US20030136134A1 - Fluid and air heat exchanger and method - Google Patents
Fluid and air heat exchanger and method Download PDFInfo
- Publication number
- US20030136134A1 US20030136134A1 US10/054,609 US5460902A US2003136134A1 US 20030136134 A1 US20030136134 A1 US 20030136134A1 US 5460902 A US5460902 A US 5460902A US 2003136134 A1 US2003136134 A1 US 2003136134A1
- Authority
- US
- United States
- Prior art keywords
- fluid
- air
- heat
- heat exchanger
- closed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000012530 fluid Substances 0.000 title claims abstract description 231
- 238000000034 method Methods 0.000 title claims abstract description 14
- 238000010438 heat treatment Methods 0.000 claims abstract description 58
- 238000004378 air conditioning Methods 0.000 claims abstract description 31
- 238000005057 refrigeration Methods 0.000 claims abstract description 31
- 238000012546 transfer Methods 0.000 claims abstract description 19
- 238000000889 atomisation Methods 0.000 claims abstract description 13
- 230000015572 biosynthetic process Effects 0.000 claims abstract description 8
- 239000003570 air Substances 0.000 claims description 81
- 238000005086 pumping Methods 0.000 claims description 22
- 238000009987 spinning Methods 0.000 claims description 14
- 239000012080 ambient air Substances 0.000 claims description 12
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 claims description 3
- 230000009471 action Effects 0.000 claims description 2
- 238000001816 cooling Methods 0.000 claims description 2
- 238000009690 centrifugal atomisation Methods 0.000 claims 1
- 230000003247 decreasing effect Effects 0.000 claims 1
- 230000008021 deposition Effects 0.000 claims 1
- 238000010008 shearing Methods 0.000 claims 1
- 238000000926 separation method Methods 0.000 abstract description 2
- 230000008901 benefit Effects 0.000 description 7
- 239000006096 absorbing agent Substances 0.000 description 6
- 230000006870 function Effects 0.000 description 6
- 230000004048 modification Effects 0.000 description 5
- 238000012986 modification Methods 0.000 description 5
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 5
- 239000007921 spray Substances 0.000 description 4
- 239000004020 conductor Substances 0.000 description 3
- 238000005265 energy consumption Methods 0.000 description 3
- 230000005484 gravity Effects 0.000 description 3
- 230000010354 integration Effects 0.000 description 3
- 238000010276 construction Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000008030 elimination Effects 0.000 description 2
- 238000003379 elimination reaction Methods 0.000 description 2
- 238000007654 immersion Methods 0.000 description 2
- 238000009413 insulation Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000007306 turnover Effects 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000012809 cooling fluid Substances 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000006735 deficit Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000003292 diminished effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000004134 energy conservation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000003116 impacting effect Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 229920002379 silicone rubber Polymers 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F6/00—Air-humidification, e.g. cooling by humidification
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0007—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning
- F24F5/0035—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater cooling apparatus specially adapted for use in air-conditioning using evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F5/00—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater
- F24F5/0042—Air-conditioning systems or apparatus not covered by F24F1/00 or F24F3/00, e.g. using solar heat or combined with household units such as an oven or water heater characterised by the application of thermo-electric units or the Peltier effect
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D5/00—Heat-exchange apparatus having stationary conduit assemblies for one heat-exchange medium only, the media being in contact with different sides of the conduit wall, using the cooling effect of natural or forced evaporation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28D—HEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
- F28D9/00—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
- F28D9/0025—Heat-exchange apparatus having stationary plate-like or laminated conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being formed by zig-zag bend plates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02B—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
- Y02B30/00—Energy efficient heating, ventilation or air conditioning [HVAC]
- Y02B30/54—Free-cooling systems
Definitions
- the present invention relates to an apparatus and method for atomization of chilled or heated fluid, projection of droplets, and formation of a fluid film in a chamber with large surface area for heat exchange in the application of refrigeration, air conditioning, and heating of room, space, structure or dwelling.
- a large centrifugal blower generating air flow with high static pressure is needed to propel air through the heat exchanger or evaporator and furnace into a system of large ducts for distribution into various rooms and spaces through open grills. It has been verified by scientific studies that energy loss for a ducting system is greater than 20 percent of the total consumed by a central air conditioning and heating system. This energy deficit is primarily caused by heat gained or lost while chilled or heated air travels through the ducts even insulated according to recommended common practice. Significant air velocity is also diminished due to resistance from friction while air is in contact with large duct wall surface and confronting turns of the ducts necessary for reaching final destinations. On the average, a large centrifugal blower for a central air conditioning and heating system for an average size dwelling consumes kilowatts of electric power per hour.
- Another prior art of heating a structure or dwelling involves heating a large amount of fluid, generally water, with a large capacity water heater and conveying the heated fluid to various locations of a structure through a system of pipes. Once reaching a particular location, the pipe is arranged in a back and forth fashion and mounted under the floor, above the ceiling, or behind a wall as a heat exchanger radiating heat into a room or space.
- a heating system is commonly termed a “hydronic” heating system.
- One disadvantage of such a heating system is that a separate system is required for air conditioning.
- Another disadvantage is that a large amount of fluid is needed to be continuously heated, thus requiring a large capacity heater with attending large energy consumption.
- temperature control in various locations is not available or possible.
- the structural element in which the “heat exchanger” is enclosed must first be heated before heat can radiate into a room or space. Occupants within feel the increase in temperature with significant delay.
- the present invention provides a modular apparatus that continuously atomizes a small quantity of chilled or heated fluid into a large number of small droplets and projects the droplets onto a large surface area to form a fluid film for heat transfer. Atomization and projection is accomplished by centrifugal force generated by a rapidly spinning slotted and screen cylinder. Rotating cylinders with perforations and cylindrical screens have been described in U.S. Pat. Nos. 4,609,145; 4,659,013; and 5,307,029. These various modes of atomization, primarily provided for agricultural spraying, possess shortcomings that render them unsuitable for application in this invention. They suffer the inability to uniformly generate droplets along the entire cylinder length or sustain the cylindrical shape for uniform droplet atomization under high rotating speed or centrifugal force.
- the surface on which the fluid film is formed is the inner surface of a closed pleated corrugated chamber composed of thin gage heat conductive material for promotion of rapid and efficient heat transfer.
- Ambient air, provided by a blower, circulating on the outside of this chamber, has long contact time with the chamber surface and large surface area for greater amount of heat energy transfer.
- Heat exchanger modules of this invention are intended to be located at rooms or spaces where air conditioning or heating is needed.
- a central fluid reservoir is employed for chilling and heating fluid to be atomized by the heat exchanger.
- Small bore tubes are used to convey prechilled or preheated fluid to a heat exchanger and return for re-chill and reheat, eliminating the need for large air ducts as in conventional practice. Small tubes are also more economical as well as much easier to provide complete insulation to maintain the heat-energy-state of the fluid in transit.
- the temperature in a given room or space can be cooled or heated quickly without the problem of heat conduction of air over a long distance in returning to the central blower to be cooled or reheated again.
- An added benefit of this invention is the ability to control temperature where it is needed and to what extent in individual room or space.
- the heat exchanger module or modules in area or areas without human occupation within a structure or dwelling can be shut off for further saving on energy use.
- the present invention relates to a modular apparatus and methods for active heat exchange involving fluid atomization, droplets projection, fluid film formation on a large surface for reciprocal two way heat transfer with air, and its integration with other elements into a refrigeration, or air conditioning and heating system.
- the present invention continuously circulates a small quantity of pre-chilled or preheated fluid through small tubes to self-contained active heat exchanger modules located in specific rooms or spaces where fluid and air heat transfer take place. More importantly, the processed fluid is returned for re-chilling or re-heating in a closed loop fluid flow circuit.
- the present invention provides a self-contained heat exchange apparatus in modular configuration comprised of an electric motor, a fluid delivery tube, a spinning slotted and screened cylinder, a pumping vane, an electric blower, a closed heat conductive chamber, and a housing shell in a modular configuration.
- the present invention provides a functional air conditioning and heating system with a single heat exchanger or multiple modules comprised of a central fluid reservoir containing the evaporator of a refrigeration unit and a submersible electric resistive heater, a refrigeration unit, an electric pump, a central fluid dispenser, insulated small tubes, and appropriate electronic temperature sensors and controls.
- One important aspect is to employ fluid as a medium for heat exchange instead of air as in common practice.
- a small quantity of fluid is atomized into an extremely large number of small droplets, and a large number of droplets is spread over a very large area forming a fluid film.
- a large area for heat transfer results in ample amount of heat energy being transferred between fluid and air, achieving high efficiency.
- An important object is to maintain heat-energy-state of the chilled or heated fluid during transit to individual heat exchangers. This is made possible by transporting only a small quantity of fluid with well-insulated small tubing for circulation in the closed fluid loop. This arrangement makes possible the elimination of energy-wasting large air ducts traditionally used for heat energy transport in similar applications.
- Another object of this invention is to minimize heat energy conduction time between fluid and air across the heat conductive barrier for rapid heat transfer.
- Use of thin gage heat conductive material forming the wall of the closed chamber, separating the fluid film and circulating air, provides heat energy transfer efficiency in quantity as well as rapidity.
- Another important aspect of this invention is that the rate of fluid turnover during heat transfer for each heat exchanger is so low, a much smaller and lower capacity refrigeration and heating unit are employed in a functional system compared to conventional air conditioning and heating systems. This aspect makes possible large initial and continuing economical and energy savings.
- FIG. 1 is a full cross section elevation view of the fluid and air heat exchanger module in accordance with the present invention, indicating the spatial relationship of components such as fluid delivery tube, spinning slotted and screened cylinder, electric motor driving the spinning slotted cylinder, closed thin wall heat conductive pleated and corrugated chamber, blower, and housing shell.
- FIG. 1 a is a full cross section elevation view of the fluid and air heat exchanger with all the components described in FIG. 1 plus a pumping vane connected to the electric motor and spinning slotted cylinder by an interconnecting rod.
- FIG. 2 is a perspective view of the fluid and air heat exchanger with section of heat exchanger housing shell, portion of the closed heat conductive pleated and corrugated chamber, and portion of the spinning slotted cylinder removed exposing the spatial relationship and arrangement of the components.
- FIG. 3 Is a perspective view of a fluid to fluid heat exchanger utilizing a Peltier device for absorbing or dispensing heat energy to supply pre-chilled or preheated fluid to fluid heat exchanger.
- FIG. 4 is a side elevation view showing the manner the Peltier device heat exchanger is assembled for operation.
- FIG. 5 is a cross sectional elevation view of a fluid reservoir with chilling component (evaporator tube) of a refrigeration unit and heating element, and its relationship to a electric pump for fluid delivery to fluid and air heat exchanger module(s) and manual or electronic valves for regulating flow to each module.
- chilling component evaporator tube
- FIG. 6 is a diagrammatic view showing the relation of components and closed loop fluid circulation when the Peltier device fluid to fluid heat exchanger is supplying pre-chilled or preheated fluid to fluid and air heat exchanger module.
- FIG. 7 is a diagrammatic view showing physical relationship and closed loop fluid flow between a chilling and heating fluid reservoir, a refrigeration unit, and associated pumps.
- FIG. 8 is a diagrammatic representation of multiple fluid and air heat exchanger modules' physical and functional relationship between a central chilling and heating reservoir and a refrigeration unit.
- FIG. 9 is a front elevation view of an alternate fluid delivery tube with an elastic tubing cover providing slits over the inner tube perforations.
- FIG. 10 is a front elevation view of an alternate fluid delivery tube as illustrated in FIG. 9 but oriented by turning 90 degrees showing pattern of fluid spray.
- FIG. 11 is a perspective section view of a closed heat conductive chamber in a horizontal orientation illustrating modification of lower half of the chamber modified for unimpeded fluid flow into a reservoir containing a pumping vane for returning processed fluid for re-chill or reheat.
- FIG. 12 is a wiring diagram showing temperature controlling components and their relationship with a fluid and air heat exchanger module for independent temperature control in each room or space within a structure or dwelling.
- FIG. 13 is a side elevation section view of an alternate horizontal oriented fluid and air heat exchanger with the chamber partially cut away showing spatial relationship of fluid delivery tube, spinning slotted cylinder, and pumping vane.
- the present invention provides an apparatus and method for fluid and air heat exchange in the application of refrigeration, air conditioning, and heating of rooms, spaces, structures or dwellings. More particularly, the apparatus atomizes pre-chilled or preheated fluid from a central reservoir into small uniform sized droplets, projects the droplets by centrifugal force onto the inner surface of a closed, thin-wall, heat conductive chamber and forms a continuous fluid film on the chamber wall. Heat energy of ambient air circulating outside the chamber is absorbed through the chamber wall and transferred to the fluid film inside the chamber in the process of heat exchange during refrigeration or air conditioning. Heat energy is conducted through the chamber wall from the fluid film and transferred to the ambient air in the process of heat exchange for heating. The fluid film is continuously being supplied with newly arriving droplets, and excess fluid from the fluid film is collected and continuously being returned to the central reservoir to be re-chilled or reheated, providing a closed loop fluid flow circuit.
- the present invention provides a modular fluid and air heat exchanger comprised of a perforated tube for delivery of fluid, a motorized spinning slotted screened cylinder, a closed thin wall, heat conductive pleated and corrugated chamber, an integrated pumping element, an axial blower, and an outer shell enclosure. These components interact to perform the functions of delivery of fluid to be atomized, atomization of fluid into droplets, projection of droplets, formation of a fluid film, pumping of processed fluid for re-chill or reheat, and circulating air within the module for fluid and air heat exchange.
- These components interact to perform the function of fluid to air heat exchange in an independently functioning device for air conditioning and heating for a room or space within a structure or dwelling.
- multiple modules are integrated with other components to form a complete air conditioning and heating system for a structure or dwelling.
- These other components are comprised of a refrigeration unit, a heating element, a central fluid reservoir with refrigeration evaporator and heating element immersed, an electric pump for fluid delivery, a central fluid dispenser, and multiple small tubes for delivery and return of fluid from and to the central reservoir.
- An important aspect of this invention is the use of fluid instead of air for conveying heat energy to be absorbed or dispensed due to fluid's significantly higher heat energy absorption and retention capacity than air of equal volume.
- Another important aspect of this invention is that the fluid processing rate per fluid and air heat exchanger in atomization is exceedingly low, on the order of less than 200 milliliter per minute for a 22.86 centimeter (9 inch) diameter heat exchanger suitable for central air conditioning and heating purpose.
- Another aspect of the invention is that low fluid turnover rate for re-chill or reheat requires small bore tubes on the order of 6.35 millimeter (0.25 inch) diameter for fluid conveyance between central reservoir and individual heat exchange modules.
- each heat exchange module can be independently regulated for raising or lowering the ambient temperature of environment in which it is situated within a structure or dwelling, adding to occupants' choice of desirable temperature comfort level. Modules in areas without human occupation can be independently shut off by electrically operated valves and switches without affecting other modules in operation, leading to further power savings.
- a fluid and air heat exchange apparatus in accordance with the present invention is shown.
- a fluid atomizer is comprised of an electric motor 5 , with its output shaft connected to cylinder 2 with multiple longitudinal slots 3 covered from inside with fine mesh screen 3 a , for atomization of fine uniform size fluid droplets.
- a tube 4 with multiple small perforations on the side of the tube at closest proximity to the inside cylinder wall at various intervals, closed at distal end, and connected to inlet fluid supply tube 7 is mounted off-center inside cylinder 2 . Mounting position of tube 4 accounts for two important aspects of fluid delivery.
- fluid streams sprayed from the tube perforations have minimal distance to travel, thus requiring only a low pressure pump supplying the fluid with attending low electrical power consumption.
- the center space within the cylinder is reserved for an interconnecting rod linking the motor to pump vane 40 .
- Fluid striking the closed inside surface of the concave section of the cylinder accumulates until overcome by gravity and moves downward and sideways due to centrifugal action and gravity until reaching the next open slot's wire screen and sheared by the moving screen wires into droplets at a slightly lower position.
- the droplet atomization and projection device described above is enclosed within a closed, thin wall, heat conductive, pleated, and corrugated chamber 1 .
- the important objects for the chamber configuration include:
- An axial fan 11 located inside the heat exchanger housing 6 mounted either on top or below the heat exchanger assembly, propels or sucks in ambient air through space 12 between chamber 1 and inside the housing 6 wall. Ambient air traversing the length of the chamber wall allows long contact time between air and chamber wall for more efficient fluid and air heat transfer.
- FIG. 5 A preferred embodiment of the central reservoir is illustrated in FIG. 5 with inclusion of an evaporator coil 24 a fitted with fins 24 from a refrigeration unit and a sealed electric resistive element 25 immersed in reservoir 23 covered with insulation 22 .
- a tube delivers chilled or heated fluid from the reservoir 23 to a pump 26 .
- the pump 26 in turn propels the fluid under low pressure to single module or to a central dispenser FIGS. 7 and 8, 26 then conveys the pre-chilled or preheated fluid through insulated small bore tubes 7 a and 8 a to multiple active fluid and air heat exchange modules 28 .
- the processed fluid with heat gained or heat dispensed from the module(s) is returned by the integrated pumping element (pumping vane) FIG. 1 a , 40 of the module(s) 28 to the central reservoir 23 to be chilled or heated again in a closed loop flow system.
- FIG. 7 illustrates the components required for an independently functioning air conditioner and heater.
- This functioning unit is comprised of a refrigeration unit (compressor and condenser) 37 , a central reservoir 36 , a pump 26 for propelling chilled or heated fluid to a heat exchanger module 28 , and small bore tubes for fluid circulation represented by solid lines.
- An optional pump 38 for returning fluid to the central reservoir 36 is included in the illustration should the pumping elements not be included with the heat exchanger module.
- FIG. 8 A complete central air conditioning and heating system is represented in FIG. 8 for a structure or dwelling.
- This system is comprised of a refrigeration unit (compressor and condenser portion) 37 , a central reservoir 23 , a pump 26 , a central dispenser 26 a , tubes represented by solid lines 7 a for delivery of prechilled and preheated fluid to multiple modules 28 , and tubes 8 a for returning processed fluid to central reservoir 23 represented by dotted lines.
- a refrigeration unit compressor and condenser portion
- FIGS. 3, 4, and 6 An assembled heat exchanger is represented in FIG. 4 comprised of two mirror-imaged heat transfer bodies 16 and 19 with channels, two mirror-imaged heat exchanger covers 15 and 20 fitted with small tubes 13 , 14 , and 21 , 22 .
- the Peltier device 18 is sandwiched between the two heat exchanger bodies 16 and 19 . The entire assembly is well insulated.
- This air conditioning and heating system is suitable for cooling and heating a smaller space such as a refrigerator or the passenger compartment of an automobile with a scaled down fluid and air heat exchanger.
- a scaled down version of the heat exchanger module with a 10 centimeter (4 inch) diameter closed chamber inside a 15.24 centimeter (6 inch) diameter module housing is suitable for such applications.
- Required components for this system to operate and fluid flow circuit are illustrated in FIG. 6. They comprise a scaled down fluid and air heat exchanger 28 , a small reservoir 35 associated with the fluid and air heat exchanger 28 , an assembly of Peltier device heat exchanger 29 , a conventional fluid and air heat exchanger 30 , a blower 37 , a small reservoir 32 associated with the conventional heat exchanger 30 .
- Arrows in the diagram represent direction of fluid flow.
- Other possibilities of heating fluid include use of conventional water heating solar panel or parabolic mirror.
- a more conventional method is to immerse a length of tube from the inlet loop of the central reservoir into a hot water heater of a dwelling
- the fluid and air heat exchanger can be scaled to any size within certain parameters. Diameter of the dosed, heat conductive, pleated, corrugated chamber is only limited by the distance droplets can travel determined by the centrifugal force in projection of the droplets. The rotational speed and diameter of the slotted cylinder determine the size of the droplets and distance droplets can be projected by centrifugal force. Optimum droplet size during formation of a continuous fluid film in turn determines the rotational speed and diameter of the slotted cylinder. These factors determine the upper limit on the size of the fluid and air heat exchanger module.
- FIG. 9 and FIG. 10 An alternative construction of the fluid delivery tube is illustrated in FIG. 9 and FIG. 10 for providing a wider spray pattern with more even distribution of fluid streams impacting the inner surface of the rotating slotted and screen cylinder 2 .
- An elastic tubing 4 b a silicon rubber tubing for example, is slipped over the perforated fluid delivery tube 4 .
- Fine longitudinal slits 4 e are made at center of each perforation.
- a ring clamp 4 c is attached to the elastic tubing above, below, and in-between each slit 4 e preventing the slit 4 e to move out of intended position due to fluid pressure.
- FIG. 10 illustrates a view in which the elastic covered fluid delivery tube assembly as in FIG. 9 is turned 90 degrees to the left showing the spray pattern 4 g obtainable with this construction.
- the active fluid and air heat exchanger module thus described has been shown in a vertical arrangement. However it is also possible to modify the heat exchanger module to function in a horizontal position. This modification is illustrated in FIG. 11.
- the closed, thin wall, heat conductive corrugated, and pleated chamber is modified leaving the lower section without corrugation and pleating to accommodate unobstructed flow of processed fluid to the reservoir to be pumped away.
- Fins, exemplified by 42 are attached to the smooth area for compensation of lost heat exchange area due to lack of corrugation and pleating of the chamber wall.
- the reservoir 10 where the processed fluid is accumulating is located perpendicular to the chamber orientation.
- An extra electric motor 41 with a pumping vane 40 attached inside the reservoir 10 is mounted below the reservoir 10 .
- FIG. 13 An alternative horizontally oriented fluid and air heat exchanger module to the one described above is illustrated in FIG. 13.
- An accordion or bellow shaped closed heat conductive chamber 47 is oriented vertically allowing air to flow around the pleats or corrugations with minimum turbulence.
- a centrifugal blower 48 provides air circulation.
- the spatial relationship of components such as spinning slotted cylinder 2 , pumping vane 40 , and fluid delivery tube 4 is shown in the same figure. This fluid and air heat exchanger configuration is particularly well-suited for air conditioning and heating in automobiles, motorhomes, and travel trailers.
- temperature within a room or space of a structure or dwelling can be controlled independently without affecting other rooms or spaces.
- the motor 5 driving the slotted cylinder 2 and pumping vane is electrically connected to voltage regulator 45 .
- voltage supplying motor 5 driving slotted cylinder 2 is changed, the size of the droplets is also changed; therefore, the change in size of fluid droplets supplying the fluid film changes the temperature.
- an electrically operated fluid valve 44 is connected to the fluid and air heat exchanger's fluid inlet tube, the amount of fluid delivered to fluid and air heat exchanger, the number droplets atomized is changed; therefore, modifying the temperature.
- an electronic voltage regulator 45 changes the air velocity and amount of air in contact with the outer surface of the closed, heat conductive chamber. While slower air velocity provides longer air contact time with the chamber for greater amount of heat transfer, it takes longer for the entire room or space's air to be re-circulated. It also takes longer duration to reach desired set temperature.
- the voltage controller 45 is regulated by an electronic temperature controller 46 with a connection to a temperature sensor 43 such as a thermocouple or an electronic temperature sensor.
- the closed chamber or the outer shell of the fluid and air heat exchanger module does not have to be circular in shape or size limited to that described.
- the orientation of the heat exchanger module can be horizontal or tilted at an angle with suitable modification of the chamber shape.
- Other examples include heating slow moving fluid in a heat transparent tube with parabolic solar mirror or microwave beam or pre-chilling the tube in slow moving cool tap, well, stream, lake, or ocean water prior to being delivered to the central reservoir for final chilling or heating, saving additional energy.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)
Abstract
The present invention relates to a modular apparatus and methods for active heat exchange involving continuous atomization of chilled or heated fluid droplets, droplets projection, and formation of fluid film on a large surface for reciprocal two way heat transfer with circulating air. A closed, pleated, corrugated, thin-wall, heat conductive chamber (1) provides the large surface for formation of fluid film and separation between fluid and air offering short and rapid heat conductive path between fluid and air. An axial blower (11) integrated with the heat exchanger module provides re-circulation of air where the heat exchanger module (28) is situated. The modular heat exchanger (28) or multiple of which is integrated with other components such as a refrigeration unit (37), a heating element (25), and a central fluid reservoir (23) in which fluid is pre-chilled or preheated in the application of air conditioning and heating. The fluid is conveyed by small bore tubes to individual modules by a pump (26) then returns to the central reservoir (23) for re-chill or reheat in a closed loop fluid flow configuration.
Description
- The present invention relates to an apparatus and method for atomization of chilled or heated fluid, projection of droplets, and formation of a fluid film in a chamber with large surface area for heat exchange in the application of refrigeration, air conditioning, and heating of room, space, structure or dwelling.
- Heat exchanger technology has long existed. Prior art for heat exchanger in application of refrigeration, air conditioning, commonly referred to as evaporator involves rapid expansion of compressed liquid refrigerant converting to gas inside a small diameter metal tube fitted with heat conductive fins. Heat is absorbed while ambient air is blown over this assembly by use of a motorized blower. For heating, the air is commonly heated by flame or by an electrical resistive heater. In some cases hot fluid is circulated inside a similar device as the evaporator described. Various configurations of this basic heat exchanger are exemplified by U.S. Pat. Nos. 6,192,976; 6,035,927; 6,182,743; 6,178,766; 6,173,763, and 6,167,950. Disadvantages of this type of heat exchanger are many. Small diameter tubing, even long in length, does not possess large surface area for heat transfer. Narrow thin fins, approximately on the order of 2.5 to 5 centimeters (1 to 2 inches) in width and 0.25 millimeter (0.01 inch) in thickness as commonly used, attaching edgewise to the tubing, limit heat transfer capacity. Heat conduction must also travel a distance from the fins to reach the tubing. Air contact time with the evaporator heat exchanger assembly is necessarily brief due to the limited width of fins and high velocity of air travelling over the evaporator, contributing to low heat energy transfer. Such inefficiency leads to requirement of large capacity refrigeration and heating units to provide a large temperature differential between the evaporator and ambient air at a sacrifice of energy consumption.
- Prior efforts to increase surface area for heat exchange, particularly in the application of cooling fluid, between fluid and fluid employing small corrugated tubing, have been exemplified by U.S. Pat. Nos. 6,119,769 and 4,995,454. However, such modified configurations are far from adequate for efficient heat exchange between fluid and air in the application of air conditioning and heating.
- In a central air conditioning and heating system for a structure or dwelling, a large centrifugal blower generating air flow with high static pressure is needed to propel air through the heat exchanger or evaporator and furnace into a system of large ducts for distribution into various rooms and spaces through open grills. It has been verified by scientific studies that energy loss for a ducting system is greater than 20 percent of the total consumed by a central air conditioning and heating system. This energy deficit is primarily caused by heat gained or lost while chilled or heated air travels through the ducts even insulated according to recommended common practice. Significant air velocity is also diminished due to resistance from friction while air is in contact with large duct wall surface and confronting turns of the ducts necessary for reaching final destinations. On the average, a large centrifugal blower for a central air conditioning and heating system for an average size dwelling consumes kilowatts of electric power per hour.
- One disadvantage of the above described ducting system is the requirement of multiple size ducts to balance the temperature in various locations in a structure or dwelling dependent upon distances and turns of ducts. Uniformity of temperature in all locations within a structure or dwelling is seldom achievable with such a method.
- Another disadvantage of the above-described ducting system is that temperature of specific room or space within a structure or dwelling cannot be individually or incrementally controlled in an easy manner. A grill with louver adjusting mechanism located in a room or space has to be manually moved; therefore, fine adjustments of temperature is not possible.
- Another prior art of heating a structure or dwelling involves heating a large amount of fluid, generally water, with a large capacity water heater and conveying the heated fluid to various locations of a structure through a system of pipes. Once reaching a particular location, the pipe is arranged in a back and forth fashion and mounted under the floor, above the ceiling, or behind a wall as a heat exchanger radiating heat into a room or space. Such a heating system is commonly termed a “hydronic” heating system. One disadvantage of such a heating system is that a separate system is required for air conditioning. Another disadvantage is that a large amount of fluid is needed to be continuously heated, thus requiring a large capacity heater with attending large energy consumption. Generally, temperature control in various locations is not available or possible. Furthermore, the structural element in which the “heat exchanger” is enclosed must first be heated before heat can radiate into a room or space. Occupants within feel the increase in temperature with significant delay.
- In view of the foregoing, it would be desirable to provide a more efficient heat exchanger and its integration into a functional system for refrigeration or air conditioning and heating purposes without all the above mentioned deficiencies.
- The present invention provides a modular apparatus that continuously atomizes a small quantity of chilled or heated fluid into a large number of small droplets and projects the droplets onto a large surface area to form a fluid film for heat transfer. Atomization and projection is accomplished by centrifugal force generated by a rapidly spinning slotted and screen cylinder. Rotating cylinders with perforations and cylindrical screens have been described in U.S. Pat. Nos. 4,609,145; 4,659,013; and 5,307,029. These various modes of atomization, primarily provided for agricultural spraying, possess shortcomings that render them unsuitable for application in this invention. They suffer the inability to uniformly generate droplets along the entire cylinder length or sustain the cylindrical shape for uniform droplet atomization under high rotating speed or centrifugal force.
- Earlier attempts in generating droplets along the long axis of a rotating device by centrifugal force is also exemplified in U.S. Pat. Nos. 1,022,966 and 3,168,596. Unfortunately these prior art generate narrow bands of droplets with large separation between bands; therefore they are unsuitable in an application requiring uniform and even droplet distribution.
- The surface on which the fluid film is formed is the inner surface of a closed pleated corrugated chamber composed of thin gage heat conductive material for promotion of rapid and efficient heat transfer. Ambient air, provided by a blower, circulating on the outside of this chamber, has long contact time with the chamber surface and large surface area for greater amount of heat energy transfer.
- Heat exchanger modules of this invention are intended to be located at rooms or spaces where air conditioning or heating is needed. A central fluid reservoir is employed for chilling and heating fluid to be atomized by the heat exchanger. Small bore tubes are used to convey prechilled or preheated fluid to a heat exchanger and return for re-chill and reheat, eliminating the need for large air ducts as in conventional practice. Small tubes are also more economical as well as much easier to provide complete insulation to maintain the heat-energy-state of the fluid in transit. By providing a blower in the heat exchanger module at site where the module is installed has many advantages. One such advantage is the circulating air to be cooled or heated in the immediate vicinity of the module. There is no need for a large central blower that consumes a large amount of energy. The temperature in a given room or space can be cooled or heated quickly without the problem of heat conduction of air over a long distance in returning to the central blower to be cooled or reheated again. An added benefit of this invention is the ability to control temperature where it is needed and to what extent in individual room or space. The heat exchanger module or modules in area or areas without human occupation within a structure or dwelling can be shut off for further saving on energy use.
- The present invention relates to a modular apparatus and methods for active heat exchange involving fluid atomization, droplets projection, fluid film formation on a large surface for reciprocal two way heat transfer with air, and its integration with other elements into a refrigeration, or air conditioning and heating system.
- More particularly, the present invention continuously circulates a small quantity of pre-chilled or preheated fluid through small tubes to self-contained active heat exchanger modules located in specific rooms or spaces where fluid and air heat transfer take place. More importantly, the processed fluid is returned for re-chilling or re-heating in a closed loop fluid flow circuit.
- In one preferred embodiment, the present invention provides a self-contained heat exchange apparatus in modular configuration comprised of an electric motor, a fluid delivery tube, a spinning slotted and screened cylinder, a pumping vane, an electric blower, a closed heat conductive chamber, and a housing shell in a modular configuration.
- In another preferred embodiment, the present invention provides a functional air conditioning and heating system with a single heat exchanger or multiple modules comprised of a central fluid reservoir containing the evaporator of a refrigeration unit and a submersible electric resistive heater, a refrigeration unit, an electric pump, a central fluid dispenser, insulated small tubes, and appropriate electronic temperature sensors and controls.
- One important aspect is to employ fluid as a medium for heat exchange instead of air as in common practice. A small quantity of fluid is atomized into an extremely large number of small droplets, and a large number of droplets is spread over a very large area forming a fluid film. A large area for heat transfer results in ample amount of heat energy being transferred between fluid and air, achieving high efficiency. An important object is to maintain heat-energy-state of the chilled or heated fluid during transit to individual heat exchangers. This is made possible by transporting only a small quantity of fluid with well-insulated small tubing for circulation in the closed fluid loop. This arrangement makes possible the elimination of energy-wasting large air ducts traditionally used for heat energy transport in similar applications.
- Another object of this invention is to minimize heat energy conduction time between fluid and air across the heat conductive barrier for rapid heat transfer. Use of thin gage heat conductive material forming the wall of the closed chamber, separating the fluid film and circulating air, provides heat energy transfer efficiency in quantity as well as rapidity.
- Another important aspect of this invention is that the rate of fluid turnover during heat transfer for each heat exchanger is so low, a much smaller and lower capacity refrigeration and heating unit are employed in a functional system compared to conventional air conditioning and heating systems. This aspect makes possible large initial and continuing economical and energy savings.
- Other objects, features and advantages of the present invention will become apparent from the following description when taken in conjunction with the accompanying drawings.
- The accompany drawings, which are incorporated and form a part of this specification, illustrate embodiments of the invention and together with the descriptions, serve to explain the principles of the invention.
- FIG. 1 is a full cross section elevation view of the fluid and air heat exchanger module in accordance with the present invention, indicating the spatial relationship of components such as fluid delivery tube, spinning slotted and screened cylinder, electric motor driving the spinning slotted cylinder, closed thin wall heat conductive pleated and corrugated chamber, blower, and housing shell.
- FIG. 1a is a full cross section elevation view of the fluid and air heat exchanger with all the components described in FIG. 1 plus a pumping vane connected to the electric motor and spinning slotted cylinder by an interconnecting rod.
- FIG. 2 is a perspective view of the fluid and air heat exchanger with section of heat exchanger housing shell, portion of the closed heat conductive pleated and corrugated chamber, and portion of the spinning slotted cylinder removed exposing the spatial relationship and arrangement of the components.
- FIG. 3 Is a perspective view of a fluid to fluid heat exchanger utilizing a Peltier device for absorbing or dispensing heat energy to supply pre-chilled or preheated fluid to fluid heat exchanger.
- FIG. 4 is a side elevation view showing the manner the Peltier device heat exchanger is assembled for operation.
- FIG. 5 is a cross sectional elevation view of a fluid reservoir with chilling component (evaporator tube) of a refrigeration unit and heating element, and its relationship to a electric pump for fluid delivery to fluid and air heat exchanger module(s) and manual or electronic valves for regulating flow to each module.
- FIG. 6 is a diagrammatic view showing the relation of components and closed loop fluid circulation when the Peltier device fluid to fluid heat exchanger is supplying pre-chilled or preheated fluid to fluid and air heat exchanger module.
- FIG. 7 is a diagrammatic view showing physical relationship and closed loop fluid flow between a chilling and heating fluid reservoir, a refrigeration unit, and associated pumps.
- FIG. 8 is a diagrammatic representation of multiple fluid and air heat exchanger modules' physical and functional relationship between a central chilling and heating reservoir and a refrigeration unit.
- FIG. 9 is a front elevation view of an alternate fluid delivery tube with an elastic tubing cover providing slits over the inner tube perforations.
- FIG. 10 is a front elevation view of an alternate fluid delivery tube as illustrated in FIG. 9 but oriented by turning 90 degrees showing pattern of fluid spray.
- FIG. 11 is a perspective section view of a closed heat conductive chamber in a horizontal orientation illustrating modification of lower half of the chamber modified for unimpeded fluid flow into a reservoir containing a pumping vane for returning processed fluid for re-chill or reheat.
- FIG. 12 is a wiring diagram showing temperature controlling components and their relationship with a fluid and air heat exchanger module for independent temperature control in each room or space within a structure or dwelling.
- FIG. 13 is a side elevation section view of an alternate horizontal oriented fluid and air heat exchanger with the chamber partially cut away showing spatial relationship of fluid delivery tube, spinning slotted cylinder, and pumping vane.
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
-
- Reference will now be made in detail to the preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings. While the invention will be described in conjunction with the preferred embodiments, it will be understood that they are not intended to limit the invention to those embodiments. On the contrary, the invention is intended to cover alternatives, modifications and equivalents, which may be included within the spirit and scope of the invention as defined by the appended claims.
- As described above, the present invention provides an apparatus and method for fluid and air heat exchange in the application of refrigeration, air conditioning, and heating of rooms, spaces, structures or dwellings. More particularly, the apparatus atomizes pre-chilled or preheated fluid from a central reservoir into small uniform sized droplets, projects the droplets by centrifugal force onto the inner surface of a closed, thin-wall, heat conductive chamber and forms a continuous fluid film on the chamber wall. Heat energy of ambient air circulating outside the chamber is absorbed through the chamber wall and transferred to the fluid film inside the chamber in the process of heat exchange during refrigeration or air conditioning. Heat energy is conducted through the chamber wall from the fluid film and transferred to the ambient air in the process of heat exchange for heating. The fluid film is continuously being supplied with newly arriving droplets, and excess fluid from the fluid film is collected and continuously being returned to the central reservoir to be re-chilled or reheated, providing a closed loop fluid flow circuit.
- In one preferred embodiment, the present invention provides a modular fluid and air heat exchanger comprised of a perforated tube for delivery of fluid, a motorized spinning slotted screened cylinder, a closed thin wall, heat conductive pleated and corrugated chamber, an integrated pumping element, an axial blower, and an outer shell enclosure. These components interact to perform the functions of delivery of fluid to be atomized, atomization of fluid into droplets, projection of droplets, formation of a fluid film, pumping of processed fluid for re-chill or reheat, and circulating air within the module for fluid and air heat exchange. Other components that are needed for the module to function as an independent air conditioning and heating device include a refrigeration unit, a heating element, a fluid reservoir with the evaporator of the refrigeration unit and the heating element immersed in the fluid, an electric central pump, and small tubes for delivery and return of fluid to and from the module. These components interact to perform the function of fluid to air heat exchange in an independently functioning device for air conditioning and heating for a room or space within a structure or dwelling. In another aspect of the invention, multiple modules are integrated with other components to form a complete air conditioning and heating system for a structure or dwelling. These other components are comprised of a refrigeration unit, a heating element, a central fluid reservoir with refrigeration evaporator and heating element immersed, an electric pump for fluid delivery, a central fluid dispenser, and multiple small tubes for delivery and return of fluid from and to the central reservoir.
- An important aspect of this invention is the use of fluid instead of air for conveying heat energy to be absorbed or dispensed due to fluid's significantly higher heat energy absorption and retention capacity than air of equal volume. Another important aspect of this invention is that the fluid processing rate per fluid and air heat exchanger in atomization is exceedingly low, on the order of less than 200 milliliter per minute for a 22.86 centimeter (9 inch) diameter heat exchanger suitable for central air conditioning and heating purpose. Another aspect of the invention is that low fluid turnover rate for re-chill or reheat requires small bore tubes on the order of 6.35 millimeter (0.25 inch) diameter for fluid conveyance between central reservoir and individual heat exchange modules. There are two importance consequences as a result of this invention. One aspect is the elimination of the need for large air ducts for heat conveyance used in conventional central air conditioning and heating systems with resulting higher efficiency, lower initial costs, and without significant energy gain or loss to the fluid during transport. Another aspect is the small amount of fluid required on the order of 1.6 liter from 8 modules for continuous re-chilling and re-heating in an average size dwelling of 833 square meters (2,500 square feet), leading to requirements of much smaller capacity refrigeration and heating unit compared to conventional systems. These two aspects result in significant power savings as well as initial cost. Another aspect of this invention is that each heat exchange module can be independently regulated for raising or lowering the ambient temperature of environment in which it is situated within a structure or dwelling, adding to occupants' choice of desirable temperature comfort level. Modules in areas without human occupation can be independently shut off by electrically operated valves and switches without affecting other modules in operation, leading to further power savings.
- Referring now to the drawings and with specificity to FIGS. 1, 1a, and 2, a fluid and air heat exchange apparatus in accordance with the present invention is shown. A fluid atomizer is comprised of an
electric motor 5, with its output shaft connected tocylinder 2 with multiplelongitudinal slots 3 covered from inside withfine mesh screen 3 a, for atomization of fine uniform size fluid droplets. Atube 4 with multiple small perforations on the side of the tube at closest proximity to the inside cylinder wall at various intervals, closed at distal end, and connected to inletfluid supply tube 7 is mounted off-center insidecylinder 2. Mounting position oftube 4 accounts for two important aspects of fluid delivery. Firstly, fluid streams sprayed from the tube perforations have minimal distance to travel, thus requiring only a low pressure pump supplying the fluid with attending low electrical power consumption. Secondly, the center space within the cylinder is reserved for an interconnecting rod linking the motor to pumpvane 40. When small fluid streams fromtube 4 strike the screens of rapidly spinning slottedcylinder 2, part of the fluid migrates through the screen openings by centrifugal force. Upon arriving at edges of the screen wires, the fluid is sheared into uniform size droplets and projected outward in tangential and radial manner by centrifugal force fromcylinder 2. Fluid striking the closed inside surface of the concave section of the cylinder accumulates until overcome by gravity and moves downward and sideways due to centrifugal action and gravity until reaching the next open slot's wire screen and sheared by the moving screen wires into droplets at a slightly lower position. These factors enable fluid to be atomized and projected along the entire length of the slots. - The droplet atomization and projection device described above is enclosed within a closed, thin wall, heat conductive, pleated, and
corrugated chamber 1. The important objects for the chamber configuration include: - 1. providing a surrounded surface for fluid droplets projected from the spinning cylinder to form a continuous fluid film
- 2. providing a very large surface area for heat exchange between fluid film and ambient air outside the chamber
- 3. providing a short conductive path for fluid and air heat transfer
- 4. providing connection to a reservoir where processed fluid is pumped out of the heat exchanger and returned to a central reservoir to be re-chilled or reheated again
- 5. providing a mounting platform for
electric motor 5. - Droplets arriving at the inner surface of the
closed chamber 1 possess enough kinetic energy to cause the droplets to flatten and spread. The spreading droplets, due to their close proximity to each other, merge to form a continuous fluid film. Newly arriving droplets continuously replenish the film, and excess processed fluid from the film runs downward by the effect of gravity to the bottom ofchamber 1 into the connectedreservoir 10 to be pumped away from the heat exchanger. - An
axial fan 11, located inside theheat exchanger housing 6 mounted either on top or below the heat exchanger assembly, propels or sucks in ambient air throughspace 12 betweenchamber 1 and inside thehousing 6 wall. Ambient air traversing the length of the chamber wall allows long contact time between air and chamber wall for more efficient fluid and air heat transfer. - Other elements are needed for the active fluid and air heat exchanger to function as an independently functioning device or as a complete system in multiple modules in central air conditioning and heating within a structure or dwelling. These necessary elements are comprised of a refrigeration unit, a heating component, a reservoir in which the fluid is chilled or heated, a pump that delivers the fluid to module(s), and plural tubes for conveying fluid to and from the module(s). These, also, are important elements for the active fluid and air heat exchanger to function as a closed loop fluid flow circuit.
- A preferred embodiment of the central reservoir is illustrated in FIG. 5 with inclusion of an
evaporator coil 24 a fitted withfins 24 from a refrigeration unit and a sealed electricresistive element 25 immersed inreservoir 23 covered withinsulation 22. A tube delivers chilled or heated fluid from thereservoir 23 to apump 26. Thepump 26 in turn propels the fluid under low pressure to single module or to a central dispenser FIGS. 7 and 8, 26 then conveys the pre-chilled or preheated fluid through insulatedsmall bore tubes heat exchange modules 28. The processed fluid with heat gained or heat dispensed from the module(s) is returned by the integrated pumping element (pumping vane) FIG. 1a, 40 of the module(s) 28 to thecentral reservoir 23 to be chilled or heated again in a closed loop flow system. - FIG. 7 illustrates the components required for an independently functioning air conditioner and heater. This functioning unit is comprised of a refrigeration unit (compressor and condenser)37, a
central reservoir 36, apump 26 for propelling chilled or heated fluid to aheat exchanger module 28, and small bore tubes for fluid circulation represented by solid lines. Anoptional pump 38 for returning fluid to thecentral reservoir 36 is included in the illustration should the pumping elements not be included with the heat exchanger module. - A complete central air conditioning and heating system is represented in FIG. 8 for a structure or dwelling. This system is comprised of a refrigeration unit (compressor and condenser portion)37, a
central reservoir 23, apump 26, a central dispenser 26 a, tubes represented bysolid lines 7 a for delivery of prechilled and preheated fluid tomultiple modules 28, andtubes 8 a for returning processed fluid tocentral reservoir 23 represented by dotted lines. - Since the fluid flow requirement for each heat exchanger module is so small, less than 200 milliliters per minute as an example, there are various other possibilities for pre-chilling or preheating the fluid. One possibility is the utilizing a Peltier device to heat or cool the fluid. This method is illustrated in FIGS. 3, 4, and6. An assembled heat exchanger is represented in FIG. 4 comprised of two mirror-imaged
heat transfer bodies small tubes Peltier device 18 is sandwiched between the twoheat exchanger bodies air heat exchanger 28, asmall reservoir 35 associated with the fluid andair heat exchanger 28, an assembly of Peltierdevice heat exchanger 29, a conventional fluid andair heat exchanger 30, ablower 37, asmall reservoir 32 associated with theconventional heat exchanger 30. Arrows in the diagram represent direction of fluid flow. Other possibilities of heating fluid include use of conventional water heating solar panel or parabolic mirror. A more conventional method is to immerse a length of tube from the inlet loop of the central reservoir into a hot water heater of a dwelling then return and connect the central reservoir. - The fluid and air heat exchanger can be scaled to any size within certain parameters. Diameter of the dosed, heat conductive, pleated, corrugated chamber is only limited by the distance droplets can travel determined by the centrifugal force in projection of the droplets. The rotational speed and diameter of the slotted cylinder determine the size of the droplets and distance droplets can be projected by centrifugal force. Optimum droplet size during formation of a continuous fluid film in turn determines the rotational speed and diameter of the slotted cylinder. These factors determine the upper limit on the size of the fluid and air heat exchanger module.
- Another aspect regarding the spinning cylinder, no wire screen is needed to cover the slot openings if the diameter of the spinning slotted cylinder is larger than 5 centimeters and the rotation rate is greater than 3,000 revolutions per minute. The high rotational speed of the cylinder is so great that virtually all the fluid streams projected by the fluid delivery tube are sheared into droplets by the edge of the slots before the fluid can escape through the slots' openings.
- An alternative construction of the fluid delivery tube is illustrated in FIG. 9 and FIG. 10 for providing a wider spray pattern with more even distribution of fluid streams impacting the inner surface of the rotating slotted and
screen cylinder 2. Anelastic tubing 4 b, a silicon rubber tubing for example, is slipped over the perforatedfluid delivery tube 4. Finelongitudinal slits 4 e are made at center of each perforation. Aring clamp 4 c is attached to the elastic tubing above, below, and in-between each slit 4 e preventing theslit 4 e to move out of intended position due to fluid pressure. FIG. 10 illustrates a view in which the elastic covered fluid delivery tube assembly as in FIG. 9 is turned 90 degrees to the left showing thespray pattern 4 g obtainable with this construction. - The active fluid and air heat exchanger module thus described has been shown in a vertical arrangement. However it is also possible to modify the heat exchanger module to function in a horizontal position. This modification is illustrated in FIG. 11. The closed, thin wall, heat conductive corrugated, and pleated chamber is modified leaving the lower section without corrugation and pleating to accommodate unobstructed flow of processed fluid to the reservoir to be pumped away. Fins, exemplified by42, are attached to the smooth area for compensation of lost heat exchange area due to lack of corrugation and pleating of the chamber wall. The
reservoir 10 where the processed fluid is accumulating is located perpendicular to the chamber orientation. An extraelectric motor 41 with a pumpingvane 40 attached inside thereservoir 10 is mounted below thereservoir 10. - An alternative horizontally oriented fluid and air heat exchanger module to the one described above is illustrated in FIG. 13. An accordion or bellow shaped closed heat
conductive chamber 47 is oriented vertically allowing air to flow around the pleats or corrugations with minimum turbulence. Acentrifugal blower 48 provides air circulation. The spatial relationship of components such as spinning slottedcylinder 2, pumpingvane 40, andfluid delivery tube 4 is shown in the same figure. This fluid and air heat exchanger configuration is particularly well-suited for air conditioning and heating in automobiles, motorhomes, and travel trailers. - As illustrated in FIG. 12, in a central air conditioning and heating system, temperature within a room or space of a structure or dwelling can be controlled independently without affecting other rooms or spaces. There are three modes for independent temperature control. The
motor 5 driving the slottedcylinder 2 and pumping vane is electrically connected tovoltage regulator 45. Whenvoltage supplying motor 5 driving slottedcylinder 2 is changed, the size of the droplets is also changed; therefore, the change in size of fluid droplets supplying the fluid film changes the temperature. When an electrically operatedfluid valve 44 is connected to the fluid and air heat exchanger's fluid inlet tube, the amount of fluid delivered to fluid and air heat exchanger, the number droplets atomized is changed; therefore, modifying the temperature. Changing the blower's 11 rotation speed by anelectronic voltage regulator 45 changes the air velocity and amount of air in contact with the outer surface of the closed, heat conductive chamber. While slower air velocity provides longer air contact time with the chamber for greater amount of heat transfer, it takes longer for the entire room or space's air to be re-circulated. It also takes longer duration to reach desired set temperature. Thevoltage controller 45 is regulated by anelectronic temperature controller 46 with a connection to atemperature sensor 43 such as a thermocouple or an electronic temperature sensor. - Accordingly, the reader will see that the fluid and air heat exchanger and its integration with other elements into a independently functioning unit or a central air conditioning and heating system provides many advantages. These advantages include energy conservation due to high efficiency energy use, low energy consumption, economical initial cost, ease of initial installation or retrofit, and independent rapid temperature adjustment in individual room or space. These benefits are achievable due to the embodiments of the elements and method of this invention such as:
- chilling or heating fluid in a central reservoir
- propelling under low pressure chilled or heated fluid in small tubes to individual room or space within a structure or dwelling, thus eliminating inefficient traditional air ducts
- atomizing fluid into small uniform size droplets by centrifugal force
- projecting droplets by same centrifugal force onto a large surface of thin, heat conductive material forming a fluid film
- conducting heat energy through an exceedingly short path between fluid film and air
- returning processed fluid to be chilled or heated again in a continuous closed loop cycle utilizing only a small amount of fluid.
- Although the description above contains many specifications, these should not be construed as limiting the scope of the invention but as merely providing illustrations of some of the presently preferred embodiments of this invention. For example, the closed chamber or the outer shell of the fluid and air heat exchanger module does not have to be circular in shape or size limited to that described. Furthermore, the orientation of the heat exchanger module can be horizontal or tilted at an angle with suitable modification of the chamber shape. Other examples include heating slow moving fluid in a heat transparent tube with parabolic solar mirror or microwave beam or pre-chilling the tube in slow moving cool tap, well, stream, lake, or ocean water prior to being delivered to the central reservoir for final chilling or heating, saving additional energy.
- The embodiments were chosen and described in order to best explain the principles of the invention and its practical applications, to thereby enable others skilled in the art to best utilize the invention and various embodiments with various modifications as are suited to the particular use contemplated. It is intended that the scope of the invention be defined by the claims appended hereto and their equivalents.
Claims (13)
1. An apparatus and method for fluid and air heat exchange for refrigeration, air conditioning or heating comprising:
means for continuously forming and replenishing a fluid film on a large surface area of a closed, thin wall, heat conductive chamber with air circulating on the outside of the chamber including
perforated tube means to convey pre-chilled or preheated fluid for atomization,
motorized slotted, screened, cylinder means for controlled centrifugal atomization of fluid droplets and projection of droplets,
closed, thin wall, heat conductive chamber means for formation of fluid film from projected droplets,
pumping vane means for returning processed fluid for re-chill or reheat in a closed loop fluid flow circuit,
electric blower means for circulating ambient air for cooling or heating outside of the closed chamber, and
outer cover shell means for enclosing the heat exchanger, mounting of the closed chamber, and providing confined channel for circulating air during heat transfer.
2. The apparatus as claim 1 including a tube dosed at one end with plural perforations on one side at intervals along its length means for projecting prechilled or preheated fluid to the inside surface of said motorized spinning slotted cylinder to be atomized.
3. The apparatus as claim 2 including a an electric motor mounted outside at one end of said closed, heat conductive chamber means for rotating said slotted cylinder to atomize and project fluid droplets by centrifugal force and rotating a pumping vane.
4. The apparatus as in claim 3 including a slotted cylinder with plural slots along its length except at the ends and fitted with a fine mesh screen on the inside wall of said cylinder connected to the shaft of said electric motor means for controlled droplet atomization and projection along said cylinder's length in a radial manner outward for deposition of droplets onto the inner surface of said closed heat conductive chamber for formation of a fluid film in a continuous fashion.
5. The apparatus as in claim 4 including a closed, heat conductive chamber provided with corrugations and pleats along its thin wall means for increasing heat conductive area for rapid and large amount heat transfer between fluid film and ambient air circulating outside of said chamber.
6. The apparatus as in 5 said closed, heat conductive chamber including a reservoir means for receiving processed fluid and function as a chamber for said pumping vane to perform pumping action returning processed fluid for re-chill and reheat.
7. The apparatus as claim 6 including a pumping vane connecting to said slotted cylinder means for pumping processed fluid to re-chill or reheat.
8. The apparatus as claim 7 including an outer cover shell means for mounting said closed, heat conductive, chamber and providing air channel for circulating ambient air to be cooled or heated.
9. The apparatus as claim 8 including an electric blower mounted inside said cover shell near either end of said closed, heat conductive chamber means for circulating ambient air through air channel to be cooled or heated.
10. The apparatus as claim 9 including plural heat exchangers modules mounted inside multiple rooms or spaces within a structure and dwelling means for performing fluid and air heat exchange in a central air conditioning and heating system.
11. In an apparatus for fluid and air heat exchange for refrigeration, air conditioning, and heating purposes, the apparatus including perforated tube means, motorized slotted cylinder means, closed thin wall heat conductive chamber means, pumping vane means, electric blower means and outer cover shell means, functioning as self contained heat exchange modules, the method comprising:
introducing pre-chilled or preheated fluid on inside surface of said motorized slotted cylinder for atomization of fluid
shearing fluid into droplets by centrifugal force
projecting droplets by centrifugal force radially from said slotted cylinder forming a fluid film on insider surface of said closed heat conductive chamber transferring heat between circulating air and fluid film across chamber wall
12. In the apparatus as in claim 11 including means for independent temperature control by using in conjunction of an electronic thermostat control means, electronic voltage regulators means, and electric regulating valve means, the method comprising:
increasing or decreasing the fluid supply to said heat exchanger apparatus altering rotational speed of said slotted cylinder to change droplet size altering blower speed to change air circulation rate inside said apparatus
13. A central air conditioning and heating system and method utilizing multiple said heat exchange apparatus for air conditioning and heating purposes in plural rooms and spaces within a structure and dwelling comprising:
multiple of said heat exchange apparatus means for fluid and air heat exchange in individual room or space
a central refrigeration unit means to chill fluid in a central reservoir
a central fluid reservoir with immersed refrigeration evaporator tube and heating element means for continuous supply of prechilled or preheated fluid for each exchanger
a central electric pump means for delivering fluid from said central reservoir to a central dispenser
a central dispenser means for distributing fluid to each said heat exchanger multiple small tubes means for conveying fluid between each said individual heat exchanger and said central reservoir to complete a closed loop fluid flow circuit.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/054,609 US20030136134A1 (en) | 2002-01-18 | 2002-01-18 | Fluid and air heat exchanger and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/054,609 US20030136134A1 (en) | 2002-01-18 | 2002-01-18 | Fluid and air heat exchanger and method |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030136134A1 true US20030136134A1 (en) | 2003-07-24 |
Family
ID=21992276
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/054,609 Abandoned US20030136134A1 (en) | 2002-01-18 | 2002-01-18 | Fluid and air heat exchanger and method |
Country Status (1)
Country | Link |
---|---|
US (1) | US20030136134A1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060075758A1 (en) * | 2004-10-07 | 2006-04-13 | Tigerone Development, Llc; | Air-conditioning and heating system utilizing thermo-electric solid state devices |
FR2879728A1 (en) * | 2004-12-22 | 2006-06-23 | Acome Soc Coop Production | Radiating surface e.g. floor, heating and cooling system for dwelling premise, has Peltier effect cells whose cool sides are in thermal contact with one heat exchanger`s heat exchange surface, and hot sides are in thermal contact with fins |
US20070091571A1 (en) * | 2005-10-25 | 2007-04-26 | Malone Christopher G | Heat exchanger with fins configured to retain a fan |
WO2009020444A1 (en) * | 2007-08-03 | 2009-02-12 | Liquaire | Closed loop fluid system for air conditioning with active heat exchangers and self contained reservoir |
US20090120630A1 (en) * | 2006-01-24 | 2009-05-14 | John Yenkai Pun | Active fluid and air heat exchange and method |
US20110252817A1 (en) * | 2010-04-20 | 2011-10-20 | Sub-Zero, Inc. | Air flow system for appliances |
US20130178856A1 (en) * | 2010-09-30 | 2013-07-11 | Chongqing Runze Medical Instruments Co., Ltd. | Craniotomy drill |
US20130341321A1 (en) * | 2012-06-20 | 2013-12-26 | Wavetech International | Microwave Based System for Radiantly Heating an Area |
US20140109431A1 (en) * | 2012-10-19 | 2014-04-24 | Delta Electronics Power (Dong Guan) Co., Ltd. | Preheat module, preheat zone and preheat section using the same |
US20150192366A1 (en) * | 2014-01-07 | 2015-07-09 | Lloyd George Allred | Modular Water-Cooled Aftermarket Upgrade to an Existing Air Conditioner |
WO2020062880A1 (en) * | 2018-09-25 | 2020-04-02 | 珠海格力电器股份有限公司 | Outdoor unit, and control method for outdoor unit |
CN115823876A (en) * | 2022-11-21 | 2023-03-21 | 江苏高倍智能装备有限公司 | Curing oven suitable for curing carbon fiber composite material |
CN116334335A (en) * | 2023-03-02 | 2023-06-27 | 扬州岱发环保科技有限公司 | A hot blast stove with a uniform preheating mechanism |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2718766A (en) * | 1952-07-11 | 1955-09-27 | Imperatore Thomas | Method and apparatus for operating a building air conditioning apparatus |
US2843514A (en) * | 1956-06-29 | 1958-07-15 | American Brass Co | Method and apparatus for heat treating metal stock |
US5147581A (en) * | 1991-02-04 | 1992-09-15 | Lu Qiu Jiang | Evaporative air cooler |
US5349829A (en) * | 1992-05-21 | 1994-09-27 | Aoc, Inc. | Method and apparatus for evaporatively cooling gases and/or fluids |
US6141986A (en) * | 1998-11-20 | 2000-11-07 | Koplin; Edward C. | Indirect supplemental evaporation cooler |
US6385987B2 (en) * | 2000-02-23 | 2002-05-14 | Leslie Schlom | Heat exchanger for cooling and for a pre-cooler for turbine intake air conditioning |
US6571569B1 (en) * | 2001-04-26 | 2003-06-03 | Rini Technologies, Inc. | Method and apparatus for high heat flux heat transfer |
US6574980B1 (en) * | 2000-09-22 | 2003-06-10 | Baltimore Aircoil Company, Inc. | Circuiting arrangement for a closed circuit cooling tower |
-
2002
- 2002-01-18 US US10/054,609 patent/US20030136134A1/en not_active Abandoned
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2718766A (en) * | 1952-07-11 | 1955-09-27 | Imperatore Thomas | Method and apparatus for operating a building air conditioning apparatus |
US2843514A (en) * | 1956-06-29 | 1958-07-15 | American Brass Co | Method and apparatus for heat treating metal stock |
US5147581A (en) * | 1991-02-04 | 1992-09-15 | Lu Qiu Jiang | Evaporative air cooler |
US5349829A (en) * | 1992-05-21 | 1994-09-27 | Aoc, Inc. | Method and apparatus for evaporatively cooling gases and/or fluids |
US6141986A (en) * | 1998-11-20 | 2000-11-07 | Koplin; Edward C. | Indirect supplemental evaporation cooler |
US6385987B2 (en) * | 2000-02-23 | 2002-05-14 | Leslie Schlom | Heat exchanger for cooling and for a pre-cooler for turbine intake air conditioning |
US6574980B1 (en) * | 2000-09-22 | 2003-06-10 | Baltimore Aircoil Company, Inc. | Circuiting arrangement for a closed circuit cooling tower |
US6571569B1 (en) * | 2001-04-26 | 2003-06-03 | Rini Technologies, Inc. | Method and apparatus for high heat flux heat transfer |
Cited By (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060075758A1 (en) * | 2004-10-07 | 2006-04-13 | Tigerone Development, Llc; | Air-conditioning and heating system utilizing thermo-electric solid state devices |
US7866164B2 (en) | 2004-10-07 | 2011-01-11 | Tac Unit, Llc | Cooling and heating systems and methods utilizing thermo-electric devices |
FR2879728A1 (en) * | 2004-12-22 | 2006-06-23 | Acome Soc Coop Production | Radiating surface e.g. floor, heating and cooling system for dwelling premise, has Peltier effect cells whose cool sides are in thermal contact with one heat exchanger`s heat exchange surface, and hot sides are in thermal contact with fins |
WO2006070096A3 (en) * | 2004-12-22 | 2007-04-05 | Acome Soc Coop Production | Self-contained heating and cooling module |
US20070091571A1 (en) * | 2005-10-25 | 2007-04-26 | Malone Christopher G | Heat exchanger with fins configured to retain a fan |
US20090120630A1 (en) * | 2006-01-24 | 2009-05-14 | John Yenkai Pun | Active fluid and air heat exchange and method |
WO2009020444A1 (en) * | 2007-08-03 | 2009-02-12 | Liquaire | Closed loop fluid system for air conditioning with active heat exchangers and self contained reservoir |
US20110252817A1 (en) * | 2010-04-20 | 2011-10-20 | Sub-Zero, Inc. | Air flow system for appliances |
US20130178856A1 (en) * | 2010-09-30 | 2013-07-11 | Chongqing Runze Medical Instruments Co., Ltd. | Craniotomy drill |
US9295480B2 (en) * | 2010-09-30 | 2016-03-29 | Chongqing Runze Pharmaceutical Co., Ltd. | Craniotomy drill |
US20130341321A1 (en) * | 2012-06-20 | 2013-12-26 | Wavetech International | Microwave Based System for Radiantly Heating an Area |
US20140109431A1 (en) * | 2012-10-19 | 2014-04-24 | Delta Electronics Power (Dong Guan) Co., Ltd. | Preheat module, preheat zone and preheat section using the same |
US9095920B2 (en) * | 2012-10-19 | 2015-08-04 | Delta Electronics Power (Dong Guan) Co., Ltd. | Preheat module, preheat zone and preheat section using the same |
US20150192366A1 (en) * | 2014-01-07 | 2015-07-09 | Lloyd George Allred | Modular Water-Cooled Aftermarket Upgrade to an Existing Air Conditioner |
WO2020062880A1 (en) * | 2018-09-25 | 2020-04-02 | 珠海格力电器股份有限公司 | Outdoor unit, and control method for outdoor unit |
CN115823876A (en) * | 2022-11-21 | 2023-03-21 | 江苏高倍智能装备有限公司 | Curing oven suitable for curing carbon fiber composite material |
CN116334335A (en) * | 2023-03-02 | 2023-06-27 | 扬州岱发环保科技有限公司 | A hot blast stove with a uniform preheating mechanism |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7497252B2 (en) | Active fluid and air heat exchanger and method | |
US20030136134A1 (en) | Fluid and air heat exchanger and method | |
US7370490B2 (en) | Air-conditioning system with full heat recovery | |
EP1617153A2 (en) | Air-conditioning system with full heat recovery | |
US6658874B1 (en) | Advanced, energy efficient air conditioning, dehumidification and reheat method and apparatus | |
US6938434B1 (en) | Cooling system | |
KR100367218B1 (en) | An air-conditioner with high-efficiency differential cool-valley pipes | |
US6817206B2 (en) | Air conditioning apparatus for isolated spaces | |
JP2008215795A (en) | Movable heat exchange system, and air conditioner, hot water storage device, electric fan, other heat exchanger and heat exchange system applying the system | |
CN108562032A (en) | A kind of radiate unifies end with convection | |
US4362090A (en) | Air circulating device and method | |
US20080157411A1 (en) | Device and Method for Humidifying an Air Flow | |
JP2008516188A (en) | Cooling assembly | |
JP2016217561A (en) | Air Conditioning System | |
JPH08500785A (en) | Air conditioning heating module | |
CN100587346C (en) | Air cooling and air dehumidification module including capillary mat and method of use thereof | |
US20170067672A1 (en) | System and a method for air conditioning and heat exchanger arrangement | |
JPH04227431A (en) | Air-supply blowing device | |
US20110139888A1 (en) | Solar radiation collection system and method | |
US4726197A (en) | Apparatus for treating air | |
US8006962B2 (en) | Humidifier with louvered air intake | |
US20110042037A1 (en) | Multi tube-fins liquid-air heat exchanger and methods | |
CN112033051A (en) | Condensing device | |
KR200294756Y1 (en) | Carburetor Type Conditional | |
CN210050935U (en) | Flash evaporation type air conditioner |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO PAY ISSUE FEE |