US20030134003A1 - Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments - Google Patents
Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments Download PDFInfo
- Publication number
- US20030134003A1 US20030134003A1 US10/269,165 US26916502A US2003134003A1 US 20030134003 A1 US20030134003 A1 US 20030134003A1 US 26916502 A US26916502 A US 26916502A US 2003134003 A1 US2003134003 A1 US 2003134003A1
- Authority
- US
- United States
- Prior art keywords
- composition
- sophora
- administering
- mammalian animals
- carried out
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000203 mixture Substances 0.000 title claims abstract description 132
- 238000000034 method Methods 0.000 title claims abstract description 79
- 241000219784 Sophora Species 0.000 title claims abstract description 63
- 239000010648 geranium oil Substances 0.000 title claims abstract description 60
- 235000019717 geranium oil Nutrition 0.000 title claims abstract description 60
- 238000011282 treatment Methods 0.000 title claims abstract description 41
- 206010028980 Neoplasm Diseases 0.000 title claims abstract description 38
- 201000011510 cancer Diseases 0.000 title claims abstract description 35
- 239000000284 extract Substances 0.000 title abstract description 13
- 241001465754 Metazoa Species 0.000 claims abstract description 63
- 239000002775 capsule Substances 0.000 claims abstract description 21
- 238000001959 radiotherapy Methods 0.000 claims abstract description 21
- 230000000694 effects Effects 0.000 claims abstract description 20
- 241000196324 Embryophyta Species 0.000 claims abstract description 15
- 210000001185 bone marrow Anatomy 0.000 claims abstract description 15
- 230000001629 suppression Effects 0.000 claims abstract description 15
- 239000003921 oil Substances 0.000 claims abstract description 9
- 235000019198 oils Nutrition 0.000 claims abstract description 9
- 239000006187 pill Substances 0.000 claims abstract description 3
- 241000699670 Mus sp. Species 0.000 claims description 47
- 241000123725 Sophora tonkinensis Species 0.000 claims description 18
- 238000000605 extraction Methods 0.000 claims description 17
- ZSBXGIUJOOQZMP-UHFFFAOYSA-N Isomatrine Natural products C1CCC2CN3C(=O)CCCC3C3C2N1CCC3 ZSBXGIUJOOQZMP-UHFFFAOYSA-N 0.000 claims description 14
- GLZPCOQZEFWAFX-UHFFFAOYSA-N Geraniol Chemical compound CC(C)=CCCC(C)=CCO GLZPCOQZEFWAFX-UHFFFAOYSA-N 0.000 claims description 12
- 241000208181 Pelargonium Species 0.000 claims description 12
- XVPBINOPNYFXID-JARXUMMXSA-N 85u4c366qs Chemical compound C([C@@H]1CCC[N@+]2(CCC[C@H]3[C@@H]21)[O-])N1[C@@H]3CCCC1=O XVPBINOPNYFXID-JARXUMMXSA-N 0.000 claims description 11
- 229930015582 oxymatrine Natural products 0.000 claims description 11
- DZNVIZQPWLDQHI-UHFFFAOYSA-N Citronellyl formate Chemical compound O=COCCC(C)CCC=C(C)C DZNVIZQPWLDQHI-UHFFFAOYSA-N 0.000 claims description 10
- ZSBXGIUJOOQZMP-JLNYLFASSA-N Matrine Chemical compound C1CC[C@H]2CN3C(=O)CCC[C@@H]3[C@@H]3[C@H]2N1CCC3 ZSBXGIUJOOQZMP-JLNYLFASSA-N 0.000 claims description 10
- QMVPMAAFGQKVCJ-UHFFFAOYSA-N citronellol Chemical compound OCCC(C)CCC=C(C)C QMVPMAAFGQKVCJ-UHFFFAOYSA-N 0.000 claims description 10
- 229930014456 matrine Natural products 0.000 claims description 10
- 241001145009 Sophora alopecuroides Species 0.000 claims description 9
- 241001398492 Sophora moorcroftiana Species 0.000 claims description 9
- 239000007788 liquid Substances 0.000 claims description 9
- 239000000843 powder Substances 0.000 claims description 8
- 239000002246 antineoplastic agent Substances 0.000 claims description 7
- 229940127089 cytotoxic agent Drugs 0.000 claims description 7
- 201000002364 leukopenia Diseases 0.000 claims description 7
- 231100001022 leukopenia Toxicity 0.000 claims description 7
- GLZPCOQZEFWAFX-YFHOEESVSA-N Geraniol Natural products CC(C)=CCC\C(C)=C/CO GLZPCOQZEFWAFX-YFHOEESVSA-N 0.000 claims description 6
- 239000005792 Geraniol Substances 0.000 claims description 6
- 229940113087 geraniol Drugs 0.000 claims description 6
- XMUPAAIHKAIUSU-QRQCRPRQSA-N kurarinol Chemical compound C1([C@H]2OC=3C(C[C@@H](CCC(C)(C)O)C(C)=C)=C(O)C=C(C=3C(=O)C2)OC)=CC=C(O)C=C1O XMUPAAIHKAIUSU-QRQCRPRQSA-N 0.000 claims description 6
- 241000894007 species Species 0.000 claims description 6
- QMVPMAAFGQKVCJ-SNVBAGLBSA-N (R)-(+)-citronellol Natural products OCC[C@H](C)CCC=C(C)C QMVPMAAFGQKVCJ-SNVBAGLBSA-N 0.000 claims description 5
- VVUMWAHNKOLVSN-UHFFFAOYSA-N 2-(4-ethoxyanilino)-n-propylpropanamide Chemical compound CCCNC(=O)C(C)NC1=CC=C(OCC)C=C1 VVUMWAHNKOLVSN-UHFFFAOYSA-N 0.000 claims description 5
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 5
- JGQFVRIQXUFPAH-UHFFFAOYSA-N beta-citronellol Natural products OCCC(C)CCCC(C)=C JGQFVRIQXUFPAH-UHFFFAOYSA-N 0.000 claims description 5
- 235000000484 citronellol Nutrition 0.000 claims description 5
- 239000008121 dextrose Substances 0.000 claims description 5
- FQMZVFJYMPNUCT-UHFFFAOYSA-N geraniol formate Natural products CC(C)=CCCC(C)=CCOC=O FQMZVFJYMPNUCT-UHFFFAOYSA-N 0.000 claims description 5
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 5
- 229920000053 polysorbate 80 Polymers 0.000 claims description 5
- GHASVSINZRGABV-UHFFFAOYSA-N Fluorouracil Chemical compound FC1=CNC(=O)NC1=O GHASVSINZRGABV-UHFFFAOYSA-N 0.000 claims description 4
- CUHBAHMWNDOHGZ-VHSXEESVSA-N Kuraramine Natural products C1N(C)C[C@@H](CO)C[C@H]1C1=CC=CC(=O)N1 CUHBAHMWNDOHGZ-VHSXEESVSA-N 0.000 claims description 4
- -1 P-cymene Chemical compound 0.000 claims description 4
- AAGFPTSOPGCENQ-UHFFFAOYSA-N Sophocarpin I Natural products C1CCC2CN3C(=O)C=CCC3C3C2N1CCC3 AAGFPTSOPGCENQ-UHFFFAOYSA-N 0.000 claims description 4
- IGXQFUGORDJEST-UHFFFAOYSA-N Sophocarpine Natural products O=C1C=CCC2C3CCCC4CCCC(CN12)C34 IGXQFUGORDJEST-UHFFFAOYSA-N 0.000 claims description 4
- MMCQRJPAMIHLQX-ZOWXZIJZSA-N Sophoramine Chemical compound C1CC[C@H]2CN3C(=O)C=CC=C3[C@@H]3[C@H]2N1CCC3 MMCQRJPAMIHLQX-ZOWXZIJZSA-N 0.000 claims description 4
- VQYBAEAOOJBSTR-AYRXBEOTSA-N Sophoranol Natural products O=C1N2[C@H]([C@@H]3[C@@H]4[C@](O)(C2)CCCN4CCC3)CCC1 VQYBAEAOOJBSTR-AYRXBEOTSA-N 0.000 claims description 4
- AAGFPTSOPGCENQ-JLNYLFASSA-N sophocarpine Chemical compound C1CC[C@H]2CN3C(=O)C=CC[C@@H]3[C@@H]3[C@H]2N1CCC3 AAGFPTSOPGCENQ-JLNYLFASSA-N 0.000 claims description 4
- ZSBXGIUJOOQZMP-BHPKHCPMSA-N sophoridine Chemical compound C1CC[C@@H]2CN3C(=O)CCC[C@@H]3[C@@H]3[C@H]2N1CCC3 ZSBXGIUJOOQZMP-BHPKHCPMSA-N 0.000 claims description 4
- 235000014347 soups Nutrition 0.000 claims description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 4
- 229960002949 fluorouracil Drugs 0.000 claims description 3
- BYQQDLUCCAZYJO-UHFFFAOYSA-N (+)-5alpha,9alpha-dihydroxymatrine Natural products C1CCN2CC(O)CC3C2C1(O)CN1C(=O)CCCC13 BYQQDLUCCAZYJO-UHFFFAOYSA-N 0.000 claims description 2
- ADJWEWOIQOTUSH-SWBPCFCJSA-N (+)-Isomatrine Natural products OC[C@@]1(C)[C@@H]2[C@H](O)CC(=C)[C@@H](CCc3cocc3)[C@@]2(C)CCC1 ADJWEWOIQOTUSH-SWBPCFCJSA-N 0.000 claims description 2
- FQEQMASDZFXSJI-RWMBFGLXSA-N (-)-Anagyrine Natural products C([C@@H]12)CCCN1C[C@H]1C3=CC=CC(=O)N3C[C@@H]2C1 FQEQMASDZFXSJI-RWMBFGLXSA-N 0.000 claims description 2
- CULUKMPMGVXCEI-NXEZZACHSA-N (-)-N-Methylcytisine Natural products C12=CC=CC(=O)N2C[C@H]2CN(C)C[C@H]1C2 CULUKMPMGVXCEI-NXEZZACHSA-N 0.000 claims description 2
- ZVTFRRVBMAUIQW-OLZOCXBDSA-N (-)-Rhombifoline Natural products C12=CC=CC(=O)N2C[C@H]2CN(CCC=C)C[C@@H]1C2 ZVTFRRVBMAUIQW-OLZOCXBDSA-N 0.000 claims description 2
- BYQQDLUCCAZYJO-CWFCOSEVSA-N 5alpha,9alpha-Dihydroxymatrine Natural products O=C1N2[C@@H]([C@H]3[C@@H]4[C@](O)(C2)CCCN4C[C@@H](O)C3)CCC1 BYQQDLUCCAZYJO-CWFCOSEVSA-N 0.000 claims description 2
- FQEQMASDZFXSJI-UHFFFAOYSA-N Anagyrin Natural products C12CCCCN2CC2C3=CC=CC(=O)N3CC1C2 FQEQMASDZFXSJI-UHFFFAOYSA-N 0.000 claims description 2
- CUHBAHMWNDOHGZ-NXEZZACHSA-N Isokuraramine Natural products O=C1NC([C@H]2CN(C)C[C@H](CO)C2)=CC=C1 CUHBAHMWNDOHGZ-NXEZZACHSA-N 0.000 claims description 2
- ZSBXGIUJOOQZMP-QVHKTLOISA-N Isomatrine Chemical compound C1CC[C@@H]2CN3C(=O)CCC[C@@H]3[C@H]3[C@@H]2N1CCC3 ZSBXGIUJOOQZMP-QVHKTLOISA-N 0.000 claims description 2
- MMCQRJPAMIHLQX-UHFFFAOYSA-N Isosophoromine Natural products C1CCC2CN3C(=O)C=CC=C3C3C2N1CCC3 MMCQRJPAMIHLQX-UHFFFAOYSA-N 0.000 claims description 2
- CDDHEMJXKBELBO-UHFFFAOYSA-N Leontalbinin Natural products C1CCC2CN3C(=O)CCCC3=C3C2N1CCC3 CDDHEMJXKBELBO-UHFFFAOYSA-N 0.000 claims description 2
- AWGSAGNWUZDEOT-UHFFFAOYSA-N Mamanine Natural products CC12CCCCN1CC(CC2CO)C3=CC=CC(=O)N3 AWGSAGNWUZDEOT-UHFFFAOYSA-N 0.000 claims description 2
- CULUKMPMGVXCEI-UHFFFAOYSA-N N-methylcystisine Natural products C12=CC=CC(=O)N2CC2CN(C)CC1C2 CULUKMPMGVXCEI-UHFFFAOYSA-N 0.000 claims description 2
- 241000700159 Rattus Species 0.000 claims description 2
- VQYBAEAOOJBSTR-QHSBEEBCSA-N Sophoranol Chemical compound C([C@@H]12)CCC(=O)N1C[C@@]1(O)[C@H]3[C@@H]2CCCN3CCC1 VQYBAEAOOJBSTR-QHSBEEBCSA-N 0.000 claims description 2
- JYIJIIVLEOETIQ-UHFFFAOYSA-N alpha-Isolupanin Natural products C12CCCCN2CC2C3CCCC(=O)N3CC1C2 JYIJIIVLEOETIQ-UHFFFAOYSA-N 0.000 claims description 2
- FQEQMASDZFXSJI-YNEHKIRRSA-N anagyrine Chemical compound C([C@@H]12)CCCN1C[C@H]1C3=CC=CC(=O)N3C[C@H]2C1 FQEQMASDZFXSJI-YNEHKIRRSA-N 0.000 claims description 2
- ICFWMXKHGNCJTK-UHFFFAOYSA-N anagyrine Natural products O=C1C=CC=C2C3CC(CC4CCCCN4C3)N12 ICFWMXKHGNCJTK-UHFFFAOYSA-N 0.000 claims description 2
- AOOCSKCGZYCEJX-CIQGVGRVSA-N baptifoline Natural products O=C1N2C([C@@H]3CN4[C@@H]([C@H](C2)C3)C[C@H](O)CC4)=CC=C1 AOOCSKCGZYCEJX-CIQGVGRVSA-N 0.000 claims description 2
- AOOCSKCGZYCEJX-NRWUCQMLSA-N baptifoline Chemical compound C([C@H]1C[C@@H]2CN3CC[C@@H](C[C@@H]31)O)N1C2=CC=CC1=O AOOCSKCGZYCEJX-NRWUCQMLSA-N 0.000 claims description 2
- 235000015872 dietary supplement Nutrition 0.000 claims description 2
- 235000013373 food additive Nutrition 0.000 claims description 2
- 239000002778 food additive Substances 0.000 claims description 2
- 235000013402 health food Nutrition 0.000 claims description 2
- PXSNOBCUERDYST-UHFFFAOYSA-N lupanine Natural products O=C1CCCN2CC3CC(CC12)N4CCCCC34 PXSNOBCUERDYST-UHFFFAOYSA-N 0.000 claims description 2
- JYIJIIVLEOETIQ-XDQVBPFNSA-N lupanine Chemical compound C([C@H]12)CCCN1C[C@H]1[C@H]3CCCC(=O)N3C[C@@H]2C1 JYIJIIVLEOETIQ-XDQVBPFNSA-N 0.000 claims description 2
- CULUKMPMGVXCEI-VHSXEESVSA-N n-methylcytisine Chemical compound C12=CC=CC(=O)N2C[C@@H]2CN(C)C[C@H]1C2 CULUKMPMGVXCEI-VHSXEESVSA-N 0.000 claims description 2
- QMGGMESMCJCABO-UHFFFAOYSA-N n-oxysophocarpine Chemical compound C12C3CCC[N+]2([O-])CCCC1CN1C3CC=CC1=O QMGGMESMCJCABO-UHFFFAOYSA-N 0.000 claims description 2
- ZVTFRRVBMAUIQW-QWHCGFSZSA-N rhombifoline Chemical compound C12=CC=CC(=O)N2C[C@@H]2CN(CCC=C)C[C@H]1C2 ZVTFRRVBMAUIQW-QWHCGFSZSA-N 0.000 claims description 2
- ZVTFRRVBMAUIQW-UHFFFAOYSA-N rhombifoline Natural products C12=CC=CC(=O)N2CC2CN(CCC=C)CC1C2 ZVTFRRVBMAUIQW-UHFFFAOYSA-N 0.000 claims description 2
- 239000006188 syrup Substances 0.000 claims description 2
- 235000020357 syrup Nutrition 0.000 claims description 2
- 241000522212 Euchresta Species 0.000 claims 8
- 241000283984 Rodentia Species 0.000 claims 6
- CZCBTSFUTPZVKJ-UHFFFAOYSA-N trans-Rosenoxid Natural products CC1CCOC(C=C(C)C)C1 CZCBTSFUTPZVKJ-UHFFFAOYSA-N 0.000 claims 4
- 239000002904 solvent Substances 0.000 claims 3
- GRWFGVWFFZKLTI-IUCAKERBSA-N (-)-α-pinene Chemical compound CC1=CC[C@@H]2C(C)(C)[C@H]1C2 GRWFGVWFFZKLTI-IUCAKERBSA-N 0.000 claims 2
- CZCBTSFUTPZVKJ-ZJUUUORDSA-N (2R,4R)-rose oxide Chemical compound C[C@@H]1CCO[C@@H](C=C(C)C)C1 CZCBTSFUTPZVKJ-ZJUUUORDSA-N 0.000 claims 2
- CZCBTSFUTPZVKJ-NXEZZACHSA-N (2S,4R)-rose oxide Chemical compound C[C@@H]1CCO[C@H](C=C(C)C)C1 CZCBTSFUTPZVKJ-NXEZZACHSA-N 0.000 claims 2
- NEHNMFOYXAPHSD-UHFFFAOYSA-N citronellal Chemical compound O=CCC(C)CCC=C(C)C NEHNMFOYXAPHSD-UHFFFAOYSA-N 0.000 claims 2
- 239000003937 drug carrier Substances 0.000 claims 2
- ZSIAUFGUXNUGDI-UHFFFAOYSA-N hexan-1-ol Chemical compound CCCCCCO ZSIAUFGUXNUGDI-UHFFFAOYSA-N 0.000 claims 2
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 claims 2
- CDOSHBSSFJOMGT-UHFFFAOYSA-N linalool Chemical compound CC(C)=CCCC(C)(O)C=C CDOSHBSSFJOMGT-UHFFFAOYSA-N 0.000 claims 2
- NOOLISFMXDJSKH-UTLUCORTSA-N (+)-Neomenthol Chemical compound CC(C)[C@@H]1CC[C@@H](C)C[C@@H]1O NOOLISFMXDJSKH-UTLUCORTSA-N 0.000 claims 1
- SPCXZDDGSGTVAW-HVTMNAMFSA-N (+)-alpha-gurjunene Chemical compound C[C@H]1CC[C@@H]2C(C)(C)[C@@H]2C2=C(C)CC[C@@H]12 SPCXZDDGSGTVAW-HVTMNAMFSA-N 0.000 claims 1
- NFLGAXVYCFJBMK-RKDXNWHRSA-N (+)-isomenthone Natural products CC(C)[C@H]1CC[C@@H](C)CC1=O NFLGAXVYCFJBMK-RKDXNWHRSA-N 0.000 claims 1
- WTARULDDTDQWMU-RKDXNWHRSA-N (+)-β-pinene Chemical compound C1[C@H]2C(C)(C)[C@@H]1CCC2=C WTARULDDTDQWMU-RKDXNWHRSA-N 0.000 claims 1
- WTARULDDTDQWMU-IUCAKERBSA-N (-)-Nopinene Natural products C1[C@@H]2C(C)(C)[C@H]1CCC2=C WTARULDDTDQWMU-IUCAKERBSA-N 0.000 claims 1
- 239000001490 (3R)-3,7-dimethylocta-1,6-dien-3-ol Substances 0.000 claims 1
- UFLHIIWVXFIJGU-ONEGZZNKSA-N (E)-3-Hexenol Natural products CC\C=C\CCO UFLHIIWVXFIJGU-ONEGZZNKSA-N 0.000 claims 1
- CDOSHBSSFJOMGT-JTQLQIEISA-N (R)-linalool Natural products CC(C)=CCC[C@@](C)(O)C=C CDOSHBSSFJOMGT-JTQLQIEISA-N 0.000 claims 1
- UFLHIIWVXFIJGU-ARJAWSKDSA-N (Z)-hex-3-en-1-ol Chemical compound CC\C=C/CCO UFLHIIWVXFIJGU-ARJAWSKDSA-N 0.000 claims 1
- 239000000267 (Z)-hex-3-en-1-ol Substances 0.000 claims 1
- WEEGYLXZBRQIMU-UHFFFAOYSA-N 1,8-cineole Natural products C1CC2CCC1(C)OC2(C)C WEEGYLXZBRQIMU-UHFFFAOYSA-N 0.000 claims 1
- 241000282465 Canis Species 0.000 claims 1
- 241000282693 Cercopithecidae Species 0.000 claims 1
- 241000699800 Cricetinae Species 0.000 claims 1
- NOOLISFMXDJSKH-UHFFFAOYSA-N DL-menthol Natural products CC(C)C1CCC(C)CC1O NOOLISFMXDJSKH-UHFFFAOYSA-N 0.000 claims 1
- WEEGYLXZBRQIMU-WAAGHKOSSA-N Eucalyptol Chemical compound C1C[C@H]2CC[C@]1(C)OC2(C)C WEEGYLXZBRQIMU-WAAGHKOSSA-N 0.000 claims 1
- PSMFFFUWSMZAPB-UHFFFAOYSA-N Eukalyptol Natural products C1CC2CCC1(C)COCC2(C)C PSMFFFUWSMZAPB-UHFFFAOYSA-N 0.000 claims 1
- NFLGAXVYCFJBMK-UHFFFAOYSA-N Menthone Chemical compound CC(C)C1CCC(C)CC1=O NFLGAXVYCFJBMK-UHFFFAOYSA-N 0.000 claims 1
- 241000283973 Oryctolagus cuniculus Species 0.000 claims 1
- WTARULDDTDQWMU-UHFFFAOYSA-N Pseudopinene Natural products C1C2C(C)(C)C1CCC2=C WTARULDDTDQWMU-UHFFFAOYSA-N 0.000 claims 1
- XCPQUQHBVVXMRQ-UHFFFAOYSA-N alpha-Fenchene Natural products C1CC2C(=C)CC1C2(C)C XCPQUQHBVVXMRQ-UHFFFAOYSA-N 0.000 claims 1
- MVNCAPSFBDBCGF-UHFFFAOYSA-N alpha-pinene Natural products CC1=CCC23C1CC2C3(C)C MVNCAPSFBDBCGF-UHFFFAOYSA-N 0.000 claims 1
- WUOACPNHFRMFPN-UHFFFAOYSA-N alpha-terpineol Chemical compound CC1=CCC(C(C)(C)O)CC1 WUOACPNHFRMFPN-UHFFFAOYSA-N 0.000 claims 1
- 229930006722 beta-pinene Natural products 0.000 claims 1
- RFFOTVCVTJUTAD-UHFFFAOYSA-N cineole Natural products C1CC2(C)CCC1(C(C)C)O2 RFFOTVCVTJUTAD-UHFFFAOYSA-N 0.000 claims 1
- 229930003633 citronellal Natural products 0.000 claims 1
- 235000000983 citronellal Nutrition 0.000 claims 1
- SQIFACVGCPWBQZ-UHFFFAOYSA-N delta-terpineol Natural products CC(C)(O)C1CCC(=C)CC1 SQIFACVGCPWBQZ-UHFFFAOYSA-N 0.000 claims 1
- LCWMKIHBLJLORW-UHFFFAOYSA-N gamma-carene Natural products C1CC(=C)CC2C(C)(C)C21 LCWMKIHBLJLORW-UHFFFAOYSA-N 0.000 claims 1
- 229930010848 gurjunene Natural products 0.000 claims 1
- UFLHIIWVXFIJGU-UHFFFAOYSA-N hex-3-en-1-ol Natural products CCC=CCCO UFLHIIWVXFIJGU-UHFFFAOYSA-N 0.000 claims 1
- 235000001510 limonene Nutrition 0.000 claims 1
- 229940087305 limonene Drugs 0.000 claims 1
- 229930007744 linalool Natural products 0.000 claims 1
- 229940041616 menthol Drugs 0.000 claims 1
- 229930007503 menthone Natural products 0.000 claims 1
- 150000007823 ocimene derivatives Chemical class 0.000 claims 1
- GRWFGVWFFZKLTI-UHFFFAOYSA-N rac-alpha-Pinene Natural products CC1=CCC2C(C)(C)C1C2 GRWFGVWFFZKLTI-UHFFFAOYSA-N 0.000 claims 1
- 229940116411 terpineol Drugs 0.000 claims 1
- XJPBRODHZKDRCB-UHFFFAOYSA-N trans-alpha-ocimene Natural products CC(=C)CCC=C(C)C=C XJPBRODHZKDRCB-UHFFFAOYSA-N 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 22
- 239000007924 injection Substances 0.000 abstract description 22
- 238000002512 chemotherapy Methods 0.000 abstract description 21
- 239000006072 paste Substances 0.000 abstract 1
- 239000003826 tablet Substances 0.000 abstract 1
- 210000000265 leukocyte Anatomy 0.000 description 23
- 238000012360 testing method Methods 0.000 description 23
- 238000002474 experimental method Methods 0.000 description 18
- 210000004027 cell Anatomy 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 14
- 241000282412 Homo Species 0.000 description 13
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 11
- 210000003714 granulocyte Anatomy 0.000 description 11
- 229930013930 alkaloid Natural products 0.000 description 10
- 210000004698 lymphocyte Anatomy 0.000 description 10
- 239000003814 drug Substances 0.000 description 9
- 210000001772 blood platelet Anatomy 0.000 description 8
- 229940079593 drug Drugs 0.000 description 8
- 210000003743 erythrocyte Anatomy 0.000 description 8
- 238000007912 intraperitoneal administration Methods 0.000 description 8
- 238000001990 intravenous administration Methods 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 150000003797 alkaloid derivatives Chemical class 0.000 description 7
- 239000003708 ampul Substances 0.000 description 6
- 210000001616 monocyte Anatomy 0.000 description 6
- 235000011187 glycerol Nutrition 0.000 description 5
- 235000008216 herbs Nutrition 0.000 description 5
- 239000002075 main ingredient Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 108010010803 Gelatin Proteins 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- 230000034994 death Effects 0.000 description 4
- 231100000517 death Toxicity 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000012676 herbal extract Substances 0.000 description 4
- 238000005303 weighing Methods 0.000 description 4
- 210000000601 blood cell Anatomy 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000012010 growth Effects 0.000 description 3
- 210000000987 immune system Anatomy 0.000 description 3
- 238000010253 intravenous injection Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 210000000440 neutrophil Anatomy 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 238000010992 reflux Methods 0.000 description 3
- 238000001256 steam distillation Methods 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 238000002560 therapeutic procedure Methods 0.000 description 3
- 201000004384 Alopecia Diseases 0.000 description 2
- 108010029961 Filgrastim Proteins 0.000 description 2
- 102000003812 Interleukin-15 Human genes 0.000 description 2
- 108090000172 Interleukin-15 Proteins 0.000 description 2
- 102000000588 Interleukin-2 Human genes 0.000 description 2
- 108010002350 Interleukin-2 Proteins 0.000 description 2
- 241000699666 Mus <mouse, genus> Species 0.000 description 2
- 244000270673 Pelargonium graveolens Species 0.000 description 2
- 235000017927 Pelargonium graveolens Nutrition 0.000 description 2
- 210000001744 T-lymphocyte Anatomy 0.000 description 2
- 208000007502 anemia Diseases 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 231100000433 cytotoxic Toxicity 0.000 description 2
- 230000001472 cytotoxic effect Effects 0.000 description 2
- 201000010099 disease Diseases 0.000 description 2
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 2
- 238000004817 gas chromatography Methods 0.000 description 2
- 208000024963 hair loss Diseases 0.000 description 2
- 230000003676 hair loss Effects 0.000 description 2
- 238000009169 immunotherapy Methods 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 210000000822 natural killer cell Anatomy 0.000 description 2
- 229940029345 neupogen Drugs 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 230000008439 repair process Effects 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 238000001356 surgical procedure Methods 0.000 description 2
- 206010043554 thrombocytopenia Diseases 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- PZNPLUBHRSSFHT-RRHRGVEJSA-N 1-hexadecanoyl-2-octadecanoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCCCC(=O)O[C@@H](COP([O-])(=O)OCC[N+](C)(C)C)COC(=O)CCCCCCCCCCCCCCC PZNPLUBHRSSFHT-RRHRGVEJSA-N 0.000 description 1
- 208000034656 Contusions Diseases 0.000 description 1
- 229920000858 Cyclodextrin Polymers 0.000 description 1
- 206010012735 Diarrhoea Diseases 0.000 description 1
- 208000000059 Dyspnea Diseases 0.000 description 1
- 206010013975 Dyspnoeas Diseases 0.000 description 1
- 108010074604 Epoetin Alfa Proteins 0.000 description 1
- 240000008579 Euchresta horsfieldii Species 0.000 description 1
- 241000208150 Geraniaceae Species 0.000 description 1
- 241000134874 Geraniales Species 0.000 description 1
- 241000208152 Geranium Species 0.000 description 1
- 101000746367 Homo sapiens Granulocyte colony-stimulating factor Proteins 0.000 description 1
- 101000746373 Homo sapiens Granulocyte-macrophage colony-stimulating factor Proteins 0.000 description 1
- 102000000589 Interleukin-1 Human genes 0.000 description 1
- 108010002352 Interleukin-1 Proteins 0.000 description 1
- 102000015696 Interleukins Human genes 0.000 description 1
- 108010063738 Interleukins Proteins 0.000 description 1
- 241000218922 Magnoliophyta Species 0.000 description 1
- 206010028347 Muscle twitching Diseases 0.000 description 1
- 240000004277 Pelargonium radens Species 0.000 description 1
- 206010040880 Skin irritation Diseases 0.000 description 1
- 230000006052 T cell proliferation Effects 0.000 description 1
- 241000607122 Uncaria tomentosa Species 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000021736 acetylation Effects 0.000 description 1
- 238000006640 acetylation reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 230000008512 biological response Effects 0.000 description 1
- 238000001815 biotherapy Methods 0.000 description 1
- 235000019658 bitter taste Nutrition 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 238000004820 blood count Methods 0.000 description 1
- 208000034526 bruise Diseases 0.000 description 1
- 235000011472 cat’s claw Nutrition 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- 238000001647 drug administration Methods 0.000 description 1
- 230000002900 effect on cell Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 229940089118 epogen Drugs 0.000 description 1
- 241001233957 eudicotyledons Species 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 230000037406 food intake Effects 0.000 description 1
- 235000012631 food intake Nutrition 0.000 description 1
- 235000013376 functional food Nutrition 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 238000000227 grinding Methods 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 208000015181 infectious disease Diseases 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 229940047122 interleukins Drugs 0.000 description 1
- 231100000225 lethality Toxicity 0.000 description 1
- 229940087875 leukine Drugs 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 230000004060 metabolic process Effects 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 239000003607 modifier Substances 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 229940127557 pharmaceutical product Drugs 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 210000004994 reproductive system Anatomy 0.000 description 1
- 238000007127 saponification reaction Methods 0.000 description 1
- 108010038379 sargramostim Proteins 0.000 description 1
- HFHDHCJBZVLPGP-UHFFFAOYSA-N schardinger α-dextrin Chemical compound O1C(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC(C(O)C2O)C(CO)OC2OC(C(C2O)O)C(CO)OC2OC2C(O)C(O)C1OC2CO HFHDHCJBZVLPGP-UHFFFAOYSA-N 0.000 description 1
- 208000013220 shortness of breath Diseases 0.000 description 1
- 230000036556 skin irritation Effects 0.000 description 1
- 231100000475 skin irritation Toxicity 0.000 description 1
- 239000008347 soybean phospholipid Substances 0.000 description 1
- 238000002798 spectrophotometry method Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 235000019640 taste Nutrition 0.000 description 1
- 239000012085 test solution Substances 0.000 description 1
- 238000004809 thin layer chromatography Methods 0.000 description 1
- 230000003867 tiredness Effects 0.000 description 1
- 208000016255 tiredness Diseases 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- 238000012762 unpaired Student’s t-test Methods 0.000 description 1
- 210000003462 vein Anatomy 0.000 description 1
- 229940053819 winrho Drugs 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/48—Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/395—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
- A61K31/495—Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
- A61K31/505—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
- A61K31/513—Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim having oxo groups directly attached to the heterocyclic ring, e.g. cytosine
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/70—Carbohydrates; Sugars; Derivatives thereof
- A61K31/7028—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages
- A61K31/7034—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin
- A61K31/704—Compounds having saccharide radicals attached to non-saccharide compounds by glycosidic linkages attached to a carbocyclic compound, e.g. phloridzin attached to a condensed carbocyclic ring system, e.g. sennosides, thiocolchicosides, escin, daunorubicin
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K36/00—Medicinal preparations of undetermined constitution containing material from algae, lichens, fungi or plants, or derivatives thereof, e.g. traditional herbal medicines
- A61K36/18—Magnoliophyta (angiosperms)
- A61K36/185—Magnoliopsida (dicotyledons)
- A61K36/48—Fabaceae or Leguminosae (Pea or Legume family); Caesalpiniaceae; Mimosaceae; Papilionaceae
- A61K36/489—Sophora, e.g. necklacepod or mamani
Definitions
- This invention relates generally to the use of a supporting composition in cancer treatments and more particularly to administering an herbal composition together with chemotherapy or radiation therapy (or both) in the treatment of cancer.
- Cancer is a disease where cells become abnormal (cancerous cells) and begin to multiply without control to develop into an extra mass of tissue called a tumor. These cancerous cells can invade nearby tissues and spread through the blood stream and lymphatic system to other parts of the body.
- cancer treatments are immunotherapy, surgery, radiation therapy, and chemotherapy. These cancer treatments may be applied alone or in conjunction with one another. Thus a cancer patient may undergo one or more treatments at a time. A single treatment would span a period of time with therapies delivered at various timed intervals.
- Immunotherapy also known as biological therapy or biological response modifier (BRM) therapy, tries to stimulate or restore the ability of the immune system to fight the disease. It is also used to lessen immune system related side effects that may be caused by some cancer treatments.
- Surgery seeks to directly remove the tumor from the body.
- Radiotherapy also known as radiotherapy, uses high-energy radiation from x-rays, gamma rays, neutrons, and other sources to kill cancer cells and shrink tumors by damaging the cells' genetic material. While cancerous cells are damaged permanently and eventually die, normal cells that are damaged in radiation therapy are able to repair themselves. Side effects that can occur during radiation therapy are skin irritation and hair loss in the area being treated and damage to the bone marrow.
- Chemotherapy uses cytotoxic drugs, alone or in combination, to destroy cancer cells. Just as in radiation therapy, cancer cells can be damaged and eventually die. But healthy cells affected in the process can repair themselves after the chemotherapy. Cytotoxic drugs work by interfering with the ability of a growing cell to divide and reproduce itself Thus, in addition to cancerous cells other normal fast-dividing growing cells can also be affected. There can be an effect on blood cells forming in the bone marrow causing bone marrow suppression. There can also be an effect on cells in the digestive tract, in the lining of the mouth and in the reproductive system causing diarrhea and mouth soreness, and an effect on hair follicles causing hair loss.
- Bone marrow suppression is one of the many side effects of chemotherapy and radiation therapy. It results in reduced blood cell production, including red blood cells, white blood cells, and platelets. Consequently, the patient will experience tiredness, from anemia, become more susceptible to infections, from leukopenia, and bruise easily and bleed more when getting a cut, from thrombocytopenia.
- Epogen Epoietin alpha
- WinRho SD has been used to counter the side effect of thrombocytopenia.
- Interleukin 1 (1L-I) is responsible for B-cell and T-cell proliferation
- Interleukin 2 (IL-2) is responsible for the proliferation, growth, and activation of B-cells and T-cells
- Interleukin 15 (IL-15) appears to be required for natural killer cells (NK cells) and CD8+Tcells.
- Herbs have also been found to counter leukopenia side effect. For example, injection of extracts from Sophora flavescenes roots has been reported to have reduced leukopenia side effects of chemotherapy and radiation therapy. Also, injection of Uncaria tomentosa water extracts in rats experiencing leukopenia from chemotherapy led to an increase in white blood cells.
- the present invention is directed to a method of using an herbal composition in cancer treatments, preferably to reduce the bone marrow suppression side effect of such treatments.
- the herbal composition is made of geranium oil and extracts from root of plants of the genus Sophora (Sophora plants), preferably Sophora flavescenes .
- Sophora plants genus Sophora plants
- Sophora flavescenes preferably refers to the main ingredients directly extracted from the oil and the root respectively but also includes main ingredients that are chemically synthesized or otherwise provided.
- the herbal composition can be administered via various routes, i.e. oral, intravenous, or intraperitoneal, in specific dosages to mammalian animals undergoing chemotherapy or radiation therapy.
- the method generally involves locating one or more mammalian animals being treated with one or more cancer treatments, but may also involve identifying one or more mammalian animals in need of cancer treatment and administering the above-mentioned composition and one or more cancer treatments. Also, the method generally involves preparing a therapeutically effective dosage of the composition, but may also simply involve use of a previously prepared dosage of the composition.
- FIG. 1 shows the compounds identified and their relative contents in the geranium oil produced in Kunming, China by the methods of gas chromatography/mass spectroscopy.
- FIG. 2 shows the result of a LD 50 experiment involving oral administration of a composition of the present invention in capsule form to mice. According to the result, half of the tested mice will die at the dosage of 2.35 g/kg of composition capsule, and none of the tested mice died at the dosage of 1.638 g/kg, which is the maximum tolerated dosage for mice.
- FIG. 3 shows the result of a LD 50 experiment involving intravenous administration of a composition of the present invention in injection form to mice. According to the result, half of the tested mice will die at the dosage of 164 3 ⁇ 17 6 mg/kg of composition injection, and none of the tested mice died at the dosage of 98.36 mg/kg, which is the maximum tolerated dosage for mice.
- FIG. 4 shows the result of a LD 50 experiment involving intraperitoneal administration of a composition of the present invention in injection form to mice. According to the result, half of the tested mice will die at the dosage of 334.8 ⁇ 27.9 mg/kg of composition injection, and none of the tested mice died at the dosage of 224 mg/kg, which is the maximum tolerated dosage for mice.
- FIG. 5 illustrates the dosage calculation for oral administration of the composition to humans. Based on the LD 50 experiment with mice as described above in FIG. 2, the maximum tolerated dosage for humans is derived. The minimally effective dosage of the composition for humans is derived basing on animal experiment of using the composition to treat EAC. Dosage in term of a composition of the present invention in capsule form is derived based on weight of the main ingredients per capsule. Dosage in term of the two herbal extracts is derived based on the relative proportion of the two extracts in the capsule. Dosage in term of the raw material is derived based on proportion of each herbal extract to each raw material respectively.
- FIG. 6 illustrates the dosage calculation for intravenous administration of the composition to humans. Based on the LD 50 experiment with mice as described above in FIG. 3, the maximum tolerated dosage for humans is derived. The minimally effective dosage of the composition is derived basing on animal experiment of using the composition to treat EAC. Dosage in term of a composition of the present invention in injection form is derived based on weight of the main ingredients per injection. Dosage in term of the two herbal extracts is derived based on the relative proportion of the two extracts in the injection.
- FIG. 7 illustrates the dosage calculation for intraperitoneal administration of the composition to animals.
- the maximum tolerated dosage, for animals is based on the LD 50 experiment with mice as described above in FIG. 4.
- the minimally effective dosage of the composition is derived basing on animal experiment of using the composition to treat EAC.
- Dosage in term of a composition of the present invention in injection form is derived based on weight of the main ingredients per injection.
- Dosage in term of the two herbal extracts is derived based on the relative proportion of the two extracts in the injection.
- FIG. 8 shows the differential blood cell counts of erythrocytes (RBC), platelets (PLT), and total leukocytes (WBC) in mice treated with 5-Fu and a composition of the present invention in injection form.
- the erythrocytes, platelets, and leukocyte counts in mice treated with 5-Fu and the composition of the present invention have increased across the board as compared to the mice treated with 5-Fu only.
- the total leukocyte count in mice treated with 5-Fu and the composition of the present invention is significantly greater than the leukocyte count in mice treated with 5-Fu only.
- the result also shows the is 50 mg/kg dosage is better than the 100 mg/kg dosage.
- FIG. 9 shows the differential leukocyte counts of granulocytes (GR), monocytes (MO), and lymphocytes (LY) in mice treated with 5-Fu and a composition of the present invention in injection form.
- the granulocytes, monocytes, and lymphocytes counts of mice treated with 5-Fu and the composition of the present invention is greater than the respective leukocyte counts in mice treated with 5-Fu only. The result is particularly significant with respect to granulocytes and lymphocytes.
- FIG. 10 shows the result of pharmcokinetics study of intravenous injection of matrine and matrine with and addition of geranium oil.
- FIG. 11 shows the result of pharmcokinetics study of intravenous injection of oxymatrine and oxymatrine with the addition of geranium oil.
- the present invention relates to methods of using an herbal composition made from geranium oil and extracts from the root of Sophora plants, preferably Sophora flavescenes (Sophora roots) as a supporting drug or supplement in cancer treatments, preferably to reduce the bone marrow suppression side effect occurring in most of such treatments.
- an herbal composition made from geranium oil and extracts from the root of Sophora plants, preferably Sophora flavescenes (Sophora roots) as a supporting drug or supplement in cancer treatments, preferably to reduce the bone marrow suppression side effect occurring in most of such treatments.
- cancer treatments in its plural form refers to courses of treatments.
- Geranium oil may be collected from steam distillation of the stem and leaves of the plant of division Magnoliophyta, class Magnoliopsida, order Geraniales, family Geraniaceae, and genus Pelargonium.
- Pelargoniums are native to South Africa and there are more than one hundred species in existence today, including hybridized garden species. Pelargoniums are now grown, and geranium oil is now produced, mainly in Norway, Egypt, Morocco, Bourbon, China, and Australia.
- the present invention preferably uses geranium oil extracted from Pelargonium graveolens or Pelargonium roseum and Pelargonium terebinthinceum grown in Kunming City of the Yunan province in China.
- a gas chromatography/mass spectroscopy (GC-MS) result of the geranium oil produced in Kunming shows the constituent compounds and their relative contents, see FIG. 1.
- the generally known main constituents of geranium oil are citronellol, geraniol, geranyl formate, and citronellyl formate.
- Geranium Oil Standard specifies the outward characteristics of geranium oil, i.e. the geranium oil takes on a clear oil liquid form of a yellow greenish or amber color and has a distinct aroma.
- the same standard also specifies a relative density of 0.881-0.900 g/cm 3 , an optical rotation of ⁇ 6° to ⁇ 14°, and a refractive index of 1.459-1.466 for geranium oil.
- a method, using acetylation and saponification is prescribed by the same Geranium Oil Standard to determine the total alcohol content of geranium oil.
- the geranium oil used preferably is first examined for compliance with the specifications of the Geranium Oil Standard.
- the outward characteristics of the geranium oil are checked in terms of color and aroma.
- the relative density, optical rotation, and refractive index of the geranium oil used are determined by tests prescribed by the Pharmacopoeia of the People's Republic of China, Appendix VII A, E, and F respectively (incorporated herein by reference in its entirety, including any drawings). The test results showed that the geranium oil has a relative density at 20° C.
- the total alcohol content determined in accordance with the method prescribed by the Geranium Oil Standard is about 71.48% to 72.76% which is well above the 65% alcohol content requirement (65% alcohol content is calculated as geraniol) specified by the Geranium Oil Standard.
- the Sophora root typically is about 10-30 cm long, 1-2 cm in diameter and generally takes on a grayish brown or grayish yellow color.
- the root preferably has a mild scent and an extremely bitter taste. It is grown mainly in China, Korea, and Japan.
- the alkaloids identified in Sophora roots are matrine, oxymatrine, sophoranol, N-methylcytisine, anagyrine, baptifoline, sophocarpine, sophoridine, iso matrine, 7, 11-Dehydromatrine, sophoramine, 7-Dehydrosophoramine, 9 ⁇ -Hydroxy-Sophoramine, 5 ⁇ ,9 ⁇ -Dihydroxymatrine, N-Oxysophocarpine, sophoranol N-oxide, rhombifoline, Lupanine, Mamanine, Kuraramine, Isokuraramine, Kurarinol.
- the known main constituents are matrine, oxymatrine.
- Sophora flavescenes The principal main constituents of Sophora flavescenes are also found in Sophora subprostrata, Sophora tonkinensis, Sophora alopecuroides, Sophora moorcroftiana , and Euchresta strigillosa . Result of pharmcokinetics study shows that in intravenous injections, the addition of geranium oil to matrine or oxymatrine will increase the absorption and metabolism of the respective compound (please see FIG. 10 and FIG. 11).
- the Sophora roots preferably are first checked for their outer appearance. Thin layer chromatography testing is preferably also applied in accordance with the Sophora root identification method as promulgated in the Pharmacopoeia of the People's Republic of China, Appendix VI B (incorporated herein by reference in its entirety, including any drawings) to determine presence of matrine, oxymatrine and sophocarpine. A titration method as prescribed by the Pharmacopoeia of the People's Republic of China for the determination of the total alkaloid content of Sophora roots may be applied. The total alkaloid content preferably should not be less than 2%. Sophora roots used in the present invention preferably have a total alkaloid content of about 2.74% to 3.03%.
- the composition can be made into an oil capsule through the following preferred steps.
- 1,000 capsules can be made from the amount of the ingredients described below.
- 300 to 400 grams of Sophora roots is mixed thoroughly with ethanol in an amount of ⁇ fraction (1/10) ⁇ of the weight of the Sophora roots, and then the mixture is smothered for about 12-15 hours. Then the Sophora roots are dried on low heat. The dried Sophora roots are then ground into powder and filtered through 40 mesh.
- the filtered through Sophora roots powder is then added to 70%-80% ethanol, in an amount of 10 times the weight of the filtered Sophora roots powder, in a steam distillation bottle to heat and reflux the mixture for 2 to 4 hours.
- the solution is filtered out and placed aside.
- Ethanol in an amount of 6 times the weight of the filtered Sophora roots powder, is added to the steam distillation bottle with the Sophora roots powder to heat and reflux for the second time for another 2-4 hours.
- the solution is filtered out and placed aside.
- the two filtered liquids are combined and added to the ethanol collector to condense and collect ethanol and to obtain the Sophora paste (which is of a brownish yellow color and tastes extremely bitter).
- the Sophora paste preferably should be tested for its total alkaloid content using the Sophora roots extraction content determination method specified in the Pharmaceutical Product Standard of Heilongiang province (incorporated herein by reference in its entirety, including any drawings).
- the total alkaloid content is about 70% to 73% (calculated as oxymatrine).
- the paste then is dissolved with distilled water, and then 5 to 7 grams of glycerine and 250 to 270 grams of gelatin are added (mixture). After the mixture of Sophora paste, glycerine, and gelatin is completely dissolved, it is placed in the vacuum melting bottle to eliminate the air bobble and the water content until the viscosity reaches about 30-50 pa.s.
- the mixture of Sophora paste, glycerine, and gelatin and 350 to 450 grams of geranium oil are separately inserted into a capsule making machine. Wherein the mixture of Sophora paste, glycerine, and gelatin forms the capsule shell with geranium oil filling the inside of the composition capsule.
- the capsules are then parched at 35° C. to 45° C. for 10-15 hours.
- the total alkaloid content of the entire capsule is 2% to 10% total alkaloid/capsule through an analysis of the capsule shell by the spectrophotometric method of the Pharmacopoeia of the People's Republic of China, Appendix VA.
- the Sophora paste may be mixed with glycerol soylecithin and then mixed with geranium oil to produce a form of emulsion for oral intake.
- Cyclodextrin may also be used to make tablets or pills enclosing the composition.
- the composition can also be made into dietary supplement, health food (functional food), and food additives.
- One can also decoct the Pelargonium plant and Sophora roots to obtain a liquid form of the composition for direct oral intake as a medicine soup or for making into syrup or other forms of liquid composition. Sophora roots the Pelargonium plant can also be taken orally, in an edible form, separately at a timed interval.
- the composition can also be prepared for injections through the following preferred steps. Sophora roots and geranium oil should be examined for compliance with the specifications as stated above.
- the Sophora roots are ground into coarse powder.
- 300 grams of the Sophora roots powder is added to 1200 milliliters of geranium oil in a 2000 ml glass heating tube to heat and reflux at 115° C. for 6 hours, and then the liquid is filtered to obtain 800 milliliters of dark yellow clear liquid oil.
- the oil liquid is placed in a pestle bowl and Tween-80 in 5% Dextrose is slowly added to the bowl while grinding at the same time until the oil liquid becomes transparent and its pH is 6.8 to 7.0.
- the solution is then filtered, and the filtered solution is placed in a 2 ml ampoule.
- the ampoule is then sealed and sterilized at 110° C.
- the composition can be administered orally, intraperitoneally, and intravenously at various dosages.
- Results from LD 50 (50% lethality) experiments with mice administered orally, intraperitoneally, and intravenously with the composition provide guidance on the range of safe dosages, i.e. maximum tolerated dosage.
- mice were used as test animals.
- the test solution was prepared by using 0.5% CMC to disintegrate the capsule, containing geranium oil and extraction from Sophora roots, and suspension solutions added to obtain the required concentration.
- the 50 mice were then divided into 5 groups, with 10 mice in each group (half are male and half are female).
- the 5 groups of mice were given the composition orally at various dosages of 4,000 g/kg, 3.200 g/kg, 2.560 g/kg, 2.048 g/kg, and 1.638 g/kg respectively.
- the dosages between the groups have a proportional value of 1:0.8.
- the drug was administered once to all the mice, and the mice were subsequently observed for 14 days for any death. On the third day after the drug administration, some mice start dying, and before death there were twitching, shortness of breath, and stop of food intake.
- FIG. 2 shows the results of the experiment.
- mice 50 healthy female mice, weighing 18-22 grams, from Kunming City of Yunan province, China were used as test animals. The 50 mice were then divided into 5 groups, with 10 mice in each group. A 2 ml composition injection containing 198.30 mg-198.76 mg of geranium oil and 1.24 mg-1.70 mg of total alkaloids of Sophora roots were administered intravenously to all the mice through their veins at the tails at a speed of 90 seconds/shot. The shots were administered to all the mice once and the mice were subsequently observed for 7 days for the number of deaths.
- FIG. 3 shows the results of the experiment.
- mice 50 healthy female mice, weighing 18-22 grams, provided by Kunming City of Yunan province, China were used as test animals. The 50 mice were then divided into 5 groups, with 10 mice in each group. A 2 ml injection containing 198.30 mg-198.76 mg of geranium oil and 1.24 mg-1.70 mg of total alkaloids of the Sophora roots were administered intraperitoneally to all the mice. The shots were administered to all the mice once and the mice were subsequently observed for 7 days for the number of deaths.
- FIG. 4 shows the results of the experiment.
- the composition can be used as a supporting drug or an adjunct supplement to chemotherapy and radiation therapy treatments to reduce the side effect of bone marrow suppression of such treatments.
- the composition can be administered prior to and or after the treatment.
- the dosages to be used for animals and humans are derived as shown in FIG. 5, FIG. 6, and FIG. 7 for oral, intravenous, and intraperitoneal administrations respectively.
- the feasible dosages for oral administration of the composition to animals treated with chemotherapy and or radiation therapy should preferably be between 1,638 mg/kg/day and 150 mg/kg/day.
- Oral administration of the composition capsule to Humans treated with chemotherapy and or radiation therapy would preferably be between 24.57 capsules/60 kg/day to 2.25 capsules/60 kg/day.
- Oral administration of the extractions of the two herbs of the composition to humans would preferably be 9,778.86 mg/60 kg/day to 877.50 mg/60 kg/day of geranium oil and 245.70 mg/60 kg/day to 4.50 mg/60 kg/day of extractions from Sophora roots.
- Oral administration of the actual herbs to humans would preferably be 9,778,860 mg/60 kg/day to 877,500 mg/60 kg/day of Pelargonium graveolens and 8,190 mg/60 kg/day to 150 mg/60 kg/day of Sophora roots.
- the feasible dosages for intravenous administration of the composition to animals treated with chemotherapy and or radiation therapy would preferably be 98 mg/kg/day to 25 mg/kg/day.
- Intravenous administration of the composition to humans treated with chemotherapy and or radiation therapy would preferably be between 2.94 ampoule/60 kg/day to 0.75 ampoule/60 kg/day.
- Intravenous administration of the extractions of the two herbs of the composition to humans would preferably be 584.35 mg/60 kg/day to 148.73 mg/60 kg/day of geranium oil and 5.00 mg/60 kg/day to 0.93 mg/60 kg/day of Sophora roots extracts.
- the feasible dosages for intraperitoneal administration of the composition to animals treated with chemotherapy and or radiation therapy would preferably be 224 mg/kg/day to 25 mg/kg/day.
- Intraperitoneal administration of the composition to humans treated with chemotherapy and/or radiation therapy would preferably be 6.72 ampoule/60 kg/day to 0.75 ampoule/60 kg/day.
- Intraperitoneal administration of the extractions of the two herbs of the composition to humans would preferably be 1335.67 mg/kg/day to 148.73 mg/kg/day of geranium oil and 11.42 mg/kg/day to 0.93 mg/kg/day of Sophora roots extracts
- Shots are administered to mice, with regular immune systems, that are also given the 5-Fu drug orally.
- test substance is prepared by dissolving the content of the 2 ml injection in 0.025% Tween 80 in 5% Dextrose.
- mice tested are 24 male ICR derived mice weighing 2212 grams provided by animal breeding center of MDS Pharma Services—Taiwan, Ltd.(Formerly Panlabs). The animals are divided into three groups of 8 mice. All aspects of the work including housing, experimentation and disposal of animals were performed in general according to the International Guiding Principles for Biomedical Research Involving Animals (CIOMS Publication No. ISBN 92 90360194, 1985).
- 5-fluorouracil 100 mg/kg, PO
- the test animals were bled retroorbitally to determine the cell counts of erythrocytes (RBC), platelets (PLT), and total leukocytes (WBC) and differential leukocytes counts: granulocytes (GR), monocytes (MO), and lymphocytes (LY).
- RBC erythrocytes
- PHT platelets
- WBC total leukocytes
- GR granulocytes
- MO monocytes
- LY lymphocytes
- the total blood cells counts (erythrocytes, platelets, leukocytes) of the group of animals treated with 5-Fu and 7 doses of 50 mg/kg of the composition injection increased across the board as compared to test animals treated with 5-Fu only. See FIG. 8.
- the total leukocyte count of the group of animal treated with 5-Fu and 7 doses of 50 mg/kg of the composition injection increased significantly as compared to test animals treated with 5-Fu only.
- the differential leukocyte count shows that both the granulocytes and lymphocytes counts increased significantly.
- a normal mouse's leukocyte cell count is 8.05 ⁇ 0.58 10 3 /ul, and the control test animals treated with 5-Fu have an average leukocyte count of 2.86 ⁇ 0.37 10 3 /ul.
- test animals treated with the 50 mg/kg test substance and 5-Fu have an average leukocyte count of 4.60 ⁇ 0.24 10 3 /ul, showing only 33.50% of the bone marrow suppression effect of 5-Fu when compared with the control.
- a normal mouse's granulocyte count is 1.90 ⁇ 0.37 10 3 /ul, and its Iymphocyte count is 3 94 ⁇ 0 55 10 3 /ul
- Differential leukocyte count shows that the suppression effect with respect to granulocytes in test animals treated with 50 mg/kg test substance and the 5-Fu is only 42.70% of that of the control.
- lymphocytes With respect to lymphocytes, the suppression effect is in test animals treated with 50 mg/kg test substance and the 5-Fu is only 51.20% of that of the control.
- the result of the experiment shows that the composition, when used with 5-Fu, significantly reduced the bone marrow suppression effect with respect to erythrocytes, platelets, and leukocytes, and in particular with respect to granulocytes and lymphocytes.
- the composition of geranium oil and extracts from Sophora roots makes it a good candidate as a supporting drug or supplement to be used in cancer treatments that induce such bone marrow suppression side effect.
- the composition may be used with chemotherapy and or radiation therapy to increase the leukocyte count.
- the composition may be used with 5-Fu, doxorubincin and other chemotherapeutic agents just as Neupogen is also used with 5-Fu as well as doxorubincin and many other type of chemotherapy to stimulate the growth of neutrophils.
Landscapes
- Health & Medical Sciences (AREA)
- Natural Medicines & Medicinal Plants (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Medicinal Chemistry (AREA)
- Epidemiology (AREA)
- Alternative & Traditional Medicine (AREA)
- Mycology (AREA)
- Microbiology (AREA)
- Medical Informatics (AREA)
- Botany (AREA)
- Biotechnology (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Medicines Containing Plant Substances (AREA)
Abstract
Description
- 1. Field of Invention
- This invention relates generally to the use of a supporting composition in cancer treatments and more particularly to administering an herbal composition together with chemotherapy or radiation therapy (or both) in the treatment of cancer.
- 2. Description of Related Art
- Normal cells grow and divide in an orderly and controlled manner. Cancer is a disease where cells become abnormal (cancerous cells) and begin to multiply without control to develop into an extra mass of tissue called a tumor. These cancerous cells can invade nearby tissues and spread through the blood stream and lymphatic system to other parts of the body.
- Currently, the four primary types of cancer treatments are immunotherapy, surgery, radiation therapy, and chemotherapy. These cancer treatments may be applied alone or in conjunction with one another. Thus a cancer patient may undergo one or more treatments at a time. A single treatment would span a period of time with therapies delivered at various timed intervals. Immunotherapy, also known as biological therapy or biological response modifier (BRM) therapy, tries to stimulate or restore the ability of the immune system to fight the disease. It is also used to lessen immune system related side effects that may be caused by some cancer treatments. Surgery seeks to directly remove the tumor from the body.
- Radiation therapy, also known as radiotherapy, uses high-energy radiation from x-rays, gamma rays, neutrons, and other sources to kill cancer cells and shrink tumors by damaging the cells' genetic material. While cancerous cells are damaged permanently and eventually die, normal cells that are damaged in radiation therapy are able to repair themselves. Side effects that can occur during radiation therapy are skin irritation and hair loss in the area being treated and damage to the bone marrow.
- Chemotherapy uses cytotoxic drugs, alone or in combination, to destroy cancer cells. Just as in radiation therapy, cancer cells can be damaged and eventually die. But healthy cells affected in the process can repair themselves after the chemotherapy. Cytotoxic drugs work by interfering with the ability of a growing cell to divide and reproduce itself Thus, in addition to cancerous cells other normal fast-dividing growing cells can also be affected. There can be an effect on blood cells forming in the bone marrow causing bone marrow suppression. There can also be an effect on cells in the digestive tract, in the lining of the mouth and in the reproductive system causing diarrhea and mouth soreness, and an effect on hair follicles causing hair loss.
- Bone marrow suppression is one of the many side effects of chemotherapy and radiation therapy. It results in reduced blood cell production, including red blood cells, white blood cells, and platelets. Consequently, the patient will experience tiredness, from anemia, become more susceptible to infections, from leukopenia, and bruise easily and bleed more when getting a cut, from thrombocytopenia.
- Drugs are used to counter the bone marrow suppression side effect. Epogen (Epoietin alpha) has been used to counter the side effect of anemia in cancer chemotherapy, and WinRho SD has been used to counter the side effect of thrombocytopenia.
- Many of the treatments developed to coordinate with chemotherapy and radiation therapy to counter the side effect of leukopenia act on specific types of white blood cells, i.e. granulocytes, monocytes, and lymphocytes. Neupogen is a recombinant human granulocyte colony-stimulating factor that stimulates the growth of neutrophils. Leukine is a recombinant human granulocyte-macrophage colony-stimulating factor that stimulates the production of neutrophils and macrophages. In animal laboratories and clinical trials, various interleukins, secreted by T-lymphocytes, have been used to stimulate productions of various white blood cells in the course of chemotherapy. Interleukin 1 (1L-I) is responsible for B-cell and T-cell proliferation, Interleukin 2 (IL-2) is responsible for the proliferation, growth, and activation of B-cells and T-cells, Interleukin 15 (IL-15) appears to be required for natural killer cells (NK cells) and CD8+Tcells. Herbs have also been found to counter leukopenia side effect. For example, injection of extracts fromSophora flavescenes roots has been reported to have reduced leukopenia side effects of chemotherapy and radiation therapy. Also, injection of Uncaria tomentosa water extracts in rats experiencing leukopenia from chemotherapy led to an increase in white blood cells.
- The present invention is directed to a method of using an herbal composition in cancer treatments, preferably to reduce the bone marrow suppression side effect of such treatments. The herbal composition is made of geranium oil and extracts from root of plants of the genus Sophora (Sophora plants), preferablySophora flavescenes. The above “geranium oil” and “extracts from the root of Sophora plants” preferably refers to the main ingredients directly extracted from the oil and the root respectively but also includes main ingredients that are chemically synthesized or otherwise provided. The herbal composition can be administered via various routes, i.e. oral, intravenous, or intraperitoneal, in specific dosages to mammalian animals undergoing chemotherapy or radiation therapy.
- The method generally involves locating one or more mammalian animals being treated with one or more cancer treatments, but may also involve identifying one or more mammalian animals in need of cancer treatment and administering the above-mentioned composition and one or more cancer treatments. Also, the method generally involves preparing a therapeutically effective dosage of the composition, but may also simply involve use of a previously prepared dosage of the composition.
- FIG. 1 shows the compounds identified and their relative contents in the geranium oil produced in Kunming, China by the methods of gas chromatography/mass spectroscopy.
- FIG. 2 shows the result of a LD50 experiment involving oral administration of a composition of the present invention in capsule form to mice. According to the result, half of the tested mice will die at the dosage of 2.35 g/kg of composition capsule, and none of the tested mice died at the dosage of 1.638 g/kg, which is the maximum tolerated dosage for mice.
- FIG. 3 shows the result of a LD50 experiment involving intravenous administration of a composition of the present invention in injection form to mice. According to the result, half of the tested mice will die at the dosage of 164 3±17 6 mg/kg of composition injection, and none of the tested mice died at the dosage of 98.36 mg/kg, which is the maximum tolerated dosage for mice.
- FIG. 4 shows the result of a LD50 experiment involving intraperitoneal administration of a composition of the present invention in injection form to mice. According to the result, half of the tested mice will die at the dosage of 334.8±27.9 mg/kg of composition injection, and none of the tested mice died at the dosage of 224 mg/kg, which is the maximum tolerated dosage for mice.
- FIG. 5 illustrates the dosage calculation for oral administration of the composition to humans. Based on the LD50 experiment with mice as described above in FIG. 2, the maximum tolerated dosage for humans is derived. The minimally effective dosage of the composition for humans is derived basing on animal experiment of using the composition to treat EAC. Dosage in term of a composition of the present invention in capsule form is derived based on weight of the main ingredients per capsule. Dosage in term of the two herbal extracts is derived based on the relative proportion of the two extracts in the capsule. Dosage in term of the raw material is derived based on proportion of each herbal extract to each raw material respectively.
- FIG. 6 illustrates the dosage calculation for intravenous administration of the composition to humans. Based on the LD50 experiment with mice as described above in FIG. 3, the maximum tolerated dosage for humans is derived. The minimally effective dosage of the composition is derived basing on animal experiment of using the composition to treat EAC. Dosage in term of a composition of the present invention in injection form is derived based on weight of the main ingredients per injection. Dosage in term of the two herbal extracts is derived based on the relative proportion of the two extracts in the injection.
- FIG. 7 illustrates the dosage calculation for intraperitoneal administration of the composition to animals. The maximum tolerated dosage, for animals, is based on the LD50 experiment with mice as described above in FIG. 4. The minimally effective dosage of the composition is derived basing on animal experiment of using the composition to treat EAC. Dosage in term of a composition of the present invention in injection form is derived based on weight of the main ingredients per injection. Dosage in term of the two herbal extracts is derived based on the relative proportion of the two extracts in the injection.
- FIG. 8 shows the differential blood cell counts of erythrocytes (RBC), platelets (PLT), and total leukocytes (WBC) in mice treated with 5-Fu and a composition of the present invention in injection form. The erythrocytes, platelets, and leukocyte counts in mice treated with 5-Fu and the composition of the present invention have increased across the board as compared to the mice treated with 5-Fu only. The total leukocyte count in mice treated with 5-Fu and the composition of the present invention is significantly greater than the leukocyte count in mice treated with 5-Fu only. The result also shows the is 50 mg/kg dosage is better than the 100 mg/kg dosage.
- FIG. 9 shows the differential leukocyte counts of granulocytes (GR), monocytes (MO), and lymphocytes (LY) in mice treated with 5-Fu and a composition of the present invention in injection form. The granulocytes, monocytes, and lymphocytes counts of mice treated with 5-Fu and the composition of the present invention is greater than the respective leukocyte counts in mice treated with 5-Fu only. The result is particularly significant with respect to granulocytes and lymphocytes.
- FIG. 10 shows the result of pharmcokinetics study of intravenous injection of matrine and matrine with and addition of geranium oil.
- FIG. 11 shows the result of pharmcokinetics study of intravenous injection of oxymatrine and oxymatrine with the addition of geranium oil.
- The present invention relates to methods of using an herbal composition made from geranium oil and extracts from the root of Sophora plants, preferablySophora flavescenes (Sophora roots) as a supporting drug or supplement in cancer treatments, preferably to reduce the bone marrow suppression side effect occurring in most of such treatments. As a single treatment would span a period of time with therapies delivered at various timed intervals, i.e. a treatment course, the term cancer treatments in its plural form refers to courses of treatments.
- 1. Geranium Oil
- Geranium oil may be collected from steam distillation of the stem and leaves of the plant of division Magnoliophyta, class Magnoliopsida, order Geraniales, family Geraniaceae, and genus Pelargonium. Pelargoniums are native to South Africa and there are more than one hundred species in existence today, including hybridized garden species. Pelargoniums are now grown, and geranium oil is now produced, mainly in Algeria, Egypt, Morocco, Bourbon, China, and Australia. The present invention preferably uses geranium oil extracted fromPelargonium graveolens or Pelargonium roseum and Pelargonium terebinthinceum grown in Kunming City of the Yunan Province in China. A gas chromatography/mass spectroscopy (GC-MS) result of the geranium oil produced in Kunming shows the constituent compounds and their relative contents, see FIG. 1. The generally known main constituents of geranium oil are citronellol, geraniol, geranyl formate, and citronellyl formate.
- Certain specifications of geranium oil are set out in the National Standard of the People's Republic of China—GB 11959-89 which is incorporated herein by reference in their entirety, including any drawings. It adopts the same international standard of ISO 4731:1978 Oil of Geranium (Geranium Oil Standard). The Geranium Oil Standard specifies the outward characteristics of geranium oil, i.e. the geranium oil takes on a clear oil liquid form of a yellow greenish or amber color and has a distinct aroma. The same standard also specifies a relative density of 0.881-0.900 g/cm3, an optical rotation of −6° to −14°, and a refractive index of 1.459-1.466 for geranium oil. In addition, a method, using acetylation and saponification, is prescribed by the same Geranium Oil Standard to determine the total alcohol content of geranium oil.
- In order to ensure the quality of the geranium oil used in the present invention, the geranium oil used preferably is first examined for compliance with the specifications of the Geranium Oil Standard. The outward characteristics of the geranium oil are checked in terms of color and aroma. The relative density, optical rotation, and refractive index of the geranium oil used are determined by tests prescribed by the Pharmacopoeia of the People's Republic of China, Appendix VII A, E, and F respectively (incorporated herein by reference in its entirety, including any drawings). The test results showed that the geranium oil has a relative density at 20° C. of 0.889 to 0.899 g/cm3, an optical rotation of −9° to −10° and a refractive index of 1.4595 to 1.4612. These are all within the ranges prescribed by the Geranium Oil Standard as stated above. The total alcohol content, determined in accordance with the method prescribed by the Geranium Oil Standard is about 71.48% to 72.76% which is well above the 65% alcohol content requirement (65% alcohol content is calculated as geraniol) specified by the Geranium Oil Standard.
- 2. Sophora Root
- The Sophora root typically is about 10-30 cm long, 1-2 cm in diameter and generally takes on a grayish brown or grayish yellow color. The root preferably has a mild scent and an extremely bitter taste. It is grown mainly in China, Korea, and Japan. Presently, the alkaloids identified in Sophora roots are matrine, oxymatrine, sophoranol, N-methylcytisine, anagyrine, baptifoline, sophocarpine, sophoridine, iso matrine, 7, 11-Dehydromatrine, sophoramine, 7-Dehydrosophoramine, 9α-Hydroxy-Sophoramine, 5α,9α-Dihydroxymatrine, N-Oxysophocarpine, sophoranol N-oxide, rhombifoline, Lupanine, Mamanine, Kuraramine, Isokuraramine, Kurarinol. The known main constituents are matrine, oxymatrine. The principal main constituents ofSophora flavescenes are also found in Sophora subprostrata, Sophora tonkinensis, Sophora alopecuroides, Sophora moorcroftiana, and Euchresta strigillosa. Result of pharmcokinetics study shows that in intravenous injections, the addition of geranium oil to matrine or oxymatrine will increase the absorption and metabolism of the respective compound (please see FIG. 10 and FIG. 11).
- To ensure the quality of the Sophora roots used, the Sophora roots preferably are first checked for their outer appearance. Thin layer chromatography testing is preferably also applied in accordance with the Sophora root identification method as promulgated in the Pharmacopoeia of the People's Republic of China, Appendix VI B (incorporated herein by reference in its entirety, including any drawings) to determine presence of matrine, oxymatrine and sophocarpine. A titration method as prescribed by the Pharmacopoeia of the People's Republic of China for the determination of the total alkaloid content of Sophora roots may be applied. The total alkaloid content preferably should not be less than 2%. Sophora roots used in the present invention preferably have a total alkaloid content of about 2.74% to 3.03%.
- 3. Capsules
- After examining the geranium oil and the Sophora roots for compliance with the specifications as described above the composition can be made into an oil capsule through the following preferred steps. 1,000 capsules can be made from the amount of the ingredients described below. 300 to 400 grams of Sophora roots is mixed thoroughly with ethanol in an amount of {fraction (1/10)} of the weight of the Sophora roots, and then the mixture is smothered for about 12-15 hours. Then the Sophora roots are dried on low heat. The dried Sophora roots are then ground into powder and filtered through 40 mesh.
- The filtered through Sophora roots powder is then added to 70%-80% ethanol, in an amount of 10 times the weight of the filtered Sophora roots powder, in a steam distillation bottle to heat and reflux the mixture for 2 to 4 hours. The solution is filtered out and placed aside. Ethanol, in an amount of 6 times the weight of the filtered Sophora roots powder, is added to the steam distillation bottle with the Sophora roots powder to heat and reflux for the second time for another 2-4 hours. The solution is filtered out and placed aside. The two filtered liquids are combined and added to the ethanol collector to condense and collect ethanol and to obtain the Sophora paste (which is of a brownish yellow color and tastes extremely bitter). The Sophora paste preferably should be tested for its total alkaloid content using the Sophora roots extraction content determination method specified in the Pharmaceutical Product Standard of Heilongiang Province (incorporated herein by reference in its entirety, including any drawings). The total alkaloid content is about 70% to 73% (calculated as oxymatrine). The paste then is dissolved with distilled water, and then 5 to 7 grams of glycerine and 250 to 270 grams of gelatin are added (mixture). After the mixture of Sophora paste, glycerine, and gelatin is completely dissolved, it is placed in the vacuum melting bottle to eliminate the air bobble and the water content until the viscosity reaches about 30-50 pa.s. The mixture of Sophora paste, glycerine, and gelatin and 350 to 450 grams of geranium oil are separately inserted into a capsule making machine. Wherein the mixture of Sophora paste, glycerine, and gelatin forms the capsule shell with geranium oil filling the inside of the composition capsule. The capsules are then parched at 35° C. to 45° C. for 10-15 hours. The total alkaloid content of the entire capsule is 2% to 10% total alkaloid/capsule through an analysis of the capsule shell by the spectrophotometric method of the Pharmacopoeia of the People's Republic of China, Appendix VA.
- The Sophora paste may be mixed with glycerol soylecithin and then mixed with geranium oil to produce a form of emulsion for oral intake. Cyclodextrin may also be used to make tablets or pills enclosing the composition. The composition can also be made into dietary supplement, health food (functional food), and food additives. One can also decoct the Pelargonium plant and Sophora roots to obtain a liquid form of the composition for direct oral intake as a medicine soup or for making into syrup or other forms of liquid composition. Sophora roots the Pelargonium plant can also be taken orally, in an edible form, separately at a timed interval.
- 4. Injections
- The composition can also be prepared for injections through the following preferred steps. Sophora roots and geranium oil should be examined for compliance with the specifications as stated above. The Sophora roots are ground into coarse powder. 300 grams of the Sophora roots powder is added to 1200 milliliters of geranium oil in a 2000 ml glass heating tube to heat and reflux at 115° C. for 6 hours, and then the liquid is filtered to obtain 800 milliliters of dark yellow clear liquid oil. The oil liquid is placed in a pestle bowl and Tween-80 in 5% Dextrose is slowly added to the bowl while grinding at the same time until the oil liquid becomes transparent and its pH is 6.8 to 7.0. The solution is then filtered, and the filtered solution is placed in a 2 ml ampoule. The ampoule is then sealed and sterilized at 110° C.
- 5. Dosages
- The composition can be administered orally, intraperitoneally, and intravenously at various dosages. Results from LD50 (50% lethality) experiments with mice administered orally, intraperitoneally, and intravenously with the composition provide guidance on the range of safe dosages, i.e. maximum tolerated dosage.
- LD50 Animal Experiment With
Oral Administration 50 ICR derived mice, half male and half female, weighing 18-22 grams, provided by animal labs of Anti-Bacterial Industrial Research Institute of Szuchuan province, China were used as test animals. The test solution was prepared by using 0.5% CMC to disintegrate the capsule, containing geranium oil and extraction from Sophora roots, and suspension solutions added to obtain the required concentration. The 50 mice were then divided into 5 groups, with 10 mice in each group (half are male and half are female). The 5 groups of mice were given the composition orally at various dosages of 4,000 g/kg, 3.200 g/kg, 2.560 g/kg, 2.048 g/kg, and 1.638 g/kg respectively. The dosages between the groups have a proportional value of 1:0.8. The drug was administered once to all the mice, and the mice were subsequently observed for 14 days for any death. On the third day after the drug administration, some mice start dying, and before death there were twitching, shortness of breath, and stop of food intake. FIG. 2 shows the results of the experiment. The LD50 dosage is 2.35 g/kg with a range of 2.10 to 2.62 g/kg (P=0.95). - LD50 Animal Experiment With Intravenous Administration
- 50 healthy female mice, weighing 18-22 grams, from Kunming City of Yunan Province, China were used as test animals. The 50 mice were then divided into 5 groups, with 10 mice in each group. A 2 ml composition injection containing 198.30 mg-198.76 mg of geranium oil and 1.24 mg-1.70 mg of total alkaloids of Sophora roots were administered intravenously to all the mice through their veins at the tails at a speed of 90 seconds/shot. The shots were administered to all the mice once and the mice were subsequently observed for 7 days for the number of deaths. FIG. 3 shows the results of the experiment. The LD50 dosage is 164.3 mg/kg±17.6 mg/kg (P=0.95).
- LD50 Animal Experiment With Intraperitoneal Administration
- 50 healthy female mice, weighing 18-22 grams, provided by Kunming City of Yunan Province, China were used as test animals. The 50 mice were then divided into 5 groups, with 10 mice in each group. A 2 ml injection containing 198.30 mg-198.76 mg of geranium oil and 1.24 mg-1.70 mg of total alkaloids of the Sophora roots were administered intraperitoneally to all the mice. The shots were administered to all the mice once and the mice were subsequently observed for 7 days for the number of deaths. FIG. 4 shows the results of the experiment. The LD50 dosage is 334.3 mg/kg±27.9 mg/kg (P=0.95).
- The composition can be used as a supporting drug or an adjunct supplement to chemotherapy and radiation therapy treatments to reduce the side effect of bone marrow suppression of such treatments. The composition can be administered prior to and or after the treatment. The dosages to be used for animals and humans are derived as shown in FIG. 5, FIG. 6, and FIG. 7 for oral, intravenous, and intraperitoneal administrations respectively.
- From FIG. 5, one can see that the feasible dosages for oral administration of the composition to animals treated with chemotherapy and or radiation therapy should preferably be between 1,638 mg/kg/day and 150 mg/kg/day. Oral administration of the composition capsule to Humans treated with chemotherapy and or radiation therapy would preferably be between 24.57 capsules/60 kg/day to 2.25 capsules/60 kg/day. Oral administration of the extractions of the two herbs of the composition to humans would preferably be 9,778.86 mg/60 kg/day to 877.50 mg/60 kg/day of geranium oil and 245.70 mg/60 kg/day to 4.50 mg/60 kg/day of extractions from Sophora roots. Oral administration of the actual herbs to humans would preferably be 9,778,860 mg/60 kg/day to 877,500 mg/60 kg/day ofPelargonium graveolens and 8,190 mg/60 kg/day to 150 mg/60 kg/day of Sophora roots.
- From FIG. 6, one can see that the feasible dosages for intravenous administration of the composition to animals treated with chemotherapy and or radiation therapy would preferably be 98 mg/kg/day to 25 mg/kg/day. Intravenous administration of the composition to humans treated with chemotherapy and or radiation therapy would preferably be between 2.94 ampoule/60 kg/day to 0.75 ampoule/60 kg/day. Intravenous administration of the extractions of the two herbs of the composition to humans would preferably be 584.35 mg/60 kg/day to 148.73 mg/60 kg/day of geranium oil and 5.00 mg/60 kg/day to 0.93 mg/60 kg/day of Sophora roots extracts.
- From FIG. 7, one can see that the feasible dosages for intraperitoneal administration of the composition to animals treated with chemotherapy and or radiation therapy would preferably be 224 mg/kg/day to 25 mg/kg/day. Intraperitoneal administration of the composition to humans treated with chemotherapy and/or radiation therapy would preferably be 6.72 ampoule/60 kg/day to 0.75 ampoule/60 kg/day. Intraperitoneal administration of the extractions of the two herbs of the composition to humans would preferably be 1335.67 mg/kg/day to 148.73 mg/kg/day of geranium oil and 11.42 mg/kg/day to 0.93 mg/kg/day of Sophora roots extracts
- Shots are administered to mice, with regular immune systems, that are also given the 5-Fu drug orally.
- The test substance is prepared by dissolving the content of the 2 ml injection in 0.025% Tween 80 in 5% Dextrose.
- Animals tested are 24 male ICR derived mice weighing 2212 grams provided by animal breeding center of MDS Pharma Services—Taiwan, Ltd.(Formerly Panlabs). The animals are divided into three groups of 8 mice. All aspects of the work including housing, experimentation and disposal of animals were performed in general according to the International Guiding Principles for Biomedical Research Involving Animals (CIOMS Publication No. ISBN 92 90360194, 1985).
- A dosage of 100 mg/kg of test substance and 50 mg/kg of test substance and a vehicle control, 0.025% Tween 80 in 5% Dextrose, were administered to three groups of test animals respectively. The test substance and control were administered intraperitoneally to the
test animals 24 hours before and 1 hour after a single dose of the chemotherapeutic agent 5-fluorouracil (5-Fu) (100 mg/kg, PO) and then once daily for the next 5 consecutive days (7 does in total). Onday 8, the test animals were bled retroorbitally to determine the cell counts of erythrocytes (RBC), platelets (PLT), and total leukocytes (WBC) and differential leukocytes counts: granulocytes (GR), monocytes (MO), and lymphocytes (LY). The mean±SEM of cell counts was calculated for each group of treatments and unpaired Student's t test was applied for comparisons between vehicle and test substance treated groups. Differences were considered significant at P<0.05. FIG. 8 and FIG. 9 show the results of the experiment. - The total blood cells counts (erythrocytes, platelets, leukocytes) of the group of animals treated with 5-Fu and 7 doses of 50 mg/kg of the composition injection increased across the board as compared to test animals treated with 5-Fu only. See FIG. 8.
- The total leukocyte count of the group of animal treated with 5-Fu and 7 doses of 50 mg/kg of the composition injection increased significantly as compared to test animals treated with 5-Fu only. In particular, the differential leukocyte count shows that both the granulocytes and lymphocytes counts increased significantly. A normal mouse's leukocyte cell count is 8.05±0.58 103/ul, and the control test animals treated with 5-Fu have an average leukocyte count of 2.86±0.37 103/ul. On the other hand, test animals treated with the 50 mg/kg test substance and 5-Fu have an average leukocyte count of 4.60±0.24 103/ul, showing only 33.50% of the bone marrow suppression effect of 5-Fu when compared with the control. A normal mouse's granulocyte count is 1.90±0.37 103/ul, and its Iymphocyte count is 3 94±0 55 103/ul Differential leukocyte count shows that the suppression effect with respect to granulocytes in test animals treated with 50 mg/kg test substance and the 5-Fu is only 42.70% of that of the control. With respect to lymphocytes, the suppression effect is in test animals treated with 50 mg/kg test substance and the 5-Fu is only 51.20% of that of the control. The result of the experiment shows that the composition, when used with 5-Fu, significantly reduced the bone marrow suppression effect with respect to erythrocytes, platelets, and leukocytes, and in particular with respect to granulocytes and lymphocytes. The ability of the composition of geranium oil and extracts from Sophora roots to reduce the bone marrow suppression effect makes it a good candidate as a supporting drug or supplement to be used in cancer treatments that induce such bone marrow suppression side effect. In particular, the composition may be used with chemotherapy and or radiation therapy to increase the leukocyte count. For example, the composition may be used with 5-Fu, doxorubincin and other chemotherapeutic agents just as Neupogen is also used with 5-Fu as well as doxorubincin and many other type of chemotherapy to stimulate the growth of neutrophils.
- Modifications and variations of the invention as hereinbefore set forth can be made without departing from the spirit and scope thereof, and therefore, only such limitations should be imposed as are indicated by the appended claims.
Claims (67)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/269,165 US20030134003A1 (en) | 2001-10-09 | 2002-10-09 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
US10/984,246 US7387806B2 (en) | 2001-10-09 | 2004-11-08 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US32786801P | 2001-10-09 | 2001-10-09 | |
US10/269,165 US20030134003A1 (en) | 2001-10-09 | 2002-10-09 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/984,246 Continuation US7387806B2 (en) | 2001-10-09 | 2004-11-08 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030134003A1 true US20030134003A1 (en) | 2003-07-17 |
Family
ID=26953543
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/269,165 Abandoned US20030134003A1 (en) | 2001-10-09 | 2002-10-09 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
US10/984,246 Expired - Fee Related US7387806B2 (en) | 2001-10-09 | 2004-11-08 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/984,246 Expired - Fee Related US7387806B2 (en) | 2001-10-09 | 2004-11-08 | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments |
Country Status (1)
Country | Link |
---|---|
US (2) | US20030134003A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070166404A1 (en) * | 2003-04-03 | 2007-07-19 | Hsun-Lang Chang | Composition and method for supporting cancer treatments |
WO2008140335A3 (en) * | 2007-05-14 | 2009-12-30 | Fonterra Co-Operative Group Limited | Methods of immune or hematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer, cancer symptoms, or the symptoms of cancer treatments |
US20120177732A1 (en) * | 2009-09-14 | 2012-07-12 | Buckley Michael Scott | Concentration and mental performance amplifying formulation |
CN110702833A (en) * | 2019-09-27 | 2020-01-17 | 石家庄平安医院有限公司 | Rapid thin-layer identification method for six medicinal materials in Jinling Changan capsule |
CN113367130A (en) * | 2021-07-01 | 2021-09-10 | 山东中医药大学 | Pesticide compound drug-loaded microsphere for honeysuckle and preparation method thereof |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8003393B1 (en) * | 2010-02-09 | 2011-08-23 | Panasonic Corporation | Method for determining whether or not a mammal is affected with a lung cancer |
CN106588929B (en) * | 2016-12-31 | 2019-03-12 | 南宁馨艺荣生物科技有限公司 | Method for extracting and purifying oxysophocarpine from radix Sophorae Tonkinensis |
CN109197336A (en) * | 2018-10-08 | 2019-01-15 | 西藏砂生槐环保科技有限责任公司 | A kind of implantation methods of sandliving sophora seed |
CN110896948A (en) * | 2019-10-28 | 2020-03-24 | 陕西康禾立丰生物科技药业有限公司 | Insecticidal composition containing d-limonene |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650801A (en) * | 1978-03-27 | 1987-03-17 | Taiho Pharmaceutical Company, Ltd. | Anti-cancer compositions for delivering 5-fluorouracil |
US5032597A (en) * | 1983-07-22 | 1991-07-16 | Du Pont Merck Pharmaceutical | Method of using phenylquinolinecarboxylic acids and derivatives for lymthoid leukemia treatment in a mammal |
US5618846A (en) * | 1990-12-17 | 1997-04-08 | University Of Manitoba | Treatment method for cancer |
US5958937A (en) * | 1995-06-05 | 1999-09-28 | Bionumerik Pharmaceuticals, Inc. | Pharmaceutical formulations of poorly water soluble camptothecin analogues and NMP |
US6531494B1 (en) * | 2001-08-29 | 2003-03-11 | Pharmacia Corporation | Gem-substituted αvβ3 antagonists |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1036828C (en) | 1994-12-17 | 1997-12-31 | 杨昶 | Tobacco additive |
CN1168457C (en) | 2001-06-14 | 2004-09-29 | 杨昶 | Xiangshen injection and preparation process and use thereof |
CN1167441C (en) | 2001-06-14 | 2004-09-22 | 杨昶 | Xiangshen soft capsule and preparation process and use thereof |
-
2002
- 2002-10-09 US US10/269,165 patent/US20030134003A1/en not_active Abandoned
-
2004
- 2004-11-08 US US10/984,246 patent/US7387806B2/en not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4650801A (en) * | 1978-03-27 | 1987-03-17 | Taiho Pharmaceutical Company, Ltd. | Anti-cancer compositions for delivering 5-fluorouracil |
US5032597A (en) * | 1983-07-22 | 1991-07-16 | Du Pont Merck Pharmaceutical | Method of using phenylquinolinecarboxylic acids and derivatives for lymthoid leukemia treatment in a mammal |
US5618846A (en) * | 1990-12-17 | 1997-04-08 | University Of Manitoba | Treatment method for cancer |
US5958937A (en) * | 1995-06-05 | 1999-09-28 | Bionumerik Pharmaceuticals, Inc. | Pharmaceutical formulations of poorly water soluble camptothecin analogues and NMP |
US6531494B1 (en) * | 2001-08-29 | 2003-03-11 | Pharmacia Corporation | Gem-substituted αvβ3 antagonists |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070166404A1 (en) * | 2003-04-03 | 2007-07-19 | Hsun-Lang Chang | Composition and method for supporting cancer treatments |
US20080305188A9 (en) * | 2003-04-03 | 2008-12-11 | Hsun-Lang Chang | Composition and method for supporting cancer treatments |
WO2008140335A3 (en) * | 2007-05-14 | 2009-12-30 | Fonterra Co-Operative Group Limited | Methods of immune or hematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer, cancer symptoms, or the symptoms of cancer treatments |
US20110182943A1 (en) * | 2007-05-14 | 2011-07-28 | Fonterra Co-Operative Group Limited | Methods of immune or hematological enhancement, inhibiting tumour formation or growth, and treating or preventing cancer, cancer symptoms, or the symptoms of cancer treatments |
US20120177732A1 (en) * | 2009-09-14 | 2012-07-12 | Buckley Michael Scott | Concentration and mental performance amplifying formulation |
US20130344141A1 (en) * | 2009-09-14 | 2013-12-26 | Michael Scott BUCKLEY | Concentration and mental performance amplifying formulation |
CN110702833A (en) * | 2019-09-27 | 2020-01-17 | 石家庄平安医院有限公司 | Rapid thin-layer identification method for six medicinal materials in Jinling Changan capsule |
CN113367130A (en) * | 2021-07-01 | 2021-09-10 | 山东中医药大学 | Pesticide compound drug-loaded microsphere for honeysuckle and preparation method thereof |
Also Published As
Publication number | Publication date |
---|---|
US7387806B2 (en) | 2008-06-17 |
US20050095306A1 (en) | 2005-05-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9913869B2 (en) | Formulations comprising herbal extracts | |
GB2411114A (en) | Botanical drug or dietary supplement for use in the treatment of Hepatitis C | |
Mahassni et al. | A pilot study: The effects of an aqueous extract of Lepidium sativum seeds on levels of immune cells and body and organs weights in Mice | |
US7387806B2 (en) | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments | |
EP2263668B1 (en) | Use of tea polyphenols in preparing medicaments for prevention or treatment of tumors | |
US20080305188A9 (en) | Composition and method for supporting cancer treatments | |
CN103566282B (en) | A kind of Traditional Chinese medicine composition with anti-tumor effect and preparation method | |
EP3873235B1 (en) | Phyto-therapyc compositions useful to improve the quality of sleep and in the treatment of insonnia, anxiety and depression | |
CN100455322C (en) | A Chinese medicine for treating cancer | |
CN114712377B (en) | Application of clinopodium polycephalum saponin A in preparing medicines | |
WO2004035075A1 (en) | Method of using geranium oil and sophora root extracts as a supporting composition in cancer treatments | |
CN106309758B (en) | Pharmaceutical composition for resisting gastrointestinal cancer | |
TWI601535B (en) | Use of compositions of water/alcohol extracts of antrodia cinnamomea cut-log cultivated fruiting body and solid-state cultivated mycelium as auxiliaries for anti-cancer agents | |
EP0956860A1 (en) | Hematopoietic function restorative and processed food both containing treated peanut testae | |
CN109662968A (en) | The liter white preparation of -5 α androstane hydride compounds of carbon loss containing A- and its application | |
US20070160701A1 (en) | Hemostatic mistura of ipomoea balatas leaves, methods of preparation and use thereof | |
Hartwich | The importance of immunological studies on Rhodiola rosea in the new effective and safe herbal drug discovery | |
CN111329871A (en) | Preparation method and application of product of cordyceps militaris for preventing and treating liver cancer | |
RU2835135C2 (en) | Pharmaceutical compositions containing picroside | |
CN103191268B (en) | Traditional Chinese medicinal composition for treating lung cancer | |
CN117177757A (en) | Pharmaceutical compositions containing humidicoside | |
CN102423384A (en) | Traditional Chinese medicine preparation for treating lung cancer and preparation method thereof | |
NL1013004C1 (en) | Herbal composition used for cancer treatment comprises Radix ginseng, Poria, Radix astragali, Radix actinidae valvate and Semen coicis | |
CN107320528A (en) | A kind of Chinese medical extract and medicine for treating alpastic anemia | |
CN105687715B (en) | Traditional Chinese medicine composition for treating chronic benzene poisoning thrombopenia and leukopenia |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: MEDIGREEN BIOTECHNOLOGY INC., TAIWAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:FONG, ANDY A.T.;SHANE, GUANG-TZUU;REEL/FRAME:013390/0659 Effective date: 20021008 |
|
AS | Assignment |
Owner name: MEDIGREEN BIOTECHNOLOGY CORP., TAIWAN Free format text: CORRECTED COVER SHEET TO CORRECT ASSIGNEE NAME, PREVIOUSLY RECORDED AT REEL/FRAME 013390/0659 (ASSIGNMENT OF ASSIGNOR'S INTEREST);ASSIGNORS:FONG, ANDY A. T.;SHANE, GUANG-TZUU;REEL/FRAME:014158/0846 Effective date: 20030531 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |