US20030143533A1 - Methods and compositions utilizing rad51 - Google Patents
Methods and compositions utilizing rad51 Download PDFInfo
- Publication number
- US20030143533A1 US20030143533A1 US09/182,102 US18210298A US2003143533A1 US 20030143533 A1 US20030143533 A1 US 20030143533A1 US 18210298 A US18210298 A US 18210298A US 2003143533 A1 US2003143533 A1 US 2003143533A1
- Authority
- US
- United States
- Prior art keywords
- rad51
- foci
- cell
- protein
- distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 94
- 239000000203 mixture Substances 0.000 title claims description 21
- 101100355586 Schizosaccharomyces pombe (strain 972 / ATCC 24843) rhp51 gene Proteins 0.000 title description 4
- 101100300807 Drosophila melanogaster spn-A gene Proteins 0.000 claims abstract description 286
- 238000009826 distribution Methods 0.000 claims abstract description 67
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims abstract description 53
- 201000010099 disease Diseases 0.000 claims abstract description 52
- 206010028980 Neoplasm Diseases 0.000 claims abstract description 32
- 230000006907 apoptotic process Effects 0.000 claims abstract description 30
- 230000001594 aberrant effect Effects 0.000 claims abstract description 18
- 201000011510 cancer Diseases 0.000 claims abstract description 18
- 108010068097 Rad51 Recombinase Proteins 0.000 claims description 78
- 102000002490 Rad51 Recombinase Human genes 0.000 claims description 78
- 108090000623 proteins and genes Proteins 0.000 claims description 73
- 150000007523 nucleic acids Chemical class 0.000 claims description 44
- 102000039446 nucleic acids Human genes 0.000 claims description 43
- 108020004707 nucleic acids Proteins 0.000 claims description 43
- 230000000694 effects Effects 0.000 claims description 34
- 239000012867 bioactive agent Substances 0.000 claims description 31
- 230000015572 biosynthetic process Effects 0.000 claims description 27
- 239000003795 chemical substances by application Substances 0.000 claims description 26
- 102100025064 Cellular tumor antigen p53 Human genes 0.000 claims description 25
- 230000001965 increasing effect Effects 0.000 claims description 25
- 101000721661 Homo sapiens Cellular tumor antigen p53 Proteins 0.000 claims description 24
- 206010006187 Breast cancer Diseases 0.000 claims description 21
- 208000026310 Breast neoplasm Diseases 0.000 claims description 21
- 230000027455 binding Effects 0.000 claims description 17
- 239000000835 fiber Substances 0.000 claims description 16
- 230000004071 biological effect Effects 0.000 claims description 14
- 230000001640 apoptogenic effect Effects 0.000 claims description 13
- 108020004414 DNA Proteins 0.000 claims description 12
- 239000011230 binding agent Substances 0.000 claims description 11
- 238000012216 screening Methods 0.000 claims description 11
- 230000001939 inductive effect Effects 0.000 claims description 8
- 230000004048 modification Effects 0.000 claims description 8
- 238000012986 modification Methods 0.000 claims description 8
- 102000001742 Tumor Suppressor Proteins Human genes 0.000 claims description 7
- 108010040002 Tumor Suppressor Proteins Proteins 0.000 claims description 7
- 239000000225 tumor suppressor protein Substances 0.000 claims description 7
- 230000004075 alteration Effects 0.000 claims description 6
- 102000036365 BRCA1 Human genes 0.000 claims description 5
- 101150072950 BRCA1 gene Proteins 0.000 claims description 5
- 101150008921 Brca2 gene Proteins 0.000 claims description 5
- 230000003546 nucleic acid damage Effects 0.000 claims description 5
- 230000005855 radiation Effects 0.000 claims description 5
- 108700020463 BRCA1 Proteins 0.000 claims description 4
- 102000052609 BRCA2 Human genes 0.000 claims description 4
- 108700020462 BRCA2 Proteins 0.000 claims description 4
- 230000035939 shock Effects 0.000 claims description 4
- 108091006112 ATPases Proteins 0.000 claims description 3
- 102000057290 Adenosine Triphosphatases Human genes 0.000 claims description 3
- 230000002018 overexpression Effects 0.000 claims description 3
- 206010021143 Hypoxia Diseases 0.000 claims description 2
- 230000001146 hypoxic effect Effects 0.000 claims description 2
- 230000004987 nonapoptotic effect Effects 0.000 claims description 2
- 101100113692 Caenorhabditis elegans clk-2 gene Proteins 0.000 claims 1
- 230000004568 DNA-binding Effects 0.000 claims 1
- 208000000453 Skin Neoplasms Diseases 0.000 claims 1
- 239000013043 chemical agent Substances 0.000 claims 1
- 230000001590 oxidative effect Effects 0.000 claims 1
- 201000000849 skin cancer Diseases 0.000 claims 1
- 210000004027 cell Anatomy 0.000 description 269
- 210000004940 nucleus Anatomy 0.000 description 86
- 235000018102 proteins Nutrition 0.000 description 57
- 102000004169 proteins and genes Human genes 0.000 description 57
- 101000620735 Homo sapiens DNA repair protein RAD51 homolog 1 Proteins 0.000 description 44
- 102100022928 DNA repair protein RAD51 homolog 1 Human genes 0.000 description 36
- 210000001519 tissue Anatomy 0.000 description 34
- 238000010186 staining Methods 0.000 description 30
- 230000005778 DNA damage Effects 0.000 description 29
- 231100000277 DNA damage Toxicity 0.000 description 29
- 210000002950 fibroblast Anatomy 0.000 description 28
- 230000020520 nucleotide-excision repair Effects 0.000 description 25
- 241000282414 Homo sapiens Species 0.000 description 20
- 239000002953 phosphate buffered saline Substances 0.000 description 20
- 239000000523 sample Substances 0.000 description 20
- 239000000758 substrate Substances 0.000 description 18
- 230000006798 recombination Effects 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 14
- 238000005215 recombination Methods 0.000 description 14
- NNJPGOLRFBJNIW-HNNXBMFYSA-N (-)-demecolcine Chemical compound C1=C(OC)C(=O)C=C2[C@@H](NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-HNNXBMFYSA-N 0.000 description 13
- NNJPGOLRFBJNIW-UHFFFAOYSA-N Demecolcine Natural products C1=C(OC)C(=O)C=C2C(NC)CCC3=CC(OC)=C(OC)C(OC)=C3C2=C1 NNJPGOLRFBJNIW-UHFFFAOYSA-N 0.000 description 13
- 101000618531 Homo sapiens DNA repair protein complementing XP-A cells Proteins 0.000 description 13
- 241000700159 Rattus Species 0.000 description 13
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 13
- 150000001413 amino acids Chemical class 0.000 description 13
- 238000002360 preparation method Methods 0.000 description 13
- 108090000765 processed proteins & peptides Proteins 0.000 description 13
- 102100022474 DNA repair protein complementing XP-A cells Human genes 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- VJJPUSNTGOMMGY-MRVIYFEKSA-N etoposide Chemical compound COC1=C(O)C(OC)=CC([C@@H]2C3=CC=4OCOC=4C=C3[C@@H](O[C@H]3[C@@H]([C@@H](O)[C@@H]4O[C@H](C)OC[C@H]4O3)O)[C@@H]3[C@@H]2C(OC3)=O)=C1 VJJPUSNTGOMMGY-MRVIYFEKSA-N 0.000 description 12
- FWBHETKCLVMNFS-UHFFFAOYSA-N 4',6-Diamino-2-phenylindol Chemical compound C1=CC(C(=N)N)=CC=C1C1=CC2=CC=C(C(N)=N)C=C2N1 FWBHETKCLVMNFS-UHFFFAOYSA-N 0.000 description 11
- WOVKYSAHUYNSMH-RRKCRQDMSA-N 5-bromodeoxyuridine Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(Br)=C1 WOVKYSAHUYNSMH-RRKCRQDMSA-N 0.000 description 11
- 102000053062 Rad52 DNA Repair and Recombination Human genes 0.000 description 11
- 108700031762 Rad52 DNA Repair and Recombination Proteins 0.000 description 11
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 11
- 210000000481 breast Anatomy 0.000 description 11
- 230000002950 deficient Effects 0.000 description 11
- 229960005420 etoposide Drugs 0.000 description 11
- 230000006870 function Effects 0.000 description 11
- 102000004196 processed proteins & peptides Human genes 0.000 description 11
- 102000053602 DNA Human genes 0.000 description 10
- 150000001875 compounds Chemical class 0.000 description 10
- 238000011065 in-situ storage Methods 0.000 description 10
- 210000004881 tumor cell Anatomy 0.000 description 10
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 9
- 108010077544 Chromatin Proteins 0.000 description 9
- 230000033616 DNA repair Effects 0.000 description 9
- 241000588724 Escherichia coli Species 0.000 description 9
- 210000003483 chromatin Anatomy 0.000 description 9
- 230000006378 damage Effects 0.000 description 9
- 238000011156 evaluation Methods 0.000 description 9
- 230000006698 induction Effects 0.000 description 9
- 239000002773 nucleotide Substances 0.000 description 9
- 125000003729 nucleotide group Chemical group 0.000 description 9
- 201000008559 xeroderma pigmentosum group F Diseases 0.000 description 9
- XAUDJQYHKZQPEU-KVQBGUIXSA-N 5-aza-2'-deoxycytidine Chemical compound O=C1N=C(N)N=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 XAUDJQYHKZQPEU-KVQBGUIXSA-N 0.000 description 8
- 241000283973 Oryctolagus cuniculus Species 0.000 description 8
- 102000001218 Rec A Recombinases Human genes 0.000 description 8
- 108010055016 Rec A Recombinases Proteins 0.000 description 8
- 230000007547 defect Effects 0.000 description 8
- 238000010166 immunofluorescence Methods 0.000 description 8
- 230000008439 repair process Effects 0.000 description 8
- 102100029094 DNA repair endonuclease XPF Human genes 0.000 description 7
- 102000009572 RNA Polymerase II Human genes 0.000 description 7
- 108010009460 RNA Polymerase II Proteins 0.000 description 7
- 108020004682 Single-Stranded DNA Proteins 0.000 description 7
- 238000004113 cell culture Methods 0.000 description 7
- 210000000349 chromosome Anatomy 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- 201000008552 xeroderma pigmentosum group A Diseases 0.000 description 7
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 6
- 241001465754 Metazoa Species 0.000 description 6
- 108010077850 Nuclear Localization Signals Proteins 0.000 description 6
- 201000006083 Xeroderma Pigmentosum Diseases 0.000 description 6
- 230000022131 cell cycle Effects 0.000 description 6
- 230000001413 cellular effect Effects 0.000 description 6
- 239000003153 chemical reaction reagent Substances 0.000 description 6
- 238000003745 diagnosis Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 6
- 238000003125 immunofluorescent labeling Methods 0.000 description 6
- 230000003902 lesion Effects 0.000 description 6
- 230000004807 localization Effects 0.000 description 6
- 201000008558 xeroderma pigmentosum group G Diseases 0.000 description 6
- 208000010200 Cockayne syndrome Diseases 0.000 description 5
- 101150033270 Gadd45a gene Proteins 0.000 description 5
- 238000003556 assay Methods 0.000 description 5
- 210000000805 cytoplasm Anatomy 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 238000013467 fragmentation Methods 0.000 description 5
- 238000006062 fragmentation reaction Methods 0.000 description 5
- 230000006801 homologous recombination Effects 0.000 description 5
- 102000051623 human RAD51 Human genes 0.000 description 5
- 238000012744 immunostaining Methods 0.000 description 5
- 210000003292 kidney cell Anatomy 0.000 description 5
- 238000002372 labelling Methods 0.000 description 5
- 230000003211 malignant effect Effects 0.000 description 5
- 239000002609 medium Substances 0.000 description 5
- 230000035772 mutation Effects 0.000 description 5
- 108700025694 p53 Genes Proteins 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 201000008543 xeroderma pigmentosum group B Diseases 0.000 description 5
- YBJHBAHKTGYVGT-ZKWXMUAHSA-N (+)-Biotin Chemical compound N1C(=O)N[C@@H]2[C@H](CCCCC(=O)O)SC[C@@H]21 YBJHBAHKTGYVGT-ZKWXMUAHSA-N 0.000 description 4
- 102100033215 DNA nucleotidylexotransferase Human genes 0.000 description 4
- 241000699666 Mus <mouse, genus> Species 0.000 description 4
- 206010043276 Teratoma Diseases 0.000 description 4
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 4
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 4
- 230000025084 cell cycle arrest Effects 0.000 description 4
- 230000004663 cell proliferation Effects 0.000 description 4
- 230000004637 cellular stress Effects 0.000 description 4
- 239000003280 clastogen Substances 0.000 description 4
- 231100000506 clastogen Toxicity 0.000 description 4
- 238000012217 deletion Methods 0.000 description 4
- 230000037430 deletion Effects 0.000 description 4
- 238000001514 detection method Methods 0.000 description 4
- 230000008030 elimination Effects 0.000 description 4
- 238000003379 elimination reaction Methods 0.000 description 4
- 230000007717 exclusion Effects 0.000 description 4
- 230000014509 gene expression Effects 0.000 description 4
- 238000001415 gene therapy Methods 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 238000002744 homologous recombination Methods 0.000 description 4
- 210000005260 human cell Anatomy 0.000 description 4
- 238000003384 imaging method Methods 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- 238000001727 in vivo Methods 0.000 description 4
- 238000010348 incorporation Methods 0.000 description 4
- 230000005865 ionizing radiation Effects 0.000 description 4
- 210000004962 mammalian cell Anatomy 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000012758 nuclear staining Methods 0.000 description 4
- 230000008520 organization Effects 0.000 description 4
- 230000008707 rearrangement Effects 0.000 description 4
- 101150079601 recA gene Proteins 0.000 description 4
- 210000003491 skin Anatomy 0.000 description 4
- 230000000392 somatic effect Effects 0.000 description 4
- 230000035882 stress Effects 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 238000001262 western blot Methods 0.000 description 4
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- 108700040618 BRCA1 Genes Proteins 0.000 description 3
- 108700010154 BRCA2 Genes Proteins 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 208000005623 Carcinogenesis Diseases 0.000 description 3
- 239000012623 DNA damaging agent Substances 0.000 description 3
- 102000004190 Enzymes Human genes 0.000 description 3
- 108090000790 Enzymes Proteins 0.000 description 3
- 102000011931 Nucleoproteins Human genes 0.000 description 3
- 108010061100 Nucleoproteins Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 206010033128 Ovarian cancer Diseases 0.000 description 3
- 206010061535 Ovarian neoplasm Diseases 0.000 description 3
- 231100000632 Spindle poison Toxicity 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 210000004556 brain Anatomy 0.000 description 3
- 230000036952 cancer formation Effects 0.000 description 3
- 231100000504 carcinogenesis Toxicity 0.000 description 3
- 230000033077 cellular process Effects 0.000 description 3
- DIUIQJFZKRAGBZ-UHFFFAOYSA-N chetoseminudin A Natural products O=C1C(SSS2)(CO)N(C)C(=O)C32CC2(N4C5=CC=CC=C5C(CC56C(N(C)C(CO)(SS5)C(=O)N6C)=O)=C4)C4=CC=CC=C4NC2N31 DIUIQJFZKRAGBZ-UHFFFAOYSA-N 0.000 description 3
- 230000001351 cycling effect Effects 0.000 description 3
- 238000011161 development Methods 0.000 description 3
- 230000018109 developmental process Effects 0.000 description 3
- 230000005782 double-strand break Effects 0.000 description 3
- 230000001747 exhibiting effect Effects 0.000 description 3
- 239000012634 fragment Substances 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 230000001459 mortal effect Effects 0.000 description 3
- 230000036542 oxidative stress Effects 0.000 description 3
- 230000009257 reactivity Effects 0.000 description 3
- 230000013120 recombinational repair Effects 0.000 description 3
- 238000011084 recovery Methods 0.000 description 3
- 230000003362 replicative effect Effects 0.000 description 3
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000009870 specific binding Effects 0.000 description 3
- 230000002381 testicular Effects 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 208000030507 AIDS Diseases 0.000 description 2
- 208000023275 Autoimmune disease Diseases 0.000 description 2
- 208000000659 Autoimmune lymphoproliferative syndrome Diseases 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 241000282693 Cercopithecidae Species 0.000 description 2
- 208000031404 Chromosome Aberrations Diseases 0.000 description 2
- 206010009900 Colitis ulcerative Diseases 0.000 description 2
- 206010009944 Colon cancer Diseases 0.000 description 2
- 102000012437 Copper-Transporting ATPases Human genes 0.000 description 2
- 230000004544 DNA amplification Effects 0.000 description 2
- 230000004543 DNA replication Effects 0.000 description 2
- 231100001074 DNA strand break Toxicity 0.000 description 2
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 2
- 108010058643 Fungal Proteins Proteins 0.000 description 2
- 230000010190 G1 phase Effects 0.000 description 2
- 241000287828 Gallus gallus Species 0.000 description 2
- 208000001204 Hashimoto Disease Diseases 0.000 description 2
- 208000030836 Hashimoto thyroiditis Diseases 0.000 description 2
- 206010019663 Hepatic failure Diseases 0.000 description 2
- 208000002972 Hepatolenticular Degeneration Diseases 0.000 description 2
- 239000007836 KH2PO4 Substances 0.000 description 2
- 206010025323 Lymphomas Diseases 0.000 description 2
- 241000124008 Mammalia Species 0.000 description 2
- 101100226013 Mus musculus Ercc1 gene Proteins 0.000 description 2
- 201000003793 Myelodysplastic syndrome Diseases 0.000 description 2
- 101710163270 Nuclease Proteins 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 2
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 2
- 241000283984 Rodentia Species 0.000 description 2
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 2
- 108010090804 Streptavidin Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 201000006704 Ulcerative Colitis Diseases 0.000 description 2
- ISAKRJDGNUQOIC-UHFFFAOYSA-N Uracil Chemical compound O=C1C=CNC(=O)N1 ISAKRJDGNUQOIC-UHFFFAOYSA-N 0.000 description 2
- 208000018839 Wilson disease Diseases 0.000 description 2
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000032683 aging Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000692 anti-sense effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 230000001580 bacterial effect Effects 0.000 description 2
- 229960002685 biotin Drugs 0.000 description 2
- 235000020958 biotin Nutrition 0.000 description 2
- 239000011616 biotin Substances 0.000 description 2
- 230000005978 brain dysfunction Effects 0.000 description 2
- 239000000872 buffer Substances 0.000 description 2
- 150000001720 carbohydrates Chemical class 0.000 description 2
- 235000014633 carbohydrates Nutrition 0.000 description 2
- 230000032823 cell division Effects 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000002759 chromosomal effect Effects 0.000 description 2
- 231100000005 chromosome aberration Toxicity 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 208000029742 colonic neoplasm Diseases 0.000 description 2
- 238000012875 competitive assay Methods 0.000 description 2
- 230000002380 cytological effect Effects 0.000 description 2
- OPTASPLRGRRNAP-UHFFFAOYSA-N cytosine Chemical compound NC=1C=CNC(=O)N=1 OPTASPLRGRRNAP-UHFFFAOYSA-N 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 206010012601 diabetes mellitus Diseases 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- -1 for cross-linking Chemical class 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 230000002538 fungal effect Effects 0.000 description 2
- 239000001963 growth medium Substances 0.000 description 2
- UYTPUPDQBNUYGX-UHFFFAOYSA-N guanine Chemical compound O=C1NC(N)=NC2=C1N=CN2 UYTPUPDQBNUYGX-UHFFFAOYSA-N 0.000 description 2
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 2
- 125000000487 histidyl group Chemical class [H]N([H])C(C(=O)O*)C([H])([H])C1=C([H])N([H])C([H])=N1 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- 230000016507 interphase Effects 0.000 description 2
- 208000030776 invasive breast carcinoma Diseases 0.000 description 2
- DRAVOWXCEBXPTN-UHFFFAOYSA-N isoguanine Chemical compound NC1=NC(=O)NC2=C1NC=N2 DRAVOWXCEBXPTN-UHFFFAOYSA-N 0.000 description 2
- 231100000636 lethal dose Toxicity 0.000 description 2
- 208000032839 leukemia Diseases 0.000 description 2
- 208000007903 liver failure Diseases 0.000 description 2
- 231100000835 liver failure Toxicity 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 230000001404 mediated effect Effects 0.000 description 2
- 230000021121 meiosis Effects 0.000 description 2
- 201000001441 melanoma Diseases 0.000 description 2
- 238000000386 microscopy Methods 0.000 description 2
- 238000004264 monolayer culture Methods 0.000 description 2
- 229910000402 monopotassium phosphate Inorganic materials 0.000 description 2
- 229940126619 mouse monoclonal antibody Drugs 0.000 description 2
- 201000006417 multiple sclerosis Diseases 0.000 description 2
- 238000002703 mutagenesis Methods 0.000 description 2
- 231100000350 mutagenesis Toxicity 0.000 description 2
- 229930014626 natural product Natural products 0.000 description 2
- 230000004770 neurodegeneration Effects 0.000 description 2
- 208000015122 neurodegenerative disease Diseases 0.000 description 2
- 208000004235 neutropenia Diseases 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000013612 plasmid Substances 0.000 description 2
- 229920001184 polypeptide Polymers 0.000 description 2
- GNSKLFRGEWLPPA-UHFFFAOYSA-M potassium dihydrogen phosphate Chemical compound [K+].OP(O)([O-])=O GNSKLFRGEWLPPA-UHFFFAOYSA-M 0.000 description 2
- 235000013930 proline Nutrition 0.000 description 2
- 210000002307 prostate Anatomy 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000012552 review Methods 0.000 description 2
- 150000003839 salts Chemical class 0.000 description 2
- 238000007423 screening assay Methods 0.000 description 2
- 238000005204 segregation Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- RWQNBRDOKXIBIV-UHFFFAOYSA-N thymine Chemical compound CC1=CNC(=O)NC1=O RWQNBRDOKXIBIV-UHFFFAOYSA-N 0.000 description 2
- IMNIMPAHZVJRPE-UHFFFAOYSA-N triethylenediamine Chemical compound C1CN2CCN1CC2 IMNIMPAHZVJRPE-UHFFFAOYSA-N 0.000 description 2
- 235000002374 tyrosine Nutrition 0.000 description 2
- 125000001493 tyrosinyl group Chemical class [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 2
- 108700026220 vif Genes Proteins 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- LMSDCGXQALIMLM-UHFFFAOYSA-N 2-[2-[bis(carboxymethyl)amino]ethyl-(carboxymethyl)amino]acetic acid;iron Chemical compound [Fe].OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O LMSDCGXQALIMLM-UHFFFAOYSA-N 0.000 description 1
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- XQCZBXHVTFVIFE-UHFFFAOYSA-N 2-amino-4-hydroxypyrimidine Chemical compound NC1=NC=CC(O)=N1 XQCZBXHVTFVIFE-UHFFFAOYSA-N 0.000 description 1
- BUOYTFVLNZIELF-UHFFFAOYSA-N 2-phenyl-1h-indole-4,6-dicarboximidamide Chemical compound N1C2=CC(C(=N)N)=CC(C(N)=N)=C2C=C1C1=CC=CC=C1 BUOYTFVLNZIELF-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-UHFFFAOYSA-N 5-Azacytidine Natural products O=C1N=C(N)N=CN1C1C(O)C(O)C(CO)O1 NMUSYJAQQFHJEW-UHFFFAOYSA-N 0.000 description 1
- NMUSYJAQQFHJEW-KVTDHHQDSA-N 5-azacytidine Chemical compound O=C1N=C(N)N=CN1[C@H]1[C@H](O)[C@H](O)[C@@H](CO)O1 NMUSYJAQQFHJEW-KVTDHHQDSA-N 0.000 description 1
- GFFGJBXGBJISGV-UHFFFAOYSA-N Adenine Chemical compound NC1=NC=NC2=C1N=CN2 GFFGJBXGBJISGV-UHFFFAOYSA-N 0.000 description 1
- 229930024421 Adenine Natural products 0.000 description 1
- VCSABYLVNWQYQE-UHFFFAOYSA-N Ala-Lys-Lys Natural products NCCCCC(NC(=O)C(N)C)C(=O)NC(CCCCN)C(O)=O VCSABYLVNWQYQE-UHFFFAOYSA-N 0.000 description 1
- SAHQGRZIQVEJPF-JXUBOQSCSA-N Ala-Thr-Lys Chemical compound C[C@H](N)C(=O)N[C@@H]([C@H](O)C)C(=O)N[C@H](C(O)=O)CCCCN SAHQGRZIQVEJPF-JXUBOQSCSA-N 0.000 description 1
- XCIGOVDXZULBBV-DCAQKATOSA-N Ala-Val-Lys Chemical compound CC(C)[C@H](NC(=O)[C@H](C)N)C(=O)N[C@@H](CCCCN)C(O)=O XCIGOVDXZULBBV-DCAQKATOSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- 208000032467 Aplastic anaemia Diseases 0.000 description 1
- BSYKSCBTTQKOJG-GUBZILKMSA-N Arg-Pro-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O BSYKSCBTTQKOJG-GUBZILKMSA-N 0.000 description 1
- 241000271566 Aves Species 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- DWRXFEITVBNRMK-UHFFFAOYSA-N Beta-D-1-Arabinofuranosylthymine Natural products O=C1NC(=O)C(C)=CN1C1C(O)C(O)C(CO)O1 DWRXFEITVBNRMK-UHFFFAOYSA-N 0.000 description 1
- 241000283690 Bos taurus Species 0.000 description 1
- 238000012756 BrdU staining Methods 0.000 description 1
- 241000282472 Canis lupus familiaris Species 0.000 description 1
- 241000283707 Capra Species 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 201000009030 Carcinoma Diseases 0.000 description 1
- 241000700198 Cavia Species 0.000 description 1
- 101710150820 Cellular tumor antigen p53 Proteins 0.000 description 1
- 108091026890 Coding region Proteins 0.000 description 1
- 241000111471 Convolvulus scoparius Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 108010008286 DNA nucleotidylexotransferase Proteins 0.000 description 1
- 238000012270 DNA recombination Methods 0.000 description 1
- 229940124087 DNA topoisomerase II inhibitor Drugs 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000283086 Equidae Species 0.000 description 1
- 241000206602 Eukaryota Species 0.000 description 1
- 206010073306 Exposure to radiation Diseases 0.000 description 1
- 241000282326 Felis catus Species 0.000 description 1
- 230000035519 G0 Phase Effects 0.000 description 1
- 208000031448 Genomic Instability Diseases 0.000 description 1
- MLZRSFQRBDNJON-GUBZILKMSA-N Gln-Ala-Lys Chemical compound C[C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CCC(=O)N)N MLZRSFQRBDNJON-GUBZILKMSA-N 0.000 description 1
- 241000282575 Gorilla Species 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 101001132698 Homo sapiens Retinoic acid receptor beta Proteins 0.000 description 1
- 101000939246 Homo sapiens SUMO-conjugating enzyme UBC9 Proteins 0.000 description 1
- 108090000144 Human Proteins Proteins 0.000 description 1
- 102000003839 Human Proteins Human genes 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- UGQMRVRMYYASKQ-KQYNXXCUSA-N Inosine Chemical compound O[C@@H]1[C@H](O)[C@@H](CO)O[C@H]1N1C2=NC=NC(O)=C2N=C1 UGQMRVRMYYASKQ-KQYNXXCUSA-N 0.000 description 1
- 229930010555 Inosine Natural products 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- JTTHKOPSMAVJFE-VIFPVBQESA-N L-homophenylalanine Chemical compound OC(=O)[C@@H](N)CCC1=CC=CC=C1 JTTHKOPSMAVJFE-VIFPVBQESA-N 0.000 description 1
- 101710128836 Large T antigen Proteins 0.000 description 1
- 101100277912 Lilium longiflorum LIM15 gene Proteins 0.000 description 1
- XFIHDSBIPWEYJJ-YUMQZZPRSA-N Lys-Ala-Gly Chemical compound OC(=O)CNC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN XFIHDSBIPWEYJJ-YUMQZZPRSA-N 0.000 description 1
- HVAUKHLDSDDROB-KKUMJFAQSA-N Lys-Lys-Leu Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(O)=O HVAUKHLDSDDROB-KKUMJFAQSA-N 0.000 description 1
- 108010085220 Multiprotein Complexes Proteins 0.000 description 1
- 102000007474 Multiprotein Complexes Human genes 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 101100462520 Mus musculus Tp53 gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 108010006401 NF-kappa B p50 Subunit Proteins 0.000 description 1
- 102000005395 NF-kappa B p50 Subunit Human genes 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 206010061309 Neoplasm progression Diseases 0.000 description 1
- 241000221961 Neurospora crassa Species 0.000 description 1
- 102000008297 Nuclear Matrix-Associated Proteins Human genes 0.000 description 1
- 108010035916 Nuclear Matrix-Associated Proteins Proteins 0.000 description 1
- 102000002488 Nucleoplasmin Human genes 0.000 description 1
- 108010038807 Oligopeptides Proteins 0.000 description 1
- 102000015636 Oligopeptides Human genes 0.000 description 1
- 108700020796 Oncogene Proteins 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 241001494479 Pecora Species 0.000 description 1
- 108091093037 Peptide nucleic acid Proteins 0.000 description 1
- 241000282405 Pongo abelii Species 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108091028664 Ribonucleotide Proteins 0.000 description 1
- 230000018199 S phase Effects 0.000 description 1
- 108091006629 SLC13A2 Proteins 0.000 description 1
- 102100029807 SUMO-conjugating enzyme UBC9 Human genes 0.000 description 1
- 101100311249 Schizosaccharomyces pombe (strain 972 / ATCC 24843) stg1 gene Proteins 0.000 description 1
- 241000282887 Suidae Species 0.000 description 1
- 239000000317 Topoisomerase II Inhibitor Substances 0.000 description 1
- 102000005747 Transcription Factor RelA Human genes 0.000 description 1
- 108010031154 Transcription Factor RelA Proteins 0.000 description 1
- 108700019146 Transgenes Proteins 0.000 description 1
- 108010078814 Tumor Suppressor Protein p53 Proteins 0.000 description 1
- 102000015098 Tumor Suppressor Protein p53 Human genes 0.000 description 1
- 102000007537 Type II DNA Topoisomerases Human genes 0.000 description 1
- 108010046308 Type II DNA Topoisomerases Proteins 0.000 description 1
- 241000700605 Viruses Species 0.000 description 1
- 241000269370 Xenopus <genus> Species 0.000 description 1
- 206010048218 Xeroderma Diseases 0.000 description 1
- DGEZNRSVGBDHLK-UHFFFAOYSA-N [1,10]phenanthroline Chemical compound C1=CN=C2C3=NC=CC=C3C=CC2=C1 DGEZNRSVGBDHLK-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 229960000643 adenine Drugs 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- PPQRONHOSHZGFQ-LMVFSUKVSA-N aldehydo-D-ribose 5-phosphate Chemical group OP(=O)(O)OC[C@@H](O)[C@@H](O)[C@@H](O)C=O PPQRONHOSHZGFQ-LMVFSUKVSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 230000002603 aneugenic effect Effects 0.000 description 1
- 231100001075 aneuploidy Toxicity 0.000 description 1
- 208000036878 aneuploidy Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000010775 animal oil Substances 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 238000003782 apoptosis assay Methods 0.000 description 1
- 230000005775 apoptotic pathway Effects 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000012736 aqueous medium Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000012752 auxiliary agent Substances 0.000 description 1
- 229960002756 azacitidine Drugs 0.000 description 1
- IQFYYKKMVGJFEH-UHFFFAOYSA-N beta-L-thymidine Natural products O=C1NC(=O)C(C)=CN1C1OC(CO)C(O)C1 IQFYYKKMVGJFEH-UHFFFAOYSA-N 0.000 description 1
- 230000000975 bioactive effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 210000005013 brain tissue Anatomy 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 231100000357 carcinogen Toxicity 0.000 description 1
- 210000000748 cardiovascular system Anatomy 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000012820 cell cycle checkpoint Effects 0.000 description 1
- 230000006369 cell cycle progression Effects 0.000 description 1
- 230000005779 cell damage Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000003915 cell function Effects 0.000 description 1
- 230000010261 cell growth Effects 0.000 description 1
- 208000037887 cell injury Diseases 0.000 description 1
- 210000003855 cell nucleus Anatomy 0.000 description 1
- 230000004635 cellular health Effects 0.000 description 1
- 210000002230 centromere Anatomy 0.000 description 1
- 208000019065 cervical carcinoma Diseases 0.000 description 1
- 210000003679 cervix uteri Anatomy 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000003636 chemical group Chemical group 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 230000010428 chromatin condensation Effects 0.000 description 1
- 239000013611 chromosomal DNA Substances 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 231100000505 clastogenic Toxicity 0.000 description 1
- 230000003541 clastogenic effect Effects 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 238000010367 cloning Methods 0.000 description 1
- 230000008045 co-localization Effects 0.000 description 1
- 230000008645 cold stress Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 230000030944 contact inhibition Effects 0.000 description 1
- 239000013068 control sample Substances 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000004132 cross linking Methods 0.000 description 1
- DMSZORWOGDLWGN-UHFFFAOYSA-N ctk1a3526 Chemical compound NP(N)(N)=O DMSZORWOGDLWGN-UHFFFAOYSA-N 0.000 description 1
- 210000004748 cultured cell Anatomy 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- 150000001945 cysteines Chemical class 0.000 description 1
- 230000002559 cytogenic effect Effects 0.000 description 1
- 229940104302 cytosine Drugs 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- NHVNXKFIZYSCEB-XLPZGREQSA-N dTTP Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](COP(O)(=O)OP(O)(=O)OP(O)(O)=O)[C@@H](O)C1 NHVNXKFIZYSCEB-XLPZGREQSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000012973 diazabicyclooctane Substances 0.000 description 1
- NAGJZTKCGNOGPW-UHFFFAOYSA-K dioxido-sulfanylidene-sulfido-$l^{5}-phosphane Chemical compound [O-]P([O-])([S-])=S NAGJZTKCGNOGPW-UHFFFAOYSA-K 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- 229910000397 disodium phosphate Inorganic materials 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 230000012361 double-strand break repair Effects 0.000 description 1
- 238000007877 drug screening Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000002158 endotoxin Substances 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 239000002375 environmental carcinogen Substances 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000005183 environmental health Effects 0.000 description 1
- 239000003239 environmental mutagen Substances 0.000 description 1
- 210000000981 epithelium Anatomy 0.000 description 1
- 230000006846 excision repair Effects 0.000 description 1
- GNBHRKFJIUUOQI-UHFFFAOYSA-N fluorescein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 GNBHRKFJIUUOQI-UHFFFAOYSA-N 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 230000008717 functional decline Effects 0.000 description 1
- 231100000722 genetic damage Toxicity 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 150000004676 glycans Chemical class 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000008187 granular material Substances 0.000 description 1
- 230000012010 growth Effects 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 230000008642 heat stress Effects 0.000 description 1
- 125000000623 heterocyclic group Chemical group 0.000 description 1
- 238000013537 high throughput screening Methods 0.000 description 1
- 235000014304 histidine Nutrition 0.000 description 1
- 102000049942 human XPA Human genes 0.000 description 1
- 235000003642 hunger Nutrition 0.000 description 1
- 238000009396 hybridization Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 206010021198 ichthyosis Diseases 0.000 description 1
- 125000001841 imino group Chemical group [H]N=* 0.000 description 1
- 230000002055 immunohistochemical effect Effects 0.000 description 1
- 238000012750 in vivo screening Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 229960003786 inosine Drugs 0.000 description 1
- 208000024312 invasive carcinoma Diseases 0.000 description 1
- 230000000155 isotopic effect Effects 0.000 description 1
- 210000002415 kinetochore Anatomy 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 229920006008 lipopolysaccharide Polymers 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 108010054155 lysyllysine Proteins 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000011278 mitosis Effects 0.000 description 1
- 230000036456 mitotic arrest Effects 0.000 description 1
- 230000000394 mitotic effect Effects 0.000 description 1
- 238000010172 mouse model Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 231100001160 nonlethal Toxicity 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 210000000299 nuclear matrix Anatomy 0.000 description 1
- 108060005597 nucleoplasmin Proteins 0.000 description 1
- 239000002777 nucleoside Substances 0.000 description 1
- 150000003833 nucleoside derivatives Chemical class 0.000 description 1
- 235000014593 oils and fats Nutrition 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 230000008723 osmotic stress Effects 0.000 description 1
- 230000002611 ovarian Effects 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 239000008194 pharmaceutical composition Substances 0.000 description 1
- 239000002831 pharmacologic agent Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 238000005375 photometry Methods 0.000 description 1
- 238000013081 phylogenetic analysis Methods 0.000 description 1
- 230000010399 physical interaction Effects 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 239000006187 pill Substances 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000012357 postreplication repair Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000005522 programmed cell death Effects 0.000 description 1
- 150000003148 prolines Chemical class 0.000 description 1
- 238000000159 protein binding assay Methods 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 150000003212 purines Chemical class 0.000 description 1
- 101150010682 rad50 gene Proteins 0.000 description 1
- 108700038990 rat Rad51 Proteins 0.000 description 1
- 238000009790 rate-determining step (RDS) Methods 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 230000008458 response to injury Effects 0.000 description 1
- 239000002336 ribonucleotide Substances 0.000 description 1
- 125000002652 ribonucleotide group Chemical group 0.000 description 1
- 150000003290 ribose derivatives Chemical group 0.000 description 1
- 238000012502 risk assessment Methods 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 210000002863 seminiferous tubule Anatomy 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 235000004400 serine Nutrition 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 230000005783 single-strand break Effects 0.000 description 1
- 210000004927 skin cell Anatomy 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 210000001082 somatic cell Anatomy 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000037351 starvation Effects 0.000 description 1
- 210000000130 stem cell Anatomy 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 235000000346 sugar Nutrition 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 230000002459 sustained effect Effects 0.000 description 1
- 210000004217 synaptonemal complex Anatomy 0.000 description 1
- 230000001360 synchronised effect Effects 0.000 description 1
- 230000002195 synergetic effect Effects 0.000 description 1
- 108700029760 synthetic LTSP Proteins 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 208000004238 testicular teratoma Diseases 0.000 description 1
- 210000001550 testis Anatomy 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-K thiophosphate Chemical compound [O-]P([O-])([O-])=S RYYWUUFWQRZTIU-UHFFFAOYSA-K 0.000 description 1
- 235000008521 threonine Nutrition 0.000 description 1
- 150000003588 threonines Chemical class 0.000 description 1
- 229940104230 thymidine Drugs 0.000 description 1
- 229940113082 thymine Drugs 0.000 description 1
- 210000001541 thymus gland Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Natural products ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- 230000005945 translocation Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 229940035893 uracil Drugs 0.000 description 1
- 239000008158 vegetable oil Substances 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000035899 viability Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000012800 visualization Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 108010073629 xeroderma pigmentosum group F protein Proteins 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5011—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics for testing antineoplastic activity
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/57415—Specifically defined cancers of breast
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/53—Immunoassay; Biospecific binding assay; Materials therefor
- G01N33/574—Immunoassay; Biospecific binding assay; Materials therefor for cancer
- G01N33/57407—Specifically defined cancers
- G01N33/5743—Specifically defined cancers of skin, e.g. melanoma
Definitions
- the invention relates to methods of diagnosis and screening utilizing Rad51 molecules.
- Homologous recombination is a fundamental process which is important for creating genetic diversity and for maintaining genome integrity.
- E. coli RecA protein plays a central role in homologous genetic recombination in vivo and promotes homologous pairing of double-stranded DNA with single-stranded DNA or partially single-stranded DNA molecules in vitro. Radding, C. M. (1988). Homologous pairing and strand exchange promoted by Escherichia coli RecA protein. Genetic Recombination. Washington, American Society for Microbiology. 193-230; Radding, C. M. (1991). J. Biol. Chem. 266: 5355-5358; Kowalczykowski, et al., (1994). Annu. Rev.
- Biochem. 63: 991-1043 In the yeast Saccharomyces cerevisiae there are several genes with homology to recA gene; Rad51, Rad57 and Dmc1. Rad51 is a member of the Rad52 epistasis group, which includes Rad50, Rad51, Rad52, Rad54, Rad55 and Rad57. These genes were initially identified as being defective in the repair of damaged DNA caused by ionizing radiation and were subsequently shown to be deficient in both genetic recombination and the recombinational repair of DNA lesions. Game, J. C. (1983). Yeast Genetics: Fundamental and applied aspects. J. F. T. Spencer, D. H. Spencer and A. R. W.
- yeast Rad51 gene was cloned and sequenced (Basile, et al., (1992). Mol. Cell. Biol. 12: 3235-3246; Aboussekhara, et al., (1992) Mol. Cell. Biol. 12: 3224-3234).
- yeast Rad51 gene shared homology with E. coli recA gene, the extent of homology was not very strong (27%).
- the extent of structural conservation between RecA protein and Rad51 protein became apparent when the yeast Rad51 protein was isolated and was shown to form nucleoprotein filaments that were almost identical to the nucleoprotein filaments formed by RecA protein (Ogawa, et al., (1993). CSH Symp. Quant. Biol.
- Rad51-like Rad51 of human, mouse, chicken, S. cerevisiae, S. pombe and Mei3 of Neurospora crassa
- Dmc1-like genes S. cerevisiae Dmc1 and Lilium longiflorum LIM15 (Ogawa, supra). All these Rad51 genes share significant homology with residues 33-240 of the E. coli RecA protein, which have been identified as a ‘homologous core’ region.
- Yeast and human Rad51 proteins have been purified and characterized biochemically. Like E. coli RecA protein, yeast and human Rad51 protein polymerizes on single-stranded DNA to form a right-handed helical nucleoprotein filament which extends DNA by 1.5 times (Story, supra; Benson, et al., (1994) EMBO J. 13, 5764-5771). Moreover like RecA protein Rad51 protein promotes homologous pairing and strand exchange in an ATP dependent reaction (Sung, P. (1994). Science 265, 1241-1243; Sung, P. and D. L. Robberson (1995).
- Rad51 transcripts and protein are present in all the cell types examined thus far, the highest transcript levels are found in tissues active in recombination, including spleen, thymus, ovary and testis (Morita, supra). Rad51 is specifically induced in murine B cells cultured with lipopolysaccharide, which stimulates switch recombination and Rad51 localizes to nuclei of switching B cells (Li, et al., (1996). Proc. Natl. Acad. Sci. USA 93: 10222-10227). These findings are consistent with the view that Rad51 plays an important role in lymphoid specific recombination events such as V(D)J recombination and immunoglobulin heavy chain class switching.
- Rad51 is enriched in the synaptonemal complexes, which join paired homologous chromosomes (Haaf, et al., (1995) Proc. Natl. Acad. Sci. USA 92, 2298-2302; Ashley, et al., (1995) Chromosoma 104: 19-28; Plug, et al., (1996). Proc. Natl. Acad. Sci. USA 93: 5920-5924). In cultured human cells, Rad51 protein is detected in multiple discrete foci in the nucleoplasm of a few cells by immunofluorescent antibodies.
- Rad51 After DNA damage, the localization of Rad51 changes dramatically when multiple foci form in the nucleus and stain vividly with anti-Rad51 antibodies (Haaf, supra, 1995). After DNA damage the percentage of cells with focally concentrated Rad51 protein increases; the same cells show unscheduled DNA-repair synthesis.
- Micronuclei originate from chromosomal material that is not incorporated into daughter nuclei during cell division. Different chemicals and treatment of cells induce qualitatively different types of micronuclei. MN caused by ionizing radiation or clastogens (i.e. 5-azacytidine) mostly contain acentric chromosome fragments (Verhaegen, F., and Vral, A. (1994). Radiation Res. 139, 208-213; Stopper, et al., (1995). Carcinogenesis 16, 1647-1650). In contrast, MN induced by aneuploidogens (i.e.
- MN frequencies represent a good assay to measure genetic damage in cells, since it is much faster and simpler than karyotype analyses. In this light, the MN test has been widely used as a dosimeter of human exposure to radiation or clastogenic and aneugenic chemicals, and for the detection and risk assessment of environmental mutagens and carcinogens (Heddle, et al., (1991) Environmental Mol. Mutagenesis 18, 277-291; Norppa, et al., (1993).
- the tumor suppressor p53 prevents tumor formation after DNA damage by halting cell cycle progression to allow DNA repair or by inducing apoptotic cell death. Loss of wild-type p53 function renders cells resistant to DNA damage induced cell cycle arrest and ultimately leads to genomic instabilities including gene amplifications, translocations and aneuploidy. Some of these chromosomal lesions are based on mechanisms that involve recombinational events (Lane, D. P. (1992). Nature 358: 15-16; Lane, D. P. (1993). Nature 362: 786-787; Sturzbecher, et al., (1996). EMBO J.
- the present invention provides methods of diagnosing individuals at risk for a disease state which results in aberrant Rad51 loci.
- the methods comprise determining the distribution of Rad51 foci in a first tissue type of a first individual, and then comparing the distribution to the distribution of Rad51 foci from a second normal tissue type from the first individual or a second unaffected individual. A difference in the distributions indicates that the first individual is at risk for a disease state which results in aberrant Rad51 loci.
- Preferred disease states include cancer and disease states associated with apoptosis.
- the present invention provides methods for identifying apoptotic cells and cells under stress associated with nucleic acid modification.
- the methods comprise determining the distribution of Rad51 foci in a first cell, and comparing the distribution to the distribution of Rad51 foci from a second non-apoptotic cell. A difference in the distributions indicates that the first cell is apoptotic or under stress.
- the present invention provides methods for identifying a cell containing a mutant Rad51 gene comprising determining the sequence of all or part of at least one of the endogenous Rad51 genes.
- the invention provides methods of identifying the Rad51 genotype of an individual comprising determining all or part of the sequence of at least one Rad51 gene of the individual.
- the method may include comparing the sequence of the Rad51 gene to a known Rad51 gene.
- the present invention provides methods for screening for a bioactive agent capable of binding to Rad51.
- the methods comprise adding a candidate bioactive agent to a sample of Rad51, and determining the binding of the candidate agent to the Rad51.
- the invention provides methods for screening for a bioactive agent capable of modulating the activity of Rad51.
- the method comprises the steps of adding a candidate bioactive agent to a sample of Rad51, and determining an alteration in the biological activity of Rad51.
- the method may also comprise adding a candidate bioactive agent to a cell, and determining the effect on the formation or distribution of Rad51 foci in the cell.
- the invention provides methods of inducing apoptosis in a cell comprising increasing the activity of Rad51 in the cell. This can be done by overexpressing an endogenous Rad51 gene, or by administration of a gene encoding Rad51 or the protein itself.
- the present invention provides composition comprising a nucleic acid encoding a Rad51 protein, and a nucleic acid encoding a tumor suppressor protein.
- the tumor suppressor protein may be p53 or a BRCA protein.
- FIG. 1 is a digital image of photographs of cells that depict type I and type II Rad51 foci, respectively.
- FIGS. 2A and 2B are digital images of photographs of two different breast cancer cells from a breast cancer cell line (BT20) that show Rad51 foci. The staining is localized to the nucleus, and does not occur in either the cytoplasm or the nucleolus.
- FIGS. 3A, 3B, 3 C and 3 D show dynamic changes in the higher-order nuclear organization of Rad51 foci after DNA damage and cell-cycle arrest.
- a-c TGR-1 fibroblasts were irradiated with a lethal dose (900 rad) of 137 Cs and then allowed to recover for various times. Rad51 protein is stained (light), nuclei are counterstained with DAPI. Three hours after irradiation (a), Rad51 foci are distributed throughout the entire nuclear volume. Many foci have a double-dot appearance. After 16 hrs (b), clusters of Rad51 foci and linear higher-order structures are formed. Somatic pairing of linear strings of Rad51 foci is observed.
- Rad51 clusters move towards the nuclear periphery and are eliminated into micronuclei.
- (d) Simultaneous staining of Rad51 protein (light) and replicating DNA (dark) in an exponentially growing, XPA fibroblast culture. BrdU was incorporated into DNA for 30 hrs and detected with red anti-BrdU antibody. Note that the Rad51-positive cell is devoid of BrdU label. Magnification 1000 ⁇ .
- FIG. 4 depicts the exclusion of Rad51-protein in micronuclei after DNA damage.
- TGR-1 fibroblasts two days after 137 Cs irradiation with a dose of 900 rad. Rad51 protein is stained by (light), nuclei are counterstained with DAPI. Note the complete absence of Rad51-protein staining in nuclei. All Rad51 foci are excluded into micronuclei. Most micronuclei exhibit paired Rad51-protein structures. Magnification 1000 ⁇ .
- FIGS. 5A, 5B, 5 C and 5 D illustrates that apoptotic bodies (micronuclei) contain Rad51 protein and fragmented DNA.
- Rad51-protein foci show light staining.
- the repair proteins Rad52 (a) and Gadd45 (b) are detected by antibody probes (darker staining). Nuclei are counterstained with DAPI. Note that neither Rad52 nor Gadd45 foci co-localize with Rad51. Only the Rad51 foci segregate into micronuclei.
- Micronuclei induced by treatment of TGR-1 cultures with colcemid (c) and etoposide (d) contain Rad51 protein (light staining, left nucleus) and fragmented DNA (darker staining, right nucleus). Magnification 1000 ⁇ .
- FIGS. 6A, 6B and 6 C show the association of Rad51 protein with linear DNA molecules.
- FIGS. 7A, 7B, 7 C, 7 D, 7 E and 7 F show the linear higher-order structures of Rad51 protein in overexpressing nuclei and in colcemid-induced micronuclei.
- Rad51 protein is stained with anti-Rad51 antiserum, detected by green FITC fluorescence (light staining). Preparations are counterstained with DAPI, except the nucleus in b.
- (a and b) Human 710 kidney cells overexpressing Rad51 fused to a T1-tag epitope. Nuclei are filled with a network of linear Rad51 structures. Magnification 1000 ⁇ .
- Nuclear staining is most prominent in cells during G 0 and G 1 phase of the cell cycle. Magnification 1000 ⁇ .
- e and f Linear Rad51 structures in colcernid-induced micronuclei. TGR-1 fibroblasts were treated with colcemid for one day and then allowed to recover for two days. Note the absence of Rad51 staining in the nuclei. Magnification 1000 ⁇ .
- the present invention is directed to a series of discoveries relating to the pivotal role that Rad51 plays in a number of cellular functions, including those involved in disease states. Thus, it appears that the levels, function, and distribution of the Rad51 protein within cells may be monitored as a diagnostic tool of cellular health or fate. In addition, due to Rad51's essential role in a number of cellular processes, Rad51 is an important target molecule to screen candidate drug agents which can modulate its biological activity.
- the invention provides methods of diagnosing individuals at risk for a disease state.
- at risk for a disease state means either that an individual has the disease, or is at risk to develop the disease in the future.
- disease state herein is meant a disease that is either caused by or results in aberrant Rad51 distribution or biological activity.
- aberrant distribution of Rad51 foci in a cell can be indicative of cancer, apoptosis, cellular stress, etc., which can lead to the development of disease states.
- disease states caused by or resulting in aberrant Rad51 biological activity including alterations caused by mutation, changes in the cellular amount or distribution of Rad51, and changes in the biological function of Rad51, for example altered nucleic acid binding, filament formation, DNA pairing (i.e. D-loop formation), strand-exchange, strand annealing or recombinagenicity, are also included within the definition of disease states which are related to or associated with Rad51.
- disease states which may be evaluated using the methods of the present invention include, but are not limited to, cancer (including solid tumors such as skin, breast, brain, cervical carcinomas, testicular carcinomas, etc.), diseases associated with premature or incorrect apoptosis, including AIDS, cancers (e.g.
- melanoma hepatoma, colon cancer, etc.
- liver failure Wilson disease, myelodysplastic syndromes, neurodegenerative diseases, multiple sclerosis, aplastic anemia, chronic neutropenia, Tupe I diabetes mellitus, Hashimoto thyroiditis, ulcerative colitis, Canale-Smith syndrome, lymphoma, leukemia, solid tumors, and autoimmune diseases), diseases associated with cellular stress which is affiliated with nucleic acid modification, including diseases associated with oxidative stress such as cardiovascular disease, immune system function decline, aging, brain dysfunction and cancer.
- the method comprises first determining the distribution of Rad51 foci in a first tissue type of a first individual, i.e. the sample tissue for which a diagnosis is required.
- the testing may be done on single cells.
- the first individual, or patient is suspected of being at risk for the disease state, and is generally a human subject, although as will be appreciated by those in the art, the patient may be animal as well, for example in the development or evaluation of animal models of human disease.
- mammals including mammals such as rodents (including mice, rats, hamsters and guinea pigs), cats, dogs, rabbits, farm animals including cows, horses, goats, sheep, pigs, etc., and primates (including monkeys, chimpanzees, orangutans and gorillas) are included within the definition of patient.
- rodents including mice, rats, hamsters and guinea pigs
- primates including monkeys, chimpanzees, orangutans and gorillas
- tissue type tested will depend on the disease state under consideration.
- potentially cancerous tissue may be tested, including breast tissue, skin cells, solid tumors, brain tissue, etc.
- cells or tissues of the immune system including blood, and lymphocytes; cells or tissues of the cardiovascular system (for example, for testing oxidative stress).
- the disease state under consideration is cancer and the tissue sample is a potentially cancerous tissue type.
- the tissue sample is a potentially cancerous tissue type.
- breast, skin, brain, colon, prostate, and other solid tumor cancers are examples of solid tumor cancers.
- cultured breast cancer cells and primary invasive breast cancer cells all demonstrate an increase in the presence of Rad51 foci.
- NER nucleotide excision repair
- primary cancerous tissue is used, and may show differential Rad51 staining. While the number of cells exhibiting Rad51 foci may be less than for cell lines, primary cancerous tissue shows an increase in Rad51 foci. Thus for example, from 0.05 to 10% of primary cancerous cells exhibit differential Rad51 foci, with from about 1 to about 5% being common.
- the disease state under consideration involves apoptosis, and includes, but is not limited to, including AIDS, cancers (e.g. melanoma, hepatoma, colon cancer, etc.), liver failure, Wilson disease, myelodysplastic syndromes, neurodegenerative diseases, multiple sclerosis, aplasitic anemia, chronic neutropenia, Tupe I diabetes mellitus, Hashimoto thyroiditis, ulcerative colitis, Canale-Smith syndrome, lymphoma, leukemia, solid tumors, and autoimmune diseases.
- This list includes disease states that include too much as well as too little apoptosis. See Peter et al., PNAS USA 94:12736 (1997), hereby incorporated by reference.
- the disease state under consideration involves cellular stress associated with nucleic acid modification, including aging, cardiovascular disease, declines in the function of the immune system, brain dysfunction, and cancer.
- Rad51 foci The distribution of Rad51 foci is determined in the target cells or tissue. To date, two main types of Rad51 foci have been identified. As reported earlier (Haaf, 1995, supra) in situ immunostaining with Rad51 antibodies reveals three kinds of nuclei: 1) nuclei that did not show any staining at all ( no foci); 2) nuclei that showed weak to medium staining and showed only a few foci (Type I nuclei); and 3) nuclei that showed strong staining and showed many foci (Type II nuclei). In general, the staining is excluded from the cytoplasm. Type I and Type II patterns of nuclei staining are shown in FIG.
- the numbers of cells showing Rad51 foci in cells associated with disease states is significantly increased.
- the number of cells showing type I nuclei is generally from about 5% to about 50% of the nuclei, with from about 10% to about 40% generally being seen.
- at least about 100 cells should be evaluated, with at least about 500 cells being preferred, and at least about 1000 being particularly preferred.
- the number of cells showing type II nuclei also increases, with from about 1% to about 10% of the nucleic exhibiting type II foci and from about 1% to about 5% being common.
- there is at least a 5% increase in type II foci with at least about 10% being preferred, and at least about 30% being particularly preferred.
- both types of foci increase simultaneously. In alternate embodiments, only one type of foci increases.
- a labeled binding agent that binds to Rad51 is used to visualize the foci.
- labeled herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound.
- labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens; and c) colored or fluorescent dyes.
- the labels may be incorporated into the compound at any position.
- Preferred labels are fluorescent or radioactive labels.
- the binding agent can either be labeled directly, or indirectly, through the use of a labeled secondary agent which will bind to the first binding agent.
- the cells or tissue sample is prepared as is known for cellular or in situ staining, using techniques well known in the art, as outlined in the Examples.
- the binding agent used to detect Rad51 foci is an antibody.
- the antibodies may be either polyclonal or monoclonal, with monoclonal antibodies being preferred.
- antibodies to the particular Rad51 under evaluation be used; that is, antibodies directed against human Rad51 are used in the evaluation of human patients.
- the homology between different mammalian Rad51 molecules is quite high (73% identity as between human and chicken, for example), it is possible to use antibodies against Rad51 from one type of animal to evaluate a different animal (mouse antibodies to evaluate human tissue, etc.).
- antibodies raised against eukaryotic Rad51 are used, with antibodies raised against mammalian Rad51 being especially preferred.
- antibodies raised against yeast, human, rodent, primate, and avian Rad51 proteins are particularly preferred.
- the protein used to generate the antibodies need not be the full-length protein; fragments and derivatives may be used, as long as there is sufficient immunoreactivity against the sample Rad51 to allow detection.
- other binding agents which will bind to Rad51 at sufficient affinity to allow visualization can be used.
- aberrant Rad51 foci includes the development of micronuclei containing Rad51.
- evaluation of Rad51 foci over time, in particular after cellular stress, can lead to the concentration and exclusion of the Rad51 foci (which are associated with DNA) into micronuclei, which frequently is accompanied by genome fragmentation.
- This effect is seen in a wide variety of apoptotic cells, as is shown in the Examples, even in the absence of induced DNA damage, such as through the use of colcemid, a spindle poison, thus indicating the role of Rad51 in normal apoptotic pathways.
- the cells may be evaluated for cell cycle arrest, as is outlined in the Examples.
- the distribution of foci is compared to the distribution of Rad51 foci from a second cell or tissue type.
- the second tissue sample can be from a normal cell or tissue from the original patient or a tissue from another, unaffected individual, which has been matched for correlation purposes.
- a difference in the distribution of Rad51 foci as between the first tissue sample and the second matched sample indicates that the first individual is at risk for a disease state which results in aberrant Rad51 loci.
- the difference in Rad51 foci distribution is an increase in Rad51 foci, of either type 1 or type 2 foci, as outlined above. In an alternate embodiment, the difference in Rad51 foci distribution is a decrease in the number of Rad51 foci.
- a difference in the distribution of Rad51 foci, in particular an increase in Rad51 foci indicates that the cell or tissue is cancerous.
- a difference in the distribution of Rad51 foci indicates that the cell or tissue is apoptotic.
- differences can include the association of Rad51 with DNA fibers, the association of Rad51 with damaged DNA in micronuclei, or the presence of Rad51 in micronuclei.
- the extent of aberrant distribution indicates the severity of the disease state.
- high percentages of cells containing Rad51 foci can be indicative of highly malignant cancer.
- the present invention provides methods of identifying the Rad51 genotype of an individual or patient comprising determining all or part of the sequence of at least one Rad51 gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. For example, putatively cancerous tissue of an individual is the preferred sample.
- the sequence of all or part of the Rad51 gene can then be compared to the sequence of a known Rad51 gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc.
- the presence of a difference in the sequence between the Rad51 gene of the patient and the known Rad51 gene is indicative of a disease state or a propensity for a disease state.
- the activity of Rad51 is increased by increasing the amount of Rad51 in the cell, for example by overexpressing the endogenous Rad51 or by administering a gene encoding Rad51, using known gene-therapy techniques, for example.
- the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/US93/03868, hereby incorporated by reference in its entirety.
- EHR enhanced homologous recombination
- the cells which are to have apoptosis induced are cancer cells, including, but not limited to, breast, skin, brain, colon, prostate, testicular, ovarian, etc. cancer cells, and other solid tumor cells.
- the methods may also comprise subjecting the cells to conditions which induce nucleic acid damage, as this appears to provide a synergistic effect, as outlined above.
- the methods further comprise increasing the activity of p53 in the cell, for example by increasing the amount of p53, as outlined above for Rad51.
- the candidate agents are organic molecules, particularly small organic molecules, comprising functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups.
- the candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more chemical functional groups.
- Candidate agents are obtained from a wide variety of sources, as will be appreciated by those in the art, including libraries of synthetic or natural compounds. Any number of techniques are available for the random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means. Known pharmacological agents may be subjected to directed or random chemical modifications to produce structural analogs.
- candidate bioactive agents include proteins, nucleic acids, and organic moieties.
- the candidate bioactive agents are proteins.
- protein herein is meant at least two covalently attached amino acids, which includes proteins, polypeptides, oligopeptides and peptides.
- the protein may be made up of naturally occurring amino acids and peptide bonds, or synthetic peptidomimetic structures.
- amino acid or “peptide residue”, as used herein means both naturally occurring and synthetic amino acids. For example, homo-phenylalanine, citrulline and noreleucine are considered amino acids for the purposes of the invention.
- Amino acid also includes imino acid residues such as proline and hydroxyproline.
- the side chains may be in either the (R) or the (S) configuration. In the preferred embodiment, the amino acids are in the (S) or L-configuration. If non-naturally occurring side chains are used, non-amino acid substituents may be used, for example to prevent or retard in vivo degradations.
- the candidate bioactive agents are naturally occurring proteins or fragments of naturally occuring proteins.
- cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts may be used.
- libraries of procaryotic and eukaryotic proteins may be made for screening against Rad51.
- Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred.
- the candidate bioactive agents are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred.
- the peptides may be digests of naturally occuring proteins as is outlined above, random peptides, or “biased” random peptides.
- randomized or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position.
- the synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.
- the candidate bioactive agents are nucleic acids.
- nucleic acid or “oligonucleotide” or grammatical equivalents herein means at least two nucleotides covalently linked together.
- a nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sblul et al., Eur. J. Biochem.
- nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence.
- the nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xathanine hypoxathanine, isocytosine, isoguanine, etc.
- the candidate bioactive agents are organic chemical moieties, a wide variety of which are available in the literature.
- the candidate agents are added to a sample of Rad51 protein.
- a sample of Rad51 protein As is outlined above, all or part of a full-length Rad51 protein can be used, or derivatives thereof. Generally, the addition is done under conditions which will allow the binding of candidate agents to the Rad51 protein, with physiological conditions being preferred.
- the binding of the candidate agent to the Rad51 sample is determined. As will be appreciated by those in the art, this may be done using any number of techniques.
- the candidate bioactive agent is labelled, and binding determined directly.
- the screening assay is a binding assay
- the label can directly or indirectly provide a detectable signal.
- Various labels include radioisotopes, fluorescent molecules, enzyme reporters, colorimetric reporters, chemiluminescers, specific binding molecules, particles, e.g. magnetic or gold particles, and the like.
- Specific binding molecules include pairs, such as biotin and streptavidin, digoxygenin and antidigoxygenin etc.
- the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures.
- the Rad51 may be labeled at tyrosine positions using 125 I.
- more than one component may be labeled with different labels; using 125 I for the Rad51, for example, and a fluorophor for the candidate agents.
- the binding of the candidate bioactive agent is determined directly.
- the Rad51 may be attached to a solid support such as a microtiter plate or other solid support surfaces, and labelled candidate agents added under conditions which favor binding of candidate agents to the Rad51 protein.
- Incubations may be performed at any temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high through put screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagents are washed off, the system is evaluated for the presence of the label, which is indicative of an agent which will bind to the Rad51. The agent which binds can then be characterized or identified as needed.
- the binding of the candidate bioactive agent is determined through the use of competitive binding assays.
- the competitor is can be any molecule known to bind to Rad51, for example an antibody to Rad51, or one of the proteins known to interact with Rad51, including Rad52, Rad54, Rad55, DMC 1, BRCA1, BRCA2, p53, UBC9, RNA polymerase II, and Rad51 itself, any or all of which may be used in competitive assays.
- Either the candidate agents or the competitor may be labeled, or both may be labeled with different labels.
- either the candidate bioactive agent, or the competitor is added first to the Rad51 sample for a time sufficient to allow binding, if present, as outlined above. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.
- the methods comprise combining a Rad51 sample and a candidate bioactive agent, and testing the Rad51 biological activity as is known in the art to evaluate the effect of the agent on the activity of Rad51.
- the methods include both in vitro screening methods, as are generally outlined above, and in vivo screening of cells for alterations in the presence, distribution or activity of Rad51. Accordingly, in a preferred embodiment, the methods comprise the steps of adding a candidate bioactive agent to a cell, and determining the effect on the formation or distribution of Rad51 foci in the cell.
- the addition of the candidate agent to a cell will be done as is known in the art, and may include the use of nuclear localization signal (NLS).
- NLSs are generally short, positively charged (basic) domains that serve to direct the entire protein in which they occur to the cell's nucleus.
- NLS amino acid sequences have been reported including single basic NLS's such as that of the SV40 (monkey virus) large T Antigen (Pro Lys Lys Lys Arg Lys Val), Kalderon (1984), et al., Cell, 39:499-509; the human retinoic acid receptor- ⁇ nuclear localization signal (ARRRRP); NF ⁇ B p50 (EEVQRKRQKL; Ghosh et al., Cell 62:1019 (1990); NF ⁇ B p65 (EEKRKRTYE; Nolan et al., Cell 64:961 (1991); and others (see for example Boulikas, J. Cell. Biochem.
- the methods comprise adding a candidate bioactive agent to a cell, and determining the effect on double strand break repair, homologous recombination, sensitivity to ionizing radiation, and class switch recombination. Assays are detailed in Park, J. Biol. Chem. 270(26):15467 (1995) and Li et al., PNAS USA 93:10222 (1996), Shinohara et al., supra, 1992, all of which are hereby incorporated by reference.
- the cells to which candidate agents are added are subjected to conditions which induce nucleic acid damage, including the addition of radioisotopes (I 125 , Tc, etc., including ionizing radiation and uv), chemicals (Fe-EDTA, bis(1,10-phenanthroline), etc.), enzymes (nucleases, etc.).
- radioisotopes I 125 , Tc, etc., including ionizing radiation and uv
- chemicals Fe-EDTA, bis(1,10-phenanthroline), etc.
- enzymes nucleases, etc.
- reagents may be included in the screening assays or kits, below. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. In general, the mixture of components may be added in any order that provides for the requisite binding.
- the compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host, as previously described.
- the inhibitory agents may be administered in a variety of ways, orally, parenterally e.g., subcutaneously, intraperitoneally, intravascularly, etc. Depending upon the manner of introduction, the compounds may be formulated in a variety of ways.
- the concentration of therapeutically active compound in the formulation may vary from about 0.1-100 wt. %.
- compositions can be prepared in various forms, such as granules, aerosols, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like.
- Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and topical use can be used to make up compositions containing the therapeutically-active compounds.
- Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.
- kits are provided.
- the kits can be utilized in a variety of applications, including determining the distribution of Rad51 foci, diagnosing an individual at risk for a disease state, including cancer, diseases associated with apoptosis, and diseases associated with stress (including oxidative stress, hypoxic stress, osmotic stress or shock, heat or cold stress or shock).
- the kits include a Rad51 binding agent, that will bind to the Rad51 with sufficient affinity for assay. Antibodies are preferred binding agents.
- the kits further include a detectable label such as is outlined above.
- the Rad51 binding agent is labeled; in an additional embodiment, a secondary binding agent or label is used.
- the binding agent may include biotin, and the secondary agent can include streptavidin and a fluorescent label. Additional reagents such as outlined above can also be included.
- the kit may include packaging and instructions, as required.
- Rad51 may function interactively with a number of tumor suppressor genes and thus compositions comprising combinations of these genes may be useful in methods of gene therapy treatment and diagnosis.
- compositions comprising a nucleic acid encoding a Rad51 protein and at least one nucleic acid encoding a tumor suppressor gene are provided.
- Suitable tumor suppressor genes include, but are not limited to, p53, and the BRCA genes, including BRCA1 and BRCA2 genes.
- preferred embodiments include compositions of nucleic acids encoding a) a Rad51 gene and a p53 gene; b) a Rad51 gene and a BRCA1 gene; c) a Rad51 gene and a BRCA2 gene; d) a Rad51 gene, a p53 gene, and a BRCA gene; and e), a Rad51 gene, a p53 gene, a BRCA1 gene and a BRCA2 gene.
- compositions comprise recombinant proteins.
- recombinant herein is meant a protein made using recombinant techniques, i.e. through the expression of a recombinant nucleic acid as depicted above.
- a recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics.
- the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure.
- an isolated protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample.
- a substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred.
- the definition includes the production of a protein from one organism in a different organism or host cell.
- the protein may be made at a significantly higher concentration than is normally seen, through the use of a inducible promoter or high expression promoter, such that the protein is made at increased concentration levels.
- the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and deletions, as discussed below.
- compositions can be administered to a cell or patient, as is outlined above and generally known in the art for gene therapy applications.
- HsRad51 gene in E. coli Detailed methods of cloning and expression of HsRad51 gene in E. coli , purification of recombinant HsRad51 protein with six histidine residues at it's aminoterminal end and preparation of ployclonal antibodies against HsRad51 protein were described previously by Haaf, Golub et al. 1995, supra, which is expressly incorporated herein by reference.
- Cultured cells were washed and resuspended in PBS. The density of somatic cells was adjusted to about 10 5 cells per ml in PBS. Aliquots (0.5 ml) of the cell suspension were centrifuged onto clean glass slides at 800 rpm for 4 min, in a Cytospin (Shandon, Pittsburg). Immediately after cytocentrifugation, the slides were fixed in ⁇ 20° C. methanol for 30 min and then immersed in ice-cold acetone for a few seconds to permealize the cells for antibody staining. Following three washes with PBS, the preparations were incubated at 37° C.
- DAPI 4′,6-diamidino-2- phenylindole
- DABCO 1,4-diazabicyclo[2.2.2]octane
- nuclei of exponentially growing cultures were analyzed for each experiment.
- immunostaining revealed three kinds of nuclei: 1) nuclei that did not show any staining at all ( no foci), 2) nuclei that showed weak to medium staining and showed only a few foci (Type I nuclei) 3) nuclei that showed strong staining and showed many foci (Type II nuclei).
- type I nuclei in about 10% of cells and type II nuclei in less than 0.4 to 1% of cells and about 90% of the cells showed no foci.
- SV 40 transformed fibroblasts LNL8, 63L7
- EBV-transformed lymphoblasts GM 01194
- adenovirus-transformed kidney cells 293
- Rad51-positive cells compared to normal fibroblasts
- some tumor substrates i.e. the ovarian cancer line Hey; did not show a significant increase of Rad51-positive cells.
- HsRad51 Increase in immunofluorescence of HsRad51 in breast cancer cells can result from either increase in the amount of Hsrad51 in these cells or it could be seen as a result of re-organization of Hsrad51 in these nuclei in response to damage related activities. We think that the latter is true because there was no apparent increase in the amount HsRad51 in breast cancer cells as shown by the Western blots (data not shown).
- Eurkaryotic cells have several different mechanisms for repairing damaged DNA (for review see R. Wood, 1996).
- One of the major pathway is nucleotide excision repair (NER), which excises damage within oligomers that are 25-32 nucleotides long.
- NER nucleotide excision repair
- Patients with recessive heredity disorder XP have defects in one of several enzymes, which participate in ER.
- DNA damage is removed several-fold faster from transcribed genes than from non-transcribed, mainly due to preferential NER of the transcribed strand (for review see Hanawalt, 1994). This mechanism does not function in Cockayne's syndrome (CS) patients.
- NER defective cells evidently, sustain increased amount of DNA damage.
- NER defective cells from XP and CS cells for an increased amount of Rad51 protein foci.
- XP-V cells are normal in NER, but have defect in postreplication repair process (Boyer et al., 1990; Griffiths et al., 1991; Wang et al., 1991, 1993). As we expected, these cells showed the same distribution pattern of nuclear HsRad51 as control cell lines (Table 3).
- XP-A, XP-B, XP-F and XP-G cells are all defective in NER.
- XP-A cells have defect in XPA protein, which carries out a crucial rate-limiting step in NER-recognition of DNA lesion (Jones and Wood, 1993).
- the protein makes a ternary complex with ERCC 1 protein and XPF protein, which is defective in XP-F cells (Park and Sankar, 1994).
- XP-B and XP-G cells are defective in different steps of NER which follow damage recognition (Reviewed in Ma et al., 1995).
- XP-A and XP-F cell lines have increased amount of cells with HsRad51 protein foci (Table 3).
- XP-B and XP-G cells have about the same level of HsRad51 protein foci, as cells with normal NER (Table 3).
- This result could be easily understood if we assume, that 1) formation of HsRad51 foci is caused by DNA damage, b) DNA lesion is excluded from the pool of damage DNA which cause Rad51 foci formation as soon as XPA/XPF/ERCC 1 complex binds to the lesion.
- DNA damage in XP-Band XP-G cells is recognized by NER system, but the damage cannot be proceeded and removed by the system.
- human recombination protein HsRad51 is concentrated in multiple discrete foci in nucleoplasm of cultured human cells. After treatment of cells with DNA damaging agents, the percentage of cells with HsRad51 protein immunofluorescence increases.
- Xeroderma pigmentosum (XP) cells XP-A with inactive protein XPA, responsible for lesion recognition by nucleotide excision repair (NER) system have increased percentage of cells with HsRad51 protein foci.
- XP-F cells defective in XPF protein, which forms complex with XPA protein, also have increased level of the HsRad51 protein foci.
- XP-B and XP-G cells with defects in different steps ER which follow the damage recognition, as well as XP-V cells (normal level of NER) and Cockayne's syndrome (CS) cells (defect in NER, responsible for preferential repair of the transcribed DNA strand) have normal level of HsRad51 protein foci.
- NER normal level of NER
- CS Cockayne's syndrome
- Monolayer cultures were grown in D-MEM medium supplemented with 10% fetal bovine serum and antibiotics.
- the cells were detached from culture flasks by gentle trypsination, pelleted and resuspended in phosphate-buffered saline (PBS; 136 mM NaC1, 2 mM KCI, 10.6 mM Na 2 HPO 4 , 1.5 mM KH 2 PO 4 , pH 7.3) prewarmed at 37° C.
- PBS phosphate-buffered saline
- colcemid does not cause chromsome breakage.
- etoposide a drug that inhibits DNA topoisomerase II
- Mol. Pharmac. 46, 890-895 is a classic system for inducing apoptosis in cells.
- HsRad51 protein expressed in E. coli , was isolated and used for preparation of rabbit polyclonal antibodies. Westem blotting experiments revealed that rabbit antiserum does not react significantly with any other proteins in mammalian cells except Rad51 (Haaf et al., 1995). Similarly, polydonal antibodies against HsRadS2, a structural homolog of yeast Rad52, were raised in the rat, as is known in the art. Mouse monoclonal antibody 30T14 recognizes Gadd45, a ubiquitously expressed mammalian protein that is induced by DNA damage (Smith, et al., (1994). Science 266, 1376-1380).
- Monoclonal antibodies H4 and H14 bind specifically to the large subunit of RNAPII (Bregman et al., (1995) J. Cell Biol. 129, 287-298). Monoclonal antibody Pab246 against amino acids 88-93 of mouse p53 was purchased from Santa Cruz Biotechnology, Inc.
- the slides were simultaneously labeled with rat anti-HsRad52 antiserum or mouse monoclonal antibody.
- the slides were then washed in PBS another three times for 10 min each and incubated for 30 min with fluorescein-isothiocyanate (FITC)-conjugated anti-rabbit IaG, appropriately diluted with PBS.
- FITC fluorescein-isothiocyanate
- Rad52, Gadd45, p53, and RNAPII were detected with rhodamine, conjugated anti-rat IgG or anti-mouse IgG+IgM.
- the preparations were counterstained with 1 ⁇ g/ml
- DAPI 4,6-diamidino-2-phenylindole
- chromatin fibers For preparation of chromatin fibers, cells were centrifuged onto a glass slide and covered with 50 ⁇ l of 50 mM Tris-HCI, pH 8.0, 1 mM EDTA, and 0.1% SDS. The protein-extracted chromatin was mechanically sheared on the slide with the aid of another slide (Heiskanan, et al., (1994) BioTechniques 17, 928-933) and then fixed in methanol/acetone.
- FISEL Fluorescence In Situ End Labeling
- Cytological preprations are incubated at 37° C. for 1 hr with this reaction mix. Washing the slides for 3 ⁇ 5 min in PBS is sufficient to terminate the reaction. The incorporated biotin-dUTP is detected with rhodarnine-conjugated avidin.
- the slides were denatured in 70% formamide, 2 ⁇ SSC for 1 min at 80° C. and then dehydrated in an alcohol series. BrdU incorporation was visualized by indirect anti-BrdU antibody staining.
- the preparations were incubated with mouse monoclonal anti-BrdU antibody (Boehringer Mannheim), diluted 1:50 with PBS, for 30 min.
- the slides were washed with PBS and then incubated with rhodamine-conjugated anti-mouse IgG, diluted 1:20 with PBS, for another 30 min. Only cells with intense BrdU labeling of the entire nucleus were considered BrdU-positive and scored as cycling cells.
- HsRad51 Protein in Mammalian Cells Human kidney cells (line 293, ATCC CRL1573) were stably transformed by plasmid pEG9 15. This plasmid carries the whole coding sequence of the HsRad51 gene inserted in frame with the 5′-end terminal sequence of vector pEBVHisB (Invitrogen). The resulting cell lines 710 and 717 constitutively express Rad51 protein fused to a T7-tag epitope (Haafet al., 1995).
- rat Rad51 protein was visualized in situ using polyclonal antibodies raised against HsRad51.
- Rad52 and Other Repair Proteins are Not Excluded into Micronuclei Studies in yeast (Shinohara et al., 1992, supra; Milne, G., and Weaver, D. (1993). Genes Dev. 7, 1755-1765) and humans (Shen, et al., (1996). J. Biol. Chem. 271, 148-152) have shown physical interaction between Rad51 and Rad52 proteins both in vitro and in vivo. Double immunofluorescence with rabbit anti-Rad51 and rat anti-Rad52 antibodies on 137 CS irradiated TGR-1 cells showed that both proteins are enriched in nuclear foci but they do not co-localize.
- Rad52-protein foci remained in the nucleus throughout the entire time course, while Rad51-protein foci were segregated into MN (data not shown). The same holds true for Gadd45 (data not shown) an inducible DNA-repair protein that is stimulated by p53 (Smith et al., 1994, supra). Biochemical evidence further suggests specific protein-protein association between HsRad51 and p53 (Sturzbecher et al., 1996, supra). However, after anti-p53 antibody staining the RadS1 foci were not particularly enriched with p53 protein (data not shown).
- RNAPII RNA polymerase II
- Rad51-Protein Foci and Apoptosis To determine whether Rad51-positive MN specifically detect exposure to clastogens, analyses were performed in rat TGR-I cells with the aneuploidogen colcemid. This mitotic spindle poison causes lagging of whole chromosomes that are excluded into MN. Surprisingly, when colcemid-treated cells were allowed to recover for 24 hrs in drug-free medium, over 30% of the induced MN contained very brightly fluorescing Rad51 foci (Table 9). Some MN contained rod-like linear structures (data not shown) similar to those observed in Rad51-overexpressing cells.
- Rat TGR-1 cells are capable of normal physiological withdrawal into the quiescent (Go) phase of the cell cycle as well as resumption of growth following the appropriate stimuli (Prouty, et al., (1993). Oncogene 8, 899-907).
- Go arrest upon serum starvation dramatically induced HsRad: 1-protein foci (Table 12).
- Synchronous re-entry into the cell cycle after feeding reduced the percentage of HsRad51-foci positive cells to very low levels.
- new Go arrest upon contact inhibition following three population doublings increased the number of cells with nuclear Rad51 foci again.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Hematology (AREA)
- Chemical & Material Sciences (AREA)
- Urology & Nephrology (AREA)
- Molecular Biology (AREA)
- Food Science & Technology (AREA)
- Pathology (AREA)
- Cell Biology (AREA)
- Biotechnology (AREA)
- Oncology (AREA)
- Microbiology (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Hospice & Palliative Care (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Toxicology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
In accordance with the objects outlined above, the present invention provides methods of diagnosing individuals at risk for a disease state which results in aberrant Rad51 loci. The methods comprise determining the distribution of Rad51 foci in a first tissue type of a first individual, and then comparing the distribution to the distribution of Rad51 foci from a second normal tissue type from the first individual or a second unaffected individual. A difference in the distributions indicates that the first individual is at risk for a disease state which results in aberrant Rad51 loci. Preferred disease states include cancer and disease states associated with apoptosis.
Description
- This is a continuing application of 60/035,834, filed Jan. 30, 1997 and 60/045,668, filed May 6, 1997, both of which are expressly incorporated by reference herein.
- The invention relates to methods of diagnosis and screening utilizing Rad51 molecules.
- Homologous recombination is a fundamental process which is important for creating genetic diversity and for maintaining genome integrity. InE. coli RecA protein plays a central role in homologous genetic recombination in vivo and promotes homologous pairing of double-stranded DNA with single-stranded DNA or partially single-stranded DNA molecules in vitro. Radding, C. M. (1988). Homologous pairing and strand exchange promoted by Escherichia coli RecA protein. Genetic Recombination. Washington, American Society for Microbiology. 193-230; Radding, C. M. (1991). J. Biol. Chem. 266: 5355-5358; Kowalczykowski, et al., (1994). Annu. Rev. Biochem. 63: 991-1043. In the yeast Saccharomyces cerevisiae there are several genes with homology to recA gene; Rad51, Rad57 and Dmc1. Rad51 is a member of the Rad52 epistasis group, which includes Rad50, Rad51, Rad52, Rad54, Rad55 and Rad57. These genes were initially identified as being defective in the repair of damaged DNA caused by ionizing radiation and were subsequently shown to be deficient in both genetic recombination and the recombinational repair of DNA lesions. Game, J. C. (1983). Yeast Genetics: Fundamental and applied aspects. J. F. T. Spencer, D. H. Spencer and A. R. W. Smith, eds (New-York:springer-verlag): 109-137; Haynes, et al., (1981). The molecular biology of the yeast Saccharomyces cerevisiae: Life cycle and inheritance. J. N. Strathem, E. W. Jones and J. M. Broach, eds (Cold Spring harbor, N.Y.:Cold Spring Harbor laboratory press): 371-414; Resnick, M. A. (1987). Meiosis, P. B. Moens, ed. (New York: Academic Press): 157-210. During meiosis Rad51 mutants accumulate DNA double-strand breaks at recombination hot spots (Shinohara, et al., (1992). Cell 69: 457-470). Yeast rad51 gene was cloned and sequenced (Basile, et al., (1992). Mol. Cell. Biol. 12: 3235-3246; Aboussekhara, et al., (1992) Mol. Cell. Biol. 12: 3224-3234). Although yeast Rad51 gene shared homology with E. coli recA gene, the extent of homology was not very strong (27%). However, the extent of structural conservation between RecA protein and Rad51 protein became apparent when the yeast Rad51 protein was isolated and was shown to form nucleoprotein filaments that were almost identical to the nucleoprotein filaments formed by RecA protein (Ogawa, et al., (1993). CSH Symp. Quant. Biol. 58: 567-576; Ogawa, T., et al., (1993). Science 259: 1896-1899; Story, et al., (1993). Science 259: 1892-1896). Recently genes homologous to E. coli recA and yeast rad51 were isolated from all groups of eukaryotes, including mammals (Morita, et al., (1993). Proc. Natl. Acad. Sci. USA 90, 6577-6580; Shinohara, et al., (1993). Nature Genet. 4, 239-243; Heyer, W. D. (1994). Experientia 50, 223-233; Maeshima, et al., (1995). Gene 160: 195-200). Phylogenetic analysis by Ogawa and co workers suggested the existence of two sub-families within eukaryotic RecA homologs: the Rad51-like (Rad51 of human, mouse, chicken, S. cerevisiae, S. pombe and Mei3 of Neurospora crassa) and the Dmc1-like genes (S. cerevisiae Dmc1 and Lilium longiflorum LIM15) (Ogawa, supra). All these Rad51 genes share significant homology with residues 33-240 of the E. coli RecA protein, which have been identified as a ‘homologous core’ region.
- Yeast and human Rad51 proteins have been purified and characterized biochemically. LikeE. coli RecA protein, yeast and human Rad51 protein polymerizes on single-stranded DNA to form a right-handed helical nucleoprotein filament which extends DNA by 1.5 times (Story, supra; Benson, et al., (1994) EMBO J. 13, 5764-5771). Moreover like RecA protein Rad51 protein promotes homologous pairing and strand exchange in an ATP dependent reaction (Sung, P. (1994). Science 265, 1241-1243; Sung, P. and D. L. Robberson (1995). Cell 82: 453-461; Baumann, et al., (1996) Cell 87, 57-766; Gupta, et al., (1997) Proc. Natl. Acad. Sci. USA 94, 463-468). Surprisingly, polarity of strand exchange performed by Rad51 protein is opposite to that of RecA protein (Sung and Robberson supra) and the relevance of this observation remains to be seen.
- Surprisingly, studies with mouse models show that targeted disruption of the Rad51 gene leads to an embryonic lethal phenotype (Tsuzuki, et al., (1996). Peoc. Natl. Acad. Sci. USA 93: 6236-6240). Moreover attempts to generate homozygous rad51-/-embryonic stem cells have not been successful. These results show that Rad51 plays an essential role in cell proliferation, a surprise in view of the viability ofS. cerevisiae carrying rad51 deletions. It is also interesting to note that Rad51 was found to be associated with RNA polymerase II transcription complex (Maldonado, et al., (1996). Nature 381, 86-89), the specificity and functional nature of these interactions remains to be seen but all these observations point to a pleitropic role of hsRad51 in DNA metabolism.
- While Rad51 transcripts and protein are present in all the cell types examined thus far, the highest transcript levels are found in tissues active in recombination, including spleen, thymus, ovary and testis (Morita, supra). Rad51 is specifically induced in murine B cells cultured with lipopolysaccharide, which stimulates switch recombination and Rad51 localizes to nuclei of switching B cells (Li, et al., (1996). Proc. Natl. Acad. Sci. USA 93: 10222-10227). These findings are consistent with the view that Rad51 plays an important role in lymphoid specific recombination events such as V(D)J recombination and immunoglobulin heavy chain class switching. In spermatocytes undergoing meiosis, Rad51 is enriched in the synaptonemal complexes, which join paired homologous chromosomes (Haaf, et al., (1995) Proc. Natl. Acad. Sci. USA 92, 2298-2302; Ashley, et al., (1995) Chromosoma 104: 19-28; Plug, et al., (1996). Proc. Natl. Acad. Sci. USA 93: 5920-5924). In cultured human cells, Rad51 protein is detected in multiple discrete foci in the nucleoplasm of a few cells by immunofluorescent antibodies. After DNA damage, the localization of Rad51 changes dramatically when multiple foci form in the nucleus and stain vividly with anti-Rad51 antibodies (Haaf, supra, 1995). After DNA damage the percentage of cells with focally concentrated Rad51 protein increases; the same cells show unscheduled DNA-repair synthesis.
- Micronuclei (MN) originate from chromosomal material that is not incorporated into daughter nuclei during cell division. Different chemicals and treatment of cells induce qualitatively different types of micronuclei. MN caused by ionizing radiation or clastogens (i.e. 5-azacytidine) mostly contain acentric chromosome fragments (Verhaegen, F., and Vral, A. (1994). Radiation Res. 139, 208-213; Stopper, et al., (1995). Carcinogenesis 16, 1647-1650). In contrast, MN induced by aneuploidogens (i.e. colcemid) result from lagging whole chromosomes and stain positively for the presence of kinetochores/ centromeres (Marrazini et al., 1994; Stopper, et al., (1994). Mutagenesis 9, 411-416). Determination of MN frequencies represents a good assay to measure genetic damage in cells, since it is much faster and simpler than karyotype analyses. In this light, the MN test has been widely used as a dosimeter of human exposure to radiation or clastogenic and aneugenic chemicals, and for the detection and risk assessment of environmental mutagens and carcinogens (Heddle, et al., (1991) Environmental Mol. Mutagenesis 18, 277-291; Norppa, et al., (1993). Environmental Health Perspect. 101, Supp. 3, 139-143; Hahnfeldt, et al., (1994) Radiation Res. 138, 239-245). However, although the MN assay is a convenient in situ method to monitor cytogenetic effects, the understanding of the connection between initial DNA damage and formation of MN is still poor.
- The tumor suppressor p53 prevents tumor formation after DNA damage by halting cell cycle progression to allow DNA repair or by inducing apoptotic cell death. Loss of wild-type p53 function renders cells resistant to DNA damage induced cell cycle arrest and ultimately leads to genomic instabilities including gene amplifications, translocations and aneuploidy. Some of these chromosomal lesions are based on mechanisms that involve recombinational events (Lane, D. P. (1992). Nature 358: 15-16; Lane, D. P. (1993). Nature 362: 786-787; Sturzbecher, et al., (1996). EMBO J. 15: 1992-2002) reported that wild-type tumor suppressor protein p53 interacts physically with human Rad51 protein and it inhibits the biochemical functions of Rad51 like ATPase and strand exchange. In vivo temperature sensitive mutant p53 formed complexes with Rad51 only in wild type but not in mutant conformation. They suggested that gene amplifications and other types of chromosome rearrangements involved in tumour progression might occur not only as a result of inappropriate cell proliferation but as a direct consequence of a defect in p53 mediated control of homologous recombination processes due to mutations in the p53 gene. (Meyn, et al., (1994). Int. J. Radiat. Biol. 66: S141-S149) showed that normal cells transfected with a dominant-negative p53 mutant acquired interference with the G1-S cell cycle checkpoint and showed up to an 80-fold elevation in RAD51 mediated homologous DNA recombination rates compared with the normal parental control cells. Thus, loss of normal p53 function may cause a loss in control of normal DNA repair, recombination, and ultimately replication, resulting in inappropriate cell division and neoplastic growth. Breast tumour cells have mutated p53 genes and proteins and have various types of chromosomal aberrations like insertions, deletions, rearrangements, amplifications etc., indicative of abnormally controlled recombination.
- Accordingly, it is an object of the invention to provides methods of diagnosis and screening which focus on Rad51.
- In accordance with the objects outlined above, the present invention provides methods of diagnosing individuals at risk for a disease state which results in aberrant Rad51 loci. The methods comprise determining the distribution of Rad51 foci in a first tissue type of a first individual, and then comparing the distribution to the distribution of Rad51 foci from a second normal tissue type from the first individual or a second unaffected individual. A difference in the distributions indicates that the first individual is at risk for a disease state which results in aberrant Rad51 loci. Preferred disease states include cancer and disease states associated with apoptosis.
- In an additional aspect, the present invention provides methods for identifying apoptotic cells and cells under stress associated with nucleic acid modification. The methods comprise determining the distribution of Rad51 foci in a first cell, and comparing the distribution to the distribution of Rad51 foci from a second non-apoptotic cell. A difference in the distributions indicates that the first cell is apoptotic or under stress.
- In a further aspect, the present invention provides methods for identifying a cell containing a mutant Rad51 gene comprising determining the sequence of all or part of at least one of the endogenous Rad51 genes.
- In an additional aspect, the invention provides methods of identifying the Rad51 genotype of an individual comprising determining all or part of the sequence of at least one Rad51 gene of the individual. The method may include comparing the sequence of the Rad51 gene to a known Rad51 gene.
- In a further aspect, the present invention provides methods for screening for a bioactive agent capable of binding to Rad51. The methods comprise adding a candidate bioactive agent to a sample of Rad51, and determining the binding of the candidate agent to the Rad51.
- In an additional aspect, the invention provides methods for screening for a bioactive agent capable of modulating the activity of Rad51. The method comprises the steps of adding a candidate bioactive agent to a sample of Rad51, and determining an alteration in the biological activity of Rad51. The method may also comprise adding a candidate bioactive agent to a cell, and determining the effect on the formation or distribution of Rad51 foci in the cell.
- In a further aspect, the invention provides methods of inducing apoptosis in a cell comprising increasing the activity of Rad51 in the cell. This can be done by overexpressing an endogenous Rad51 gene, or by administration of a gene encoding Rad51 or the protein itself.
- In an additional aspect, the present invention provides composition comprising a nucleic acid encoding a Rad51 protein, and a nucleic acid encoding a tumor suppressor protein. The tumor suppressor protein may be p53 or a BRCA protein.
- FIG. 1 is a digital image of photographs of cells that depict type I and type II Rad51 foci, respectively.
- FIGS. 2A and 2B are digital images of photographs of two different breast cancer cells from a breast cancer cell line (BT20) that show Rad51 foci. The staining is localized to the nucleus, and does not occur in either the cytoplasm or the nucleolus.
- FIGS. 3A, 3B,3C and 3D show dynamic changes in the higher-order nuclear organization of Rad51 foci after DNA damage and cell-cycle arrest. (a-c) TGR-1 fibroblasts were irradiated with a lethal dose (900 rad) of 137Cs and then allowed to recover for various times. Rad51 protein is stained (light), nuclei are counterstained with DAPI. Three hours after irradiation (a), Rad51 foci are distributed throughout the entire nuclear volume. Many foci have a double-dot appearance. After 16 hrs (b), clusters of Rad51 foci and linear higher-order structures are formed. Somatic pairing of linear strings of Rad51 foci is observed. After 30 hrs (c), Rad51 clusters move towards the nuclear periphery and are eliminated into micronuclei. (d) Simultaneous staining of Rad51 protein (light) and replicating DNA (dark) in an exponentially growing, XPA fibroblast culture. BrdU was incorporated into DNA for 30 hrs and detected with red anti-BrdU antibody. Note that the Rad51-positive cell is devoid of BrdU label. Magnification 1000×.
- FIG. 4 depicts the exclusion of Rad51-protein in micronuclei after DNA damage. TGR-1 fibroblasts, two days after137Cs irradiation with a dose of 900 rad. Rad51 protein is stained by (light), nuclei are counterstained with DAPI. Note the complete absence of Rad51-protein staining in nuclei. All Rad51 foci are excluded into micronuclei. Most micronuclei exhibit paired Rad51-protein structures. Magnification 1000×.
- FIGS. 5A, 5B,5C and 5D illustrates that apoptotic bodies (micronuclei) contain Rad51 protein and fragmented DNA. (a and b) TGR-I nuclei, 3 hrs (right), 16 hrs (middle), and 30 hrs (left) after 137Cs irradiation. Rad51-protein foci show light staining. The repair proteins Rad52 (a) and Gadd45 (b) are detected by antibody probes (darker staining). Nuclei are counterstained with DAPI. Note that neither Rad52 nor Gadd45 foci co-localize with Rad51. Only the Rad51 foci segregate into micronuclei. (c and d) Micronuclei induced by treatment of TGR-1 cultures with colcemid (c) and etoposide (d) contain Rad51 protein (light staining, left nucleus) and fragmented DNA (darker staining, right nucleus). Magnification 1000×.
- FIGS. 6A, 6B and6C show the association of Rad51 protein with linear DNA molecules. (a) Mechanically stretched chromatin prepared from a 137Cs-irradiated cell culture and stained with light anti-HsRad51 antibodies. The Rad51 signals appear as beads-on-a-string on the linearly extended chromatin fibers. (b and c) DNA fibers excluded from TGR-1 nuclei, one day after 137Cs irradiation. Preparations are not experimentally stretched. Chromatin is counterstained with DAPI. The DNA fibers are covered with Rad51 protein (c, light staining), whereas the remaining nuclei are devoid of detectable Rad51 foci. DNA-strand breaks in chromatin fibers are end labeled with fluorescent nucleotides (c, darker staining co-localizing with the Rad51 staining). Some fibers appear to form micronuclei. Magnification 1000×.
- FIGS. 7A, 7B,7C, 7D, 7E and 7F show the linear higher-order structures of Rad51 protein in overexpressing nuclei and in colcemid-induced micronuclei. Rad51 protein is stained with anti-Rad51 antiserum, detected by green FITC fluorescence (light staining). Preparations are counterstained with DAPI, except the nucleus in b. (a and b) Human 710 kidney cells overexpressing Rad51 fused to a T1-tag epitope. Nuclei are filled with a network of linear Rad51 structures. Magnification 1000×. (c) Subconfluent rat TGR 928.1-9 cells overexpressing HsRad51. Nuclear staining is most prominent in cells during G0 and G1 phase of the cell cycle. Magnification 1000×. (d) TGR 928.1-9 nucleus filled with linear Rad51 structures. Magnification 1000×. (e and f) Linear Rad51 structures in colcernid-induced micronuclei. TGR-1 fibroblasts were treated with colcemid for one day and then allowed to recover for two days. Note the absence of Rad51 staining in the nuclei. Magnification 1000×.
- The present invention is directed to a series of discoveries relating to the pivotal role that Rad51 plays in a number of cellular functions, including those involved in disease states. Thus, it appears that the levels, function, and distribution of the Rad51 protein within cells may be monitored as a diagnostic tool of cellular health or fate. In addition, due to Rad51's essential role in a number of cellular processes, Rad51 is an important target molecule to screen candidate drug agents which can modulate its biological activity.
- Accordingly, in a preferred embodiment, the invention provides methods of diagnosing individuals at risk for a disease state. As will be appreciated by those in the art, “at risk for a disease state” means either that an individual has the disease, or is at risk to develop the disease in the future. By “disease state” herein is meant a disease that is either caused by or results in aberrant Rad51 distribution or biological activity. For example, as is more fully described below, aberrant distribution of Rad51 foci in a cell can be indicative of cancer, apoptosis, cellular stress, etc., which can lead to the development of disease states. Similarly, disease states caused by or resulting in aberrant Rad51 biological activity, including alterations caused by mutation, changes in the cellular amount or distribution of Rad51, and changes in the biological function of Rad51, for example altered nucleic acid binding, filament formation, DNA pairing (i.e. D-loop formation), strand-exchange, strand annealing or recombinagenicity, are also included within the definition of disease states which are related to or associated with Rad51.
- Thus, disease states which may be evaluated using the methods of the present invention include, but are not limited to, cancer (including solid tumors such as skin, breast, brain, cervical carcinomas, testicular carcinomas, etc.), diseases associated with premature or incorrect apoptosis, including AIDS, cancers (e.g. melanoma, hepatoma, colon cancer, etc.), liver failure, Wilson disease, myelodysplastic syndromes, neurodegenerative diseases, multiple sclerosis, aplastic anemia, chronic neutropenia, Tupe I diabetes mellitus, Hashimoto thyroiditis, ulcerative colitis, Canale-Smith syndrome, lymphoma, leukemia, solid tumors, and autoimmune diseases), diseases associated with cellular stress which is affiliated with nucleic acid modification, including diseases associated with oxidative stress such as cardiovascular disease, immune system function decline, aging, brain dysfunction and cancer.
- In one embodiment, the method comprises first determining the distribution of Rad51 foci in a first tissue type of a first individual, i.e. the sample tissue for which a diagnosis is required. In some embodiments, the testing may be done on single cells. The first individual, or patient, is suspected of being at risk for the disease state, and is generally a human subject, although as will be appreciated by those in the art, the patient may be animal as well, for example in the development or evaluation of animal models of human disease. Thus other animals, including mammals such as rodents (including mice, rats, hamsters and guinea pigs), cats, dogs, rabbits, farm animals including cows, horses, goats, sheep, pigs, etc., and primates (including monkeys, chimpanzees, orangutans and gorillas) are included within the definition of patient.
- As will be appreciated by those in the art, the tissue type tested will depend on the disease state under consideration. Thus for example, potentially cancerous tissue may be tested, including breast tissue, skin cells, solid tumors, brain tissue, etc. Similarly, cells or tissues of the immune system, including blood, and lymphocytes; cells or tissues of the cardiovascular system (for example, for testing oxidative stress).
- In a preferred embodiment, the disease state under consideration is cancer and the tissue sample is a potentially cancerous tissue type. Of particular interest is breast, skin, brain, colon, prostate, and other solid tumor cancers. As outlined in the Examples, cultured breast cancer cells and primary invasive breast cancer cells all demonstrate an increase in the presence of Rad51 foci.
- Similarly, several diseases caused by defective nucleotide excision repair (NER) systems, including Xeroderma pigmentosium, show increased Rad51 foci.
- In a preferred embodiment, primary cancerous tissue is used, and may show differential Rad51 staining. While the number of cells exhibiting Rad51 foci may be less than for cell lines, primary cancerous tissue shows an increase in Rad51 foci. Thus for example, from 0.05 to 10% of primary cancerous cells exhibit differential Rad51 foci, with from about 1 to about 5% being common.
- It should be noted that not all cancer cell lines exhibit aberrant Rad51 protein foci. For example, the ovarian cancer cell line Hey does not show an increase in Rad51 foci. Similarly, as outlined in the examples, transformed but non-malignant human cells can show an increased percentage of Rad51-positive cells (compared to non-transformed cells), although it is generally not as great as in tumor cells.
- In a preferred embodiment, the disease state under consideration involves apoptosis, and includes, but is not limited to, including AIDS, cancers (e.g. melanoma, hepatoma, colon cancer, etc.), liver failure, Wilson disease, myelodysplastic syndromes, neurodegenerative diseases, multiple sclerosis, aplasitic anemia, chronic neutropenia, Tupe I diabetes mellitus, Hashimoto thyroiditis, ulcerative colitis, Canale-Smith syndrome, lymphoma, leukemia, solid tumors, and autoimmune diseases. This list includes disease states that include too much as well as too little apoptosis. See Peter et al., PNAS USA 94:12736 (1997), hereby incorporated by reference.
- In a preferred embodiment, the disease state under consideration involves cellular stress associated with nucleic acid modification, including aging, cardiovascular disease, declines in the function of the immune system, brain dysfunction, and cancer.
- The distribution of Rad51 foci is determined in the target cells or tissue. To date, two main types of Rad51 foci have been identified. As reported earlier (Haaf, 1995, supra) in situ immunostaining with Rad51 antibodies reveals three kinds of nuclei: 1) nuclei that did not show any staining at all ( no foci); 2) nuclei that showed weak to medium staining and showed only a few foci (Type I nuclei); and 3) nuclei that showed strong staining and showed many foci (Type II nuclei). In general, the staining is excluded from the cytoplasm. Type I and Type II patterns of nuclei staining are shown in FIG. 1; many of the foci have a double-dot appearance, typical of paired DNA segments. In normal cells, type I nuclei are found in 7-10% of cells and type II nuclei in less than 0.4 to 1% of cells, with generally about 90% of the cells showing no foci. In contrast, some cells involved in disease states show a marked increase in Rad51 foci. As outlined herein and shown in the examples, the numbers of cells showing Rad51 foci in cells associated with disease states is significantly increased. Thus, in a preferred embodiment, the number of cells showing type I nuclei is generally from about 5% to about 50% of the nuclei, with from about 10% to about 40% generally being seen. Thus, in a preferred embodiment, there is at least a 5% increase in the type I foci, with at least about 10% being preferred, and at least about 30% being particularly preferred. Generally, to see this effect, at least about 100 cells should be evaluated, with at least about 500 cells being preferred, and at least about 1000 being particularly preferred.
- Similarly, the number of cells showing type II nuclei also increases, with from about 1% to about 10% of the nucleic exhibiting type II foci and from about 1% to about 5% being common. Thus, in a preferred embodiment, there is at least a 5% increase in type II foci, with at least about 10% being preferred, and at least about 30% being particularly preferred. In a preferred embodiment, both types of foci increase simultaneously. In alternate embodiments, only one type of foci increases.
- Similarly, an increase in both types of foci (i.e. an increase in any foci, irrespective of type) can also be evaluated using the same numbers.
- The distribution of Rad51 foci can be determined in a variety of ways. In a preferred embodiment, a labeled binding agent that binds to Rad51 is used to visualize the foci. By “labeled” herein is meant that a compound has at least one element, isotope or chemical compound attached to enable the detection of the compound. In general, labels fall into three classes: a) isotopic labels, which may be radioactive or heavy isotopes; b) immune labels, which may be antibodies or antigens; and c) colored or fluorescent dyes. The labels may be incorporated into the compound at any position. Preferred labels are fluorescent or radioactive labels. The binding agent can either be labeled directly, or indirectly, through the use of a labeled secondary agent which will bind to the first binding agent. The cells or tissue sample is prepared as is known for cellular or in situ staining, using techniques well known in the art, as outlined in the Examples.
- In a preferred embodiment, the binding agent used to detect Rad51 foci is an antibody. The antibodies may be either polyclonal or monoclonal, with monoclonal antibodies being preferred. In general, it is preferred, but not required, that antibodies to the particular Rad51 under evaluation be used; that is, antibodies directed against human Rad51 are used in the evaluation of human patients. However, as the homology between different mammalian Rad51 molecules is quite high (73% identity as between human and chicken, for example), it is possible to use antibodies against Rad51 from one type of animal to evaluate a different animal (mouse antibodies to evaluate human tissue, etc.). Thus, in a preferred embodiment, antibodies raised against eukaryotic Rad51 are used, with antibodies raised against mammalian Rad51 being especially preferred. Thus, antibodies raised against yeast, human, rodent, primate, and avian Rad51 proteins are particularly preferred. In addition, as will be appreciated by those in the art, the protein used to generate the antibodies need not be the full-length protein; fragments and derivatives may be used, as long as there is sufficient immunoreactivity against the sample Rad51 to allow detection. Alternatively, other binding agents which will bind to Rad51 at sufficient affinity to allow visualization can be used.
- Without being bound by theory, as outlined in the Examples, it does not appear that the quantitative amount of Rad51 protein is necessarily altered in cells exhibiting the presence or altered distribution of foci. However, in some circumstances the quantitative amount of Rad51 may be measured and correlated to the presence or absence of Rad51 foci.
- In addition, the appearance of the foci may be used in the determination of the presence of aberrant Rad51 foci. As noted in the Examples, in some cases linear “strings” of 5-10 Rad51 foci are formed, with somatic association of “homologous” strings of similar length, tightly paired at one of the ends. These structures are generally associated with DNA fibers, as is shown in the Figures. Thus, the formation of these types of structures can be indicative of aberrant Rad51 foci.
- Furthermore, in a preferred embodiment, particularly in disease states involving apoptosis and DNA damage, aberrant Rad51 foci includes the development of micronuclei containing Rad51. As shown in the Examples, evaluation of Rad51 foci over time, in particular after cellular stress, can lead to the concentration and exclusion of the Rad51 foci (which are associated with DNA) into micronuclei, which frequently is accompanied by genome fragmentation. This effect is seen in a wide variety of apoptotic cells, as is shown in the Examples, even in the absence of induced DNA damage, such as through the use of colcemid, a spindle poison, thus indicating the role of Rad51 in normal apoptotic pathways.
- In addition to the evaluation of the presence or absence of Rad51 foci, the cells may be evaluated for cell cycle arrest, as is outlined in the Examples.
- Once the distribution of Rad51 foci has been determined for the target sample, the distribution of foci is compared to the distribution of Rad51 foci from a second cell or tissue type. As will be appreciated by those in the art, the second tissue sample can be from a normal cell or tissue from the original patient or a tissue from another, unaffected individual, which has been matched for correlation purposes. A difference in the distribution of Rad51 foci as between the first tissue sample and the second matched sample indicates that the first individual is at risk for a disease state which results in aberrant Rad51 loci.
- In a preferred embodiment, the difference in Rad51 foci distribution is an increase in Rad51 foci, of either type 1 or type 2 foci, as outlined above. In an alternate embodiment, the difference in Rad51 foci distribution is a decrease in the number of Rad51 foci.
- In some embodiments, there need not be a direct comparison. For example, having once shown that a particular normal tissue only contains a small percentage of Rad51 foci, the tissue or cells under evaluation may not need to be compared to a control sample; the presence of a higher percentage allows the diagnosis. Thus, for example, in breast cancer, the presence of at least 1% of the cells containing Rad51 foci is indicative that the patient is at risk for breast cancer or in fact already has it.
- In a preferred embodiment, a difference in the distribution of Rad51 foci, in particular an increase in Rad51 foci, indicates that the cell or tissue is cancerous.
- In a preferred embodiment, a difference in the distribution of Rad51 foci, in particular an increase in Rad51 foci, indicates that the cell or tissue is apoptotic. These differences can include the association of Rad51 with DNA fibers, the association of Rad51 with damaged DNA in micronuclei, or the presence of Rad51 in micronuclei.
- In addition, in a preferred embodiment, the extent of aberrant distribution indicates the severity of the disease state. Thus, for example, high percentages of cells containing Rad51 foci can be indicative of highly malignant cancer.
- In addition to the evaluation of Rad51 foci, the presence or absence of variant (mutant) Rad51 genes may also be used in diagnosis of disease states. Mutant forms of p53 have been found in roughly 50% of known cancers, and it is known that Rad51 and p53 can interact on a protein level. In addition, p53 and Rad51 have somewhat similar biochemical functions. Thus, the present discovery that Rad51 plays a pivotal role in some cancers and apoptosis thus suggests that variant Rad51, or incorrectly controlled Rad51 levels or functions may be important in some disease states.
- Accordingly, in a preferred embodiment, the present invention provides methods for identifying a cell containing a mutant Rad51 gene comprising determining the sequence of all or part of at least one of the endogenous Rad51 genes. By “variant Rad51 gene” herein is meant any number of mutations which could result in aberrant Rad51 function or levels. Thus, for example, mutations which alter the biochemical function of the Rad51 protein, alter its half-life and thus its steady-state cellular level, or alter its regulatory sequences to cause an alteration in it's steady-state cellular level may all be detected. This is generally done using techniques well known in the art, including, but not limited to, standard sequencing techniques including sequencing by PCR, sequencing-by-hybridization, etc.
- Similarly, in a preferred embodiment, the present invention provides methods of identifying the Rad51 genotype of an individual or patient comprising determining all or part of the sequence of at least one Rad51 gene of the individual. This is generally done in at least one tissue of the individual, and may include the evaluation of a number of tissues or different samples of the same tissue. For example, putatively cancerous tissue of an individual is the preferred sample.
- The sequence of all or part of the Rad51 gene can then be compared to the sequence of a known Rad51 gene to determine if any differences exist. This can be done using any number of known homology programs, such as Bestfit, etc.
- In a preferred embodiment, the presence of a difference in the sequence between the Rad51 gene of the patient and the known Rad51 gene is indicative of a disease state or a propensity for a disease state.
- The present discovery relating to the role of Rad51 in cancer and apoptosis thus provide methods for inducing apoptosis in cells. In a preferred embodiment, the methods comprise increasing the activity of Rad51 in the cells. By “biological activity” of Rad51 herein is meant one of the biological activities of Rad51, including, but not limited to, the known Rad51 DNA dependent ATPase activity, the nucleic acid strand exchange activity, the formation of foci, single-stranded and double-stranded binding activities, filament formation (similar to the recA filament of yeast), pairing activity (D-loop formation), etc. See Gupta et al., supra, and Bauman et al., supra, both of which are expressly incorporated by reference herein. As will be appreciated by those in the art, this may be accomplished in any number of ways. In a preferred embodiment, the activity of Rad51 is increased by increasing the amount of Rad51 in the cell, for example by overexpressing the endogenous Rad51 or by administering a gene encoding Rad51, using known gene-therapy techniques, for example. In a preferred embodiment, the gene therapy techniques include the incorporation of the exogenous gene using enhanced homologous recombination (EHR), for example as described in PCT/US93/03868, hereby incorporated by reference in its entirety.
- In a preferred embodiment, the cells which are to have apoptosis induced are cancer cells, including, but not limited to, breast, skin, brain, colon, prostate, testicular, ovarian, etc. cancer cells, and other solid tumor cells.
- In a preferred embodiment, the methods may also comprise subjecting the cells to conditions which induce nucleic acid damage, as this appears to provide a synergistic effect, as outlined above.
- In a preferred embodiment, the methods further comprise increasing the activity of p53 in the cell, for example by increasing the amount of p53, as outlined above for Rad51.
- The present discoveries relating to the pivotal role of Rad51 in a number of important cellular processes and disease states also makes Rad51 an important target in drug screening. Thus, in a preferred embodiment, the present invention provides methods for screening for a bioactive agent which may bind to Rad51 and modulate its activity.
- In a preferred embodiment, the methods are used to screen candidate bioactive agents for the ability to bind to Rad51. In this embodiment, the methods comprise adding a candidate bioactive agent to a sample of Rad51 and determining the binding of the candidate agent to the Rad51. By “candidate bioactive agent” or “candidate drugs” or grammatical equivalents herein is meant any molecule, e.g. proteins (which herein includes proteins, polypeptides, and peptides), small organic or inorganic molecules, polysaccharides, polynucleotides, etc., which are to be tested for the capacity to bind and/or modulate the activity of Rad51. Candidate agents encompass numerous chemical classes. In a preferred embodiment, the candidate agents are organic molecules, particularly small organic molecules, comprising functional groups necessary for structural interaction with proteins, particularly hydrogen bonding, and typically include at least an amine, carbonyl, hydroxyl or carboxyl group, preferably at least two of the functional chemical groups. The candidate agents often comprise cyclical carbon or heterocyclic structures and/or aromatic or polyaromatic structures substituted with one or more chemical functional groups.
- Candidate agents are obtained from a wide variety of sources, as will be appreciated by those in the art, including libraries of synthetic or natural compounds. Any number of techniques are available for the random and directed synthesis of a wide variety of organic compounds and biomolecules, including expression of randomized oligonucleotides. Alternatively, libraries of natural compounds in the form of bacterial, fungal, plant and animal extracts are available or readily produced. Additionally, natural or synthetically produced libraries and compounds are readily modified through conventional chemical, physical and biochemical means. Known pharmacological agents may be subjected to directed or random chemical modifications to produce structural analogs.
- In a preferred embodiment, candidate bioactive agents include proteins, nucleic acids, and organic moieties.
- In a preferred embodiment, the candidate bioactive agents are proteins. By “protein” herein is meant at least two covalently attached amino acids, which includes proteins, polypeptides, oligopeptides and peptides. The protein may be made up of naturally occurring amino acids and peptide bonds, or synthetic peptidomimetic structures. Thus “amino acid”, or “peptide residue”, as used herein means both naturally occurring and synthetic amino acids. For example, homo-phenylalanine, citrulline and noreleucine are considered amino acids for the purposes of the invention. “Amino acid” also includes imino acid residues such as proline and hydroxyproline. The side chains may be in either the (R) or the (S) configuration. In the preferred embodiment, the amino acids are in the (S) or L-configuration. If non-naturally occurring side chains are used, non-amino acid substituents may be used, for example to prevent or retard in vivo degradations.
- In a preferred embodiment, the candidate bioactive agents are naturally occurring proteins or fragments of naturally occuring proteins. Thus, for example, cellular extracts containing proteins, or random or directed digests of proteinaceous cellular extracts, may be used. In this way libraries of procaryotic and eukaryotic proteins may be made for screening against Rad51. Particularly preferred in this embodiment are libraries of bacterial, fungal, viral, and mammalian proteins, with the latter being preferred, and human proteins being especially preferred.
- In a preferred embodiment, the candidate bioactive agents are peptides of from about 5 to about 30 amino acids, with from about 5 to about 20 amino acids being preferred, and from about 7 to about 15 being particularly preferred. The peptides may be digests of naturally occuring proteins as is outlined above, random peptides, or “biased” random peptides. By “randomized” or grammatical equivalents herein is meant that each nucleic acid and peptide consists of essentially random nucleotides and amino acids, respectively. Since generally these random peptides (or nucleic acids, discussed below) are chemically synthesized, they may incorporate any nucleotide or amino acid at any position. The synthetic process can be designed to generate randomized proteins or nucleic acids, to allow the formation of all or most of the possible combinations over the length of the sequence, thus forming a library of randomized candidate bioactive proteinaceous agents.
- In one embodiment, the library is fully randomized, with no sequence preferences or constants at any position. In a preferred embodiment, the library is biased. That is, some positions within the sequence are either held constant, or are selected from a limited number of possibilities. For example, in a preferred embodiment, the nucleotides or amino acid residues are randomized within a defined class, for example, of hydrophobic amino acids, hydrophilic residues, sterically biased (either small or large) residues, towards the creation of cysteines, for cross-linking, prolines for SH-3 domains, serines, threonines, tyrosines or histidines for phosphorylation sites, etc., or to purines, etc.
- In a preferred embodiment, the candidate bioactive agents are nucleic acids. By “nucleic acid” or “oligonucleotide” or grammatical equivalents herein means at least two nucleotides covalently linked together. A nucleic acid of the present invention will generally contain phosphodiester bonds, although in some cases, as outlined below, nucleic acid analogs are included that may have alternate backbones, comprising, for example, phosphoramide (Beaucage et al., Tetrahedron 49(10):1925 (1993) and references therein; Letsinger, J. Org. Chem. 35:3800 (1970); Sprinzl et al., Eur. J. Biochem. 81:579 (1977); Letsinger et al., Nucl. Acids Res. 14:3487 (1986); Sawai et al, Chem. Lett. 805 (1984), Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); and Pauwels et al., Chemica Scripta 26:141 91986)), phosphorothioate (Mag et al., Nucleic Acids Res. 19:1437 (1991); and U.S. Pat. No. 5,644,048), phosphorodithioate (Briu et al., J. Am. Chem. Soc. 111:2321 (1989), O-methylphophoroamidite linkages (see Eckstein, Oligonucleotides and Analogues: A Practical Approach, Oxford University Press), and peptide nucleic acid backbones and linkages (see Egholm, J. Am. Chem. Soc. 114:1895 (1992); Meier et al., Chem. Int. Ed. Engl. 31:1008 (1992); Nielsen, Nature, 365:566 (1993); Carlsson et al., Nature 380:207 (1996), all of which are incorporated by reference). Other analog nucleic acids include those with positive backbones (Denpcy et al., Proc. Natl. Acad. Sci. USA 92:6097 (1995); non-ionic backbones (U.S. Pat. Nos. 5,386,023, 5,637,684, 5,602,240, 5,216,141 and 4,469,863; Kiedrowshi et al., Angew. Chem. Intl. Ed. English 30:423 (1991); Letsinger et al., J. Am. Chem. Soc. 110:4470 (1988); Letsinger et al., Nucleoside & Nucleotide 13:1597 (1994); Chapters 2 and 3, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook; Mesmaeker et al., Bioorganic & Medicinal Chem. Lett. 4:395 (1994); Jeffs et al., J. BiomolecularNMR 34:17 (1994); Tetrahedron Lett. 37:743 (1996)) and non-ribose backbones, including those described in U.S. Pat. Nos. 5,235,033 and 5,034,506, and Chapters 6 and 7, ASC Symposium Series 580, “Carbohydrate Modifications in Antisense Research”, Ed. Y. S. Sanghui and P. Dan Cook. Nucleic acids containing one or more carbocyclic sugars are also included within the definition of nucleic acids (see Jenkins et al., Chem. Soc. Rev. (1995) pp169-176). Several nucleic acid analogs are described in Rawls, C & E News Jun. 2, 1997 page 35. All of these references are hereby expressly incorporated by reference. These modifications of the ribose-phosphate backbone may be done to facilitate the addition of additional moieties such as labels, or to increase the stability and half-life of such molecules in physiological environments. In addition, mixtures of naturally occurring nucleic acids and analogs can be made. Alternatively, mixtures of different nucleic acid analogs, and mixtures of naturally occuring nucleic acids and analogs may be made. The nucleic acids may be single stranded or double stranded, as specified, or contain portions of both double stranded or single stranded sequence. The nucleic acid may be DNA, both genomic and cDNA, RNA or a hybrid, where the nucleic acid contains any combination of deoxyribo- and ribo-nucleotides, and any combination of bases, including uracil, adenine, thymine, cytosine, guanine, inosine, xathanine hypoxathanine, isocytosine, isoguanine, etc.
- As described above generally for proteins, nucleic acid candidate bioactive agents may be naturally occuring nucleic acids, random nucleic acids, or “biased” random nucleic acids. For example, digests of procaryotic or eucaryotic genomes may be used as is outlined above for proteins.
- In a preferred embodiment, the candidate bioactive agents are organic chemical moieties, a wide variety of which are available in the literature.
- The candidate agents are added to a sample of Rad51 protein. As is outlined above, all or part of a full-length Rad51 protein can be used, or derivatives thereof. Generally, the addition is done under conditions which will allow the binding of candidate agents to the Rad51 protein, with physiological conditions being preferred.
- The binding of the candidate agent to the Rad51 sample is determined. As will be appreciated by those in the art, this may be done using any number of techniques.
- In one embodiment, the candidate bioactive agent is labelled, and binding determined directly.
- Where the screening assay is a binding assay, one or more of the molecules may be joined to a label, where the label can directly or indirectly provide a detectable signal. Various labels include radioisotopes, fluorescent molecules, enzyme reporters, colorimetric reporters, chemiluminescers, specific binding molecules, particles, e.g. magnetic or gold particles, and the like. Specific binding molecules include pairs, such as biotin and streptavidin, digoxygenin and antidigoxygenin etc. For the specific binding members, the complementary member would normally be labeled with a molecule which provides for detection, in accordance with known procedures.
- In some embodiments, only one of the components is labeled. For example, the Rad51 may be labeled at tyrosine positions using125I. Alternatively, more than one component may be labeled with different labels; using 125I for the Rad51, for example, and a fluorophor for the candidate agents.
- In a preferred embodiment, the binding of the candidate bioactive agent is determined directly. For example, the Rad51 may be attached to a solid support such as a microtiter plate or other solid support surfaces, and labelled candidate agents added under conditions which favor binding of candidate agents to the Rad51 protein. Incubations may be performed at any temperature which facilitates optimal activity, typically between 4 and 40° C. Incubation periods are selected for optimum activity, but may also be optimized to facilitate rapid high through put screening. Typically between 0.1 and 1 hour will be sufficient. Excess reagents are washed off, the system is evaluated for the presence of the label, which is indicative of an agent which will bind to the Rad51. The agent which binds can then be characterized or identified as needed.
- In a preferred embodiment, the binding of the candidate bioactive agent is determined through the use of competitive binding assays. In this embodiment, the competitor is can be any molecule known to bind to Rad51, for example an antibody to Rad51, or one of the proteins known to interact with Rad51, including Rad52, Rad54, Rad55, DMC 1, BRCA1, BRCA2, p53, UBC9, RNA polymerase II, and Rad51 itself, any or all of which may be used in competitive assays. Either the candidate agents or the competitor may be labeled, or both may be labeled with different labels. In this embodiment, either the candidate bioactive agent, or the competitor, is added first to the Rad51 sample for a time sufficient to allow binding, if present, as outlined above. Excess reagent is generally removed or washed away. The second component is then added, and the presence or absence of the labeled component is followed, to indicate binding.
- In a preferred embodiment, methods for screening for a bioactive agent capable of modulating the activity of Rad51 comprise the steps of adding a candidate bioactive agent to a sample of Rad51, as above, and determining an alteration in the biological activity of Rad51. “Modulating the activity of Rad51” includes an increase in activity, a decrease in activity, or a change in the type or kind of activity present. Thus, in this embodiment, the candidate agent should both bind to Rad51 (although this may not be necessary), and alter its biological or biochemical activity as defined above.
- Thus, in this embodiment, the methods comprise combining a Rad51 sample and a candidate bioactive agent, and testing the Rad51 biological activity as is known in the art to evaluate the effect of the agent on the activity of Rad51.
- In a preferred embodiment, the methods include both in vitro screening methods, as are generally outlined above, and in vivo screening of cells for alterations in the presence, distribution or activity of Rad51. Accordingly, in a preferred embodiment, the methods comprise the steps of adding a candidate bioactive agent to a cell, and determining the effect on the formation or distribution of Rad51 foci in the cell. The addition of the candidate agent to a cell will be done as is known in the art, and may include the use of nuclear localization signal (NLS). NLSs are generally short, positively charged (basic) domains that serve to direct the entire protein in which they occur to the cell's nucleus. Numerous NLS amino acid sequences have been reported including single basic NLS's such as that of the SV40 (monkey virus) large T Antigen (Pro Lys Lys Lys Arg Lys Val), Kalderon (1984), et al., Cell, 39:499-509; the human retinoic acid receptor-β nuclear localization signal (ARRRRP); NFκB p50 (EEVQRKRQKL; Ghosh et al., Cell 62:1019 (1990); NFκB p65 (EEKRKRTYE; Nolan et al., Cell 64:961 (1991); and others (see for example Boulikas, J. Cell. Biochem. 55(1):32-58 (1994), hereby incorporated by reference) and double basic NLS's exemplified by that of the Xenopus (African clawed toad) protein, nucleoplasmin (Ala Val Lys Arg Pro Ala Ala Thr Lys Lys Ala Gly Gln Ala Lys Lys Lys Lys Leu Asp), Dingwall, et al., Cell, 30:449-458, 1982 and Dingwall, et al., J. Cell Biol., 107:641-849; 1988). Numerous localization studies have demonstrated that NLSs incorporated in synthetic peptides or grafted onto reporter proteins not normally targeted to the cell nucleus cause these peptides and reporter proteins to be concentrated in the nucleus. See, for example, Dingwall, and Laskey, Ann, Rev. Cell Biol., 2:367-390, 1986; Bonnerot, et al., Proc. Natl. Acad. Sci. USA, 84:6795-6799, 1987; Galileo, et al., Proc. Natl. Acad. Sci. USA, 87:458-462, 1990. In general, the Rad51 foci will be evaluated as is generally discussed above.
- In a preferred embodiment, the methods comprise adding a candidate bioactive agent to a cell, and determining the effect on double strand break repair, homologous recombination, sensitivity to ionizing radiation, and class switch recombination. Assays are detailed in Park, J. Biol. Chem. 270(26):15467 (1995) and Li et al., PNAS USA 93:10222 (1996), Shinohara et al., supra, 1992, all of which are hereby incorporated by reference.
- In a preferred embodiment, the cells to which candidate agents are added are subjected to conditions which induce nucleic acid damage, including the addition of radioisotopes (I125, Tc, etc., including ionizing radiation and uv), chemicals (Fe-EDTA, bis(1,10-phenanthroline), etc.), enzymes (nucleases, etc.).
- a variety of other reagents may be included in the screening assays or kits, below. These include reagents like salts, neutral proteins, e.g. albumin, detergents, etc which may be used to facilitate optimal protein-protein binding and/or reduce non-specific or background interactions. Also reagents that otherwise improve the efficiency of the assay, such as protease inhibitors, nuclease inhibitors, anti-microbial agents, etc., may be used. In general, the mixture of components may be added in any order that provides for the requisite binding.
- Once identified, the compounds having the desired pharmacological activity may be administered in a physiologically acceptable carrier to a host, as previously described. The inhibitory agents may be administered in a variety of ways, orally, parenterally e.g., subcutaneously, intraperitoneally, intravascularly, etc. Depending upon the manner of introduction, the compounds may be formulated in a variety of ways. The concentration of therapeutically active compound in the formulation may vary from about 0.1-100 wt. %.
- The pharmaceutical compositions can be prepared in various forms, such as granules, aerosols, tablets, pills, suppositories, capsules, suspensions, salves, lotions and the like. Pharmaceutical grade organic or inorganic carriers and/or diluents suitable for oral and topical use can be used to make up compositions containing the therapeutically-active compounds. Diluents known to the art include aqueous media, vegetable and animal oils and fats. Stabilizing agents, wetting and emulsifying agents, salts for varying the osmotic pressure or buffers for securing an adequate pH value, and skin penetration enhancers can be used as auxiliary agents.
- In a preferred embodiment, kits are provided. The kits can be utilized in a variety of applications, including determining the distribution of Rad51 foci, diagnosing an individual at risk for a disease state, including cancer, diseases associated with apoptosis, and diseases associated with stress (including oxidative stress, hypoxic stress, osmotic stress or shock, heat or cold stress or shock). The kits include a Rad51 binding agent, that will bind to the Rad51 with sufficient affinity for assay. Antibodies are preferred binding agents. The kits further include a detectable label such as is outlined above. In one embodiment, the Rad51 binding agent is labeled; in an additional embodiment, a secondary binding agent or label is used. Thus for example, the binding agent may include biotin, and the secondary agent can include streptavidin and a fluorescent label. Additional reagents such as outlined above can also be included. Furthermore, the kit may include packaging and instructions, as required.
- The identification of the crucial role of Rad51 in a number of cellular processes and disease states also identifies a number of methods and compositions relating to combinations of Rad51 and other tumor suppressor genes. Thus, Rad51 may function interactively with a number of tumor suppressor genes and thus compositions comprising combinations of these genes may be useful in methods of gene therapy treatment and diagnosis.
- Accordingly, in a preferred embodiment, compositions comprising a nucleic acid encoding a Rad51 protein and at least one nucleic acid encoding a tumor suppressor gene are provided. Suitable tumor suppressor genes include, but are not limited to, p53, and the BRCA genes, including BRCA1 and BRCA2 genes. Thus, preferred embodiments include compositions of nucleic acids encoding a) a Rad51 gene and a p53 gene; b) a Rad51 gene and a BRCA1 gene; c) a Rad51 gene and a BRCA2 gene; d) a Rad51 gene, a p53 gene, and a BRCA gene; and e), a Rad51 gene, a p53 gene, a BRCA1 gene and a BRCA2 gene.
- In an additional embodiment, the compositions comprise recombinant proteins. By “recombinant” herein is meant a protein made using recombinant techniques, i.e. through the expression of a recombinant nucleic acid as depicted above. a recombinant protein is distinguished from naturally occurring protein by at least one or more characteristics. For example, the protein may be isolated or purified away from some or all of the proteins and compounds with which it is normally associated in its wild type host, and thus may be substantially pure. For example, an isolated protein is unaccompanied by at least some of the material with which it is normally associated in its natural state, preferably constituting at least about 0.5%, more preferably at least about 5% by weight of the total protein in a given sample. a substantially pure protein comprises at least about 75% by weight of the total protein, with at least about 80% being preferred, and at least about 90% being particularly preferred. The definition includes the production of a protein from one organism in a different organism or host cell. Alternatively, the protein may be made at a significantly higher concentration than is normally seen, through the use of a inducible promoter or high expression promoter, such that the protein is made at increased concentration levels. Alternatively, the protein may be in a form not normally found in nature, as in the addition of an epitope tag or amino acid substitutions, insertions and deletions, as discussed below.
- In a preferred embodiment, these compositions can be administered to a cell or patient, as is outlined above and generally known in the art for gene therapy applications.
- The following examples serve to more fully describe the manner of using the above-described invention, as well as to set forth the best modes contemplated for carrying out various aspects of the invention. It is understood that these examples in no way serve to limit the true scope of this invention, but rather are presented for illustrative purposes. All references cited herein are specifically incorporated by reference.
- Breast tumour cells have mutated p53 and have various types of chromosomal aberrations like insertions, deletions, rearrangements, amplifications etc. Recombination proteins such as Rad51 could evidently participate in such processes. In order to better understand the role of uncontrolled recombination and its role in tumour formation and progression, the status of Rad51 protein in breast tumour cells by staining them with anti Rad51 antibodies was done.
- Detailed methods of cloning and expression of HsRad51 gene inE. coli, purification of recombinant HsRad51 protein with six histidine residues at it's aminoterminal end and preparation of ployclonal antibodies against HsRad51 protein were described previously by Haaf, Golub et al. 1995, supra, which is expressly incorporated herein by reference.
- Immunofluorescent staining with anti-Rad51 protein antibodies. Monolayer cultures of different cell substrates (see table 1) were grown in Dulbecco's MEM medium supplemented with 10% fetal bovine serum and antibiotics. The cells were detached from culture flasks by gentle trypsinization, pelleted and resuspended in phosphate buffered saline (PBS; 136 mM NaCl, 2 mM KCl, 10.6 mM Na1HPO4, 1.5 mM KH2PO4 [pH 7.3]) prewarmed at 37° C. For immunofluorescence staining standard protocols were used (Haaf 1995, supra). Cultured cells were washed and resuspended in PBS. The density of somatic cells was adjusted to about 105 cells per ml in PBS. Aliquots (0.5 ml) of the cell suspension were centrifuged onto clean glass slides at 800 rpm for 4 min, in a Cytospin (Shandon, Pittsburg). Immediately after cytocentrifugation, the slides were fixed in −20° C. methanol for 30 min and then immersed in ice-cold acetone for a few seconds to permealize the cells for antibody staining. Following three washes with PBS, the preparations were incubated at 37° C. with rabbit anti-HsRad51 antiserum, diluted 1:50 with PBS containing 0.5% bovine serum albumin, in a humidified incubator for 30 min. The slides were washed three times for 10 min each and then incubated for 30 min with fluorescein-isothiocyanate (FITC)-conjugated anti-rabbit IgG diluted 1:20 with PBS. After three washes with PBS, the preparations were counterstained with 4′,6-diamidino-2- phenylindole (DAPI; 0.1 ug/ml for 1 min) and mounted in antifade {90% (vol/vol) glycerol/0.1 m tris-HCl pH 8.0)/2.3% 1,4-diazabicyclo[2.2.2]octane (DABCO)}.
- Digital Imaging Microscopy. Images were taken with a Zeiss epifluorescence microscope with a thermo-electronically cooled charge coupled device (CCD) camera (model PM512; Photometrics, Tucson, Ariz.) which was controlled by an Apple Macintosh computer. Grey scale source images were captured separately with filter sets for fluorescein and DAPI. Gray scale source images were pseudocolored and merged using ONCOR Image and ADOBE Photoshop software. It is worth emphasizing that although a CCD imaging system was used, all antibody signals were clearly visible by eye through the microscope.
- To study the possible involvement of Rad51 in tumorigenesis we compared the the in situ localization of of Rad51 protein homologs in different cell substrates i.e. mortal fibroblast strains, virus-transformed non-malignant cell lines and tumor cell lines (see table). a specific rabbit antiserum raised against human Rad51 protein was used in these studies. These antibodies reacted mainly with Rad51 protein in mammalian cell extracts as judged by Western blotting (see FIG. 2 in (Haaf, Golub et al. 1995). Immunostaining of different cells showed that HsRad51 is concentrated in small and discrete sites (foci) through out nucleoplasm and is largely excluded from nucleoli and cytoplasm. At least 250 nuclei of exponentially growing cultures were analyzed for each experiment. As reported earlier (Haaf, Golub et al. 1995) immunostaining revealed three kinds of nuclei: 1) nuclei that did not show any staining at all ( no foci), 2) nuclei that showed weak to medium staining and showed only a few foci (Type I nuclei) 3) nuclei that showed strong staining and showed many foci (Type II nuclei). In normal fibroblast control cells, we found type I nuclei in about 10% of cells and type II nuclei in less than 0.4 to 1% of cells and about 90% of the cells showed no foci. Use of preimmune serum, as well as omission of either the primary or secondary antibody, resulted in the absence of focally concentrated nuclear immunofluorescence.
- As reported earlier (Haaf, Golub et al. 1995) in normal (mortal) fibroblast control cells (Hs68) we found type I nuclei in 7% -10% of cells and type II nuclei in less than 0.4% of cells, where as 90% or more of the cells showed no foci (Table 1). In contrast all breast tumor cell lines tested (BT20, SrBr3, MoF7) exhibited 1-5% of type II nuclei and 10-38% of type I nuclei (Table 1). Transformed but non-malignant human cells, i.e. SV 40 transformed fibroblasts (LNL8, 63L7), EBV-transformed lymphoblasts (GM 01194), and adenovirus-transformed kidney cells (293) also showed an increased percentage of Rad51-positive cells (compared to normal fibroblasts), however the numbers observed were lower than in tumor cells. Interestingly, some tumor substrates i.e. the ovarian cancer line Hey; did not show a significant increase of Rad51-positive cells.
- As demonstrated earlier (Haaf, Golub et al. 1995), when the normal fibroblast cells were exposed to DNA damaging agents like 137Cs, there was a significant increase of cells containing type I and type II nuclei (Table 2). It is worth emphasizing that non-irradiated breast tumor cells show approximately the same percentage of Rad51-positive nuclei as Hs68 fibroblasts exposed to 900 rad Cs137 which kills 99% of cells (Table 2). The immunofluorescent patterns of (non-irradiated) breast cancer cells (FIG. 1) and fibroblasts that were exposed to DNA damaging agents are identical.
- When the breast cancer cells were exposed to Cs137, the increase in the number of cells with type I and type II nuclei was even more dramatic than in normal (Hs68) or transformed (LNL8) fibroblasts (Table 2). Up to 40% of irradiated breast cancer cells showed type I nuclei and 11%-18% showed type II nuclei.
- In order to rule out any artifacts that would arise due to the examination of cultured breast cancer cells, we then examined the breast tissue obtained directly from the patient for Rad51 positive staining. Immunohistochemical evaluation revealed definite nuclear staining of invasive breast carcinoma cells. Specifically, nuclear reactivity could be demonstrated in sections obtained from three paraffin-embedded samples. The nuclear staining appeared granular in some areas, and in others, occupied the entire nucleus. The actual number of invasive carcinoma cells that fluoresced was quite small, and estimated to be less than 5% of the nuclei seen in three samples with definite reactivity FIG. 2). Nuclear staining was not identical in normal breast epithelium or lactating breast tissue. Bright nuclear reactivity was seen in positive control testicular tissue, specifically, in the cells lining the seminiferous tubules. Background staining did not appear to be problematic.
- Increase in immunofluorescence of HsRad51 in breast cancer cells can result from either increase in the amount of Hsrad51 in these cells or it could be seen as a result of re-organization of Hsrad51 in these nuclei in response to damage related activities. We think that the latter is true because there was no apparent increase in the amount HsRad51 in breast cancer cells as shown by the Western blots (data not shown).
- The molecular basis and the consequence of the increase in HsRad51 in breast cancer cells is not clear. Since Rad51 protein interacts with other proteins of the Rad52 epistasis group and these multiprotein complexes are involved in the recombinational repair of double-strand breaks (Hays, et al., (1995). Proc. Natl. Acad. Sci. USA 92: 6925-6929; Johnson, R. D. and L. S. Symington (1995). Mol. Cell. Biol. 15: 4843-4850), it is tempting to speculate that these foci are the sites where repair/recombination events are taking place. Since p53 is known to interact with Rad51 it iwill be interesting to see the colocalization of p53 and Rad51 protein in these complexes. It is quite possible that these foci contain either wild type or mutant p53 and other breast cancer related proteins like BRCA1, BRCA2 or the newly discovered STG1 protein. We propose that the increase in the immunofluorescence of Rad51 in the breast cells can be used as an important cytological marker for cell proliferation and malignant cell growth. Further experimentation will be done to validate this proposal and to understand the role of increase in Rad51 foci and carcinogenesis.
TABLE 1 Percentage of nuclei containing discrete foci enriched with HsRad51 protein Cell Substrate No foci Type I Type II Hs68 Normal fibroblasts 90% 10% 0% 93% 7% 0% LNL8 Transformed fibroblasts 90% 9% 1% (NI 00847) (SV 40) 90% 8% 2% 63L7 Transformed fibroblasts 94% 6% 0% (SV40) 94% 3% 3% GM01194 Transformed lymphoblasts 91% 7% 2% (EBV) 90% 9% 1% 92% 8% 0% 80% 18% 2% 80% 19% 1% 293 Cells Transformed kidney cells 75% 23% 2% (Adenovirus) 83% 15% 2% 82% 17% 1% BT20 Breast cancer line 86% 10% 4% 82% 13% 5% 78% 17% 5% SrBr3 Breast cancer line 74% 25% 1% MoF7 Breast cancer line 57% 38% 5% 88% 10% 2% Tera2 Testicular teratoma 76% 23% 1% 77% 22% 1% Hey Ovarian cancer line 94% 5% 1% 98% 2% 0% HeLa Cervix (?) tumor cells 67% 31% 2% -
TABLE 2 Percentage of nuclei containing discrete foci enriched with HsRad51 protein. Cell substrate Treatment No foci Type I Type II Hs68 None 90% 10% 0% (normal None 93% 7% 0% fibroblasts) 6 hrs after 10 rad Cs137 96% 4% 0% 6 hrs after 50 rad Cs137 96% 4% 0% 6 hrs after 150 rad Cs137 92% 7% 1% 6 hrs after 450 rad Cs137 88% 8% 4% 6 hrs after 900 rad Cs137 91% 4% 5% LNL8(NI 00847) None 90% 9% 1% (SV40-trans- None 90% 8% 2% formed 6 hrs after 150 rad Cs137 88% 11% 1% fibroblasts) 6 hrs after 300 rad Cs137 76% 19% 5% 6 hrs after 900 rad Cs137 78% 17% 5% BT20 None 86% 10% 4% (breast cancer None 82% 13% 5% cells) None 78% 17% 5% 6 hrs after 300 rad Cs137 44% 41% 11% 6 hrs after 900 rad Cs137 52% 30% 18% - Eurkaryotic cells have several different mechanisms for repairing damaged DNA (for review see R. Wood, 1996). One of the major pathway is nucleotide excision repair (NER), which excises damage within oligomers that are 25-32 nucleotides long. Patients with recessive heredity disorder XP have defects in one of several enzymes, which participate in ER. There are seven XP groups (XP-A to XP-G), which have defects in the initial steps of the DNA excision repair.
- DNA damage is removed several-fold faster from transcribed genes than from non-transcribed, mainly due to preferential NER of the transcribed strand (for review see Hanawalt, 1994). This mechanism does not function in Cockayne's syndrome (CS) patients.
- NER defective cells, evidently, sustain increased amount of DNA damage. Thus we evaluated NER defective cells from XP and CS cells for an increased amount of Rad51 protein foci.
- To study possible effect of NER on localization of HsRad51 in somatic tissue culture cells, we compare in situ localization of the protein in normal fibroblasts, different XP cells and CS-B cells. A policlonal rabbit antiserum raised against human Rad51 protein was used in this study. These antibody reacted in mammalian cell extract mainly with Rad51 protein as judged by Western Blotting (see FIG. 2 in Haaf et al., 1995). Immunostaining of different cell lines showed that HsRad51 is concentrated in small and discrete sites (foci) throughout nucleoplasm and is largely excluded from nucleoli and cytoplasm. As discussed above, immunostaining revealed three kinds of nuclei, types I, II and III. The results are shown in Table 3.
TABLE 3 Percentage of nuclei containing discrete foci enriched with HsRad51 protein Cell substrate No foci Type I* Type II* Hs68 Normal fibroblasts 90% 10% 0% 63L7 Normal fibroblasts 94% 6% 0% 63L7 (confluent) FA fibroblasts 94% 3% 3% 6935 FA fibroblasts 92% 6% 2% 6914 Normal 72% 21% 7% 6914 lymphoblasts 72% 25% 3% 6914 67% 24% 9% GM01194 Normal 91% 7% 2% GM01194 lymphoblasts 90% 9% 1% GM01194 92% 8% 0% GM07063 FA lymphoblasts 90% 8% 2% GM07063 FA lymphoblasts 96% 4% 0% GM13020 FA lymphoblasts 92% 7% 1% GM13022 86% 13% 1% GM13022 78% 20% 2% GM13023 94% 5% 1% GM13071 81% 15% 4% GM13071 74% 23% 3% - In normal (mortal) fibroblast control cells, LNL8 and NF, we found type I nuclei in 5-9% cells and type II nuclei in 1-7% cells, where as 88-90% of the cells showed no foci (Table 3). Use of preimmune serum, as well as omission of either the primary or secondary antibody, resulted in the absence of focally concentrated nuclear immunofluorescence.
- XP-V cells are normal in NER, but have defect in postreplication repair process (Boyer et al., 1990; Griffiths et al., 1991; Wang et al., 1991, 1993). As we expected, these cells showed the same distribution pattern of nuclear HsRad51 as control cell lines (Table 3).
- Distribution of HsRad51 foci in CS-B cells also was similar to the cells with normal NER (Table 3). This result was also anticipated. CS-B cells are defective in NER which is coupled with transcription (Venema et al., 1990). Transcribed genes, evidently, comprise only a small part of the whole genomic DNA and damage in transcribed genes, therefore, should be accounted for only a very small fraction of the damage in genomic DNA.
- XP-A, XP-B, XP-F and XP-G cells are all defective in NER. XP-A cells have defect in XPA protein, which carries out a crucial rate-limiting step in NER-recognition of DNA lesion (Jones and Wood, 1993). The protein makes a ternary complex with ERCC 1 protein and XPF protein, which is defective in XP-F cells (Park and Sankar, 1994). XP-B and XP-G cells are defective in different steps of NER which follow damage recognition (Reviewed in Ma et al., 1995).
- XP-A and XP-F cell lines have increased amount of cells with HsRad51 protein foci (Table 3). In contrast, XP-B and XP-G cells have about the same level of HsRad51 protein foci, as cells with normal NER (Table 3). This result could be easily understood if we assume, that 1) formation of HsRad51 foci is caused by DNA damage, b) DNA lesion is excluded from the pool of damage DNA which cause Rad51 foci formation as soon as XPA/XPF/ERCC 1 complex binds to the lesion. DNA damage in XP-Band XP-G cells is recognized by NER system, but the damage cannot be proceeded and removed by the system. Such unremoved damage, evidently, is not considered as a substrate for Rad51 protein involved repair as soon as the damage is recognized by NER complex XPA/XPF/ERCCI as a substrate for NER, even if defect in subsequent steps of NER makes its removing impossible.
- Induction of principal DNA repair system (SOS respond) inE. coli is, assumed to be triggered by formation of single-stranded DNA (ssDNA) which results from DNA damage (reviewed in Little and Mount, 1982). DNA damage in XP-A cells is not recognized by NER and, therefore, at least a considerable part of DNA damage is not proceeded to formation of ssDNA regions. Nevertheless, Rad51 foci are effectively formed in XP-A cells and their amount could be further increased by UV or -irradiation (Tables 4 and 5). Evidently, ssDNA is not a primary signal for HsRad51 protein foci formation.
TABLE 4 Percentage of nuclei containing discrete foci enriched with HsRad51 protein Cell substrate Treatment No foci Type I* Type II* LNL8 No treatment 90% 9% 1% (control) ″ 90% 8% 2% NF (control) No treatment 88% 5% 7% ″ 89% 5% 6% XPA No treatment 51% 39% 10% ″ 72% 20% 8% ″ 55% 34% 7% XPB No treatment 86% 11% 3% ″ 86% 11% 3% XPD No treatment 87% 8% 5% ″ 63% 28% 9% XPF No treatment 48% 41% 11% ″ 64% 25% 8% XPG No treatment 88% 7% 5% ″ 85% 9% 6% XPV No treatment 94% 5% 1% ″ 89% 11% 0% CBS None 87% 8% 5% -
TABLE 5 Percentage of nuclei containing discrete foci enriched with HsRad51 protein No Type Cell substrate Treatment foci I* Type II* LNL8 No treatment 90% 9% 1% (control) No treatment 90% 8% 2% 6 hrs after 150 rad Cs137 88% 11% 1% 6 hrs after 300 rad Cs137 76% 19% 5% 6 hrs after 900 rad Cs137 78% 17% 5% None 51% 39% 10% XPA** 3 hrs after 300 rad 137Cs 61% 24% 15% None 72% 20% 8% 6 hrs after 900 rad 137Cs 59% 25% 16% None 59% 34% 7% 5 hrs after 5 J/m2 UV 53% 31% 16% 5 hrs after 15 J/m2 UV 55% 26% 19% CBS** None 87% 8% 5% 5 hrs after 800 rad 137Cs 60% 21% 19% 27 hrs after 800 rad 137Cs 77% 6% 17% - In conclusion, human recombination protein HsRad51 is concentrated in multiple discrete foci in nucleoplasm of cultured human cells. After treatment of cells with DNA damaging agents, the percentage of cells with HsRad51 protein immunofluorescence increases. Xeroderma pigmentosum (XP) cells XP-A with inactive protein XPA, responsible for lesion recognition by nucleotide excision repair (NER) system have increased percentage of cells with HsRad51 protein foci. XP-F cells, defective in XPF protein, which forms complex with XPA protein, also have increased level of the HsRad51 protein foci. In contrast, XP-B and XP-G cells with defects in different steps ER, which follow the damage recognition, as well as XP-V cells (normal level of NER) and Cockayne's syndrome (CS) cells (defect in NER, responsible for preferential repair of the transcribed DNA strand) have normal level of HsRad51 protein foci. Evidently, formation of HsRad51 protein foci is caused by DNA damages. DNA damages, however, do not participate in causing formation of HsRad51 protein foci, as soon as they are recognized by NER system, even if the system is blocked on one of the step, leading to DNA repair.
- Previous studies have revealed a time- and dose-dependent increase of nuclear HsRad51 protein foci after DNA damage introduced into the genome by various agents (Haaf et al., 1995, supra). Here we show that when the damaged cells are allowed to recover, these Rad51 foci form specific higher-order nuclear structures. Finally, all the focally concentrated Rad51 protein is eliminated into micronuclei that undergo apoptotic genome fragmentation. Treatment of cells with clastogens and aneuploidogens implements a mechanism that affects the nuclear distribution of Rad51 protein and targets Rad51 foci, most likely along with irreversibly damaged DNA into micronuclei. To examine the role of Rad51 protein in DNA repair and cell proliferation, we have analyzed the intranuclear distribution of overexpressed Rad51 protein during the cell cycle and in cell populations proceeding through apoptosis.
- Experimental Procedures
- Cell Culture. The sources of the cell lines were as follows. Rat TGR-1 cells, J. Sedivy, Brown University; mouse 3T3-Swiss cells, ATCC; human 293 kidney cells, ATCC; human teratoma cells, B. King, Yale University; human LNL8 fibroblasts, S. Meyn, Yale; human XPA and XPF fibroblasts, P Glazer, Yale.
- Monolayer cultures were grown in D-MEM medium supplemented with 10% fetal bovine serum and antibiotics. The cells were detached from culture flasks by gentle trypsination, pelleted and resuspended in phosphate-buffered saline (PBS; 136 mM NaC1, 2 mM KCI, 10.6 mM Na2HPO4, 1.5 mM KH2PO4, pH 7.3) prewarmed at 37° C.
- To induce DSBs in DNA and recombinational repair, cell cultures were exposed to a137CS irradiator at doses of 900 rad and then allowed to recover for various time spans. In another experiment, cells were treated with 10 μM 5-aza-dC for 24 hrs. This hypomethylating base analog is a potent DNA-strand breaker (Snyder, et al., (1989). Mutation Res. 226, 185-190; Haaf, 1995). Incubation of cells with the spindle poison colcemid (1 μg/ml for 24 hrs) resulted in the formation of multinuclei and micronuclei containing entire chromosomes. Under the experimental conditions chosen, colcemid does not cause chromsome breakage. Treatment with etoposide (Sedivy), a drug that inhibits DNA topoisomerase II, is a classic system for inducing apoptosis in cells (Mizumoto, et al., (1994). Mol. Pharmac. 46, 890-895).
- Antibody Probes. HsRad51 protein, expressed inE. coli, was isolated and used for preparation of rabbit polyclonal antibodies. Westem blotting experiments revealed that rabbit antiserum does not react significantly with any other proteins in mammalian cells except Rad51 (Haaf et al., 1995). Similarly, polydonal antibodies against HsRadS2, a structural homolog of yeast Rad52, were raised in the rat, as is known in the art. Mouse monoclonal antibody 30T14 recognizes Gadd45, a ubiquitously expressed mammalian protein that is induced by DNA damage (Smith, et al., (1994). Science 266, 1376-1380). Monoclonal antibodies H4 and H14 bind specifically to the large subunit of RNAPII (Bregman et al., (1995) J. Cell Biol. 129, 287-298). Monoclonal antibody Pab246 against amino acids 88-93 of mouse p53 was purchased from Santa Cruz Biotechnology, Inc.
- Immunofluorescent Staining. Harvested cells were washed and resuspended in PBS. Cell density was adjusted to ˜105 cells/ml. 0.5 ml aliquots of this cell suspension were centrifuged onto clean glass slides at 800 rpm for 4 min, using a Shandon Cytospin. Immediately after cytocentrifugation, the preparations were fixed in absolute methanol for 30 min at −20° C. and then rinsed in ice-cold acetone for a few seconds. Following three washes with PBS, the preparations were incubated at 37° C. with rabbit anti-HsRad51 antiserum, diluted 1:100 with PBS, in a humidified incubator for 30 min. For some experiments, the slides were simultaneously labeled with rat anti-HsRad52 antiserum or mouse monoclonal antibody. The slides were then washed in PBS another three times for 10 min each and incubated for 30 min with fluorescein-isothiocyanate (FITC)-conjugated anti-rabbit IaG, appropriately diluted with PBS. Rad52, Gadd45, p53, and RNAPII were detected with rhodamine, conjugated anti-rat IgG or anti-mouse IgG+IgM. After three further washes with PBS, the preparations were counterstained with 1 μg/ml
- 4,6-diamidino-2-phenylindole (DAPI) in 2×SSC for 5 min. The slides were mounted in 90% glycerol, 0.1 M Tris-HCI, pH 8.0, and 2.3% 1,4-diazobicyclo-2,2,2-octane (DABCO).
- For preparation of chromatin fibers, cells were centrifuged onto a glass slide and covered with 50 μl of 50 mM Tris-HCI, pH 8.0, 1 mM EDTA, and 0.1% SDS. The protein-extracted chromatin was mechanically sheared on the slide with the aid of another slide (Heiskanan, et al., (1994) BioTechniques 17, 928-933) and then fixed in methanol/acetone.
- Fluorescence In Situ End Labeling (FISEL). FISEL detects cell death (apoptosis) in situ by quantitating DNA strand breaks in individual nuclei. It uses terminal transferase (TdT) to label the 3′-ends in fragmented genomic DNA with biotinylated nucleotide. 100 μl of reaction mix contain 1 μl (25 Units) TdT (Boehringer Mannheim), 20 μl 5×TdT buffer (supplied with the enyzme), 1 μl 0.5 mM biotin-ll-dUTP, 3 μl 0.5 mM dTTP, and 75 μl ddH20. Cytological preprations are incubated at 37° C. for 1 hr with this reaction mix. Washing the slides for 3×5 min in PBS is sufficient to terminate the reaction. The incorporated biotin-dUTP is detected with rhodarnine-conjugated avidin.
- In Situ Labeling of DNA-Replication Synthesis. The base analog BrdU is incorporated in place of thymidine into the DNA of replicating cells. In order to mark cycling cells, 10 μg/ml BrdU were added to the culture medium 30 hrs before cell harvesting. Depending on the cell substrate, this corresponds to one or two population doublings. At the end of the labeling period, slides were prepared as described above. After Rad51-protein staining, the preparations were again fixed in a 3:1 mixture of methanol and acetic acid for several hours at −20° C. Since the anti-BrdU antibody only recognizes BrdU incorporated into chromosomal DNA if the DNA is in the single-stranded form, the slides were denatured in 70% formamide, 2×SSC for 1 min at 80° C. and then dehydrated in an alcohol series. BrdU incorporation was visualized by indirect anti-BrdU antibody staining. First, the preparations were incubated with mouse monoclonal anti-BrdU antibody (Boehringer Mannheim), diluted 1:50 with PBS, for 30 min. The slides were washed with PBS and then incubated with rhodamine-conjugated anti-mouse IgG, diluted 1:20 with PBS, for another 30 min. Only cells with intense BrdU labeling of the entire nucleus were considered BrdU-positive and scored as cycling cells.
- Overexpression of HsRad51 Protein in Mammalian Cells. Human kidney cells (line 293, ATCC CRL1573) were stably transformed by plasmid pEG9 15. This plasmid carries the whole coding sequence of the HsRad51 gene inserted in frame with the 5′-end terminal sequence of vector pEBVHisB (Invitrogen). The resulting cell lines 710 and 717 constitutively express Rad51 protein fused to a T7-tag epitope (Haafet al., 1995).
- Digital Imaging Microscopy. Images were taken with a Zeiss epifluorescence microscope equipped with a thermoelectronically cooled charge coupled device (CCD) camera (Photometries CH250), which was controlled by an Apple Macintosh computer. Gray scale source images were captured separately with filter sets for FITC, rhodamine, and DAPI. Gray scale images were pseudocolored and merged using ONCOR Image and ADOPE Photoshop software. It is worth emphasizing that although a CCD imaging system was used, the immunofluorescent signals described here were clearly visible by eye through the microscope.
- Dynamic Nuclear Distribution of Rad51 Protein after DNA Damage Nuclear foci of mammalian Rad51-recombination protein can be induced significantly after irradiation of cell cultures with Cesium (137Cs). Since Western blots have not shown a dramatic net increase in Rad51 protein in irradiated cells, we conclude that DNA damage mainly affects its nuclear distribution (Haaf et al., 1995). To gain insight into the radiation-induced perturbations in nuclear organization and the possible role of Rad51 protein in repair processes, we have analyzed the topological rearrangements of Rad51-protein foci in rat TGR-I fibroblasts that have sustained DNA damage. TGR-I is an immortal rat cell line with a stably diploid karyotype. After 137Cs irradiation with a dose of 900 red which kills 99% of cells, rat Rad51 protein was visualized in situ using polyclonal antibodies raised against HsRad51. The percentage of cells with cytologically detectable Rad: 1-protein foci started to increase in the first three hours (Table 6). Rad51-positive nuclei contained up to several dozen discrete foci throughout their nucleoplasm. Immunofluorescence staining was largely excluded from the cytoplasm. Many of these nuclear Rad51 foci had a double-dot appearance, typical of paired DNA segments (FIG. 3a).
TABLE 6 Induction of Rad51 Foci after 137Cs Irradiation of TGR-1 cells and Their Elimination into Micronuclei Percentage Percentage of Cells Percentage of Cells of Cells with Type Ia Foci with Type IIa Foci without in in in in Treatment Foci Nuclei Micronuceli Nuclei Micronuclei None 93% 6% 0% 1% 0% 3 hrs after 80% 8% 0.4% 11% 0.6% 900 rad 137Cs 16 hrs after 73% 9% 8% 1% 9% 900 rad 137Cs 30 hrs after 72% 1% 13% 1% 13% 900 rad 137Cs 4 days after 90% 0% 4% 0% 6% 900 rad 137Cs - When irradiated cells were then cultured for various times to allow repair of induced DNA damage and apoptosis to occur, significant changes in the distribution of Rad51-protein foci were detected. Nuclear foci coalesced into larger clusters with extremely high immunofluorescence intensity after 6-20 furs. Only a few discrete foci remained singly in the nucleoplasm. In a percentage of nuclei linear strings of 5-10 Rad51-protein foci were formed (FIG. 3b). Immediately striking was the somatic association of “homologous” strings of similar length. These strings were always tightly paired at one of their ends. The dynamics of the Rad51-protein foci after induction of DNA damage are clear evidence for a higher-order organization of nuclear structure that accompanies DNA repair and/or programmed cell death.
- One to two days after137Cs irradiation with a lethal dose the coalesced Rad51 clusters showed a highly non-random localization towards the nuclear periphery (FIG. 3c). Finally, the Rad51 structures were excluded into micronuclei. The nucleoplasm was virtually cleared of Rad51 protein and only aggregated Rad51 foci in MN were remaining (FIG. 4;Table 6). Similar to the situation seen earlier in interphase nuclei, many MN displayed paired Rad51 foci and higher-order structures. The highest number of MN (approximately three per cell) as well as the highest number of Rad51-positive MN(approximately 30%) were observed 16 hrs after irradiation (Table 7). However, at each time point analyzed the majority of radiation-induced MN did not show detectable Rad51-protein foci.
TABLE 7 Rad51 Foci in Micronuclei of Different Cell Substrates Number of Percentage of Percentage of Cell substrate Micronuclei in Rad51-Positive Rad51-Negative Treatment 1000 Cells Micronuclei Micronuclei TGR01 None 93 14% 86% 3 hrs after 900 279 22% 78% rad137Cs 16 hrs after 900 2719 28% 72% rad137Cs 4 days after 900 1040 20% 80% rad137Cs LNL8 None n.d. 23% 77% None n.d. 26% 74% XPA None n.d. 18% 82% Teratoma None n.d. 10% 90% 3T3-Swiss None 472 125% 88% - Segregation of Rad51-Protein Foci into Micronuclei An increased rate of MN is also observed in 5-azadeoxycytidine (5-aza-dC)-treated cell cultures (Guttenbach, et al., (1994) Exp. Cell Res. 211, 127-132; Stopper et al., 1995, supra). This hypomethylating base analog induces inhibition of chromatin condensation, leading to instability of the affected chromosome regions (Haaf, 1995). Its cytotoxic effects are at least partially due to the induction of single- and double-strand breaks in DNA. Like137Cs irradiation, 5-aza-dC can induce the formation of Rad51 -protein foci in nuclei and its elimination into MN. Rat TGR-1 and human LNL8 fibroblast cultures treated with non-lethal doses of 5-aza-dC displayed MN with focally concentrated Rad51 protein in 5-10% of their cells (Table 8).
TABLE 8 Induction of Rad51 Foci by 5-Azadeoxycytidine Percentage Percentage of Cells Percentage of Cells of Cells with Type Ia Foci with Type IIa Foci Cell type without in in in in Treatment Foci Nuclei Micronuclei Nuceli Micronuclei TGR-1 None 93% 6% 0% 1% 0% 5-aza-dCb 86% 5% 4% 1% 4% LNL8 None 92% 6% 1% 1% 0% 5-aza-dCb 89% 3% 1% 2% 5% - Rapidly dividing cell cultures always exhibit a baseline MN frequency even without exposure to clastogens or aneuploidogens. In five different substrates studied, LNL8, XPA, teratoma, 3T3-Swiss, and TGR-1 cells, 10-30% of these spontaneously occuring, non-induced MN exhibited Rad51-protein foci (Table 7). This further links Rad51-protein foci and MN formation.
- Rad52 and Other Repair Proteins Are Not Excluded into Micronuclei Studies in yeast (Shinohara et al., 1992, supra; Milne, G., and Weaver, D. (1993). Genes Dev. 7, 1755-1765) and humans (Shen, et al., (1996). J. Biol. Chem. 271, 148-152) have shown physical interaction between Rad51 and Rad52 proteins both in vitro and in vivo. Double immunofluorescence with rabbit anti-Rad51 and rat anti-Rad52 antibodies on137CS irradiated TGR-1 cells showed that both proteins are enriched in nuclear foci but they do not co-localize. Rad52-protein foci remained in the nucleus throughout the entire time course, while Rad51-protein foci were segregated into MN (data not shown). The same holds true for Gadd45 (data not shown) an inducible DNA-repair protein that is stimulated by p53 (Smith et al., 1994, supra). Biochemical evidence further suggests specific protein-protein association between HsRad51 and p53 (Sturzbecher et al., 1996, supra). However, after anti-p53 antibody staining the RadS1 foci were not particularly enriched with p53 protein (data not shown). In addition, HsRad51 was reported to be associated with a RNA polymerase II (RNAPII) holoenyme (Maldonado et al., 1996, supra). Afthough RNAPII was irnmunolocalized in discrete discrete nuclear foci, as reported previously (Bregman et al., 1995, supra), transcription complexes did not coincide with Rad51 foci (data not shown).
- Association of Rad51 Protein with DNA Fibers In a few (<1%) cells of irradiated and drug-treated cultures, we observed very elongated Rad51 structures, up to several hundred micrometer io length, that were eliminated from the nuclei. Since these fiber-like structures stained DAPI-positively, they are thought to contain single DNA molecules of several megabases covered with Rad51 (data not shown). Fluorescence in situ end labeling (FISEL) demonstrated that these DNA fibers contain fragmented DNA typical of apoptosis (data not shown). Sometimes the DNA fibers appeared to leak out of the nucleus through holes in the nuclear membrane and coodense into micronuclei. In all cell substrates studied, a high percentage of MN displayed genome fragmentation (data not shown).
- The association of Rad51 protein with DNA was also visible on experimentally extended chromatin fibers from irradiated cells. SDS Iysis and mechanical stretching of nuclear chromatin across the surface of a glass slide can cause complete deattachment of DNA loops from the nuclear matrix, producing highly elongated, linear chromatin fibers (Haaf, T., and Ward, D. C. (1994). Hum. Mol. Genet. 3, 629-633.; Heiskanen et al., 1994, supra). Immunofluorescence staining revealed linear strings of Rad51 label on these stretched DNA fibers (data not shown). By comparison with YAC hybridIzat˜on signals on similar preparations (Haaf and Ward, 1994, supra), the length ofthe Rad51 fibers was estimated 1-2 Mb.
- Rad51-Protein Foci and Apoptosis To determine whether Rad51-positive MN specifically detect exposure to clastogens, analyses were performed in rat TGR-I cells with the aneuploidogen colcemid. This mitotic spindle poison causes lagging of whole chromosomes that are excluded into MN. Surprisingly, when colcemid-treated cells were allowed to recover for 24 hrs in drug-free medium, over 30% of the induced MN contained very brightly fluorescing Rad51 foci (Table 9). Some MN contained rod-like linear structures (data not shown) similar to those observed in Rad51-overexpressing cells. Most of these Rad5I-positive MN, 24 hrs after colcemid, did not contain fragmented DNA, as determined by simultaneous FISEL (Table 9). When cells were grown for one or two more days in the absence of the drug, the percentage of Rad51-containing MN decreased dramatically. In addition, the Rad51 protein was no longer concentrated in discrete foci but appeared to disperse throughout the entire MN volume. At the same time most MN became apoptotic and by FISEL their degraded DNA showed incorporation of fluorescent nucleotides. Thus, we conclude that mitotic arrest after colcemid triggers a cascade that induces the elimination of Rad51 protein into MN and drives apoptotic events. Our results seem to be consistent with the hypothesis that apoptosis is a special form of aberrant mitosis (Ucker, D. S. (1991). New Biologist 3, 103-1009; Shietal., 1994, supra).
TABLE 9 Rad51 Foci and Apoptosis in Colcemid-Induced Micronuclei of TGR-1 Cells Number of Percentage of Cells Showinga micronuclei Rad51−/ Rad51+/ Rad51+/ Rad51−/ Treatment in 1000 cells FISEL− FISEL− FISEL+ FISEL+ None 93 75% 12% 2% 11% Colcemidb n.d. 85% 6% 0% 9% 1 day of 1293 54% 31% 1% 14% recovery 2 days of 1061 45% 45% 6% 40% recovery 3 days of 769 43% 7% 4% 46% recovery - Another more classical way for inducing apoptosis in vitro is the exposure of TGR-1 cells to the topoisomerase II inhibitor etoposide. After adding etoposide to the culture medium, the percentage of apoptotic cells steadily increased (Table 10). After 36 hrs half of the cells showed genome fragmentation and stained FISEL-positively. The nuclear events of apoptosis were accompanied by the appearance of Rad51 protein in nuclei and MN. These results indicate that different stimuli (e.g., irradiation and DNA-damaging drugs, topisomerase inhibitors, and aneuploidogens) that condem cells to apoptosis can induce focal concentration of Rad51 protein and its exclusion into MN.
TABLE 10 Induction of Rad51 Foci and Apoptosis by Etoposide Treatment of TGR-1 Cells Percentage of Cells Percentage of Cells Percentage Percentage with Type Ia Foci with Type IIa Foci of Apoptotic of Cells in in in in Treatment Cellsb without Foci Nuclei Micronuclei Nuclei Micronuclei None 6% 93% 6% 0% 1% 0% 2 hrs after n.d. 92% 4% 1% 1% 2% etoposidec 5 hrs after n.d 92% 3% 2% 1% 2% etoposide 12 hrs after 17% 87% 8% 2% 1% 2% etoposide 18 hrs after 24% 79% 3% 8% 1% 9% etoposide 24 hrs after 33% 82% 2% 2% 6% 8% etoposide 36 hrs after 47% 83% 2% 5% 1% 9% etoposide - Higher-Order Nuclear Organization of Overexpressed Rad51 Protein Human 293 cells were transfected with the HsRad51 gene. The resulting cell lines 710 and 717 constitutively expressed a HsRad51-fusion protein. This overexpressed protein formed brightly fluorescing linear structures inside the nucleus (FIG. 7a). Some nuclei were completely filled with a network of rod-like structures (FIG. 7b). Identical Rad51 structures were observed in transformed rat TGR 928.1-9 cells, stably expressing the HsRad51 protein without a tag epitope (data not shown). This suggests that Rad51 protein is able to assemble into higher-order structures within the highly ordered interphase nucleus. The linear nature of RadS 1 structures in overexpressing cells is reminscent of the strings of Rad51-protein foci after DNA damage and colcemid treatment and in meiotic cells (Haaf et al., 1995).
- However, in contrast to the situation after DNA damage, the overexpressed HsRad51 protein is not eliminated into MN. The numbers of Rad51-positive MN were not radically different in Rad51-overexpressing human 717 cells versus in 293 control cells and in rat 928.1-9 overexpressers versus in parental TGR-1 cells. This means that Rad51 overexpression alone does not cause apoptosis. In exponentionally growing unsynchronized cultures, 14% of both 717 and 293 cells (500 cells were analyzed for each experiment) and 8% of both 928.1-9 and TGR-1 cells showed cleavage of the cell's DNA by FISEL. We conclude that the segregation of Rad51 into MN is a specific behavior of apoptotic cells and precedes genome fragmentation.
- Cell-Cycle Arrest of Cells with Focally Concentrated RadS1 Protein Simultaneous Rad51-protein immunofluorescence and antibromodeoxyuridine (BrdU) antibody staining demonstrated that nuclei with focally concentrated Rad51 protein do not undergo DNA-replication synthesis (data not shown). BrdU was incorporated into replicating DNA of unsynchronized cell cultures for 30 hrs. Rapidly growing transformed cell lines (293, LNL8, XPA, and XPF) which showed detectable Rad51 immunolabling in a percentage of nuclei even without induction of DNA damage as well as Rad51 overproducers (928.1-9 and 717) were analyzed. For each experiment, 100 nuclei with prominent Rad51 foci and 100 nuclei without detectable Rad51 foci were stained with fluorescent anti-BrdU antibody. In the widely different substrates tested, 80%-100% of the cells with focally concentrated Rad51 protein were found to be BrdU-staining negative (Table 11). In contrast, 30%-90% of the cells without Rad51 foci from the same cultures showed BrdU incorporation, indicative of cycling cells. The BrdU-substituted DNA was located in discrete replication sites throughout the nucleus as reported previously (Nakayasu, H., and Berezney, R. (1989). J. Cell Biol. 108, 1-11; Fox, et al., (1991) J. Cell Sci. 99, 247-253). This suggests that even without induction of DNA damage the cells with Rad51 foci are arrested during the cell cycle or enter S phase delayed of the Rad51-foci negative cells.
TABLE 11 Induction of Rad51 Foci after 137Cs Irradiation of TGR-1 cells and Their Elimination into Micronuclei Percentage Percentage of Cells Percentage of Cells of Cells with Type Ia Foci with Type IIa Foci without in in in in Treatment Foci Nuclei Micronuceli Nuclei Micronuclei None 93% 6% 0% 1% 0% 3 hrs after 80% 8% 0.4% 11% 0.6% 900 rad 137Cs 16 hrs after 73% 9% 8% 1% 9% 900 rad 137Cs 30 hrs after 72% 1% 13% 1% 13% 900 rad 137Cs 4 days after 90% 0% 4% 0% 6% 900 rad 137Cs - Rat TGR-1 cells are capable of normal physiological withdrawal into the quiescent (Go) phase of the cell cycle as well as resumption of growth following the appropriate stimuli (Prouty, et al., (1993). Oncogene 8, 899-907). In TGR 928.1-9 cells o˜erexpressing a HsRad51 transgene(s), Go arrest upon serum starvation dramatically induced HsRad: 1-protein foci (Table 12). Synchronous re-entry into the cell cycle after feeding reduced the percentage of HsRad51-foci positive cells to very low levels. However, new Go arrest upon contact inhibition following three population doublings increased the number of cells with nuclear Rad51 foci again. We therefore conclude that cells with prominent nuclear Rad51 foci are most likely in Go or G1 phase of the cell cycle.
TABLE 12 Rad51 Foci in Micronuclei of Different Cell Substrates Number of Percentage of Percentage of Cell substrate Micronuclei in Rad51-Positive Rad51-Negative Treatment 1000 Cells Micronuclei Micronuclei TGR01 None 93 14% 86% 3 hrs after 900 279 22% 78% rad137Cs 16 hrs after 900 2719 28% 72% rad137Cs 4 days after 900 1040 20% 80% rad137Cs LNL8 None n.d. 23% 77% None n.d. 26% 74% XPA None n.d. 18% 82% Teratoma None n.d. 10% 90% 3T3-Swiss None 472 125% 88% - Other references specifically incorporated by reference are Haaf, T. (1995). Pharmac. Ther. 65, 19-46; Haaf, T., and Schmid,M. (1991). Exp. Cell Res. 192, 325-332; and Owaga, et al, (1993) Science 259, 1896-1899
Claims (46)
1. A method of diagnosing individuals at risk for a disease state comprising
a) determining the distribution of Rad5l foci in a first tissue type of a first individual; and
b) comparing said distribution to the distribution of Rad5 1 foci from a second normal tissue type from said first individual or a second unaffected individual;
wherein a difference in said distributions indicates that the first individual is at risk for a disease state which results in aberrant Rad51 loci.
2. A method according to claim 1 wherein said disease state is cancer.
3. A method of diagnosing individuals at risk for cancer comprising
a) determining the distribution of Rad51 foci in a potential cancerous tissue type of a first individual; and
b) comparing said distribution to the distribution of Rad51 foci from a second normal tissue type from said first individual or a second unaffected individual;
wherein a difference in said distributions indicates that the first individual is at risk for a cancer which results in aberrant Rad51 loci.
4. A method according to claim 3 wherein the cancer is selected from breast cancer and skin cancer.
5. A method of diagnosing individuals at risk for a disease state associated with apoptosis, said method comprising
a) determining the distribution of Rad51 foci in a first tissue type of a first individual; and
b) comparing said distribution to the distribution of Rad51 foci from a second normal tissue type from said first individual or a second unaffected individual;
wherein a difference in said distributions indicates that the first individual is at risk for a disease state associated with apoptosis which results in aberrant Rad51 loci.
6. A method according to claim 1 wherein the extent of aberrent distribution indicates the severity of the disease state.
7. A method according to claim 1 wherein said distribution is determined through the use of polyclonal antibodies.
8. A method according to claim 1 wherein said distribution is determined through the use of monoclonal antibodies.
9. A method according to claim 7 or 8 wherein said antibodies are raised against eukaryotic Rad51.
10. A method according to claim 9 wherein said eukaryotic Rad51 is mammalian Rad51.
11. A method for identifying an apoptotic cell comprising
a) determining the distribution of Rad51 foci in a first cell; and
b) comparing said distribution to the distribution of Rad51 foci from a second non-apoptotic cell;
wherein a difference in said distributions indicates that the first cell is apoptotic.
12. A method according to claim 11 wherein said distribution is the association of Rad51 with DNA fibers.
13. A method according to claim 11 wherein said distribution is the association of Rad51 into micronuclei.
14. A method for identifying a cell under stress associated with nucleic acid modification comprising
a) determining the distribution of Rad51 foci in a first cell; and
b) comparing said distribution to the distribution of Rad51 foci from a second non-affected cell;
wherein a difference in said distributions indicates that the first cell is under stress associated with nucleic acid modification.
15. A method according to claim 14 wherein said stress is oxidative or hypoxic stress.
16. A method according to claim 14 wherein said stress is heat shock.
17. A method according to claim 14 wherein said stress is cold shock.
18. A method for identifying a cell containing a mutant Rad51 gene comprising determining the sequence of all or part of at least one of the endogenous Rad51 genes.
19. A method of identifying the Rad51 genotype of an individual comprising determining all or part of the sequence of at least one Rad51 gene of said individual.
20. A method according to claim 18 or 19 further comprising comparing the sequence of said Rad51 gene to a known Rad51 gene.
21. A method according to claim 20 wherein a difference in the sequence between the Rad51 gene of said individual and said known Rad51 gene is indicative of a disease state or a propensity for a disease state.
22. A method for screening for a bioactive agent capable of binding to Rad51 comprising:
a) adding a candidate bioactive agent to a sample of Rad51; and
b) determining the binding of said candidate agent to said Rad51.
23. A method for screening for a bioactive agent capable of modulating the activity of Rad51, said method comprising the steps of:
a) adding a candidate bioactive agent to a sample of Rad51; and
b) determining an alteration in the biological activity of Rad51.
24. A method according to claim 23 wherein said biological activity is DNA dependent ATPase activity.
25. A method according to claim 23 wherein said biological activity is nucleic acid strand exchange.
26. A method according to claim 23 wherein said biological activity is DNA binding.
27. A method according to claim 23 wherein said biological activity is filament formation.
28. A method according to claim 23 wherein said biological activity is DNA pairing.
29. A method for screening for a bioactive agent capable of modulating the activity of Rad51, said method comprising the steps of:
a) adding a candidate bioactive agent to a cell; and
b) determining the effect on the formation or distribution of Rad51 foci in said cell.
30. A method according to claim 25 further comprising subjecting said cell to conditions which induce nucleic acid damage.
31. A method of inducing apoptosis in a cell comprising increasing the activity of Rad51 in said cell.
32. A method according to claim 31 wherein said increasing comprises overexpression of endogenous Rad51.
33. A method according to claim 31 wherein said increasing comprises administration of a gene encoding Rad51.
34. A method according to claim 31 wherein said increasing comprises administration of Rad51 protein.
35. A method according to claim 31 wherein said cell is a cancer cell.
36. A method according to claim 31 further comprising subjecting said cell to conditions which induce nucleic acid damage.
37. A method according to claim 36 wherein said conditions comprise the administration of a chemical agent which causes nucleic acid damage.
38. A method according to claim 36 wherein said conditions comprise subjecting said cell to radiation.
39. A method according to claim 31 further comprising increasing the activity of p53 in said cell.
40. A composition comprising:
a) nucleic acid encoding a Rad51 protein; and
b) nucleic acid encoding a tumor suppressor protein.
41. A composition according to claim 38 wherein said tumor suppressor protein is p53.
42. A composition according to claim 38 wherein said tumor suppressor protein is BRCA1.
43. A composition according to claim 38 wherein said tumor suppressor protein is BRCA2.
44. A composition according to claim 38 comprising:
a) nucleic acid encoding a Rad51 protein;
b) nucleic acid encoding a BRCA1 protein;
c) nucleic acid encoding a BRCA2 protein; and
d) nucleic acid encoding a p53 protein.
45. A composition comprising:
a) a recombinant Rad51 protein; and
b) a recombinant tumor suppressor protein.
46. A kit for detecting the distribution of Rad51 foci in a cell or tissue comprising:
a) binding agent for Rad51 foci; and
b) a detectable label.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/182,102 US20030143533A1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing rad51 |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US3583497P | 1997-01-30 | 1997-01-30 | |
US4566897P | 1997-05-06 | 1997-05-06 | |
US09/007,020 US6090539A (en) | 1997-01-13 | 1998-01-14 | Methods and compositions utilizing Rad51 |
US09/182,102 US20030143533A1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing rad51 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/007,020 Division US6090539A (en) | 1997-01-13 | 1998-01-14 | Methods and compositions utilizing Rad51 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030143533A1 true US20030143533A1 (en) | 2003-07-31 |
Family
ID=27358244
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/179,916 Expired - Fee Related US6391564B1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing Rad51 |
US09/182,102 Abandoned US20030143533A1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing rad51 |
US09/181,027 Abandoned US20030208053A1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing rad51 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/179,916 Expired - Fee Related US6391564B1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing Rad51 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/181,027 Abandoned US20030208053A1 (en) | 1997-01-30 | 1998-10-27 | Methods and compositions utilizing rad51 |
Country Status (1)
Country | Link |
---|---|
US (3) | US6391564B1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050255502A1 (en) * | 2004-01-30 | 2005-11-17 | Dana Farber Cancer Center | Method for determination and quantification of radiation or genotoxin exposure |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003027265A2 (en) * | 2001-09-27 | 2003-04-03 | University Of Delaware | Composition and methods for enhancing oligonucleotide-directed nucleic acid sequence alteration |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6037125A (en) | 1996-11-05 | 2000-03-14 | Lexicon Genetics Incorporated | Disruption of the mammalian RAD51 protein and disruption of proteins that associate with mammalian RAD51 for hindering cell proliferation and/or viability of proliferating cells |
-
1998
- 1998-10-27 US US09/179,916 patent/US6391564B1/en not_active Expired - Fee Related
- 1998-10-27 US US09/182,102 patent/US20030143533A1/en not_active Abandoned
- 1998-10-27 US US09/181,027 patent/US20030208053A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050255502A1 (en) * | 2004-01-30 | 2005-11-17 | Dana Farber Cancer Center | Method for determination and quantification of radiation or genotoxin exposure |
US7459287B2 (en) | 2004-01-30 | 2008-12-02 | Dana Farber Cancer Institute, Inc. | Method for determination and quantification of radiation or genotoxin exposure |
US7910325B2 (en) | 2004-01-30 | 2011-03-22 | Dana-Farber Cancer Institute, Inc. | Method for determination and quantification of radiation or genotoxin exposure |
US8541198B2 (en) | 2004-01-30 | 2013-09-24 | Dana-Farber Cancer Institute, Inc. | Method for determination and quantification of radiation or genotoxin exposure |
Also Published As
Publication number | Publication date |
---|---|
US6391564B1 (en) | 2002-05-21 |
US20030208053A1 (en) | 2003-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO1998034118A1 (en) | Diagnostic methods and compositions based on the distribution of rad51 | |
Fang et al. | p21Waf1/Cip1/Sdi1 induces permanent growth arrest with markers of replicative senescence in human tumor cells lacking functional p53 | |
Lignitto et al. | Proteolysis of MOB1 by the ubiquitin ligase praja2 attenuates Hippo signalling and supports glioblastoma growth | |
Willmore et al. | Etoposide targets topoisomerase IIα and IIβ in leukemic cells: Isoform-specific cleavable complexes visualized and quantifiedin situ by a novel immunofluorescence technique | |
Hirose et al. | Abrogation of the Chk1-mediated G2 checkpoint pathway potentiates temozolomide-induced toxicity in a p53-independent manner in human glioblastoma cells | |
Scholzen et al. | The Ki‐67 protein: from the known and the unknown | |
Greggio et al. | Kinase activity is required for the toxic effects of mutant LRRK2/dardarin | |
Jullien et al. | Kinetochore localisation of the DNA damage response component 53BP1 during mitosis | |
De Marco Zompit et al. | The CIP2A-TOPBP1 complex safeguards chromosomal stability during mitosis | |
Sadeghi et al. | Molecular contribution of BRCA1 and BRCA2 to genome instability in breast cancer patients: Review of radiosensitivity assays | |
Lotti et al. | Subcellular localization of the BRCA1 gene product in mitotic cells | |
Jang et al. | The RepID–CRL4 ubiquitin ligase complex regulates metaphase to anaphase transition via BUB3 degradation | |
WO2004007754A2 (en) | Modulators of cellular proliferation | |
Murzik et al. | Rad54B targeting to DNA double-strand break repair sites requires complex formation with S100A11 | |
US6090539A (en) | Methods and compositions utilizing Rad51 | |
US6391564B1 (en) | Methods and compositions utilizing Rad51 | |
EP0960338B1 (en) | Diagnostic methods and compositions based on the distribution of rad51 | |
JP2003532428A (en) | Enzymatic assays for screening anticancer drugs | |
JP2001503510A (en) | In vitro assay of carcinogens using phenotypic transformation of human cells | |
CA2384733A1 (en) | Methods and compositions utilizing rad51 | |
JP2003506100A (en) | Cancer treatment and diagnosis using Rad51-related molecules and methods | |
AU2003245743A1 (en) | Reagents and methods for identifying and modulating expression of tumor senescence genes | |
US20100248226A1 (en) | Methods for measuring cell response to dna damaging agents using promyelocytic leukemia protein nuclear bodies | |
Nachar | Decreased replication potency and extended S phase, due to shortened G1 and replication origin under-licensing, are a common feature of cancer cells | |
Zhao et al. | Mono-ubiquitination of TopBP1 by PHRF1 enhances ATR activation and genomic stability |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |