US20030135202A1 - Implantable osmotic pump - Google Patents
Implantable osmotic pump Download PDFInfo
- Publication number
- US20030135202A1 US20030135202A1 US10/346,575 US34657503A US2003135202A1 US 20030135202 A1 US20030135202 A1 US 20030135202A1 US 34657503 A US34657503 A US 34657503A US 2003135202 A1 US2003135202 A1 US 2003135202A1
- Authority
- US
- United States
- Prior art keywords
- pump
- pharmaceutical agent
- osmotic
- membrane
- tube
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000003204 osmotic effect Effects 0.000 title claims abstract description 205
- 239000008177 pharmaceutical agent Substances 0.000 claims abstract description 163
- 239000012528 membrane Substances 0.000 claims description 320
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 85
- -1 poly(acrylic acid) Polymers 0.000 claims description 55
- 238000002560 therapeutic procedure Methods 0.000 claims description 50
- 239000011148 porous material Substances 0.000 claims description 40
- 238000012384 transportation and delivery Methods 0.000 claims description 38
- 239000012530 fluid Substances 0.000 claims description 37
- GGCSSNBKKAUURC-UHFFFAOYSA-N sufentanil Chemical compound C1CN(CCC=2SC=CC=2)CCC1(COC)N(C(=O)CC)C1=CC=CC=C1 GGCSSNBKKAUURC-UHFFFAOYSA-N 0.000 claims description 36
- 229960004739 sufentanil Drugs 0.000 claims description 36
- 239000007943 implant Substances 0.000 claims description 34
- 238000001802 infusion Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 19
- 239000003795 chemical substances by application Substances 0.000 claims description 14
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical class [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 12
- 238000002513 implantation Methods 0.000 claims description 12
- 208000002193 Pain Diseases 0.000 claims description 9
- 230000002209 hydrophobic effect Effects 0.000 claims description 9
- 239000000203 mixture Substances 0.000 claims description 9
- 239000000556 agonist Substances 0.000 claims description 8
- 239000000463 material Substances 0.000 claims description 8
- BQJCRHHNABKAKU-KBQPJGBKSA-N morphine Chemical compound O([C@H]1[C@H](C=C[C@H]23)O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O BQJCRHHNABKAKU-KBQPJGBKSA-N 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 8
- 239000010935 stainless steel Substances 0.000 claims description 7
- 229910001220 stainless steel Inorganic materials 0.000 claims description 7
- 229920002125 Sokalan® Polymers 0.000 claims description 6
- 230000002745 absorbent Effects 0.000 claims description 6
- 239000002250 absorbent Substances 0.000 claims description 6
- XAEFZNCEHLXOMS-UHFFFAOYSA-M potassium benzoate Chemical compound [K+].[O-]C(=O)C1=CC=CC=C1 XAEFZNCEHLXOMS-UHFFFAOYSA-M 0.000 claims description 6
- 239000000824 cytostatic agent Substances 0.000 claims description 5
- 230000001085 cytostatic effect Effects 0.000 claims description 5
- 229920001721 polyimide Polymers 0.000 claims description 5
- DEQANNDTNATYII-OULOTJBUSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-benzyl-n-[(2r,3r)-1,3-dihydroxybutan-2-yl]-7-[(1r)-1-hydroxyethyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-1,2-dithia-5,8,11,14,17-pentazacycloicosane-4-carboxa Chemical compound C([C@@H](N)C(=O)N[C@H]1CSSC[C@H](NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@H](CCCCN)NC(=O)[C@@H](CC=2C3=CC=CC=C3NC=2)NC(=O)[C@H](CC=2C=CC=CC=2)NC1=O)C(=O)N[C@H](CO)[C@H](O)C)C1=CC=CC=C1 DEQANNDTNATYII-OULOTJBUSA-N 0.000 claims description 4
- USSIQXCVUWKGNF-UHFFFAOYSA-N 6-(dimethylamino)-4,4-diphenylheptan-3-one Chemical compound C=1C=CC=CC=1C(CC(C)N(C)C)(C(=O)CC)C1=CC=CC=C1 USSIQXCVUWKGNF-UHFFFAOYSA-N 0.000 claims description 4
- GJSURZIOUXUGAL-UHFFFAOYSA-N Clonidine Chemical compound ClC1=CC=CC(Cl)=C1NC1=NCCN1 GJSURZIOUXUGAL-UHFFFAOYSA-N 0.000 claims description 4
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 claims description 4
- JAQUASYNZVUNQP-USXIJHARSA-N Levorphanol Chemical compound C1C2=CC=C(O)C=C2[C@]23CCN(C)[C@H]1[C@@H]2CCCC3 JAQUASYNZVUNQP-USXIJHARSA-N 0.000 claims description 4
- XADCESSVHJOZHK-UHFFFAOYSA-N Meperidine Chemical compound C=1C=CC=CC=1C1(C(=O)OCC)CCN(C)CC1 XADCESSVHJOZHK-UHFFFAOYSA-N 0.000 claims description 4
- HOKKHZGPKSLGJE-GSVOUGTGSA-N N-Methyl-D-aspartic acid Chemical compound CN[C@@H](C(O)=O)CC(O)=O HOKKHZGPKSLGJE-GSVOUGTGSA-N 0.000 claims description 4
- 108010016076 Octreotide Proteins 0.000 claims description 4
- 229960001736 buprenorphine Drugs 0.000 claims description 4
- RMRJXGBAOAMLHD-IHFGGWKQSA-N buprenorphine Chemical compound C([C@]12[C@H]3OC=4C(O)=CC=C(C2=4)C[C@@H]2[C@]11CC[C@]3([C@H](C1)[C@](C)(O)C(C)(C)C)OC)CN2CC1CC1 RMRJXGBAOAMLHD-IHFGGWKQSA-N 0.000 claims description 4
- 229960001113 butorphanol Drugs 0.000 claims description 4
- IFKLAQQSCNILHL-QHAWAJNXSA-N butorphanol Chemical compound N1([C@@H]2CC3=CC=C(C=C3[C@@]3([C@]2(CCCC3)O)CC1)O)CC1CCC1 IFKLAQQSCNILHL-QHAWAJNXSA-N 0.000 claims description 4
- 229960002896 clonidine Drugs 0.000 claims description 4
- 238000004891 communication Methods 0.000 claims description 4
- XYYVYLMBEZUESM-UHFFFAOYSA-N dihydrocodeine Natural products C1C(N(CCC234)C)C2C=CC(=O)C3OC2=C4C1=CC=C2OC XYYVYLMBEZUESM-UHFFFAOYSA-N 0.000 claims description 4
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims description 4
- OROGSEYTTFOCAN-UHFFFAOYSA-N hydrocodone Natural products C1C(N(CCC234)C)C2C=CC(O)C3OC2=C4C1=CC=C2OC OROGSEYTTFOCAN-UHFFFAOYSA-N 0.000 claims description 4
- WVLOADHCBXTIJK-YNHQPCIGSA-N hydromorphone Chemical compound O([C@H]1C(CC[C@H]23)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4O WVLOADHCBXTIJK-YNHQPCIGSA-N 0.000 claims description 4
- 229960001410 hydromorphone Drugs 0.000 claims description 4
- CGIGDMFJXJATDK-UHFFFAOYSA-N indomethacin Chemical compound CC1=C(CC(O)=O)C2=CC(OC)=CC=C2N1C(=O)C1=CC=C(Cl)C=C1 CGIGDMFJXJATDK-UHFFFAOYSA-N 0.000 claims description 4
- 229960003406 levorphanol Drugs 0.000 claims description 4
- 229960001797 methadone Drugs 0.000 claims description 4
- 229960005181 morphine Drugs 0.000 claims description 4
- 229940121367 non-opioid analgesics Drugs 0.000 claims description 4
- 229960005301 pentazocine Drugs 0.000 claims description 4
- VOKSWYLNZZRQPF-GDIGMMSISA-N pentazocine Chemical compound C1C2=CC=C(O)C=C2[C@@]2(C)[C@@H](C)[C@@H]1N(CC=C(C)C)CC2 VOKSWYLNZZRQPF-GDIGMMSISA-N 0.000 claims description 4
- 229960000482 pethidine Drugs 0.000 claims description 4
- AQHHHDLHHXJYJD-UHFFFAOYSA-N propranolol Chemical compound C1=CC=C2C(OCC(O)CNC(C)C)=CC=CC2=C1 AQHHHDLHHXJYJD-UHFFFAOYSA-N 0.000 claims description 4
- 150000003839 salts Chemical class 0.000 claims description 4
- QZAYGJVTTNCVMB-UHFFFAOYSA-N serotonin Chemical compound C1=C(O)C=C2C(CCN)=CNC2=C1 QZAYGJVTTNCVMB-UHFFFAOYSA-N 0.000 claims description 4
- NHXLMOGPVYXJNR-ATOGVRKGSA-N somatostatin Chemical group C([C@H]1C(=O)N[C@H](C(N[C@@H](CO)C(=O)N[C@@H](CSSC[C@@H](C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C=CC=CC=2)C(=O)N[C@@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(=O)N1)[C@@H](C)O)NC(=O)CNC(=O)[C@H](C)N)C(O)=O)=O)[C@H](O)C)C1=CC=CC=C1 NHXLMOGPVYXJNR-ATOGVRKGSA-N 0.000 claims description 4
- 239000000126 substance Substances 0.000 claims description 4
- ZFXYFBGIUFBOJW-UHFFFAOYSA-N theophylline Chemical compound O=C1N(C)C(=O)N(C)C2=C1NC=N2 ZFXYFBGIUFBOJW-UHFFFAOYSA-N 0.000 claims description 4
- ZHUJMSMQIPIPTF-IBURTVSXSA-N (2r)-2-[[(2s)-2-[[2-[[(2r)-2-[[(2s)-2-amino-3-(4-hydroxyphenyl)propanoyl]amino]propanoyl]amino]acetyl]amino]-3-phenylpropanoyl]amino]-4-methylpentanoic acid Chemical compound C([C@@H](C(=O)N[C@H](CC(C)C)C(O)=O)NC(=O)CNC(=O)[C@@H](C)NC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 ZHUJMSMQIPIPTF-IBURTVSXSA-N 0.000 claims description 3
- 239000004593 Epoxy Substances 0.000 claims description 3
- 206010020751 Hypersensitivity Diseases 0.000 claims description 3
- 206010020772 Hypertension Diseases 0.000 claims description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical class C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 claims description 3
- 206010027476 Metastases Diseases 0.000 claims description 3
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 claims description 3
- 208000019695 Migraine disease Diseases 0.000 claims description 3
- 239000004677 Nylon Substances 0.000 claims description 3
- 229920003171 Poly (ethylene oxide) Polymers 0.000 claims description 3
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 claims description 3
- 208000026935 allergic disease Diseases 0.000 claims description 3
- 230000007815 allergy Effects 0.000 claims description 3
- 230000002491 angiogenic effect Effects 0.000 claims description 3
- 239000000730 antalgic agent Substances 0.000 claims description 3
- 230000000259 anti-tumor effect Effects 0.000 claims description 3
- 230000006793 arrhythmia Effects 0.000 claims description 3
- 206010003119 arrhythmia Diseases 0.000 claims description 3
- 208000006673 asthma Diseases 0.000 claims description 3
- 230000003115 biocidal effect Effects 0.000 claims description 3
- 230000007883 bronchodilation Effects 0.000 claims description 3
- 238000002512 chemotherapy Methods 0.000 claims description 3
- 229920001971 elastomer Polymers 0.000 claims description 3
- 230000002496 gastric effect Effects 0.000 claims description 3
- 238000001415 gene therapy Methods 0.000 claims description 3
- 238000001794 hormone therapy Methods 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 3
- 239000011976 maleic acid Substances 0.000 claims description 3
- 230000009401 metastasis Effects 0.000 claims description 3
- 206010027599 migraine Diseases 0.000 claims description 3
- 230000001777 nootropic effect Effects 0.000 claims description 3
- 229920001778 nylon Polymers 0.000 claims description 3
- 229920002883 poly(2-hydroxypropyl methacrylate) Polymers 0.000 claims description 3
- 229920001495 poly(sodium acrylate) polymer Polymers 0.000 claims description 3
- 229910052708 sodium Inorganic materials 0.000 claims description 3
- 239000011734 sodium Chemical class 0.000 claims description 3
- AHOUBRCZNHFOSL-YOEHRIQHSA-N (+)-Casbol Chemical compound C1=CC(F)=CC=C1[C@H]1[C@H](COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-YOEHRIQHSA-N 0.000 claims description 2
- CEMAWMOMDPGJMB-UHFFFAOYSA-N (+-)-Oxprenolol Chemical compound CC(C)NCC(O)COC1=CC=CC=C1OCC=C CEMAWMOMDPGJMB-UHFFFAOYSA-N 0.000 claims description 2
- XWTYSIMOBUGWOL-UHFFFAOYSA-N (+-)-Terbutaline Chemical compound CC(C)(C)NCC(O)C1=CC(O)=CC(O)=C1 XWTYSIMOBUGWOL-UHFFFAOYSA-N 0.000 claims description 2
- IGLYMJRIWWIQQE-QUOODJBBSA-N (1S,2R)-2-phenylcyclopropan-1-amine (1R,2S)-2-phenylcyclopropan-1-amine Chemical compound N[C@H]1C[C@@H]1C1=CC=CC=C1.N[C@@H]1C[C@H]1C1=CC=CC=C1 IGLYMJRIWWIQQE-QUOODJBBSA-N 0.000 claims description 2
- WYDUSKDSKCASEF-LJQANCHMSA-N (1s)-1-cyclohexyl-1-phenyl-3-pyrrolidin-1-ylpropan-1-ol Chemical compound C([C@](O)(C1CCCCC1)C=1C=CC=CC=1)CN1CCCC1 WYDUSKDSKCASEF-LJQANCHMSA-N 0.000 claims description 2
- VLPIATFUUWWMKC-SNVBAGLBSA-N (2r)-1-(2,6-dimethylphenoxy)propan-2-amine Chemical compound C[C@@H](N)COC1=C(C)C=CC=C1C VLPIATFUUWWMKC-SNVBAGLBSA-N 0.000 claims description 2
- YWPHCCPCQOJSGZ-LLVKDONJSA-N (2r)-2-[(2-ethoxyphenoxy)methyl]morpholine Chemical compound CCOC1=CC=CC=C1OC[C@@H]1OCCNC1 YWPHCCPCQOJSGZ-LLVKDONJSA-N 0.000 claims description 2
- BUJAGSGYPOAWEI-SECBINFHSA-N (2r)-2-amino-n-(2,6-dimethylphenyl)propanamide Chemical compound C[C@@H](N)C(=O)NC1=C(C)C=CC=C1C BUJAGSGYPOAWEI-SECBINFHSA-N 0.000 claims description 2
- YKFCISHFRZHKHY-NGQGLHOPSA-N (2s)-2-amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid;trihydrate Chemical compound O.O.O.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1.OC(=O)[C@](N)(C)CC1=CC=C(O)C(O)=C1 YKFCISHFRZHKHY-NGQGLHOPSA-N 0.000 claims description 2
- DIWRORZWFLOCLC-HNNXBMFYSA-N (3s)-7-chloro-5-(2-chlorophenyl)-3-hydroxy-1,3-dihydro-1,4-benzodiazepin-2-one Chemical compound N([C@H](C(NC1=CC=C(Cl)C=C11)=O)O)=C1C1=CC=CC=C1Cl DIWRORZWFLOCLC-HNNXBMFYSA-N 0.000 claims description 2
- SWXOGPJRIDTIRL-DOUNNPEJSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s)-1-amino-3-(1h-indol-3-yl)-1-oxopropan-2-yl]-19-[[(2r)-2-amino-3-phenylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-pent Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=CC=CC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 SWXOGPJRIDTIRL-DOUNNPEJSA-N 0.000 claims description 2
- PUDHBTGHUJUUFI-SCTWWAJVSA-N (4r,7s,10s,13r,16s,19r)-10-(4-aminobutyl)-n-[(2s,3r)-1-amino-3-hydroxy-1-oxobutan-2-yl]-19-[[(2r)-2-amino-3-naphthalen-2-ylpropanoyl]amino]-16-[(4-hydroxyphenyl)methyl]-13-(1h-indol-3-ylmethyl)-6,9,12,15,18-pentaoxo-7-propan-2-yl-1,2-dithia-5,8,11,14,17-p Chemical compound C([C@H]1C(=O)N[C@H](CC=2C3=CC=CC=C3NC=2)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(N[C@@H](CSSC[C@@H](C(=O)N1)NC(=O)[C@H](N)CC=1C=C2C=CC=CC2=CC=1)C(=O)N[C@@H]([C@@H](C)O)C(N)=O)=O)C(C)C)C1=CC=C(O)C=C1 PUDHBTGHUJUUFI-SCTWWAJVSA-N 0.000 claims description 2
- SGKRLCUYIXIAHR-AKNGSSGZSA-N (4s,4ar,5s,5ar,6r,12ar)-4-(dimethylamino)-1,5,10,11,12a-pentahydroxy-6-methyl-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1=CC=C2[C@H](C)[C@@H]([C@H](O)[C@@H]3[C@](C(O)=C(C(N)=O)C(=O)[C@H]3N(C)C)(O)C3=O)C3=C(O)C2=C1O SGKRLCUYIXIAHR-AKNGSSGZSA-N 0.000 claims description 2
- FFTVPQUHLQBXQZ-KVUCHLLUSA-N (4s,4as,5ar,12ar)-4,7-bis(dimethylamino)-1,10,11,12a-tetrahydroxy-3,12-dioxo-4a,5,5a,6-tetrahydro-4h-tetracene-2-carboxamide Chemical compound C1C2=C(N(C)C)C=CC(O)=C2C(O)=C2[C@@H]1C[C@H]1[C@H](N(C)C)C(=O)C(C(N)=O)=C(O)[C@@]1(O)C2=O FFTVPQUHLQBXQZ-KVUCHLLUSA-N 0.000 claims description 2
- KPJZHOPZRAFDTN-ZRGWGRIASA-N (6aR,9R)-N-[(2S)-1-hydroxybutan-2-yl]-4,7-dimethyl-6,6a,8,9-tetrahydroindolo[4,3-fg]quinoline-9-carboxamide Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@H](CO)CC)C2)=C3C2=CN(C)C3=C1 KPJZHOPZRAFDTN-ZRGWGRIASA-N 0.000 claims description 2
- METKIMKYRPQLGS-GFCCVEGCSA-N (R)-atenolol Chemical compound CC(C)NC[C@@H](O)COC1=CC=C(CC(N)=O)C=C1 METKIMKYRPQLGS-GFCCVEGCSA-N 0.000 claims description 2
- TVYLLZQTGLZFBW-ZBFHGGJFSA-N (R,R)-tramadol Chemical compound COC1=CC=CC([C@]2(O)[C@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-ZBFHGGJFSA-N 0.000 claims description 2
- BGRJTUBHPOOWDU-NSHDSACASA-N (S)-(-)-sulpiride Chemical compound CCN1CCC[C@H]1CNC(=O)C1=CC(S(N)(=O)=O)=CC=C1OC BGRJTUBHPOOWDU-NSHDSACASA-N 0.000 claims description 2
- WSPOMRSOLSGNFJ-AUWJEWJLSA-N (Z)-chlorprothixene Chemical compound C1=C(Cl)C=C2C(=C/CCN(C)C)\C3=CC=CC=C3SC2=C1 WSPOMRSOLSGNFJ-AUWJEWJLSA-N 0.000 claims description 2
- MVXGSLGVWBVZCA-UHFFFAOYSA-N 1,3-dimethyl-7-[2-(1-phenylpropan-2-ylamino)ethyl]purine-2,6-dione;hydrochloride Chemical compound Cl.C1=NC=2N(C)C(=O)N(C)C(=O)C=2N1CCNC(C)CC1=CC=CC=C1 MVXGSLGVWBVZCA-UHFFFAOYSA-N 0.000 claims description 2
- LEBVLXFERQHONN-UHFFFAOYSA-N 1-butyl-N-(2,6-dimethylphenyl)piperidine-2-carboxamide Chemical compound CCCCN1CCCCC1C(=O)NC1=C(C)C=CC=C1C LEBVLXFERQHONN-UHFFFAOYSA-N 0.000 claims description 2
- SGTNSNPWRIOYBX-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-{[2-(3,4-dimethoxyphenyl)ethyl](methyl)amino}-2-(propan-2-yl)pentanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1CCN(C)CCCC(C#N)(C(C)C)C1=CC=C(OC)C(OC)=C1 SGTNSNPWRIOYBX-UHFFFAOYSA-N 0.000 claims description 2
- YNZFUWZUGRBMHL-UHFFFAOYSA-N 2-[4-[3-(11-benzo[b][1]benzazepinyl)propyl]-1-piperazinyl]ethanol Chemical compound C1CN(CCO)CCN1CCCN1C2=CC=CC=C2C=CC2=CC=CC=C21 YNZFUWZUGRBMHL-UHFFFAOYSA-N 0.000 claims description 2
- GIJXKZJWITVLHI-UHFFFAOYSA-N 3-(diphenylmethyl)oxy-8-methyl-8-azabicyclo[3.2.1]octane Chemical compound CN1C(C2)CCC1CC2OC(C=1C=CC=CC=1)C1=CC=CC=C1 GIJXKZJWITVLHI-UHFFFAOYSA-N 0.000 claims description 2
- UIAGMCDKSXEBJQ-IBGZPJMESA-N 3-o-(2-methoxyethyl) 5-o-propan-2-yl (4s)-2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound COCCOC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)[C@H]1C1=CC=CC([N+]([O-])=O)=C1 UIAGMCDKSXEBJQ-IBGZPJMESA-N 0.000 claims description 2
- UYNVMODNBIQBMV-UHFFFAOYSA-N 4-[1-hydroxy-2-[4-(phenylmethyl)-1-piperidinyl]propyl]phenol Chemical compound C1CC(CC=2C=CC=CC=2)CCN1C(C)C(O)C1=CC=C(O)C=C1 UYNVMODNBIQBMV-UHFFFAOYSA-N 0.000 claims description 2
- GIYAQDDTCWHPPL-UHFFFAOYSA-N 4-amino-5-bromo-N-[2-(diethylamino)ethyl]-2-methoxybenzamide Chemical compound CCN(CC)CCNC(=O)C1=CC(Br)=C(N)C=C1OC GIYAQDDTCWHPPL-UHFFFAOYSA-N 0.000 claims description 2
- LSLYOANBFKQKPT-DIFFPNOSSA-N 5-[(1r)-1-hydroxy-2-[[(2r)-1-(4-hydroxyphenyl)propan-2-yl]amino]ethyl]benzene-1,3-diol Chemical compound C([C@@H](C)NC[C@H](O)C=1C=C(O)C=C(O)C=1)C1=CC=C(O)C=C1 LSLYOANBFKQKPT-DIFFPNOSSA-N 0.000 claims description 2
- SUBDBMMJDZJVOS-UHFFFAOYSA-N 5-methoxy-2-{[(4-methoxy-3,5-dimethylpyridin-2-yl)methyl]sulfinyl}-1H-benzimidazole Chemical compound N=1C2=CC(OC)=CC=C2NC=1S(=O)CC1=NC=C(C)C(OC)=C1C SUBDBMMJDZJVOS-UHFFFAOYSA-N 0.000 claims description 2
- RZTAMFZIAATZDJ-HNNXBMFYSA-N 5-o-ethyl 3-o-methyl (4s)-4-(2,3-dichlorophenyl)-2,6-dimethyl-1,4-dihydropyridine-3,5-dicarboxylate Chemical compound CCOC(=O)C1=C(C)NC(C)=C(C(=O)OC)[C@@H]1C1=CC=CC(Cl)=C1Cl RZTAMFZIAATZDJ-HNNXBMFYSA-N 0.000 claims description 2
- BSYNRYMUTXBXSQ-FOQJRBATSA-N 59096-14-9 Chemical compound CC(=O)OC1=CC=CC=C1[14C](O)=O BSYNRYMUTXBXSQ-FOQJRBATSA-N 0.000 claims description 2
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 claims description 2
- 229940121947 Alpha 2 adrenoreceptor agonist Drugs 0.000 claims description 2
- KPYSYYIEGFHWSV-UHFFFAOYSA-N Baclofen Chemical compound OC(=O)CC(CN)C1=CC=C(Cl)C=C1 KPYSYYIEGFHWSV-UHFFFAOYSA-N 0.000 claims description 2
- 102000013585 Bombesin Human genes 0.000 claims description 2
- 108010051479 Bombesin Proteins 0.000 claims description 2
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 claims description 2
- 102000055006 Calcitonin Human genes 0.000 claims description 2
- 108060001064 Calcitonin Proteins 0.000 claims description 2
- GDLIGKIOYRNHDA-UHFFFAOYSA-N Clomipramine Chemical compound C1CC2=CC=C(Cl)C=C2N(CCCN(C)C)C2=CC=CC=C21 GDLIGKIOYRNHDA-UHFFFAOYSA-N 0.000 claims description 2
- CMSMOCZEIVJLDB-UHFFFAOYSA-N Cyclophosphamide Chemical compound ClCCN(CCCl)P1(=O)NCCCO1 CMSMOCZEIVJLDB-UHFFFAOYSA-N 0.000 claims description 2
- CVBMAZKKCSYWQR-BPJCFPRXSA-N Deserpidine Natural products O=C(OC)[C@@H]1[C@H](OC)[C@H](OC(=O)c2cc(OC)c(OC)c(OC)c2)C[C@H]2[C@@H]1C[C@H]1N(C2)CCc2c3c([nH]c12)cccc3 CVBMAZKKCSYWQR-BPJCFPRXSA-N 0.000 claims description 2
- HCYAFALTSJYZDH-UHFFFAOYSA-N Desimpramine Chemical compound C1CC2=CC=CC=C2N(CCCNC)C2=CC=CC=C21 HCYAFALTSJYZDH-UHFFFAOYSA-N 0.000 claims description 2
- 108010061435 Enalapril Proteins 0.000 claims description 2
- UIOFUWFRIANQPC-JKIFEVAISA-N Floxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=C(F)C=CC=C1Cl UIOFUWFRIANQPC-JKIFEVAISA-N 0.000 claims description 2
- PLDUPXSUYLZYBN-UHFFFAOYSA-N Fluphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 PLDUPXSUYLZYBN-UHFFFAOYSA-N 0.000 claims description 2
- GVGLGOZIDCSQPN-PVHGPHFFSA-N Heroin Chemical compound O([C@H]1[C@H](C=C[C@H]23)OC(C)=O)C4=C5[C@@]12CCN(C)[C@@H]3CC5=CC=C4OC(C)=O GVGLGOZIDCSQPN-PVHGPHFFSA-N 0.000 claims description 2
- VSNHCAURESNICA-UHFFFAOYSA-N Hydroxyurea Chemical compound NC(=O)NO VSNHCAURESNICA-UHFFFAOYSA-N 0.000 claims description 2
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 claims description 2
- PWWVAXIEGOYWEE-UHFFFAOYSA-N Isophenergan Chemical compound C1=CC=C2N(CC(C)N(C)C)C3=CC=CC=C3SC2=C1 PWWVAXIEGOYWEE-UHFFFAOYSA-N 0.000 claims description 2
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 claims description 2
- WTDRDQBEARUVNC-LURJTMIESA-N L-DOPA Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-LURJTMIESA-N 0.000 claims description 2
- WTDRDQBEARUVNC-UHFFFAOYSA-N L-Dopa Natural products OC(=O)C(N)CC1=CC=C(O)C(O)=C1 WTDRDQBEARUVNC-UHFFFAOYSA-N 0.000 claims description 2
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 claims description 2
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 claims description 2
- 108010007859 Lisinopril Proteins 0.000 claims description 2
- ZRVUJXDFFKFLMG-UHFFFAOYSA-N Meloxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=NC=C(C)S1 ZRVUJXDFFKFLMG-UHFFFAOYSA-N 0.000 claims description 2
- HOKDBMAJZXIPGC-UHFFFAOYSA-N Mequitazine Chemical compound C12=CC=CC=C2SC2=CC=CC=C2N1CC1C(CC2)CCN2C1 HOKDBMAJZXIPGC-UHFFFAOYSA-N 0.000 claims description 2
- ZFMITUMMTDLWHR-UHFFFAOYSA-N Minoxidil Chemical compound NC1=[N+]([O-])C(N)=CC(N2CCCCC2)=N1 ZFMITUMMTDLWHR-UHFFFAOYSA-N 0.000 claims description 2
- WPNJAUFVNXKLIM-UHFFFAOYSA-N Moxonidine Chemical compound COC1=NC(C)=NC(Cl)=C1NC1=NCCN1 WPNJAUFVNXKLIM-UHFFFAOYSA-N 0.000 claims description 2
- IJHNSHDBIRRJRN-UHFFFAOYSA-N N,N-dimethyl-3-phenyl-3-(2-pyridinyl)-1-propanamine Chemical compound C=1C=CC=NC=1C(CCN(C)C)C1=CC=CC=C1 IJHNSHDBIRRJRN-UHFFFAOYSA-N 0.000 claims description 2
- IDBPHNDTYPBSNI-UHFFFAOYSA-N N-(1-(2-(4-Ethyl-5-oxo-2-tetrazolin-1-yl)ethyl)-4-(methoxymethyl)-4-piperidyl)propionanilide Chemical compound C1CN(CCN2C(N(CC)N=N2)=O)CCC1(COC)N(C(=O)CC)C1=CC=CC=C1 IDBPHNDTYPBSNI-UHFFFAOYSA-N 0.000 claims description 2
- JUUFBMODXQKSTD-UHFFFAOYSA-N N-[2-amino-6-[(4-fluorophenyl)methylamino]-3-pyridinyl]carbamic acid ethyl ester Chemical compound N1=C(N)C(NC(=O)OCC)=CC=C1NCC1=CC=C(F)C=C1 JUUFBMODXQKSTD-UHFFFAOYSA-N 0.000 claims description 2
- RTHCYVBBDHJXIQ-UHFFFAOYSA-N N-methyl-3-phenyl-3-[4-(trifluoromethyl)phenoxy]propan-1-amine Chemical compound C=1C=CC=CC=1C(CCNC)OC1=CC=C(C(F)(F)F)C=C1 RTHCYVBBDHJXIQ-UHFFFAOYSA-N 0.000 claims description 2
- CMWTZPSULFXXJA-UHFFFAOYSA-N Naproxen Natural products C1=C(C(C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-UHFFFAOYSA-N 0.000 claims description 2
- RGPDEAGGEXEMMM-UHFFFAOYSA-N Nefopam Chemical compound C12=CC=CC=C2CN(C)CCOC1C1=CC=CC=C1 RGPDEAGGEXEMMM-UHFFFAOYSA-N 0.000 claims description 2
- 229930193140 Neomycin Natural products 0.000 claims description 2
- ZBBHBTPTTSWHBA-UHFFFAOYSA-N Nicardipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OCCN(C)CC=2C=CC=CC=2)C1C1=CC=CC([N+]([O-])=O)=C1 ZBBHBTPTTSWHBA-UHFFFAOYSA-N 0.000 claims description 2
- BRZANEXCSZCZCI-UHFFFAOYSA-N Nifenazone Chemical compound O=C1N(C=2C=CC=CC=2)N(C)C(C)=C1NC(=O)C1=CC=CN=C1 BRZANEXCSZCZCI-UHFFFAOYSA-N 0.000 claims description 2
- BRUQQQPBMZOVGD-XFKAJCMBSA-N Oxycodone Chemical compound O=C([C@@H]1O2)CC[C@@]3(O)[C@H]4CC5=CC=C(OC)C2=C5[C@@]13CCN4C BRUQQQPBMZOVGD-XFKAJCMBSA-N 0.000 claims description 2
- 239000004100 Oxytetracycline Substances 0.000 claims description 2
- AHOUBRCZNHFOSL-UHFFFAOYSA-N Paroxetine hydrochloride Natural products C1=CC(F)=CC=C1C1C(COC=2C=C3OCOC3=CC=2)CNCC1 AHOUBRCZNHFOSL-UHFFFAOYSA-N 0.000 claims description 2
- 229930195708 Penicillin V Natural products 0.000 claims description 2
- RGCVKNLCSQQDEP-UHFFFAOYSA-N Perphenazine Chemical compound C1CN(CCO)CCN1CCCN1C2=CC(Cl)=CC=C2SC2=CC=CC=C21 RGCVKNLCSQQDEP-UHFFFAOYSA-N 0.000 claims description 2
- GMZVRMREEHBGGF-UHFFFAOYSA-N Piracetam Chemical compound NC(=O)CN1CCCC1=O GMZVRMREEHBGGF-UHFFFAOYSA-N 0.000 claims description 2
- VQDBNKDJNJQRDG-UHFFFAOYSA-N Pirbuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=N1 VQDBNKDJNJQRDG-UHFFFAOYSA-N 0.000 claims description 2
- HFVNWDWLWUCIHC-GUPDPFMOSA-N Prednimustine Chemical compound O=C([C@@]1(O)CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)[C@@H](O)C[C@@]21C)COC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 HFVNWDWLWUCIHC-GUPDPFMOSA-N 0.000 claims description 2
- BKRGVLQUQGGVSM-KBXCAEBGSA-N Revanil Chemical compound C1=CC(C=2[C@H](N(C)C[C@H](C=2)NC(=O)N(CC)CC)C2)=C3C2=CNC3=C1 BKRGVLQUQGGVSM-KBXCAEBGSA-N 0.000 claims description 2
- SMTZFNFIKUPEJC-UHFFFAOYSA-N Roxane Chemical compound CC(=O)OCC(=O)NCCCOC1=CC=CC(CN2CCCCC2)=C1 SMTZFNFIKUPEJC-UHFFFAOYSA-N 0.000 claims description 2
- UNZIDPIPYUMVPA-UHFFFAOYSA-M Sulpyrine Chemical compound O.[Na+].O=C1C(N(CS([O-])(=O)=O)C)=C(C)N(C)N1C1=CC=CC=C1 UNZIDPIPYUMVPA-UHFFFAOYSA-M 0.000 claims description 2
- 102000019197 Superoxide Dismutase Human genes 0.000 claims description 2
- 108010012715 Superoxide dismutase Proteins 0.000 claims description 2
- GUGOEEXESWIERI-UHFFFAOYSA-N Terfenadine Chemical compound C1=CC(C(C)(C)C)=CC=C1C(O)CCCN1CCC(C(O)(C=2C=CC=CC=2)C=2C=CC=CC=2)CC1 GUGOEEXESWIERI-UHFFFAOYSA-N 0.000 claims description 2
- 239000004098 Tetracycline Substances 0.000 claims description 2
- KLBQZWRITKRQQV-UHFFFAOYSA-N Thioridazine Chemical compound C12=CC(SC)=CC=C2SC2=CC=CC=C2N1CCC1CCCCN1C KLBQZWRITKRQQV-UHFFFAOYSA-N 0.000 claims description 2
- GFBKORZTTCHDGY-UWVJOHFNSA-N Thiothixene Chemical compound C12=CC(S(=O)(=O)N(C)C)=CC=C2SC2=CC=CC=C2\C1=C\CCN1CCN(C)CC1 GFBKORZTTCHDGY-UWVJOHFNSA-N 0.000 claims description 2
- ICMGLRUYEQNHPF-UHFFFAOYSA-N Uraprene Chemical compound COC1=CC=CC=C1N1CCN(CCCNC=2N(C(=O)N(C)C(=O)C=2)C)CC1 ICMGLRUYEQNHPF-UHFFFAOYSA-N 0.000 claims description 2
- 108010003205 Vasoactive Intestinal Peptide Proteins 0.000 claims description 2
- 102000055135 Vasoactive Intestinal Peptide Human genes 0.000 claims description 2
- NDAUXUAQIAJITI-UHFFFAOYSA-N albuterol Chemical compound CC(C)(C)NCC(O)C1=CC=C(O)C(CO)=C1 NDAUXUAQIAJITI-UHFFFAOYSA-N 0.000 claims description 2
- 229960001391 alfentanil Drugs 0.000 claims description 2
- 229960004538 alprazolam Drugs 0.000 claims description 2
- VREFGVBLTWBCJP-UHFFFAOYSA-N alprazolam Chemical compound C12=CC(Cl)=CC=C2N2C(C)=NN=C2CN=C1C1=CC=CC=C1 VREFGVBLTWBCJP-UHFFFAOYSA-N 0.000 claims description 2
- 229960002213 alprenolol Drugs 0.000 claims description 2
- PAZJSJFMUHDSTF-UHFFFAOYSA-N alprenolol Chemical compound CC(C)NCC(O)COC1=CC=CC=C1CC=C PAZJSJFMUHDSTF-UHFFFAOYSA-N 0.000 claims description 2
- 229960000473 altretamine Drugs 0.000 claims description 2
- DKNWSYNQZKUICI-UHFFFAOYSA-N amantadine Chemical compound C1C(C2)CC3CC2CC1(N)C3 DKNWSYNQZKUICI-UHFFFAOYSA-N 0.000 claims description 2
- 229960003805 amantadine Drugs 0.000 claims description 2
- FQPFAHBPWDRTLU-UHFFFAOYSA-N aminophylline Chemical compound NCCN.O=C1N(C)C(=O)N(C)C2=C1NC=N2.O=C1N(C)C(=O)N(C)C2=C1NC=N2 FQPFAHBPWDRTLU-UHFFFAOYSA-N 0.000 claims description 2
- 229960000836 amitriptyline Drugs 0.000 claims description 2
- KRMDCWKBEZIMAB-UHFFFAOYSA-N amitriptyline Chemical compound C1CC2=CC=CC=C2C(=CCCN(C)C)C2=CC=CC=C21 KRMDCWKBEZIMAB-UHFFFAOYSA-N 0.000 claims description 2
- 229960003022 amoxicillin Drugs 0.000 claims description 2
- LSQZJLSUYDQPKJ-NJBDSQKTSA-N amoxicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=C(O)C=C1 LSQZJLSUYDQPKJ-NJBDSQKTSA-N 0.000 claims description 2
- 229960000723 ampicillin Drugs 0.000 claims description 2
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 claims description 2
- 239000005557 antagonist Substances 0.000 claims description 2
- 239000003242 anti bacterial agent Substances 0.000 claims description 2
- 239000000043 antiallergic agent Substances 0.000 claims description 2
- 239000003416 antiarrhythmic agent Substances 0.000 claims description 2
- 239000000924 antiasthmatic agent Substances 0.000 claims description 2
- 229940088710 antibiotic agent Drugs 0.000 claims description 2
- 229940030600 antihypertensive agent Drugs 0.000 claims description 2
- 239000002220 antihypertensive agent Substances 0.000 claims description 2
- 239000002257 antimetastatic agent Substances 0.000 claims description 2
- VEQOALNAAJBPNY-UHFFFAOYSA-N antipyrine Chemical compound CN1C(C)=CC(=O)N1C1=CC=CC=C1 VEQOALNAAJBPNY-UHFFFAOYSA-N 0.000 claims description 2
- GXDALQBWZGODGZ-UHFFFAOYSA-N astemizole Chemical compound C1=CC(OC)=CC=C1CCN1CCC(NC=2N(C3=CC=CC=C3N=2)CC=2C=CC(F)=CC=2)CC1 GXDALQBWZGODGZ-UHFFFAOYSA-N 0.000 claims description 2
- 229960002274 atenolol Drugs 0.000 claims description 2
- 229960001671 azapropazone Drugs 0.000 claims description 2
- WOIIIUDZSOLAIW-NSHDSACASA-N azapropazone Chemical compound C1=C(C)C=C2N3C(=O)[C@H](CC=C)C(=O)N3C(N(C)C)=NC2=C1 WOIIIUDZSOLAIW-NSHDSACASA-N 0.000 claims description 2
- 229960000794 baclofen Drugs 0.000 claims description 2
- YSXKPIUOCJLQIE-UHFFFAOYSA-N biperiden Chemical compound C1C(C=C2)CC2C1C(C=1C=CC=CC=1)(O)CCN1CCCCC1 YSXKPIUOCJLQIE-UHFFFAOYSA-N 0.000 claims description 2
- 229960003003 biperiden Drugs 0.000 claims description 2
- 229960002781 bisoprolol Drugs 0.000 claims description 2
- VHYCDWMUTMEGQY-UHFFFAOYSA-N bisoprolol Chemical compound CC(C)NCC(O)COC1=CC=C(COCCOC(C)C)C=C1 VHYCDWMUTMEGQY-UHFFFAOYSA-N 0.000 claims description 2
- DNDCVAGJPBKION-DOPDSADYSA-N bombesin Chemical compound C([C@@H](C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(N)=O)NC(=O)CNC(=O)[C@@H](NC(=O)[C@H](C)NC(=O)[C@H](CC=1NC2=CC=CC=C2C=1)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CC(N)=O)NC(=O)CNC(=O)[C@H](CC(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H]1NC(=O)CC1)C(C)C)C1=CN=CN1 DNDCVAGJPBKION-DOPDSADYSA-N 0.000 claims description 2
- OZVBMTJYIDMWIL-AYFBDAFISA-N bromocriptine Chemical compound C1=CC(C=2[C@H](N(C)C[C@@H](C=2)C(=O)N[C@]2(C(=O)N3[C@H](C(N4CCC[C@H]4[C@]3(O)O2)=O)CC(C)C)C(C)C)C2)=C3C2=C(Br)NC3=C1 OZVBMTJYIDMWIL-AYFBDAFISA-N 0.000 claims description 2
- 229960002802 bromocriptine Drugs 0.000 claims description 2
- 229960001034 bromopride Drugs 0.000 claims description 2
- 229960003150 bupivacaine Drugs 0.000 claims description 2
- 229960000330 bupranolol Drugs 0.000 claims description 2
- HQIRNZOQPUAHHV-UHFFFAOYSA-N bupranolol Chemical compound CC1=CC=C(Cl)C(OCC(O)CNC(C)(C)C)=C1 HQIRNZOQPUAHHV-UHFFFAOYSA-N 0.000 claims description 2
- 229960002495 buspirone Drugs 0.000 claims description 2
- QWCRAEMEVRGPNT-UHFFFAOYSA-N buspirone Chemical compound C1C(=O)N(CCCCN2CCN(CC2)C=2N=CC=CN=2)C(=O)CC21CCCC2 QWCRAEMEVRGPNT-UHFFFAOYSA-N 0.000 claims description 2
- 229960002092 busulfan Drugs 0.000 claims description 2
- 229960004015 calcitonin Drugs 0.000 claims description 2
- BBBFJLBPOGFECG-VJVYQDLKSA-N calcitonin Chemical compound N([C@H](C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC=1NC=NC=1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N1[C@@H](CCC1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N1[C@@H](CCC1)C(N)=O)C(C)C)C(=O)[C@@H]1CSSC[C@H](N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(=O)N1 BBBFJLBPOGFECG-VJVYQDLKSA-N 0.000 claims description 2
- 229960000830 captopril Drugs 0.000 claims description 2
- FAKRSMQSSFJEIM-RQJHMYQMSA-N captopril Chemical compound SC[C@@H](C)C(=O)N1CCC[C@H]1C(O)=O FAKRSMQSSFJEIM-RQJHMYQMSA-N 0.000 claims description 2
- 229960005361 cefaclor Drugs 0.000 claims description 2
- QYIYFLOTGYLRGG-GPCCPHFNSA-N cefaclor Chemical compound C1([C@H](C(=O)N[C@@H]2C(N3C(=C(Cl)CS[C@@H]32)C(O)=O)=O)N)=CC=CC=C1 QYIYFLOTGYLRGG-GPCCPHFNSA-N 0.000 claims description 2
- 229960004841 cefadroxil Drugs 0.000 claims description 2
- NBFNMSULHIODTC-CYJZLJNKSA-N cefadroxil monohydrate Chemical compound O.C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=C(O)C=C1 NBFNMSULHIODTC-CYJZLJNKSA-N 0.000 claims description 2
- 229960002129 cefixime Drugs 0.000 claims description 2
- OKBVVJOGVLARMR-QSWIMTSFSA-N cefixime Chemical compound S1C(N)=NC(C(=N\OCC(O)=O)\C(=O)N[C@@H]2C(N3C(=C(C=C)CS[C@@H]32)C(O)=O)=O)=C1 OKBVVJOGVLARMR-QSWIMTSFSA-N 0.000 claims description 2
- 229960005090 cefpodoxime Drugs 0.000 claims description 2
- WYUSVOMTXWRGEK-HBWVYFAYSA-N cefpodoxime Chemical compound N([C@H]1[C@@H]2N(C1=O)C(=C(CS2)COC)C(O)=O)C(=O)C(=N/OC)\C1=CSC(N)=N1 WYUSVOMTXWRGEK-HBWVYFAYSA-N 0.000 claims description 2
- 229960002588 cefradine Drugs 0.000 claims description 2
- 229940083181 centrally acting adntiadrenergic agent methyldopa Drugs 0.000 claims description 2
- 229940106164 cephalexin Drugs 0.000 claims description 2
- ZAIPMKNFIOOWCQ-UEKVPHQBSA-N cephalexin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CC=CC=C1 ZAIPMKNFIOOWCQ-UEKVPHQBSA-N 0.000 claims description 2
- RDLPVSKMFDYCOR-UEKVPHQBSA-N cephradine Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)C(=C(CS3)C)C(O)=O)=CCC=CC1 RDLPVSKMFDYCOR-UEKVPHQBSA-N 0.000 claims description 2
- 229960004630 chlorambucil Drugs 0.000 claims description 2
- JCKYGMPEJWAADB-UHFFFAOYSA-N chlorambucil Chemical compound OC(=O)CCCC1=CC=C(N(CCCl)CCCl)C=C1 JCKYGMPEJWAADB-UHFFFAOYSA-N 0.000 claims description 2
- 229960001552 chlorprothixene Drugs 0.000 claims description 2
- 229960001380 cimetidine Drugs 0.000 claims description 2
- CCGSUNCLSOWKJO-UHFFFAOYSA-N cimetidine Chemical compound N#CNC(=N/C)\NCCSCC1=NC=N[C]1C CCGSUNCLSOWKJO-UHFFFAOYSA-N 0.000 claims description 2
- DCSUBABJRXZOMT-IRLDBZIGSA-N cisapride Chemical compound C([C@@H]([C@@H](CC1)NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)OC)N1CCCOC1=CC=C(F)C=C1 DCSUBABJRXZOMT-IRLDBZIGSA-N 0.000 claims description 2
- 229960005132 cisapride Drugs 0.000 claims description 2
- DCSUBABJRXZOMT-UHFFFAOYSA-N cisapride Natural products C1CC(NC(=O)C=2C(=CC(N)=C(Cl)C=2)OC)C(OC)CN1CCCOC1=CC=C(F)C=C1 DCSUBABJRXZOMT-UHFFFAOYSA-N 0.000 claims description 2
- 229960001117 clenbuterol Drugs 0.000 claims description 2
- STJMRWALKKWQGH-UHFFFAOYSA-N clenbuterol Chemical compound CC(C)(C)NCC(O)C1=CC(Cl)=C(N)C(Cl)=C1 STJMRWALKKWQGH-UHFFFAOYSA-N 0.000 claims description 2
- 229960002227 clindamycin Drugs 0.000 claims description 2
- KDLRVYVGXIQJDK-AWPVFWJPSA-N clindamycin Chemical compound CN1C[C@H](CCC)C[C@H]1C(=O)N[C@H]([C@H](C)Cl)[C@@H]1[C@H](O)[C@H](O)[C@@H](O)[C@@H](SC)O1 KDLRVYVGXIQJDK-AWPVFWJPSA-N 0.000 claims description 2
- 229960001403 clobazam Drugs 0.000 claims description 2
- CXOXHMZGEKVPMT-UHFFFAOYSA-N clobazam Chemical compound O=C1CC(=O)N(C)C2=CC=C(Cl)C=C2N1C1=CC=CC=C1 CXOXHMZGEKVPMT-UHFFFAOYSA-N 0.000 claims description 2
- 229960004606 clomipramine Drugs 0.000 claims description 2
- 229960003326 cloxacillin Drugs 0.000 claims description 2
- LQOLIRLGBULYKD-JKIFEVAISA-N cloxacillin Chemical compound N([C@@H]1C(N2[C@H](C(C)(C)S[C@@H]21)C(O)=O)=O)C(=O)C1=C(C)ON=C1C1=CC=CC=C1Cl LQOLIRLGBULYKD-JKIFEVAISA-N 0.000 claims description 2
- OROGSEYTTFOCAN-DNJOTXNNSA-N codeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)=C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC OROGSEYTTFOCAN-DNJOTXNNSA-N 0.000 claims description 2
- 229960004397 cyclophosphamide Drugs 0.000 claims description 2
- DKRSEIPLAZTSFD-UHFFFAOYSA-N d-quinotoxine Natural products C12=CC(OC)=CC=C2N=CC=C1C(=O)CCC1CCNCC1C=C DKRSEIPLAZTSFD-UHFFFAOYSA-N 0.000 claims description 2
- ISMCNVNDWFIXLM-WCGOZPBSSA-N deserpidine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C([C]5C=CC=CC5=N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 ISMCNVNDWFIXLM-WCGOZPBSSA-N 0.000 claims description 2
- 229960001993 deserpidine Drugs 0.000 claims description 2
- 229960003914 desipramine Drugs 0.000 claims description 2
- 229960001882 dexchlorpheniramine Drugs 0.000 claims description 2
- SOYKEARSMXGVTM-HNNXBMFYSA-N dexchlorpheniramine Chemical compound C1([C@H](CCN(C)C)C=2N=CC=CC=2)=CC=C(Cl)C=C1 SOYKEARSMXGVTM-HNNXBMFYSA-N 0.000 claims description 2
- HRLIOXLXPOHXTA-NSHDSACASA-N dexmedetomidine Chemical compound C1([C@@H](C)C=2C(=C(C)C=CC=2)C)=CN=C[N]1 HRLIOXLXPOHXTA-NSHDSACASA-N 0.000 claims description 2
- 229960004253 dexmedetomidine Drugs 0.000 claims description 2
- 229960004193 dextropropoxyphene Drugs 0.000 claims description 2
- XLMALTXPSGQGBX-GCJKJVERSA-N dextropropoxyphene Chemical compound C([C@](OC(=O)CC)([C@H](C)CN(C)C)C=1C=CC=CC=1)C1=CC=CC=C1 XLMALTXPSGQGBX-GCJKJVERSA-N 0.000 claims description 2
- 229960002069 diamorphine Drugs 0.000 claims description 2
- 229960003529 diazepam Drugs 0.000 claims description 2
- AAOVKJBEBIDNHE-UHFFFAOYSA-N diazepam Chemical compound N=1CC(=O)N(C)C2=CC=C(Cl)C=C2C=1C1=CC=CC=C1 AAOVKJBEBIDNHE-UHFFFAOYSA-N 0.000 claims description 2
- 229960001259 diclofenac Drugs 0.000 claims description 2
- DCOPUUMXTXDBNB-UHFFFAOYSA-N diclofenac Chemical compound OC(=O)CC1=CC=CC=C1NC1=C(Cl)C=CC=C1Cl DCOPUUMXTXDBNB-UHFFFAOYSA-N 0.000 claims description 2
- 229960000616 diflunisal Drugs 0.000 claims description 2
- HUPFGZXOMWLGNK-UHFFFAOYSA-N diflunisal Chemical compound C1=C(O)C(C(=O)O)=CC(C=2C(=CC(F)=CC=2)F)=C1 HUPFGZXOMWLGNK-UHFFFAOYSA-N 0.000 claims description 2
- RBOXVHNMENFORY-DNJOTXNNSA-N dihydrocodeine Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)C[C@H](O)[C@@H]1OC1=C2C3=CC=C1OC RBOXVHNMENFORY-DNJOTXNNSA-N 0.000 claims description 2
- 229960000920 dihydrocodeine Drugs 0.000 claims description 2
- 229960004704 dihydroergotamine Drugs 0.000 claims description 2
- HESHRHUZIWVEAJ-JGRZULCMSA-N dihydroergotamine Chemical compound C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2[C@@H](C3=CC=CC4=NC=C([C]34)C2)C1)C)C1=CC=CC=C1 HESHRHUZIWVEAJ-JGRZULCMSA-N 0.000 claims description 2
- 229960001992 dimetindene Drugs 0.000 claims description 2
- MVMQESMQSYOVGV-UHFFFAOYSA-N dimetindene Chemical compound CN(C)CCC=1CC2=CC=CC=C2C=1C(C)C1=CC=CC=N1 MVMQESMQSYOVGV-UHFFFAOYSA-N 0.000 claims description 2
- 229940120889 dipyrone Drugs 0.000 claims description 2
- QLTXKCWMEZIHBJ-PJGJYSAQSA-N dizocilpine maleate Chemical compound OC(=O)\C=C/C(O)=O.C12=CC=CC=C2[C@]2(C)C3=CC=CC=C3C[C@H]1N2 QLTXKCWMEZIHBJ-PJGJYSAQSA-N 0.000 claims description 2
- RUZYUOTYCVRMRZ-UHFFFAOYSA-N doxazosin Chemical compound C1OC2=CC=CC=C2OC1C(=O)N(CC1)CCN1C1=NC(N)=C(C=C(C(OC)=C2)OC)C2=N1 RUZYUOTYCVRMRZ-UHFFFAOYSA-N 0.000 claims description 2
- 229960001389 doxazosin Drugs 0.000 claims description 2
- 229960005426 doxepin Drugs 0.000 claims description 2
- ODQWQRRAPPTVAG-GZTJUZNOSA-N doxepin Chemical compound C1OC2=CC=CC=C2C(=C/CCN(C)C)/C2=CC=CC=C21 ODQWQRRAPPTVAG-GZTJUZNOSA-N 0.000 claims description 2
- 229960003722 doxycycline Drugs 0.000 claims description 2
- 229960005178 doxylamine Drugs 0.000 claims description 2
- HCFDWZZGGLSKEP-UHFFFAOYSA-N doxylamine Chemical compound C=1C=CC=NC=1C(C)(OCCN(C)C)C1=CC=CC=C1 HCFDWZZGGLSKEP-UHFFFAOYSA-N 0.000 claims description 2
- 229960000873 enalapril Drugs 0.000 claims description 2
- GBXSMTUPTTWBMN-XIRDDKMYSA-N enalapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CCC1)C(O)=O)CC1=CC=CC=C1 GBXSMTUPTTWBMN-XIRDDKMYSA-N 0.000 claims description 2
- 229960004943 ergotamine Drugs 0.000 claims description 2
- OFKDAAIKGIBASY-VFGNJEKYSA-N ergotamine Chemical compound C([C@H]1C(=O)N2CCC[C@H]2[C@]2(O)O[C@@](C(N21)=O)(C)NC(=O)[C@H]1CN([C@H]2C(C3=CC=CC4=NC=C([C]34)C2)=C1)C)C1=CC=CC=C1 OFKDAAIKGIBASY-VFGNJEKYSA-N 0.000 claims description 2
- XCGSFFUVFURLIX-UHFFFAOYSA-N ergotaminine Natural products C1=C(C=2C=CC=C3NC=C(C=23)C2)C2N(C)CC1C(=O)NC(C(N12)=O)(C)OC1(O)C1CCCN1C(=O)C2CC1=CC=CC=C1 XCGSFFUVFURLIX-UHFFFAOYSA-N 0.000 claims description 2
- 229960003276 erythromycin Drugs 0.000 claims description 2
- 229960003745 esmolol Drugs 0.000 claims description 2
- AQNDDEOPVVGCPG-UHFFFAOYSA-N esmolol Chemical compound COC(=O)CCC1=CC=C(OCC(O)CNC(C)C)C=C1 AQNDDEOPVVGCPG-UHFFFAOYSA-N 0.000 claims description 2
- XUFQPHANEAPEMJ-UHFFFAOYSA-N famotidine Chemical compound NC(N)=NC1=NC(CSCCC(N)=NS(N)(=O)=O)=CS1 XUFQPHANEAPEMJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960001596 famotidine Drugs 0.000 claims description 2
- 229960003580 felodipine Drugs 0.000 claims description 2
- ZPAKPRAICRBAOD-UHFFFAOYSA-N fenbufen Chemical compound C1=CC(C(=O)CCC(=O)O)=CC=C1C1=CC=CC=C1 ZPAKPRAICRBAOD-UHFFFAOYSA-N 0.000 claims description 2
- 229960001395 fenbufen Drugs 0.000 claims description 2
- 229940032465 fenethylline Drugs 0.000 claims description 2
- 229960001022 fenoterol Drugs 0.000 claims description 2
- 229960002428 fentanyl Drugs 0.000 claims description 2
- PJMPHNIQZUBGLI-UHFFFAOYSA-N fentanyl Chemical compound C=1C=CC=CC=1N(C(=O)CC)C(CC1)CCN1CCC1=CC=CC=C1 PJMPHNIQZUBGLI-UHFFFAOYSA-N 0.000 claims description 2
- 229960004273 floxacillin Drugs 0.000 claims description 2
- 229960000326 flunarizine Drugs 0.000 claims description 2
- SMANXXCATUTDDT-QPJJXVBHSA-N flunarizine Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)N1CCN(C\C=C\C=2C=CC=CC=2)CC1 SMANXXCATUTDDT-QPJJXVBHSA-N 0.000 claims description 2
- 229960002464 fluoxetine Drugs 0.000 claims description 2
- 229960002690 fluphenazine Drugs 0.000 claims description 2
- 229960003667 flupirtine Drugs 0.000 claims description 2
- 229960002390 flurbiprofen Drugs 0.000 claims description 2
- SYTBZMRGLBWNTM-UHFFFAOYSA-N flurbiprofen Chemical compound FC1=CC(C(C(O)=O)C)=CC=C1C1=CC=CC=C1 SYTBZMRGLBWNTM-UHFFFAOYSA-N 0.000 claims description 2
- 229940125695 gastrointestinal agent Drugs 0.000 claims description 2
- 239000004083 gastrointestinal agent Substances 0.000 claims description 2
- 229960003878 haloperidol Drugs 0.000 claims description 2
- UUVWYPNAQBNQJQ-UHFFFAOYSA-N hexamethylmelamine Chemical compound CN(C)C1=NC(N(C)C)=NC(N(C)C)=N1 UUVWYPNAQBNQJQ-UHFFFAOYSA-N 0.000 claims description 2
- LLPOLZWFYMWNKH-CMKMFDCUSA-N hydrocodone Chemical compound C([C@H]1[C@H](N(CC[C@@]112)C)C3)CC(=O)[C@@H]1OC1=C2C3=CC=C1OC LLPOLZWFYMWNKH-CMKMFDCUSA-N 0.000 claims description 2
- 229960000240 hydrocodone Drugs 0.000 claims description 2
- 229960001330 hydroxycarbamide Drugs 0.000 claims description 2
- 229960001680 ibuprofen Drugs 0.000 claims description 2
- 229960003998 ifenprodil Drugs 0.000 claims description 2
- 229960004801 imipramine Drugs 0.000 claims description 2
- BCGWQEUPMDMJNV-UHFFFAOYSA-N imipramine Chemical compound C1CC2=CC=CC=C2N(CCCN(C)C)C2=CC=CC=C21 BCGWQEUPMDMJNV-UHFFFAOYSA-N 0.000 claims description 2
- 229960000905 indomethacin Drugs 0.000 claims description 2
- OEXHQOGQTVQTAT-JRNQLAHRSA-N ipratropium Chemical compound O([C@H]1C[C@H]2CC[C@@H](C1)[N@@+]2(C)C(C)C)C(=O)C(CO)C1=CC=CC=C1 OEXHQOGQTVQTAT-JRNQLAHRSA-N 0.000 claims description 2
- 229960001888 ipratropium Drugs 0.000 claims description 2
- 229960003299 ketamine Drugs 0.000 claims description 2
- 229940012215 ketofen Drugs 0.000 claims description 2
- DKYWVDODHFEZIM-UHFFFAOYSA-N ketoprofen Chemical compound OC(=O)C(C)C1=CC=CC(C(=O)C=2C=CC=CC=2)=C1 DKYWVDODHFEZIM-UHFFFAOYSA-N 0.000 claims description 2
- 229960000991 ketoprofen Drugs 0.000 claims description 2
- 229960004752 ketorolac Drugs 0.000 claims description 2
- OZWKMVRBQXNZKK-UHFFFAOYSA-N ketorolac Chemical compound OC(=O)C1CCN2C1=CC=C2C(=O)C1=CC=CC=C1 OZWKMVRBQXNZKK-UHFFFAOYSA-N 0.000 claims description 2
- 108010021336 lanreotide Proteins 0.000 claims description 2
- 229960002437 lanreotide Drugs 0.000 claims description 2
- 229960004502 levodopa Drugs 0.000 claims description 2
- 229960002394 lisinopril Drugs 0.000 claims description 2
- RLAWWYSOJDYHDC-BZSNNMDCSA-N lisinopril Chemical compound C([C@H](N[C@@H](CCCCN)C(=O)N1[C@@H](CCC1)C(O)=O)C(O)=O)CC1=CC=CC=C1 RLAWWYSOJDYHDC-BZSNNMDCSA-N 0.000 claims description 2
- 229960003587 lisuride Drugs 0.000 claims description 2
- 229960003088 loratadine Drugs 0.000 claims description 2
- JCCNYMKQOSZNPW-UHFFFAOYSA-N loratadine Chemical compound C1CN(C(=O)OCC)CCC1=C1C2=NC=CC=C2CCC2=CC(Cl)=CC=C21 JCCNYMKQOSZNPW-UHFFFAOYSA-N 0.000 claims description 2
- 229960004391 lorazepam Drugs 0.000 claims description 2
- 229960004196 lymecycline Drugs 0.000 claims description 2
- AHEVKYYGXVEWNO-UEPZRUIBSA-N lymecycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3C[C@H]4[C@H](N(C)C)C(O)=C(C(=O)NCNCCCC[C@H](N)C(O)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O AHEVKYYGXVEWNO-UEPZRUIBSA-N 0.000 claims description 2
- 229960004090 maprotiline Drugs 0.000 claims description 2
- QSLMDECMDJKHMQ-GSXCWMCISA-N maprotiline Chemical compound C12=CC=CC=C2[C@@]2(CCCNC)C3=CC=CC=C3[C@@H]1CC2 QSLMDECMDJKHMQ-GSXCWMCISA-N 0.000 claims description 2
- 230000007246 mechanism Effects 0.000 claims description 2
- HRLIOXLXPOHXTA-UHFFFAOYSA-N medetomidine Chemical compound C=1C=CC(C)=C(C)C=1C(C)C1=CN=C[N]1 HRLIOXLXPOHXTA-UHFFFAOYSA-N 0.000 claims description 2
- 229960002140 medetomidine Drugs 0.000 claims description 2
- 229960003464 mefenamic acid Drugs 0.000 claims description 2
- HYYBABOKPJLUIN-UHFFFAOYSA-N mefenamic acid Chemical compound CC1=CC=CC(NC=2C(=CC=CC=2)C(O)=O)=C1C HYYBABOKPJLUIN-UHFFFAOYSA-N 0.000 claims description 2
- 229960001929 meloxicam Drugs 0.000 claims description 2
- 229960001924 melphalan Drugs 0.000 claims description 2
- SGDBTWWWUNNDEQ-LBPRGKRZSA-N melphalan Chemical compound OC(=O)[C@@H](N)CC1=CC=C(N(CCCl)CCCl)C=C1 SGDBTWWWUNNDEQ-LBPRGKRZSA-N 0.000 claims description 2
- 229960000365 meptazinol Drugs 0.000 claims description 2
- JLICHNCFTLFZJN-HNNXBMFYSA-N meptazinol Chemical compound C=1C=CC(O)=CC=1[C@@]1(CC)CCCCN(C)C1 JLICHNCFTLFZJN-HNNXBMFYSA-N 0.000 claims description 2
- 229960005042 mequitazine Drugs 0.000 claims description 2
- GLVAUDGFNGKCSF-UHFFFAOYSA-N mercaptopurine Chemical compound S=C1NC=NC2=C1NC=N2 GLVAUDGFNGKCSF-UHFFFAOYSA-N 0.000 claims description 2
- 229960001428 mercaptopurine Drugs 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 150000002739 metals Chemical class 0.000 claims description 2
- LMOINURANNBYCM-UHFFFAOYSA-N metaproterenol Chemical compound CC(C)NCC(O)C1=CC(O)=CC(O)=C1 LMOINURANNBYCM-UHFFFAOYSA-N 0.000 claims description 2
- 229960000485 methotrexate Drugs 0.000 claims description 2
- OJLOPKGSLYJEMD-URPKTTJQSA-N methyl 7-[(1r,2r,3r)-3-hydroxy-2-[(1e)-4-hydroxy-4-methyloct-1-en-1-yl]-5-oxocyclopentyl]heptanoate Chemical compound CCCCC(C)(O)C\C=C\[C@H]1[C@H](O)CC(=O)[C@@H]1CCCCCCC(=O)OC OJLOPKGSLYJEMD-URPKTTJQSA-N 0.000 claims description 2
- 229960001186 methysergide Drugs 0.000 claims description 2
- 229960002704 metipranolol Drugs 0.000 claims description 2
- BLWNYSZZZWQCKO-UHFFFAOYSA-N metipranolol hydrochloride Chemical compound [Cl-].CC(C)[NH2+]CC(O)COC1=CC(C)=C(OC(C)=O)C(C)=C1C BLWNYSZZZWQCKO-UHFFFAOYSA-N 0.000 claims description 2
- 229960004503 metoclopramide Drugs 0.000 claims description 2
- TTWJBBZEZQICBI-UHFFFAOYSA-N metoclopramide Chemical compound CCN(CC)CCNC(=O)C1=CC(Cl)=C(N)C=C1OC TTWJBBZEZQICBI-UHFFFAOYSA-N 0.000 claims description 2
- 229960002237 metoprolol Drugs 0.000 claims description 2
- IUBSYMUCCVWXPE-UHFFFAOYSA-N metoprolol Chemical compound COCCC1=CC=C(OCC(O)CNC(C)C)C=C1 IUBSYMUCCVWXPE-UHFFFAOYSA-N 0.000 claims description 2
- 229960000282 metronidazole Drugs 0.000 claims description 2
- VAOCPAMSLUNLGC-UHFFFAOYSA-N metronidazole Chemical compound CC1=NC=C([N+]([O-])=O)N1CCO VAOCPAMSLUNLGC-UHFFFAOYSA-N 0.000 claims description 2
- 229960003404 mexiletine Drugs 0.000 claims description 2
- 229960004023 minocycline Drugs 0.000 claims description 2
- 229960003632 minoxidil Drugs 0.000 claims description 2
- 229960005249 misoprostol Drugs 0.000 claims description 2
- YHXISWVBGDMDLQ-UHFFFAOYSA-N moclobemide Chemical compound C1=CC(Cl)=CC=C1C(=O)NCCN1CCOCC1 YHXISWVBGDMDLQ-UHFFFAOYSA-N 0.000 claims description 2
- 229960004644 moclobemide Drugs 0.000 claims description 2
- 229960005285 mofebutazone Drugs 0.000 claims description 2
- REOJLIXKJWXUGB-UHFFFAOYSA-N mofebutazone Chemical compound O=C1C(CCCC)C(=O)NN1C1=CC=CC=C1 REOJLIXKJWXUGB-UHFFFAOYSA-N 0.000 claims description 2
- 229960003938 moxonidine Drugs 0.000 claims description 2
- ZLRWFGBEDNTMEU-UHFFFAOYSA-N n-(2,6-diethylphenyl)-4,5-dihydro-1h-imidazol-3-ium-2-amine;chloride Chemical compound [Cl-].CCC1=CC=CC(CC)=C1NC1=[NH+]CCN1 ZLRWFGBEDNTMEU-UHFFFAOYSA-N 0.000 claims description 2
- 229960004255 nadolol Drugs 0.000 claims description 2
- VWPOSFSPZNDTMJ-UCWKZMIHSA-N nadolol Chemical compound C1[C@@H](O)[C@@H](O)CC2=C1C=CC=C2OCC(O)CNC(C)(C)C VWPOSFSPZNDTMJ-UCWKZMIHSA-N 0.000 claims description 2
- 229960002009 naproxen Drugs 0.000 claims description 2
- CMWTZPSULFXXJA-VIFPVBQESA-N naproxen Chemical compound C1=C([C@H](C)C(O)=O)C=CC2=CC(OC)=CC=C21 CMWTZPSULFXXJA-VIFPVBQESA-N 0.000 claims description 2
- 229960000751 nefopam Drugs 0.000 claims description 2
- 229960004927 neomycin Drugs 0.000 claims description 2
- 229960001783 nicardipine Drugs 0.000 claims description 2
- 229960001597 nifedipine Drugs 0.000 claims description 2
- HYIMSNHJOBLJNT-UHFFFAOYSA-N nifedipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC)C1C1=CC=CC=C1[N+]([O-])=O HYIMSNHJOBLJNT-UHFFFAOYSA-N 0.000 claims description 2
- 229960002187 nifenazone Drugs 0.000 claims description 2
- 229960000715 nimodipine Drugs 0.000 claims description 2
- 229960002700 octreotide Drugs 0.000 claims description 2
- 229960000381 omeprazole Drugs 0.000 claims description 2
- 229960005290 opipramol Drugs 0.000 claims description 2
- 229960002657 orciprenaline Drugs 0.000 claims description 2
- 229960002698 oxatomide Drugs 0.000 claims description 2
- BAINIUMDFURPJM-UHFFFAOYSA-N oxatomide Chemical compound O=C1NC2=CC=CC=C2N1CCCN(CC1)CCN1C(C=1C=CC=CC=1)C1=CC=CC=C1 BAINIUMDFURPJM-UHFFFAOYSA-N 0.000 claims description 2
- ADIMAYPTOBDMTL-UHFFFAOYSA-N oxazepam Chemical compound C12=CC(Cl)=CC=C2NC(=O)C(O)N=C1C1=CC=CC=C1 ADIMAYPTOBDMTL-UHFFFAOYSA-N 0.000 claims description 2
- 229960004535 oxazepam Drugs 0.000 claims description 2
- 229960004570 oxprenolol Drugs 0.000 claims description 2
- 229960002085 oxycodone Drugs 0.000 claims description 2
- 229960000649 oxyphenbutazone Drugs 0.000 claims description 2
- HFHZKZSRXITVMK-UHFFFAOYSA-N oxyphenbutazone Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=C(O)C=C1 HFHZKZSRXITVMK-UHFFFAOYSA-N 0.000 claims description 2
- 229960000625 oxytetracycline Drugs 0.000 claims description 2
- IWVCMVBTMGNXQD-PXOLEDIWSA-N oxytetracycline Chemical compound C1=CC=C2[C@](O)(C)[C@H]3[C@H](O)[C@H]4[C@H](N(C)C)C(O)=C(C(N)=O)C(=O)[C@@]4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-PXOLEDIWSA-N 0.000 claims description 2
- 235000019366 oxytetracycline Nutrition 0.000 claims description 2
- LSQZJLSUYDQPKJ-UHFFFAOYSA-N p-Hydroxyampicillin Natural products O=C1N2C(C(O)=O)C(C)(C)SC2C1NC(=O)C(N)C1=CC=C(O)C=C1 LSQZJLSUYDQPKJ-UHFFFAOYSA-N 0.000 claims description 2
- 229960005489 paracetamol Drugs 0.000 claims description 2
- 229960002296 paroxetine Drugs 0.000 claims description 2
- 239000004031 partial agonist Substances 0.000 claims description 2
- 229960002035 penbutolol Drugs 0.000 claims description 2
- KQXKVJAGOJTNJS-HNNXBMFYSA-N penbutolol Chemical compound CC(C)(C)NC[C@H](O)COC1=CC=CC=C1C1CCCC1 KQXKVJAGOJTNJS-HNNXBMFYSA-N 0.000 claims description 2
- 229940056367 penicillin v Drugs 0.000 claims description 2
- 229960000762 perphenazine Drugs 0.000 claims description 2
- 229960005222 phenazone Drugs 0.000 claims description 2
- 229960001190 pheniramine Drugs 0.000 claims description 2
- BPLBGHOLXOTWMN-MBNYWOFBSA-N phenoxymethylpenicillin Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)COC1=CC=CC=C1 BPLBGHOLXOTWMN-MBNYWOFBSA-N 0.000 claims description 2
- 229960002895 phenylbutazone Drugs 0.000 claims description 2
- VYMDGNCVAMGZFE-UHFFFAOYSA-N phenylbutazonum Chemical compound O=C1C(CCCC)C(=O)N(C=2C=CC=CC=2)N1C1=CC=CC=C1 VYMDGNCVAMGZFE-UHFFFAOYSA-N 0.000 claims description 2
- YVUQSNJEYSNKRX-UHFFFAOYSA-N pimozide Chemical compound C1=CC(F)=CC=C1C(C=1C=CC(F)=CC=1)CCCN1CCC(N2C(NC3=CC=CC=C32)=O)CC1 YVUQSNJEYSNKRX-UHFFFAOYSA-N 0.000 claims description 2
- 229960003634 pimozide Drugs 0.000 claims description 2
- AXKPFOAXAHJUAG-UHFFFAOYSA-N pipamperone Chemical compound C1CC(C(=O)N)(N2CCCCC2)CCN1CCCC(=O)C1=CC=C(F)C=C1 AXKPFOAXAHJUAG-UHFFFAOYSA-N 0.000 claims description 2
- 229960002776 pipamperone Drugs 0.000 claims description 2
- 229960002292 piperacillin Drugs 0.000 claims description 2
- WCMIIGXFCMNQDS-IDYPWDAWSA-M piperacillin sodium Chemical compound [Na+].O=C1C(=O)N(CC)CCN1C(=O)N[C@H](C=1C=CC=CC=1)C(=O)N[C@@H]1C(=O)N2[C@@H](C([O-])=O)C(C)(C)S[C@@H]21 WCMIIGXFCMNQDS-IDYPWDAWSA-M 0.000 claims description 2
- 229960004526 piracetam Drugs 0.000 claims description 2
- 229960005414 pirbuterol Drugs 0.000 claims description 2
- 229960002702 piroxicam Drugs 0.000 claims description 2
- QYSPLQLAKJAUJT-UHFFFAOYSA-N piroxicam Chemical compound OC=1C2=CC=CC=C2S(=O)(=O)N(C)C=1C(=O)NC1=CC=CC=N1 QYSPLQLAKJAUJT-UHFFFAOYSA-N 0.000 claims description 2
- ZEMIJUDPLILVNQ-ZXFNITATSA-N pivampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@@H]3N(C2=O)[C@H](C(S3)(C)C)C(=O)OCOC(=O)C(C)(C)C)=CC=CC=C1 ZEMIJUDPLILVNQ-ZXFNITATSA-N 0.000 claims description 2
- 229960003342 pivampicillin Drugs 0.000 claims description 2
- 229960004572 pizotifen Drugs 0.000 claims description 2
- FIADGNVRKBPQEU-UHFFFAOYSA-N pizotifen Chemical compound C1CN(C)CCC1=C1C2=CC=CC=C2CCC2=C1C=CS2 FIADGNVRKBPQEU-UHFFFAOYSA-N 0.000 claims description 2
- 239000004033 plastic Substances 0.000 claims description 2
- 229920003023 plastic Polymers 0.000 claims description 2
- IENZQIKPVFGBNW-UHFFFAOYSA-N prazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1=CC=CO1 IENZQIKPVFGBNW-UHFFFAOYSA-N 0.000 claims description 2
- 229960001289 prazosin Drugs 0.000 claims description 2
- 229960004694 prednimustine Drugs 0.000 claims description 2
- REQCZEXYDRLIBE-UHFFFAOYSA-N procainamide Chemical compound CCN(CC)CCNC(=O)C1=CC=C(N)C=C1 REQCZEXYDRLIBE-UHFFFAOYSA-N 0.000 claims description 2
- 229960000244 procainamide Drugs 0.000 claims description 2
- CPTBDICYNRMXFX-UHFFFAOYSA-N procarbazine Chemical compound CNNCC1=CC=C(C(=O)NC(C)C)C=C1 CPTBDICYNRMXFX-UHFFFAOYSA-N 0.000 claims description 2
- 229960000624 procarbazine Drugs 0.000 claims description 2
- 229960002288 procaterol Drugs 0.000 claims description 2
- FKNXQNWAXFXVNW-BLLLJJGKSA-N procaterol Chemical compound N1C(=O)C=CC2=C1C(O)=CC=C2[C@@H](O)[C@@H](NC(C)C)CC FKNXQNWAXFXVNW-BLLLJJGKSA-N 0.000 claims description 2
- 229960005253 procyclidine Drugs 0.000 claims description 2
- 229960003857 proglumide Drugs 0.000 claims description 2
- 229960003910 promethazine Drugs 0.000 claims description 2
- JWHAUXFOSRPERK-UHFFFAOYSA-N propafenone Chemical compound CCCNCC(O)COC1=CC=CC=C1C(=O)CCC1=CC=CC=C1 JWHAUXFOSRPERK-UHFFFAOYSA-N 0.000 claims description 2
- 229960000203 propafenone Drugs 0.000 claims description 2
- 229960003712 propranolol Drugs 0.000 claims description 2
- 229960002189 propyphenazone Drugs 0.000 claims description 2
- PXWLVJLKJGVOKE-UHFFFAOYSA-N propyphenazone Chemical compound O=C1C(C(C)C)=C(C)N(C)N1C1=CC=CC=C1 PXWLVJLKJGVOKE-UHFFFAOYSA-N 0.000 claims description 2
- JTTAUPUMOLRVRA-UHFFFAOYSA-N prothipendyl Chemical group C1=CN=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 JTTAUPUMOLRVRA-UHFFFAOYSA-N 0.000 claims description 2
- 229960000957 prothipendyl Drugs 0.000 claims description 2
- 229960001455 quinapril Drugs 0.000 claims description 2
- JSDRRTOADPPCHY-HSQYWUDLSA-N quinapril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](CC2=CC=CC=C2C1)C(O)=O)CC1=CC=CC=C1 JSDRRTOADPPCHY-HSQYWUDLSA-N 0.000 claims description 2
- 229960003401 ramipril Drugs 0.000 claims description 2
- HDACQVRGBOVJII-JBDAPHQKSA-N ramipril Chemical compound C([C@@H](C(=O)OCC)N[C@@H](C)C(=O)N1[C@@H](C[C@@H]2CCC[C@@H]21)C(O)=O)CC1=CC=CC=C1 HDACQVRGBOVJII-JBDAPHQKSA-N 0.000 claims description 2
- 229960000620 ranitidine Drugs 0.000 claims description 2
- VMXUWOKSQNHOCA-LCYFTJDESA-N ranitidine Chemical compound [O-][N+](=O)/C=C(/NC)NCCSCC1=CC=C(CN(C)C)O1 VMXUWOKSQNHOCA-LCYFTJDESA-N 0.000 claims description 2
- 239000003870 refractory metal Substances 0.000 claims description 2
- 229960003320 roxatidine Drugs 0.000 claims description 2
- 239000005060 rubber Substances 0.000 claims description 2
- 229960002052 salbutamol Drugs 0.000 claims description 2
- 229940072272 sandostatin Drugs 0.000 claims description 2
- 229940076279 serotonin Drugs 0.000 claims description 2
- 229960002370 sotalol Drugs 0.000 claims description 2
- ZBMZVLHSJCTVON-UHFFFAOYSA-N sotalol Chemical compound CC(C)NCC(O)C1=CC=C(NS(C)(=O)=O)C=C1 ZBMZVLHSJCTVON-UHFFFAOYSA-N 0.000 claims description 2
- 229960000468 sulfalene Drugs 0.000 claims description 2
- KXRZBTAEDBELFD-UHFFFAOYSA-N sulfamethopyrazine Chemical compound COC1=NC=CN=C1NS(=O)(=O)C1=CC=C(N)C=C1 KXRZBTAEDBELFD-UHFFFAOYSA-N 0.000 claims description 2
- 229960004940 sulpiride Drugs 0.000 claims description 2
- 229940032362 superoxide dismutase Drugs 0.000 claims description 2
- 229960002871 tenoxicam Drugs 0.000 claims description 2
- WZWYJBNHTWCXIM-UHFFFAOYSA-N tenoxicam Chemical compound O=C1C=2SC=CC=2S(=O)(=O)N(C)C1=C(O)NC1=CC=CC=N1 WZWYJBNHTWCXIM-UHFFFAOYSA-N 0.000 claims description 2
- VCKUSRYTPJJLNI-UHFFFAOYSA-N terazosin Chemical compound N=1C(N)=C2C=C(OC)C(OC)=CC2=NC=1N(CC1)CCN1C(=O)C1CCCO1 VCKUSRYTPJJLNI-UHFFFAOYSA-N 0.000 claims description 2
- 229960001693 terazosin Drugs 0.000 claims description 2
- 229960000195 terbutaline Drugs 0.000 claims description 2
- 229960000351 terfenadine Drugs 0.000 claims description 2
- IWVCMVBTMGNXQD-UHFFFAOYSA-N terramycin dehydrate Natural products C1=CC=C2C(O)(C)C3C(O)C4C(N(C)C)C(O)=C(C(N)=O)C(=O)C4(O)C(O)=C3C(=O)C2=C1O IWVCMVBTMGNXQD-UHFFFAOYSA-N 0.000 claims description 2
- 229960002180 tetracycline Drugs 0.000 claims description 2
- 235000019364 tetracycline Nutrition 0.000 claims description 2
- 229930101283 tetracycline Natural products 0.000 claims description 2
- 150000003522 tetracyclines Chemical class 0.000 claims description 2
- 229960000278 theophylline Drugs 0.000 claims description 2
- 229960002784 thioridazine Drugs 0.000 claims description 2
- 229960005013 tiotixene Drugs 0.000 claims description 2
- 229960002872 tocainide Drugs 0.000 claims description 2
- 229960004380 tramadol Drugs 0.000 claims description 2
- TVYLLZQTGLZFBW-GOEBONIOSA-N tramadol Natural products COC1=CC=CC([C@@]2(O)[C@@H](CCCC2)CN(C)C)=C1 TVYLLZQTGLZFBW-GOEBONIOSA-N 0.000 claims description 2
- LLPOLZWFYMWNKH-UHFFFAOYSA-N trans-dihydrocodeinone Natural products C1C(N(CCC234)C)C2CCC(=O)C3OC2=C4C1=CC=C2OC LLPOLZWFYMWNKH-UHFFFAOYSA-N 0.000 claims description 2
- 229960003741 tranylcypromine Drugs 0.000 claims description 2
- PHLBKPHSAVXXEF-UHFFFAOYSA-N trazodone Chemical compound ClC1=CC=CC(N2CCN(CCCN3C(N4C=CC=CC4=N3)=O)CC2)=C1 PHLBKPHSAVXXEF-UHFFFAOYSA-N 0.000 claims description 2
- 229960003991 trazodone Drugs 0.000 claims description 2
- ZEWQUBUPAILYHI-UHFFFAOYSA-N trifluoperazine Chemical compound C1CN(C)CCN1CCCN1C2=CC(C(F)(F)F)=CC=C2SC2=CC=CC=C21 ZEWQUBUPAILYHI-UHFFFAOYSA-N 0.000 claims description 2
- 229960002324 trifluoperazine Drugs 0.000 claims description 2
- XSCGXQMFQXDFCW-UHFFFAOYSA-N triflupromazine Chemical compound C1=C(C(F)(F)F)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 XSCGXQMFQXDFCW-UHFFFAOYSA-N 0.000 claims description 2
- 229960003904 triflupromazine Drugs 0.000 claims description 2
- IEDVJHCEMCRBQM-UHFFFAOYSA-N trimethoprim Chemical compound COC1=C(OC)C(OC)=CC(CC=2C(=NC(N)=NC=2)N)=C1 IEDVJHCEMCRBQM-UHFFFAOYSA-N 0.000 claims description 2
- 229960001082 trimethoprim Drugs 0.000 claims description 2
- 229960001128 triprolidine Drugs 0.000 claims description 2
- CBEQULMOCCWAQT-WOJGMQOQSA-N triprolidine Chemical compound C1=CC(C)=CC=C1C(\C=1N=CC=CC=1)=C/CN1CCCC1 CBEQULMOCCWAQT-WOJGMQOQSA-N 0.000 claims description 2
- 229960002634 tritoqualine Drugs 0.000 claims description 2
- IRGJVQIJENCTQF-UHFFFAOYSA-N tritoqualine Chemical compound CN1CCC2=CC=3OCOC=3C(OC)=C2C1C1C2=C(OCC)C(OCC)=C(OCC)C(N)=C2C(=O)O1 IRGJVQIJENCTQF-UHFFFAOYSA-N 0.000 claims description 2
- 229960000875 trofosfamide Drugs 0.000 claims description 2
- UMKFEPPTGMDVMI-UHFFFAOYSA-N trofosfamide Chemical compound ClCCN(CCCl)P1(=O)OCCCN1CCCl UMKFEPPTGMDVMI-UHFFFAOYSA-N 0.000 claims description 2
- 229960001130 urapidil Drugs 0.000 claims description 2
- 108700029852 vapreotide Proteins 0.000 claims description 2
- 229960002730 vapreotide Drugs 0.000 claims description 2
- 229960001722 verapamil Drugs 0.000 claims description 2
- 229960001255 viloxazine Drugs 0.000 claims description 2
- DKRSEIPLAZTSFD-LSDHHAIUSA-N viquidil Chemical compound C12=CC(OC)=CC=C2N=CC=C1C(=O)CC[C@@H]1CCNC[C@@H]1C=C DKRSEIPLAZTSFD-LSDHHAIUSA-N 0.000 claims description 2
- 229960003353 viquidil Drugs 0.000 claims description 2
- 208000020401 Depressive disease Diseases 0.000 claims 1
- 239000003706 n methyl dextro aspartic acid receptor stimulating agent Substances 0.000 claims 1
- 201000000980 schizophrenia Diseases 0.000 claims 1
- 239000003814 drug Substances 0.000 description 19
- 229940079593 drug Drugs 0.000 description 18
- 239000000243 solution Substances 0.000 description 7
- 238000012377 drug delivery Methods 0.000 description 5
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 238000007920 subcutaneous administration Methods 0.000 description 4
- 239000010936 titanium Substances 0.000 description 4
- 230000002378 acidificating effect Effects 0.000 description 3
- 230000000202 analgesic effect Effects 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000002594 fluoroscopy Methods 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 238000002483 medication Methods 0.000 description 3
- 229910052719 titanium Inorganic materials 0.000 description 3
- 210000003484 anatomy Anatomy 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- TZCXTZWJZNENPQ-UHFFFAOYSA-L barium sulfate Chemical compound [Ba+2].[O-]S([O-])(=O)=O TZCXTZWJZNENPQ-UHFFFAOYSA-L 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 210000002249 digestive system Anatomy 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000007913 intrathecal administration Methods 0.000 description 2
- 238000007914 intraventricular administration Methods 0.000 description 2
- 210000004185 liver Anatomy 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 238000007726 management method Methods 0.000 description 2
- 229940126701 oral medication Drugs 0.000 description 2
- 229940124583 pain medication Drugs 0.000 description 2
- 239000006187 pill Substances 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 230000002459 sustained effect Effects 0.000 description 2
- 206010067484 Adverse reaction Diseases 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 229910001200 Ferrotitanium Inorganic materials 0.000 description 1
- 108010000817 Leuprolide Proteins 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 208000012266 Needlestick injury Diseases 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000006838 adverse reaction Effects 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 229920005549 butyl rubber Polymers 0.000 description 1
- 229920002301 cellulose acetate Polymers 0.000 description 1
- 230000003749 cleanliness Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000001934 delay Effects 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 238000007373 indentation Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000002045 lasting effect Effects 0.000 description 1
- GFIJNRVAKGFPGQ-LIJARHBVSA-N leuprolide Chemical compound CCNC(=O)[C@@H]1CCCN1C(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](CC(C)C)NC(=O)[C@@H](NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C2=CC=CC=C2NC=1)NC(=O)[C@H](CC=1N=CNC=1)NC(=O)[C@H]1NC(=O)CC1)CC1=CC=C(O)C=C1 GFIJNRVAKGFPGQ-LIJARHBVSA-N 0.000 description 1
- 229960004338 leuprorelin Drugs 0.000 description 1
- 239000003589 local anesthetic agent Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000002559 palpation Methods 0.000 description 1
- WVDDGKGOMKODPV-ZQBYOMGUSA-N phenyl(114C)methanol Chemical compound O[14CH2]C1=CC=CC=C1 WVDDGKGOMKODPV-ZQBYOMGUSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- HWLDNSXPUQTBOD-UHFFFAOYSA-N platinum-iridium alloy Chemical compound [Ir].[Pt] HWLDNSXPUQTBOD-UHFFFAOYSA-N 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 229940044601 receptor agonist Drugs 0.000 description 1
- 239000000018 receptor agonist Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000025508 response to water Effects 0.000 description 1
- 210000004761 scalp Anatomy 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 238000001356 surgical procedure Methods 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 238000012385 systemic delivery Methods 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 210000000779 thoracic wall Anatomy 0.000 description 1
- 210000003813 thumb Anatomy 0.000 description 1
- 230000002792 vascular Effects 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/14244—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body
- A61M5/14276—Pressure infusion, e.g. using pumps adapted to be carried by the patient, e.g. portable on the body specially adapted for implantation
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M2005/14513—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons with secondary fluid driving or regulating the infusion
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/75—General characteristics of the apparatus with filters
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M2205/00—General characteristics of the apparatus
- A61M2205/75—General characteristics of the apparatus with filters
- A61M2205/7527—General characteristics of the apparatus with filters liquophilic, hydrophilic
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M5/00—Devices for bringing media into the body in a subcutaneous, intra-vascular or intramuscular way; Accessories therefor, e.g. filling or cleaning devices, arm-rests
- A61M5/14—Infusion devices, e.g. infusing by gravity; Blood infusion; Accessories therefor
- A61M5/142—Pressure infusion, e.g. using pumps
- A61M5/145—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons
- A61M5/1452—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons
- A61M5/14526—Pressure infusion, e.g. using pumps using pressurised reservoirs, e.g. pressurised by means of pistons pressurised by means of pistons the piston being actuated by fluid pressure
Definitions
- the present invention relates generally to the field of drug delivery systems.
- the present invention relates to implantable osmotic pump systems.
- Subcutaneous drug delivery and intravenous drug delivery have the advantage of bypassing the acidic and enzymatic action of the digestive system.
- IV administration requires the use of a percutaneous catheter or needle to deliver the drug to the vein.
- the percutaneous site requires extra cleanliness and maintenance to minimize the risk of infection. Infection is such a significant risk that IV administration is often limited to a number of weeks, at most.
- the patient must wear an external pump connected to the percutaneous catheter if the therapy is intended to last longer than a few hours and the patient desires to be ambulatory.
- Subcutaneous drug delivery can be either partially implanted or totally implanted.
- Partially implanted systems rely on a percutaneous catheter or needle stick to deliver the medication, therefore, partially implanted systems have the same limitations as IV systems. Totally implanted systems have fewer maintenance requirements and are far less prone to infection than IV or partially implanted systems.
- the water-swellable agent in the water-swellable agent chamber expands in volume, it pushes on the movable piston, which correspondingly decreases the volume of the drug chamber and causes the drug to be released through a diffusion outlet at a substantially constant rate.
- a limitation of the osmotic pump disclosed in the above-identified patent is that its infusion rate cannot be adjusted once it is implanted. This is acceptable for medications that do not need rate adjustment, but often physicians desire to adjust the infusion rate based on the clinical status of the patient.
- One example of when a physician would want to increase the infusion rate is in the field of pain management.
- Osmotic pumps can be used to deliver medication to treat pain lasting over an extended period of time. Pain, however, often increases with time, and sometimes patients become tolerant to pain medications; therefore, more medication is needed to effectively treat the pain.
- the system disclosed in the above-identified patent does not allow a rate increase after implantation, so the physician must surgically remove the current implant and implant an additional pump to deliver the correct dosage. However, the prospect of yet another surgical procedure may cause many patients to forego the potential benefits of the larger dose and may also cause their physicians to advise against the initial procedure altogether.
- Another object of the present invention is to provide improved pumps.
- Another object of the present invention is to provide improved implantable osmotic pumps that conform to the patient's anatomy and that more closely match the topology of the implant site.
- a still further object is to provide novel implantable osmotic pumps for long term delivery of a pharmaceutical agent that do not rely upon a right-cylindrical pharmaceutical agent compartment and/or conventional cylindrical pistons.
- such improved pumps should enable the physician to increase the dose of pharmaceutical agent delivered to the patient without removing the pump from the implant site.
- an implantable osmotic pump for delivering a pharmaceutical agent to a patient includes an osmotic engine; a substantially toroidal compartment adapted to store a pharmaceutical agent, and a piston disposed within the compartment, the osmotic engine being configured to cause the piston to travel within the compartment and deliver the pharmaceutical agent when the pump is implanted in the patient.
- the pump may include a tube coiled at least partially around the osmotic engine, an inner lumen of the tube defining the pharmaceutical agent compartment.
- the tube may include or be formed of metals, polymers and/or polyimid, for example.
- the compartment may be disposed at least partially around the osmotic engine.
- the tube may be rigid and the osmotic engine may be disposed within the tube.
- the osmotic engine may include a base, a cylindrical wall attached to the base and a free end opposite the base.
- the pump may include a housing configured to enclose at least the osmotic engine and the tube.
- the housing may include a first housing half and a second housing half that mates with the first housing half.
- Each of the first and second housing halves may define a saucer shape, for example.
- Each of the first and the second housing halves may be substantially circular in shape.
- the first housing half may define a substantially circular opening.
- the pump may further include a membrane enclosure, the membrane enclosure being partially surrounded by the osmotic engine and including an initial dose semipermeable membrane that is configured to allow water from the patient to reach the osmotic engine when the pump is implanted.
- the pump may be configured to deliver an initial dose of the pharmaceutical agent to the patient at a selected initial infusion rate, the selected initial infusion rate being related to a thickness, a composition and/or a surface area of the initial dose semipermeable membrane.
- the initial dose semipermeable membrane may be fitted with an initial dose impermeable membrane that initially seals the initial dose semipermeable membrane.
- a dose escalation assembly may be fitted in the membrane enclosure, the dose escalation assembly being adapted to selectively increase an amount of water from the patient that reaches the osmotic engine when the pump is implanted.
- the dose escalation assembly may include a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached.
- the dose escalation assembly may include a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached, and a second impermeable membrane configured to enable water from the patient to reach the osmotic engine through a second fluid path only after being breached, the first path being distinct from the second path.
- the first and second impermeable membranes may be disposed in the membrane enclosure in a stacked configuration wherein the first impermeable membrane must be breached before the second impermeable membrane can be breached.
- the first fluid path may include a first semipermeable membrane and the second fluid path may include a second semipermeable membrane that is distinct from the first semipermeable membrane.
- the pump may be configured to deliver a first dose of the pharmaceutical agent to the patient at a selected first infusion rate and a second dose of the pharmaceutical agent to the patient at a selected second infusion rate that is greater than the first infusion rate, the selected first and second infusion rates being related to a thickness, a composition and/or a surface area of the first and second semipermeable membranes, respectively.
- the osmotic engine may include a hygroscopic salt and/or an absorbent polymer.
- the absorbent polymer may include a material selected from a group including poly(acrylic acid), potassium salt; poly(acrylic acid), sodium salt; poly(acrylic acid-co-acrylamide), potassium salt; poly(acrylic acid), sodium salt-graft-poly(ethylene oxide); poly (2-hydroxethyl methacrylate); poly(2-hydroxypropyl methacrylate) and poly(isobutylene-co-maleic acid) or derivatives thereof.
- the tube-shaped compartment may have a substantially constant inner diameter over a length thereof. Alternatively, the tube-shaped compartment may have a non-constant inner diameter over a length thereof.
- the tube may be coiled at least twice around the osmotic engine.
- a layer of epoxy may encase at least the tube.
- the tube may include polyimid, for example.
- the tube may define a proximal end adjacent the osmotic engine and a distal end at an end opposite the proximal end, and the pump may further include a catheter coupled to the distal end.
- the catheter may include a radiopaque tip.
- the piston may include a sphere, an elastomeric cylinder and/or an elastomeric conical section and may include stainless steel, a refractory metal, plastic, nylon and/or rubber, for example.
- the tube-shaped compartment may be pre-loaded with a volume of the pharmaceutical agent.
- the pharmaceutical agent may be therapeutically effective for pain therapy, hormone therapy, gene therapy, angiogenic therapy, anti-tumor therapy, chemotherapy, allergy therapy, hypertension therapy, antibiotic therapy, bronchodilation therapy, asthmatic therapy, arrhythmia therapy, nootropic therapy, cytostatic and metastasis inhibition therapy, migraine therapy, gastrointestinal therapy and/or other pharmaceutical therapies.
- the dose escalation assembly may include a first saturated saline solution between the first impermeable membrane and the first semipermeable membrane, and a second saturated saline solution between the second impermeable membrane and the second semipermeable membrane.
- the present invention is also a kit, comprising an implantable osmotic pump for delivering a pharmaceutical agent to a patient, including an osmotic engine, a tube coiled around the osmotic engine, the tube defining an inner tube-shaped compartment adapted to store a pharmaceutical agent, and a piston disposed within the tube-shaped compartment, the osmotic engine being configured to exert a force on the piston to cause the piston to travel within the tube-shaped compartment and deliver the pharmaceutical agent when the pump is implanted in the patient, and a catheter configured to attach to the pump.
- an implantable osmotic pump for delivering a pharmaceutical agent to a patient, including an osmotic engine, a tube coiled around the osmotic engine, the tube defining an inner tube-shaped compartment adapted to store a pharmaceutical agent, and a piston disposed within the tube-shaped compartment, the osmotic engine being configured to exert a force on the piston to cause the piston to travel within the tube-shaped compartment and deliver
- the pump may further include a membrane enclosure, the membrane enclosure being partially surrounded by the osmotic engine and an initial dose semipermeable membrane that is configured to allow water from the patient to reach the osmotic engine when the pump is implanted.
- the pump may further include a dose escalation assembly fitted in the membrane enclosure, the dose escalation assembly being adapted to selectively increase an amount of water from the patient that reaches the osmotic engine when the pump is implanted.
- the dose escalation assembly may include a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached, and a second impermeable membrane configured to enable water from the patient to reach the osmotic engine through a second fluid path only after being breached, the first path being distinct from the second path.
- the kit may further include a dose escalation pen configured to breach the first and/or second impermeable membranes.
- the dose escalation pen may include a dose selection actuator that is adapted to re-configure the dose escalation pen to selectively breach one of the first and second impermeable membranes.
- the tube-shaped compartment may be pre-loaded with the pharmaceutical agent.
- the present invention is also a method of delivering a pharmaceutical agent to a patient, comprising steps of implanting a pump into the patient, the pump including a pump engine and a compartment adapted to store a pharmaceutical agent, the compartment defining at least a partial torus around the osmotic engine, and causing a piston to travel a distance within the compartment and to deliver a dose of pharmaceutical agent corresponding to the distance traveled out of the compartment.
- the implanting step may implant the pump (and/or portions thereof) intravascularly, subcutaneously, epidurally, intrathecally and/or intraventricularly, for example.
- a step of selectively increasing the dose in a stepwise manner over a treatment period without removing the pump from the patient may also be carried out.
- the pump engine may include an osmotic engine and the pump may include an initial dose semipermeable membrane initially exposed to the patient and at least one second semipermeable membrane initially not exposed to the patient.
- the increasing step may then include a step of selectively exposing the at least one second semipermeable membrane to the patient.
- the pump the engine may include an osmotic engine in fluid communication with the piston and the causing step may include a step of increasing a volume of the osmotic engine.
- the present invention is also a pump, comprising a pump engine; a tube coiled around the engine, the tube defining an inner tube-shaped compartment adapted to store a fluid, and a piston disposed within the tube-shaped compartment, the engine being adapted to cause the piston to travel within the tube-shaped compartment and to force a dose of the fluid out of the pump.
- the pump engine may include an osmotic engine.
- the fluid may include a pharmaceutical agent.
- a catheter may be coupled to the tube.
- the pump may be fully implantable in a body and the pump engine and the tube may be enclosed in a biocompatible pump housing.
- the pump may include a dose escalation assembly, the escalation assembly being configured to selectively increase the dose of fluid delivered.
- the dose escalation assembly may comprise means for increasing the dose delivered in a stepwise manner.
- the piston may include a sphere, an elastomeric cylinder and/or an elastomeric conical section, for example.
- the present invention is an osmotic pump, comprising an osmotic engine and a pump housing enclosing the osmotic engine and defining a substantially toroidal space adapted to contain a volume of pharmaceutical agent.
- the pump housing may define a substantially circular outline.
- the substantially toroidal space may define an inner and an outer radius, and the osmotic engine may be disposed within the inner radius.
- the pump may include a tube disposed within the toroidal space, the tube defining an inner lumen adapted to contain the volume of pharmaceutical agent.
- the pump housing may include a first housing half and a second housing half, the first and second housing halves defining, when mated together, the substantially toroidal space, the substantially toroidal space being fluid tight.
- the pump may further include a semipermeable membrane enclosure and a semipermeable membrane fitted within the semipermeable membrane enclosure.
- a single semipermeable membrane may be fitted within the semipermeable membrane enclosure, in which case, the pump is a single stage pump.
- the pump may be an n-stage pump and the semipermeable membrane enclosure may be fitted with n semipermeable membranes, each of the n stages being configured to be selectively activated after implantation of the pump.
- the pump may also include an OFF switch mechanism configured to be selectively activated after implantation of the pump.
- the pump may also include a filter assembly to filter the pharmaceutical agent.
- the filter assembly may include a plug of porous material, the porous material defining pores selected to have an average size of between about 2 microns and about 80 microns.
- the filter assembly may include a plug of porous material, the porous material being hydrophilic or hydrophobic (or having hydrophilic or hydrophobic characteristics).
- the present invention is also an implantable osmotic pump, comprising a semipermeable membrane; a housing adapted to enclose a volume of pharmaceutical agent and a portion of the semipermeable membrane; an osmotic engine adapted to cause the pharmaceutical agent to be delivered out of the pump as an osmotic pressure differential develops across the semipermeable membrane, and an OFF switch, the OFF switch being effective to reduce the osmotic pressure differential across the semipermeable membrane substantially to zero, and/or an ON switch, the ON switch being effective to enable the pump to begin to deliver the pharmaceutical agent out of the pump.
- the OFF switch may include an OFF switch impermeable membrane and the OFF switch may be configured to turn the pump OFF (reduce the osmotic pressure substantially to zero) only when the OFF switch impermeable membrane is breached.
- the OFF switch may define a lumen adapted to allow fluid to bypass the semipermeable membrane when the OFF switch impermeable membrane is breached.
- the ON switch may include an impermeable membrane disposed over the semipermeable membrane, the pump being turned ON (adapted to begin delivery of the pharmaceutical agent) only after the impermeable membrane is breached.
- a volume of saturated saline solution may be disposed between the semipermeable membrane and the impermeable membrane.
- the pharmaceutical agent compartment of the pump may contain Sufentanil, for example, and/or may contain other medications.
- the sufentanil may be at a concentration of up to about 500,000 ⁇ g/mL.
- the pharmaceutical agent may include Sufentanil and the pump may be configured for a daily delivery rate of Sufentanil of up to about 25 micrograms per day when the pump is configured to be implanted intraventricularly; a daily delivery rate of Sufentanil of up to about 50 micrograms per day when the pump is configured to be implanted intrathecally; a daily delivery rate of Sufentanil of up to about 500 micrograms per day when the pump is configured to be implanted epidurally; a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted subcutaneously, and a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted intravascularly.
- the present invention is also a filter assembly for an osmotic pump, the filter defining a first end configured to mate with the osmotic pump a second end configured to be exposed, in use, to an aqueous environment and including a filter between the first and second ends.
- the filter may include a porous material, the porous material defining pores selected to have an average size of between about 2 microns and about 80 microns.
- the plug of porous material may be hydrophilic or hydrophobic (or have hydrophobic or hydrophilic properties).
- FIG. 1 is a perspective view of the osmotic pump according to an embodiment of the present invention.
- FIG. 2 is an exploded view of the osmotic pump according to an embodiment of the present invention, showing the major components thereof.
- FIG. 3 is a plan view of the osmotic pump according to an embodiment of the present invention in which the first half of the housing has been removed.
- FIG. 4 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines BB′.
- FIG. 5 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines AA′.
- FIG. 6 is a plan view of the second half of the osmotic pump housing, according to an embodiment of the present invention.
- FIG. 7 is a cross sectional view of the second half of the osmotic pump housing, taken along lines CC′.
- FIG. 8 is a perspective view of the first half of the osmotic pump housing according to an embodiment of the present invention.
- FIG. 9 is a plan view of the first half of the osmotic pump housing of FIG. 8.
- FIG. 10 is a cross-sectional view of the first half of the osmotic pump housing of FIG. 9, taken along lines DD′.
- FIG. 11 is a plan view of an embodiment of the membrane enclosure, according to an embodiment thereof.
- FIG. 12 is a perspective view of the membrane enclosure of FIG. 11, showing the semipermeable membrane wells in dashed lines.
- FIG. 13 is a plan view of an impermeable membrane can of an osmotic pump according to an embodiment of the present invention, showing the internal surface and through bore thereof in dashed lines.
- FIG. 14 shows a side view of the impermeable membrane can of FIG. 13.
- FIG. 15 is a plan view of the osmotic engine of the osmotic pump, according to an embodiment of the present invention.
- FIG. 16 is a side view of the osmotic engine of FIG. 15.
- FIG. 17 is a plan view of the coiled tube, according to an embodiment of the present invention.
- FIG. 18 is a cross-sectional view of the tube of FIG. 17, taken along line EE′.
- FIG. 19 is a cross-sectional view of the coiled tube of FIG. 17, taken along line FF′.
- FIG. 20 illustrates the tube coupled to a catheter, according to an embodiment of the present invention.
- FIG. 21 illustrates the distal tip of the catheter of FIG. 20, according to an embodiment of the present invention.
- FIG. 22 illustrates the proximal end of the catheter of FIG. 20, according to an embodiment of the present invention.
- FIG. 23 shows an embodiment of a piston within the coiled pharmaceutical agent compartment, according to an embodiment of the present invention.
- FIG. 24 shows a further embodiment of a piston within the coiled pharmaceutical agent compartment, according to an embodiment of the present invention.
- FIG. 25 shows a further embodiment of still another piston within the coiled pharmaceutical agent compartment, according to an embodiment of the present invention.
- FIG. 26 shows a first step of a method by which the impermeable membrane of the first impermeable membrane may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 27 shows a second step of a method by which the impermeable membrane of the first impermeable membrane may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 28 shows a third step of a method by which the impermeable membrane of the first impermeable membrane can may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 29 shows a fourth step of a method by which the impermeable membrane of the second impermeable membrane can may be breached so as to further escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 30 shows a fifth step of a method by which the impermeable membrane of the second impermeable membrane can may be breached so as to further escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 31 shows a sixth step of a method by which the impermeable membrane of the second impermeable membrane can may be breached so as to further escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 32 is a plan view of another embodiment of the membrane enclosure, according to the present invention, showing the OFF feature of the present invention.
- FIG. 33 is a perspective view of the membrane enclosure of FIG. 32, showing the semipermeable membrane wells in dashed lines and the OFF switch feature of the present invention.
- FIG. 34 is an exploded view of another embodiment of an osmotic pump according to the present invention.
- FIG. 35 is an exploded view of a three-stage osmotic pump, according to another embodiment of the present invention.
- FIG. 36 a is a top view of a three stage osmotic pump according to the present invention, showing the internal structure thereof in dashed lines.
- FIG. 36 b is a reduced-size (relative to FIG. 36 a ) top view of a three stage osmotic pump, showing selected exemplary dimensions thereof.
- FIG. 37 is a cross-sectional view of a three stage osmotic pump according to the present invention, taken along cross-sectional line BB′ of FIG. 36.
- FIG. 38 is a cross-sectional view of a three stage osmotic pump according to the present invention, taken along cross-sectional line AA′ of FIG. 36.
- FIG. 39 is a cross-sectional view of the filter assembly 312 of FIG. 35.
- FIG. 40 is a front view of the filter assembly 312 of FIG. 35.
- FIG. 41 is a cross-sectional view of a piston, according to an embodiment of the present invention.
- FIG. 42 is a perspective view of a single stage osmotic pump according to another embodiment of the present invention.
- FIG. 43 is an exploded view of a single stage osmotic pump according to the present invention.
- FIG. 44 is a top view of a single stage osmotic pump according to the present invention, showing internal components thereof in dashed lines.
- FIG. 1 is a perspective view and FIG. 2 shows an exploded view of the pump 100 according to an embodiment of the present invention.
- the pump 100 includes a pump engine 108 and a substantially toroidal compartment around the engine 108 .
- the toroidal compartment is bounded by an inner radius 207 and an outer radius 208 and is adapted to contain a fluid, such as a pharmaceutical agent.
- the pharmaceutical agent compartment is tube-shaped and is defined by an inner lumen 110 of a tube 109 that may be coiled at least partially around the osmotic engine 108 .
- the tube 109 has a proximal end 184 and a distal end 186 .
- the tube 109 may include or be formed of, for example, polyimid.
- a piston 162 is disposed in the tube-shaped compartment 110 .
- the piston is adapted to travel (in the direction from the proximal end 184 to the distal end 186 of the tube 109 ) within the tube-shaped compartment 110 and to cause a volume of fluid to be forced out of the distal end 186 of the tube 109 .
- a catheter 102 may be coupled to the distal end 186 of the tube 109 , to enable the fluid forced out the distal end 186 of the tube 109 to be delivered to the intended delivery site within the patient.
- the pump engine 108 includes an osmotic engine.
- the pump 100 may further include a pump housing 101 that is configured to enclose (at least) the pump engine 108 and the tube 109 .
- the pump housing 101 may include a first housing half 106 and a mating second housing half 104 .
- the first and second pump housing halves 106 , 104 mate to one another like a clamshell, in a fluid-tight fashion.
- the first and second housing halves 106 , 104 may each have a generally circular outline (as may the entire pump 100 ) and have a generally define a saucer shape.
- the first housing half 106 may further define an opening 140 , which may be circular in shape.
- the present invention will now be described in terms of an implantable osmotic pump for delivering a pharmaceutical agent to a patient, although the present invention is not so limited.
- the pump and/or the catheter 102 may be implanted intravascularly, subcutaneously, epidurally, intrathecally and/or intraventricularly, for example.
- the pump engine 108 (referred to hereafter as osmotic engine 108 , although the present invention is not limited to osmotic-type pump engines) may be shaped like hollow, open-ended right cylinder.
- the osmotic engine 108 is hygroscopic and may include a salt block or a “salt wafer” and/or may include an absorbent polymer, such as poly(acrylic acid), potassium salt; poly(acrylic acid), sodium salt; poly(acrylic acid-co-acrylamide), potassium salt; poly(acrylic acid), sodium salt-graft-poly(ethylene oxide); poly (2-hydroxethyl methacrylate) and/or poly(2-hydroxypropyl methacrylate) and poly(isobutylene-co-maleic acid). Suitable absorbent polymers are available from Aldrich, Inc. of Milwaukee, Wis., for example.
- the osmotic engine 108 may include a base that may be disposed in a correspondingly shaped depression defined in the second housing half 104 and a cylindrical wall attached to the base.
- the pump 100 may include a generally cylindrical-shaped membrane enclosure 112 .
- the membrane enclosure 112 may be fitted within and partially surrounded by the pump engine 108 .
- the membrane enclosure 112 is dimensioned to closely fit the opening 140 defined in the first housing half 106 .
- the membrane enclosure 112 may include an initial dose semipermeable membrane (formed of or including cellulose acetate, for example), as shown in FIG. 5, to create a fluid path for water through the initial water access port 130 defined in the membrane enclosure 112 to the osmotic engine 108 .
- the initial water access port 130 may be spanned by a thin impermeable membrane 182 , thereby defining an interstitial space between the initial dose semipermeable membrane and the impermeable membrane.
- This interstitial space may be filled with a saturated saline solution, to keep the initial dose semipermeable membrane fully hydrated prior to implantation of the pump 100 in a patient (not shown).
- the physician may breach the impermeable membrane 182 spanning the initial water access port 130 to allow water from the patient to enter the initial dose semipermeable membrane well 150 (see FIG. 12) and migrate across the initial dose semipermeable membrane 134 (see FIG. 5) to reach the osmotic engine 108 .
- the initial water access port 130 , the thin impermeable membrane 182 and the saturated saline solution effectively form a pump ON switch.
- the pump 100 does not deliver any pharmaceutical agent to the patient. It is only after breaching the thin impermeable membrane 182 that the pump becomes effective to initiate delivery of the contained pharmaceutical agent to the patient.
- the saturated saline solution between the impermeable membrane 182 and the underlying initial dose semipermeable membrane 150 insures that the onset of delivery of the pharmaceutical agent is not delayed by the time required for the initial dose semipermeable membrane 150 to hydrate.
- the membrane enclosure 112 may also define a primary water access port 132 that may be (but need not be) concentric with the circumference of the membrane enclosure 112 .
- a dose escalation assembly may fit within the primary water access port 132 .
- the dose escalation assembly is adapted to selectively increase the amount of water from implantation site within the patient that reaches the osmotic engine 108 .
- the dose escalation assembly may include one or more impermeable membrane cans fitted within the primary water access port 132 of the membrane enclosure 112 .
- the dose escalation includes a first impermeable membrane can 114 stacked upon a second impermeable membrane can 116 whose structure and function is described hereunder.
- FIG. 3 is a plan view of the osmotic pump according to an embodiment of the present invention in which the first half of the housing has been removed
- FIG. 4 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines BB′ of FIG. 3
- FIG. 5 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines AA′.
- FIG. 3 shows the tube 109 coiled around the osmotic engine 108 from the proximal end 184 to the distal end thereof, shown at 186 .
- the distal end 186 of the coiled tube 109 may be fitted with a catheter ID tube 118 that facilitates the coupling of the catheter 102 to the distal end 186 of the tube 109 .
- the initial water access port 130 may lead to an initial dose semipermeable membrane 134 within the membrane enclosure 112 .
- the membrane enclosure 112 is configured to enable water from the patient to flow into the initial water access port 130 , to migrate across the initial dose semipermeable membrane 134 to reach the osmotic engine 108 .
- the engine 108 swells in volume and increases the osmotic pressure differential across the initial dose semipermeable membrane 134 and pushes the piston 160 within the tube-shaped compartment defined by the tube 109 toward the distal end 186 thereof, as the expansion of the osmotic engine 108 is constrained to within the tube-shaped compartment 110 .
- the piston 160 displaces a volume of pharmaceutical agent within the tube-shaped compartment 110 , which displaced volume of pharmaceutical agent is delivered out of the distal end 186 of the tube 109 .
- the pharmaceutical agent is delivered at a selected initial infusion rate that is related to the thickness, composition and surface area of the initial dose semipermeable membrane 134 .
- the pharmaceutical agent within the tube-shaped compartment is quickly delivered to the patient at the selected initial infusion rate. If the initial dose semipermeable membrane 134 is not pre-hydrated, the delivery of the pharmaceutical agent may be delayed until the membrane 134 becomes at least partially hydrated from water from the patient implant site. Until at least the first impermeable membrane cans 114 is breached, the only water that reaches the osmotic engine 108 enters the pump 100 through the initial water access port 130 to cross the initial dose semipermeable membrane 134 .
- the membrane assembly 112 includes a first semipermeable membrane 120 and a second semipermeable membrane 124 .
- the diameter of the semipermeable membranes 120 , 124 is directly proportional to the flow rate of the pump of the present invention.
- the first semipermeable membrane 120 may be (but need not be) vertically offset from the second semipermeable membrane 124 in the membrane enclosure 112 .
- FIGS. 13 and 14 of which FIG. 13 is a plan view of an impermeable membrane can 114 , 116 and of which FIG. 14 is a side view of the impermeable membrane can 114 , 116 of FIG. 13.
- the cans 114 , 116 include a cylindrical sidewall 154 and a through bore defined therein.
- the sidewall of the first impermeable membrane can 114 defines a first through bore 122 and the sidewall of the second impermeable membrane can 116 defines a second through bore 126 .
- An impermeable membrane 152 (shown in FIGS. 13 and 14 in its intact state) spans one of the free ends of each of the cans 114 , 116 .
- the impermeable membranes 152 are impermeable at least to water from the patient implant site and are configured to be easily breached by the physician, as is detailed below.
- the impermeable membranes 152 may include or be formed of most any water impermeable material that is biologically inert, such as titanium and/or stainless steel, coated platinum or platinum-iridium for radiopacity, for example.
- the impermeable membranes 152 of the first and second cans 114 , 116 may be surface ground to a thickness of about 1 or 2 thousandths of an inch, for example.
- the impermeable membranes 152 may alternatively include polyethylene, PET, PETG or PETE, for example.
- the impermeable membranes 152 are radiopaque, so as to be visible under fluoroscopy, once the pump 100 is implanted.
- a layer of radiopaque material may be sputtered or otherwise deposited on the impermeable membranes 152 , to render them visible under fluoroscopy.
- the impermeable membranes 110 are adapted to be breached by the physician or clinician, using a dose escalation pen (or a lancet or stylet as shown in FIGS. 26 - 31 ), or some other functionally similar device.
- the impermeable membranes 152 of the first and second impermeable membrane cans 114 , 116 initially seal the first and second semipermeable membranes 120 , 124 to prevent any water originating from the patient's implant site from crossing the semipermeable membranes 120 , 124 until the impermeable membrane(s) 152 is breached, as shown at 176 in FIGS. 28 - 31 .
- the first and second impermeable membrane cans 114 , 116 are stacked within the membrane enclosure 112 such that the respective through bores 122 , 126 thereof are aligned with the first and second semipermeable membranes 120 , 122 , respectively.
- the first through bore 122 defined in the first impermeable membrane can 114 is aligned with the first semipermeable membrane 120
- the second through bore 126 defined in the second impermeable membrane can 116 is aligned with the second semipermeable membrane 124 .
- the impermeable membrane 152 of the first impermeable membrane can 114 is disposed adjacent the primary water access port 132
- the second impermeable can 116 is disposed under the first impermeable membrane can 114 and oriented such that the impermeable membrane thereof is immediately adjacent the first impermeable membrane can 114 .
- the present figures show the pump 100 of the present invention equipped with two impermeable membrane cans 114 , 116 , the present invention is not limited thereto, as a single or a greater number of impermeable membrane cans may be used along with a corresponding number of semipermeable membranes.
- FIG. 6 is a plan view of the second half 104 of the osmotic pump housing 101 , according to an embodiment of the present invention and FIG. 7 is a cross sectional view thereof, taken along lines CC′.
- the second half 104 of the pump housing 101 may have a generally saucer-like shape.
- the second half 104 of the housing 101 may have a generally circular outline and may define a bulge 136 therein to accommodate a portion of the osmotic engine 108 therein.
- the rim of the second half 104 (See FIG. 10) of the pump housing 101 also defines an indentation 138 adapted to mate with a corresponding feature defined by the rim of the first half 106 of the pump housing 101 .
- FIG. 10 is a plan view of the second half 104 of the osmotic pump housing 101 , according to an embodiment of the present invention and FIG. 7 is a cross sectional view thereof, taken along lines CC′.
- the second half 104 of the pump housing 101 may have
- FIG. 8 is a perspective view of the first half 106 of the osmotic pump housing 101 according to an embodiment of the present invention
- FIG. 9 is a plan view
- FIG. 10 is a cross-sectional view thereof, taken along lines DD′.
- an opening 140 is defined in the also generally saucer-shaped first half 106 of the osmotic pump housing 101 .
- the opening 140 may be centered in the housing half 106 and concentric with the generally circular outline thereof, as shown in FIG. 9.
- the opening 140 is preferably dimensioned so as to closely fit the membrane enclosure 112 .
- the first half 106 of the pump housing 101 may define a bulge 144 that increases the interior volume of the pump 100 when the first and second housing halves 106 , 104 are mated to one another.
- FIG. 11 is a plan view of an embodiment of the membrane housing 112 , according to an embodiment thereof, whereas FIG. 12 is a perspective view of the membrane housing of FIG. 11, showing the semipermeable membrane wells in dashed lines.
- the membrane enclosure 112 may be shaped as a cylinder dimensioned to fit within the osmotic engine 108 and the opening 140 in the first housing half 106 .
- the primary water access port 132 may be a bore partially through the membrane enclosure 112 .
- the bore defined within the membrane enclosure 112 should not run the entire length of the membrane enclosure 112 .
- the only water paths from the implant site to the osmotic engine should be through the initial dose semipermeable membrane well 150 , through the first semipermeable membrane well 146 and/or through the second semipermeable membrane well 150 .
- the combination of the initial water access port 130 and the initial dose semipermeable well 150 runs the entire length of the membrane enclosure 112 , as also shown in FIG. 5. Indeed, once the pump 100 is implanted in the patient and any impermeable membrane that may span the initial water access port 130 is breached, a water path to the osmotic engine 108 may be defined straight through the membrane enclosure 112 , as the water from the implant site migrates across the initial dose semipermeable membrane (shown at 134 in FIG. 5) fitted within the initial dose semipermeable membrane well 150 .
- First and second semipermeable membranes 120 , 124 are fitted within the first and second semipermeable membrane wells 146 , 148 , respectively.
- water from the implant site may enter the primary access port 132 and travel through the first through bore 122 of the first impermeable membrane can 114 . From there, the water may travel through a first passageway 188 , defined between primary water access port 132 and first semipermeable membrane well 146 .
- the water After crossing the first semipermeable membrane 120 disposed in the well 146 , the water reaches the osmotic engine 108 .
- This first water path is shown at 178 in FIGS. 28, 29 and 31 .
- the engine 108 swells in volume due to the osmotic pressure differential across the first semipermeable membrane 120 and pushes the piston 160 , 162 within the tube-shaped compartment 110 defined within the tube 109 toward the distal end 186 thereof.
- the piston 160 , 162 displaces a volume of pharmaceutical agent within the tube-shaped compartment 110 , which displaced volume of pharmaceutical agent is delivered out of the distal end 186 of the tube 109 .
- the pharmaceutical agent is delivered at a selected first infusion rate that is related to the thickness, composition and surface area of the first semipermeable membrane 120 and that of the initial dose semipermeable membrane 134 .
- the engine 108 swells in volume due to the osmotic pressure differential across the second semipermeable membrane 124 and pushes the piston 160 , 162 within the tube-shaped compartment 110 defined by the tube 109 toward the distal end 186 thereof.
- the piston 160 displaces a volume of pharmaceutical agent within the tube-shaped compartment 110 , which displaced volume of pharmaceutical agent is delivered out of the distal end 186 of the tube 109 .
- the pharmaceutical agent is delivered at a selected second infusion rate that is related to the thickness, composition and surface area of the second semipermeable membrane 124 , the thickness, composition and surface area of the first semipermeable membrane 120 and the thickness, composition and surface area of the initial dose semipermeable membrane 134 .
- the infusion rate of the pump 100 is related to which of the semipermeable membranes 134 , 120 and/or 124 are currently exposed to the patient. If only the initial dose semipermeable membrane 134 is exposed to the patient, the infusion rate may be related only to the characteristics of the initial dose semipermeable membrane 134 .
- the pump infusion rate may be related to the characteristics of both the initial dose and first semipermeable membranes 134 , 120 .
- the total infusion rate of the pump 100 of the present invention in the state wherein both the initial dose semipermeable membrane 134 and the first semipermeable membrane 120 are breached may be approximated as the sum of the individual infusion rates contributed by each of the semipermeable membranes 134 and 120 .
- the pump infusion rate may be related to the characteristics of the initial dose, the first and the second semipermeable membranes 134 , 120 and 124 .
- the total infusion rate of the pump of the present invention in the state wherein the impermeable membranes 134 , 120 and 124 are breached may be approximated as the sum of the individual infusion rates contributed by each of the semipermeable membranes 134 , 120 and 124 .
- FIG. 17 is a plan view of the coiled tube 109 , according to an embodiment of the present invention
- FIG. 18 is a cross-sectional view of the tube 109 of FIG. 17, taken along line EE′
- FIG. 19 is a cross-sectional view thereof, taken along line FF′.
- the piston 160 may initially (upon implantation) be disposed within the tube-shaped compartment 110 near the proximal end 184 of the tube 109 . As the osmotic engine expands in volume, the only available volume for such expansion is within the tube-shaped compartment 110 .
- the expansion of the osmotic engine 108 forces the piston 160 to travel through the coiled tube 109 in the direction of arrow 166 , which causes a volume of pharmaceutical agent to be delivered to the patient out of the distal end 186 of the tube 109 .
- a catheter ID (inner diameter) tube 118 may be fitted onto the distal end 186 of the tube 109 , which facilitates coupling the catheter 102 thereto.
- the tube 109 may be coiled a number of times around the membrane enclosure 112 . In the embodiment shown in FIGS. 17 - 19 , the tube 109 is coiled four times around the membrane enclosure 112 (not shown in FIGS. 17 - 19 ), although a lesser or greater number of coils may readily be implemented.
- FIG. 20 illustrates the tube 109 coupled to a catheter 102 , according to an embodiment of the present invention.
- FIG. 21 illustrates the distal tip of the catheter of FIG. 20, according to an embodiment of the present invention and
- FIG. 22 illustrates the manner in which the catheter may couple to the catheter ID tube 118 .
- the outline of the pump housing 101 is shown for reference purposes.
- the catheter 102 is used to deliver the pharmaceutical agent from the catheter ID tube 118 to the target area within the patient's body.
- the catheter 102 may be visible under fluoroscopy over its length, thereby enabling the physician to trim the catheter to the desired length.
- the catheter 102 may include distal radiopaque markers, for example. As shown in FIG.
- the distal tip 158 of the catheter 102 may included a rounded, atraumatic tip.
- a plurality of pharmaceutical agent openings 158 may be defined through the catheter wall, from the internal lumen thereof to the patient.
- the catheter ID may be fitted over the catheter ID tube 118 using a friction fit and/or suitable biocompatible adhesive(s), for example.
- Any suitable radio opaque material may be used to render all or a portion or selected portions of the catheter 102 radio opaque.
- the catheter 102 may be formed of silicone or polyurethane and may be doped with barium sulfate, for example.
- the length of the catheter 102 may be most any therapeutically effective length.
- the catheter 102 may be about 5 cm to about 100 cm in length. More preferably, the catheter 102 may be about 10 cm to about 30 cm in length. More preferably still, the catheter 012 may be about 15 cm to about 25 cm in length. For example, the catheter 102 may be about 20 cm in length.
- the internal diameter (ID) of the infusion lumen of the catheter 102 may be selected within the range of about 0.001 inches to about 0.010 inches.
- the walls of the catheter 102 may be about 0.001 inches to about 0.006 inches in thickness.
- the outer diameter (OD) of the catheter 102 may be selected between about 0.024 inches and about 0.066 inches in thickness, for example.
- FIGS. 23 - 25 are cross sections of the tube 109 , showing various designs for the piston within the tube shaped compartment 110 .
- the piston of the osmotic pump 100 of the present invention may be spherical, as shown at 160 , cylindrical as shown at 162 or may approximate a conical section as shown at 163 , although other shapes are possible.
- a spherical shape minimizes the contact points of the piston 160 with the tube-shaped compartment 110 , thereby enabling the piston 160 to travel through the compartment 110 , even as the radius of curvature thereof changes form the proximal end 184 to the distal end of the tube 109 .
- Reference 170 represents slurry from the osmotic engine 108 .
- reference 170 may be considered to be an extension of the osmotic engine 108 , as it swells with water from the patient implant site through the semipermeable membranes 134 , 120 and/or 124 .
- the piston 160 , 162 , 163 may include stainless steel, nylon or an elastomer, for example.
- the piston 162 may be formed of an elastomeric substance, such as butyl rubber, for example. Such a cylindrical piston 162 may then deform to match the radius of curvature of the tube-shaped compartment 110 .
- the inner diameter of the tube 109 (that is, the diameter of the tube-shaped compartment 110 ) may be constant over the length of the tube 109 or may become larger or smaller over its length.
- the piston 163 may assume a truncated conical shape, in which a proximal end thereof is smaller than a distal end thereof (or vice-versa), to match the change in inner diameter of the tube-shaped compartment 110 .
- the coiled tube 109 may be encased in a hard substance, such as epoxy, for example.
- FIG. 26- 28 shows steps of a method by which the impermeable membrane 152 of the first impermeable membrane can 114 may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 29- 31 shows further steps of the method by which the impermeable membrane 152 of the second impermeable membrane can 116 may be breached so as to further escalate the dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention. While any device may be used to breach the impermeable membranes 152 , a dose escalation pen or stylet 172 similar to that shown in FIGS. 26 - 31 may be advantageously used.
- An actuator 192 such as a thumb actuated wheel, may be coupled to a pointed extendible portion 200 of the pen 172 . Actuating the actuator 192 may cause the pointed and extendible portion 200 to extend in length from a first length 202 shown in FIGS. 26 - 28 , to a second length 204 shown in FIGS. 29 - 31 .
- the patient may require a greater dose of pharmaceutical agent than provided by the initial dose, which initial dose is driven by the osmotic engine 108 swelling in response to water entering the initial water access port 132 .
- the physician may, according to the present invention, use a dose escalation pen or stylet to increase the effusion rate of the pharmaceutical agent from the pump 100 in a simple office or outpatient procedure.
- the impermeable membranes 152 prevent any water from the patient implant site from reaching the first and second semipermeable membranes 120 , 124 .
- the physician wishes to increase the dose of pharmaceutical agent delivered to the patient, he or she may use the dose escalation pen 172 in a configuration wherein the pointed extendible portion 200 thereof is extended only to the first length 202 .
- the physician may breach the impermeable membrane 152 of the first impermeable membrane can 114 , as shown at FIG. 27.
- the first length 202 of the extendible portion 200 is selected so as to breach only the impermeable membrane 152 of the first can 114 , and not that of the second can 116 .
- the outer diameter of the extendible portion 200 is slightly smaller than the outer diameter of the cans 114 , 116 , to enable the dose escalation pen 172 to create a wide opening when breaching the impermeable membranes 152 .
- the handle portion 206 of the pen 172 should have a diameter that is slightly larger than the outer diameter of the cans 114 , 116 , to limit the travel of the extendible portion 200 within the cans 114 , 116 .
- a first water path 178 is created, from the patient implant site through the first impermeable membrane can 114 , through the first through bore 122 thereof, across the first semipermeable membrane 120 to the osmotic engine 108 .
- water may now reach the osmotic engine 108 through the initial water access port 132 and through the first impermeable membrane can 114 .
- FIGS. 29 - 31 when the patient requires an even greater dose of pharmaceutical agent, the physician may actuate the actuator 192 to change the length of the extendible portion 200 to the second length 204 , which second length 204 is sufficient to penetrate the first can 114 and breach the impermeable membrane 152 of the second impermeable membrane can 116 , as shown at 177 FIG. 31.
- the dose escalation pen 172 is retracted as shown at FIG. 31, a second water path 180 is created.
- the second water path 180 runs from the patient implant site through the first impermeable membrane can 114 , through the breached impermeable membrane 152 of the second can 116 , through the second through bore 126 of the second can 116 , across the second semipermeable membrane 124 to the osmotic engine 108 .
- water may now reach the osmotic engine 108 through the initial water access port 132 , through the first impermeable membrane can 114 as well as through the second impermeable membrane can 116 .
- the tube-shaped compartment 110 of the pump 100 may be pre-loaded with one or more pharmaceutical agents.
- the pharmaceutical agent may be therapeutically effective for one or more of the following therapies: pain therapy, hormone therapy, gene therapy, angiogenic therapy, anti-tumor therapy, chemotherapy, allergy therapy, hypertension therapy, antibiotic therapy, bronchodilation therapy, asthmatic therapy, arrhythmia therapy, nootropic therapy, cytostatic and metastasis inhibition therapy, migraine therapy, gastrointestinal therapy and/or other pharmaceutical therapies.
- the pharmaceutical agent may include an opioid, a morphine-like agonist, a partial agonist, an agonist-antagonist and/or an alpha 2-adrenoreceptor agonist.
- the pharmaceutical agent may include morphine, hydromorphone, levorphanol, methadone, fentanyl, sufentanil, buprenorphine, pentazocine and/or butorphanol, for example.
- the pharmaceutical agent may, for example, include an analgesic agent such as Dihydrocodeine, Hydromorphone, Morphine, Diamorphine, Levorphanol, Butorphanol, Alfentanil, Pentazocine, Buprenorphine, Nefopam, Dextropropoxyphene, Flupirtine, Tramadol, Oxycodone, Metamizol, Propyphenazone, Phenazone, Nifenazone, Paracetamol, Phenylbutazone, Oxyphenbutazone, Mofebutazone, Acetyl Salicylic Acid, Diflunisal, Flurbiprofen, Ibuprofen, Diclofenac, Ketoprofen, Indomethacin, Naproxen, Meptazinol, Methadone, Pethidine, Hydrocodone, Meloxicam, Fenbufen, Mefenamic Acid, Piroxicam, Tenoxicam, Azapropazone, Codein, Bupivacaine, Ke
- the pharmaceutical agent may also include analgesic that is an alpha-2 adrenergetic agonist such as Clonidine, Tizadine, ST-91, Medetomidine, Dexmedetomidine and/or related alpha-2 adrenergetic agonists.
- the analgesic may also include an N-methyl-D-aspartate (NMDA) receptor agonist including Dexmethorphan, Ifenprodil, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine (MK-801), and/or related NMDA agonists.
- NMDA N-methyl-D-aspartate
- the analgesic may also include a somatostatin analog selected including Octreotide, Sandostatin, Vapreotide, Lanreotide, and/or related Somatostatin analogs, for example.
- the pharmaceutical agent may include a non-opioid analgesic such as Ketorolac, super oxide dismutase, baclofen, calcitonin, serotonin, vasoactive intestinal polypeptide, bombesin, omega-conopeptides, and/or related non-opioid analgesics, for example.
- the pharmaceutical agent in the compartment 310 may be dissolved in an aqueous solution.
- a preferred pharmaceutical agent is Sufentanil.
- the pharmaceutical agent is (or includes) Sufentanil that is dissolved in an aqueous medium
- the solubility of the Sufentanil within the aqueous solution increases with increasing acidity of the medium.
- the pumps according to the present invention may be configured to deliver Sufentanil at up to about 1500 ⁇ g/day, at a concentration of up to about 500,000 ⁇ g/ml, when the Sufentanil is dissolved in an acidic aqueous medium.
- a pump according to the present invention may include a pharmaceutical agent compartment 310 having a volume of 500 ⁇ l (microliters).
- a compartment 310 of this volume may contain 500 ⁇ l of pharmaceutical agent solution, the solution including 250,000 ⁇ g of Sufentanil dissolved in an acidic aqueous medium. Therefore, about 1500 ⁇ g/day of such pharmaceutical agent solution may be delivered to the patient over a treatment period spanning about 167 days. Implanted into a patient, such a pump would deliver about 3 ⁇ l of pharmaceutical agent solution to the patient per day, each such 3 ⁇ l of pharmaceutical agent solution containing about 1500 ⁇ l of Sufentanil.
- the pharmaceutical agent may also include an anti-allergic agent including Pheniramine, Dimethindene, Terfenadine, Astemizole, Tritoqualine, Loratadine, Doxylamine, Mequitazine, Dexchlorpheniramine, Triprolidine and/or Oxatomide, for example.
- an anti-allergic agent including Pheniramine, Dimethindene, Terfenadine, Astemizole, Tritoqualine, Loratadine, Doxylamine, Mequitazine, Dexchlorpheniramine, Triprolidine and/or Oxatomide, for example.
- the pharmaceutical agent may include one or more anti-hypertensive agents, such as Clonidine, Moxonidine, Methyldopa, Doxazosin, Prazosin, Urapidil, Terazosin, Minoxidil, Dihydralalzin, Deserpidine, Acebutalol, Alprenolol, Atenolol, Metoprolol, Bupranolol, Penbutolol, Propranolol, Esmolol, Bisoprolol, Ciliprolol, Sotalol, Metipranolol, Nadolol, Oxprenolol, Nifedipine, Nicardipine, Verapamil, Diltiazim, Felodipine, Nimodipine, Flunarizine, Quinapril, Lisinopril, Captopril, Ramipril, Fosinoprol and/or Enalapril, for example.
- the pharmaceutical agent may include an antibiotic agent such as Democlocycline, Doxycycline, Lymecycline, Minocycline, Oxytetracycline, Tetracycline, Sulfametopyrazine, Ofloaxcin, Ciproflaxacin, Aerosoxacin, Amoxycillin, Ampicillin, Becampicillin, Piperacillin, Pivampicillin, Cloxacillin, Penicillin V, Flucloxacillin, Erythromycin, Metronidazole, Clindamycin, Trimethoprim, Neomycin, Cefaclor, Cefadroxil, Cefixime, Cefpodoxime, Cefuroxine, Cephalexin and/or Cefradine, for example.
- an antibiotic agent such as Democlocycline, Doxycycline, Lymecycline, Minocycline, Oxytetracycline, Tetracycline, Sulfametopyrazine, Ofloaxcin, Ciproflaxacin, Aero
- Bronchodialotors and anti-asthmatic agents may also be pre-loaded into the tube-shaped compartment 110 , including Pirbuterol, Orciprenaline, Terbutaline, Fenoterol, Clenbuterol, Salbutamol, Procaterol, Theophylline, Cholintheophyllinate, Theophylline-ethylenediamine and/or Ketofen, for example.
- Anti-arrhythmic agents may also be pre-loaded into the pump 100 , including Viquidil, Procainamide, Mexiletine, Tocainide, Propafenone and/or Ipratropium, for example.
- the pharmaceutical agent may alternatively include a centrally acting substance such as Amantadine, Levodopa, Biperiden, Benzotropine, Bromocriptine, Procyclidine, Moclobemide, Tranylcypromine, Tranylpromide, Clomipramine, Maprotiline, Doxepin, Opipramol, Amitriptyline, Desipramine, Imipramine, Fluroxamin, Fluoxetin, Paroxetine, Trazodone, Viloxazine, Fluphenazine, Perphenazine, Promethazine, Thioridazine, Triflupromazine, Prothipendyl, thiothixene, Chlorprothixene, Haloperidol, Pipamperone, Pimozide, Sulpiride, Fenethylline, Methylphenildate, Trifluoperazine, Oxazepam, Lorazepam, Bromoazepam, Alprazol
- Cytostatics and metastasis inhibitors may also be pre-loaded within the pump 100 of the present invention, including Melfalan, Cyclophosphamide, Trofosfamide, Chlorambucil, Busulfan, Prednimustine, Fluororacil, Methotrexate, Mercaptopurine, Thioguanin, Hydroxycarbamide, Altretamine and/or Procarbazine, for example.
- anti-migrane agents such as Lisuride, Methysergide, Dihydroergotamine, Ergotamine and/or Pizotifen
- gastrointestinal agents such as Cimetidine, Famotidine, Ranitidine, Roxatidine, Pirenzipine, Omeprazole, Misoprostol, Proglumide, Cisapride, Bromopride and/or Metoclopramide.
- the present invention is also a kit, including an implantable osmotic pump 100 , a catheter 102 configured to attach to the pump 100 and/or dose escalation pen(s) 172 configured to breach the impermeable membranes 152 of the first and/or second cans 114 , 116 .
- FIGS. 32 and 33 are plan and perspective views, respectively, of a membrane enclosure 112 , according to embodiment of the present invention that addresses this need.
- the membrane enclosure 112 of FIGS. 32 and 33 is identical to the membrane enclosure of FIGS. 11 and 12, but for the presence of the structure referenced at 209 .
- Reference 209 denotes an OFF switch that is configured to enable the physician to nullify or substantially nullify the osmotic pressure differential across any and all semipermeable membranes such as shown at 120 or 124 .
- the OFF switch 209 includes an OFF switch impermeable membrane 210 and an OFF switch impermeable lumen 211 .
- fluid from the patient's implant site flows into the OFF switch lumen 211 , bypasses the semipermeable membranes, and flows directly to the osmotic engine 108 .
- any existing osmotic pressure that may have developed across such semipermeable membranes is reduced to zero or substantially zero, which correspondingly reduces the pump's driving force and reduces the delivery rate of the pharmaceutical agent to zero or about zero.
- the pump may then be explanted from the patient at will or may simply be left in place.
- FIG. 34 is an exploded view of another embodiment of an osmotic pump according to the present invention.
- FIG. 34 is similar to FIG. 1, but for the osmotic engine 108 . Accordingly, the description of the structures in FIG. 1 that are identical to structures in FIG. 34 is incorporated herein by reference.
- the osmotic engine is disposed within the tube 109 , at or near the proximal end 184 thereof.
- the tube in this case, is preferably rigid and may be formed of, for example, stainless steel or titanium. In this manner, the expansion of the osmotic engine 108 may be entirely constrained within the tube 109 , thereby pushing the piston 162 within the tube 109 toward the proximal end 186 thereof.
- FIG. 35 is an exploded view of a three-stage osmotic pump 300 , according to another embodiment of the present invention.
- FIG. 36 is a top view of a three stage osmotic pump according to the present invention, showing the internal structure thereof in dashed lines.
- FIGS. 37 and 38 are cross-sectional views of a three stage osmotic pump according to the present invention, taken along cross-sectional line BB′ and AA′ of FIG. 36.
- FIGS. 35 - 38 collectively, the constituent elements of the pump 300 that are similar to corresponding elements in FIG. 2 are identified by the same reference numerals and the detailed description thereof is omitted here.
- the osmotic pump 300 includes a substantially saucer-shaped housing that includes a first housing half 302 and a second housing half 304 that mates with the first housing half 302 .
- the osmotic pump 300 of FIG. 35 does not include a tube, such as tube 109 .
- the first and second halves 302 , 304 of the pump housing together define a tube-shaped and fluid-tight compartment 310 that is adapted to enclose a pharmaceutical agent.
- the compartment 310 is substantially toroidal in shape, in that it resembles a tube that curves around the osmotic engine 306 , following the outer curvature of the pump housing throughout most of its length.
- the tube-shaped compartment 310 defines a first end 330 that is in fluid communication with the osmotic engine 306 through a passageway 332 and a second end 334 adjacent the compartment outlet 314 that is formed when the first and second halves 302 , 304 of the housing are joined together.
- the pump 300 includes a piston 316 that is configured and adapted to travel within the compartment 310 in response to the force exerted thereon by the osmotic engine 306 .
- the piston 316 As the piston 316 travels within the compartment 310 , it displaces a volume of pharmaceutical agent.
- the piston 316 when the pump 300 is first implanted, is located adjacent the first end 330 of the compartment 310 and thereafter travels from the first end 330 toward the second end 334 , displacing a volume of pharmaceutical agent as it travels.
- FIG. 41 shows a cross-section of an exemplary embodiment of a piston 316 . As shown therein, the piston 316 may define a leading end 322 and a trailing end 324 .
- the outer surface of the piston may define one or more throughs 328 and ridges 326 , thereby further facilitating the travel of the piston 316 through the compartment 310 .
- the pump 300 when configured for systemic delivery of a pharmaceutical agent (as is the case wherein the pump is implanted subcutaneously, for example), may include a filter assembly 312 .
- the filter assembly 312 is configured to fit within the compartment outlet 314 , so as to maintain the substantially circular footprint of the pump 300 , as shown most clearly in FIG. 36.
- the structure of the filter assembly 312 is further described below, with reference to FIGS. 39 and 40.
- the filter assembly 312 filters the flow of the pharmaceutical agent from the pump 300 to the implant site within the patient or to the aqueous environment in which the pump is deployed.
- the filter assembly 312 prevents the passage of crystallized pharmaceutical agents to the patient. Crystallized pharmaceutical agents present a danger to the patient, in that the crystallized portion may contain an excess amount of agent and may cause an overdose.
- the volume of pharmaceutical agent that may be contained therein may be estimated by:
- n is about 270°, as the portion of the compartment 310 that is free to enclose pharmaceutical agent (i.e., from the leading edge 317 of the piston 316 to the proximal edge 313 of the filter assembly 312 ) spans about 3 ⁇ 4 of the circumference of the pump 300 .
- the pump 300 may also include a ring 308 .
- the ring 308 is preferably formed of the same material as the first and second housing halves 302 , 304 such as stainless steel, titanium or alloys thereof, for example.
- the piston 316 may be placed adjacent the first end 330 of the compartment 310 and the osmotic engine 306 may be centered between the first and second housing halves 302 , 304 .
- the first and second housing halves 302 , 304 may then be welded together, along the circumferential seam thereof.
- the first and second impermeable membrane cans 114 , 116 may then be inserted into the membrane enclosure, properly aligned therein and secured thereto.
- the ring 308 may then be inserted into the central opening formed by the first and second housing halves 302 , 304 and the semipermeable membrane enclosure 112 , complete with the first and second impermeable cans 114 , 116 may then be dropped into the central opening of the ring 308 , taking care to align the first through bore 124 with the first semipermeable membrane well 146 and the second through bore 124 with the second semipermeable membrane well 148 .
- the enclosure 112 may then be welded to the ring 308 and the ring 308 may be welded to the first half 302 of the pump housing (not necessarily in that order).
- the compartment 310 may then be filled with pharmaceutical agent (not shown in FIG.
- the filter assembly 312 may thereafter be fitted within the compartment outlet 314 and secured therein.
- the initial dose semipermeable membrane fitted within the initial dose semipermeable membrane well 336 is not shown in FIGS. 35 - 38 , nor is the first semipermeable membrane fitted within the first semipermeable membrane well 146 or the second semipermeable membrane fitted within the second semipermeable membrane well 148 .
- the membrane enclosure 112 may also incorporate the OFF switch features shown in FIGS. 32 and 33.
- the pump 300 is adapted to deliver a pharmaceutical agent or agents at three distinct rates.
- the first or initial rate occurs when the pump 300 is implanted within the patient and only the initial water access port 130 is in fluid communication with the fluid environment of the pump's implant site within the patient.
- water from the implant site enters the pump at 130 , crosses the initial dose semipermeable membrane in the semipermeable membrane well 336 and comes into contact with the osmotic engine 306 , causing the engine 306 to swell and to push the piston 316 toward the second end 334 of the compartment 310 at an initial first rate.
- the physician may puncture the impermeable membrane of the first can 114 , thereby causing water form the implant site to enter therein, cross the first semipermeable membrane within the first semipermeable membrane well 146 and reach the osmotic engine 306 .
- the delivery rate of the pump 300 is now increased from its first, initial rate to a second, larger rate, as more water from the patient implant site is reaching the osmotic engine 306 , causing it to swell at a faster rate, thereby causing to piston 316 to travels within the compartment 310 at a corresponding second, faster rate.
- FIG. 39 is a cross-sectional view of the filter assembly 312 of FIG. 35 and FIG. 40 is a front view of the filter assembly 312 of FIG. 35.
- the filter assembly 312 may be (but need not be) shaped as a slanted and truncated circular cylinder.
- the filter assembly 312 defines a proximal end 313 and a distal end 315 .
- the assembly 312 further defines a pharmaceutical agent inlet 321 that emerges at the proximal end 313 and a pharmaceutical agent outlet 320 that emerges at the distal end of the filter assembly 312 . Between the inlet 321 and the outlet 320 , the filter assembly includes a filter 318 .
- the filter 318 may include a plug of porous material, that defines a plurality of pores.
- the pores may range from about 2 microns in average pore size to about 80 microns in average pore size, for example.
- the average pore size of the porous material of the filter 318 may be selected within the range of about 5 microns to about 20 microns.
- the porous material of the filter 318 may be selected to be hydrophilic or hydrophobic, depending upon, for example, the nature of the pharmaceutical agent contained in the pump 300 .
- the pharmaceutical agent in the compartment 310 may be dissolved in an aqueous solution.
- the pharmaceutical agent in the compartment 310 of the pump 300 may be dissolved in a non-aqueous solution, such as alcohol (benzyl alcohol, for example).
- the filter assembly 318 may include a filter that is substantially hydrophobic in nature, which would allow the passage of a hydrophobic solution, but would not admit the passage of a (or a substantial amount of a hydrophilic solution such as water.
- the porous material 318 may have hydrophilic characteristics.
- the porous material 318 of the filter assembly 312 is hydrophilic, reliance is made on the pressure differential across the porous material 318 (higher on the proximal end 313 than on the distal end 315 end thereof, due to the pressure exerted by the osmotic engine 306 ) as well as on the pore size of the porous material 318 to limit the diffusion into the pump 300 .
- the pore size may be selected depending upon the magnitude of the pressure differential across the filter assembly 312 , the length of the filter 318 , the nature of the pharmaceutical agent to be delivered (for example, some pharmaceutical agent including large-sized protein molecules such contained in many pain medications may require a filter 318 defining relatively large size pores) and the aspect ratio of the filter 318 (ratio of aggregate pore size to length of filter 318 ), among other factors.
- Suitable materials for the porous material of the filter 318 may be obtained from, for example Millipore Corp. (http://www.millipore.com), Porex Corp. (http//:www.porex.com) and others.
- FIGS. 42, 43 and 44 show a perspective view, an exploded view and a top view of a single stage osmotic pump according to another embodiment of the present invention, with the top view of FIG. 44 showing internal components thereof in dashed lines.
- the pump 400 includes first and second housing halves 302 , 304 , filter assembly 312 , piston 316 , osmotic engine 306 and ring 308 , each of which being similar or identical to those structures in FIGS. 35 - 38 referenced by the same numerals. A detailed description of these structures is, therefore, omitted here.
- the single-stage pump 400 may include a semipermeable membrane enclosure 412 .
- the semipermeable membrane enclosure 412 may define a water access port 430 through which water from the patient implant site enters the pump 400 .
- the enclosure 412 also defines a water outlet port 438 , thorough which water comes into contact with the osmotic engine 306 .
- a semipermeable membrane Between the water inlet port 430 and the water outlet port 438 is disposed a semipermeable membrane.
- the water inlet port 430 may be covered by an impermeable membrane of stainless steel or titanium, for example.
- a saturated saline solution may be present between the impermeable membrane covering the water inlet port 430 and the semipermeable membrane within the enclosure 412 .
- Such a saturated saline solution maintains the semipermeable membrane in a hydrated state, and speeds up the initial delivery of the pharmaceutical agent contained in the compartment 310 of the pump 400 once the (optional) impermeable membrane covering the water inlet port 430 is breached.
- Such an impermeable membrane would be included in the pump 400 only if it was desired to implant the pump 400 in an inactive state and, at some later time, activate it so as to initiate the delivery of the pharmaceutical agent contained therein.
- the single stage pump 400 may also include the OFF switch features shown in FIGS. 32 and 33.
- the pharmaceutical agent compartment of the pumps according to the present invention may contain sufentanil, for example, and may also contain other medications.
- the pumps according to the present invention may be configured for intravascular, subcutaneous, epidural, intrathecal or intraventricular use. Table 1 below details exemplary maximum expected dosages of Sufentanil for above-listed uses. TABLE 1 Expected Maximum Dosage of Sufentanil ( ⁇ g/day) Intravascular 1500 Subcutaneous 1500 Epidural 500 Intrathecal 50 Intraventricular 25
- Table 2 below shows exemplary delivery schedules for pumps according to the present invention having a diameter of 1.8 cm and a compartment 310 having a capacity of 200 mg, a diameter of 2.8 cm and a compartment 310 having a capacity of 500 mg and a diameter of 5.0 cm and a compartment 310 having a capacity of 2000 mg over selected delivery rates (in mg/day) ranging from 0.50 mg/day to 20.0 mg/day.
- the present invention may be implanted under the patient's skin in an outpatient setting.
- the implantation procedure may be performed with a local anesthetic and may be carried out in as little as 15-20 minutes, for example.
- a small 0.5 to 0.75 inch incision may be all that is required, which incision may later be closed with one or more STERI-STRIP® skin closure devices or sutures, for example.
- the thin, circular shape of the pumps according to the present invention facilitates placement thereof in a number of locations throughout the patient's body, including the chest wall, the lower back, the arms and legs, the neck and even under the scalp, to identify a few exemplary locations.
Landscapes
- Health & Medical Sciences (AREA)
- Vascular Medicine (AREA)
- Engineering & Computer Science (AREA)
- Anesthesiology (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Infusion, Injection, And Reservoir Apparatuses (AREA)
Abstract
An implantable osmotic pump for delivering a pharmaceutical agent to a patient includes an osmotic engine, a substantially toroidal compartment disposed at least partially around the osmotic engine and a piston disposed within the compartment. The osmotic engine is configured to cause the piston to travel within the compartment and deliver a dose pharmaceutical agent contained within the compartment when the pump is implanted in an aqueous environment. A dose escalation assembly may be fitted to the pump, the dose escalation assembly being adapted to selectively increase the rate at which the pharmaceutical agent is delivered from the pump.
Description
- 1. Field of the Invention
- The present invention relates generally to the field of drug delivery systems. In particular, the present invention relates to implantable osmotic pump systems.
- 2. Description of the Related Art
- Since the beginning of modern medicine, drugs have been administered orally. Patients have taken pills as recommended by their physician. The pills must pass through the digestive system and then the liver before they reach their intended delivery site (e.g., the vascular system). The actions of the digestive tract and the liver typically reduce the efficacy of medication by about 33%. Furthermore, oral medications must be administered by the patient. Patient compliance to the prescribed delivery profile is often poor. Studies suggest that 40% of patients do not comply with their oral medication consumption instructions. This causes two concerns. First, patients who do not take their medication as instructed are not maintaining blood drug levels within the therapeutic window and are therefore not receiving adequate therapy for their disease. A second, worse scenario than receiving too little medication occurs when the patient may be taking too much medication either by accident or purposefully in order to make up for a missed dose. Both of these patient-controlled scenarios can be dangerous to the patient, and at a minimum may prolong or aggravate their disease. Subcutaneous drug delivery and intravenous drug delivery have the advantage of bypassing the acidic and enzymatic action of the digestive system. Unfortunately, IV administration requires the use of a percutaneous catheter or needle to deliver the drug to the vein. The percutaneous site requires extra cleanliness and maintenance to minimize the risk of infection. Infection is such a significant risk that IV administration is often limited to a number of weeks, at most. In addition, the patient must wear an external pump connected to the percutaneous catheter if the therapy is intended to last longer than a few hours and the patient desires to be ambulatory. Subcutaneous drug delivery can be either partially implanted or totally implanted. Partially implanted systems rely on a percutaneous catheter or needle stick to deliver the medication, therefore, partially implanted systems have the same limitations as IV systems. Totally implanted systems have fewer maintenance requirements and are far less prone to infection than IV or partially implanted systems.
- In the 1970s, a new approach toward sustained drug delivery was commercialized for animal use only. The driving force of such pumps was based upon a new approach utilizing the principle of osmosis. A recent example of such a pump is described listed in U.S. Pat. No. 5,728,396. This patent discloses an implantable osmotic pump that achieves a sustained delivery of leuprolide. The pump includes a right-cylindrical impermeable reservoir that is divided into a water-swellable agent chamber and a drug chamber, the two chambers being divided by a movable piston. Fluid from the body is imbibed through a semipermeable membrane into the water-swellable agent chamber. As the water-swellable agent in the water-swellable agent chamber expands in volume, it pushes on the movable piston, which correspondingly decreases the volume of the drug chamber and causes the drug to be released through a diffusion outlet at a substantially constant rate.
- A limitation of the osmotic pump disclosed in the above-identified patent, however, is that its infusion rate cannot be adjusted once it is implanted. This is acceptable for medications that do not need rate adjustment, but often physicians desire to adjust the infusion rate based on the clinical status of the patient. One example of when a physician would want to increase the infusion rate is in the field of pain management. Osmotic pumps can be used to deliver medication to treat pain lasting over an extended period of time. Pain, however, often increases with time, and sometimes patients become tolerant to pain medications; therefore, more medication is needed to effectively treat the pain. The system disclosed in the above-identified patent does not allow a rate increase after implantation, so the physician must surgically remove the current implant and implant an additional pump to deliver the correct dosage. However, the prospect of yet another surgical procedure may cause many patients to forego the potential benefits of the larger dose and may also cause their physicians to advise against the initial procedure altogether.
- The aspect ratio of such cylindrical osmotic pump delivery devices is large, and often not compatible with the human body. Indeed, the human body does not have naturally-formed right-cylindrical cavities in which to implant such devices in the patient, in an unobtrusive and comfortable manner.
- What are needed, therefore, are improved osmotic pumps. What are also needed are improved implantable osmotic pumps that conform to the patient's anatomy and that more closely match the topology of the implant site. Also needed are novel implantable osmotic pumps for long term delivery of a pharmaceutical agent that do not rely upon a right-cylindrical pharmaceutical agent compartment and/or conventional cylindrical pistons. Also needed are implantable pumps that enable the physician to increase the dose of pharmaceutical agent delivered to the patient without, however, removing the pump from the implant site.
- It is an object of the present invention, therefore, to provide improved pumps. Another object of the present invention is to provide improved implantable osmotic pumps that conform to the patient's anatomy and that more closely match the topology of the implant site. A still further object is to provide novel implantable osmotic pumps for long term delivery of a pharmaceutical agent that do not rely upon a right-cylindrical pharmaceutical agent compartment and/or conventional cylindrical pistons. Preferably, such improved pumps should enable the physician to increase the dose of pharmaceutical agent delivered to the patient without removing the pump from the implant site.
- In accordance with the above-described objects and those that will be mentioned and will become apparent below, an implantable osmotic pump for delivering a pharmaceutical agent to a patient, according to an embodiment of the present invention, includes an osmotic engine; a substantially toroidal compartment adapted to store a pharmaceutical agent, and a piston disposed within the compartment, the osmotic engine being configured to cause the piston to travel within the compartment and deliver the pharmaceutical agent when the pump is implanted in the patient.
- The pump may include a tube coiled at least partially around the osmotic engine, an inner lumen of the tube defining the pharmaceutical agent compartment. The tube may include or be formed of metals, polymers and/or polyimid, for example. The compartment may be disposed at least partially around the osmotic engine. The tube may be rigid and the osmotic engine may be disposed within the tube.
- According to other embodiments, the osmotic engine may include a base, a cylindrical wall attached to the base and a free end opposite the base. The pump may include a housing configured to enclose at least the osmotic engine and the tube. The housing may include a first housing half and a second housing half that mates with the first housing half. Each of the first and second housing halves may define a saucer shape, for example. Each of the first and the second housing halves may be substantially circular in shape. The first housing half may define a substantially circular opening. The pump may further include a membrane enclosure, the membrane enclosure being partially surrounded by the osmotic engine and including an initial dose semipermeable membrane that is configured to allow water from the patient to reach the osmotic engine when the pump is implanted. The pump may be configured to deliver an initial dose of the pharmaceutical agent to the patient at a selected initial infusion rate, the selected initial infusion rate being related to a thickness, a composition and/or a surface area of the initial dose semipermeable membrane. The initial dose semipermeable membrane may be fitted with an initial dose impermeable membrane that initially seals the initial dose semipermeable membrane.
- A dose escalation assembly may be fitted in the membrane enclosure, the dose escalation assembly being adapted to selectively increase an amount of water from the patient that reaches the osmotic engine when the pump is implanted. The dose escalation assembly may include a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached. The dose escalation assembly may include a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached, and a second impermeable membrane configured to enable water from the patient to reach the osmotic engine through a second fluid path only after being breached, the first path being distinct from the second path. The first and second impermeable membranes may be disposed in the membrane enclosure in a stacked configuration wherein the first impermeable membrane must be breached before the second impermeable membrane can be breached. The first fluid path may include a first semipermeable membrane and the second fluid path may include a second semipermeable membrane that is distinct from the first semipermeable membrane. The pump may be configured to deliver a first dose of the pharmaceutical agent to the patient at a selected first infusion rate and a second dose of the pharmaceutical agent to the patient at a selected second infusion rate that is greater than the first infusion rate, the selected first and second infusion rates being related to a thickness, a composition and/or a surface area of the first and second semipermeable membranes, respectively.
- The osmotic engine may include a hygroscopic salt and/or an absorbent polymer. The absorbent polymer may include a material selected from a group including poly(acrylic acid), potassium salt; poly(acrylic acid), sodium salt; poly(acrylic acid-co-acrylamide), potassium salt; poly(acrylic acid), sodium salt-graft-poly(ethylene oxide); poly (2-hydroxethyl methacrylate); poly(2-hydroxypropyl methacrylate) and poly(isobutylene-co-maleic acid) or derivatives thereof.
- The tube-shaped compartment may have a substantially constant inner diameter over a length thereof. Alternatively, the tube-shaped compartment may have a non-constant inner diameter over a length thereof. The tube may be coiled at least twice around the osmotic engine. A layer of epoxy may encase at least the tube. The tube may include polyimid, for example. The tube may define a proximal end adjacent the osmotic engine and a distal end at an end opposite the proximal end, and the pump may further include a catheter coupled to the distal end. The catheter may include a radiopaque tip. The piston may include a sphere, an elastomeric cylinder and/or an elastomeric conical section and may include stainless steel, a refractory metal, plastic, nylon and/or rubber, for example.
- The tube-shaped compartment may be pre-loaded with a volume of the pharmaceutical agent. For example, the pharmaceutical agent may be therapeutically effective for pain therapy, hormone therapy, gene therapy, angiogenic therapy, anti-tumor therapy, chemotherapy, allergy therapy, hypertension therapy, antibiotic therapy, bronchodilation therapy, asthmatic therapy, arrhythmia therapy, nootropic therapy, cytostatic and metastasis inhibition therapy, migraine therapy, gastrointestinal therapy and/or other pharmaceutical therapies.
- The dose escalation assembly may include a first saturated saline solution between the first impermeable membrane and the first semipermeable membrane, and a second saturated saline solution between the second impermeable membrane and the second semipermeable membrane.
- The present invention is also a kit, comprising an implantable osmotic pump for delivering a pharmaceutical agent to a patient, including an osmotic engine, a tube coiled around the osmotic engine, the tube defining an inner tube-shaped compartment adapted to store a pharmaceutical agent, and a piston disposed within the tube-shaped compartment, the osmotic engine being configured to exert a force on the piston to cause the piston to travel within the tube-shaped compartment and deliver the pharmaceutical agent when the pump is implanted in the patient, and a catheter configured to attach to the pump. The pump may further include a membrane enclosure, the membrane enclosure being partially surrounded by the osmotic engine and an initial dose semipermeable membrane that is configured to allow water from the patient to reach the osmotic engine when the pump is implanted. The pump may further include a dose escalation assembly fitted in the membrane enclosure, the dose escalation assembly being adapted to selectively increase an amount of water from the patient that reaches the osmotic engine when the pump is implanted. The dose escalation assembly may include a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached, and a second impermeable membrane configured to enable water from the patient to reach the osmotic engine through a second fluid path only after being breached, the first path being distinct from the second path. The kit may further include a dose escalation pen configured to breach the first and/or second impermeable membranes. The dose escalation pen may include a dose selection actuator that is adapted to re-configure the dose escalation pen to selectively breach one of the first and second impermeable membranes. The tube-shaped compartment may be pre-loaded with the pharmaceutical agent.
- The present invention is also a method of delivering a pharmaceutical agent to a patient, comprising steps of implanting a pump into the patient, the pump including a pump engine and a compartment adapted to store a pharmaceutical agent, the compartment defining at least a partial torus around the osmotic engine, and causing a piston to travel a distance within the compartment and to deliver a dose of pharmaceutical agent corresponding to the distance traveled out of the compartment. The implanting step may implant the pump (and/or portions thereof) intravascularly, subcutaneously, epidurally, intrathecally and/or intraventricularly, for example. A step of selectively increasing the dose in a stepwise manner over a treatment period without removing the pump from the patient may also be carried out. The pump engine may include an osmotic engine and the pump may include an initial dose semipermeable membrane initially exposed to the patient and at least one second semipermeable membrane initially not exposed to the patient. The increasing step may then include a step of selectively exposing the at least one second semipermeable membrane to the patient. The pump the engine may include an osmotic engine in fluid communication with the piston and the causing step may include a step of increasing a volume of the osmotic engine.
- The present invention is also a pump, comprising a pump engine; a tube coiled around the engine, the tube defining an inner tube-shaped compartment adapted to store a fluid, and a piston disposed within the tube-shaped compartment, the engine being adapted to cause the piston to travel within the tube-shaped compartment and to force a dose of the fluid out of the pump. The pump engine may include an osmotic engine. The fluid may include a pharmaceutical agent. A catheter may be coupled to the tube. The pump may be fully implantable in a body and the pump engine and the tube may be enclosed in a biocompatible pump housing. The pump may include a dose escalation assembly, the escalation assembly being configured to selectively increase the dose of fluid delivered. The dose escalation assembly may comprise means for increasing the dose delivered in a stepwise manner. The piston may include a sphere, an elastomeric cylinder and/or an elastomeric conical section, for example.
- According to another embodiment thereof, the present invention is an osmotic pump, comprising an osmotic engine and a pump housing enclosing the osmotic engine and defining a substantially toroidal space adapted to contain a volume of pharmaceutical agent. The pump housing may define a substantially circular outline. The substantially toroidal space may define an inner and an outer radius, and the osmotic engine may be disposed within the inner radius. The pump may include a tube disposed within the toroidal space, the tube defining an inner lumen adapted to contain the volume of pharmaceutical agent. Alternatively, the pump housing may include a first housing half and a second housing half, the first and second housing halves defining, when mated together, the substantially toroidal space, the substantially toroidal space being fluid tight. The pump may further include a semipermeable membrane enclosure and a semipermeable membrane fitted within the semipermeable membrane enclosure. A single semipermeable membrane may be fitted within the semipermeable membrane enclosure, in which case, the pump is a single stage pump. Alternatively, the pump may be an n-stage pump and the semipermeable membrane enclosure may be fitted with n semipermeable membranes, each of the n stages being configured to be selectively activated after implantation of the pump. The pump may also include an OFF switch mechanism configured to be selectively activated after implantation of the pump. The pump may also include a filter assembly to filter the pharmaceutical agent. The filter assembly may include a plug of porous material, the porous material defining pores selected to have an average size of between about 2 microns and about 80 microns. For example, the filter assembly may include a plug of porous material, the porous material being hydrophilic or hydrophobic (or having hydrophilic or hydrophobic characteristics).
- The present invention is also an implantable osmotic pump, comprising a semipermeable membrane; a housing adapted to enclose a volume of pharmaceutical agent and a portion of the semipermeable membrane; an osmotic engine adapted to cause the pharmaceutical agent to be delivered out of the pump as an osmotic pressure differential develops across the semipermeable membrane, and an OFF switch, the OFF switch being effective to reduce the osmotic pressure differential across the semipermeable membrane substantially to zero, and/or an ON switch, the ON switch being effective to enable the pump to begin to deliver the pharmaceutical agent out of the pump. The OFF switch may include an OFF switch impermeable membrane and the OFF switch may be configured to turn the pump OFF (reduce the osmotic pressure substantially to zero) only when the OFF switch impermeable membrane is breached. The OFF switch may define a lumen adapted to allow fluid to bypass the semipermeable membrane when the OFF switch impermeable membrane is breached. The ON switch may include an impermeable membrane disposed over the semipermeable membrane, the pump being turned ON (adapted to begin delivery of the pharmaceutical agent) only after the impermeable membrane is breached. A volume of saturated saline solution may be disposed between the semipermeable membrane and the impermeable membrane.
- The pharmaceutical agent compartment of the pump may contain Sufentanil, for example, and/or may contain other medications. The sufentanil may be at a concentration of up to about 500,000 μg/mL. The pharmaceutical agent may include Sufentanil and the pump may be configured for a daily delivery rate of Sufentanil of up to about 25 micrograms per day when the pump is configured to be implanted intraventricularly; a daily delivery rate of Sufentanil of up to about 50 micrograms per day when the pump is configured to be implanted intrathecally; a daily delivery rate of Sufentanil of up to about 500 micrograms per day when the pump is configured to be implanted epidurally; a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted subcutaneously, and a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted intravascularly. The catheter and the pump may be dimensioned to infuse a dose of pharmaceutical agent of up to about 1500 μg/day over a treatment period, for example.
- According to another embodiment thereof, the present invention is also a filter assembly for an osmotic pump, the filter defining a first end configured to mate with the osmotic pump a second end configured to be exposed, in use, to an aqueous environment and including a filter between the first and second ends. The filter may include a porous material, the porous material defining pores selected to have an average size of between about 2 microns and about 80 microns. The plug of porous material may be hydrophilic or hydrophobic (or have hydrophobic or hydrophilic properties).
- For a further understanding of the objects and advantages of the present invention, reference should be made to the following detailed description, taken in conjunction with the accompanying figures, in which:
- FIG. 1 is a perspective view of the osmotic pump according to an embodiment of the present invention.
- FIG. 2 is an exploded view of the osmotic pump according to an embodiment of the present invention, showing the major components thereof.
- FIG. 3 is a plan view of the osmotic pump according to an embodiment of the present invention in which the first half of the housing has been removed.
- FIG. 4 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines BB′.
- FIG. 5 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines AA′.
- FIG. 6 is a plan view of the second half of the osmotic pump housing, according to an embodiment of the present invention.
- FIG. 7 is a cross sectional view of the second half of the osmotic pump housing, taken along lines CC′.
- FIG. 8 is a perspective view of the first half of the osmotic pump housing according to an embodiment of the present invention.
- FIG. 9 is a plan view of the first half of the osmotic pump housing of FIG. 8.
- FIG. 10 is a cross-sectional view of the first half of the osmotic pump housing of FIG. 9, taken along lines DD′.
- FIG. 11 is a plan view of an embodiment of the membrane enclosure, according to an embodiment thereof.
- FIG. 12 is a perspective view of the membrane enclosure of FIG. 11, showing the semipermeable membrane wells in dashed lines.
- FIG. 13 is a plan view of an impermeable membrane can of an osmotic pump according to an embodiment of the present invention, showing the internal surface and through bore thereof in dashed lines.
- FIG. 14 shows a side view of the impermeable membrane can of FIG. 13.
- FIG. 15 is a plan view of the osmotic engine of the osmotic pump, according to an embodiment of the present invention.
- FIG. 16 is a side view of the osmotic engine of FIG. 15.
- FIG. 17 is a plan view of the coiled tube, according to an embodiment of the present invention.
- FIG. 18 is a cross-sectional view of the tube of FIG. 17, taken along line EE′.
- FIG. 19 is a cross-sectional view of the coiled tube of FIG. 17, taken along line FF′.
- FIG. 20 illustrates the tube coupled to a catheter, according to an embodiment of the present invention.
- FIG. 21 illustrates the distal tip of the catheter of FIG. 20, according to an embodiment of the present invention.
- FIG. 22 illustrates the proximal end of the catheter of FIG. 20, according to an embodiment of the present invention.
- FIG. 23 shows an embodiment of a piston within the coiled pharmaceutical agent compartment, according to an embodiment of the present invention.
- FIG. 24 shows a further embodiment of a piston within the coiled pharmaceutical agent compartment, according to an embodiment of the present invention.
- FIG. 25 shows a further embodiment of still another piston within the coiled pharmaceutical agent compartment, according to an embodiment of the present invention.
- FIG. 26 shows a first step of a method by which the impermeable membrane of the first impermeable membrane may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 27 shows a second step of a method by which the impermeable membrane of the first impermeable membrane may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 28 shows a third step of a method by which the impermeable membrane of the first impermeable membrane can may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 29 shows a fourth step of a method by which the impermeable membrane of the second impermeable membrane can may be breached so as to further escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 30 shows a fifth step of a method by which the impermeable membrane of the second impermeable membrane can may be breached so as to further escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 31 shows a sixth step of a method by which the impermeable membrane of the second impermeable membrane can may be breached so as to further escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention.
- FIG. 32 is a plan view of another embodiment of the membrane enclosure, according to the present invention, showing the OFF feature of the present invention.
- FIG. 33 is a perspective view of the membrane enclosure of FIG. 32, showing the semipermeable membrane wells in dashed lines and the OFF switch feature of the present invention.
- FIG. 34 is an exploded view of another embodiment of an osmotic pump according to the present invention.
- FIG. 35 is an exploded view of a three-stage osmotic pump, according to another embodiment of the present invention.
- FIG. 36a is a top view of a three stage osmotic pump according to the present invention, showing the internal structure thereof in dashed lines.
- FIG. 36b is a reduced-size (relative to FIG. 36a) top view of a three stage osmotic pump, showing selected exemplary dimensions thereof.
- FIG. 37 is a cross-sectional view of a three stage osmotic pump according to the present invention, taken along cross-sectional line BB′ of FIG. 36.
- FIG. 38 is a cross-sectional view of a three stage osmotic pump according to the present invention, taken along cross-sectional line AA′ of FIG. 36.
- FIG. 39 is a cross-sectional view of the
filter assembly 312 of FIG. 35. - FIG. 40 is a front view of the
filter assembly 312 of FIG. 35. - FIG. 41 is a cross-sectional view of a piston, according to an embodiment of the present invention.
- FIG. 42 is a perspective view of a single stage osmotic pump according to another embodiment of the present invention.
- FIG. 43 is an exploded view of a single stage osmotic pump according to the present invention.
- FIG. 44 is a top view of a single stage osmotic pump according to the present invention, showing internal components thereof in dashed lines.
- FIG. 1 is a perspective view and FIG. 2 shows an exploded view of the
pump 100 according to an embodiment of the present invention. Considering FIGS. 1 and 2 collectively, thepump 100 includes apump engine 108 and a substantially toroidal compartment around theengine 108. The toroidal compartment is bounded by aninner radius 207 and anouter radius 208 and is adapted to contain a fluid, such as a pharmaceutical agent. According to an embodiment of the present invention, the pharmaceutical agent compartment is tube-shaped and is defined by aninner lumen 110 of atube 109 that may be coiled at least partially around theosmotic engine 108. Thetube 109 has aproximal end 184 and adistal end 186. Thetube 109 may include or be formed of, for example, polyimid. Apiston 162 is disposed in the tube-shapedcompartment 110. The piston is adapted to travel (in the direction from theproximal end 184 to thedistal end 186 of the tube 109) within the tube-shapedcompartment 110 and to cause a volume of fluid to be forced out of thedistal end 186 of thetube 109. As shown in FIG. 1, acatheter 102 may be coupled to thedistal end 186 of thetube 109, to enable the fluid forced out thedistal end 186 of thetube 109 to be delivered to the intended delivery site within the patient. In one embodiment of the present invention, thepump engine 108 includes an osmotic engine. Thepump 100 may further include apump housing 101 that is configured to enclose (at least) thepump engine 108 and thetube 109. As shown in FIG. 2, thepump housing 101 may include afirst housing half 106 and a matingsecond housing half 104. According to an embodiment of the present invention, the first and secondpump housing halves second housing halves first housing half 106 may further define anopening 140, which may be circular in shape. - The present invention will now be described in terms of an implantable osmotic pump for delivering a pharmaceutical agent to a patient, although the present invention is not so limited. The pump and/or the
catheter 102 may be implanted intravascularly, subcutaneously, epidurally, intrathecally and/or intraventricularly, for example. As shown in FIG. 2 as well as in FIGS. 15 and 16, the pump engine 108 (referred to hereafter asosmotic engine 108, although the present invention is not limited to osmotic-type pump engines) may be shaped like hollow, open-ended right cylinder. Theosmotic engine 108 is hygroscopic and may include a salt block or a “salt wafer” and/or may include an absorbent polymer, such as poly(acrylic acid), potassium salt; poly(acrylic acid), sodium salt; poly(acrylic acid-co-acrylamide), potassium salt; poly(acrylic acid), sodium salt-graft-poly(ethylene oxide); poly (2-hydroxethyl methacrylate) and/or poly(2-hydroxypropyl methacrylate) and poly(isobutylene-co-maleic acid). Suitable absorbent polymers are available from Aldrich, Inc. of Milwaukee, Wis., for example. Theosmotic engine 108 may include a base that may be disposed in a correspondingly shaped depression defined in thesecond housing half 104 and a cylindrical wall attached to the base. - According to an embodiment of the present invention, the
pump 100 may include a generally cylindrical-shapedmembrane enclosure 112. Themembrane enclosure 112 may be fitted within and partially surrounded by thepump engine 108. Themembrane enclosure 112 is dimensioned to closely fit theopening 140 defined in thefirst housing half 106. Themembrane enclosure 112 may include an initial dose semipermeable membrane (formed of or including cellulose acetate, for example), as shown in FIG. 5, to create a fluid path for water through the initialwater access port 130 defined in themembrane enclosure 112 to theosmotic engine 108. The initialwater access port 130 may be spanned by a thinimpermeable membrane 182, thereby defining an interstitial space between the initial dose semipermeable membrane and the impermeable membrane. This interstitial space may be filled with a saturated saline solution, to keep the initial dose semipermeable membrane fully hydrated prior to implantation of thepump 100 in a patient (not shown). Prior to implantation, the physician may breach theimpermeable membrane 182 spanning the initialwater access port 130 to allow water from the patient to enter the initial dose semipermeable membrane well 150 (see FIG. 12) and migrate across the initial dose semipermeable membrane 134 (see FIG. 5) to reach theosmotic engine 108. In this manner, the initialwater access port 130, the thinimpermeable membrane 182 and the saturated saline solution effectively form a pump ON switch. Indeed, after implantation of the pump but before breaching the thinimpermeable membrane 182, thepump 100 does not deliver any pharmaceutical agent to the patient. It is only after breaching the thinimpermeable membrane 182 that the pump becomes effective to initiate delivery of the contained pharmaceutical agent to the patient. The saturated saline solution between theimpermeable membrane 182 and the underlying initial dosesemipermeable membrane 150 insures that the onset of delivery of the pharmaceutical agent is not delayed by the time required for the initial dosesemipermeable membrane 150 to hydrate. - The
membrane enclosure 112 may also define a primarywater access port 132 that may be (but need not be) concentric with the circumference of themembrane enclosure 112. A dose escalation assembly may fit within the primarywater access port 132. The dose escalation assembly, according to the present invention, is adapted to selectively increase the amount of water from implantation site within the patient that reaches theosmotic engine 108. The dose escalation assembly may include one or more impermeable membrane cans fitted within the primarywater access port 132 of themembrane enclosure 112. In the embodiment of FIG. 2, the dose escalation includes a first impermeable membrane can 114 stacked upon a second impermeable membrane can 116 whose structure and function is described hereunder. - Reference is now made to FIGS.3-5, in which FIG. 3 is a plan view of the osmotic pump according to an embodiment of the present invention in which the first half of the housing has been removed, FIG. 4 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines BB′ of FIG. 3 and FIG. 5 is a cross sectional view of the osmotic pump of FIG. 3, taken along lines AA′. FIG. 3 shows the
tube 109 coiled around theosmotic engine 108 from theproximal end 184 to the distal end thereof, shown at 186. Thedistal end 186 of the coiledtube 109 may be fitted with acatheter ID tube 118 that facilitates the coupling of thecatheter 102 to thedistal end 186 of thetube 109. As shown in FIG. 5, the initialwater access port 130 may lead to an initial dosesemipermeable membrane 134 within themembrane enclosure 112. Themembrane enclosure 112 is configured to enable water from the patient to flow into the initialwater access port 130, to migrate across the initial dosesemipermeable membrane 134 to reach theosmotic engine 108. As the water reaches theosmotic engine 108, theengine 108 swells in volume and increases the osmotic pressure differential across the initial dosesemipermeable membrane 134 and pushes thepiston 160 within the tube-shaped compartment defined by thetube 109 toward thedistal end 186 thereof, as the expansion of theosmotic engine 108 is constrained to within the tube-shapedcompartment 110. In so doing, thepiston 160 displaces a volume of pharmaceutical agent within the tube-shapedcompartment 110, which displaced volume of pharmaceutical agent is delivered out of thedistal end 186 of thetube 109. The pharmaceutical agent is delivered at a selected initial infusion rate that is related to the thickness, composition and surface area of the initial dosesemipermeable membrane 134. In the case wherein the initial dosesemipermeable membrane 134 is implanted in a fully hydrated state, the pharmaceutical agent within the tube-shaped compartment is quickly delivered to the patient at the selected initial infusion rate. If the initial dosesemipermeable membrane 134 is not pre-hydrated, the delivery of the pharmaceutical agent may be delayed until themembrane 134 becomes at least partially hydrated from water from the patient implant site. Until at least the firstimpermeable membrane cans 114 is breached, the only water that reaches theosmotic engine 108 enters thepump 100 through the initialwater access port 130 to cross the initial dosesemipermeable membrane 134. - As shown in FIG. 4, the
membrane assembly 112 includes a firstsemipermeable membrane 120 and a secondsemipermeable membrane 124. The diameter of thesemipermeable membranes semipermeable membrane 120 may be (but need not be) vertically offset from the secondsemipermeable membrane 124 in themembrane enclosure 112. Reference is now made to FIGS. 13 and 14, of which FIG. 13 is a plan view of an impermeable membrane can 114, 116 and of which FIG. 14 is a side view of the impermeable membrane can 114, 116 of FIG. 13. As shown therein, thecans cylindrical sidewall 154 and a through bore defined therein. Specifically, the sidewall of the first impermeable membrane can 114 defines a first throughbore 122 and the sidewall of the second impermeable membrane can 116 defines a second throughbore 126. An impermeable membrane 152 (shown in FIGS. 13 and 14 in its intact state) spans one of the free ends of each of thecans impermeable membranes 152, according to the present invention, are impermeable at least to water from the patient implant site and are configured to be easily breached by the physician, as is detailed below. Theimpermeable membranes 152 may include or be formed of most any water impermeable material that is biologically inert, such as titanium and/or stainless steel, coated platinum or platinum-iridium for radiopacity, for example. Theimpermeable membranes 152 of the first andsecond cans impermeable membranes 152 may alternatively include polyethylene, PET, PETG or PETE, for example. Preferably, theimpermeable membranes 152 are radiopaque, so as to be visible under fluoroscopy, once thepump 100 is implanted. For example, a layer of radiopaque material may be sputtered or otherwise deposited on theimpermeable membranes 152, to render them visible under fluoroscopy. Preferably, theimpermeable membranes 110 are adapted to be breached by the physician or clinician, using a dose escalation pen (or a lancet or stylet as shown in FIGS. 26-31), or some other functionally similar device. Theimpermeable membranes 152 of the first and secondimpermeable membrane cans semipermeable membranes semipermeable membranes - Returning now to FIGS.3-5, the first and second
impermeable membrane cans membrane enclosure 112 such that the respective throughbores semipermeable membranes bore 122 defined in the first impermeable membrane can 114 is aligned with the firstsemipermeable membrane 120 and the second throughbore 126 defined in the second impermeable membrane can 116 is aligned with the secondsemipermeable membrane 124. Moreover, theimpermeable membrane 152 of the first impermeable membrane can 114 is disposed adjacent the primarywater access port 132, whereas the secondimpermeable can 116 is disposed under the first impermeable membrane can 114 and oriented such that the impermeable membrane thereof is immediately adjacent the first impermeable membrane can 114. Although the present figures show thepump 100 of the present invention equipped with twoimpermeable membrane cans - FIG. 6 is a plan view of the
second half 104 of theosmotic pump housing 101, according to an embodiment of the present invention and FIG. 7 is a cross sectional view thereof, taken along lines CC′. As shown therein, thesecond half 104 of thepump housing 101 may have a generally saucer-like shape. Indeed, thesecond half 104 of thehousing 101 may have a generally circular outline and may define abulge 136 therein to accommodate a portion of theosmotic engine 108 therein. The rim of the second half 104 (See FIG. 10) of thepump housing 101 also defines anindentation 138 adapted to mate with a corresponding feature defined by the rim of thefirst half 106 of thepump housing 101. FIG. 8 is a perspective view of thefirst half 106 of theosmotic pump housing 101 according to an embodiment of the present invention, whereas FIG. 9 is a plan view and FIG. 10 is a cross-sectional view thereof, taken along lines DD′. As shown in the perspective view of FIG. 10, anopening 140 is defined in the also generally saucer-shapedfirst half 106 of theosmotic pump housing 101. Theopening 140 may be centered in thehousing half 106 and concentric with the generally circular outline thereof, as shown in FIG. 9. Theopening 140 is preferably dimensioned so as to closely fit themembrane enclosure 112. As shown in FIG. 10, thefirst half 106 of thepump housing 101 may define abulge 144 that increases the interior volume of thepump 100 when the first andsecond housing halves - FIG. 11 is a plan view of an embodiment of the
membrane housing 112, according to an embodiment thereof, whereas FIG. 12 is a perspective view of the membrane housing of FIG. 11, showing the semipermeable membrane wells in dashed lines. Considering now FIGS. 11 and 12 collectively, themembrane enclosure 112 may be shaped as a cylinder dimensioned to fit within theosmotic engine 108 and theopening 140 in thefirst housing half 106. The primarywater access port 132 may be a bore partially through themembrane enclosure 112. However, to best control the flow of water form the patient implant site to theosmotic engine 108, the bore defined within themembrane enclosure 112 should not run the entire length of themembrane enclosure 112. Indeed, the only water paths from the implant site to the osmotic engine should be through the initial dose semipermeable membrane well 150, through the first semipermeable membrane well 146 and/or through the secondsemipermeable membrane well 150. In contrast, the combination of the initialwater access port 130 and the initial dose semipermeable well 150 runs the entire length of themembrane enclosure 112, as also shown in FIG. 5. Indeed, once thepump 100 is implanted in the patient and any impermeable membrane that may span the initialwater access port 130 is breached, a water path to theosmotic engine 108 may be defined straight through themembrane enclosure 112, as the water from the implant site migrates across the initial dose semipermeable membrane (shown at 134 in FIG. 5) fitted within the initial dosesemipermeable membrane well 150. - First and second
semipermeable membranes 120, 124 (shown in FIG. 4) are fitted within the first and secondsemipermeable membrane wells impermeable membrane 152 of the first impermeable membrane can 114 is breached (as shown at 176 in FIGS. 28, 29 and 31), water from the implant site may enter theprimary access port 132 and travel through the first throughbore 122 of the first impermeable membrane can 114. From there, the water may travel through afirst passageway 188, defined between primarywater access port 132 and firstsemipermeable membrane well 146. After crossing the firstsemipermeable membrane 120 disposed in the well 146, the water reaches theosmotic engine 108. This first water path is shown at 178 in FIGS. 28, 29 and 31. As the water reaches theosmotic engine 108, theengine 108 swells in volume due to the osmotic pressure differential across the firstsemipermeable membrane 120 and pushes thepiston compartment 110 defined within thetube 109 toward thedistal end 186 thereof. In so doing, thepiston compartment 110, which displaced volume of pharmaceutical agent is delivered out of thedistal end 186 of thetube 109. The pharmaceutical agent is delivered at a selected first infusion rate that is related to the thickness, composition and surface area of the firstsemipermeable membrane 120 and that of the initial dosesemipermeable membrane 134. - Similarly, when the
impermeable membrane 152 of the second impermeable membrane can 116 is breached (as shown at 177 in FIGS. 28, 29 and 31), water from the implant site may enter theprimary access port 132 and travel through the second throughbore 126 of the second impermeable membrane can 116. From there, the water may travel through asecond passageway 190, defined within theenclosure 112 between the primarywater access port 132 and the secondsemipermeable membrane well 148. After crossing the secondsemipermeable membrane 124 disposed in the well 148, the water reaches theosmotic engine 108. This water path is shown at 180 in FIG. 31. As the water reaches theosmotic engine 108, theengine 108 swells in volume due to the osmotic pressure differential across the secondsemipermeable membrane 124 and pushes thepiston compartment 110 defined by thetube 109 toward thedistal end 186 thereof. In so doing, thepiston 160 displaces a volume of pharmaceutical agent within the tube-shapedcompartment 110, which displaced volume of pharmaceutical agent is delivered out of thedistal end 186 of thetube 109. The pharmaceutical agent is delivered at a selected second infusion rate that is related to the thickness, composition and surface area of the secondsemipermeable membrane 124, the thickness, composition and surface area of the firstsemipermeable membrane 120 and the thickness, composition and surface area of the initial dosesemipermeable membrane 134. Indeed, the infusion rate of thepump 100 is related to which of thesemipermeable membranes semipermeable membrane 134 is exposed to the patient, the infusion rate may be related only to the characteristics of the initial dosesemipermeable membrane 134. If both the initial dosesemipermeable membrane 134 and the firstsemipermeable membrane 120 are exposed to the patient, the pump infusion rate may be related to the characteristics of both the initial dose and firstsemipermeable membranes pump 100 of the present invention in the state wherein both the initial dosesemipermeable membrane 134 and the firstsemipermeable membrane 120 are breached, may be approximated as the sum of the individual infusion rates contributed by each of thesemipermeable membranes semipermeable membrane 134, the firstsemipermeable membrane 120 and the secondsemipermeable membrane 124 are exposed to the patient, the pump infusion rate may be related to the characteristics of the initial dose, the first and the secondsemipermeable membranes impermeable membranes semipermeable membranes - FIG. 17 is a plan view of the coiled
tube 109, according to an embodiment of the present invention, FIG. 18 is a cross-sectional view of thetube 109 of FIG. 17, taken along line EE′ and FIG. 19 is a cross-sectional view thereof, taken along line FF′. According to the present invention, thepiston 160 may initially (upon implantation) be disposed within the tube-shapedcompartment 110 near theproximal end 184 of thetube 109. As the osmotic engine expands in volume, the only available volume for such expansion is within the tube-shapedcompartment 110. Therefore, the expansion of theosmotic engine 108 forces thepiston 160 to travel through the coiledtube 109 in the direction ofarrow 166, which causes a volume of pharmaceutical agent to be delivered to the patient out of thedistal end 186 of thetube 109. A catheter ID (inner diameter)tube 118 may be fitted onto thedistal end 186 of thetube 109, which facilitates coupling thecatheter 102 thereto. As shown, thetube 109 may be coiled a number of times around themembrane enclosure 112. In the embodiment shown in FIGS. 17-19, thetube 109 is coiled four times around the membrane enclosure 112 (not shown in FIGS. 17-19), although a lesser or greater number of coils may readily be implemented. - FIG. 20 illustrates the
tube 109 coupled to acatheter 102, according to an embodiment of the present invention. FIG. 21 illustrates the distal tip of the catheter of FIG. 20, according to an embodiment of the present invention and FIG. 22 illustrates the manner in which the catheter may couple to thecatheter ID tube 118. In FIG. 20, the outline of thepump housing 101 is shown for reference purposes. Thecatheter 102 is used to deliver the pharmaceutical agent from thecatheter ID tube 118 to the target area within the patient's body. Thecatheter 102 may be visible under fluoroscopy over its length, thereby enabling the physician to trim the catheter to the desired length. Alternatively, thecatheter 102 may include distal radiopaque markers, for example. As shown in FIG. 21, thedistal tip 158 of thecatheter 102 may included a rounded, atraumatic tip. A plurality ofpharmaceutical agent openings 158 may be defined through the catheter wall, from the internal lumen thereof to the patient. As shown in FIG. 22, the catheter ID may be fitted over thecatheter ID tube 118 using a friction fit and/or suitable biocompatible adhesive(s), for example. Any suitable radio opaque material may be used to render all or a portion or selected portions of thecatheter 102 radio opaque. For example, thecatheter 102 may be formed of silicone or polyurethane and may be doped with barium sulfate, for example. The length of thecatheter 102 may be most any therapeutically effective length. A longer length, however, increases the dead space therein and delays the effusion of the pharmaceutical agent into the patient, as it will take longer for the agent to travel the length thereof. For example, thecatheter 102 may be about 5 cm to about 100 cm in length. More preferably, thecatheter 102 may be about 10 cm to about 30 cm in length. More preferably still, the catheter 012 may be about 15 cm to about 25 cm in length. For example, thecatheter 102 may be about 20 cm in length. The internal diameter (ID) of the infusion lumen of thecatheter 102 may be selected within the range of about 0.001 inches to about 0.010 inches. The walls of thecatheter 102 may be about 0.001 inches to about 0.006 inches in thickness. According to an embodiment of the present invention, the outer diameter (OD) of thecatheter 102 may be selected between about 0.024 inches and about 0.066 inches in thickness, for example. - FIGS.23-25 are cross sections of the
tube 109, showing various designs for the piston within the tube shapedcompartment 110. Considering now FIGS. 23-25 collectively, the piston of theosmotic pump 100 of the present invention may be spherical, as shown at 160, cylindrical as shown at 162 or may approximate a conical section as shown at 163, although other shapes are possible. A spherical shape minimizes the contact points of thepiston 160 with the tube-shapedcompartment 110, thereby enabling thepiston 160 to travel through thecompartment 110, even as the radius of curvature thereof changes form theproximal end 184 to the distal end of thetube 109.Reference 170 represents slurry from theosmotic engine 108. Indeed,reference 170 may be considered to be an extension of theosmotic engine 108, as it swells with water from the patient implant site through thesemipermeable membranes osmotic engine 108 swells in volume, it exerts aforce 168 on thepiston compartment 110 in the direction ofarrow 166. In so doing, thepiston pharmaceutical agent 164. Thepiston piston 162 may be formed of an elastomeric substance, such as butyl rubber, for example. Such acylindrical piston 162 may then deform to match the radius of curvature of the tube-shapedcompartment 110. The inner diameter of the tube 109 (that is, the diameter of the tube-shaped compartment 110) may be constant over the length of thetube 109 or may become larger or smaller over its length. In the latter case, thepiston 163 may assume a truncated conical shape, in which a proximal end thereof is smaller than a distal end thereof (or vice-versa), to match the change in inner diameter of the tube-shapedcompartment 110. To prevent thetube 109 from compressing, binding and/or kinking as theosmotic engine 108 swells, thecoiled tube 109 may be encased in a hard substance, such as epoxy, for example. - FIG. 26-28 shows steps of a method by which the
impermeable membrane 152 of the first impermeable membrane can 114 may be breached so as to escalate a dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention. FIG. 29-31 shows further steps of the method by which theimpermeable membrane 152 of the second impermeable membrane can 116 may be breached so as to further escalate the dose of pharmaceutical agent delivered to the patient, according to an embodiment of the present invention. While any device may be used to breach theimpermeable membranes 152, a dose escalation pen orstylet 172 similar to that shown in FIGS. 26-31 may be advantageously used. Anactuator 192, such as a thumb actuated wheel, may be coupled to a pointedextendible portion 200 of thepen 172. Actuating theactuator 192 may cause the pointed andextendible portion 200 to extend in length from afirst length 202 shown in FIGS. 26-28, to asecond length 204 shown in FIGS. 29-31. At some time after implantation of thepump 100, the patient may require a greater dose of pharmaceutical agent than provided by the initial dose, which initial dose is driven by theosmotic engine 108 swelling in response to water entering the initialwater access port 132. Without removing thepump 100 from the patient, the physician may, according to the present invention, use a dose escalation pen or stylet to increase the effusion rate of the pharmaceutical agent from thepump 100 in a simple office or outpatient procedure. - For clarity of illustration, only the first and second
impermeable membrane cans pump 100 are shown in FIGS. 26-31. In the state illustrated in FIG. 26, theimpermeable membranes 152 prevent any water from the patient implant site from reaching the first and secondsemipermeable membranes dose escalation pen 172 in a configuration wherein the pointedextendible portion 200 thereof is extended only to thefirst length 202. By inserting theportion 200 through the patient's skin under fluoroscopic, ultrasonic or manual (palpation) guidance, for example, the physician may breach theimpermeable membrane 152 of the first impermeable membrane can 114, as shown at FIG. 27. Preferably, thefirst length 202 of theextendible portion 200 is selected so as to breach only theimpermeable membrane 152 of thefirst can 114, and not that of thesecond can 116. Preferably, the outer diameter of theextendible portion 200 is slightly smaller than the outer diameter of thecans dose escalation pen 172 to create a wide opening when breaching theimpermeable membranes 152. Similarly, thehandle portion 206 of thepen 172 should have a diameter that is slightly larger than the outer diameter of thecans extendible portion 200 within thecans dose escalation pen 172 is retracted after the impermeable membrane of thefirst can 114 is breached, afirst water path 178 is created, from the patient implant site through the first impermeable membrane can 114, through the first throughbore 122 thereof, across the firstsemipermeable membrane 120 to theosmotic engine 108. In this state of thepump 100, water may now reach theosmotic engine 108 through the initialwater access port 132 and through the first impermeable membrane can 114. - Turning now to FIGS.29-31, when the patient requires an even greater dose of pharmaceutical agent, the physician may actuate the
actuator 192 to change the length of theextendible portion 200 to thesecond length 204, whichsecond length 204 is sufficient to penetrate thefirst can 114 and breach theimpermeable membrane 152 of the second impermeable membrane can 116, as shown at 177 FIG. 31. After thedose escalation pen 172 is retracted as shown at FIG. 31, asecond water path 180 is created. Thesecond water path 180 runs from the patient implant site through the first impermeable membrane can 114, through the breachedimpermeable membrane 152 of thesecond can 116, through the second throughbore 126 of thesecond can 116, across the secondsemipermeable membrane 124 to theosmotic engine 108. In this state of thepump 100, water may now reach theosmotic engine 108 through the initialwater access port 132, through the first impermeable membrane can 114 as well as through the second impermeable membrane can 116. - The tube-shaped
compartment 110 of thepump 100 may be pre-loaded with one or more pharmaceutical agents. 30. For example, the pharmaceutical agent may be therapeutically effective for one or more of the following therapies: pain therapy, hormone therapy, gene therapy, angiogenic therapy, anti-tumor therapy, chemotherapy, allergy therapy, hypertension therapy, antibiotic therapy, bronchodilation therapy, asthmatic therapy, arrhythmia therapy, nootropic therapy, cytostatic and metastasis inhibition therapy, migraine therapy, gastrointestinal therapy and/or other pharmaceutical therapies. - For example, the pharmaceutical agent may include an opioid, a morphine-like agonist, a partial agonist, an agonist-antagonist and/or an alpha 2-adrenoreceptor agonist. Advantageously, the pharmaceutical agent may include morphine, hydromorphone, levorphanol, methadone, fentanyl, sufentanil, buprenorphine, pentazocine and/or butorphanol, for example. The pharmaceutical agent may, for example, include an analgesic agent such as Dihydrocodeine, Hydromorphone, Morphine, Diamorphine, Levorphanol, Butorphanol, Alfentanil, Pentazocine, Buprenorphine, Nefopam, Dextropropoxyphene, Flupirtine, Tramadol, Oxycodone, Metamizol, Propyphenazone, Phenazone, Nifenazone, Paracetamol, Phenylbutazone, Oxyphenbutazone, Mofebutazone, Acetyl Salicylic Acid, Diflunisal, Flurbiprofen, Ibuprofen, Diclofenac, Ketoprofen, Indomethacin, Naproxen, Meptazinol, Methadone, Pethidine, Hydrocodone, Meloxicam, Fenbufen, Mefenamic Acid, Piroxicam, Tenoxicam, Azapropazone, Codein, Bupivacaine, Ketamine, Meperidine and/or [D-Ala2,D-Leu5]enkephalin (DADL). The pharmaceutical agent may also include analgesic that is an alpha-2 adrenergetic agonist such as Clonidine, Tizadine, ST-91, Medetomidine, Dexmedetomidine and/or related alpha-2 adrenergetic agonists. The analgesic may also include an N-methyl-D-aspartate (NMDA) receptor agonist including Dexmethorphan, Ifenprodil, (+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d]-cyclohepten-5,10-imine (MK-801), and/or related NMDA agonists. The analgesic may also include a somatostatin analog selected including Octreotide, Sandostatin, Vapreotide, Lanreotide, and/or related Somatostatin analogs, for example. Alternatively, the pharmaceutical agent may include a non-opioid analgesic such as Ketorolac, super oxide dismutase, baclofen, calcitonin, serotonin, vasoactive intestinal polypeptide, bombesin, omega-conopeptides, and/or related non-opioid analgesics, for example. The pharmaceutical agent in the
compartment 310 may be dissolved in an aqueous solution. - For pain therapy, a preferred pharmaceutical agent is Sufentanil. In that case wherein the pharmaceutical agent is (or includes) Sufentanil that is dissolved in an aqueous medium, it has been found that the solubility of the Sufentanil within the aqueous solution increases with increasing acidity of the medium. For example, the pumps according to the present invention may be configured to deliver Sufentanil at up to about 1500 μg/day, at a concentration of up to about 500,000 μg/ml, when the Sufentanil is dissolved in an acidic aqueous medium.
- A pump according to the present invention may include a
pharmaceutical agent compartment 310 having a volume of 500 μl (microliters). Acompartment 310 of this volume may contain 500 μl of pharmaceutical agent solution, the solution including 250,000 μg of Sufentanil dissolved in an acidic aqueous medium. Therefore, about 1500 μg/day of such pharmaceutical agent solution may be delivered to the patient over a treatment period spanning about 167 days. Implanted into a patient, such a pump would deliver about 3 μl of pharmaceutical agent solution to the patient per day, each such 3 μl of pharmaceutical agent solution containing about 1500 μl of Sufentanil. - The pharmaceutical agent may also include an anti-allergic agent including Pheniramine, Dimethindene, Terfenadine, Astemizole, Tritoqualine, Loratadine, Doxylamine, Mequitazine, Dexchlorpheniramine, Triprolidine and/or Oxatomide, for example. The pharmaceutical agent may include one or more anti-hypertensive agents, such as Clonidine, Moxonidine, Methyldopa, Doxazosin, Prazosin, Urapidil, Terazosin, Minoxidil, Dihydralalzin, Deserpidine, Acebutalol, Alprenolol, Atenolol, Metoprolol, Bupranolol, Penbutolol, Propranolol, Esmolol, Bisoprolol, Ciliprolol, Sotalol, Metipranolol, Nadolol, Oxprenolol, Nifedipine, Nicardipine, Verapamil, Diltiazim, Felodipine, Nimodipine, Flunarizine, Quinapril, Lisinopril, Captopril, Ramipril, Fosinoprol and/or Enalapril, for example. Alternatively, the pharmaceutical agent may include an antibiotic agent such as Democlocycline, Doxycycline, Lymecycline, Minocycline, Oxytetracycline, Tetracycline, Sulfametopyrazine, Ofloaxcin, Ciproflaxacin, Aerosoxacin, Amoxycillin, Ampicillin, Becampicillin, Piperacillin, Pivampicillin, Cloxacillin, Penicillin V, Flucloxacillin, Erythromycin, Metronidazole, Clindamycin, Trimethoprim, Neomycin, Cefaclor, Cefadroxil, Cefixime, Cefpodoxime, Cefuroxine, Cephalexin and/or Cefradine, for example. Bronchodialotors and anti-asthmatic agents may also be pre-loaded into the tube-shaped
compartment 110, including Pirbuterol, Orciprenaline, Terbutaline, Fenoterol, Clenbuterol, Salbutamol, Procaterol, Theophylline, Cholintheophyllinate, Theophylline-ethylenediamine and/or Ketofen, for example. Anti-arrhythmic agents may also be pre-loaded into thepump 100, including Viquidil, Procainamide, Mexiletine, Tocainide, Propafenone and/or Ipratropium, for example. The pharmaceutical agent may alternatively include a centrally acting substance such as Amantadine, Levodopa, Biperiden, Benzotropine, Bromocriptine, Procyclidine, Moclobemide, Tranylcypromine, Tranylpromide, Clomipramine, Maprotiline, Doxepin, Opipramol, Amitriptyline, Desipramine, Imipramine, Fluroxamin, Fluoxetin, Paroxetine, Trazodone, Viloxazine, Fluphenazine, Perphenazine, Promethazine, Thioridazine, Triflupromazine, Prothipendyl, thiothixene, Chlorprothixene, Haloperidol, Pipamperone, Pimozide, Sulpiride, Fenethylline, Methylphenildate, Trifluoperazine, Oxazepam, Lorazepam, Bromoazepam, Alprazolam, Diazepam, Clobazam, Buspirone and/or Piracetam, for example. Cytostatics and metastasis inhibitors may also be pre-loaded within thepump 100 of the present invention, including Melfalan, Cyclophosphamide, Trofosfamide, Chlorambucil, Busulfan, Prednimustine, Fluororacil, Methotrexate, Mercaptopurine, Thioguanin, Hydroxycarbamide, Altretamine and/or Procarbazine, for example. Other pharmaceutical agents that may be pre-loaded include anti-migrane agents such as Lisuride, Methysergide, Dihydroergotamine, Ergotamine and/or Pizotifen or gastrointestinal agents such as Cimetidine, Famotidine, Ranitidine, Roxatidine, Pirenzipine, Omeprazole, Misoprostol, Proglumide, Cisapride, Bromopride and/or Metoclopramide. - The present invention is also a kit, including an implantable
osmotic pump 100, acatheter 102 configured to attach to thepump 100 and/or dose escalation pen(s) 172 configured to breach theimpermeable membranes 152 of the first and/orsecond cans - There may be instances wherein it is desired to shut the pump down. For example, an adverse reaction to the pharmaceutical agent may have occurred. FIGS. 32 and 33 are plan and perspective views, respectively, of a
membrane enclosure 112, according to embodiment of the present invention that addresses this need. As shown therein, themembrane enclosure 112 of FIGS. 32 and 33 is identical to the membrane enclosure of FIGS. 11 and 12, but for the presence of the structure referenced at 209.Reference 209 denotes an OFF switch that is configured to enable the physician to nullify or substantially nullify the osmotic pressure differential across any and all semipermeable membranes such as shown at 120 or 124. TheOFF switch 209 includes an OFF switchimpermeable membrane 210 and an OFF switchimpermeable lumen 211. When and if the OFF switchimpermeable membrane 210 is breached, fluid from the patient's implant site flows into theOFF switch lumen 211, bypasses the semipermeable membranes, and flows directly to theosmotic engine 108. Thus, any existing osmotic pressure that may have developed across such semipermeable membranes is reduced to zero or substantially zero, which correspondingly reduces the pump's driving force and reduces the delivery rate of the pharmaceutical agent to zero or about zero. The pump may then be explanted from the patient at will or may simply be left in place. - FIG. 34 is an exploded view of another embodiment of an osmotic pump according to the present invention. FIG. 34 is similar to FIG. 1, but for the
osmotic engine 108. Accordingly, the description of the structures in FIG. 1 that are identical to structures in FIG. 34 is incorporated herein by reference. In FIG. 34, at least a portion of the osmotic engine is disposed within thetube 109, at or near theproximal end 184 thereof. The tube, in this case, is preferably rigid and may be formed of, for example, stainless steel or titanium. In this manner, the expansion of theosmotic engine 108 may be entirely constrained within thetube 109, thereby pushing thepiston 162 within thetube 109 toward theproximal end 186 thereof. - FIG. 35 is an exploded view of a three-stage
osmotic pump 300, according to another embodiment of the present invention. FIG. 36 is a top view of a three stage osmotic pump according to the present invention, showing the internal structure thereof in dashed lines. FIGS. 37 and 38 are cross-sectional views of a three stage osmotic pump according to the present invention, taken along cross-sectional line BB′ and AA′ of FIG. 36. Considering now FIGS. 35-38 collectively, the constituent elements of thepump 300 that are similar to corresponding elements in FIG. 2 are identified by the same reference numerals and the detailed description thereof is omitted here. As shown, theosmotic pump 300 includes a substantially saucer-shaped housing that includes afirst housing half 302 and asecond housing half 304 that mates with thefirst housing half 302. In contradistinction to the embodiment shown in FIG. 2, theosmotic pump 300 of FIG. 35 does not include a tube, such astube 109. Instead, when mated together, the first andsecond halves tight compartment 310 that is adapted to enclose a pharmaceutical agent. Thecompartment 310 is substantially toroidal in shape, in that it resembles a tube that curves around theosmotic engine 306, following the outer curvature of the pump housing throughout most of its length. The tube-shapedcompartment 310 defines afirst end 330 that is in fluid communication with theosmotic engine 306 through apassageway 332 and asecond end 334 adjacent thecompartment outlet 314 that is formed when the first andsecond halves - The
pump 300 includes apiston 316 that is configured and adapted to travel within thecompartment 310 in response to the force exerted thereon by theosmotic engine 306. As thepiston 316 travels within thecompartment 310, it displaces a volume of pharmaceutical agent. Thepiston 316, when thepump 300 is first implanted, is located adjacent thefirst end 330 of thecompartment 310 and thereafter travels from thefirst end 330 toward thesecond end 334, displacing a volume of pharmaceutical agent as it travels. FIG. 41 shows a cross-section of an exemplary embodiment of apiston 316. As shown therein, thepiston 316 may define aleading end 322 and a trailingend 324. Additionally, to reduce the surface area of thepiston 316 that contacts the wall of thepharmaceutical agent compartment 310, the outer surface of the piston may define one ormore throughs 328 andridges 326, thereby further facilitating the travel of thepiston 316 through thecompartment 310. - Returning now to FIG. 35, the
pump 300, when configured for systemic delivery of a pharmaceutical agent (as is the case wherein the pump is implanted subcutaneously, for example), may include afilter assembly 312. Thefilter assembly 312 is configured to fit within thecompartment outlet 314, so as to maintain the substantially circular footprint of thepump 300, as shown most clearly in FIG. 36. The structure of thefilter assembly 312 is further described below, with reference to FIGS. 39 and 40. Functionally, thefilter assembly 312 filters the flow of the pharmaceutical agent from thepump 300 to the implant site within the patient or to the aqueous environment in which the pump is deployed. Thefilter assembly 312 prevents the passage of crystallized pharmaceutical agents to the patient. Crystallized pharmaceutical agents present a danger to the patient, in that the crystallized portion may contain an excess amount of agent and may cause an overdose. - Assuming that the tube-shaped
compartment 310 is substantially circular in cross-section, the volume of pharmaceutical agent that may be contained therein may be estimated by: - n/360[¼I] 2(a+b)(b−a)2
- where, as shown in FIG. 36b (which figure is not shown to the same scale as FIG. 36a), a is the inner radius of the
compartment 310, b is the outer radius of thecompartment 310 and n represents the number of degrees that thecompartment 310 is coiled around thepump 300, as shown byarrow 350. As shown in the embodiment illustrated in FIG. 36b, n is about 270°, as the portion of thecompartment 310 that is free to enclose pharmaceutical agent (i.e., from theleading edge 317 of thepiston 316 to theproximal edge 313 of the filter assembly 312) spans about ¾ of the circumference of thepump 300. - The
pump 300 may also include aring 308. Thering 308 is preferably formed of the same material as the first andsecond housing halves pump 300, thepiston 316 may be placed adjacent thefirst end 330 of thecompartment 310 and theosmotic engine 306 may be centered between the first andsecond housing halves second housing halves impermeable membrane cans ring 308 may then be inserted into the central opening formed by the first andsecond housing halves semipermeable membrane enclosure 112, complete with the first and secondimpermeable cans ring 308, taking care to align the first throughbore 124 with the first semipermeable membrane well 146 and the second throughbore 124 with the secondsemipermeable membrane well 148. Theenclosure 112 may then be welded to thering 308 and thering 308 may be welded to thefirst half 302 of the pump housing (not necessarily in that order). Thecompartment 310 may then be filled with pharmaceutical agent (not shown in FIG. 35) and thefilter assembly 312 may thereafter be fitted within thecompartment outlet 314 and secured therein. Note that the initial dose semipermeable membrane fitted within the initial dose semipermeable membrane well 336 is not shown in FIGS. 35-38, nor is the first semipermeable membrane fitted within the first semipermeable membrane well 146 or the second semipermeable membrane fitted within the secondsemipermeable membrane well 148. Themembrane enclosure 112 may also incorporate the OFF switch features shown in FIGS. 32 and 33. According to the embodiment of the present invention shown in FIGS. 35-38, thepump 300 is adapted to deliver a pharmaceutical agent or agents at three distinct rates. The first or initial rate occurs when thepump 300 is implanted within the patient and only the initialwater access port 130 is in fluid communication with the fluid environment of the pump's implant site within the patient. In this configuration, water from the implant site enters the pump at 130, crosses the initial dose semipermeable membrane in the semipermeable membrane well 336 and comes into contact with theosmotic engine 306, causing theengine 306 to swell and to push thepiston 316 toward thesecond end 334 of thecompartment 310 at an initial first rate. Thereafter, the physician may puncture the impermeable membrane of thefirst can 114, thereby causing water form the implant site to enter therein, cross the first semipermeable membrane within the first semipermeable membrane well 146 and reach theosmotic engine 306. The delivery rate of thepump 300 is now increased from its first, initial rate to a second, larger rate, as more water from the patient implant site is reaching theosmotic engine 306, causing it to swell at a faster rate, thereby causing topiston 316 to travels within thecompartment 310 at a corresponding second, faster rate. When the second impermeable membrane can 116 is breached, water from the implant site enters therein, crosses the second semipermeable membrane within the second semipermeable membrane well 148 and reaches theosmotic engine 306. The delivery rate of thepump 300 is now increased from its second rate to a third, even greater rate, as more water from the patient implant site reaches theosmotic engine 306, causing it to swell at a faster rate, thereby causing topiston 316 to travel within thecompartment 310 at a third, faster rate, thus displacing a greater amount of pharmaceutical agent than either the initial or second rates. - FIG. 39 is a cross-sectional view of the
filter assembly 312 of FIG. 35 and FIG. 40 is a front view of thefilter assembly 312 of FIG. 35. As shown in FIGS. 35 and 39-40, thefilter assembly 312 may be (but need not be) shaped as a slanted and truncated circular cylinder. Thefilter assembly 312 defines aproximal end 313 and adistal end 315. Theassembly 312 further defines apharmaceutical agent inlet 321 that emerges at theproximal end 313 and apharmaceutical agent outlet 320 that emerges at the distal end of thefilter assembly 312. Between theinlet 321 and theoutlet 320, the filter assembly includes afilter 318. According to the present invention, thefilter 318 may include a plug of porous material, that defines a plurality of pores. The pores, according to an embodiment of the present invention, may range from about 2 microns in average pore size to about 80 microns in average pore size, for example. For example, the average pore size of the porous material of thefilter 318 may be selected within the range of about 5 microns to about 20 microns. - The porous material of the
filter 318 may be selected to be hydrophilic or hydrophobic, depending upon, for example, the nature of the pharmaceutical agent contained in thepump 300. The pharmaceutical agent in thecompartment 310 may be dissolved in an aqueous solution. Alternatively, the pharmaceutical agent in thecompartment 310 of thepump 300 may be dissolved in a non-aqueous solution, such as alcohol (benzyl alcohol, for example). In such a case, thefilter assembly 318 may include a filter that is substantially hydrophobic in nature, which would allow the passage of a hydrophobic solution, but would not admit the passage of a (or a substantial amount of a hydrophilic solution such as water. Water (or substantial amounts thereof) from the patient implant site, therefore, could not get into thepump 300 and only the pharmaceutical agent could get out, into the patient. Alternatively, theporous material 318 may have hydrophilic characteristics. When theporous material 318 of thefilter assembly 312 is hydrophilic, reliance is made on the pressure differential across the porous material 318 (higher on theproximal end 313 than on thedistal end 315 end thereof, due to the pressure exerted by the osmotic engine 306) as well as on the pore size of theporous material 318 to limit the diffusion into thepump 300. The pore size may be selected depending upon the magnitude of the pressure differential across thefilter assembly 312, the length of thefilter 318, the nature of the pharmaceutical agent to be delivered (for example, some pharmaceutical agent including large-sized protein molecules such contained in many pain medications may require afilter 318 defining relatively large size pores) and the aspect ratio of the filter 318 (ratio of aggregate pore size to length of filter 318), among other factors. Suitable materials for the porous material of thefilter 318 may be obtained from, for example Millipore Corp. (http://www.millipore.com), Porex Corp. (http//:www.porex.com) and others. - FIGS. 42, 43 and44 show a perspective view, an exploded view and a top view of a single stage osmotic pump according to another embodiment of the present invention, with the top view of FIG. 44 showing internal components thereof in dashed lines. The
pump 400 includes first andsecond housing halves filter assembly 312,piston 316,osmotic engine 306 andring 308, each of which being similar or identical to those structures in FIGS. 35-38 referenced by the same numerals. A detailed description of these structures is, therefore, omitted here. The single-stage pump 400 may include asemipermeable membrane enclosure 412. Thesemipermeable membrane enclosure 412 may define awater access port 430 through which water from the patient implant site enters thepump 400. Theenclosure 412 also defines awater outlet port 438, thorough which water comes into contact with theosmotic engine 306. Between thewater inlet port 430 and thewater outlet port 438 is disposed a semipermeable membrane. Thewater inlet port 430 may be covered by an impermeable membrane of stainless steel or titanium, for example. Moreover, a saturated saline solution may be present between the impermeable membrane covering thewater inlet port 430 and the semipermeable membrane within theenclosure 412. Such a saturated saline solution maintains the semipermeable membrane in a hydrated state, and speeds up the initial delivery of the pharmaceutical agent contained in thecompartment 310 of thepump 400 once the (optional) impermeable membrane covering thewater inlet port 430 is breached. Such an impermeable membrane would be included in thepump 400 only if it was desired to implant thepump 400 in an inactive state and, at some later time, activate it so as to initiate the delivery of the pharmaceutical agent contained therein. Thesingle stage pump 400 may also include the OFF switch features shown in FIGS. 32 and 33. - The pharmaceutical agent compartment of the pumps according to the present invention, as noted above, may contain sufentanil, for example, and may also contain other medications. Depending upon the clinical indication, the pumps according to the present invention may be configured for intravascular, subcutaneous, epidural, intrathecal or intraventricular use. Table 1 below details exemplary maximum expected dosages of Sufentanil for above-listed uses.
TABLE 1 Expected Maximum Dosage of Sufentanil (μg/day) Intravascular 1500 Subcutaneous 1500 Epidural 500 Intrathecal 50 Intraventricular 25 - Table 2 below shows exemplary delivery schedules for pumps according to the present invention having a diameter of 1.8 cm and a
compartment 310 having a capacity of 200 mg, a diameter of 2.8 cm and acompartment 310 having a capacity of 500 mg and a diameter of 5.0 cm and acompartment 310 having a capacity of 2000 mg over selected delivery rates (in mg/day) ranging from 0.50 mg/day to 20.0 mg/day.Exemplary Delivery Schedule Months of Delivery 1.8 cm diameter 2.8 cm diameter 5.0 cm diameter Delivery Rate 200 mg capacity 500 mg capacity 2000 mg capacity (mg/day) (Without dose escalation) (With dose escalation) (With dose escalation) 0.50 12 — — 0.75 8 12 — 2.00 3.3 6 — 5.00 — 3.3 12 10.0 — — 6 20.0 — — 3.3 - The present invention may be implanted under the patient's skin in an outpatient setting. The implantation procedure may be performed with a local anesthetic and may be carried out in as little as 15-20 minutes, for example. Depending upon the implant site, a small 0.5 to 0.75 inch incision may be all that is required, which incision may later be closed with one or more STERI-STRIP® skin closure devices or sutures, for example. The thin, circular shape of the pumps according to the present invention facilitates placement thereof in a number of locations throughout the patient's body, including the chest wall, the lower back, the arms and legs, the neck and even under the scalp, to identify a few exemplary locations. It is to be understood, however, that the above list of possible implant sites is not to be construed as limiting the locations at which the present pumps may be implanted, as those of skill in this art may recognize. The present invention has been presented within the context of pain management and of drugs of a potency comparable to Sufentanil. However, the present invention may be scaled appropriately to deliver any volume of drug at any potency level.
- While the foregoing detailed description has described preferred embodiments of the present invention, it is to be understood that the above description is illustrative only and not limiting of the disclosed invention. Those of skill in this art will recognize other alternative embodiments and all such embodiments are deemed to fall within the scope of the present invention. Thus, the present invention should be limited only by the claims as set forth below.
Claims (103)
1. An implantable osmotic pump for delivering a pharmaceutical agent to a patient, comprising:
an osmotic engine;
a substantially toroidal compartment adapted to store a pharmaceutical agent, and
a piston disposed within the compartment, the osmotic engine being configured to cause the piston to travel within the compartment and deliver the pharmaceutical agent when the pump is implanted in the patient.
2. The pump of claim 1 , further including a tube coiled at least partially around the osmotic engine, an inner lumen of the tube defining the pharmaceutical agent compartment.
3. The pump of claim 2 , wherein the tube includes at least one material selected from a group including metals, polymers and polyimid.
4. The pump of claim 1 , wherein the compartment is disposed at least partially around the osmotic engine.
5. The pump of claim 2 , wherein tube is rigid and wherein the osmotic engine is disposed within the tube.
6. The pump of claim 1 , wherein the osmotic engine includes a base, a cylindrical wall attached to the base and a free end opposite the base.
7. The pump of claim 2 , further including a housing configured to enclose at least the osmotic engine and the tube.
8. The pump of claim 7 , wherein the housing includes a first housing half and a second housing half that mates with the first housing half.
9. The pump of claim 8 , wherein each of the first and second housing halves define a saucer shape.
10. The pump of claim 8 , wherein each of the first and the second housing halves are substantially circular in shape.
11. The pump of claim 8 , wherein the first housing half defines a substantially circular opening.
12. The pump of claim 1 , further including a membrane enclosure, the membrane enclosure being partially surrounded by the osmotic engine and including an initial dose semipermeable membrane that is configured to allow water from the patient to reach the osmotic engine when the pump is implanted.
13. The pump of claim 12 , wherein the pump is configured to deliver an initial dose of the pharmaceutical agent to the patient at a selected initial infusion rate, the selected initial infusion rate being related to at least one of a thickness, a composition and a surface area of the initial dose semipermeable membrane.
14. The pump of claim 12 , wherein the initial dose semipermeable membrane is fitted with an initial dose impermeable membrane that initially seals the initial dose semipermeable membrane.
15. The pump of claim 14 , further including a volume of a saturated saline solution between the initial dose semipermeable membrane and the initial dose semipermeable membrane.
16. The pump of claim 12 , further including a dose escalation assembly fitted in the membrane enclosure, the dose escalation assembly being adapted to selectively increase an amount of water from the patient that reaches the osmotic engine when the pump is implanted.
17. The pump of claim 16 , wherein the dose escalation assembly includes a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached.
18. The pump of claim 16 , wherein the dose escalation assembly includes:
a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached, and
a second impermeable membrane configured to enable water from the patient to reach the osmotic engine through a second fluid path only after being breached, the first path being distinct from the second path.
19. The pump of claim 18 , wherein the first and second impermeable membranes are disposed in the membrane enclosure in a stacked configuration wherein the first impermeable membrane must be breached before the second impermeable membrane can be breached.
20. The pump of claim 18 , wherein the first fluid path includes a first semipermeable membrane and wherein the second fluid path includes a second semipermeable membrane that is distinct from the first semipermeable membrane.
21. The pump of claim 20 , wherein the pump is configured to deliver a first dose of the pharmaceutical agent to the patient at a selected first infusion rate and a second dose of the pharmaceutical agent to the patient at a selected second infusion rate that is greater than the first infusion rate, the selected first and second infusion rates being related to at least one of a thickness, a composition and a surface area of the first and second semipermeable membranes, respectively.
22. The pump of claim 1 , wherein the osmotic engine includes a hygroscopic salt.
23. The pump of claim 1 , wherein the osmotic engine includes an absorbent polymer.
24. The pump system of claim 23 , wherein the absorbent polymer includes a material selected from a group including poly(acrylic acid), potassium salt; poly(acrylic acid), sodium salt; poly(acrylic acid-co-acrylamide), potassium salt; poly(acrylic acid), sodium salt-graft-poly(ethylene oxide); poly (2-hydroxethyl methacrylate); poly(2-hydroxypropyl methacrylate) and poly(isobutylene-co-maleic acid) or derivatives thereof.
25. The pump of claim 1 , wherein the compartment has a substantially constant inner diameter over a length thereof.
26. The pump of claim 1 , wherein the compartment has a non-constant inner diameter over a length thereof.
27. The pump of claim 2 , wherein the tube is coiled at least twice around the osmotic engine.
28. The pump of claim 1 , further comprising an epoxy layer encasing at least the tube.
29. The pump of claim 2 , wherein the tube includes polyimid.
30. The pump of claim 2 , wherein the tube defines a proximal end adjacent the osmotic engine and a distal end at an end opposite the proximal end, and wherein the pump further includes a catheter coupled to the distal end.
31. The pump of claim 30 , wherein the catheter and the pump are dimensioned to infuse a volume of up to about 20 μL/day over a treatment period.
32. The pump of claim 30 , wherein the catheter and the pump are dimensioned to infuse a dose of Sufentanil of up to 1500 μg/day over a treatment period.
33. The pump of claim 30 , wherein the catheter includes a radiopaque tip.
34. The pump of claim 1 , wherein the piston includes one of a sphere, an elastomeric cylinder and an elastomeric conical section.
35. The pump of claim 34 , wherein the piston includes at least one of stainless steel, a refractory metal, plastic, nylon and rubber.
36. The pump of claim 1 , wherein the compartment is pre-loaded with a volume of the pharmaceutical agent.
37. The pump of claim 36 , wherein the pharmaceutical agent is therapeutically effective for at least one therapy selected from pain therapy, hormone therapy, gene therapy, angiogenic therapy, anti-tumor therapy, chemotherapy, allergy therapy, hypertension therapy, antibiotic therapy, bronchodilation therapy, asthmatic therapy, arrhythmia therapy, nootropic therapy, cytostatic and metastasis inhibition therapy, migraine therapy, gastrointestinal therapy, schizophrenia therapy, depression therapy, stress therapy and/or other pharmaceutical therapies.
38. The pump of claim 36 , wherein the pharmaceutical agent includes an opioid.
39. The pump of claim 36 , wherein the pharmaceutical agent includes at least one of a morphine-like agonist, a partial agonist, an agonist-antagonist and an alpha 2-adrenoreceptor agonist.
40. The pump of claim 36 , wherein the pharmaceutical agent includes at least one agent selected from a group including morphine, hydromorphone, levorphanol, methadone, fentanyl, sufentanil, buprenorphine, pentazocine and butorphanol.
41. The pump of claim 40 , wherein the sufentanil is at a concentration up to about 500,000 μg/mL.
42. The pump of claim 36 , wherein the pharmaceutical agent includes an agent selected from a group including Dihydrocodeine, Hydromorphone, Morphine, Diamorphine, Levorphanol, Butorphanol, Alfentanil, Pentazocine, Buprenorphine, Nefopam, Dextropropoxyphene, Flupirtine, Tramadol, Oxycodone, Metamizol, Propyphenazone, Phenazone, Nifenazone, Paracetamol, Phenylbutazone, Oxyphenbutazone, Mofebutazone, Acetyl Salicylic Acid, Diflunisal, Flurbiprofen, Ibuprofen, Diclofenac, Ketoprofen, Indomethacin, Naproxen, Meptazinol, Methadone, Pethidine, Hydrocodone, Meloxicam, Fenbufen, Mefenamic Acid, Piroxicam, Tenoxicam, Azapropazone, Codein, Bupivacaine, Ketamine, Meperidine and DADL.
43. The pump of claim 36 , wherein the pharmaceutical agent includes an agent that is an alpha-2 adrenergetic agonist selected from a group including Clonidine, Tizadine, ST-91, Medetomidine, Dexmedetomidine and related alpha-2 adrenergetic agonists.
44. The pump of claim 36 , wherein the pharmaceutical agent includes an agent that is an NMDA receptor agonist selected from a group including Dexmethorphan, Ifenprodil, MK-801, and related NMDA agonists.
45. The pump of claim 36 , wherein the pharmaceutical agent includes an agent that is a somatostatin analog selected from a group including Octreotide, Sandostatin, Vapreotide, Lanreotide, and related Somatostatin analogs.
46. The pump of claim 36 , wherein the pharmaceutical agent includes an agent that is a non-opioid analgesic selected from a group including Ketorolac, super oxide dismutase, baclofen, calcitonin, serotonin, vasoactive intestinal polypeptide, bombesin, omega-conopeptides, and related non-opioid analgesics.
47. The pump of claim 36 , wherein the pharmaceutical agent includes an anti-allergic agent selected from a group including Pheniramine, Dimethindene, Terfenadine, Astemizole, Tritoqualine, Loratadine, Doxylamine, Mequitazine, Dexchlorpheniramine, Triprolidine and Oxatomide.
48. The pump of claim 36 , wherein the pharmaceutical agent includes an anti-hypertensive agent selected from a group including Clonidine, Moxonidine, Methyldopa, Doxazosin, Prazosin, Urapidil, Terazosin, Minoxidil, Dihydralalzin, Deserpidine, Acebutalol, Alprenolol, Atenolol, Metoprolol, Bupranolol, Penbutolol, Propranolol, Esmolol, Bisoprolol, Ciliprolol, Sotalol, Metipranolol, Nadolol, Oxprenolol, Nifedipine, Nicardipine, Verapamil, Diltiazim, Felodipine, Nimodipine, Flunarizine, Quinapril, Lisinopril, Captopril, Ramipril, Fosinoprol and Enalapril.
49. The pump of claim 36 , wherein the pharmaceutical agent includes an antibiotic agent selected from a group including Democlocycline, Doxycycline, Lymecycline, Minocycline, Oxytetracycline, Tetracycline, Sulfametopyrazine, Ofloaxcin, Ciproflaxacin, Aerosoxacin, Amoxycillin, Ampicillin, Becampicillin, Piperacillin, Pivampicillin, Cloxacillin, Penicillin V, Flucloxacillin, Erythromycin, Metronidazole, Clindamycin, Trimethoprim, Neomycin, Cefaclor, Cefadroxil, Cefixime, Cefpodoxime, Cefuroxine, Cephalexin and Cefradine.
50. The pump of claim 36 , wherein the pharmaceutical agent includes a bronchodialotors and anti-asthmatic agents selected from a group including: Pirbuterol, Orciprenaline, Terbutaline, Fenoterol, Clenbuterol, Salbutamol, Procaterol, Theophylline, Cholintheophyllinate, Theophylline-ethylenediamine and Ketofen.
51. The pump of claim 36 , wherein the pharmaceutical agent includes an anti-arrhythmic agent selected from a group including Viquidil, Procainamide, Mexiletine, Tocainide, Propafenone and Ipratropium.
52. The pump of claim 36 , wherein the pharmaceutical agent includes a centrally acting substance selected from a group including Amantadine, Levodopa, Biperiden, Benzotropine, Bromocriptine, Procyclidine, Moclobemide, Tranylcypromine, Tranylpromide, Clomipramine, Maprotiline, Doxepin, Opipramol, Amitriptyline, Desipramine, Imipramine, Fluroxamin, Fluoxetin, Paroxetine, Trazodone, Viloxazine, Fluphenazine, Perphenazine, Promethazine, Thioridazine, Triflupromazine, Prothipendyl, thiothixene, Chlorprothixene, Haloperidol, Pipamperone, Pimozide, Sulpiride, Fenethylline, Methylphenildate, Trifluoperazine, Oxazepam, Lorazepam, Bromoazepam, Alprazolam, Diazepam, Clobazam, Buspirone and Piracetam.
53. The pump of claim 36 , wherein the pharmaceutical agent includes a cytostatics and metastasis inhibitor selected from a group including Melfalan, Cyclophosphamide, Trofosfamide, Chlorambucil, Busulfan, Prednimustine, Fluororacil, Methotrexate, Mercaptopurine, Thioguanin, Hydroxycarbamide, Altretamine and Procarbazine.
54. The pump of claim 36 , wherein the pharmaceutical agent includes an anti-migrane agent selected from a group including Lisuride, Methysergide, Dihydroergotamine, Ergotamine and Pizotifen.
55. The pump of claim 36 , wherein the pharmaceutical agent includes a gastrointestinal agents selected from a group including Cimetidine, Famotidine, Ranitidine, Roxatidine, Pirenzipine, Omeprazole, Misoprostol, Proglumide, Cisapride, Bromopride and Metoclopramide.
56. The pump of claim 16 , wherein the dose escalation assembly includes:
a first saturated saline solution between the first impermeable membrane and the first semipermeable membrane, and
a second saturated saline solution between the second impermeable membrane and the second semipermeable membrane.
57. The pump of claim 1 , wherein the pharmaceutical agent includes Sufentanil and wherein the pump is configured for:
a daily delivery rate of Sufentanil of up to about 25 micrograms per day when the pump is configured to be implanted intraventricularly;
a daily delivery rate of Sufentanil of up to about 50 micrograms per day when the pump is configured to be implanted intrathecally;
a daily delivery rate of Sufentanil of up to about 500 micrograms per day when the pump is configured to be implanted epidurally;
a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted subcutaneously, and
a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted intravascularly.
58. A kit, comprising:
an implantable osmotic pump for delivering a pharmaceutical agent to a patient, including an osmotic engine, a tube coiled around the osmotic engine, the tube defining an inner tube-shaped compartment adapted to store a pharmaceutical agent, and a piston disposed within the tube-shaped compartment, the osmotic engine being configured to exert a force on the piston to cause the piston to travel within the tube-shaped compartment and deliver the pharmaceutical agent when the pump is implanted in the patient, and
a catheter configured to attach to the pump.
59. The kit of claim 58 , wherein the catheter and the pump are dimensioned to infuse a volume of up to about 20 μL/day over a treatment period.
60. The kit of claim 58 , wherein the catheter and the pump are dimensioned to infuse a dose of Sufentanil of up to about 1500 μg/day over a treatment period.
61. The kit of claim 58 , wherein pump further includes a membrane enclosure, the membrane enclosure being partially surrounded by the osmotic engine and including an initial dose semipermeable membrane that is configured to allow water from the patient to reach the osmotic engine when the pump is implanted.
62. The kit of claim 61 , further including a dose escalation assembly fitted in the membrane enclosure, the dose escalation assembly being adapted to selectively increase an amount of water from the patient that reaches the osmotic engine when the pump is implanted.
63. The kit of claim 62 , wherein the dose escalation assembly includes:
a first impermeable membrane configured to enable water from the patient to reach the osmotic engine through a first fluid path only after being breached, and
a second impermeable membrane configured to enable water from the patient to reach the osmotic engine through a second fluid path only after being breached, the first path being distinct from the second path.
64. The kit of claim 63 , further including a dose escalation pen configured to breach at least one of the first and second impermeable membranes.
65. The kit of claim 65 , wherein the dose escalation pen includes a dose selection actuator that is adapted to re-configure the dose escalation pen to selectively breach one of the first and second impermeable membranes.
66. The kit of claim 58 , wherein the tube-shaped compartment is pre-loaded with the pharmaceutical agent.
67. A method of delivering a pharmaceutical agent to a patient, comprising steps of:
implanting a pump into the patient, the pump including a pump engine and a compartment adapted to store a pharmaceutical agent, the compartment defining at least a partial torus around the osmotic engine, and
causing a piston to travel a distance within the compartment and to deliver a dose of pharmaceutical agent out of the compartment, the dose corresponding to the distance traveled by the piston within the compartment.
68. The method of claim 67 , wherein the implanting step implants the pump one of intravascularly, subcutaneously, epidurally, intrathecally and intraventricularly.
69. The method of claim 68 , wherein the pharmaceutical agent includes Sufentanil and wherein the pump is configured for:
a daily delivery rate of Sufentanil of up to about 25 micrograms per day when the pump is configured to be implanted intraventricularly;
a daily delivery rate of Sufentanil of up to about 50 micrograms per day when the pump is configured to be implanted intrathecally;
a daily delivery rate of Sufentanil of up to about 500 micrograms per day when the pump is configured to be implanted epidurally;
a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted subcutaneously, and
a daily delivery rate of Sufentanil of up to about 1500 micrograms per day when the pump is configured to be implanted intravascularly.
70. The method of claim 68 , wherein travel of the piston within the compartment causes a delivery of a volume up to about 20 μL/day over a treatment period.
71. The method of claim 67 , further comprising the step of selectively increasing the dose in a stepwise manner over a treatment period without removing the pump from the patient.
72. The method of claim 71 , wherein the pump engine includes an osmotic engine and wherein the pump includes an initial dose semipermeable membrane initially exposed to the patient and at least one second semipermeable membrane initially not exposed to the patient and wherein the increasing step includes a step of selectively exposing the at least one second semipermeable membrane to the patient.
73. The method of claim 67 , wherein the pump the engine includes an osmotic engine in fluid communication with the piston and wherein the causing step includes a step of increasing a volume of the osmotic engine.
74. A pump, comprising:
a pump engine;
a tube coiled around the engine, the tube defining an inner tube-shaped compartment adapted to store a fluid, and
a piston disposed within the tube-shaped compartment, the engine being adapted to cause the piston to travel within the tube-shaped compartment and to force a dose of the fluid out of the pump.
75. The pump of claim 74 , wherein the pump engine includes an osmotic engine.
76. The pump of claim 74 , wherein the fluid includes a pharmaceutical agent.
77. The pump of claim 74 , further including a catheter coupled to the tube.
78. The pump of claim 74 , wherein the pump is fully implantable in a body and wherein pump engine and the tube are enclosed in a biocompatible pump housing.
79. The pump of claim 74 , further including a dose escalation assembly, the escalation assembly being configured to selectively increase the dose of fluid delivered.
80. The pump of claim 74 , wherein the dose escalation assembly comprises means for increasing the dose delivered in a stepwise manner.
81. The pump of claim 74 , wherein the piston includes one of a sphere, an elastomeric cylinder and an elastomeric conical section.
82. An osmotic pump, comprising:
an osmotic engine, and
a pump housing enclosing the osmotic engine and defining a substantially toroidal space adapted to contain a volume of pharmaceutical agent.
83. The osmotic pump of claim 82 , wherein the pump housing defines a substantially circular outline.
84. The osmotic pump of claim 82 , wherein the substantially toroidal space defines an inner and an outer radius, and wherein the osmotic engine is disposed within the inner radius.
85. The osmotic pump of claim 82 , further comprising a tube disposed within the toroidal space, the tube defining an inner lumen adapted to contain the volume of pharmaceutical agent.
86. The osmotic pump of claim 82 , wherein the pump housing includes a first housing half and a second housing half, the first and second housing halves defining, when mated together, the substantially toroidal space, the substantially toroidal space being fluid tight.
87. The osmotic pump of claim 82 , further comprising a semipermeable membrane enclosure and a semipermeable membrane fitted within the semipermeable membrane enclosure.
88. The osmotic pump of claim 87 , wherein a single semipermeable membrane is fitted within the semipermeable membrane enclosure and wherein the pump is a single stage pump.
89. The osmotic pump of claim 87 , wherein the pump is an n-stage pump and wherein the semipermeable membrane enclosure is fitted with n semipermeable membranes, each of the n stages being configured to be selectively activated after implantation of the pump.
90. The osmotic pump of claim 82 , further comprising an OFF switch mechanism configured to be selectively activated after implantation of the pump.
91. The osmotic pump of claim 82 , further comprising a filter assembly to filter the pharmaceutical agent.
92. The osmotic pump of claim 91 , wherein the filter assembly includes a plug of porous material, the porous material defining pores selected to have an average size of between about 2 microns and about 80 microns.
93. The osmotic pump of claim 91 , wherein the filter assembly includes a plug of porous material, the porous material being hydrophilic.
94. The osmotic pump of claim 91 , wherein the filter assembly includes a plug of porous material, the porous material being hydrophobic.
95. An implantable osmotic pump, comprising:
a semipermeable membrane;
a housing adapted to enclose a volume of pharmaceutical agent and a portion of the semipermeable membrane;
an osmotic engine adapted to cause the pharmaceutical agent to be delivered out of he pump as an osmotic pressure differential develops across the semipermeable membrane, and
at least one of:
an OFF switch, the OFF switch being effective to reduce the osmotic pressure differential across the semipermeable membrane substantially to zero, and
an ON switch, the ON switch being effective to enable the pump to begin to deliver the pharmaceutical agent out of the pump.
96. The pump of claim 95 , wherein the OFF switch includes an OFF switch impermeable membrane and wherein the OFF switch is configured to reduce the osmotic pressure substantially to zero only when the OFF switch impermeable membrane is breached.
97. The pump of claim 96 , wherein the OFF switch defines a lumen adapted to allow fluid to bypass the semipermeable membrane when the OFF switch impermeable membrane is breached.
98. The pump of claim 95 , wherein the ON switch includes an impermeable membrane disposed over the semipermeable membrane, the pump being adapted to begin delivery of the pharmaceutical agent only after the impermeable membrane is breached.
99. The pump of claim 98 , further including a volume of saturated saline solution disposed between the semipermeable membrane and the impermeable membrane.
100. A filter assembly for an osmotic pump, the filter assembly defining a first end configured to mate with the osmotic pump a second end configured to be exposed, in use, to an aqueous environment and including a filter between the first and second ends.
101. The filter assembly of claim 100 , wherein the filter includes a porous material, the porous material defining pores selected to have an average size of between about 2 microns and about 80 microns.
102. The filter assembly of claim 100 , wherein the filter includes a plug of porous material, the porous material being hydrophilic.
103. The filter assembly of claim 100 , wherein the filter includes a plug of porous material, the porous material being hydrophobic.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/346,575 US20030135202A1 (en) | 2001-04-19 | 2003-01-17 | Implantable osmotic pump |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/838,662 US6632217B2 (en) | 2001-04-19 | 2001-04-19 | Implantable osmotic pump |
US10/346,575 US20030135202A1 (en) | 2001-04-19 | 2003-01-17 | Implantable osmotic pump |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/838,662 Division US6632217B2 (en) | 2001-04-19 | 2001-04-19 | Implantable osmotic pump |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030135202A1 true US20030135202A1 (en) | 2003-07-17 |
Family
ID=25277746
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/838,662 Expired - Fee Related US6632217B2 (en) | 2001-04-19 | 2001-04-19 | Implantable osmotic pump |
US10/346,575 Abandoned US20030135202A1 (en) | 2001-04-19 | 2003-01-17 | Implantable osmotic pump |
US10/685,291 Abandoned US20040249365A1 (en) | 2001-04-19 | 2003-10-14 | Implantable osmotic pump |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/838,662 Expired - Fee Related US6632217B2 (en) | 2001-04-19 | 2001-04-19 | Implantable osmotic pump |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/685,291 Abandoned US20040249365A1 (en) | 2001-04-19 | 2003-10-14 | Implantable osmotic pump |
Country Status (3)
Country | Link |
---|---|
US (3) | US6632217B2 (en) |
AU (1) | AU2002307085A1 (en) |
WO (1) | WO2002085428A2 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009119519A1 (en) * | 2008-03-24 | 2009-10-01 | オリンパス株式会社 | Medicine administration device |
WO2011126910A3 (en) * | 2010-03-30 | 2012-01-19 | Algynomics Inc. | Compositions and methods for the treatment of somatosensory disorders |
US8708993B1 (en) * | 2003-10-15 | 2014-04-29 | Physician Technologies, Inc. | Infusion catheter procedure and system |
US8716350B2 (en) | 2010-03-30 | 2014-05-06 | Algynomics Inc. | Compositions and methods for the treatment of somatosensory disorders |
US10519175B2 (en) | 2017-10-09 | 2019-12-31 | Compass Pathways Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11564935B2 (en) | 2019-04-17 | 2023-01-31 | Compass Pathfinder Limited | Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin |
US12312375B2 (en) | 2017-10-09 | 2025-05-27 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
Families Citing this family (101)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8177762B2 (en) | 1998-12-07 | 2012-05-15 | C. R. Bard, Inc. | Septum including at least one identifiable feature, access ports including same, and related methods |
DE10066158B4 (en) * | 2000-08-24 | 2007-08-09 | Neurobiotec Gmbh | Use of a transdermal therapeutic system for the treatment of Restless Legs Syndrome |
DE10053397A1 (en) * | 2000-10-20 | 2002-05-02 | Schering Ag | Use of a dopaminergic active ingredient for the treatment of dopaminerg treatable diseases |
DE10064453A1 (en) * | 2000-12-16 | 2002-07-04 | Schering Ag | Use of a dopaminergic active ingredient for the treatment of dopaminerg treatable diseases |
DE10141650C1 (en) | 2001-08-24 | 2002-11-28 | Lohmann Therapie Syst Lts | Safe transdermal therapeutic system for administration of fentanyl or analogous analgesics, having matrix layer of carboxy group-free polyacrylate adhesive providing high permeation rate |
AU2003211009A1 (en) * | 2002-02-11 | 2003-09-04 | Wake Forest University | Compositions and methods for treating pain using cyclooxygenase-1 inhibitors |
US6864271B2 (en) * | 2002-11-12 | 2005-03-08 | The Foundation For The Lsu Health Sciences Center | Synergistic combinations including N-acylated 4-hydroxyphenylamine derivatives |
US20050038415A1 (en) * | 2003-08-06 | 2005-02-17 | Rohr William L. | Method and apparatus for the treatment of obesity |
GB0320297D0 (en) * | 2003-08-29 | 2003-10-01 | Univ Warwick | Blood pressure monitor |
US20050058696A1 (en) * | 2003-09-12 | 2005-03-17 | Allergan, Inc. | Methods and compositions for the treatment of pain and other alpha 2 adrenergic-mediated conditions |
EP1677667A2 (en) * | 2003-10-24 | 2006-07-12 | Medtronic, Inc. | Techniques to treat neurological disorders by attenuating the production of pro-inflammatory mediators |
US20050240166A1 (en) * | 2004-04-26 | 2005-10-27 | Microsolutions, Inc. | Implantable device, formulation and method for anti-psychotic therapy using risperidone |
US7824697B2 (en) | 2004-07-12 | 2010-11-02 | Board Of Regents, The University Of Texas System | High concentration baclofen preparations |
DE102004042578A1 (en) * | 2004-09-02 | 2006-03-23 | Roche Diagnostics Gmbh | Micropump for pumping liquids with low flow rates in pressure / suction operation |
US20060253100A1 (en) | 2004-10-22 | 2006-11-09 | Medtronic, Inc. | Systems and Methods to Treat Pain Locally |
WO2006079055A2 (en) * | 2005-01-24 | 2006-07-27 | Neurosystec Corporation | Apparatus and method for delivering therapeutic and/or other agents to the inner ear and to other tissues |
WO2006083761A2 (en) | 2005-02-03 | 2006-08-10 | Alza Corporation | Solvent/polymer solutions as suspension vehicles |
US11246913B2 (en) | 2005-02-03 | 2022-02-15 | Intarcia Therapeutics, Inc. | Suspension formulation comprising an insulinotropic peptide |
WO2006096686A1 (en) | 2005-03-04 | 2006-09-14 | C.R. Bard, Inc. | Access port identification systems and methods |
US8029482B2 (en) | 2005-03-04 | 2011-10-04 | C. R. Bard, Inc. | Systems and methods for radiographically identifying an access port |
US9474888B2 (en) | 2005-03-04 | 2016-10-25 | C. R. Bard, Inc. | Implantable access port including a sandwiched radiopaque insert |
US7947022B2 (en) | 2005-03-04 | 2011-05-24 | C. R. Bard, Inc. | Access port identification systems and methods |
EP2308547B1 (en) | 2005-04-27 | 2014-09-17 | C.R. Bard, Inc. | High pressure access port with septum |
US10307581B2 (en) | 2005-04-27 | 2019-06-04 | C. R. Bard, Inc. | Reinforced septum for an implantable medical device |
US8147455B2 (en) | 2005-04-27 | 2012-04-03 | C. R. Bard, Inc. | Infusion apparatuses and methods of use |
WO2006133400A2 (en) * | 2005-06-08 | 2006-12-14 | California Institute Of Technology | Intravascular diagnostic and therapeutic sampling device |
US20070025869A1 (en) * | 2005-07-15 | 2007-02-01 | Gordon John H | Fluid Delivery Device |
GB2442396B (en) * | 2005-07-22 | 2011-05-11 | Univ Utah Res Found | Osmotically driven dispense pump and related components for use in high pressure applications |
EP1933810B1 (en) | 2005-08-11 | 2012-10-10 | Massachusetts Institute of Technology | Intravesical drug delivery device and method |
US20070087055A1 (en) * | 2005-10-14 | 2007-04-19 | David Jan | Directly compressible extended release alprazolam formulation |
US7874998B2 (en) | 2005-11-04 | 2011-01-25 | The Regents Of The University Of Michigan | Filtration devices and related methods thereof |
US20070232660A1 (en) * | 2006-04-04 | 2007-10-04 | Allergan, Inc. | Therapeutic and delivery methods of prostaglandin ep4 agonists |
US8267905B2 (en) * | 2006-05-01 | 2012-09-18 | Neurosystec Corporation | Apparatus and method for delivery of therapeutic and other types of agents |
CA2651855C (en) * | 2006-05-30 | 2011-08-02 | Intarcia Therapeutics, Inc. | Two-piece, internal-channel osmotic delivery system flow modulator |
US7803148B2 (en) | 2006-06-09 | 2010-09-28 | Neurosystec Corporation | Flow-induced delivery from a drug mass |
JP2010511595A (en) * | 2006-07-31 | 2010-04-15 | ニューロシステック コーポレイション | Free base gacyclidine nanoparticles |
EP3421031A1 (en) | 2006-08-09 | 2019-01-02 | Intarcia Therapeutics, Inc | Osmotic delivery systems and piston assemblies |
US20090198183A1 (en) * | 2006-11-03 | 2009-08-06 | Krumme John F | Apparatus and methods for injecting dermal fillers |
US9265912B2 (en) | 2006-11-08 | 2016-02-23 | C. R. Bard, Inc. | Indicia informative of characteristics of insertable medical devices |
US9642986B2 (en) | 2006-11-08 | 2017-05-09 | C. R. Bard, Inc. | Resource information key for an insertable medical device |
US20080147186A1 (en) * | 2006-12-14 | 2008-06-19 | Joshi Ashok V | Electrochemical Implant For Delivering Beneficial Agents |
WO2008133908A2 (en) | 2007-04-23 | 2008-11-06 | Intarcia Therapeutics, Inc. | Suspension formulations of insulinotropic peptides and uses thereof |
EP3269417A1 (en) | 2007-06-20 | 2018-01-17 | Medical Components, Inc. | Implantable access port with molded and/or radiopaque indicia |
US9610432B2 (en) | 2007-07-19 | 2017-04-04 | Innovative Medical Devices, Llc | Venous access port assembly with X-ray discernable indicia |
ES2650800T5 (en) | 2007-07-19 | 2025-05-05 | Medical Components Inc | Venous access port assembly with x-ray discernable indicia |
US9579496B2 (en) | 2007-11-07 | 2017-02-28 | C. R. Bard, Inc. | Radiopaque and septum-based indicators for a multi-lumen implantable port |
GB2446247B (en) * | 2007-11-27 | 2008-12-17 | Robert Joseph Wagener | Homeostatic insulin pump |
US20090209945A1 (en) * | 2008-01-18 | 2009-08-20 | Neurosystec Corporation | Valveless impedance pump drug delivery systems |
DK2240155T3 (en) | 2008-02-13 | 2012-09-17 | Intarcia Therapeutics Inc | Devices, formulations and methods for the delivery of several beneficial agents |
US8969414B2 (en) | 2009-02-06 | 2015-03-03 | Mallinckrodt Llc | Intrathecal baclofen pharmaceutical dosage forms with fewer degradation products |
US20150258279A1 (en) | 2008-03-18 | 2015-09-17 | Mallinckrodt Llc | Intrathecal baclofen pharmaceutical dosage forms and related delivery system |
USRE48948E1 (en) | 2008-04-18 | 2022-03-01 | Warsaw Orthopedic, Inc. | Clonidine compounds in a biodegradable polymer |
JP5908279B2 (en) * | 2008-08-09 | 2016-04-26 | マサチューセッツ インスチテュート オブ テクノロジーMassachusetts Institute Of Technology | Implantable drug delivery device and method for treating male genitourinary and surrounding tissues |
EP2158927A1 (en) * | 2008-08-25 | 2010-03-03 | Debiotech S.A. | Drug delivery device with a module for preventing fibrillation downstream of its reservoir |
WO2010051494A1 (en) | 2008-10-31 | 2010-05-06 | C.R. Bard, Inc. | Systems and methods for identifying an acess port |
US11890443B2 (en) | 2008-11-13 | 2024-02-06 | C. R. Bard, Inc. | Implantable medical devices including septum-based indicators |
US8932271B2 (en) | 2008-11-13 | 2015-01-13 | C. R. Bard, Inc. | Implantable medical devices including septum-based indicators |
US20100239632A1 (en) | 2009-03-23 | 2010-09-23 | Warsaw Orthopedic, Inc. | Drug depots for treatment of pain and inflammation in sinus and nasal cavities or cardiac tissue |
US8954142B2 (en) | 2009-06-09 | 2015-02-10 | Nauronano AB | Microelectrode and multiple microelectrodes |
EA023156B1 (en) | 2009-06-26 | 2016-04-29 | ТАРИС Биомедикал ЛЛК | Drug delivery device |
US8715244B2 (en) | 2009-07-07 | 2014-05-06 | C. R. Bard, Inc. | Extensible internal bolster for a medical device |
US9017312B2 (en) | 2009-09-10 | 2015-04-28 | Taris Biomedical Llc | Implantable device for controlled drug delivery |
AU2010298733B2 (en) | 2009-09-28 | 2014-10-09 | Intarcia Therapeutics, Inc. | Rapid establishment and/or termination of substantial steady-state drug delivery |
ES2695907T3 (en) | 2009-11-17 | 2019-01-11 | Bard Inc C R | Overmolded access port that includes anchoring and identification features |
US20110251568A1 (en) * | 2010-04-08 | 2011-10-13 | Beeley Nathan R F | Punctal plugs for controlled release of therapeutic agents |
US9283361B2 (en) | 2010-08-05 | 2016-03-15 | Taris Biomedical Llc | Implantable drug delivery devices for genitourinary sites |
USD676955S1 (en) | 2010-12-30 | 2013-02-26 | C. R. Bard, Inc. | Implantable access port |
USD682416S1 (en) | 2010-12-30 | 2013-05-14 | C. R. Bard, Inc. | Implantable access port |
US20120208755A1 (en) | 2011-02-16 | 2012-08-16 | Intarcia Therapeutics, Inc. | Compositions, Devices and Methods of Use Thereof for the Treatment of Cancers |
WO2012138368A1 (en) | 2011-04-07 | 2012-10-11 | Allergan, Inc. | Devices, compositions and methods utilizing ep4 and ep2 receptor agonists for preventing, reducing or treating capsular contracture |
PL2707032T3 (en) * | 2011-05-10 | 2020-03-31 | Antecip Bioventures Ii Llc | Implantable polymeric device for sustained release of sufentanil |
TWI615155B (en) * | 2011-11-01 | 2018-02-21 | 拜耳股份有限公司 | Osmotically active vaginal delivery system |
US10213533B2 (en) * | 2012-03-05 | 2019-02-26 | Keith A. Walter | Medical tools with aspiration tips suitable for cataract surgeries and related methods |
US9404580B2 (en) * | 2012-04-13 | 2016-08-02 | United Technologies Corporation | Duplex finger seal for joints with high relative displacement |
ES2592404T3 (en) | 2012-05-21 | 2016-11-30 | Bayer Pharma Aktiengesellschaft | Benzothienopyrimidines substituted |
US10220186B2 (en) | 2012-05-23 | 2019-03-05 | Becton, Dickinson And Company | Collapse-resistant swellable catheter |
US9456916B2 (en) | 2013-03-12 | 2016-10-04 | Medibotics Llc | Device for selectively reducing absorption of unhealthy food |
TW201412740A (en) | 2012-09-20 | 2014-04-01 | Bayer Pharma AG | Substituted pyrrolopyrimidinylamino-benzothiazolones |
JP5683620B2 (en) * | 2013-02-26 | 2015-03-11 | プライムテック株式会社 | Fluid transport device |
US9067070B2 (en) | 2013-03-12 | 2015-06-30 | Medibotics Llc | Dysgeusia-inducing neurostimulation for modifying consumption of a selected nutrient type |
RU2666684C2 (en) | 2013-03-15 | 2018-09-11 | ТАРИС Биомедикал ЛЛК | Device for drugs delivery with the drug permeable and the drugs delivery method |
BR112016002646B1 (en) | 2013-08-19 | 2022-01-25 | Taris Biomedical Llc | Intravesical drug delivery device |
US9616207B2 (en) | 2014-06-26 | 2017-04-11 | Cochlear Limited | Treatment of the ear |
US9889085B1 (en) | 2014-09-30 | 2018-02-13 | Intarcia Therapeutics, Inc. | Therapeutic methods for the treatment of diabetes and related conditions for patients with high baseline HbA1c |
US10300032B2 (en) | 2015-02-20 | 2019-05-28 | Osmotica Kereskedelmi Es Szolgaltato Kft | Controlled release dosage form |
US10172800B2 (en) | 2015-02-20 | 2019-01-08 | Osmotica Kereskedelmi Es Szolgaltato Kft | Controlled release dosage form with enhanced pharmacokinetics |
US10987328B2 (en) | 2015-02-20 | 2021-04-27 | Osmotica Kereskedelmi Es Szolgaltato Kft | Controlled release dosage form |
WO2016132218A1 (en) | 2015-02-20 | 2016-08-25 | Osmotica Kereskedelmi Es Szolgaltato Kft | Method of administering r-baclofen in an extended release dosage form |
JP7425534B2 (en) | 2015-04-23 | 2024-01-31 | タリス バイオメディカル エルエルシー | Drug delivery devices and methods with drug permeable components |
CA2987766A1 (en) | 2015-06-03 | 2016-12-08 | Intarcia Therapeutics, Inc. | Implant placement and removal systems |
RU2760007C2 (en) | 2016-05-16 | 2021-11-22 | Интарсия Терапьютикс, Инк. | Polypeptides selective to glucagon receptors and their application methods |
USD840030S1 (en) | 2016-06-02 | 2019-02-05 | Intarcia Therapeutics, Inc. | Implant placement guide |
USD860451S1 (en) | 2016-06-02 | 2019-09-17 | Intarcia Therapeutics, Inc. | Implant removal tool |
CN110225762A (en) | 2017-01-03 | 2019-09-10 | 因塔西亚制药公司 | The method of the co-administration of continuous administration and drug including GLP-1 receptor stimulating agent |
EP3768378A4 (en) | 2018-03-22 | 2021-11-17 | InCarda Therapeutics, Inc. | INNOVATIVE METHOD OF SLOWING THE VENTRICULAR RATE |
US10799138B2 (en) | 2018-04-05 | 2020-10-13 | University Of Maryland, Baltimore | Method of administering sotalol IV/switch |
USD933219S1 (en) | 2018-07-13 | 2021-10-12 | Intarcia Therapeutics, Inc. | Implant removal tool and assembly |
US11696902B2 (en) | 2018-08-14 | 2023-07-11 | AltaThera Pharmaceuticals, LLC | Method of initiating and escalating sotalol hydrochloride dosing |
US11344518B2 (en) | 2018-08-14 | 2022-05-31 | AltaThera Pharmaceuticals LLC | Method of converting atrial fibrillation to normal sinus rhythm and loading oral sotalol in a shortened time frame |
US10512620B1 (en) | 2018-08-14 | 2019-12-24 | AltaThera Pharmaceuticals, LLC | Method of initiating and escalating sotalol hydrochloride dosing |
US11610660B1 (en) | 2021-08-20 | 2023-03-21 | AltaThera Pharmaceuticals LLC | Antiarrhythmic drug dosing methods, medical devices, and systems |
Citations (91)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604417A (en) * | 1970-03-31 | 1971-09-14 | Wayne Henry Linkenheimer | Osmotic fluid reservoir for osmotically activated long-term continuous injector device |
US3760984A (en) * | 1971-09-29 | 1973-09-25 | Alza Corp | Osmotically powered agent dispensing device with filling means |
US3845770A (en) * | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) * | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US3977404A (en) * | 1975-09-08 | 1976-08-31 | Alza Corporation | Osmotic device having microporous reservoir |
US3987790A (en) * | 1975-10-01 | 1976-10-26 | Alza Corporation | Osmotically driven fluid dispenser |
US4008719A (en) * | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4014334A (en) * | 1976-02-02 | 1977-03-29 | Alza Corporation | Laminated osmotic system for dispensing beneficial agent |
US4031891A (en) * | 1975-11-03 | 1977-06-28 | Baxter Travenol Laboratories, Inc. | Air eliminating filter |
US4034758A (en) * | 1975-09-08 | 1977-07-12 | Alza Corporation | Osmotic therapeutic system for administering medicament |
US4036227A (en) * | 1973-04-25 | 1977-07-19 | Alza Corporation | Osmotic releasing device having a plurality of release rate patterns |
US4036228A (en) * | 1975-09-11 | 1977-07-19 | Alza Corporation | Osmotic dispenser with gas generating means |
US4058122A (en) * | 1976-02-02 | 1977-11-15 | Alza Corporation | Osmotic system with laminated wall formed of different materials |
US4077407A (en) * | 1975-11-24 | 1978-03-07 | Alza Corporation | Osmotic devices having composite walls |
US4093708A (en) * | 1974-12-23 | 1978-06-06 | Alza Corporation | Osmotic releasing device having a plurality of release rate patterns |
US4111202A (en) * | 1976-11-22 | 1978-09-05 | Alza Corporation | Osmotic system for the controlled and delivery of agent over time |
US4111203A (en) * | 1976-11-22 | 1978-09-05 | Alza Corporation | Osmotic system with means for improving delivery kinetics of system |
US4111201A (en) * | 1976-11-22 | 1978-09-05 | Alza Corporation | Osmotic system for delivering selected beneficial agents having varying degrees of solubility |
US4160452A (en) * | 1977-04-07 | 1979-07-10 | Alza Corporation | Osmotic system having laminated wall comprising semipermeable lamina and microporous lamina |
US4193398A (en) * | 1978-05-25 | 1980-03-18 | Watson-Marlow Limited | Fluid displacement |
US4200098A (en) * | 1978-10-23 | 1980-04-29 | Alza Corporation | Osmotic system with distribution zone for dispensing beneficial agent |
US4203439A (en) * | 1976-11-22 | 1980-05-20 | Alza Corporation | Osmotic system with volume amplifier for increasing amount of agent delivered therefrom |
US4256108A (en) * | 1977-04-07 | 1981-03-17 | Alza Corporation | Microporous-semipermeable laminated osmotic system |
US4265874A (en) * | 1980-04-25 | 1981-05-05 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
US4278087A (en) * | 1980-04-28 | 1981-07-14 | Alza Corporation | Device with integrated operations for controlling release of agent |
US4285987A (en) * | 1978-10-23 | 1981-08-25 | Alza Corporation | Process for manufacturing device with dispersion zone |
US4298003A (en) * | 1980-05-12 | 1981-11-03 | Alza Corporation | System for delivering agent at zero order rate with emerging agent below saturation |
US4327725A (en) * | 1980-11-25 | 1982-05-04 | Alza Corporation | Osmotic device with hydrogel driving member |
US4344929A (en) * | 1980-04-25 | 1982-08-17 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
US4379203A (en) * | 1980-05-23 | 1983-04-05 | Siemens Aktiengesellschaft | Housing for laser apparatus |
US4410328A (en) * | 1981-07-10 | 1983-10-18 | Alza Corporation | Dispensing device with internal drive |
US4449983A (en) * | 1982-03-22 | 1984-05-22 | Alza Corporation | Simultaneous delivery of two drugs from unit delivery device |
US4455143A (en) * | 1982-03-22 | 1984-06-19 | Alza Corporation | Osmotic device for dispensing two different medications |
US4455145A (en) * | 1981-07-10 | 1984-06-19 | Alza Corporation | Dispensing device with internal drive |
US4487803A (en) * | 1982-02-02 | 1984-12-11 | United States Borax & Chemical Corporation | Boric acid having improved handling properties |
US4503030A (en) * | 1983-06-06 | 1985-03-05 | Alza Corporation | Device for delivering drug to certain pH environments |
US4552561A (en) * | 1982-12-23 | 1985-11-12 | Alza Corporation | Body mounted pump housing and pump assembly employing the same |
US4576604A (en) * | 1983-03-04 | 1986-03-18 | Alza Corporation | Osmotic system with instant drug availability |
US4578075A (en) * | 1982-12-20 | 1986-03-25 | Alza Corporation | Delivery system housing a plurality of delivery devices |
US4587117A (en) * | 1983-06-06 | 1986-05-06 | Alza Corporation | Medical device for delivering drug to pH environments greater than 3.5 |
US4608048A (en) * | 1984-12-06 | 1986-08-26 | Alza Corporation | Dispensing device with drug delivery patterns |
US4610686A (en) * | 1983-11-02 | 1986-09-09 | Alza Corporation | Controlled delivery of haloperidol by an osmotic delivery system |
US4612008A (en) * | 1983-05-11 | 1986-09-16 | Alza Corporation | Osmotic device with dual thermodynamic activity |
US4615698A (en) * | 1984-03-23 | 1986-10-07 | Alza Corporation | Total agent osmotic delivery system |
US4619652A (en) * | 1982-12-23 | 1986-10-28 | Alza Corporation | Dosage form for use in a body mounted pump |
US4627850A (en) * | 1983-11-02 | 1986-12-09 | Alza Corporation | Osmotic capsule |
US4655766A (en) * | 1985-08-01 | 1987-04-07 | Alza Corporation | Fluid imbibing pump with self-regulating skin patch |
US4673405A (en) * | 1983-03-04 | 1987-06-16 | Alza Corporation | Osmotic system with instant drug availability |
US4685918A (en) * | 1985-02-01 | 1987-08-11 | Merck & Co., Inc. | Lipid osmotic pump |
US4705515A (en) * | 1984-10-26 | 1987-11-10 | Alza Corporation | Dosage form for administering drug of the colon |
US4723958A (en) * | 1986-05-23 | 1988-02-09 | Merck & Co., Inc. | Pulsatile drug delivery system |
US4732915A (en) * | 1983-11-02 | 1988-03-22 | Alza Corporation | Process for increasing solubility of drug |
US4751071A (en) * | 1983-12-01 | 1988-06-14 | Alza Corporation | Composition comprising salbutamol |
US4756314A (en) * | 1985-10-28 | 1988-07-12 | Alza Corporation | Sweat collection patch |
US4765989A (en) * | 1983-05-11 | 1988-08-23 | Alza Corporation | Osmotic device for administering certain drugs |
US4777049A (en) * | 1983-12-01 | 1988-10-11 | Alza Corporation | Constant release system with pulsed release |
US4783413A (en) * | 1986-07-30 | 1988-11-08 | Contraves Ag | Apparatus for supplying a medium to a reaction chamber |
US4783337A (en) * | 1983-05-11 | 1988-11-08 | Alza Corporation | Osmotic system comprising plurality of members for dispensing drug |
US4837111A (en) * | 1988-03-21 | 1989-06-06 | Alza Corporation | Dosage form for dispensing drug for human therapy |
US4851228A (en) * | 1984-06-20 | 1989-07-25 | Merck & Co., Inc. | Multiparticulate controlled porosity osmotic |
US4851229A (en) * | 1983-12-01 | 1989-07-25 | Alza Corporation | Composition comprising a therapeutic agent and a modulating agent |
US4865845A (en) * | 1986-03-21 | 1989-09-12 | Alza Corporation | Release rate adjustment of osmotic or diffusional delivery devices |
US4880631A (en) * | 1987-09-24 | 1989-11-14 | Merck & Co., Inc. | Controlled porosity osmotic pump |
US4898582A (en) * | 1988-08-09 | 1990-02-06 | Pharmetrix Corporation | Portable infusion device assembly |
US4968507A (en) * | 1984-06-20 | 1990-11-06 | Merck & Co., Inc. | Controlled porosity osmotic pump |
US5030216A (en) * | 1989-12-15 | 1991-07-09 | Alza Corporation | Osmotically driven syringe |
US5151093A (en) * | 1990-10-29 | 1992-09-29 | Alza Corporation | Osmotically driven syringe with programmable agent delivery |
US5257987A (en) * | 1990-05-21 | 1993-11-02 | Pharmetrix Corporation | Controlled release osmotic infusion system |
US5279608A (en) * | 1990-12-18 | 1994-01-18 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Osmotic pumps |
US5318540A (en) * | 1990-04-02 | 1994-06-07 | Pharmetrix Corporation | Controlled release infusion device |
US5324280A (en) * | 1990-04-02 | 1994-06-28 | Alza Corporation | Osmotic dosage system for delivering a formulation comprising liquid carrier and drug |
US5492534A (en) * | 1990-04-02 | 1996-02-20 | Pharmetrix Corporation | Controlled release portable pump |
US5499979A (en) * | 1987-06-25 | 1996-03-19 | Alza Corporation | Delivery system comprising kinetic forces |
US5562654A (en) * | 1994-10-28 | 1996-10-08 | University Of Kentucky Research Foundation | Time-released delivery system |
US5607696A (en) * | 1995-02-10 | 1997-03-04 | Alza Corporation | Osmotic membrane and delivery device |
US5612059A (en) * | 1988-08-30 | 1997-03-18 | Pfizer Inc. | Use of asymmetric membranes in delivery devices |
US5672167A (en) * | 1990-05-21 | 1997-09-30 | Recordati Corporation | Controlled release osmotic pump |
US5728396A (en) * | 1996-02-02 | 1998-03-17 | Alza Corporation | Sustained delivery of leuprolide using an implantable system |
US5795591A (en) * | 1991-10-10 | 1998-08-18 | Alza Corporation | Osmotic drug delivery devices with hydrophobic wall materials |
US5798119A (en) * | 1995-06-13 | 1998-08-25 | S. C. Johnson & Son, Inc. | Osmotic-delivery devices having vapor-permeable coatings |
US5801188A (en) * | 1997-01-08 | 1998-09-01 | Medtronic Inc. | Clonidine therapy enhancement |
US5827538A (en) * | 1993-07-22 | 1998-10-27 | Pfizer Inc. | Osmotic devices having vapor-permeable coatings |
US5869097A (en) * | 1992-11-02 | 1999-02-09 | Alza Corporation | Method of therapy comprising an osmotic caplet |
US5869096A (en) * | 1989-07-14 | 1999-02-09 | Alza Corporation | Oral osmotic device with hydrogel driving member |
US5876752A (en) * | 1990-08-07 | 1999-03-02 | Pfizer Inc. | Use of interfacially-polymerized membranes in delivery devices |
US5904934A (en) * | 1993-06-23 | 1999-05-18 | Alza Corporation | Ruminal drug delivery device |
US5980509A (en) * | 1988-12-13 | 1999-11-09 | Alza Corporation | Osmotic system for delivery of fluid-sensitive somatotropins to bovine animals |
US6117125A (en) * | 1996-05-02 | 2000-09-12 | Cook Incorporated | Method for predetermining uniform flow rate of a fluid from a tubular body and device therefrom |
US6283949B1 (en) * | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
US6582418B1 (en) * | 2000-06-01 | 2003-06-24 | Medtronic, Inc. | Drug pump with reinforcing grooves |
US6752930B2 (en) * | 2001-05-18 | 2004-06-22 | Peter L. Alexander | Chlorination apparatus and method |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4608046A (en) * | 1977-08-19 | 1986-08-26 | Keivan Towfigh | Flat folded female urinary aid |
EP0047013B1 (en) | 1980-09-02 | 1986-01-22 | Medtronic, Inc. | Subcutaneously implantable lead with drug dispenser means |
US4487603A (en) * | 1982-11-26 | 1984-12-11 | Cordis Corporation | Implantable microinfusion pump system |
US4627851A (en) | 1984-10-26 | 1986-12-09 | Alza Corporation | Colonic-therapeutic delivery system |
US4886668A (en) | 1987-09-24 | 1989-12-12 | Merck & Co., Inc. | Multiparticulate controlled porosity osmotic pump |
US4976966A (en) | 1988-12-29 | 1990-12-11 | Alza Corporation | Delayed release osmotically driven fluid dispenser |
US5273752A (en) | 1989-07-18 | 1993-12-28 | Alza Corporation | Controlled release dispenser comprising beneficial agent |
US5169390A (en) | 1990-05-21 | 1992-12-08 | Athayde Amulya L | Osmotic infusion device |
US5672168A (en) * | 1994-10-07 | 1997-09-30 | De La Torre; Roger A. | Laparoscopic access port for surgical instruments or the hand |
US5752930A (en) * | 1995-04-28 | 1998-05-19 | Medtronic, Inc. | Implantable techniques for infusing equal volumes of agents to spaced sites |
ZA981610B (en) | 1997-03-24 | 1999-08-26 | Alza Corp | Self adjustable exit port. |
US6541021B1 (en) | 1999-03-18 | 2003-04-01 | Durect Corporation | Devices and methods for pain management |
-
2001
- 2001-04-19 US US09/838,662 patent/US6632217B2/en not_active Expired - Fee Related
-
2002
- 2002-04-03 WO PCT/US2002/010425 patent/WO2002085428A2/en not_active Application Discontinuation
- 2002-04-03 AU AU2002307085A patent/AU2002307085A1/en not_active Abandoned
-
2003
- 2003-01-17 US US10/346,575 patent/US20030135202A1/en not_active Abandoned
- 2003-10-14 US US10/685,291 patent/US20040249365A1/en not_active Abandoned
Patent Citations (99)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3604417A (en) * | 1970-03-31 | 1971-09-14 | Wayne Henry Linkenheimer | Osmotic fluid reservoir for osmotically activated long-term continuous injector device |
US3760984A (en) * | 1971-09-29 | 1973-09-25 | Alza Corp | Osmotically powered agent dispensing device with filling means |
US3845770A (en) * | 1972-06-05 | 1974-11-05 | Alza Corp | Osmatic dispensing device for releasing beneficial agent |
US3916899A (en) * | 1973-04-25 | 1975-11-04 | Alza Corp | Osmotic dispensing device with maximum and minimum sizes for the passageway |
US4036227A (en) * | 1973-04-25 | 1977-07-19 | Alza Corporation | Osmotic releasing device having a plurality of release rate patterns |
US4093708A (en) * | 1974-12-23 | 1978-06-06 | Alza Corporation | Osmotic releasing device having a plurality of release rate patterns |
US4142526A (en) * | 1974-12-23 | 1979-03-06 | Alza Corporation | Osmotic releasing system with means for changing release therefrom |
US4135514A (en) * | 1974-12-23 | 1979-01-23 | Alza Corporation | Osmotic releasing system for administering ophthalmic drug to eye of animal |
US4096238A (en) * | 1974-12-23 | 1978-06-20 | Alza Corporation | Method for administering drug to the gastrointestinal tract |
US3977404A (en) * | 1975-09-08 | 1976-08-31 | Alza Corporation | Osmotic device having microporous reservoir |
US4034758A (en) * | 1975-09-08 | 1977-07-12 | Alza Corporation | Osmotic therapeutic system for administering medicament |
US4036228A (en) * | 1975-09-11 | 1977-07-19 | Alza Corporation | Osmotic dispenser with gas generating means |
US3987790A (en) * | 1975-10-01 | 1976-10-26 | Alza Corporation | Osmotically driven fluid dispenser |
US4031891A (en) * | 1975-11-03 | 1977-06-28 | Baxter Travenol Laboratories, Inc. | Air eliminating filter |
US4160020A (en) * | 1975-11-24 | 1979-07-03 | Alza Corporation | Therapeutic device for osmotically dosing at controlled rate |
US4077407A (en) * | 1975-11-24 | 1978-03-07 | Alza Corporation | Osmotic devices having composite walls |
US4116241A (en) * | 1976-02-02 | 1978-09-26 | Alza Corporation | Osmotic system with laminated wall comprising structurally different semipermeable lamina |
US4058122A (en) * | 1976-02-02 | 1977-11-15 | Alza Corporation | Osmotic system with laminated wall formed of different materials |
US4014334A (en) * | 1976-02-02 | 1977-03-29 | Alza Corporation | Laminated osmotic system for dispensing beneficial agent |
US4008719A (en) * | 1976-02-02 | 1977-02-22 | Alza Corporation | Osmotic system having laminar arrangement for programming delivery of active agent |
US4203439A (en) * | 1976-11-22 | 1980-05-20 | Alza Corporation | Osmotic system with volume amplifier for increasing amount of agent delivered therefrom |
US4111202A (en) * | 1976-11-22 | 1978-09-05 | Alza Corporation | Osmotic system for the controlled and delivery of agent over time |
US4111203A (en) * | 1976-11-22 | 1978-09-05 | Alza Corporation | Osmotic system with means for improving delivery kinetics of system |
US4111201A (en) * | 1976-11-22 | 1978-09-05 | Alza Corporation | Osmotic system for delivering selected beneficial agents having varying degrees of solubility |
US4160452A (en) * | 1977-04-07 | 1979-07-10 | Alza Corporation | Osmotic system having laminated wall comprising semipermeable lamina and microporous lamina |
US4256108A (en) * | 1977-04-07 | 1981-03-17 | Alza Corporation | Microporous-semipermeable laminated osmotic system |
US4193398A (en) * | 1978-05-25 | 1980-03-18 | Watson-Marlow Limited | Fluid displacement |
US4200098A (en) * | 1978-10-23 | 1980-04-29 | Alza Corporation | Osmotic system with distribution zone for dispensing beneficial agent |
US4285987A (en) * | 1978-10-23 | 1981-08-25 | Alza Corporation | Process for manufacturing device with dispersion zone |
US4265874A (en) * | 1980-04-25 | 1981-05-05 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
US4344929A (en) * | 1980-04-25 | 1982-08-17 | Alza Corporation | Method of delivering drug with aid of effervescent activity generated in environment of use |
US4278087A (en) * | 1980-04-28 | 1981-07-14 | Alza Corporation | Device with integrated operations for controlling release of agent |
US4298003A (en) * | 1980-05-12 | 1981-11-03 | Alza Corporation | System for delivering agent at zero order rate with emerging agent below saturation |
US4379203A (en) * | 1980-05-23 | 1983-04-05 | Siemens Aktiengesellschaft | Housing for laser apparatus |
US4327725A (en) * | 1980-11-25 | 1982-05-04 | Alza Corporation | Osmotic device with hydrogel driving member |
US4455145A (en) * | 1981-07-10 | 1984-06-19 | Alza Corporation | Dispensing device with internal drive |
US4410328A (en) * | 1981-07-10 | 1983-10-18 | Alza Corporation | Dispensing device with internal drive |
US4487803A (en) * | 1982-02-02 | 1984-12-11 | United States Borax & Chemical Corporation | Boric acid having improved handling properties |
US4449983A (en) * | 1982-03-22 | 1984-05-22 | Alza Corporation | Simultaneous delivery of two drugs from unit delivery device |
US4455143A (en) * | 1982-03-22 | 1984-06-19 | Alza Corporation | Osmotic device for dispensing two different medications |
US4578075A (en) * | 1982-12-20 | 1986-03-25 | Alza Corporation | Delivery system housing a plurality of delivery devices |
US4552561A (en) * | 1982-12-23 | 1985-11-12 | Alza Corporation | Body mounted pump housing and pump assembly employing the same |
US4619652A (en) * | 1982-12-23 | 1986-10-28 | Alza Corporation | Dosage form for use in a body mounted pump |
US4673405A (en) * | 1983-03-04 | 1987-06-16 | Alza Corporation | Osmotic system with instant drug availability |
US4576604A (en) * | 1983-03-04 | 1986-03-18 | Alza Corporation | Osmotic system with instant drug availability |
US4612008A (en) * | 1983-05-11 | 1986-09-16 | Alza Corporation | Osmotic device with dual thermodynamic activity |
US4783337A (en) * | 1983-05-11 | 1988-11-08 | Alza Corporation | Osmotic system comprising plurality of members for dispensing drug |
US4765989A (en) * | 1983-05-11 | 1988-08-23 | Alza Corporation | Osmotic device for administering certain drugs |
US4503030A (en) * | 1983-06-06 | 1985-03-05 | Alza Corporation | Device for delivering drug to certain pH environments |
US4587117A (en) * | 1983-06-06 | 1986-05-06 | Alza Corporation | Medical device for delivering drug to pH environments greater than 3.5 |
US4627850A (en) * | 1983-11-02 | 1986-12-09 | Alza Corporation | Osmotic capsule |
US4610686A (en) * | 1983-11-02 | 1986-09-09 | Alza Corporation | Controlled delivery of haloperidol by an osmotic delivery system |
US4732915A (en) * | 1983-11-02 | 1988-03-22 | Alza Corporation | Process for increasing solubility of drug |
US4851229A (en) * | 1983-12-01 | 1989-07-25 | Alza Corporation | Composition comprising a therapeutic agent and a modulating agent |
US4751071A (en) * | 1983-12-01 | 1988-06-14 | Alza Corporation | Composition comprising salbutamol |
US4777049A (en) * | 1983-12-01 | 1988-10-11 | Alza Corporation | Constant release system with pulsed release |
US4615698A (en) * | 1984-03-23 | 1986-10-07 | Alza Corporation | Total agent osmotic delivery system |
US4851228A (en) * | 1984-06-20 | 1989-07-25 | Merck & Co., Inc. | Multiparticulate controlled porosity osmotic |
US4968507A (en) * | 1984-06-20 | 1990-11-06 | Merck & Co., Inc. | Controlled porosity osmotic pump |
US4705515A (en) * | 1984-10-26 | 1987-11-10 | Alza Corporation | Dosage form for administering drug of the colon |
US4608048A (en) * | 1984-12-06 | 1986-08-26 | Alza Corporation | Dispensing device with drug delivery patterns |
US4685918A (en) * | 1985-02-01 | 1987-08-11 | Merck & Co., Inc. | Lipid osmotic pump |
US4655766A (en) * | 1985-08-01 | 1987-04-07 | Alza Corporation | Fluid imbibing pump with self-regulating skin patch |
US4756314A (en) * | 1985-10-28 | 1988-07-12 | Alza Corporation | Sweat collection patch |
US4865845A (en) * | 1986-03-21 | 1989-09-12 | Alza Corporation | Release rate adjustment of osmotic or diffusional delivery devices |
US4723958A (en) * | 1986-05-23 | 1988-02-09 | Merck & Co., Inc. | Pulsatile drug delivery system |
US4783413A (en) * | 1986-07-30 | 1988-11-08 | Contraves Ag | Apparatus for supplying a medium to a reaction chamber |
US5499979A (en) * | 1987-06-25 | 1996-03-19 | Alza Corporation | Delivery system comprising kinetic forces |
US4880631A (en) * | 1987-09-24 | 1989-11-14 | Merck & Co., Inc. | Controlled porosity osmotic pump |
US4837111A (en) * | 1988-03-21 | 1989-06-06 | Alza Corporation | Dosage form for dispensing drug for human therapy |
US4898582A (en) * | 1988-08-09 | 1990-02-06 | Pharmetrix Corporation | Portable infusion device assembly |
US5612059A (en) * | 1988-08-30 | 1997-03-18 | Pfizer Inc. | Use of asymmetric membranes in delivery devices |
US5980509A (en) * | 1988-12-13 | 1999-11-09 | Alza Corporation | Osmotic system for delivery of fluid-sensitive somatotropins to bovine animals |
US5869096A (en) * | 1989-07-14 | 1999-02-09 | Alza Corporation | Oral osmotic device with hydrogel driving member |
US5030216A (en) * | 1989-12-15 | 1991-07-09 | Alza Corporation | Osmotically driven syringe |
US5492534A (en) * | 1990-04-02 | 1996-02-20 | Pharmetrix Corporation | Controlled release portable pump |
US5324280A (en) * | 1990-04-02 | 1994-06-28 | Alza Corporation | Osmotic dosage system for delivering a formulation comprising liquid carrier and drug |
US5413572A (en) * | 1990-04-02 | 1995-05-09 | Alza Corporation | Osmotic dosage system for liquid drug delivery |
US5318540A (en) * | 1990-04-02 | 1994-06-07 | Pharmetrix Corporation | Controlled release infusion device |
US5257987A (en) * | 1990-05-21 | 1993-11-02 | Pharmetrix Corporation | Controlled release osmotic infusion system |
US5672167A (en) * | 1990-05-21 | 1997-09-30 | Recordati Corporation | Controlled release osmotic pump |
US5876752A (en) * | 1990-08-07 | 1999-03-02 | Pfizer Inc. | Use of interfacially-polymerized membranes in delivery devices |
US5151093A (en) * | 1990-10-29 | 1992-09-29 | Alza Corporation | Osmotically driven syringe with programmable agent delivery |
US5312389A (en) * | 1990-10-29 | 1994-05-17 | Felix Theeuwes | Osmotically driven syringe with programmable agent delivery |
US5279608A (en) * | 1990-12-18 | 1994-01-18 | Societe De Conseils De Recherches Et D'applications Scientifiques (S.C.R.A.S.) | Osmotic pumps |
US5795591A (en) * | 1991-10-10 | 1998-08-18 | Alza Corporation | Osmotic drug delivery devices with hydrophobic wall materials |
US5869097A (en) * | 1992-11-02 | 1999-02-09 | Alza Corporation | Method of therapy comprising an osmotic caplet |
US5904934A (en) * | 1993-06-23 | 1999-05-18 | Alza Corporation | Ruminal drug delivery device |
US5827538A (en) * | 1993-07-22 | 1998-10-27 | Pfizer Inc. | Osmotic devices having vapor-permeable coatings |
US5562654A (en) * | 1994-10-28 | 1996-10-08 | University Of Kentucky Research Foundation | Time-released delivery system |
US5607696A (en) * | 1995-02-10 | 1997-03-04 | Alza Corporation | Osmotic membrane and delivery device |
US5798119A (en) * | 1995-06-13 | 1998-08-25 | S. C. Johnson & Son, Inc. | Osmotic-delivery devices having vapor-permeable coatings |
US5985305A (en) * | 1996-02-02 | 1999-11-16 | Alza Corporation | Sustained delivery of an active agent using an implantable system |
US5728396A (en) * | 1996-02-02 | 1998-03-17 | Alza Corporation | Sustained delivery of leuprolide using an implantable system |
US6117125A (en) * | 1996-05-02 | 2000-09-12 | Cook Incorporated | Method for predetermining uniform flow rate of a fluid from a tubular body and device therefrom |
US5801188A (en) * | 1997-01-08 | 1998-09-01 | Medtronic Inc. | Clonidine therapy enhancement |
US6283949B1 (en) * | 1999-12-27 | 2001-09-04 | Advanced Cardiovascular Systems, Inc. | Refillable implantable drug delivery pump |
US6582418B1 (en) * | 2000-06-01 | 2003-06-24 | Medtronic, Inc. | Drug pump with reinforcing grooves |
US6752930B2 (en) * | 2001-05-18 | 2004-06-22 | Peter L. Alexander | Chlorination apparatus and method |
Cited By (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8708993B1 (en) * | 2003-10-15 | 2014-04-29 | Physician Technologies, Inc. | Infusion catheter procedure and system |
WO2009119519A1 (en) * | 2008-03-24 | 2009-10-01 | オリンパス株式会社 | Medicine administration device |
US20100318032A1 (en) * | 2008-03-24 | 2010-12-16 | Olympus Corporation | Medicinal-solution administration device |
JPWO2009119519A1 (en) * | 2008-03-24 | 2011-07-21 | オリンパス株式会社 | Drug administration device |
US8083719B2 (en) | 2008-03-24 | 2011-12-27 | Olympus Corporation | Medicinal-solution administration device |
WO2011126910A3 (en) * | 2010-03-30 | 2012-01-19 | Algynomics Inc. | Compositions and methods for the treatment of somatosensory disorders |
US8716349B2 (en) | 2010-03-30 | 2014-05-06 | Algynomics Inc. | Compositions and methods for the treatment of somatosensory disorders |
US8716350B2 (en) | 2010-03-30 | 2014-05-06 | Algynomics Inc. | Compositions and methods for the treatment of somatosensory disorders |
US10954259B1 (en) | 2017-10-09 | 2021-03-23 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11851451B2 (en) | 2017-10-09 | 2023-12-26 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US10519175B2 (en) | 2017-10-09 | 2019-12-31 | Compass Pathways Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11149044B2 (en) | 2017-10-09 | 2021-10-19 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11180517B2 (en) | 2017-10-09 | 2021-11-23 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11447510B2 (en) | 2017-10-09 | 2022-09-20 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11505564B2 (en) | 2017-10-09 | 2022-11-22 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US12312375B2 (en) | 2017-10-09 | 2025-05-27 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11629159B2 (en) | 2017-10-09 | 2023-04-18 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11939346B2 (en) | 2017-10-09 | 2024-03-26 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US10947257B2 (en) | 2017-10-09 | 2021-03-16 | Compass Pathfinder Limited | Preparation of psilocybin, different polymorphic forms, intermediates, formulations and their use |
US11865126B2 (en) | 2019-04-17 | 2024-01-09 | Compass Pathfinder Limited | Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin |
US11738035B2 (en) | 2019-04-17 | 2023-08-29 | Compass Pathfinder Limited | Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin |
US11564935B2 (en) | 2019-04-17 | 2023-01-31 | Compass Pathfinder Limited | Method for treating anxiety disorders, headache disorders, and eating disorders with psilocybin |
Also Published As
Publication number | Publication date |
---|---|
WO2002085428A3 (en) | 2004-03-11 |
US20040249365A1 (en) | 2004-12-09 |
US20020183722A1 (en) | 2002-12-05 |
US6632217B2 (en) | 2003-10-14 |
AU2002307085A1 (en) | 2002-11-05 |
WO2002085428A2 (en) | 2002-10-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6632217B2 (en) | Implantable osmotic pump | |
US6471688B1 (en) | Osmotic pump drug delivery systems and methods | |
US20040015154A1 (en) | Implantable devices with invasive and non-invasive reversible infusion rate adjustability | |
US6464688B1 (en) | Osmotic pump delivery system with flexible drug compartment | |
US6436091B1 (en) | Methods and implantable devices and systems for long term delivery of a pharmaceutical agent | |
EP0808153B1 (en) | Method and device for administering analgesics | |
JP4604022B2 (en) | Portable device for the administration of fluids to tissues and tumors by a delivery-enhanced delivery method | |
AU764894B2 (en) | Implantable device for access to a treatment site | |
US8267905B2 (en) | Apparatus and method for delivery of therapeutic and other types of agents | |
ES2734560T3 (en) | Microneedle applicators | |
US20040082908A1 (en) | Microminiature infusion pump | |
Aj et al. | Implantable drug delivery system: a review | |
CA2295832A1 (en) | Catheter assembly for percutaneous access to subcutaneous port | |
US20120053571A1 (en) | Fluid delivery device with active and passive fluid delivery | |
Ranade | Drug delivery systems 4. Implants in drug delivery | |
Lee et al. | Implantable small device enabled with magnetic actuation for on-demand and pulsatile drug delivery | |
US20140221964A1 (en) | Systems and methods for local drug delivery to kidneys | |
WO2001043528A2 (en) | Devices and methods in intracerebrospinal delivery of morphine-6-glucuronide | |
CN105228671B (en) | Emergency active material supply valve | |
US6616652B1 (en) | Osmotic pump delivery system with pre-hydrated membrane(s) and/or primable catheter | |
WO2024206853A2 (en) | Wearable medical device | |
US11992642B2 (en) | Implantable medical device for delivery of pharmacological agents to the deep brain structures | |
US20210338929A1 (en) | Implantable infusion pump refill port tactile feedback feature | |
WO2022173620A1 (en) | Implantable microsphere reservoir | |
CA2244997C (en) | Sustained delivery of an active agent using an implantable system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |