHFFFAOYSA-N 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004611 light stabiliser Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 125000005395 methacrylic acid group Chemical group 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 125000000896 monocarboxylic acid group Chemical group 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000002924 oxiranes Chemical class 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 150000002978 peroxides Chemical class 0.000 description 1
- 229920001467 poly(styrenesulfonates) Polymers 0.000 description 1
- 229920002037 poly(vinyl butyral) polymer Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 235000013772 propylene glycol Nutrition 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 150000003512 tertiary amines Chemical class 0.000 description 1
- 150000000000 tetracarboxylic acids Chemical class 0.000 description 1
- UFDHBDMSHIXOKF-UHFFFAOYSA-N tetrahydrophthalic acid Natural products OC(=O)C1=C(C(O)=O)CCCC1 UFDHBDMSHIXOKF-UHFFFAOYSA-N 0.000 description 1
- 239000004408 titanium dioxide Substances 0.000 description 1
- QXJQHYBHAIHNGG-UHFFFAOYSA-N trimethylolethane Chemical compound OCC(C)(CO)CO QXJQHYBHAIHNGG-UHFFFAOYSA-N 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/03—Powdery paints
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D493/00—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system
- C07D493/02—Heterocyclic compounds containing oxygen atoms as the only ring hetero atoms in the condensed system in which the condensed system contains two hetero rings
- C07D493/10—Spiro-condensed systems
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/38—Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
- C07D303/40—Compounds containing oxirane rings with hydrocarbon radicals, substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals by ester radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D407/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00
- C07D407/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having oxygen atoms as the only ring hetero atoms, not provided for by group C07D405/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/22—Di-epoxy compounds
- C08G59/24—Di-epoxy compounds carbocyclic
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G59/00—Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
- C08G59/18—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
- C08G59/20—Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the epoxy compounds used
- C08G59/32—Epoxy compounds containing three or more epoxy groups
- C08G59/3218—Carbocyclic compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/062—Copolymers with monomers not covered by C09D133/06
- C09D133/064—Copolymers with monomers not covered by C09D133/06 containing anhydride, COOH or COOM groups, with M being metal or onium-cation
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D167/00—Coating compositions based on polyesters obtained by reactions forming a carboxylic ester link in the main chain; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L63/00—Compositions of epoxy resins; Compositions of derivatives of epoxy resins
Definitions
- the invention relates to a powder coating composition
- a powder coating composition comprising a binder selected from carboxyl-group-containing polyesters, carboxyl-group-containing poly(meth)acrylates and mixtures of the said substances, and one or more epoxy compounds as thermal hardeners, and also to a preferred preparation process for one type of the epoxy compounds that are to be used.
- TGIC Triglycidyl isocyanurate
- binders see, e.g. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol A9, p. 559
- carboxyl-group-containing poly(meth)acrylates see, e.g., Johnson Wax Speciality Chemicals Product Application Bulletin, Powder Coatings.
- solid resin makes up the majority of such a mixture, so that a significant disadvantage of such hardener mixtures is that their epoxy functionality is appreciably reduced in comparison with TGIC.
- clean glycidylisation of 1,2-dicarboxylic acids is not easy on an industrial scale.
- the invention relates especially to powder coating compositions that comprise a binder selected from carboxyl-group-containing polyesters, carboxyl-group-containing poly(meth)-acrylates and mixtures of the said substances, and one or more epoxy compounds, wherein the epoxy compounds comprise at least one compound of formula (I) that is solid at 25° C.:
- A corresponds to a group of formula (II), (III), (IV), or (VI):
- B is an x-valent organic radical that is derived from a polyol having x or more hydroxyl groups by the removal of x hydroxyl groups;
- E is a (2x)-valent organic radical that is derived from a polyol having (2x) or more hydroxyl groups by the removal of (2x) hydroxyl groups;
- D is a (y+2z) ⁇ valent radical that is derived from a polyol having (y+2z) or more hydroxyl groups by the removal of (y+2z) hydroxyl groups;
- R 1 and R 5 are each independently of the other hydrogen, halogen, C 1 -C 4 alkyl or C 1 -C 4 alkoxy or are together a methylene group;
- R 9 are each independently of the others hydrogen, halogen, C 1 -C 4 alkyl or C 1 -C 4 alkoxy;
- x is an integer of at least 3;
- y is an integer from 1 to (x ⁇ 1) and
- the powder coating compositions according to the present invention are distinguished, inter alia, by a very good flow behaviour, and yield a cured material that has a high crosslinking density, a high degree of fastness to weathering and a high gloss.
- Epoxy resins of formula (I) are, in addition, toxicologically less harmful than glycidyl compounds such as are normally used for powder coating compositions.
- radicals R 1 , R 2 , R 3 , R 4 , R 5 , R 6 ,R 7 , R 8 and R 9 in formula (I) is halogen, it is preferably, for example, chlorine or bromine; when one of those radicals is C 1 -C 4 alkyl or C 1 -C 4 alkoxy, it is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl or an alkoxy group corresponding to one of those alkyl groups.
- the radicals R 1 , R 2 , R 3 , R 4 , R 5 , R 6 ,R 7 , R 8 and R 9 are C 1 -C 4 alkyl or, especially, hydrogen.
- Compounds of formula (I) wherein A corresponds to a group of formula (II) can be obtained, for example, from a polyol of formula B(OH) x wherein x is as defined hereinbefore, by esterifying the x hydroxyl groups of the polyol with cyclohexene-3-carboxylic acid and then epoxidising the carbon double bonds of the resulting polyester compound in customary manner, for example by means of an organic peracid, such as, for example, peracetic acid.
- an organic peracid such as, for example, peracetic acid.
- An especially preferred process for the preparation of compounds of formula (I) wherein A corresponds to a group of formula (II) comprises the transesterification of a cyclohexene-3-carboxylic acid ester, especially a cyclohexene-3-carboxylic acid C 1 -C 4 alkyl ester, such as methyl 3-cyclohexenecarboxylate, with a polyol of formula B(OH) x , wherein x is as defined hereinbefore, in the presence of LiNH 2 as transesterification catalyst, and with continuous removal from the reaction mixture of the alcohol freed from the cyclohexene-3-carboxylic acid ester, the transesterification being followed by the epoxidation of the carbon double bonds of the resulting transesterification product, which is carried out in customary manner, for example by means of an organic peracid, such as, for example, peracetic acid.
- an organic peracid such as, for example, peracetic acid.
- LiNH 2 as catalyst results, inter alia, in especially good yields and a high degree of product purity.
- the said process can also be used for epoxy compounds of formula (I) wherein A corresponds to a group of formula (II) and x is 1 or 2, and the present invention relates also thereto.
- R 1 and R 5 are likewise as defined hereinbefore, in the presence of a suitable catalyst, such as, for example, p-toluenesulfonic acid, and epoxidising the carbon double bonds of the resulting product in customary manner, for example by means of an organic peracid.
- a suitable catalyst such as, for example, p-toluenesulfonic acid, and epoxidising the carbon double bonds of the resulting product in customary manner, for example by means of an organic peracid.
- Compounds of formula (I) wherein A corresponds to a group of formula (IV) can be obtained, for example, in accordance with SU-A-1 792 956, by trimerising an aldehyde of the above-mentioned formula (V) in the presence of an acid, for example phosphoric acid or nitric acid, and epoxidising the double bonds of the resulting product, again in customary manner.
- an acid for example phosphoric acid or nitric acid
- powder coating compositions according to the invention wherein A corresponds to a group of formula (II), especially where x is from 3 to 6 and, preferably, is 4.
- B in formula (II) is preferably a radical that is derived from an aliphatic polyol having from 3 to 20 carbon atoms, from a cycloaliphatic polyol having from 5 to 20 carbon atoms or from a mixed aliphatic-cycloaliphatic polyol having from 7 to 20 carbon atoms.
- radical B in formula (II) is derived from 1,3-dihydroxy-2,2-di(hydroxymethyl)propane (pentaerythritol).
- A corresponds to a group of formula (III), especially where x is from 3 to 6 and, preferably, is 3.
- E in formula (III) and D in formula (VI) are each preferably a radical derived from an aliphatic polyol having from 3 to 20 carbon atoms, preferably 5 or 6 carbon atoms.
- the radical B in formula (III) is derived especially preferably from a polyol selected from mannitol, especially D-mannitol, sorbitol, especially D-sorbitol, and dulcitol.
- Powder coating compositions wherein A corresponds to a group of formula (IV) also constitute a preferred embodiment of the invention.
- Another special embodiment of the powder coating compositions according to the invention is one which comprises at least one further epoxy compound of formula (I) that is solid at 25° C. wherein
- A corresponds to a group of formula (II) or (III) and
- x is 2.
- the epoxy compounds of formula (I) wherein x is at least 3 and the epoxy compounds of formula (I) wherein x is 2 can be present in the powder coating compositions in a widely variable molar ratio, for example in a molar ratio of up to a maximum of 1:2, preferably up to a maximum of 1:1, especially a maximum of 1:0.5.
- the powder coating compositions according to the invention may in principle also comprise, in addition to the epoxy compounds of formula (I), certain amounts of one or more other epoxy compounds, e.g. glycidyl esters, such as those described in EP-A-536 085, EP-A-770 605 and EP-A-770 650.
- the expression “certain amount” is to be understood as meaning that a maximum of 60 percent, preferably a maximum of from 5 to 30 percent, of the total epoxy groups of the powder coating compositions according to the invention is provided by those other epoxy compounds.
- the powder coating compositions according to the invention are substantially free of such other epoxy compounds, especially glycidyl compounds, such as TGIC, or glycidyl esters, such as diglycidyl terephthalate, or the corresponding glycidyl methacrylates or copolymers thereof.
- “Substantially free” means that a maximum of 10 percent, preferably a maximum of 5 percent, of the total epoxy groups of the powder coating compositions according to the invention is provided by TGIC or glycidyl esters.
- powder coating compositions according to the invention that are completely free of glycidyl compounds, especiaclly free of TGIC and glycidyl esters.
- Suitable binders for the powder coating compositions according to the invention include, for example, free-carboxyl-group-containing polyesters having an acid number of from 10 to 160 mg, preferably from 10 to 70 mg, especially from 20 to 40 mg, of KOH per kilogram of polyester.
- the polyesters are furthermore advantageously solid at room temperature (from 15 to 35° C.) and have, for example, a molecular weight (number average Mn) of from 1000 to 10 000.
- the ratio of Mw (weight average of the molecular weight) to Mn of those polyesters is generally from 2 to 10.
- free-carboxyl-group-containing polyesters having a molecular weight (weight average Mw from GPC measurement using polystyrene calibration) of from 4000 to 15 000, especially from 6500 to 11 000, and a glass transition temperature (Tg) of from 35 to 120° C., preferably from 50 to 90° C.
- Polyesters such as those mentioned are described, for example, in U.S. Pat. No. 3,397,254 and EP-A-0 600 546.
- Polyesters suitable for the present invention are condensation products of difunctional, trifunctional and/or polyfunctional alcohols (polyols) with dicarboxylic acids and, optionally, trifunctional and/or polyfunctional carboxylic acids, or with corresponding carboxylic acid anhydrides.
- the polyols used include, for example, ethylene glycol, diethylene glycol, the propylene glycols, butylene glycol, 1,3-butanediol, 1,4-butanediol, neopentanediol, isopentyl glycol, 1,6-hexanediol, glycerol, hexanetriol, trimethylolethane, trimethylolpropane, erythritol, pentaerythritol, cyclohexanediol and 1,4-dimethylolcyclo-hexane.
- Suitable dicarboxylic acids include, for example, isophthalic acid, terephthalic acid, phthalic acid, methyl-substituted derivatives of the said acids, tetrahydrophthalic acid, methyl-tetrahydrophthalic acids, for example 4-methyltetrahydrophthalic acid, cyclohexane-dicarboxylic acids, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, fumaric acid, maleic acid and 4,4′-diphenyl-dicarboxylic acid etc..
- Suitable tricarboxylic acids include, for example, aliphatic tricarboxylic acids, such as 1,2,3-propanetricarboxylic acid, aromatic tricarboxylic acids, such as trimesic acid, trimellitic acid and hemimellitic acid, and cycloaliphatic tricarboxylic acids, such as 6-methylcyclohex-4-ene-1,2,3-tricarboxylic acid.
- Suitable tetracarboxylic acids include, for example, pyromellitic acid and benzophenone-3,3′,4,4′-tetracarboxylic acid.
- polyesters especially are very commonly based on neopentyl glycol and/or trimethylolpropane as the main alcoholic monomer constituent(s) and on adipic acid and/or terephthalic acid and/or isophthalic acid and/or trimellitic acid as the main acidic monomer component(s).
- carboxyl-group-containing poly(meth)acrylates which can be prepared in known manner by the copolymerisation of acrylic and/or methacrylic monomers, for example, C 1 -C 12 alkyl(meth)acrylates, such as methyl, ethyl, propyl; butyl, pentyl, hexyl, octyl, 2-ethylhexyl, decyl and dodecyl(meth)acrylates, C 1 -C 4 alkyl(meth)acrylates being preferred, or (meth)acrylamide with acrylic acid and/or methacrylic acid and, where appropriate, other ethylenically unsaturated comonomers, such as vinyl aromatic compounds, e.g.
- the copolymerisation can be carried out in known manner.
- the monomers can be dissolved in suitable organic solvents and thermally reacted in the presence of a suitable initiator that is soluble in the solvent, such as dicumyl peroxide, and in the presence of a suitable chain-transfer reagent.
- a suitable initiator such as dicumyl peroxide
- a suitable chain-transfer reagent such as thioglycolic acid (solution polymerisation)
- the monomer mixture can be suspended in water together with a solution of the initiator in an organic solvent and polymerised, or the monomer mixture can also be emulsified in water with the aid of surfactants, e.g.
- Suitable poly(meth)acrylic resins are solid at temperatures in the region of room temperature (from 15 to 25° C.). They generally have a molecular weight of from 1000 to 50 000 (weight average M w ), preferably from 5000 to 20 000.
- the Tg value (glass transition temperature) of the poly(meth)acrylates determined by DSC (heating rate 10° C./minute), is preferably-from 40 to 75° C.
- the acid number of the resins, quoted in mg equivalent KOH per g of (meth)acrylate resin, is preferably from 20 to 160, especially from 20 to 80.
- the powder coating compositions according to the invention comprise epoxy compounds and binders preferably in such an amount that the ratio of epoxy groups to carboxyl groups of the binder is from 2:1 to 0.5:1, preferably from 1.3:1 to 0.7:1.
- the compositions according to the invention may especially have a slight molar excess of epoxy groups.
- the molar ratio of epoxy groups to carboxyl groups in the compositions is thus preferably from 1.3:1 to 1:1, e.g. approximately from 1.2:1 to 1.1:1.
- the powder coating compositions according to the invention also comprise a catalyst for the reaction of epoxy groups with carboxyl groups.
- a catalyst is commonly an organic amine or a derivative of an amine, especially a tertiary amine or a nitrogen-containing heterocyclic compound.
- Preferred catalysts for the reaction of epoxy groups with carboxyl groups are phenylimidazole, N-benzyldimethylamine and 1,8-diazabicyclo[5.4.0]-7-undecene, optionally on a silicate support or triphenylphosphine, alkyltriphenylphosphonium halide, Actiron® NXJ-60 (2-propylimidazole), Actiron® NXJ-60 P (60 % by weight of 2-propylimidazole on 40% by weight of solid support).
- Belecter® DT 3126 alkylammonium salt in polyester.
- the catalyst or a catalyst mixture is preferably added in such an amount that the gel time of the mixture at 180° C.
- the powder coating compositions according to the invention may also comprise further additives customary in the surface-coating industry, for example light stabilizers, dyes, pigments, for example titanium dioxide pigment, degassing agents, for example benzoin, and/or flow agents.
- Suitable flow agents include, for example, polyvinyl acetals, such as polyvinyl butyral, polyethylene glycol, polyvinylpyrrolidone, glycerol and acrylic mixed polymers, such as, for example, those available under the names Modaflow® and Acrylron®.
- Powder coating compositions according to the invention can be prepared simply by mixing the constituents together, for example in a ball mill. Another, more preferred possibility comprises melting together, blending and homogenising the constituents, preferably using an extrusion machine, such as a Buss co-kneader, and cooling and comminuting the resulting mass. In that procedure, the fact that either immediately after extrusion, or at least after they have been left to stand for a few hours, for example from 24 to 48 hours, the powder coating compositions according to the invention become so hard and brittle that they can readily be ground, has proved especially advantageous.
- the powder coating composition mixtures preferably have a particle size in the range from 0.015 to 500 ⁇ m, especially from 10 to 75 ⁇ m.
- a masterbatch from portions of the binder, the epoxy resins and, optionally, further components, the masterbatch then being mixed and homogenised in a second step with the remainder of the binder and the remaining constituents to yield the finished powder coating composition.
- the powder coating compositions are cured at a temperature of at least approximately 100° C., for example from 150 to 250° C. Curing generally takes approximately from 10 to 60 minutes. All materials that are stable at the temperatures required for the curing, especially ceramics and metals, are suitable for coating.
- the substrate may already have one or more base surface-coatings that are compatible with the powder coating composition.
- the powder coating compositions exhibit good flow behaviour combined with good mechanical properties, good weather resistance and good resistance to chemicals.
- a mixture of D-mannitol (182.18 g,1.0 mol), 1,2,3,6-tetrahydrobenzaldehyde (800 ml, 7.0 mol) and p-toluenesulfonic acid monohydrate (1.9 g, 10 mmol, p-TSA) is heated under reflux (100° C./200 mbar) and water is continuously removed azeotropically. The theoretically calculated amount of water (53 ml) is collected in the course of 2 hours, and the mixture is subsequently cooled to room temperature. The mixture is then filtered through Dowex (Fluka 44340). The removal of excess 1,2,3,6-tetrahydrobenzaldehyde yields 460.5 g (100%) of the desired product in the form of a viscous oil.
- 1,2,3,6-Tetrahydrobenzaldehyde (200 g, 1.8 mol) is introduced into a reactor. With vigorous stirring, ortho-phosphoric acid is added dropwise, the temperature being maintained at 20° C. After reaction for 25 minutes, the entire mixture forms a solid mass and 500 ml of water are added. The solid residue is washed five times with 800 ml of water each time, then washed with 500 ml of NaHCO 3 solution (5% in water), then washed twice with 800 ml of water each time again, and finally washed twice with 800 ml of ethanol each time. The precipitate is filtered off and dried overnight at 60° C. 162.8 g (81%) of a white powder having a melting point of 170° C. are obtained.
- a mixture of pentaerythritol (81.76 g, 0.60 mol), 1,2,3,6-tetrahydrobenzaldehyde (250 ml, 3.5 mol) and p-toluenesulfonic acid monohydrate (1.14 g, 6 mmol, p-TSA) is heated under reflux (100° C./500 mbar) and water is continuously removed azeotropically. 17 ml of water are collected in the course of 2.5 hours, and the mixture is subsequently cooled to room temperature.
- the mixture is then diluted with 300 ml of ethyl acetate and washed first with 250 ml of NaHCO 3 solution (5% in water) and then twice with 250 ml of saturated NaCl solution.
- the organic layer- is removed and dried over MgSO 4 .
- the mixture that remains is shaken in 1.5 litres of cold ethanol, and the precipitate that forms is filtered off, washed with ethanol and dried overnight at 70° C. 110.3 g (57%) of the desired product are obtained in the form of a yellow powder having a melting point of 97° C.
- a mixture of the product of Example 1a (114.6 g, 0.25 mol) in 750 ml of dichloromethane is cooled to 10° C.
- a solution of peracetic acid (39% in acetic acid, 172 g, 0.88 mol) and anhydrous sodium acetate (8.79 g, 0.11 mol) is added dropwise to the mixture in the course of 1 hour. During the addition, the temperature is maintained below 30° C.
- the mixture is then reacted for 3 hours at room temperature.
- the mixture is washed with 500 ml of water, 500 ml of NaOH solution (1 N) and with 500 ml of saturated NaCl solution.
- the organic phase is removed, stirred with sodium sulfite and dried over MgSO 4 . Removal of the solvent yields 122.8 g (97%) o the product in the form of a viscous yellow resin (epoxy value: 5.46 eq./kg).
- Example 1b The product of Example 1b (101 g, 0.22 mol), peracetic acid (39%, 151.4 g, 0.78 mol), sodium acetate (7.72 g, 94 mmol) and dichloromethane (500 ml) are reacted in the same manner as that described in Example 2a, and yield 98.0 g (88%) of the corresponding end product in the form of a viscous oil (epoxy value: 5.53 eq./kg).
- Example 1c The product of Example 1c (99.1 g, 0.30 mol), peracetic acid (39%, 207.1 g, 1.06 mol), sodium acetate (10.61 g, 129 mmol) and dichloromethane (1000 ml) are reacted in the same manner as that described in Example 2a, and yield 106.1 g (94%) of the corresponding end product in the form of a white powder having a melting point of 201° C. (epoxy value: 7.55 eq/kg).
- Example 1a 33.0 g, 72 mmol
- Example 1c 33.0 g, 100 mmol
- peracetic acid 39%, 118.0 g, 607 mmol
- sodium acetate 6.03 g, 73 mmol
- dichloromethane 500 ml
- Example 1c The product of Example 1c (50.0 g, 156 mmol) and the product of Example 1d (50.0 g, 151 mmol), peracetic acid (39%, 196.1 g, 1.0 mol), sodium acetate (10.0 g, 122 mmol) and dichloromethane (800 ml) are reacted in the same manner as that described in Example 2a, and yield 98.4 g (87%) of the corresponding mixture of epoxy compounds of formula (I) in the form of a white powder (epoxy value: 5.72 eq./kg).
- the powder coating composition indicated in the following Table 3/1 is homogenised using an extruder (laboratory extruder from PRISM, The Old Stables, England). The cooled extrudate is ground to give the finished powder coating composition having a particle size of approximately 40 micrometers.
- the powder coating compositions indicated in the following Table 4/1 are homogenised using an extruder (laboratory extruder from PRISM, The Old Stables, England).
- the total amount of powder coating composition in each case is approximately from 100 to 200 grams.
- the cooled extrudates are ground to give the finished powder coating composition having a particle size of approximately 40 mm.
- reaction vessel After approximately 30 minutes the methanol begins to distill off. The total distillation time is approximately 6 hours, during the course of which 150 ml of xylene are added.
- the reaction vessel is then cooled to room temperature.
- the reaction mixture is diluted with 200 ml of toluene and washed with 200 ml of water.
- the organic phase is dried over MgSO 4 and filtered.
- the solvent and excess methyl 3-cyclohexenecarboxylate are then removed using a rotary evaporator (120° C./5 mbar). 110 g (97% yield) of reaction product are obtained in the form of a colourless, viscous liquid, which crystallises on being left to stand.
- the melting point of the crystallisate is 65° C.
- a mixture of 90.0 g (0.16 mol) of the reaction product obtained according to Step A in 700 ml of dichloromethane is cooled to a temperature of 10° C., and a suspension of 148 g (0.76 mol, 39% in acetic acid) of peracetic acid and 7.3 g (0.088 mol) of anhydrous sodium acetate is added dropwise thereto over a period of approximately 45 minutes. During the addition, the temperature is maintained below 30° C. The solution is subsequently allowed to react further for approximately 3 hours at room temperature (25-30° C.).
- the resulting reaction mixture is washed twice with 200 ml of water, then twice with 200 ml of a 5% NaHCO 3 solution and finally a further twice with 200 ml of water.
- the organic phase is subsequently stirred with sodium sulfite until a peroxide test is negative, and is subsequently dried over MgSO 4 . After removal of the solvent a colourless, viscous liquid is obtained which slowly crystallises on being left to stand. Recrystallisation from 200 ml of MeOH yields 80 g (80% yield) of the desired product in the form of a white, crystalline powder (epoxy value: 6.1 eq./kg; melting point: 95° C.).
- Viscosity Formulation (% by wt.) [sec.] [% by wt.] onset [° C.] [Pa.s] W according to Epoxide according 375 93.5 76 10700 the invention to Example 9 (7.8%) Comparison W1 PT 910 15) 450 80.4 72 510 (7.2%) Comparison W2 XB 912 16) 390 89.0 73 2100 (7.2%) Comparison W3 PT 810 17) 210 95.2 76 9050 (5.2%)
- the gelled amount of the powder coating composition (W) according to the invention which is significantly increased compared with the comparison compositions based on Araldite PT910 (Comparison W1) and XB 912 (Comparison W2), is a clear indication of the surprisingly increased crosslinking density in cured material based on the composition according to the invention under the same curing conditions (15 min./200° C.).
- the crosslinking density which with the same curing time is increased, also makes clear the higher reactivity of the systems according to the invention, that reactivity being comparable with compositions based on Araldite PT810 (Comparison W3).
- the viscosity of the system according to the invention after curing is significantly increased compared with all three comparison systems (W1, W2 and W3), demonstrating the comparatively high crosslinking density and reactivity of the powder coating compositions according to the invention.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Wood Science & Technology (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Paints Or Removers (AREA)
- Epoxy Resins (AREA)
- Macromonomer-Based Addition Polymer (AREA)
- Adhesives Or Adhesive Processes (AREA)
- Polyesters Or Polycarbonates (AREA)
- Compositions Of Oxide Ceramics (AREA)
- Joints Allowing Movement (AREA)
- Agricultural Chemicals And Associated Chemicals (AREA)
- Sealing Material Composition (AREA)
- Plural Heterocyclic Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
Abstract
Description
- The invention relates to a powder coating composition comprising a binder selected from carboxyl-group-containing polyesters, carboxyl-group-containing poly(meth)acrylates and mixtures of the said substances, and one or more epoxy compounds as thermal hardeners, and also to a preferred preparation process for one type of the epoxy compounds that are to be used.
- Powder coating compositions as referred to at the outset are used in a wide variety of forms. Triglycidyl isocyanurate (TGIC) has been successful as an epoxy hardener in such compositions, especially for external paints, which must have a high weather resistance. Its solid consistency, inter alia, has resulted in TGIC being considered today as the standard hardener for powder coating compositions based on carboxyl-group-containing polyesters as binders (see, e.g. Ullmann's Encyclopedia of Industrial Chemistry, 5th Ed., Vol A9, p. 559) and on carboxyl-group-containing poly(meth)acrylates (see, e.g., Johnson Wax Speciality Chemicals Product Application Bulletin, Powder Coatings).
- There have also been known for some time, however, powder coating compositions stable to outside weathering that are based on a TGIC-free, solid mixture of epoxy resins as hardener (see, e.g., EP-A-0 536 085), where substantial amounts of a liquid, higher-functional epoxy resin, e.g. trimellitic acid triglycidyl ester, are incorporated into a solid epoxy resin, e.g. diglycidyl terephthalate, without the total mixture of epoxy resins taking on a liquid consistency as a result. In industrial practice, however, virtually the only solid resins available hitherto for such hardener mixtures have been difunctional glycidyl esters. Furthermore, the solid resin makes up the majority of such a mixture, so that a significant disadvantage of such hardener mixtures is that their epoxy functionality is appreciably reduced in comparison with TGIC. In addition, clean glycidylisation of 1,2-dicarboxylic acids is not easy on an industrial scale.
- Accordingly there is still a need for new powder coating compositions with properties comparable to those of the above-mentioned powder coating compositions from a surface-coating technology standpoint, that is to say, for powder coating compositions that, especially, have good flow behaviour and high reactivity and with which it is possible to produce coatings having a high crosslinking density and a high level of stability towards weathering and UV. The present invention provides such new powder coating compositions.
- The invention relates especially to powder coating compositions that comprise a binder selected from carboxyl-group-containing polyesters, carboxyl-group-containing poly(meth)-acrylates and mixtures of the said substances, and one or more epoxy compounds, wherein the epoxy compounds comprise at least one compound of formula (I) that is solid at 25° C.:
- wherein
-
- in which
- B is an x-valent organic radical that is derived from a polyol having x or more hydroxyl groups by the removal of x hydroxyl groups;
- E is a (2x)-valent organic radical that is derived from a polyol having (2x) or more hydroxyl groups by the removal of (2x) hydroxyl groups; and
- D is a (y+2z)−valent radical that is derived from a polyol having (y+2z) or more hydroxyl groups by the removal of (y+2z) hydroxyl groups;
- R1 and R5 are each independently of the other hydrogen, halogen, C1-C4alkyl or C1-C4alkoxy or are together a methylene group; and
- R2, R3, R4,
- R6, R7, R8
- and R9 are each independently of the others hydrogen, halogen, C1-C4alkyl or C1-C4alkoxy; and
- x is an integer of at least 3;
- y is an integer from 1 to (x−1) and
- z is (x−y).
- The powder coating compositions according to the present invention are distinguished, inter alia, by a very good flow behaviour, and yield a cured material that has a high crosslinking density, a high degree of fastness to weathering and a high gloss. Epoxy resins of formula (I) are, in addition, toxicologically less harmful than glycidyl compounds such as are normally used for powder coating compositions.
- When one of the radicals R1, R2, R3, R4, R5, R6,R7, R8 and R9 in formula (I) is halogen, it is preferably, for example, chlorine or bromine; when one of those radicals is C1-C4alkyl or C1-C4alkoxy, it is, for example, methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl or tert-butyl or an alkoxy group corresponding to one of those alkyl groups.
- Preferably, the radicals R1, R2, R3, R4, R5, R6,R7, R8 and R9 are C1-C4alkyl or, especially, hydrogen.
- At least some of the compounds of formula (I) are known or are obtainable in known manner or in a manner analogous thereto.
- Compounds of formula (I) wherein A corresponds to a group of formula (II) can be obtained, for example, from a polyol of formula B(OH)x wherein x is as defined hereinbefore, by esterifying the x hydroxyl groups of the polyol with cyclohexene-3-carboxylic acid and then epoxidising the carbon double bonds of the resulting polyester compound in customary manner, for example by means of an organic peracid, such as, for example, peracetic acid.
- An especially preferred process for the preparation of compounds of formula (I) wherein A corresponds to a group of formula (II) comprises the transesterification of a cyclohexene-3-carboxylic acid ester, especially a cyclohexene-3-carboxylic acid C1-C4alkyl ester, such as methyl 3-cyclohexenecarboxylate, with a polyol of formula B(OH)x, wherein x is as defined hereinbefore, in the presence of LiNH2 as transesterification catalyst, and with continuous removal from the reaction mixture of the alcohol freed from the cyclohexene-3-carboxylic acid ester, the transesterification being followed by the epoxidation of the carbon double bonds of the resulting transesterification product, which is carried out in customary manner, for example by means of an organic peracid, such as, for example, peracetic acid. The use of LiNH2 as catalyst results, inter alia, in especially good yields and a high degree of product purity. The said process can also be used for epoxy compounds of formula (I) wherein A corresponds to a group of formula (II) and x is 1 or 2, and the present invention relates also thereto.
-
- wherein R1 and R5, as well as R2, R3, R4, R6, R7, R8 and R9, are likewise as defined hereinbefore, in the presence of a suitable catalyst, such as, for example, p-toluenesulfonic acid, and epoxidising the carbon double bonds of the resulting product in customary manner, for example by means of an organic peracid.
- Compounds of formula (I) wherein A corresponds to a group of formula (IV) can be obtained, for example, in accordance with SU-A-1 792 956, by trimerising an aldehyde of the above-mentioned formula (V) in the presence of an acid, for example phosphoric acid or nitric acid, and epoxidising the double bonds of the resulting product, again in customary manner.
- Compounds of formula (I) wherein A corresponds to a group of formula (VI) are likewise known, for example from Batog, A. E.; Pet'ko, I. P.; Kozlova, L. V.; Pandazi, I. F.; Plast. Massy (1979), (10), p. 9-10. where, for example, a compound of the above-mentioned formula (I) is described in which A corresponds to the group set out below and D is a tetravalent radical derived from pentaerythritol by the removal of 4 hydroxyl groups:
- Preference is given to powder coating compositions according to the invention wherein A corresponds to a group of formula (II), especially where x is from 3 to 6 and, preferably, is 4.
- B in formula (II) is preferably a radical that is derived from an aliphatic polyol having from 3 to 20 carbon atoms, from a cycloaliphatic polyol having from 5 to 20 carbon atoms or from a mixed aliphatic-cycloaliphatic polyol having from 7 to 20 carbon atoms.
- More especially, the radical B in formula (II) is derived from 1,3-dihydroxy-2,2-di(hydroxymethyl)propane (pentaerythritol).
- Preference is given also to powder coating compositions according to the invention wherein A corresponds to a group of formula (III), especially where x is from 3 to 6 and, preferably, is 3.
- E in formula (III) and D in formula (VI) are each preferably a radical derived from an aliphatic polyol having from 3 to 20 carbon atoms, preferably 5 or 6 carbon atoms.
- The radical B in formula (III) is derived especially preferably from a polyol selected from mannitol, especially D-mannitol, sorbitol, especially D-sorbitol, and dulcitol.
- Powder coating compositions wherein A corresponds to a group of formula (IV) also constitute a preferred embodiment of the invention.
- Another special embodiment of the powder coating compositions according to the invention is one which comprises at least one further epoxy compound of formula (I) that is solid at 25° C. wherein
- A corresponds to a group of formula (II) or (III) and
- x is 2.
-
- The preparation of such difunctional epoxy compounds can likewise be carried out in the manner already described above for the corresponding trifunctional and higher-functional compounds.
- The epoxy compounds of formula (I) wherein x is at least 3 and the epoxy compounds of formula (I) wherein x is 2 can be present in the powder coating compositions in a widely variable molar ratio, for example in a molar ratio of up to a maximum of 1:2, preferably up to a maximum of 1:1, especially a maximum of 1:0.5.
- The powder coating compositions according to the invention may in principle also comprise, in addition to the epoxy compounds of formula (I), certain amounts of one or more other epoxy compounds, e.g. glycidyl esters, such as those described in EP-A-536 085, EP-A-770 605 and EP-A-770 650. The expression “certain amount” is to be understood as meaning that a maximum of 60 percent, preferably a maximum of from 5 to 30 percent, of the total epoxy groups of the powder coating compositions according to the invention is provided by those other epoxy compounds. Especially preferably, however, the powder coating compositions according to the invention are substantially free of such other epoxy compounds, especially glycidyl compounds, such as TGIC, or glycidyl esters, such as diglycidyl terephthalate, or the corresponding glycidyl methacrylates or copolymers thereof. “Substantially free” means that a maximum of 10 percent, preferably a maximum of 5 percent, of the total epoxy groups of the powder coating compositions according to the invention is provided by TGIC or glycidyl esters. Finally, most preferred are powder coating compositions according to the invention that are completely free of glycidyl compounds, especiaclly free of TGIC and glycidyl esters.
- Suitable binders for the powder coating compositions according to the invention include, for example, free-carboxyl-group-containing polyesters having an acid number of from 10 to 160 mg, preferably from 10 to 70 mg, especially from 20 to 40 mg, of KOH per kilogram of polyester.
- The polyesters are furthermore advantageously solid at room temperature (from 15 to 35° C.) and have, for example, a molecular weight (number average Mn) of from 1000 to 10 000. The ratio of Mw (weight average of the molecular weight) to Mn of those polyesters is generally from 2 to 10. There are especially suitable, for example, free-carboxyl-group-containing polyesters having a molecular weight (weight average Mw from GPC measurement using polystyrene calibration) of from 4000 to 15 000, especially from 6500 to 11 000, and a glass transition temperature (Tg) of from 35 to 120° C., preferably from 50 to 90° C.
- Polyesters such as those mentioned are described, for example, in U.S. Pat. No. 3,397,254 and EP-A-0 600 546. Polyesters suitable for the present invention are condensation products of difunctional, trifunctional and/or polyfunctional alcohols (polyols) with dicarboxylic acids and, optionally, trifunctional and/or polyfunctional carboxylic acids, or with corresponding carboxylic acid anhydrides. The polyols used include, for example, ethylene glycol, diethylene glycol, the propylene glycols, butylene glycol, 1,3-butanediol, 1,4-butanediol, neopentanediol, isopentyl glycol, 1,6-hexanediol, glycerol, hexanetriol, trimethylolethane, trimethylolpropane, erythritol, pentaerythritol, cyclohexanediol and 1,4-dimethylolcyclo-hexane. Suitable dicarboxylic acids include, for example, isophthalic acid, terephthalic acid, phthalic acid, methyl-substituted derivatives of the said acids, tetrahydrophthalic acid, methyl-tetrahydrophthalic acids, for example 4-methyltetrahydrophthalic acid, cyclohexane-dicarboxylic acids, succinic acid, glutaric acid, adipic acid, pimelic acid, suberic acid, azelaic acid, sebacic acid, dodecanedicarboxylic acid, fumaric acid, maleic acid and 4,4′-diphenyl-dicarboxylic acid etc.. Suitable tricarboxylic acids include, for example, aliphatic tricarboxylic acids, such as 1,2,3-propanetricarboxylic acid, aromatic tricarboxylic acids, such as trimesic acid, trimellitic acid and hemimellitic acid, and cycloaliphatic tricarboxylic acids, such as 6-methylcyclohex-4-ene-1,2,3-tricarboxylic acid. Suitable tetracarboxylic acids include, for example, pyromellitic acid and benzophenone-3,3′,4,4′-tetracarboxylic acid. Commercially available polyesters especially are very commonly based on neopentyl glycol and/or trimethylolpropane as the main alcoholic monomer constituent(s) and on adipic acid and/or terephthalic acid and/or isophthalic acid and/or trimellitic acid as the main acidic monomer component(s).
- Also suitable as binders are carboxyl-group-containing poly(meth)acrylates, which can be prepared in known manner by the copolymerisation of acrylic and/or methacrylic monomers, for example, C1-C12alkyl(meth)acrylates, such as methyl, ethyl, propyl; butyl, pentyl, hexyl, octyl, 2-ethylhexyl, decyl and dodecyl(meth)acrylates, C1-C4alkyl(meth)acrylates being preferred, or (meth)acrylamide with acrylic acid and/or methacrylic acid and, where appropriate, other ethylenically unsaturated comonomers, such as vinyl aromatic compounds, e.g. styrene, a-methylstyrene, vinyltoluene or also β-halogenated styrenes, in addition. The copolymerisation can be carried out in known manner. For example, the monomers can be dissolved in suitable organic solvents and thermally reacted in the presence of a suitable initiator that is soluble in the solvent, such as dicumyl peroxide, and in the presence of a suitable chain-transfer reagent. such as thioglycolic acid (solution polymerisation), or the monomer mixture can be suspended in water together with a solution of the initiator in an organic solvent and polymerised, or the monomer mixture can also be emulsified in water with the aid of surfactants, e.g. sodium lauryl sulfate, and reacted in the presence of a water-soluble polymerisation initiator, such as K2S2O8 (emulsion polymerisation). The prepared poly(meth)acrylic resin is in each case then isolated in solid form from the solvent or water. The reaction can also be carried out without using solvents or water, for example according to JP-A-Sho 53-140 395. Suitable poly(meth)acrylic resins are solid at temperatures in the region of room temperature (from 15 to 25° C.). They generally have a molecular weight of from 1000 to 50 000 (weight average Mw), preferably from 5000 to 20 000.
- The Tg value (glass transition temperature) of the poly(meth)acrylates, determined by DSC (heating rate 10° C./minute), is preferably-from 40 to 75° C. The acid number of the resins, quoted in mg equivalent KOH per g of (meth)acrylate resin, is preferably from 20 to 160, especially from 20 to 80.
- In certain cases it may also be advantageous to use, as binders, a mixture of free-carboxyl-group-containing polyesters and free-carboxyl-group-containing poly(meth)acrylates.
- The powder coating compositions according to the invention comprise epoxy compounds and binders preferably in such an amount that the ratio of epoxy groups to carboxyl groups of the binder is from 2:1 to 0.5:1, preferably from 1.3:1 to 0.7:1. The compositions according to the invention may especially have a slight molar excess of epoxy groups. The molar ratio of epoxy groups to carboxyl groups in the compositions is thus preferably from 1.3:1 to 1:1, e.g. approximately from 1.2:1 to 1.1:1.
- Preferably, the powder coating compositions according to the invention also comprise a catalyst for the reaction of epoxy groups with carboxyl groups. Such a catalyst is commonly an organic amine or a derivative of an amine, especially a tertiary amine or a nitrogen-containing heterocyclic compound. Preferred catalysts for the reaction of epoxy groups with carboxyl groups are phenylimidazole, N-benzyldimethylamine and 1,8-diazabicyclo[5.4.0]-7-undecene, optionally on a silicate support or triphenylphosphine, alkyltriphenylphosphonium halide, Actiron® NXJ-60 (2-propylimidazole), Actiron® NXJ-60 P (60 % by weight of 2-propylimidazole on 40% by weight of solid support). Beschleuniger® DT 3126 (alkylammonium salt in polyester). The catalyst or a catalyst mixture is preferably added in such an amount that the gel time of the mixture at 180° C. (determined according to DIN 55990) is approximately from 70 to 400 seconds, preferably from 90 to 300 seconds. Generally, approximately from 0.1 to 10 percent by weight, especially from 0.5 to 5 percent by weight, of catalyst will be required for that purpose. Of course some commercially available polyesters that can be used as binders for the powder coating compositions according to the invention will already contain a certain amount of one of the above-mentioned catalysts or of a comparable catalyst, and that amount should be taken into account in the above percentage by weight figure for the catalyst; the mentioned preferred gel times can be used to provide an indication of how much catalyst still needs to be added.
- The powder coating compositions according to the invention may also comprise further additives customary in the surface-coating industry, for example light stabilizers, dyes, pigments, for example titanium dioxide pigment, degassing agents, for example benzoin, and/or flow agents. Suitable flow agents include, for example, polyvinyl acetals, such as polyvinyl butyral, polyethylene glycol, polyvinylpyrrolidone, glycerol and acrylic mixed polymers, such as, for example, those available under the names Modaflow® and Acrylron®.
- Powder coating compositions according to the invention can be prepared simply by mixing the constituents together, for example in a ball mill. Another, more preferred possibility comprises melting together, blending and homogenising the constituents, preferably using an extrusion machine, such as a Buss co-kneader, and cooling and comminuting the resulting mass. In that procedure, the fact that either immediately after extrusion, or at least after they have been left to stand for a few hours, for example from 24 to 48 hours, the powder coating compositions according to the invention become so hard and brittle that they can readily be ground, has proved especially advantageous. The powder coating composition mixtures preferably have a particle size in the range from 0.015 to 500 μm, especially from 10 to 75 μm. In some-cases it may also be advantageous first of all to prepare a masterbatch from portions of the binder, the epoxy resins and, optionally, further components, the masterbatch then being mixed and homogenised in a second step with the remainder of the binder and the remaining constituents to yield the finished powder coating composition.
- After application to the article to be coated. the powder coating compositions are cured at a temperature of at least approximately 100° C., for example from 150 to 250° C. Curing generally takes approximately from 10 to 60 minutes. All materials that are stable at the temperatures required for the curing, especially ceramics and metals, are suitable for coating. The substrate may already have one or more base surface-coatings that are compatible with the powder coating composition.
- The powder coating compositions exhibit good flow behaviour combined with good mechanical properties, good weather resistance and good resistance to chemicals.
-
- A mixture of D-mannitol (182.18 g,1.0 mol), 1,2,3,6-tetrahydrobenzaldehyde (800 ml, 7.0 mol) and p-toluenesulfonic acid monohydrate (1.9 g, 10 mmol, p-TSA) is heated under reflux (100° C./200 mbar) and water is continuously removed azeotropically. The theoretically calculated amount of water (53 ml) is collected in the course of 2 hours, and the mixture is subsequently cooled to room temperature. The mixture is then filtered through Dowex (Fluka 44340). The removal of excess 1,2,3,6-tetrahydrobenzaldehyde yields 460.5 g (100%) of the desired product in the form of a viscous oil.
- In the same manner as that described in Example 1a, D-sorbitol (54.50 g, 0.30 mol) and 1,2,3,6-tetrahydrobenzaldehyde (250 ml, 2.2 mol) are reacted in the presence of p-toluenesulfonic acid monohydrate (0.57 g, 3 mmol), yielding 119.0 g (87%) of the corresponding product, likewise in the form of a viscous oil.
-
- 1,2,3,6-Tetrahydrobenzaldehyde (200 g, 1.8 mol) is introduced into a reactor. With vigorous stirring, ortho-phosphoric acid is added dropwise, the temperature being maintained at 20° C. After reaction for 25 minutes, the entire mixture forms a solid mass and 500 ml of water are added. The solid residue is washed five times with 800 ml of water each time, then washed with 500 ml of NaHCO3 solution (5% in water), then washed twice with 800 ml of water each time again, and finally washed twice with 800 ml of ethanol each time. The precipitate is filtered off and dried overnight at 60° C. 162.8 g (81%) of a white powder having a melting point of 170° C. are obtained.
-
- A mixture of pentaerythritol (81.76 g, 0.60 mol), 1,2,3,6-tetrahydrobenzaldehyde (250 ml, 3.5 mol) and p-toluenesulfonic acid monohydrate (1.14 g, 6 mmol, p-TSA) is heated under reflux (100° C./500 mbar) and water is continuously removed azeotropically. 17 ml of water are collected in the course of 2.5 hours, and the mixture is subsequently cooled to room temperature. The mixture is then diluted with 300 ml of ethyl acetate and washed first with 250 ml of NaHCO3 solution (5% in water) and then twice with 250 ml of saturated NaCl solution. The organic layer-is removed and dried over MgSO4. After removal of the solvent, the mixture that remains is shaken in 1.5 litres of cold ethanol, and the precipitate that forms is filtered off, washed with ethanol and dried overnight at 70° C. 110.3 g (57%) of the desired product are obtained in the form of a yellow powder having a melting point of 97° C.
-
- A mixture of the product of Example 1a (114.6 g, 0.25 mol) in 750 ml of dichloromethane is cooled to 10° C. A solution of peracetic acid (39% in acetic acid, 172 g, 0.88 mol) and anhydrous sodium acetate (8.79 g, 0.11 mol) is added dropwise to the mixture in the course of 1 hour. During the addition, the temperature is maintained below 30° C. The mixture is then reacted for 3 hours at room temperature. The mixture is washed with 500 ml of water, 500 ml of NaOH solution (1 N) and with 500 ml of saturated NaCl solution. The organic phase is removed, stirred with sodium sulfite and dried over MgSO4. Removal of the solvent yields 122.8 g (97%) o the product in the form of a viscous yellow resin (epoxy value: 5.46 eq./kg).
- The product of Example 1b (101 g, 0.22 mol), peracetic acid (39%, 151.4 g, 0.78 mol), sodium acetate (7.72 g, 94 mmol) and dichloromethane (500 ml) are reacted in the same manner as that described in Example 2a, and yield 98.0 g (88%) of the corresponding end product in the form of a viscous oil (epoxy value: 5.53 eq./kg).
-
- The product of Example 1c (99.1 g, 0.30 mol), peracetic acid (39%, 207.1 g, 1.06 mol), sodium acetate (10.61 g, 129 mmol) and dichloromethane (1000 ml) are reacted in the same manner as that described in Example 2a, and yield 106.1 g (94%) of the corresponding end product in the form of a white powder having a melting point of 201° C. (epoxy value: 7.55 eq/kg).
- The product of Example 1b (114.7 g, 0.25 mol) and the product of Example 1c (82.6 g, 0.25 mol), peracetic acid (39%, 343.8 g, 1.76 mol), sodium acetate (17.36 g, 212 mmol) and dichloromethane (1000 ml) are reacted in the same manner as that described in Example 2a, and yield 215.8 g (97%) of the corresponding mixture of epoxy compounds of formula (I) in the form of a yellow powder (epoxy value: 6.08 eq./kg).
- The product of Example 1a (33.0 g, 72 mmol) and the product of Example 1c (33.0 g, 100 mmol), peracetic acid (39%, 118.0 g, 607 mmol), sodium acetate (6.03 g, 73 mmol) and dichloromethane (500 ml) are reacted in the same manner as that described in Example 2a, and yield 69.1 g (97%) of the corresponding mixture of epoxy compounds of formula (I) in the form of a white powder (epoxy value: 6.55 eq./kg).
- The product of Example 1c (50.0 g, 156 mmol) and the product of Example 1d (50.0 g, 151 mmol), peracetic acid (39%, 196.1 g, 1.0 mol), sodium acetate (10.0 g, 122 mmol) and dichloromethane (800 ml) are reacted in the same manner as that described in Example 2a, and yield 98.4 g (87%) of the corresponding mixture of epoxy compounds of formula (I) in the form of a white powder (epoxy value: 5.72 eq./kg).
- The powder coating composition indicated in the following Table 3/1 is homogenised using an extruder (laboratory extruder from PRISM, The Old Stables, England). The cooled extrudate is ground to give the finished powder coating composition having a particle size of approximately 40 micrometers.
TABLE 3/1 Powder coating composition formulation Formulation A[g] Uralac P 34851) 60.00 Epoxy compound according to 5.80 Example 2a Benzoin 0.20 Acrylron2) 1.00 TiO2[Cronos 2160] 33.00 - Using an electrostatic spray gun, the powder coating composition is applied to a Q panel as substrate. The coated panel is then placed in an oven in order to melt and fully cure the powder coating composition. The gel time, the curing temperature and the curing time, and also the thickness of the resulting powder resin coating, are indicated in the following Table 3/2 together with properties of the resulting coatings that are important from the standpoint *of surface-coating technology.
TABLE 3/2 Property A Gel time 180° C. [sec.] 210 Full cure 15 min./200° C. Layer thickness [mm] 55 Substrate Q panel Gloss 60° 94 Gloss 20° 84 Yellowness value Yi 4.8 Flow [rating]3) 12 Acetone test5), 1 min. 3 [rating] - The powder coating compositions indicated in the following Table 4/1 are homogenised using an extruder (laboratory extruder from PRISM, The Old Stables, England). The total amount of powder coating composition in each case is approximately from 100 to 200 grams. The cooled extrudates are ground to give the finished powder coating composition having a particle size of approximately 40 mm.
TABLE 4/1 Powder coating composition formulations Formulation B [g] C [g] D [g] E [g] Uralac P 34851) 59.05 58.11 58.71 59.17 DGT6) — 1.80 4.37 4.41 Epoxy compound according to 5.92 4.56 1.38 1.39 Example 2b DT 31267) — 0.50 0.50 — Benzoin 0.20 0.20 0.20 0.20 Acrylron2) 1.50 1.50 1.50 1.50 TiO2 [Cronos 2160] 33.33 33.33 33.33 33.33 - The properties found for the coatings are indicated in the following Table 4/2.
TABLE 4/2 Property B C D E Gel time @ 180° C. 165 265 400 530 [sec.] Full cure 15 min./ 15 min./ 15 min./200° C. 15 min./ 180° C. 200° C. 200° C. Layer thickness [mm] 54 55 56 55 Substrate Q panel Q panel Q panel Q Panel Gloss 60° 95 95 96 96 Gloss 20° 84 84 88 88 Yellowness value Yi 2.7 4.8 1.7 0.3 Flow3)[rating] 10 10 10 6 Acetone test5), 1 min. 3 3 3 4 [rating] - The powder coating compositions indicated in Table 5/1 are prepared in accordance with Example 4.
TABLE 5/1 Powder coating composition formulations Formulation F [g] G [g] H [g] Uralac P 34851) 58.38 59.91 59.91 Epoxy compound according to 4.59 4.89 4.89 Example 2c DT 31267) 2.00 — — Benzoin 0.20 0.20 0.20 Crylcoat 1649) — 1.00 — Acrylron2) 1.50 1.00 1.00 TiO2 [Cronos 2160] 33.33 33.00 33.00 - The properties found for the coatings are indicated in the following Table 5/2.
TABLE 5/2 Property F G H Gel time @ 180° [sec.] 150 160 s 90 Full cure 15 min./180° C. 15 min./200° C. 15 min./200° C. Layer thickness [mm] 53 48 51 Substrate Q panel Q panel Q Panel Gloss 60° — 95 95 Gloss 20° — 83 71 Yellowness value Yi — 2.4 0.0 Flow [rating]3) 8 10 10 Acetone test5), 1 min. 3 3 3 [rating] - The powder coating composition indicated in Table 6/1 is prepared in accordance with Example 4.
TABLE 6/1 Powder coating composition formulation Formulation I [g] Uralac P 34851) 59.54 Epoxy compound according to 5.43 Example 2e Benzoin 0.20 Acrylron 1.50 TiO2 [Cronos 2160] 33.33 - The properties found for the corresponding coating are indicated in the following Table 6/2.
TABLE 6/2 Property I Gel time 180° C. [sec.] 285 Full cure 15 min./180° C. Layer thickness [mm] 86 Substrate Q panel Gloss 60° 91 Gloss 20° 75 Yellowness value Yi 3.3 Flow [rating]3) 10-12 Acetone test,5) 1 min. 2 [rating] - The powder coating compositions indicated in Table 7/1 are prepared in accordance with Example 4.
TABLE 7/1 Powder coating composition formulations Formulation J [g] K [g] Uralac P 34851) 60.66 59.79 Epoxy resin according 5.14 6.01 to Example 2f Benzoin 0.20 0.20 Acrylron2) 1.00 1.00 TiO2 [Cronos 2160] 33.00 33.33 - The properties found for the corresponding coating are indicated in the following Table 7/2.
TABLE 7/2 Property J K Gel time @ 180° C. [sec.] 200 200 Full cure 15 min./200° C. 15 min./200° C. Layer thickness [mm] 45 89 Substrate Q panel Q panel Gloss 60° 95 96 Gloss 20° 82 77 Yellowness value Yi 2.0 7.9 Flow 3)[rating] 10 6-8 Acetone test5), 1 min. 3 3 [rating] - The powder coating compositions indicated in Table 8/1 are prepared in accordance with Example 4.
TABLE 8/1 Powder coating composition formulations Formulation J K Uralac P 34851) 91.27 60.78 Epoxy compound according to 7.53 5.02 Example 2e Benzoin 0.20 0.20 Acrylron2) 1.00 1.00 TiO2 [Cronos 2160] — 33.00 - The properties found for the corresponding coatings are indicated in the following Table 8/2.
TABLE 8/2 L M Gel time @ 180° C. [sec.] 180 180 Full cure 15 min./200° C. 15 min./200° C. Layer thickness [mm] 55 55 Substrate Q panel Q panel Gloss 60° 108 96 Gloss 20° 76 81 Yellowness value Yi — 6.8 Flow3) [rating] 2 6-8 Acetone test5), 1 min. 3 3 [rating] -
-
- 100 ml of xylene (purissimum, stored over a 4Å molecular sieve, water content<0.02%), 146.3 g (1.04 mol) of methyl 3-cyclohexenecarboxylate and 27.1 g (0.20 mol) of pentaerythritol are introduced into a well-insulated reaction vessel equipped with a thermometer, a mechanical stirrer and a distillation bridge. The resulting suspension is heated at a temperature of from 145 to 150° C. for 30 minutes under nitrogen and with stirring further xylene gradually being added to the reaction vessel at the same rate as that at which xylene is distilled off. 0.23 g (0.01 mol) of LiNH2 is then added. After approximately 30 minutes the methanol begins to distill off. The total distillation time is approximately 6 hours, during the course of which 150 ml of xylene are added. The reaction vessel is then cooled to room temperature. The reaction mixture is diluted with 200 ml of toluene and washed with 200 ml of water. The organic phase is dried over MgSO4 and filtered. The solvent and excess methyl 3-cyclohexenecarboxylate are then removed using a rotary evaporator (120° C./5 mbar). 110 g (97% yield) of reaction product are obtained in the form of a colourless, viscous liquid, which crystallises on being left to stand. The melting point of the crystallisate is 65° C.
-
- A mixture of 90.0 g (0.16 mol) of the reaction product obtained according to Step A in 700 ml of dichloromethane is cooled to a temperature of 10° C., and a suspension of 148 g (0.76 mol, 39% in acetic acid) of peracetic acid and 7.3 g (0.088 mol) of anhydrous sodium acetate is added dropwise thereto over a period of approximately 45 minutes. During the addition, the temperature is maintained below 30° C. The solution is subsequently allowed to react further for approximately 3 hours at room temperature (25-30° C.). The resulting reaction mixture is washed twice with 200 ml of water, then twice with 200 ml of a 5% NaHCO3 solution and finally a further twice with 200 ml of water. The organic phase is subsequently stirred with sodium sulfite until a peroxide test is negative, and is subsequently dried over MgSO4. After removal of the solvent a colourless, viscous liquid is obtained which slowly crystallises on being left to stand. Recrystallisation from 200 ml of MeOH yields 80 g (80% yield) of the desired product in the form of a white, crystalline powder (epoxy value: 6.1 eq./kg; melting point: 95° C.).
- The powder coating compositions indicated in Table 10/1 are prepared in accordance with Example 4.
TABLE 10/1 Powder coating composition formulations Formulation N [g] O [g] P [g] Q [g] Uralac P 34851) 56.26 58.89 58.80 58.82 DGT6) — 2.74 — — HHDGP10) — — — 1.12 HHDGT11) — — 1.14 — Epoxy compound according to 5.71 2.84 4.53 4.53 Example 9 DT 3126)) — 0.50 0.50 0.50 Benzoin 0.20 0.20 0.20 0.20 Acrylron2) 1.50 1.50 1.50 1.50 TiO2 [Cronos 2160] 33.33 33.33 33.33 33.33 - The properties found for the corresponding coatings are indicated in the following Table 10/2.
TABLE 10/2 N O P Q Gel time @ 180° C. [sec.] 190 280 195 195 Full cure 15 min./ 15 min./ 15 min./ 15 min./ 180° C. 180° C. 180° C. 180° C. Layer thickness [mm] 62 48 58 60 Substrate Q panel Q panel Q panel Q panel Gloss 60° 95 95 96 95 Gloss 20° 86 83 88 85 Yellowness value Yi 0.4 −1.3 −0.4 −0.6 Flow3)[rating] 10 10 10 11 Impact, reverse4) [kg cm] 100 >160 140 120 Impact, front4) [kg cm] 160 >160 160 160 Acetone test5), 1 min. 3 3 3 3 [rating] - the product of the weight of the punch in kg and the test reignt in cm at which there is still no detectable damage to the coating
- The powder coating compositions indicated in Table 11/1 are prepared in accordance with Example 4.
TABLE 11/1 Powder coating composition formulations Formulation R[g] S[g] T[g] U[g] V[g] Uralac P 34851) 58.53 58.21 58.60 57.99 58.49 Epoxy compound according to 4.51 4.84 4.51 5.12 4.78 Example 9 Epoxy compound12) 1.43 1.42 — — — Epoxy compound13) — — 1.36 1.36 — Epoxy compound14) — — — — 1.20 DT 31267) 0.50 0.50 0.50 0.50 0.50 Benzoin 0.20 0.20 0.20 0.20 0.20 Acrylron2) 1.50 1.50 1.50 1.50 1.50 TiO2 [Cronos 2160] 33.33 33.33 33.33 33.33 33.33 -
- The above epoxy compounds (2) 13) and 14 are obtained in accordance with the same preparation procedure as in Example 9
- The properties found for the corresponding coatings are indicated in the following Table 11/2.
TABLE 11/2 R S T U V Gel time @ 180° C. 240 230 210 215 215 [sec.] Full cure 15 min. 15 min. 15 min. 15 min. 15 min. 180° C. 200° C. 200° C. 200° C. 200° C. Layer thickness [mm] 48 47 72 47 47 Substrate Q panel Q panel Q panel Q panel Q panel Gloss 60° 91 94 94 94 95 Gloss 20° 86 84 87 77 82 Yellowness value Yi −2.3 −2.1 2.0 −2.8 −1.9 Flow3)[rating] 10 10 10 11 9 Impact, reverse4) [kg cm] >160 >160 >160 >160 >160 Impact, front4) [kg cm] >160 >160 >160 >160 >160 Acetone test5), 1 min. 3 3 3 3 3 [rating] - The powder coatings indicated in Table 12/1 are prepared in accordance with Example 4.
TABLE 12/1 Powder coating composition formulations Formulation X [g] Y [g] Z [g] Uralac P 3485 58.56 57.86 57.55 Epoxy compound, prepared in accordance with 2.90 2.15 5.13 Example 2b (5.60 eq./kg) Epoxy compound12) 3.01 4.46 — Epoxy compound13) — — 1.80 DT 31267) 0.50 0.50 0.50 Benzoin 0.20 0.20 0.20 Acrylron2) 1.50 1.50 1.50> TiO2 [Cronos 2160] 33.33 33.33 33.33 - The properties found for the corresponding coatings are indicated in the following Table 12/2.
TABLE 12/2 X Y Z Gel time @ 180° C. [sec.] 245 sec. 410 sec. 220 sec. Full cure 15 min./180° C. 15 min./180° C. 15 min./180° C. Layer thickness [mm] 60 59 69 Substrate Q panel Q panel Q panel Gloss 60° 95 94 95 Gloss 20° 88 86 86 Yellowness value Yi 4.5 3.3 5.1 Flow3)[rating] 10 10 10 Acetone test5), 1 min. 3 3 3 [rating] - A clear powder coating composition (W) according to the invention and three clear powder coating compositions used for comparison purposes (W1, W2, W3), each based on Uralac 348914) and the epoxy compounds indicated in the following Table 13/1 (molar ratio of the COOH groups of the polyester to the epoxy groups of the epoxy compound in each case 0.95 to 1) as well as 0.2 percent by weight of benzoin and 1.5 percent by weight of acrylon (all compositions without curing accelerator) are homogenised by extrusion twice using a laboratory extruder from PRISM, The Old Stables, England, (T1=30° C./T2=80° C.). The following are determined in each case: the gel time at 180° C.; the percentage of gelled material (gelled amount) in the cured composition after curing for 15 min. at 200° C., the Tg value of the cured composition and the viscosity of the cured systems at 180° C. The values are likewise indicated in Table 13/1.
TABLE 13/1 Powder coating composition formulations Gel time @ Gelled Epoxy compound 180° C. amount18) Tg after curing. Viscosity Formulation (% by wt.) [sec.] [% by wt.] onset [° C.] [Pa.s] W according to Epoxide according 375 93.5 76 10700 the invention to Example 9 (7.8%) Comparison W1 PT 91015) 450 80.4 72 510 (7.2%) Comparison W2 XB 91216) 390 89.0 73 2100 (7.2%) Comparison W3 PT 81017) 210 95.2 76 9050 (5.2%) - The gelled amount of the powder coating composition (W) according to the invention, which is significantly increased compared with the comparison compositions based on Araldite PT910 (Comparison W1) and XB 912 (Comparison W2), is a clear indication of the surprisingly increased crosslinking density in cured material based on the composition according to the invention under the same curing conditions (15 min./200° C.). The crosslinking density, which with the same curing time is increased, also makes clear the higher reactivity of the systems according to the invention, that reactivity being comparable with compositions based on Araldite PT810 (Comparison W3). Likewise, the viscosity of the system according to the invention after curing is significantly increased compared with all three comparison systems (W1, W2 and W3), demonstrating the comparatively high crosslinking density and reactivity of the powder coating compositions according to the invention.
Claims (15)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/208,460 US20030149193A1 (en) | 1999-11-10 | 2002-07-30 | Curable composition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH205699 | 1999-11-10 | ||
CH2056/99 | 1999-11-10 | ||
US09/697,331 US6437045B1 (en) | 1999-11-10 | 2000-10-25 | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
US10/208,460 US20030149193A1 (en) | 1999-11-10 | 2002-07-30 | Curable composition |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/697,331 Division US6437045B1 (en) | 1999-11-10 | 2000-10-25 | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030149193A1 true US20030149193A1 (en) | 2003-08-07 |
Family
ID=4224894
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/697,331 Expired - Fee Related US6437045B1 (en) | 1999-11-10 | 2000-10-25 | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
US10/208,460 Abandoned US20030149193A1 (en) | 1999-11-10 | 2002-07-30 | Curable composition |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/697,331 Expired - Fee Related US6437045B1 (en) | 1999-11-10 | 2000-10-25 | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
Country Status (18)
Country | Link |
---|---|
US (2) | US6437045B1 (en) |
EP (1) | EP1099730B1 (en) |
JP (1) | JP2001200200A (en) |
KR (1) | KR20010051576A (en) |
CN (1) | CN1296047A (en) |
AT (1) | ATE248898T1 (en) |
AU (1) | AU6970200A (en) |
BR (1) | BR0005328A (en) |
CA (1) | CA2325271A1 (en) |
DE (1) | DE50003515D1 (en) |
ES (1) | ES2204486T3 (en) |
HU (1) | HUP0004455A3 (en) |
MX (1) | MXPA00011038A (en) |
PL (1) | PL343719A1 (en) |
PT (1) | PT1099730E (en) |
RU (1) | RU2000127889A (en) |
TR (2) | TR200003237A3 (en) |
TW (1) | TW515829B (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060254756A1 (en) * | 2003-03-03 | 2006-11-16 | Jack Kaser | Heat exchanger having powder coated elements |
US7841390B1 (en) | 2003-03-03 | 2010-11-30 | Paragon Airheater Technologies, Inc. | Heat exchanger having powder coated elements |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6437045B1 (en) * | 1999-11-10 | 2002-08-20 | Vantico Inc. | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
TWI392713B (en) * | 2003-03-26 | 2013-04-11 | Atotech Deutschland Gmbh | Powder coating and process for the preparation of thin layers in the manufacture of printed circuit boards |
DE10313555A1 (en) * | 2003-03-26 | 2004-10-14 | Atotech Deutschland Gmbh | Curable powder coating useful in manufacture of printed circuit boards is obtained by mixing polymeric binder, oxazine resin, cyanate ester or maleimide, hardener or initiator and coating additive; melt extruding; and milling and sieving |
US20040236037A1 (en) * | 2003-05-19 | 2004-11-25 | December Timothy S. | Particulate coatings having improved chip resistance, UV durability, and color stability |
US20040265504A1 (en) * | 2003-06-27 | 2004-12-30 | Christophe Magnin | Non-metalic substrate having an electostatically applied activatable powder adhesive |
CN1875045A (en) * | 2003-11-03 | 2006-12-06 | 联合碳化化学及塑料技术公司 | Tougher cycloaliphatic epoxide resins |
JP2005194453A (en) * | 2004-01-09 | 2005-07-21 | Konica Minolta Medical & Graphic Inc | Active light-curable composition, active light-curable ink jet ink, and method for image formation and printer using the same |
JP4578188B2 (en) * | 2004-09-15 | 2010-11-10 | ダイセル化学工業株式会社 | Epoxy resin composition, optical semiconductor encapsulant, and optical semiconductor device |
JP4683933B2 (en) * | 2005-01-19 | 2011-05-18 | ダイセル化学工業株式会社 | Curable resin composition and interlayer insulating film |
JP4786200B2 (en) * | 2005-02-28 | 2011-10-05 | ダイセル化学工業株式会社 | UV-curable can coating composition, painted metal plate, and painted metal can |
KR20080040047A (en) * | 2005-09-01 | 2008-05-07 | 헥시온 스페셜티 케미칼즈 인코퍼레이티드 | Improvements to Powder Coating Compositions Crosslinked with Non-Cyanurate Polyepoxides |
JP2009179568A (en) * | 2008-01-29 | 2009-08-13 | Nippon Shokubai Co Ltd | Aromatic backbone-containing alicyclic epoxy compound, method for producing the same, aromatic backbone-containing alicyclic epoxy resin composition, and molded article and optical member of the same |
BR112013024482A2 (en) | 2011-03-25 | 2017-02-14 | Dsm Ip Assets Bv | resin compositions for thermosetting powder coating compositions |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397254A (en) * | 1964-09-21 | 1968-08-13 | Union Carbide Corp | Carboxy terminated polyesters prepared from tribasic acid anhydrides and hydroxy terminated polyesters |
US3758633A (en) * | 1971-08-16 | 1973-09-11 | Ford Motor Co | Crosslinking agents and flow control agents powdered coating compositions of carboxy containing copolymers epoxy |
US5294683A (en) * | 1991-10-03 | 1994-03-15 | Ciba-Geigy Corporation | Solid compositions of polyglycidyl compounds having a molecular weight of less than 1500 |
US5770268A (en) * | 1995-01-19 | 1998-06-23 | R.J. Tower Corporation | Corrosion-resistant coating composition having high solids content |
US5880223A (en) * | 1997-12-19 | 1999-03-09 | Morton International, Inc. | Non-blooming polyester coating powder |
US6099899A (en) * | 1997-05-21 | 2000-08-08 | Basf Corporation | Method for a multilayer coating |
US6165558A (en) * | 1996-02-02 | 2000-12-26 | Vantico, Inc. | Storage-stable moulding powder based on epoxy resins |
US6437045B1 (en) * | 1999-11-10 | 2002-08-20 | Vantico Inc. | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL110644C (en) * | 1958-07-23 | |||
RU1792956C (en) * | 1991-03-18 | 1993-02-07 | Украинский научно-исследовательский институт пластических масс | Adhesive composition |
TW312701B (en) | 1992-12-01 | 1997-08-11 | Dsm Nv | |
BE1006473A3 (en) | 1992-12-23 | 1994-09-06 | Dsm Nv | Binder composition for the production of powder paints. |
TW432100B (en) | 1995-10-25 | 2001-05-01 | Ciba Sc Holding Ag | Powder coating |
TW380147B (en) | 1995-10-25 | 2000-01-21 | Ciba Geigy Ag | Powder coating hardener |
JPH11100378A (en) * | 1997-07-30 | 1999-04-13 | Dainippon Ink & Chem Inc | Epoxy compound and polymerizable composition containing the compound |
-
2000
- 2000-10-25 US US09/697,331 patent/US6437045B1/en not_active Expired - Fee Related
- 2000-11-01 TR TR2000/03237A patent/TR200003237A3/en unknown
- 2000-11-03 AU AU69702/00A patent/AU6970200A/en not_active Abandoned
- 2000-11-06 TR TR2003/02079T patent/TR200302079T4/en unknown
- 2000-11-06 EP EP00811039A patent/EP1099730B1/en not_active Expired - Lifetime
- 2000-11-06 DE DE50003515T patent/DE50003515D1/en not_active Expired - Fee Related
- 2000-11-06 PT PT00811039T patent/PT1099730E/en unknown
- 2000-11-06 ES ES00811039T patent/ES2204486T3/en not_active Expired - Lifetime
- 2000-11-06 AT AT00811039T patent/ATE248898T1/en not_active IP Right Cessation
- 2000-11-07 PL PL00343719A patent/PL343719A1/en unknown
- 2000-11-08 CA CA002325271A patent/CA2325271A1/en not_active Abandoned
- 2000-11-08 TW TW089123552A patent/TW515829B/en not_active IP Right Cessation
- 2000-11-09 CN CN00132386A patent/CN1296047A/en active Pending
- 2000-11-09 HU HU0004455A patent/HUP0004455A3/en unknown
- 2000-11-09 KR KR1020000066518A patent/KR20010051576A/en not_active Application Discontinuation
- 2000-11-09 JP JP2000342164A patent/JP2001200200A/en active Pending
- 2000-11-10 RU RU2000127889/04A patent/RU2000127889A/en not_active Application Discontinuation
- 2000-11-10 MX MXPA00011038A patent/MXPA00011038A/en unknown
- 2000-11-10 BR BR0005328-7A patent/BR0005328A/en not_active IP Right Cessation
-
2002
- 2002-07-30 US US10/208,460 patent/US20030149193A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3397254A (en) * | 1964-09-21 | 1968-08-13 | Union Carbide Corp | Carboxy terminated polyesters prepared from tribasic acid anhydrides and hydroxy terminated polyesters |
US3758633A (en) * | 1971-08-16 | 1973-09-11 | Ford Motor Co | Crosslinking agents and flow control agents powdered coating compositions of carboxy containing copolymers epoxy |
US5294683A (en) * | 1991-10-03 | 1994-03-15 | Ciba-Geigy Corporation | Solid compositions of polyglycidyl compounds having a molecular weight of less than 1500 |
US5770268A (en) * | 1995-01-19 | 1998-06-23 | R.J. Tower Corporation | Corrosion-resistant coating composition having high solids content |
US6165558A (en) * | 1996-02-02 | 2000-12-26 | Vantico, Inc. | Storage-stable moulding powder based on epoxy resins |
US6099899A (en) * | 1997-05-21 | 2000-08-08 | Basf Corporation | Method for a multilayer coating |
US5880223A (en) * | 1997-12-19 | 1999-03-09 | Morton International, Inc. | Non-blooming polyester coating powder |
US6437045B1 (en) * | 1999-11-10 | 2002-08-20 | Vantico Inc. | Powder coating of carboxyl polyester or (poly)methacrylate and cycloaliphatic polyepoxide |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060254756A1 (en) * | 2003-03-03 | 2006-11-16 | Jack Kaser | Heat exchanger having powder coated elements |
US7819176B2 (en) * | 2003-03-03 | 2010-10-26 | Paragon Airheater Technologies, Inc. | Heat exchanger having powder coated elements |
US7841390B1 (en) | 2003-03-03 | 2010-11-30 | Paragon Airheater Technologies, Inc. | Heat exchanger having powder coated elements |
US8316924B2 (en) | 2003-03-03 | 2012-11-27 | Paragon Airheater Technologies | Heat exchanger having powder coated elements |
Also Published As
Publication number | Publication date |
---|---|
TR200302079T4 (en) | 2004-01-21 |
JP2001200200A (en) | 2001-07-24 |
MXPA00011038A (en) | 2003-06-06 |
CN1296047A (en) | 2001-05-23 |
DE50003515D1 (en) | 2003-10-09 |
BR0005328A (en) | 2001-06-12 |
HUP0004455A3 (en) | 2002-03-28 |
CA2325271A1 (en) | 2001-05-10 |
ATE248898T1 (en) | 2003-09-15 |
PT1099730E (en) | 2004-01-30 |
TW515829B (en) | 2003-01-01 |
EP1099730A1 (en) | 2001-05-16 |
AU6970200A (en) | 2001-05-17 |
TR200003237A2 (en) | 2001-07-23 |
PL343719A1 (en) | 2001-05-21 |
TR200003237A3 (en) | 2001-07-23 |
KR20010051576A (en) | 2001-06-25 |
HU0004455D0 (en) | 2001-01-29 |
US6437045B1 (en) | 2002-08-20 |
ES2204486T3 (en) | 2004-05-01 |
HUP0004455A2 (en) | 2001-06-28 |
EP1099730B1 (en) | 2003-09-03 |
RU2000127889A (en) | 2002-11-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030149193A1 (en) | Curable composition | |
KR100299586B1 (en) | Binder Composition for Powder Paint | |
KR910006330B1 (en) | Crosslinkahle compositions containing polyepoxides and polyacid curing agent | |
US4861841A (en) | Powder coating compositions | |
AU713574B2 (en) | Thermosetting, powder coating systems | |
CA1336112C (en) | Powder coating composition | |
US6103825A (en) | Epoxy resin pre-advanced with carboxyl-containing polyester and advanced with bisphenol | |
JPH10330476A (en) | Curable composition using free carboxyl group-containing polymer as base | |
EP0751970B1 (en) | Outdoor durable powder coating compositions | |
JPH0641575B2 (en) | Coating composition based on polyepoxide hardener and polyacid hardener | |
AU713390B2 (en) | Thermosetting powder coating systems and a method for producing them | |
JPH09165534A (en) | Powder coating material | |
US6136922A (en) | Composition of carboxyl-containing poly(meth)acrylate, carboxyl-terminated polyester and epoxy resin | |
AU6689800A (en) | Curable composition | |
US20120004373A1 (en) | Powder coating compositions cross-linked with non cyanurate polyepoxides | |
CZ292598B6 (en) | Process for preparing powder coatings, powder coating per se and use thereof | |
EP1015440A1 (en) | Polyglycidyl spirocompounds and their use in epoxy resins | |
US6265487B1 (en) | Powder coating of carboxyl-containing poly(meth)acrylic resin and trans(cis)-diglycidyl 1,4-cyclohexanedicarboxylate | |
JPS5825117B2 (en) | Thermosetting powder resin composition for powder coatings | |
US6169158B1 (en) | Polyglycidyl compounds | |
KR20010005505A (en) | Acid functional and epoxy functional polyester resins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: DEUTSCHE BANK AG, NEW YORK BRANCH, AS AGENT, NEW Y Free format text: SECURITY INTEREST;ASSIGNORS:VANTICO INC.;VANTICO A&T US INC.;REEL/FRAME:013897/0080 Effective date: 20030630 |
|
AS | Assignment |
Owner name: VANTICO INC., NEW YORK Free format text: MERGER;ASSIGNOR:VANTICO A&T US INC;REEL/FRAME:014499/0056 Effective date: 20031231 Owner name: HUNTSMAN ADVANCED MATERIALS AMERICAS INC., NEW YOR Free format text: CHANGE OF NAME;ASSIGNOR:VANTICO INC;REEL/FRAME:014499/0554 Effective date: 20031231 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: VANTICO INC. AND VANTICO A&T U S INC. (NOW KNOWN A Free format text: TERMINATION OF SECURITY INTEREST;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS AGENT;REEL/FRAME:017996/0648 Effective date: 20051220 Owner name: VANTICO INC. AND VANTICO A&T U S INC. (NOW KNOWN A Free format text: TERMINATION OF SECURITY INTEREST;ASSIGNOR:DEUTSCHE BANK AG NEW YORK BRANCH, AS AGENT;REEL/FRAME:018047/0836 Effective date: 20051220 |