US20030134875A1 - Production of agglomerates - Google Patents
Production of agglomerates Download PDFInfo
- Publication number
- US20030134875A1 US20030134875A1 US10/352,324 US35232403A US2003134875A1 US 20030134875 A1 US20030134875 A1 US 20030134875A1 US 35232403 A US35232403 A US 35232403A US 2003134875 A1 US2003134875 A1 US 2003134875A1
- Authority
- US
- United States
- Prior art keywords
- inogatran
- solvent
- solution
- process according
- water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000004519 manufacturing process Methods 0.000 title description 2
- 229950003291 inogatran Drugs 0.000 claims abstract description 63
- CDPROXZBMHOBTQ-SJORKVTESA-N 2-[[(2r)-3-cyclohexyl-1-[(2s)-2-[3-(diaminomethylideneamino)propylcarbamoyl]piperidin-1-yl]-1-oxopropan-2-yl]amino]acetic acid Chemical compound NC(N)=NCCCNC(=O)[C@@H]1CCCCN1C(=O)[C@H](NCC(O)=O)CC1CCCCC1 CDPROXZBMHOBTQ-SJORKVTESA-N 0.000 claims abstract description 61
- 238000000034 method Methods 0.000 claims abstract description 36
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 claims description 42
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 claims description 35
- 239000002904 solvent Substances 0.000 claims description 26
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 11
- 238000010899 nucleation Methods 0.000 claims description 7
- 230000006911 nucleation Effects 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 3
- 238000009826 distribution Methods 0.000 abstract description 7
- 150000001875 compounds Chemical class 0.000 abstract description 2
- 239000000243 solution Substances 0.000 description 29
- 239000013078 crystal Substances 0.000 description 9
- -1 aminoiminomethyl Chemical group 0.000 description 7
- ZGGHKIMDNBDHJB-NRFPMOEYSA-M (3R,5S)-fluvastatin sodium Chemical group [Na+].C12=CC=CC=C2N(C(C)C)C(\C=C\[C@@H](O)C[C@@H](O)CC([O-])=O)=C1C1=CC=C(F)C=C1 ZGGHKIMDNBDHJB-NRFPMOEYSA-M 0.000 description 6
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 6
- 239000008186 active pharmaceutical agent Substances 0.000 description 6
- 238000002425 crystallisation Methods 0.000 description 6
- 229940088679 drug related substance Drugs 0.000 description 6
- 238000001704 evaporation Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000000654 additive Substances 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 230000008025 crystallization Effects 0.000 description 4
- 239000000839 emulsion Substances 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 239000002002 slurry Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 239000008187 granular material Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- DBPRUZCKPFOVDV-UHFFFAOYSA-N Clorprenaline hydrochloride Chemical compound O.Cl.CC(C)NCC(O)C1=CC=CC=C1Cl DBPRUZCKPFOVDV-UHFFFAOYSA-N 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- 238000005054 agglomeration Methods 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 229950011462 clorprenaline Drugs 0.000 description 2
- 238000000576 coating method Methods 0.000 description 2
- 230000006835 compression Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 238000007580 dry-mixing Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 230000010494 opalescence Effects 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonium chloride Substances [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 206010016948 Food interaction Diseases 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 101000712605 Theromyzon tessulatum Theromin Proteins 0.000 description 1
- 229940122388 Thrombin inhibitor Drugs 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 235000011114 ammonium hydroxide Nutrition 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000003054 catalyst Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000007884 disintegrant Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 229960000868 fluvastatin sodium Drugs 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000011031 large-scale manufacturing process Methods 0.000 description 1
- 239000002609 medium Substances 0.000 description 1
- 238000003801 milling Methods 0.000 description 1
- 239000012046 mixed solvent Substances 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 150000004682 monohydrates Chemical class 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003791 organic solvent mixture Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000001376 precipitating effect Effects 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000001953 recrystallisation Methods 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000003868 thrombin inhibitor Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/02—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
- C07K5/022—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -X-C(=O)-(C)n-N-C-C(=O)-Y-; X and Y being heteroatoms; n being 1 or 2
- C07K5/0222—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -X-C(=O)-(C)n-N-C-C(=O)-Y-; X and Y being heteroatoms; n being 1 or 2 with the first amino acid being heterocyclic, e.g. Pro, Trp
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P7/00—Drugs for disorders of the blood or the extracellular fluid
- A61P7/02—Antithrombotic agents; Anticoagulants; Platelet aggregation inhibitors
Definitions
- the present invention relates to a process for producing compact, spherical agglomerates of inogatran having a narrow size distribution and to inogatran anhydrate.
- Inogatran is a low molecular weight thrombin inhibitor exhibiting oral bioavailability, low variability and limited food interaction.
- the full chemical name of inogatran is: glycine, N-[2-[2-[[[3-[(aminoiminomethyl)amino]propyl]amino]carbonyl]-1-piperidinyl]-1-(cyclohexylmethyl)-2-oxoethyl]-,[2R-[2S]]- and it is disclosed in WO93/11152 (Example 67).
- Inogatran is a slowly crystallising substance showing four polymorphs, of which the one produced by the process of this invention is anhydrous, not hygroscopic and stable.
- a crystalline active drug substance is normally subjected to several processing steps before it is in a form suitable for administration to a human. Such steps are, for example, dry mixing with a filler and a disintegrant, and subsequently adding a binder to form granules; and drying, milling and/or mixing the granules with one or more further additives before a coating is applied or tabletting process employed.
- steps are, for example, dry mixing with a filler and a disintegrant, and subsequently adding a binder to form granules; and drying, milling and/or mixing the granules with one or more further additives before a coating is applied or tabletting process employed.
- a simpler way of producing tablets is by direct compressing where tablets are formed directly after the dry mixing of the active drug substance and the additive(s).
- the crystalline active drug substance must have good flowability and compressibility. This can be achieved by adding one or more further additives but these further additives are often expensive.
- Japanese patent application JP58143832 discloses the preparation of spherical crystals of a crystallisable hydrophobic compound (I), comprising the steps of:
- Japanese patent application JP01279869 discloses the preparation of spherical crystals of certain heterocyclic carboxylic acids.
- the crystals are prepared by dissolving the heterocyclic carboxylic acid in aqueous ammonia solution and adding a water-immiscible organic solvent and an organic solvent which is miscible with both water and the immiscible organic solvent mixture.
- Japanese patent application JP04077422 discloses the preparation of spherical granules of clorprenaline hydrochloride by dissolving clorprenaline hydrochloride in a good solvent, dispersing the solution in a poor solvent and evaporating.
- Document WO 97/49681 discloses a process for isolating crystalline fluvastatin sodium form B which comprises: (a) dissolving fluvastatin sodium in a first organic solvent or a mixture of a first organic solvent and water; (b) adding water if required and a polar precipitating organic solvent so as to obtain crystallization of fluvastatin sodium form B, optionally following seeding with crystalline fluvastatin sodium form B; and (c) isolating and drying the crystalline fluvastatin sodium form B thus obtained. This process results in needlelike crystals of fluvastatin sodium form B.
- a process has now been found by which compact, spherical agglomerates of inogatran with a narrow size distribution (from 30 to 110 ⁇ m, especially from 30 to 100 ⁇ m) can be formed.
- the present invention provides a process for producing spherical agglomerates of inogatran (for example inogatran anhydrate) comprising the consecutive steps of:
- inogatran in one of its instable, hygroscopic, hydrate forms (for example inogatran monohydrate) in a mixture of a good solvent for inogatran (L1) and a poor solvent for inogatran (L3) to form a concentrated solution
- Steps (a) to (e) can be followed by measures to isolate the product.
- a good solvent is defined as a liquid in which inogatran is very soluble (that is, more than about 0.03 g inogatran/g solvent); a poor solvent is a liquid where inogatran is sparingly to very slightly soluble (that is, about 0.0001-0.03 g inogatran/g solvent); and a non-solvent where inogatran is practically insoluble (that is, less than about 0.0001 g inogatran/g solvent).
- the mixture of (L1) and (L3) has a ratio in the range 0.97-0.90:0.03-0.10 (w/w).
- the amount of (L1), (L2) and (L3) per weight of inogatran is in the range from 7 to 15 ml per g inogatran.
- the ratio of [(L1)+(L3)]:L2) is preferably from 1:1.5 to 1:4 (v/v).
- a concentrated solution is a solution having, for example, more than 10 g inogatran per 100 ml of solvent (such as more than 20 g inogatran per 100 ml of solvent).
- steps (b) and (c) As an optional step between steps (b) and (c) a further step can be added wherein the equipment and the filter plate is washed with (L1) in order to minimize losses of inogatran.
- an appropriate amount of inogatran is dissolved in a mixture of L1 and L3 to form a highly concentrated solution.
- the solution is filtered.
- Non-solvent L2 is then added slowly to the highly concentrated solution while stirring slowly to allow (as visually judged by the first appearence of opalescence) the formation of small quasi-emulsion droplets of inogatran/L1/L3 in the dispersion medium L2.
- the solution is preferably seeded to start nucleation and, when nucleation has occurred, more L2 is added. The crystallization is then allowed to proceed until equilibrium has occured.
- the product obtained is filtered and dried after equlibrium has been achieved.
- the size of the spherical agglomerates of inogatran produced by the process is primarily dependent on the size of the quasi-emulsion droplets and stirring has only a marginal effect on the size of the quasi-emulsion droplets.
- the size of the quasi-emulsion droplets (and thus the size of the agglomerates produced) can be controlled by temperature, drug concentration and volume ratios of liquids used in the process.
- Compact, spherical agglomerates of inogatran with a narrow size distribution (30 to 110 ⁇ m) can be obtained by the process according to the invention.
- An increase of the temperature decreases the size of the agglomerates while a decrease in temperature increases the size of the agglomerates.
- a higher concentration of inogatran in the L1/L3 mixture (such as the ethanol/water mixture) gives larger agglomerates. If the amount of water is too high, the process tends to give other polymorphs of inogatran which does not meet the requirements of being compact and spherical. Instead soft, porous and spherical agglomerates are obtained. Also, too much ethanol gives a variable size distribution.
- [2R-[2S]]-N-[2-[2-[[[[3-[(Aminoiminomethyl)amino]propyl]amino]carbonyl]-1-piperidinyl]-1-(cyclohexylmethyl)-2-oxoethyl]-glycine benzyl ester (see WO9311152, 88 kg) was dissolved in ethanol (792 L, 99.5%) at 18° C. Then palladium on carbon (4.4 kg) was added as a slurry in ethanol (99 L). After evacuation three times with nitrogen, a total of 10.4 m 3 hydrogen was added at an inner temperature of 25° C. The reaction was complete (99.3%) after 4 hours.
- the catalyst was filtered off and washed with ethanol (82 L) and water (82 L). The solution was then concentrated by evaporation of solvent to a final volume of 200 L. Then, water (330 L) and 1 equivalent of concentrated HCl (12.6 kg) was added. Subsequently, 175 kg solvent was evaporated until the concentration of inogatran in the solution was 21% (w/w). The solution was left overnight after which 0.5 equivalents HCI (6.3 kg) was added to dissolve some crystals. The solution was then heated to 30° C. Thereafter, 105 kg solvent was evaporated. Absolute ethanol (15 L) was added and the solution was then extracted twice with ethyl acetate at 20° C. (118 kg and 100 kg respectively).
- Inogatran monohydrate (Example 1, 49 kg) and 4.6 L water were added to absolute ethanol (260 L) at 18° C. The resulting solution was clear filtrated and the filter was washed with 50 L absolute ethanol. The solution was then concentrated by evaporation until the volume was 100 L. Then, ethanol (15 kg) and water (6.7 kg) were added, the solution then heated to 40° C. and, finally, ethyl acetate (330 kg) was added over a period of 3 hours. Crystallisation started spontaneously when approximately 300 kg ethyl acetate had been added. The slurry was left at 40° C. overnight (11 h). The slurry was then centrifugated, washed twice with 50 L of a mixture of ethyl acetate and ethanol (4:1). The resulting crystals were dried at 40° C. to leave inogatran anhydrate (46 kg).
- Inogatran (monohydrate; 5.5% of water; 26.6 kg) was dissolved in 140 L of ethanol (99.5%) and 1.13 L of water at 30° C. The solution was filtered to obtain a clear solution and was washed with 20 L of ethanol. The solution was concentrated by evaporation of about 105 L of ethanol under reduced pressure and the temperature was adjusted to 25° C. To this solution was added 90 L of ethyl acetate over 20 minutes and the resulting mixture was seeded with inogatran anhydrate (3-5 g). Nucleation appeared after about 1 hour and after visuably judging the appearence of opalescence further 80 L of ethyl acetate was added. The system was left over night for equilibrium to occur.
- Inogatran (anhydrate) was dissolved in ethanol:water (90:10% w/w) (concentration 5-6 ml/g of inogatran) at reflux (about 78° C.) and the resulting solution was cooled to room temperature. The system was filtered to obtain a clear solution and was concentrated by azeotropic evaporation of ethanol/water (96/4% w/w) to a volume of 2.5-3 ml/g of inogatran. The resulting solution was analysed for amount of water by the Karl Fischer method.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Biophysics (AREA)
- Diabetes (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Hematology (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Medicinal Preparation (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Hydrogenated Pyridines (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A process for producing spherical agglomerates of inogatran having a narrow size distribution, and the compound inogatran anhydrate.
Description
- The present invention relates to a process for producing compact, spherical agglomerates of inogatran having a narrow size distribution and to inogatran anhydrate.
- Inogatran is a low molecular weight thrombin inhibitor exhibiting oral bioavailability, low variability and limited food interaction. The full chemical name of inogatran is: glycine, N-[2-[2-[[[3-[(aminoiminomethyl)amino]propyl]amino]carbonyl]-1-piperidinyl]-1-(cyclohexylmethyl)-2-oxoethyl]-,[2R-[2S]]- and it is disclosed in WO93/11152 (Example 67).
- Inogatran is a slowly crystallising substance showing four polymorphs, of which the one produced by the process of this invention is anhydrous, not hygroscopic and stable.
- A crystalline active drug substance is normally subjected to several processing steps before it is in a form suitable for administration to a human. Such steps are, for example, dry mixing with a filler and a disintegrant, and subsequently adding a binder to form granules; and drying, milling and/or mixing the granules with one or more further additives before a coating is applied or tabletting process employed. A simpler way of producing tablets is by direct compressing where tablets are formed directly after the dry mixing of the active drug substance and the additive(s). However, in order to use a dry compression method the crystalline active drug substance must have good flowability and compressibility. This can be achieved by adding one or more further additives but these further additives are often expensive.
- An agglomeration technique has been developed in which crystals of an active drug substance can be directly transformed to microgranules during the crystallization process (see for instance J. Pharm. Sci., Vol 42, No 11, November 1985). By using this the flowability and compressibility of the active drug substance are improved and the active drug substance can be directly compressed to form tablets.
- Japanese patent application JP58143832 discloses the preparation of spherical crystals of a crystallisable hydrophobic compound (I), comprising the steps of:
- i. dissolving (I) in a mixed solvent comprising 7.0-9.0 parts by weight of water, 2-10 parts by weight of water-immiscible solvent(s) (II), and 10-35 parts by weight of a solvent which is miscible with both water and (II); and,
- ii. agitating the solution.
- Japanese patent application JP01279869 discloses the preparation of spherical crystals of certain heterocyclic carboxylic acids. The crystals are prepared by dissolving the heterocyclic carboxylic acid in aqueous ammonia solution and adding a water-immiscible organic solvent and an organic solvent which is miscible with both water and the immiscible organic solvent mixture.
- Japanese patent application JP04077422 discloses the preparation of spherical granules of clorprenaline hydrochloride by dissolving clorprenaline hydrochloride in a good solvent, dispersing the solution in a poor solvent and evaporating.
- The methods disclosed in these Japanese patent applications require substantial stirring, which would result in difficulties if these methods were scaled up. Further, addition of an emulsifier is necessary in order to prevent droplets coalescing. These prior art methods are applicable only for fast crystallizing substances.
- When these agglomeration techniques are applied to substances having slow crystallization kinetics a paste-like precipitate with unsuitable properties is formed. Also, in large scale production difficulties would be met in obtaining the extremely high stirring rates that would be required with applications based on these techniques.
- Document WO 97/49681 discloses a process for isolating crystalline fluvastatin sodium form B which comprises: (a) dissolving fluvastatin sodium in a first organic solvent or a mixture of a first organic solvent and water; (b) adding water if required and a polar precipitating organic solvent so as to obtain crystallization of fluvastatin sodium form B, optionally following seeding with crystalline fluvastatin sodium form B; and (c) isolating and drying the crystalline fluvastatin sodium form B thus obtained. This process results in needlelike crystals of fluvastatin sodium form B.
- None of the methods mentioned above are suitable for the production of compact, spherical aggregates with narrow size distribution which would allow subsequent use of a coating process.
- A process has now been found by which compact, spherical agglomerates of inogatran with a narrow size distribution (from 30 to 110 μm, especially from 30 to 100 μm) can be formed.
- The present invention provides a process for producing spherical agglomerates of inogatran (for example inogatran anhydrate) comprising the consecutive steps of:
- a) dissolving inogatran in one of its instable, hygroscopic, hydrate forms (for example inogatran monohydrate) in a mixture of a good solvent for inogatran (L1) and a poor solvent for inogatran (L3) to form a concentrated solution,
- b) optionally filtering the solution,
- c) concentrating the concentrated solution further,
- d) adding a non-solvent for inogatran (L2) to obtain supersaturation, and
- e) adding further (L2) when nucleation has started.
- Steps (a) to (e) can be followed by measures to isolate the product.
- According to the process of the present invention there is no specific demand for stirring and the process can be easily scaled up. The spherical agglomerates of inogatran produced by the process of this invention require no additives for improving their flowability or compressibility prior to tabletting by a dry compression method.
- In the present specification a good solvent is defined as a liquid in which inogatran is very soluble (that is, more than about 0.03 g inogatran/g solvent); a poor solvent is a liquid where inogatran is sparingly to very slightly soluble (that is, about 0.0001-0.03 g inogatran/g solvent); and a non-solvent where inogatran is practically insoluble (that is, less than about 0.0001 g inogatran/g solvent).
- In one aspect of the invention the mixture of (L1) and (L3) has a ratio in the range 0.97-0.90:0.03-0.10 (w/w).
- In a further aspect of the invention the amount of (L1), (L2) and (L3) per weight of inogatran is in the range from 7 to 15 ml per g inogatran.
- In a still further aspect of the invention the ratio of [(L1)+(L3)]:L2) is preferably from 1:1.5 to 1:4 (v/v).
- In step (a) a concentrated solution is a solution having, for example, more than 10 g inogatran per 100 ml of solvent (such as more than 20 g inogatran per 100 ml of solvent).
- As an optional step between steps (b) and (c) a further step can be added wherein the equipment and the filter plate is washed with (L1) in order to minimize losses of inogatran.
- In another aspect of the invention an appropriate amount of inogatran is dissolved in a mixture of L1 and L3 to form a highly concentrated solution. Optionally, the solution is filtered. Non-solvent L2 is then added slowly to the highly concentrated solution while stirring slowly to allow (as visually judged by the first appearence of opalescence) the formation of small quasi-emulsion droplets of inogatran/L1/L3 in the dispersion medium L2. The solution is preferably seeded to start nucleation and, when nucleation has occurred, more L2 is added. The crystallization is then allowed to proceed until equilibrium has occured. Preferably the product obtained is filtered and dried after equlibrium has been achieved.
- The size of the spherical agglomerates of inogatran produced by the process is primarily dependent on the size of the quasi-emulsion droplets and stirring has only a marginal effect on the size of the quasi-emulsion droplets.
- Any type of solvent can be used in the process of the invention. Suitable solvents for inogatran are: L1=ethanol; L2=ethyl acetate; L3=water, but other choices are possible.
- The size of the quasi-emulsion droplets (and thus the size of the agglomerates produced) can be controlled by temperature, drug concentration and volume ratios of liquids used in the process.
- Compact, spherical agglomerates of inogatran with a narrow size distribution (30 to 110 μm) can be obtained by the process according to the invention. An increase of the temperature decreases the size of the agglomerates while a decrease in temperature increases the size of the agglomerates. Also, a higher concentration of inogatran in the L1/L3 mixture (such as the ethanol/water mixture) gives larger agglomerates. If the amount of water is too high, the process tends to give other polymorphs of inogatran which does not meet the requirements of being compact and spherical. Instead soft, porous and spherical agglomerates are obtained. Also, too much ethanol gives a variable size distribution. Too much of the ethyl acetate gives agglomerates that stick to the walls of the beaker. Finally, it was found that when the amount of ethyl acetate used in the last addition was too high, an emulsion-like system was formed without giving agglomerates of the desired properties. Therefore, it was quite surprising to find that compact, spherical particles can be obtained with the present invention.
- The following Examples illustrate the invention.
- This Example illustrates the preparation of inogatran monohydrate.
- [2R-[2S]]-N-[2-[2-[[[3-[(Aminoiminomethyl)amino]propyl]amino]carbonyl]-1-piperidinyl]-1-(cyclohexylmethyl)-2-oxoethyl]-glycine benzyl ester (see WO9311152, 88 kg) was dissolved in ethanol (792 L, 99.5%) at 18° C. Then palladium on carbon (4.4 kg) was added as a slurry in ethanol (99 L). After evacuation three times with nitrogen, a total of 10.4 m3 hydrogen was added at an inner temperature of 25° C. The reaction was complete (99.3%) after 4 hours. The catalyst was filtered off and washed with ethanol (82 L) and water (82 L). The solution was then concentrated by evaporation of solvent to a final volume of 200 L. Then, water (330 L) and 1 equivalent of concentrated HCl (12.6 kg) was added. Subsequently, 175 kg solvent was evaporated until the concentration of inogatran in the solution was 21% (w/w). The solution was left overnight after which 0.5 equivalents HCI (6.3 kg) was added to dissolve some crystals. The solution was then heated to 30° C. Thereafter, 105 kg solvent was evaporated. Absolute ethanol (15 L) was added and the solution was then extracted twice with ethyl acetate at 20° C. (118 kg and 100 kg respectively). To the remaining water solution 53 kg ethyl acetate was added. The inner temperature was then adjusted to 25° C. and 1.52 eq. Of NaOH as 20% aqueous solution (41 kg) was added. Then 0.25 kg 50% NaOH was added to adjust pH to 10. The solution was then cooled down to 15° C. in 6 hours. Crystallisation started spontaneously at an inner temperature of 23° C. The slurry was centrifugated and the crystals were washed two times with 50 L water. The crystals were dried under vacuum at 40° C. leaving, inogatran monohydrate (49 kg).
- This Example illustrates the preparation of inogatran anhydrate.
- Inogatran monohydrate (Example 1, 49 kg) and 4.6 L water were added to absolute ethanol (260 L) at 18° C. The resulting solution was clear filtrated and the filter was washed with 50 L absolute ethanol. The solution was then concentrated by evaporation until the volume was 100 L. Then, ethanol (15 kg) and water (6.7 kg) were added, the solution then heated to 40° C. and, finally, ethyl acetate (330 kg) was added over a period of 3 hours. Crystallisation started spontaneously when approximately 300 kg ethyl acetate had been added. The slurry was left at 40° C. overnight (11 h). The slurry was then centrifugated, washed twice with 50 L of a mixture of ethyl acetate and ethanol (4:1). The resulting crystals were dried at 40° C. to leave inogatran anhydrate (46 kg).
- This Example illustrates the preparation of inogatran anhydrate.
- Inogatran (monohydrate; 5.5% of water; 26.6 kg) was dissolved in 140 L of ethanol (99.5%) and 1.13 L of water at 30° C. The solution was filtered to obtain a clear solution and was washed with 20 L of ethanol. The solution was concentrated by evaporation of about 105 L of ethanol under reduced pressure and the temperature was adjusted to 25° C. To this solution was added 90 L of ethyl acetate over 20 minutes and the resulting mixture was seeded with inogatran anhydrate (3-5 g). Nucleation appeared after about 1 hour and after visuably judging the appearence of opalescence further 80 L of ethyl acetate was added. The system was left over night for equilibrium to occur. The product was centrifugated, washed with a mixture of 12 L ethanol and 47 L of ethyl acetate and was dried at 40° C. and vacuum. Filtration provided inogatran anhydrate (24.05 kg; yield 96%, purity (HPLC) 99.8%) as compact, spherical agglomerates having a narrow size distribution and a medium particle size 103 μm (Malvern).
- This Example illustrates the recrystallisation of inogatran anhydrate.
- Inogatran (anhydrate) was dissolved in ethanol:water (90:10% w/w) (concentration 5-6 ml/g of inogatran) at reflux (about 78° C.) and the resulting solution was cooled to room temperature. The system was filtered to obtain a clear solution and was concentrated by azeotropic evaporation of ethanol/water (96/4% w/w) to a volume of 2.5-3 ml/g of inogatran. The resulting solution was analysed for amount of water by the Karl Fischer method. If the amount of water was higher than 0.2 g water/g of inogatran then 3-5 ml ethanol (99.5%)/g of inogatran was added and the evaporation was repeated until the amount of water was in the range 0.1-0.2 g water/g of inogatran.
- The temperature of the solution was adjusted to 20-40° C., ethyl acetate (3.5-4 ml/g of inogatran) was added, nucleation occurred after about 1 hour and further ethyl acetate (2.5-4 ml/g of inogatran) was added. The system was left for at least 3 hours to reach equilibrium and product was then filtered off and dried.
Claims (10)
1. A process for producing spherical agglomerates of inogatran comprising the consecutive steps of:
a) dissolving inogatran in one of its instable, hygroscopic, hydrate forms in a mixture of a good solvent for inogatran (L1) and a poor solvent for inogatran (L3) to form a concentrated solution,
b) optionally filtering the solution,
c) concentrating the concentrated solution further,
d) adding a non-solvent for inogatran (L2) to obtain supersaturation, and
e) adding further (L2) when nucleation has started.
2. A process according to claim 1 , wherein the obtained product is worked up.
3. A process according to claim 1 , wherein the mixture of (L1) and (L3) has a ratio in the range 0.97-0.90:0.03-0.10 (w/w).
4. A process according to claim 1 , wherein the amount of (L1), (L2) and (L3) per weight of inogatran is in the range from 7 to 15 ml per g inogatran.
5. A process according to claim 1 , wherein the ratio of [(L1)+(L3)]:L2) is from 1:1.5 to 1:4 (v/v).
6. A process according to claim 1 , wherein in step a) a concentrated solution is a solution having more than 10 g inogatran per 100 ml of solvent, preferably more than 20 g inogatran per 100 ml of solvent.
7. A process according to any one of the preceding claims wherein L1 is ethanol.
8. A process according to any one of the preceding claims wherein L2 is ethyl acetate.
9. A process according to any one of the preceding claims wherein L3 is water.
10. Inogatran anhydrate.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/352,324 US20030134875A1 (en) | 1999-06-10 | 2003-01-27 | Production of agglomerates |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SE9902202-2 | 1999-06-10 | ||
SE9902202A SE9902202D0 (en) | 1999-06-10 | 1999-06-10 | Production of aggregates |
US09/646,440 US6531490B1 (en) | 1999-06-10 | 2000-06-06 | Production of agglomerates of inogatran and the compound inogatran anhydrate |
US10/352,324 US20030134875A1 (en) | 1999-06-10 | 2003-01-27 | Production of agglomerates |
Related Parent Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/646,440 Continuation US6531490B1 (en) | 1999-06-10 | 2000-06-06 | Production of agglomerates of inogatran and the compound inogatran anhydrate |
PCT/SE2000/001165 Continuation WO2000076504A1 (en) | 1999-06-10 | 2000-06-06 | Production of agglomerates of inogatran and the compound inogatran anhydrate |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030134875A1 true US20030134875A1 (en) | 2003-07-17 |
Family
ID=20416034
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/646,440 Expired - Fee Related US6531490B1 (en) | 1999-06-10 | 2000-06-06 | Production of agglomerates of inogatran and the compound inogatran anhydrate |
US10/352,324 Abandoned US20030134875A1 (en) | 1999-06-10 | 2003-01-27 | Production of agglomerates |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/646,440 Expired - Fee Related US6531490B1 (en) | 1999-06-10 | 2000-06-06 | Production of agglomerates of inogatran and the compound inogatran anhydrate |
Country Status (8)
Country | Link |
---|---|
US (2) | US6531490B1 (en) |
EP (1) | EP1191932B1 (en) |
JP (1) | JP2003501465A (en) |
AT (1) | ATE275401T1 (en) |
AU (1) | AU5582700A (en) |
DE (1) | DE60013599T2 (en) |
SE (1) | SE9902202D0 (en) |
WO (1) | WO2000076504A1 (en) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE9902202D0 (en) * | 1999-06-10 | 1999-06-10 | Astra Ab | Production of aggregates |
US9668975B2 (en) | 2014-10-14 | 2017-06-06 | PharmaDax Inc. | Method of preparing drug agglomerate |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6410536B1 (en) * | 1998-03-31 | 2002-06-25 | Warner-Lambert Company | Quinoxalinones as serine protease inhibitors such as factor XA and thrombin |
US6531490B1 (en) * | 1999-06-10 | 2003-03-11 | Astrazeneca Ab | Production of agglomerates of inogatran and the compound inogatran anhydrate |
US6586010B1 (en) * | 1998-12-04 | 2003-07-01 | Basf Aktiengesellschaft | Method for producing agglomerates comprising a core-shell structure |
US6777186B2 (en) * | 1996-07-29 | 2004-08-17 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US6784171B2 (en) * | 1999-02-17 | 2004-08-31 | Astrazeneca | Process for the production of tert-butyl (E)-(6-[2-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]vinyl](4R,6S)-2, 2-dimethyl[1, 3]dioxan-4-yl)acetate |
US6790228B2 (en) * | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
US6808638B1 (en) * | 1998-09-21 | 2004-10-26 | Throwleigh Technologies, L.L.C. | Methods and apparatus for processing temperature sensitive materials |
US6812334B1 (en) * | 1996-07-29 | 2004-11-02 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US6825218B1 (en) * | 1999-08-26 | 2004-11-30 | Aventis Pharma S. A. | Spherical agglomerates of telithromycin, their preparation process and their use in the preparation of pharmaceutical forms |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58143832A (en) | 1982-02-22 | 1983-08-26 | Yoshiaki Kawashima | Spheroidizing recrystallization of crystalline chemical substance |
JPH01279869A (en) | 1988-01-28 | 1989-11-10 | Dainippon Pharmaceut Co Ltd | Similar spherical crystals and their precipitation method |
JPH0477422A (en) | 1990-07-18 | 1992-03-11 | Eisai Co Ltd | Spherical granule of chlorprenaline-hydrochloric acid and its production |
SE9103612D0 (en) | 1991-12-04 | 1991-12-04 | Astra Ab | NEW PEPTIDE DERIVATIVES |
SE9601556D0 (en) * | 1996-04-24 | 1996-04-24 | Astra Ab | New pharmaceutical formulation of a thrombin inhibitor for parenteral use |
DK0907639T3 (en) | 1996-06-24 | 2003-06-23 | Novartis Ag | Polymorphic compounds |
SE9603724D0 (en) * | 1996-10-11 | 1996-10-11 | Astra Ab | New pharmaceutical parenteral formulation of a thrombin inhibitor |
-
1999
- 1999-06-10 SE SE9902202A patent/SE9902202D0/en unknown
-
2000
- 2000-06-06 AU AU55827/00A patent/AU5582700A/en not_active Abandoned
- 2000-06-06 AT AT00941066T patent/ATE275401T1/en not_active IP Right Cessation
- 2000-06-06 US US09/646,440 patent/US6531490B1/en not_active Expired - Fee Related
- 2000-06-06 DE DE60013599T patent/DE60013599T2/en not_active Expired - Fee Related
- 2000-06-06 JP JP2001502837A patent/JP2003501465A/en active Pending
- 2000-06-06 WO PCT/SE2000/001165 patent/WO2000076504A1/en active IP Right Grant
- 2000-06-06 EP EP00941066A patent/EP1191932B1/en not_active Expired - Lifetime
-
2003
- 2003-01-27 US US10/352,324 patent/US20030134875A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6777186B2 (en) * | 1996-07-29 | 2004-08-17 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US6812334B1 (en) * | 1996-07-29 | 2004-11-02 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US6828432B2 (en) * | 1996-07-29 | 2004-12-07 | Nanosphere, Inc. | Nanoparticles having oligonucleotides attached thereto and uses therefor |
US6410536B1 (en) * | 1998-03-31 | 2002-06-25 | Warner-Lambert Company | Quinoxalinones as serine protease inhibitors such as factor XA and thrombin |
US6916805B2 (en) * | 1998-03-31 | 2005-07-12 | Warner-Lambert Company Llc | Quinoxalinones as serine protease inhibitors |
US6808638B1 (en) * | 1998-09-21 | 2004-10-26 | Throwleigh Technologies, L.L.C. | Methods and apparatus for processing temperature sensitive materials |
US6586010B1 (en) * | 1998-12-04 | 2003-07-01 | Basf Aktiengesellschaft | Method for producing agglomerates comprising a core-shell structure |
US6784171B2 (en) * | 1999-02-17 | 2004-08-31 | Astrazeneca | Process for the production of tert-butyl (E)-(6-[2-[4-(4-fluorophenyl)-6-isopropyl-2-[methyl(methylsulfonyl)amino]pyrimidin-5-yl]vinyl](4R,6S)-2, 2-dimethyl[1, 3]dioxan-4-yl)acetate |
US6531490B1 (en) * | 1999-06-10 | 2003-03-11 | Astrazeneca Ab | Production of agglomerates of inogatran and the compound inogatran anhydrate |
US6825218B1 (en) * | 1999-08-26 | 2004-11-30 | Aventis Pharma S. A. | Spherical agglomerates of telithromycin, their preparation process and their use in the preparation of pharmaceutical forms |
US6790228B2 (en) * | 1999-12-23 | 2004-09-14 | Advanced Cardiovascular Systems, Inc. | Coating for implantable devices and a method of forming the same |
Also Published As
Publication number | Publication date |
---|---|
EP1191932A1 (en) | 2002-04-03 |
DE60013599T2 (en) | 2005-09-15 |
WO2000076504A1 (en) | 2000-12-21 |
SE9902202D0 (en) | 1999-06-10 |
AU5582700A (en) | 2001-01-02 |
US6531490B1 (en) | 2003-03-11 |
ATE275401T1 (en) | 2004-09-15 |
DE60013599D1 (en) | 2004-10-14 |
JP2003501465A (en) | 2003-01-14 |
EP1191932B1 (en) | 2004-09-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
IE62958B1 (en) | Gabapentin monohydrate and a process for producing the same | |
US11318116B2 (en) | Stable amorphous form of sacubitril valsartan trisodium complex and processes for preparation thereof | |
MXPA03003312A (en) | Pharmaceutical compositions. | |
JPH0643400B2 (en) | A process for the stable transformation of torasemide. | |
BG60739B2 (en) | Tripeptides affecting the central nervous system, and method for their preparation | |
US6531490B1 (en) | Production of agglomerates of inogatran and the compound inogatran anhydrate | |
EP1948224A1 (en) | Stable formulation of amorphous perindopril salts, a process for their preparation, especially industrial preparation, and their use in the therapy of hypertension | |
CA2579119C (en) | Crystalline forms of the mono-sodium salt of d-isoglutamyl-d-tryptophan | |
JP2003503508A (en) | Substantial crystalline form of melagatran | |
US6191285B1 (en) | Process for the preparation of ketorolac tromethamine | |
DE69623038T2 (en) | METHOD FOR PRODUCING N-ACETYL (L) -4-CYANOPHENYLALANINE AC- (L) -PHE (4-CN) -PHE (4-CN) -OH AND N-ACETYL- (L) -P-AMIDINOPHENYLALANINE-CYCLOHEXYLGLYCIN- BETA- (3-N-METHYLPYRIDINIUM) ALANINE AC- (L) -PAPH-CHG-PALM (3) -NH2 | |
DE20220885U1 (en) | Crystalline and amorphous mupirocin calcium | |
JP2002517398A (en) | Method for producing crystalline salt of amoxicillin | |
JP2000510161A (en) | Protein crystallization | |
US20100016614A1 (en) | Process for the preparation of perindopril erbumine | |
JP2001503763A (en) | Preparation of salts and esters of clavulanic acid | |
MXPA01013145A (en) | Method for separating the diastereomer bases of 2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)-cyclohexanol. | |
JP3612747B2 (en) | Crystallization method of phenylalanine anhydride crystals | |
US4404205A (en) | 2-Oxo-2,6,7,8,9,10 hexahydro-pyrimido[1,2-a]azepines and antianginal method of use thereof and of 4-oxo-4,6,7,8,9,10-hexahydropyrimido[1,2-a]azepines | |
JP3755908B2 (en) | Crystallization of cephalosporin compounds | |
PL169086B1 (en) | Method for the preparation of new salts of (+) - (1S, 2R) -2 - {[N- (2-hydroxyamino-2-ketoethyl) - N-methylamino] carbonyl} cyclohexanecarboxylic acid-1 PL | |
WO2025040026A1 (en) | Crystal form of alk inhibitor | |
US5273960A (en) | High purity crystalline peptides arglysasp and arglysaspval and a process for their preparation | |
US20020022746A1 (en) | Method for the crystallization of iopamidol | |
EP1108722A1 (en) | Trazodone hydrochloride and process for its preparation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: ASTRAZENECA AB, SWEDEN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:HORVATH, KAROL;LINDQVIST, BO;REEL/FRAME:013715/0373;SIGNING DATES FROM 20000731 TO 20000823 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |