US20030134818A1 - Lyophilizable and enhanced compacted nucleic acids - Google Patents
Lyophilizable and enhanced compacted nucleic acids Download PDFInfo
- Publication number
- US20030134818A1 US20030134818A1 US10/307,555 US30755502A US2003134818A1 US 20030134818 A1 US20030134818 A1 US 20030134818A1 US 30755502 A US30755502 A US 30755502A US 2003134818 A1 US2003134818 A1 US 2003134818A1
- Authority
- US
- United States
- Prior art keywords
- nucleic acid
- polycation
- composition
- complex
- molecule
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 150000007523 nucleic acids Chemical class 0.000 title claims abstract description 191
- 108020004707 nucleic acids Proteins 0.000 title claims abstract description 188
- 102000039446 nucleic acids Human genes 0.000 title claims abstract description 188
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 claims abstract description 71
- 238000004108 freeze drying Methods 0.000 claims abstract description 24
- 239000000203 mixture Substances 0.000 claims description 142
- 238000000034 method Methods 0.000 claims description 109
- 108010039918 Polylysine Proteins 0.000 claims description 85
- 229920000656 polylysine Polymers 0.000 claims description 79
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 67
- 239000002202 Polyethylene glycol Substances 0.000 claims description 49
- 229920001223 polyethylene glycol Polymers 0.000 claims description 49
- 108090000623 proteins and genes Proteins 0.000 claims description 43
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 claims description 31
- 229920000642 polymer Polymers 0.000 claims description 29
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 27
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 claims description 26
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical group [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 claims description 25
- 239000002253 acid Substances 0.000 claims description 25
- 235000018417 cysteine Nutrition 0.000 claims description 24
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 24
- 230000014509 gene expression Effects 0.000 claims description 24
- 238000002156 mixing Methods 0.000 claims description 24
- 235000018102 proteins Nutrition 0.000 claims description 21
- 102000004169 proteins and genes Human genes 0.000 claims description 21
- 150000003839 salts Chemical class 0.000 claims description 20
- 210000004072 lung Anatomy 0.000 claims description 17
- 238000002360 preparation method Methods 0.000 claims description 13
- 239000011780 sodium chloride Substances 0.000 claims description 13
- 239000000243 solution Substances 0.000 claims description 11
- 230000008685 targeting Effects 0.000 claims description 10
- 238000005056 compaction Methods 0.000 claims description 9
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 claims description 8
- 239000004472 Lysine Substances 0.000 claims description 8
- 150000002016 disaccharides Chemical class 0.000 claims description 8
- 239000007927 intramuscular injection Substances 0.000 claims description 8
- 238000002835 absorbance Methods 0.000 claims description 7
- 238000011481 absorbance measurement Methods 0.000 claims description 6
- 238000000149 argon plasma sintering Methods 0.000 claims description 6
- 239000002299 complementary DNA Substances 0.000 claims description 6
- 201000010099 disease Diseases 0.000 claims description 6
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 6
- 238000010255 intramuscular injection Methods 0.000 claims description 6
- 230000000692 anti-sense effect Effects 0.000 claims description 5
- 230000008569 process Effects 0.000 claims description 5
- 230000001225 therapeutic effect Effects 0.000 claims description 5
- 238000009396 hybridization Methods 0.000 claims description 3
- 230000010354 integration Effects 0.000 claims description 3
- 150000002632 lipids Chemical class 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 238000003260 vortexing Methods 0.000 claims 10
- 102000040430 polynucleotide Human genes 0.000 claims 9
- 108091033319 polynucleotide Proteins 0.000 claims 9
- 239000002157 polynucleotide Substances 0.000 claims 9
- 230000015572 biosynthetic process Effects 0.000 claims 5
- 238000001493 electron microscopy Methods 0.000 claims 5
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 5
- 238000002983 circular dichroism Methods 0.000 claims 4
- 238000013518 transcription Methods 0.000 claims 2
- 230000035897 transcription Effects 0.000 claims 2
- 239000002245 particle Substances 0.000 abstract description 51
- 230000000694 effects Effects 0.000 abstract description 19
- 210000002966 serum Anatomy 0.000 abstract description 16
- 101710163270 Nuclease Proteins 0.000 abstract description 9
- 230000002411 adverse Effects 0.000 abstract 1
- 108020004414 DNA Proteins 0.000 description 78
- 210000004027 cell Anatomy 0.000 description 27
- DTQVDTLACAAQTR-UHFFFAOYSA-M Trifluoroacetate Chemical compound [O-]C(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-M 0.000 description 20
- 238000012546 transfer Methods 0.000 description 19
- 238000009472 formulation Methods 0.000 description 18
- 108060001084 Luciferase Proteins 0.000 description 17
- 239000005089 Luciferase Substances 0.000 description 14
- 241001465754 Metazoa Species 0.000 description 13
- 108091061960 Naked DNA Proteins 0.000 description 11
- 239000007924 injection Substances 0.000 description 11
- 238000002347 injection Methods 0.000 description 11
- 239000013612 plasmid Substances 0.000 description 10
- HDTRYLNUVZCQOY-UHFFFAOYSA-N α-D-glucopyranosyl-α-D-glucopyranoside Natural products OC1C(O)C(O)C(CO)OC1OC1C(O)C(O)C(O)C(CO)O1 HDTRYLNUVZCQOY-UHFFFAOYSA-N 0.000 description 8
- 229930006000 Sucrose Natural products 0.000 description 8
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 8
- HDTRYLNUVZCQOY-WSWWMNSNSA-N Trehalose Natural products O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-WSWWMNSNSA-N 0.000 description 8
- HDTRYLNUVZCQOY-LIZSDCNHSA-N alpha,alpha-trehalose Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 HDTRYLNUVZCQOY-LIZSDCNHSA-N 0.000 description 8
- 239000000546 pharmaceutical excipient Substances 0.000 description 8
- 239000005720 sucrose Substances 0.000 description 8
- 241000699666 Mus <mouse, genus> Species 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 239000003446 ligand Substances 0.000 description 7
- 241000699670 Mus sp. Species 0.000 description 6
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 6
- 238000007918 intramuscular administration Methods 0.000 description 6
- YQEZLKZALYSWHR-UHFFFAOYSA-N Ketamine Chemical compound C=1C=CC=C(Cl)C=1C1(NC)CCCCC1=O YQEZLKZALYSWHR-UHFFFAOYSA-N 0.000 description 5
- 108700008625 Reporter Genes Proteins 0.000 description 5
- 238000001415 gene therapy Methods 0.000 description 5
- 229960003299 ketamine Drugs 0.000 description 5
- 238000004062 sedimentation Methods 0.000 description 5
- 210000001519 tissue Anatomy 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- BPICBUSOMSTKRF-UHFFFAOYSA-N xylazine Chemical compound CC1=CC=CC(C)=C1NC1=NCCCS1 BPICBUSOMSTKRF-UHFFFAOYSA-N 0.000 description 5
- 229960001600 xylazine Drugs 0.000 description 5
- 101000614439 Homo sapiens Keratin, type I cytoskeletal 15 Proteins 0.000 description 4
- 102100040443 Keratin, type I cytoskeletal 15 Human genes 0.000 description 4
- 108010077524 Peptide Elongation Factor 1 Proteins 0.000 description 4
- 102000010292 Peptide Elongation Factor 1 Human genes 0.000 description 4
- NOSIYYJFMPDDSA-UHFFFAOYSA-N acepromazine Chemical compound C1=C(C(C)=O)C=C2N(CCCN(C)C)C3=CC=CC=C3SC2=C1 NOSIYYJFMPDDSA-UHFFFAOYSA-N 0.000 description 4
- 229960005054 acepromazine Drugs 0.000 description 4
- 230000015556 catabolic process Effects 0.000 description 4
- 238000006731 degradation reaction Methods 0.000 description 4
- 239000003623 enhancer Substances 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000001476 gene delivery Methods 0.000 description 4
- 238000012544 monitoring process Methods 0.000 description 4
- 102000004196 processed proteins & peptides Human genes 0.000 description 4
- 108090000765 processed proteins & peptides Proteins 0.000 description 4
- 108020003175 receptors Proteins 0.000 description 4
- 102000005962 receptors Human genes 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- NHGXDBSUJJNIRV-UHFFFAOYSA-M tetrabutylammonium chloride Chemical compound [Cl-].CCCC[N+](CCCC)(CCCC)CCCC NHGXDBSUJJNIRV-UHFFFAOYSA-M 0.000 description 4
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 3
- 102000004877 Insulin Human genes 0.000 description 3
- 108090001061 Insulin Proteins 0.000 description 3
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 3
- 241000283984 Rodentia Species 0.000 description 3
- 108700019146 Transgenes Proteins 0.000 description 3
- 159000000021 acetate salts Chemical class 0.000 description 3
- 150000001242 acetic acid derivatives Chemical class 0.000 description 3
- 235000001014 amino acid Nutrition 0.000 description 3
- 150000001413 amino acids Chemical class 0.000 description 3
- 239000000427 antigen Substances 0.000 description 3
- 108091007433 antigens Proteins 0.000 description 3
- 102000036639 antigens Human genes 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 230000006870 function Effects 0.000 description 3
- 229940125396 insulin Drugs 0.000 description 3
- 239000007928 intraperitoneal injection Substances 0.000 description 3
- 210000004185 liver Anatomy 0.000 description 3
- 238000003670 luciferase enzyme activity assay Methods 0.000 description 3
- 210000003205 muscle Anatomy 0.000 description 3
- 210000003437 trachea Anatomy 0.000 description 3
- 239000013598 vector Substances 0.000 description 3
- 102100029470 Apolipoprotein E Human genes 0.000 description 2
- 101710095339 Apolipoprotein E Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 241000598436 Human T-cell lymphotropic virus Species 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical group Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 2
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 2
- 208000019693 Lung disease Diseases 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 2
- OKIZCWYLBDKLSU-UHFFFAOYSA-M N,N,N-Trimethylmethanaminium chloride Chemical compound [Cl-].C[N+](C)(C)C OKIZCWYLBDKLSU-UHFFFAOYSA-M 0.000 description 2
- 101710090322 Truncated surface protein Proteins 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 150000001720 carbohydrates Chemical group 0.000 description 2
- 210000000170 cell membrane Anatomy 0.000 description 2
- 230000002596 correlated effect Effects 0.000 description 2
- 239000002577 cryoprotective agent Substances 0.000 description 2
- 238000000502 dialysis Methods 0.000 description 2
- 230000029087 digestion Effects 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 238000001502 gel electrophoresis Methods 0.000 description 2
- 238000002649 immunization Methods 0.000 description 2
- 230000003053 immunization Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- YACKEPLHDIMKIO-UHFFFAOYSA-N methylphosphonic acid Chemical class CP(O)(O)=O YACKEPLHDIMKIO-UHFFFAOYSA-N 0.000 description 2
- 210000004492 nuclear pore Anatomy 0.000 description 2
- 210000004940 nucleus Anatomy 0.000 description 2
- 239000008188 pellet Substances 0.000 description 2
- 230000008488 polyadenylation Effects 0.000 description 2
- SCVFZCLFOSHCOH-UHFFFAOYSA-M potassium acetate Chemical compound [K+].CC([O-])=O SCVFZCLFOSHCOH-UHFFFAOYSA-M 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- ATHGHQPFGPMSJY-UHFFFAOYSA-N spermidine Chemical compound NCCCCNCCCN ATHGHQPFGPMSJY-UHFFFAOYSA-N 0.000 description 2
- PFNFFQXMRSDOHW-UHFFFAOYSA-N spermine Chemical compound NCCCNCCCCNCCCN PFNFFQXMRSDOHW-UHFFFAOYSA-N 0.000 description 2
- 238000003860 storage Methods 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- WROMPOXWARCANT-UHFFFAOYSA-N tfa trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F.OC(=O)C(F)(F)F WROMPOXWARCANT-UHFFFAOYSA-N 0.000 description 2
- 231100000419 toxicity Toxicity 0.000 description 2
- 230000001988 toxicity Effects 0.000 description 2
- NIUZJTWSUGSWJI-UHFFFAOYSA-M triethyl(methyl)azanium;chloride Chemical compound [Cl-].CC[N+](C)(CC)CC NIUZJTWSUGSWJI-UHFFFAOYSA-M 0.000 description 2
- LWIHDJKSTIGBAC-UHFFFAOYSA-K tripotassium phosphate Chemical compound [K+].[K+].[K+].[O-]P([O-])([O-])=O LWIHDJKSTIGBAC-UHFFFAOYSA-K 0.000 description 2
- 229960005486 vaccine Drugs 0.000 description 2
- 239000013603 viral vector Substances 0.000 description 2
- 238000012800 visualization Methods 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- NWUYHJFMYQTDRP-UHFFFAOYSA-N 1,2-bis(ethenyl)benzene;1-ethenyl-2-ethylbenzene;styrene Chemical group C=CC1=CC=CC=C1.CCC1=CC=CC=C1C=C.C=CC1=CC=CC=C1C=C NWUYHJFMYQTDRP-UHFFFAOYSA-N 0.000 description 1
- 108010088751 Albumins Proteins 0.000 description 1
- 102000009027 Albumins Human genes 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 1
- 239000005695 Ammonium acetate Substances 0.000 description 1
- 239000004254 Ammonium phosphate Substances 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 238000011746 C57BL/6J (JAX™ mouse strain) Methods 0.000 description 1
- 102000011022 Chorionic Gonadotropin Human genes 0.000 description 1
- 108010062540 Chorionic Gonadotropin Proteins 0.000 description 1
- 102100022641 Coagulation factor IX Human genes 0.000 description 1
- 201000003883 Cystic fibrosis Diseases 0.000 description 1
- NBSCHQHZLSJFNQ-QTVWNMPRSA-N D-Mannose-6-phosphate Chemical compound OC1O[C@H](COP(O)(O)=O)[C@@H](O)[C@H](O)[C@@H]1O NBSCHQHZLSJFNQ-QTVWNMPRSA-N 0.000 description 1
- 101100120663 Drosophila melanogaster fs(1)h gene Proteins 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- 102400001368 Epidermal growth factor Human genes 0.000 description 1
- 101800003838 Epidermal growth factor Proteins 0.000 description 1
- 108010076282 Factor IX Proteins 0.000 description 1
- 108010054218 Factor VIII Proteins 0.000 description 1
- 102000001690 Factor VIII Human genes 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- 102000006947 Histones Human genes 0.000 description 1
- 108010033040 Histones Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- 102000010445 Lactoferrin Human genes 0.000 description 1
- 108010063045 Lactoferrin Proteins 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- 108090001090 Lectins Proteins 0.000 description 1
- 102000004856 Lectins Human genes 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 108010046644 Polymeric Immunoglobulin Receptors Proteins 0.000 description 1
- 102100035187 Polymeric immunoglobulin receptor Human genes 0.000 description 1
- 102000003946 Prolactin Human genes 0.000 description 1
- 108010057464 Prolactin Proteins 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 102000007056 Recombinant Fusion Proteins Human genes 0.000 description 1
- 108010008281 Recombinant Fusion Proteins Proteins 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- RYYWUUFWQRZTIU-UHFFFAOYSA-N Thiophosphoric acid Chemical class OP(O)(S)=O RYYWUUFWQRZTIU-UHFFFAOYSA-N 0.000 description 1
- 102000004338 Transferrin Human genes 0.000 description 1
- 108090000901 Transferrin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 108700005077 Viral Genes Proteins 0.000 description 1
- 229930003779 Vitamin B12 Natural products 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 210000000577 adipose tissue Anatomy 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 102000015395 alpha 1-Antitrypsin Human genes 0.000 description 1
- 108010050122 alpha 1-Antitrypsin Proteins 0.000 description 1
- 229940024142 alpha 1-antitrypsin Drugs 0.000 description 1
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 1
- 235000019257 ammonium acetate Nutrition 0.000 description 1
- 229940043376 ammonium acetate Drugs 0.000 description 1
- 229910000148 ammonium phosphate Inorganic materials 0.000 description 1
- 235000019289 ammonium phosphates Nutrition 0.000 description 1
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 description 1
- 229910052921 ammonium sulfate Inorganic materials 0.000 description 1
- 235000011130 ammonium sulphate Nutrition 0.000 description 1
- 230000003444 anaesthetic effect Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002583 angiography Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 210000001742 aqueous humor Anatomy 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 238000003556 assay Methods 0.000 description 1
- 230000004888 barrier function Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 102000005936 beta-Galactosidase Human genes 0.000 description 1
- 108010005774 beta-Galactosidase Proteins 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 230000008827 biological function Effects 0.000 description 1
- 229960000074 biopharmaceutical Drugs 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- AIYUHDOJVYHVIT-UHFFFAOYSA-M caesium chloride Chemical compound [Cl-].[Cs+] AIYUHDOJVYHVIT-UHFFFAOYSA-M 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-N carbonic acid Chemical class OC(O)=O BVKZGUZCCUSVTD-UHFFFAOYSA-N 0.000 description 1
- 230000000747 cardiac effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 230000007910 cell fusion Effects 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 238000002585 cerebral angiography Methods 0.000 description 1
- 230000003196 chaotropic effect Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 229940015047 chorionic gonadotropin Drugs 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- AGVAZMGAQJOSFJ-WZHZPDAFSA-M cobalt(2+);[(2r,3s,4r,5s)-5-(5,6-dimethylbenzimidazol-1-yl)-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl] [(2r)-1-[3-[(1r,2r,3r,4z,7s,9z,12s,13s,14z,17s,18s,19r)-2,13,18-tris(2-amino-2-oxoethyl)-7,12,17-tris(3-amino-3-oxopropyl)-3,5,8,8,13,15,18,19-octamethyl-2 Chemical compound [Co+2].N#[C-].[N-]([C@@H]1[C@H](CC(N)=O)[C@@]2(C)CCC(=O)NC[C@@H](C)OP(O)(=O)O[C@H]3[C@H]([C@H](O[C@@H]3CO)N3C4=CC(C)=C(C)C=C4N=C3)O)\C2=C(C)/C([C@H](C\2(C)C)CCC(N)=O)=N/C/2=C\C([C@H]([C@@]/2(CC(N)=O)C)CCC(N)=O)=N\C\2=C(C)/C2=N[C@]1(C)[C@@](C)(CC(N)=O)[C@@H]2CCC(N)=O AGVAZMGAQJOSFJ-WZHZPDAFSA-M 0.000 description 1
- 210000001072 colon Anatomy 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 230000009260 cross reactivity Effects 0.000 description 1
- 238000002574 cystoscopy Methods 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- MNNHAPBLZZVQHP-UHFFFAOYSA-N diammonium hydrogen phosphate Chemical compound [NH4+].[NH4+].OP([O-])([O-])=O MNNHAPBLZZVQHP-UHFFFAOYSA-N 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 239000003221 ear drop Substances 0.000 description 1
- 229940047652 ear drops Drugs 0.000 description 1
- 238000000635 electron micrograph Methods 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 210000001842 enterocyte Anatomy 0.000 description 1
- 230000007515 enzymatic degradation Effects 0.000 description 1
- 229940116977 epidermal growth factor Drugs 0.000 description 1
- 239000003889 eye drop Substances 0.000 description 1
- 229940012356 eye drops Drugs 0.000 description 1
- 229960004222 factor ix Drugs 0.000 description 1
- 229960000301 factor viii Drugs 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 238000002523 gelfiltration Methods 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 210000003780 hair follicle Anatomy 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007912 intraperitoneal administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000007915 intraurethral administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 229930027917 kanamycin Natural products 0.000 description 1
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 1
- 229960000318 kanamycin Drugs 0.000 description 1
- 229930182823 kanamycin A Natural products 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- CSSYQJWUGATIHM-IKGCZBKSSA-N l-phenylalanyl-l-lysyl-l-cysteinyl-l-arginyl-l-arginyl-l-tryptophyl-l-glutaminyl-l-tryptophyl-l-arginyl-l-methionyl-l-lysyl-l-lysyl-l-leucylglycyl-l-alanyl-l-prolyl-l-seryl-l-isoleucyl-l-threonyl-l-cysteinyl-l-valyl-l-arginyl-l-arginyl-l-alanyl-l-phenylal Chemical compound C([C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)NCC(=O)N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](C)C(=O)N[C@@H](CC=1C=CC=CC=1)C(O)=O)C1=CC=CC=C1 CSSYQJWUGATIHM-IKGCZBKSSA-N 0.000 description 1
- 229940078795 lactoferrin Drugs 0.000 description 1
- 235000021242 lactoferrin Nutrition 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 239000002523 lectin Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- KWGKDLIKAYFUFQ-UHFFFAOYSA-M lithium chloride Chemical compound [Li+].[Cl-] KWGKDLIKAYFUFQ-UHFFFAOYSA-M 0.000 description 1
- INHCSSUBVCNVSK-UHFFFAOYSA-L lithium sulfate Inorganic materials [Li+].[Li+].[O-]S([O-])(=O)=O INHCSSUBVCNVSK-UHFFFAOYSA-L 0.000 description 1
- 210000005229 liver cell Anatomy 0.000 description 1
- 210000001165 lymph node Anatomy 0.000 description 1
- 210000004698 lymphocyte Anatomy 0.000 description 1
- 239000012139 lysis buffer Substances 0.000 description 1
- 230000002132 lysosomal effect Effects 0.000 description 1
- 210000002540 macrophage Anatomy 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical compound [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 229960002261 magnesium phosphate Drugs 0.000 description 1
- 229910000157 magnesium phosphate Inorganic materials 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 1
- 235000019341 magnesium sulphate Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 210000004379 membrane Anatomy 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 208000030159 metabolic disease Diseases 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 230000005012 migration Effects 0.000 description 1
- 238000013508 migration Methods 0.000 description 1
- 150000002772 monosaccharides Chemical class 0.000 description 1
- 210000000663 muscle cell Anatomy 0.000 description 1
- 229940100662 nasal drops Drugs 0.000 description 1
- 210000002569 neuron Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 210000000633 nuclear envelope Anatomy 0.000 description 1
- 229940127073 nucleoside analogue Drugs 0.000 description 1
- 125000003835 nucleoside group Chemical group 0.000 description 1
- 229920001542 oligosaccharide Polymers 0.000 description 1
- 150000002482 oligosaccharides Chemical class 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 210000003101 oviduct Anatomy 0.000 description 1
- 210000004738 parenchymal cell Anatomy 0.000 description 1
- 210000004197 pelvis Anatomy 0.000 description 1
- 239000002953 phosphate buffered saline Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920000724 poly(L-arginine) polymer Polymers 0.000 description 1
- 229920001308 poly(aminoacid) Polymers 0.000 description 1
- 108010011110 polyarginine Proteins 0.000 description 1
- 229920001184 polypeptide Polymers 0.000 description 1
- 210000003240 portal vein Anatomy 0.000 description 1
- 235000011056 potassium acetate Nutrition 0.000 description 1
- 239000001103 potassium chloride Substances 0.000 description 1
- 235000011164 potassium chloride Nutrition 0.000 description 1
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 1
- 229910000160 potassium phosphate Inorganic materials 0.000 description 1
- 235000011009 potassium phosphates Nutrition 0.000 description 1
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 description 1
- 229910052939 potassium sulfate Inorganic materials 0.000 description 1
- 235000011151 potassium sulphates Nutrition 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 229940097325 prolactin Drugs 0.000 description 1
- 229940048914 protamine Drugs 0.000 description 1
- 230000010837 receptor-mediated endocytosis Effects 0.000 description 1
- 230000010076 replication Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- PUZPDOWCWNUUKD-UHFFFAOYSA-M sodium fluoride Chemical compound [F-].[Na+] PUZPDOWCWNUUKD-UHFFFAOYSA-M 0.000 description 1
- 239000001488 sodium phosphate Substances 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 229940063673 spermidine Drugs 0.000 description 1
- 229940063675 spermine Drugs 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- RBTVSNLYYIMMKS-UHFFFAOYSA-N tert-butyl 3-aminoazetidine-1-carboxylate;hydrochloride Chemical compound Cl.CC(C)(C)OC(=O)N1CC(N)C1 RBTVSNLYYIMMKS-UHFFFAOYSA-N 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000001890 transfection Methods 0.000 description 1
- 239000012581 transferrin Substances 0.000 description 1
- 238000004627 transmission electron microscopy Methods 0.000 description 1
- 238000011282 treatment Methods 0.000 description 1
- RYFMWSXOAZQYPI-UHFFFAOYSA-K trisodium phosphate Chemical compound [Na+].[Na+].[Na+].[O-]P([O-])([O-])=O RYFMWSXOAZQYPI-UHFFFAOYSA-K 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 102000003390 tumor necrosis factor Human genes 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 210000002438 upper gastrointestinal tract Anatomy 0.000 description 1
- 210000000626 ureter Anatomy 0.000 description 1
- VBEQCZHXXJYVRD-GACYYNSASA-N uroanthelone Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H](CS)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)NCC(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(=O)N[C@@H](CO)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O)C(C)C)[C@@H](C)O)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CO)NC(=O)[C@H](CCC(O)=O)NC(=O)[C@@H](NC(=O)[C@H](CC=1NC=NC=1)NC(=O)[C@H](CCSC)NC(=O)[C@H](CS)NC(=O)[C@@H](NC(=O)CNC(=O)CNC(=O)[C@H](CC(N)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CS)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)CNC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@H](CO)NC(=O)[C@H]1N(CCC1)C(=O)[C@H](CS)NC(=O)CNC(=O)[C@H]1N(CCC1)C(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC(N)=O)C(C)C)[C@@H](C)CC)C1=CC=C(O)C=C1 VBEQCZHXXJYVRD-GACYYNSASA-N 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 235000019163 vitamin B12 Nutrition 0.000 description 1
- 239000011715 vitamin B12 Substances 0.000 description 1
- 210000004127 vitreous body Anatomy 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5107—Excipients; Inactive ingredients
- A61K9/513—Organic macromolecular compounds; Dendrimers
- A61K9/5146—Organic macromolecular compounds; Dendrimers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyethylene glycol, polyamines, polyanhydrides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K48/00—Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/0012—Galenical forms characterised by the site of application
- A61K9/0043—Nose
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/48—Preparations in capsules, e.g. of gelatin, of chocolate
- A61K9/50—Microcapsules having a gas, liquid or semi-solid filling; Solid microparticles or pellets surrounded by a distinct coating layer, e.g. coated microspheres, coated drug crystals
- A61K9/51—Nanocapsules; Nanoparticles
- A61K9/5192—Processes
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/87—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation
- C12N15/88—Introduction of foreign genetic material using processes not otherwise provided for, e.g. co-transformation using microencapsulation, e.g. using amphiphile liposome vesicle
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/47—Scattering, i.e. diffuse reflection
- G01N21/49—Scattering, i.e. diffuse reflection within a body or fluid
- G01N21/51—Scattering, i.e. diffuse reflection within a body or fluid inside a container, e.g. in an ampoule
Definitions
- a method of estimating the colloidal stability of a preparation of compacted nucleic acids is provided.
- a turbidity parameter of a solution of compacted nucleic acid is determined.
- the turbidity parameter is defined as the slope of a straight line obtained by plotting log of apparent absorbance of light versus log of incident wavelength of the light. The wavelength used is between about 330 nm and 420 nm.
- a preparation is identified as colloidally stable if a turbidity parameter of less than ⁇ 3 is determined.
- a preparation is identified as colloidally unstable if a turbidity parameter of greater than or equal to ⁇ 3 is determined.
- a non-naturally occurring composition comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- the polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
- the complex is compacted to a diameter which is less than (a) double the theoretical diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as a counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- a method of preparing a composition comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- the polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
- the complex is compacted to a diameter which is less than (a) double the theoretical diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger.
- the nucleic acid is mixed with the polycation having acetate, bicarbonate, or chloride as a counterion, at a salt concentration sufficient for compaction of the complex.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as a counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- An additional embodiment of the invention is provided as a method of preparing a composition comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- a nucleic acid molecule is mixed with a polycation molecule at a salt concentration sufficient for compaction of the complex to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
- Unaggregated nucleic acid complexes are formed.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as a counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- a non-naturally occurring composition comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- the polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
- the nucleic acid molecule encodes at least one functional protein.
- Said complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- compositions comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single double-stranded cDNA molecule and one or more polycation molecules. Said polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
- the cDNA molecule encodes at least one functional protein.
- the complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single cDNA molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
- the nucleic acid complexes are optionally associated with a lipid.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- compositions comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- the polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
- the nucleic acid molecule encodes at least one antisense nucleic acid.
- the complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P 10, wherein acetate is used as the counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- a non-naturally occurring composition comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- the polycation molecule has a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
- the nucleic acid molecule is an RNA molecule.
- the complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues with a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
- Another aspect of the invention provided here is a method of preparing a composition comprising unaggregated nucleic acid complexes.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- a nucleic acid molecule is mixed with a polycation molecule in a solvent to form a complex.
- the mixing is performed in the absence of added salt, whereby the nucleic acid forms soluble complexes with the polycation molecule without forming aggregates.
- Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules.
- the complexes have a diameter which is less than double the theoretical minimum diameter of a complex of the single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
- the polycation has acetate, bicarbonate, or chloride as a counterion.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues with a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
- the present invention provides a method of preventing or treating a disease or other clinical condition in a subject.
- a prophylactically or therapeutically effective amount of a composition is administered intramuscularly or to the lung.
- the composition comprises: unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecule having acetate, chloride, or bicarbonate as a counterion, wherein said complex is compacted to a diameter which is less than (a) double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger.
- the nucleic acid is one whose integration, hybridization or expression within target cells of the subject prevents or treats the disease or other clinical condition.
- the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion.
- CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues with a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
- the present invention thus provides the art with improved analytical and therapeutic techniques for delivery of DNA to cells by providing compacted nucleic acid compositions having improved stability and transfectability properties.
- FIG. 1 shows intramuscular (IM) injection results using TFA (trifluoroacetate) and acetate as counterions for polylysine used to compact DNA.
- IM intramuscular
- FIG. 2 shows intramuscular injection results using TFA (trifluoroacetate) as counterion for polylysine used to compact DNA.
- FIG. 3 shows intramuscular injection results using acetate as counterions for polylysine used to compact DNA.
- FIG. 4 shows intramuscular injection results using acetate as counterions for polylysine used to compact DNA.
- FIG. 5 shows a variety of parameters varying and their effectiveness in IM injections, including size of polylysine (CK), polyethylene glycol substitution.
- FIG. 6 shows intra-tracheal instillation of 100 ug naked and 100 ug compacted DNA compared as to amount of expression in the lung of the instilled gene (luciferase) as a function of time after gene transfer.
- FIG. 7A shows intra-tracheal instillation of naked and compacted DNA compared as to amount of expression in the lung of the instilled gene (luciferase) as a function of time after gene transfer.
- FIG. 7B shows plot of data above background from FIG. 7A.
- FIG. 8 shows turbidity parameter plots as a function of size of polylysine used in compaction and counterion
- FIG. 9A, FIG. 9B, and FIG. 9C show a comparison of serum stability, turbidity parameter, and sedimentation, for various formulations of compacted nucleic acids.
- FIG. 9D tabulates the results.
- FIG. 10 shows the influence of counterion on the morphology of PEG-substituted CK30 compacted DNA as shown under the electron microscope.
- FIG. 11 shows the stability of PLASminTM DNA upon freezing and lyophilization. Particles were tested with sucrose, trehalose, or no excipient. Particles were tested with and without polyethylene glycol, and with TFA or acetate as the counterion. DNA stability was assessed by a low (3400 ⁇ g ⁇ 1 min) spin to pellet aggregates, and monitoring the absorbance of DNA in the supernatant. Stability with acetate as the counterion surpassed other formulations in the absence of excipient.
- FIG. 12 shows assessment of the turbidity parameter before and after lyophilization using various excipients, counterions, and with or without polyethylene glycol.
- Sucrose and trehalose are very effective in maintaining the properties of the pre-lyophilization particles.
- PEG-acetate similarly was effective in maintaining the properties.
- FIG. 13 shows a visualization of particles under the electron microscope.
- the rod-like compacted particles look identical before and after lyophilization and rehydration.
- FIG. 14 shows a visualization of particles under the electron microscope.
- the ellipsoidal particles of compacted DNA look identical before and after lyophilization and rehydration.
- FIG. 15 shows the results of gene transfer experiments using lyophilized PLASminTM complexes. Luciferase enzyme was encoded by the complexes and its activity was measured as a means of monitoring gene transfer. While sucrose and trehalose were effective in protecting the gene transfer activity to all particles, particles which contained polyethylene glycol (10 kdal) and acetate as a counterion were surprisingly stable to lyophilization, even in the absence of cryoprotectant excipient (disaccharide).
- FIG. 16 shows a comparison of the colloidal stability of CK30P10K and CK45P10K DNA complexes compacted using various counterions in 0.9% NaCl. Colloidal stability is evaluated by sedimentation and turbidity parameter.
- FIG. 17 shows an electron micrograph of plasmid DNA compacted by CK45P10 with chloride as a counterion. Magnification 40,000. The bar shows 100 nm.
- FIG. 18 shows an agarose gel electrophoresis of DNA compacted by PEG-ylated polylysine (CK30P10K) with various counterions. The influence of counterions on the effective net charge of the condensed DNA can be seen by the migration of the compacted DNA through the gel.
- FIG. 18 also shows the serum stability of the CK30P10K-DNA complexes with each of the different counterions.
- FIG. 19 shows in vivo expression of luciferase plasmid compacted by various counterion forms of PEG-ylated polylysine. (CK30P10K) after intramuscular application. Each point represents one animal. The solid line indicates background signal of luciferase assay. Dose was 100 ⁇ g DNA.
- FIG. 20 shows in vivo expression of luciferase plasmid compacted by various forms of PEG-ylated polylysine after intranasal application.
- Acetate, bicarbonate, and TFA forms of CD30P10K and chloride form of CK45P10K were used.
- the acetate formulation was prepared either in saline or water. Each point represents one animal.
- the solid line indicates background signal of luciferase assay. Dose was 100 ⁇ g DNA.
- Counterions of polycations used to compact nucleic acids profoundly affect shape of particles formed. Shape is associated with differential serum nuclease resistance and colloidal stability. A surrogate for determining such properties which is easy to measure is the turbidity parameter. Moreover, shape affects the suitability and efficacy of compacted nucleic acid complexes for transfecting cells by various routes into a mammalian body.
- the counterion used in making compacted nucleic acid complexes also has a significant effect on the stability of the complexes to lyophilization. Since lyophilization is a common process to render biologicals readily transportable and storage stable, this finding has significant ramifications.
- polyamino acid polymers contain trifluoroaceate (TFA) as a counterion.
- TFA trifluoroaceate
- this counterion is far less beneficial than acetate for purposes of lyophilization of nucleic acid polymers, as shown below. Particles made using acetate retain their unaggregated nature, i.e., stay in solution better, after lyophilization and rehydration, retain their shape, and retain their gene transfer potential.
- Particles according to the present invention contain nucleic acids, preferably a single nucleic acid molecule.
- the nucleic acid may be DNA or RNA, may be double or single-stranded, may be protein coding or anti-sense coding or non-coding.
- Nucleic acids also include analogs of RNA and DNA which are modified to enhance the resistance to degradation in vivo.
- a preferred analogue is a methylphosphonate analogue of the naturally occurring mononucleosides.
- the mononucleoside analogue is any analogue whose use results in oligonucleotides which have the advantages of (a) an improved ability to diffuse through cell membranes and/or (b) resistance to nuclease digestion within the body of a subject (Miller, P. S. et al., Biochemistry 20:1874-1880 (1981)).
- Such nucleoside analogues are well-known in the art.
- the nucleic acid molecule may be an analogue of DNA or RNA.
- the present invention is not limited to use of any particular DNA or RNA analogue, provided it is capable of fulfilling its therapeutic purpose, has adequate resistance to nucleases, and adequate bioavailability and cell take-up.
- DNA or RNA may be made more resistant to in vivo degradation by enzymes, e.g., nucleases, by modifying internucleoside linkages (e.g., methylphosphonates or phosphorothioates) or by incorporating modified nucleosides (e.g., 2′-0-methylribose or 1′-alpha-anomers).
- enzymes e.g., nucleases
- internucleoside linkages e.g., methylphosphonates or phosphorothioates
- modified nucleosides e.g., 2′-0-methylribose or 1′-alpha-anomers.
- the methods used for forming the particles are as disclosed in U.S. Pat. Nos. 5,844,107, 5,877,302, 6,008,336, 6,077,835, 5,972,901, 6,200,801, and 5,972,900 and applications Ser. Nos. 60/145,970, 09/722,340, 09/3115
- Polycations according to the present invention preferably comprise polyamino acids such as polylysine and derivatives of polylysine.
- the polycation may contain from 15-60 lysine residues, preferably in the ranges of 15-30, 30-45, or 45-60 residues.
- Preferred derivatives of polylysine are CK15, CK30, CK45, which have an additional cysteine residue attached to polylysine polymers of length 15, 30, and 45 residues, respectively.
- Other amino acids can be readily attached to polylysine without departing from the spirit of the invention.
- Other polycationic amino acid polymers can be used such as polyarginine, or copolymers of arginine and lysine.
- Polymers of non-protein amino acids could also be used.
- Any pharmaceutically approved or appropriate polycation can be used including but not limited to protamine, histones, polycationic lipids, putrescine, spermidine, spermine, peptides, and polypeptides.
- the polycation may also contain a targeting moiety, which is typically a ligand which binds to a receptor on a particular type of cell.
- the targeting ligand may be a polyamino acid or other chemical moiety. Specificity of interaction of the ligand and the receptor is important for purposes of targeting.
- Conditions for making compacted nucleic acid particles are disclosed in the aforementioned patents and applications.
- the conditions may include from 0-1 M salt.
- the preferred salt is NaCl.
- Other chaotropic salts can be used as long as they are tolerated by the animal (or cells) to which they will be administered.
- Suitable agents include Sodium sulfate (Na.sub.2 SO.sub.4), Lithium sulfate (Li.sub.2 SO.sub.4), Ammonium sulfate ((NH.sub.4).sub.2 SO.sub.4, Potassium sulfate (K.sub.2 SO.sub.4), Magnesium sulfate (MgSO.sub.4), Potassium phosphate (KH.sub.2 PO.sub.4), Sodium phosphate (NaH.sub.2 PO.sub.4), Ammonium phosphate (NH.sub.4 H.sub.2 PO.sub.4), Magnesium phosphate (MgHPO.sub.4), Magnesium chloride (Mg Cl.sub.2), Lithium chloride (LiCl), Sodium chloride (NaCl), Potassium chloride (KCl), Cesium chloride (CaCl), Ammonium acetate, Potassium acetate,
- TBM Target Cell Binding Moiety
- receptor an accessible structure of the intended target cells. It is not necessary that it be absolutely specific for those cells, however, it must be sufficiently specific for the conjugate to be therapeutically effective. Preferably, its cross-reactivity with other cells is less than 10%, more preferably less than 5%.
- the affinity is at least 10.sup.3 liters/mole, more preferably, at least 10.sup.6 liters/mole.
- the TBM may be an antibody (or a specifically binding fragment of an antibody, such as an Fab, Fab, V.sub.M, V.sub.L or CDR) which binds specifically to an epitope on the surface of the target cell.
- an antibody or a specifically binding fragment of an antibody, such as an Fab, Fab, V.sub.M, V.sub.L or CDR
- Methods for raising antibodies against cells, cell membranes, or isolated cell surface antigens are known in the art: (a). production of immune spleen cells: immunization with soluble antigens Hurrell, J. G. R. (1982) Monoclonal Antibodies: Techniques and Applications. CRC Press, Boca Raton, Fla. (b). immunization with complex antigens: membranes, whole cells and microorganisms. Hurrell, J. G. R.
- the TBM may be a lectin, for which there is a cognate carbohydrate structure on the cell surface.
- the target binding moiety may be a ligand which is specifically bound by a receptor carried by the target cells.
- ligands of interest are carbohydrates, especially mono- and oligosaccharides. Suitable ligands include galactose, lactose and mannose.
- Another class of ligands of interest are peptides (which here includes proteins), such as insulin, epidermal growth factor(s), tumor necrosis factor, prolactin, chorionic gonadotropin, FSH, LH, glucagon, lactoferrin, transferrin, apolipoprotein E, gp120 and albumin.
- Target Cells Target Binding Moiety liver cells galactose Kupffer cells mannose macrophages mannose lung Fab fragment vs. polymeric immunoglobulin receptor (Pig R) adipose tissue insulin lymphocytes Fab fragment vs. CD4 or gp120 enterocyte Vitamin B12 muscle insulin fibroblasts mannose-6-phosphate nerve cells Apolipoprotein E
- Target binding moiety is not strictly necessary in the case of direct injection of compacted nucleic acid complex.
- the target cell in this case is passively accessible to the compacted complex by the injection of the complex to the vicinity of the target cell.
- Target binding moieties can be attached to lysine residues, cysteine residues, or PEG using covalent or non-covalent interactions.
- TFA trifluoroacetate
- Acetate leads to longer rods of 100 to 200 nm.
- Chloride leads to particles which are longer and skinnier than acetate particles.
- Bicarbonate leads to a mixture of rods of 100-200 nm and toroids.
- Any physiologically and pharmacologically acceptable counterion can be used with the polycation. Bromine is typically supplied with reagent grade polylysine.
- bromine is inferior to other cations as described herein, especially with respect to physiological acceptability.
- Counterions can be supplied to or substituted on polycations by means of chromatography or dialysis, for example.
- the polycation can be bound to an ion exchange resin and eluted with the desired counterion. Any method known in the art can be used for this purposed.
- removal and replacement of the counterion does not significantly alter the shape once assumed.
- a favorable shape can be obtained with a particle using a non-optimum counterion for physiological purposes and the counterion can be replaced with a superior counterion, while retaining the shape obtained during compaction with the original counterion.
- the favorable affects on nucleic acids of the counterions may not require compaction.
- the polycations and counterions can be used with non-compacted nucleic acids as well.
- Acetate particles are superior, for example, to TFA particles for delivery to muscle and lung. Delivery to other locations in the body may also be accomplished. These include, without limitation, administrations which are intratracheal, by inhalation, intradermal, topical, by eyedrops, subcutaneous, intrathecal, by enema, enteral, intravenous, intraarterial, intralymphatic, intraperitoneal, intrapleural, intravesicular, intraarticular, intracardiac, intracranial, intratumor, direct to an organ, by eardrops, by nosedrops, intraurethral, endoscopically to the upper gastrointestinal tract, to the sigmoid, or to the colon, by cystoscopy, by thorascope, by arthroscope, by mediastinoscopy, by endoscopic retrograde chlolangiopancreatography, by Omaya reservoir, by angiography including cardiac catheterization and cerebral angiography, intrauterine, intra
- the complexes have a diameter which is less than double the theoretical minimum diameter of a complex of the single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere.
- “about 1:1” encompasses from 1.5:1 to 1:1.5.
- Turbidity parameter can be assessed by determining the absorbance of a composition.
- a Zeiss MCS501 UV-Vis spectrometer is used.
- Other spectrometers as are known in the art can be substituted.
- Suitable wavelengths for collection absorbance measurements are between about 330nm and 420 nm.
- Resistance to serum nucleases is, among other properties, an important feature of any effective gene therapy vector designed to be administered systemically. Ideally, engineering this resistance should not compromise other desirable properties of a vector, such as its small size and colloidal stability.
- PEG polylysine-polyethylene glycol
- PLASminTM complexes Some of these formulations are stable in serum and do not aggregate in physiologic saline. By changing components and conditions of the compaction procedure, size and shape of the particles can be modified.
- FIG. 9D Polylysines having exactly 15, 30, and 45 residues were obtained by solid-phase synthesis. These polymers contained an N-terminal cysteine residue that was used to conjugate PEG.
- Various mixtures of PEG-substituted and non-substituted polylysines we re used to obtain different PLASminTM complexes. Stability of the complexes in 75% mouse serum was tested by incubating compacted DNA at 37° C. for up to 5 days and determining half-life of DNA degradation.
- PLASminTM complexes would generate significant levels of gene expression in lung
- These compacted particles consisted of plasmid DNA and PEG-substituted polylysine polymers consisting of 30 lysine residues.
- the plasmid construct encoded a luciferase reporter gene transcriptionally controlled by a CMV enhancer, an elongation factor 1-alpha (EF1-alpha) promoter, EF1-alpha intron 1, the RU5 translational enhancer from HTLV I, and an SV40 late polyadenylation signal.
- a DNA dose of 100 ug was administered in 25 or 50 ul of 150 mM NaCl.
- extracts were prepared from both lungs and luciferase activity was measured as relative light units per mg of protein (FIG. 6).
- naked DNA generated a signal of approximately 4,000 RLU/mg on day 2 and 1,100 RLU/mg on day 4
- PLASminTM complexes generated approximately 1,100,000 RLU/mg on day 2, and 630,000 rlu/mg on day 4.
- These compacted DNA particles produced 400-fold enhanced gene expression compared to naked DNA on day 2, and over 1,300-fold improved gene expression on day 4.
- PLASminTM complexes effectively deliver and express transgenes in mouse lung following direct intra-tracheal administration.
- the beta-galactosidase reporter gene is being utilized to define the cell type(s) being transfected.
- PLASminTM complexes may provide an appropriate gene transfer method for diverse pulmonary diseases and/or mucosal vaccines.
- Gene transfer in muscle cells following an intramuscular injection provides a means of safe and effective vaccination, and provides therapeutic levels of recombinant proteins, such as factor IX, factor VIII, or alpha-1 anti-trypsin.
- animals Prior to injection, animals are anesthetized by intraperitoneal injection with a rodent cocktail of ketamine, xylazine, and acepromazine.
- a volume of 150 ul anesthetic is administered per mouse, at a concentration of 21.5 mg/ml ketamine, 10.7 mg/ml xylazine, and 0.36 mg/ml acepromazine.
- the final dose is 0.32 mg ketamine, 1.6 mg xylazine, and 0.054 mg acepromazaine per mouse.
- a volume of 25 ml of each plasmid DNA formulation is administered intratracheally to each animal using a 22-gauge needle.
- a plastic catheter is placed in the trachea of the mice via a percutaneous approach. The resulting does per animal is 300 ug, 100 ug, 30 ug, and 10 ug DNA per mouse.
- mice are anesthetized by carbon dioxide and sacrificed. The animals are bled and rinsed intra-arterially with phosphate buffered saline. The lungs, trachea, and liver are isolated and rinsed in the saline. Tissue samples are immediately frozen on liquid nitrogen, and then stored at ⁇ 70° C.
- Lung tissue is homogenized using Polytron in lysis buffer. Protein concentration is determined. Luciferase activity of the homogenates is determined by luciferase assay.
- PLASminTM DNA upon freezing and lyophilization was assessed. Particles were tested with sucrose, trehalose, or no excipient. Particles were tested with and without polyethylene glycol, and with TFA or acetate as the counterion to the polyethylene glycol. DNA stability was assessed by a low (3400 ⁇ g ⁇ 1 min) spin to pellet aggregates, and monitoring the absorbance of DNA in the supernatant. See FIG. 11. Stability of the complexes with acetate as the counterion surpassed other formulations in the absence of excipient.
- the turbidity parameter is defined as the slope of a straight line obtained by plotting log of apparent absorbance of light versus log of incident wavelength of the light.
- the wavelength used is between about 330 nm and 420 nm.
- a preparation is identified as colloidally stable if a turbidity parameter of less than ⁇ 3 is determined.
- a preparation is identified as colloidally unstable if a turbidity parameter of greater than or equal to ⁇ 3 is determined.
- the turbidity parameter of the compacted nucleic acid particles was assessed before and after lyophilization using various excipients, counterions, and with or without polyethylene glycol. See FIG. 12. Sucrose and trehalose were found to be very effective in maintaining the properties of the pre-lyophilization particles. PEG-acetate similarly was effective in maintaining these properties.
- Particles were observed under the electron microscope before and after lyophilization. See FIG. 13. Particles made with CK30-PEG10k acetate in the presence of 0.5 M trehalose look similarly rod-like before and after lyophilization and rehydration.
- Polylysines having an N-terminal cysteine and exactly 30 or 45 lysine residues were obtained as trifluoroacetate (TFA) salts by solid-phase synthesis.
- the cysteine residue was then used to conjugate polyethylene glycol (MW 10,000) to form PEG-ylated polylysines CK30P10K and CK45P10K.
- the TFA counterion was exchanged with acetate, bicarbonate, or chloride by gel filtration. DNA was condensed by these polylysines, dialyzed against 0.9% NaCl, and concentrated to 1 or 4 mg/ml using centrifugal concentrators before analysis.
- Plasmid DNA having 5921 bp was comprised of kanamycin resistance and luciferase genes, elongation factor-1 ⁇ promoter and first intron, CMV enhancer, RU5 translational enhancer from HTLV I, SV40 late polyadenylation site, and ColE1 origin of replication was used.
- Colloidal stability for the DNA complexes was determined by measuring sedimentation of condensed DNA during centrifugation (3,400 for 1 min) and scattering of light (turbidity) in the wavelength range of 330-415 nm.
- the turbidity parameter is the slope of a straight line obtained by plotting log of apparent absorbance (due to scattering) vs. log of incident wavelength in a range outside the true absorption by DNA or peptides (330-415 nm).
- Turbidity Parameter ⁇ 4. Larger particles, however, scatter light differently and have Turbidity Parameters in the range of ⁇ 1 to ⁇ 3.
- DNA compacted by CK30P10K with various counterions was electrophoresed through an agarose gel to examine the effect of counterion on net charge of condensed DNA.
- DNA samples were loaded directly on the gel (1.5 ⁇ g) or after trypsin treatment for 40 min (0.2 ⁇ g) to remove polylysine and visualize DNA integrity and relative quantities of supercoiled, nicked, and linear plasmid forms.
- DNA either migrated to the cathode (CK30/acetate, CK30/bicarbonate, CK45/chloride), remained in the well (CK30/TFA), or migrated to the anode (CK30/chloride). (FIG. 18).
- Intramuscular gene delivery was assessed for each of the counterion forms of CK30P10K. Fifty ⁇ l of DNA was injected into quadriceps of each leg of CD-1 mice (4-6 weeks old). The total dose was 100 ⁇ g. Prior to the injection, the animals were anesthetized by intraperitoneal injection of a rodent cocktail of Ketamine, Xylazine, and Acepromazine. One day after the injection, the mice were terminated and entire quadrceps removed and processed. Protein and luciferase activity were determined. (FIG. 19).
- CK30/TFA gave the lowest expression (RLU/mg protein)
- CK30/acetate and CK30/bicarbonate (more relaxed structures) gave 10-100-fold higher RLU/mg
- CK30/chloride gave the expression at the level of naked DNA (same as or 10-fold higher than CK30/acetate, depending on harvest day).
- naked DNA is more efficient than condensed DNA and the TFA formulation is much less efficient than other forms of condensed DNA for intramuscular gene delivery.
- Intranasal gene delivery was assessed for each of the counterion forms of CK30P10K. Twenty five ⁇ l of DNA was administered in 5- ⁇ l aliquots into nostrils of C57/BL6 mice using an automated pipette. The total dose was 100 ⁇ g. Prior to the injection, the animals were anesthetized by intraperitoneal injection of a rodent cocktail of Ketamine, Xylazine, and Acepromazine. Two days after the injection, the mice were terminated and entire lungs removed and processed. Protein and luciferase activity were determined (FIG. 20).
- condensed DNA In intranasal application, the acetate, bicarbonate, and TFA formulations of condensed DNA are the most efficient among the tested formulations, and naked DNA and CK45/chloride were much less effective. We also found that condensed DNA administered intranasally in water is about 10-fold less efficient than the same DNA administered in saline.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Health & Medical Sciences (AREA)
- Genetics & Genomics (AREA)
- Medicinal Chemistry (AREA)
- Physics & Mathematics (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Biomedical Technology (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Biotechnology (AREA)
- Nanotechnology (AREA)
- Biochemistry (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Optics & Photonics (AREA)
- General Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Analytical Chemistry (AREA)
- Biophysics (AREA)
- Otolaryngology (AREA)
- Plant Pathology (AREA)
- Microbiology (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
Counterions of polycations used to compact nucleic acids profoundly affect shape and stability of particles formed. Shape is associated with differential serum nuclease resistance and colloidal stability. A surrogate for determining such properties that is easy to measure is the turbidity parameter. Shape also affects the suitability and efficacy of compacted nucleic acid complexes for transfecting cells by various routes into a mammalian body. Moreover, counterions such as acetate can protect compacted nucleic acid complexes from adverse effects of lyophilization
Description
- This application claims the benefit of application Ser. Nos. 60/287,419 filed May 1, 2001 and 60/207,949 filed May 31, 2000, the disclosures of which are expressly incorporated herein.
- Despite the promise of preclinical models for systemic gene therapy to liver, lung, and other tissues, there is currently no commercial gene therapy product on the market. The failure of most human gene therapy clinical trials to treat metabolic disorders and cancer has been ascribed to the relative inefficiency of viral and non-viral gene transfer systems. Viral vectors have been used for most gene therapy studies because of their ability to efficiently infect cells in tissue culture. However, an enormous payload of particles needs to be applied in an intravenous injection to transduce cells in vivo, and toxicities of viral vectors are well documented [1], including a recent lethal toxicity that occurred following a portal vein injection of recombinant adenovirus [2]. In contrast, non-viral systems are generally felt to be safe although inefficient. There is a growing consensus that non-viral systems will be the vector of choice for in vivo applications once gene transfer efficiency is improved.
- Several barriers restrict non-viral methods of gene transfer, including: i) particle stability in blood and interstitial tissues; ii) ability of the gene transfer particle to exit capillaries and travel to parenchymal cells; iii) cell entry via receptor-mediated endocytosis or cell fusion; iv) stability in and escape from endosomal and lysosomal compartments; v) diffusion rate in the cytoplasm; vi) nuclear pore transit; and vii) “uncoating” of DNA to permit biological function in the nucleus. For example, numerous publications have documented the failure of non-viral methods to transfect post-mitotic, growth-arrested cells [3-11], presumably because the intact nuclear membrane of non-dividing cells restricts entry of naked DNA into the nucleus via the 25 nm nuclear pore [12-13].
- Thus there is a continuing need in the art for improved formulations and methods for delivery of genes to animals and humans. In addition, there is a need in the art for formulations which will be stable to storage and retain biological activity.
- These and other objects of the invention are provided by one or more of the embodiments disclosed below. In one embodiment of the invention a method of estimating the colloidal stability of a preparation of compacted nucleic acids is provided. A turbidity parameter of a solution of compacted nucleic acid is determined. The turbidity parameter is defined as the slope of a straight line obtained by plotting log of apparent absorbance of light versus log of incident wavelength of the light. The wavelength used is between about 330 nm and 420 nm. A preparation is identified as colloidally stable if a turbidity parameter of less than −3 is determined. A preparation is identified as colloidally unstable if a turbidity parameter of greater than or equal to −3 is determined.
- According to another aspect of the invention a non-naturally occurring composition comprising unaggregated nucleic acid complexes is provided. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. The polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride. The complex is compacted to a diameter which is less than (a) double the theoretical diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as a counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- According to another aspect of the invention a method of preparing a composition comprising unaggregated nucleic acid complexes is provided. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. The polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride. The complex is compacted to a diameter which is less than (a) double the theoretical diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger. The nucleic acid is mixed with the polycation having acetate, bicarbonate, or chloride as a counterion, at a salt concentration sufficient for compaction of the complex. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as a counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- An additional embodiment of the invention is provided as a method of preparing a composition comprising unaggregated nucleic acid complexes. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. A nucleic acid molecule is mixed with a polycation molecule at a salt concentration sufficient for compaction of the complex to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger. Unaggregated nucleic acid complexes are formed. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as a counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- Also provided by the present invention is a non-naturally occurring composition comprising unaggregated nucleic acid complexes. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. The polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride. The nucleic acid molecule encodes at least one functional protein. Said complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- Another non-naturally occurring composition comprising unaggregated nucleic acid complexes is also provided. Each complex consists essentially of a single double-stranded cDNA molecule and one or more polycation molecules. Said polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride. The cDNA molecule encodes at least one functional protein. The complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single cDNA molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger. The nucleic acid complexes are optionally associated with a lipid. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue.
- Another non-naturally occurring composition comprising unaggregated nucleic acid complexes is provided by the present invention. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. The polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride. The nucleic acid molecule encodes at least one antisense nucleic acid. The complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-
60P 10, wherein acetate is used as the counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, with a molecule of polyethylene glycol having an average molecular weight of 10 kdal attached to the cysteine residue. - According to another aspect of the invention a non-naturally occurring composition comprising unaggregated nucleic acid complexes is provided. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. The polycation molecule has a counterion selected from the group consisting of acetate, bicarbonate, and chloride. The nucleic acid molecule is an RNA molecule. The complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues with a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
- Another aspect of the invention provided here is a method of preparing a composition comprising unaggregated nucleic acid complexes. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. A nucleic acid molecule is mixed with a polycation molecule in a solvent to form a complex. The mixing is performed in the absence of added salt, whereby the nucleic acid forms soluble complexes with the polycation molecule without forming aggregates. Each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules. The complexes have a diameter which is less than double the theoretical minimum diameter of a complex of the single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger. The polycation has acetate, bicarbonate, or chloride as a counterion. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues with a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
- Finally, the present invention provides a method of preventing or treating a disease or other clinical condition in a subject. A prophylactically or therapeutically effective amount of a composition is administered intramuscularly or to the lung. The composition comprises: unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecule having acetate, chloride, or bicarbonate as a counterion, wherein said complex is compacted to a diameter which is less than (a) double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger. The nucleic acid is one whose integration, hybridization or expression within target cells of the subject prevents or treats the disease or other clinical condition. Optionally, the one or more polycation molecules of the unaggregated nucleic acid complexes are CK15-60P10, wherein acetate is used as the counterion. CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues with a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
- The present invention thus provides the art with improved analytical and therapeutic techniques for delivery of DNA to cells by providing compacted nucleic acid compositions having improved stability and transfectability properties.
- FIG. 1 shows intramuscular (IM) injection results using TFA (trifluoroacetate) and acetate as counterions for polylysine used to compact DNA.
- FIG. 2 shows intramuscular injection results using TFA (trifluoroacetate) as counterion for polylysine used to compact DNA.
- FIG. 3 shows intramuscular injection results using acetate as counterions for polylysine used to compact DNA.
- FIG. 4 shows intramuscular injection results using acetate as counterions for polylysine used to compact DNA.
- FIG. 5 shows a variety of parameters varying and their effectiveness in IM injections, including size of polylysine (CK), polyethylene glycol substitution.
- FIG. 6 shows intra-tracheal instillation of 100 ug naked and 100 ug compacted DNA compared as to amount of expression in the lung of the instilled gene (luciferase) as a function of time after gene transfer.
- FIG. 7A shows intra-tracheal instillation of naked and compacted DNA compared as to amount of expression in the lung of the instilled gene (luciferase) as a function of time after gene transfer. FIG. 7B shows plot of data above background from FIG. 7A.
- FIG. 8 shows turbidity parameter plots as a function of size of polylysine used in compaction and counterion
- FIG. 9A, FIG. 9B, and FIG. 9C show a comparison of serum stability, turbidity parameter, and sedimentation, for various formulations of compacted nucleic acids. FIG. 9D tabulates the results.
- FIG. 10 shows the influence of counterion on the morphology of PEG-substituted CK30 compacted DNA as shown under the electron microscope.
- FIG. 11 shows the stability of PLASmin™ DNA upon freezing and lyophilization. Particles were tested with sucrose, trehalose, or no excipient. Particles were tested with and without polyethylene glycol, and with TFA or acetate as the counterion. DNA stability was assessed by a low (3400×g×1 min) spin to pellet aggregates, and monitoring the absorbance of DNA in the supernatant. Stability with acetate as the counterion surpassed other formulations in the absence of excipient.
- FIG. 12 shows assessment of the turbidity parameter before and after lyophilization using various excipients, counterions, and with or without polyethylene glycol. Sucrose and trehalose are very effective in maintaining the properties of the pre-lyophilization particles. PEG-acetate similarly was effective in maintaining the properties.
- FIG. 13 shows a visualization of particles under the electron microscope. For particles made with CK30-PEG10k acetate in the presence of 0.5 M trehalose, the rod-like compacted particles look identical before and after lyophilization and rehydration.
- FIG. 14 shows a visualization of particles under the electron microscope. For particles made with CK30 TFA in the presence of 0.5M sucrose, the ellipsoidal particles of compacted DNA look identical before and after lyophilization and rehydration.
- FIG. 15 shows the results of gene transfer experiments using lyophilized PLASmin™ complexes. Luciferase enzyme was encoded by the complexes and its activity was measured as a means of monitoring gene transfer. While sucrose and trehalose were effective in protecting the gene transfer activity to all particles, particles which contained polyethylene glycol (10 kdal) and acetate as a counterion were surprisingly stable to lyophilization, even in the absence of cryoprotectant excipient (disaccharide).
- FIG. 16 shows a comparison of the colloidal stability of CK30P10K and CK45P10K DNA complexes compacted using various counterions in 0.9% NaCl. Colloidal stability is evaluated by sedimentation and turbidity parameter.
- FIG. 17 shows an electron micrograph of plasmid DNA compacted by CK45P10 with chloride as a counterion. Magnification 40,000. The bar shows 100 nm.
- FIG. 18 shows an agarose gel electrophoresis of DNA compacted by PEG-ylated polylysine (CK30P10K) with various counterions. The influence of counterions on the effective net charge of the condensed DNA can be seen by the migration of the compacted DNA through the gel. FIG. 18 also shows the serum stability of the CK30P10K-DNA complexes with each of the different counterions.
- FIG. 19 shows in vivo expression of luciferase plasmid compacted by various counterion forms of PEG-ylated polylysine. (CK30P10K) after intramuscular application. Each point represents one animal. The solid line indicates background signal of luciferase assay. Dose was 100 μg DNA.
- FIG. 20 shows in vivo expression of luciferase plasmid compacted by various forms of PEG-ylated polylysine after intranasal application. Acetate, bicarbonate, and TFA forms of CD30P10K and chloride form of CK45P10K were used. The acetate formulation was prepared either in saline or water. Each point represents one animal. The solid line indicates background signal of luciferase assay. Dose was 100 μg DNA.
- The disclosures of U.S. Pat. Nos. 5,844,107, 5,877,302, 6,008,336, 6,077,835, 5,972,901, 6,200,801, and 5,972,900 and applications Ser. Nos. 60/145,970, 09/722,340, 09/311,553 and 60/207,949 are expressly incorporated herein.
- Counterions of polycations used to compact nucleic acids profoundly affect shape of particles formed. Shape is associated with differential serum nuclease resistance and colloidal stability. A surrogate for determining such properties which is easy to measure is the turbidity parameter. Moreover, shape affects the suitability and efficacy of compacted nucleic acid complexes for transfecting cells by various routes into a mammalian body.
- The counterion used in making compacted nucleic acid complexes also has a significant effect on the stability of the complexes to lyophilization. Since lyophilization is a common process to render biologicals readily transportable and storage stable, this finding has significant ramifications. Typically, polyamino acid polymers contain trifluoroaceate (TFA) as a counterion. However, this counterion is far less beneficial than acetate for purposes of lyophilization of nucleic acid polymers, as shown below. Particles made using acetate retain their unaggregated nature, i.e., stay in solution better, after lyophilization and rehydration, retain their shape, and retain their gene transfer potential.
- Particles according to the present invention contain nucleic acids, preferably a single nucleic acid molecule. The nucleic acid may be DNA or RNA, may be double or single-stranded, may be protein coding or anti-sense coding or non-coding. Nucleic acids also include analogs of RNA and DNA which are modified to enhance the resistance to degradation in vivo. A preferred analogue is a methylphosphonate analogue of the naturally occurring mononucleosides. More generally, the mononucleoside analogue is any analogue whose use results in oligonucleotides which have the advantages of (a) an improved ability to diffuse through cell membranes and/or (b) resistance to nuclease digestion within the body of a subject (Miller, P. S. et al., Biochemistry 20:1874-1880 (1981)). Such nucleoside analogues are well-known in the art. The nucleic acid molecule may be an analogue of DNA or RNA. The present invention is not limited to use of any particular DNA or RNA analogue, provided it is capable of fulfilling its therapeutic purpose, has adequate resistance to nucleases, and adequate bioavailability and cell take-up. DNA or RNA may be made more resistant to in vivo degradation by enzymes, e.g., nucleases, by modifying internucleoside linkages (e.g., methylphosphonates or phosphorothioates) or by incorporating modified nucleosides (e.g., 2′-0-methylribose or 1′-alpha-anomers). The methods used for forming the particles are as disclosed in U.S. Pat. Nos. 5,844,107, 5,877,302, 6,008,336, 6,077,835, 5,972,901, 6,200,801, and 5,972,900 and applications Ser. Nos. 60/145,970, 09/722,340, 09/311553 and 60/207949.
- Polycations according to the present invention preferably comprise polyamino acids such as polylysine and derivatives of polylysine. The polycation may contain from 15-60 lysine residues, preferably in the ranges of 15-30, 30-45, or 45-60 residues. Preferred derivatives of polylysine are CK15, CK30, CK45, which have an additional cysteine residue attached to polylysine polymers of
length - Conditions for making compacted nucleic acid particles are disclosed in the aforementioned patents and applications. The conditions may include from 0-1 M salt. The preferred salt is NaCl. Other chaotropic salts can be used as long as they are tolerated by the animal (or cells) to which they will be administered. Suitable agents include Sodium sulfate (Na.sub.2 SO.sub.4), Lithium sulfate (Li.sub.2 SO.sub.4), Ammonium sulfate ((NH.sub.4).sub.2 SO.sub.4, Potassium sulfate (K.sub.2 SO.sub.4), Magnesium sulfate (MgSO.sub.4), Potassium phosphate (KH.sub.2 PO.sub.4), Sodium phosphate (NaH.sub.2 PO.sub.4), Ammonium phosphate (NH.sub.4 H.sub.2 PO.sub.4), Magnesium phosphate (MgHPO.sub.4), Magnesium chloride (Mg Cl.sub.2), Lithium chloride (LiCl), Sodium chloride (NaCl), Potassium chloride (KCl), Cesium chloride (CaCl), Ammonium acetate, Potassium acetate, Sodium acetate, Sodium fluoride (NaF), Potassium fluoride (KF), Tetramethyl ammonium chloride (TMA-Cl), Tetrabutylammonium chloride (TBA-Cl), Triethylammoniym chloride (TEA-Cl), and Methyltriethylammonium chloride (MTEA-Cl).
- If a Target Cell Binding Moiety (TBM) is used, it must bind specifically to an accessible structure (the “receptor”) of the intended target cells. It is not necessary that it be absolutely specific for those cells, however, it must be sufficiently specific for the conjugate to be therapeutically effective. Preferably, its cross-reactivity with other cells is less than 10%, more preferably less than 5%.
- There is no absolute minimum affinity which the TBM must have for an accessible structure of the target cell, however, the higher the affinity, the better. Preferably, the affinity is at least 10.sup.3 liters/mole, more preferably, at least 10.sup.6 liters/mole.
- The TBM may be an antibody (or a specifically binding fragment of an antibody, such as an Fab, Fab, V.sub.M, V.sub.L or CDR) which binds specifically to an epitope on the surface of the target cell. Methods for raising antibodies against cells, cell membranes, or isolated cell surface antigens are known in the art: (a). production of immune spleen cells: immunization with soluble antigens Hurrell, J. G. R. (1982) Monoclonal Antibodies: Techniques and Applications. CRC Press, Boca Raton, Fla. (b). immunization with complex antigens: membranes, whole cells and microorganisms. Hurrell, J. G. R. (1982) Monoclonal Antibodies: Techniques and Applications. CRC Press, Boca Raton, Fla. (c). production of monoclonal supernatants and ascites fluids. Andrew, S. M. and Titus, J. A. (1991). Purification of Immunoglobulin G. in Current Protocols in Immunology (J. E. Coligan, A. M. Kruisbeek, D. H. J. Margulies, E. M. Shevach and W. Strober, ed.) pp. A.3.9-A.3.12. Greene Publishing Wiley-Interscience, New York. (d). production of polyclonal antiserum in rabbit. Garvey J. S., Cremer, N. E. and Sussdorf, D. H (eds) (1977) Methods in Immunology: A Laboratory Text for Instruction and Research, Third Edition. W. A. Benjamin, North Hampton, Mass. (e). production of anti-peptide antibodies by chemical coupling of synthetic peptides to carrier proteins Jemmerson, R., Morrow, P. I., Klinman, N. I and Patterson, Y. (1985). Analysis of an evolutionary conserved site on mammalian cytochrome C using synthetic peptides. Proc. Natl Acad. Sci, U.S.A. 82, 1508-1512.
- The TBM may be a lectin, for which there is a cognate carbohydrate structure on the cell surface. The target binding moiety may be a ligand which is specifically bound by a receptor carried by the target cells. One class of ligands of interest are carbohydrates, especially mono- and oligosaccharides. Suitable ligands include galactose, lactose and mannose. Another class of ligands of interest are peptides (which here includes proteins), such as insulin, epidermal growth factor(s), tumor necrosis factor, prolactin, chorionic gonadotropin, FSH, LH, glucagon, lactoferrin, transferrin, apolipoprotein E, gp120 and albumin. The following table lists preferred target binding moieties for various classes of target cells:
Target Cells Target Binding Moiety liver cells galactose Kupffer cells mannose macrophages mannose lung Fab fragment vs. polymeric immunoglobulin receptor (Pig R) adipose tissue insulin lymphocytes Fab fragment vs. CD4 or gp120 enterocyte Vitamin B12 muscle insulin fibroblasts mannose-6-phosphate nerve cells Apolipoprotein E - Use of a target binding moiety is not strictly necessary in the case of direct injection of compacted nucleic acid complex. The target cell in this case is passively accessible to the compacted complex by the injection of the complex to the vicinity of the target cell. Target binding moieties can be attached to lysine residues, cysteine residues, or PEG using covalent or non-covalent interactions.
- It has been found that the counterion provided in association with the polycation profoundly affects shape, and that shape is associated with physiologically important properties for delivery of nucleic acids. For example, trifluoroacetate (TFA) particles form spheroids and short rods of less than about 50 nm. Acetate leads to longer rods of 100 to 200 nm. Chloride leads to particles which are longer and skinnier than acetate particles. Bicarbonate leads to a mixture of rods of 100-200 nm and toroids. Any physiologically and pharmacologically acceptable counterion can be used with the polycation. Bromine is typically supplied with reagent grade polylysine. It is believed that bromine is inferior to other cations as described herein, especially with respect to physiological acceptability. Counterions can be supplied to or substituted on polycations by means of chromatography or dialysis, for example. For example, the polycation can be bound to an ion exchange resin and eluted with the desired counterion. Any method known in the art can be used for this purposed. Interestingly, it has been found that once a particle has been compacted into a particular shaped particle, removal and replacement of the counterion, such as by dialysis, does not significantly alter the shape once assumed. Thus a favorable shape can be obtained with a particle using a non-optimum counterion for physiological purposes and the counterion can be replaced with a superior counterion, while retaining the shape obtained during compaction with the original counterion. The favorable affects on nucleic acids of the counterions may not require compaction. Thus the polycations and counterions can be used with non-compacted nucleic acids as well.
- The behavior of these different shaped particles in gene delivery in animals varies significantly. Acetate particles are superior, for example, to TFA particles for delivery to muscle and lung. Delivery to other locations in the body may also be accomplished. These include, without limitation, administrations which are intratracheal, by inhalation, intradermal, topical, by eyedrops, subcutaneous, intrathecal, by enema, enteral, intravenous, intraarterial, intralymphatic, intraperitoneal, intrapleural, intravesicular, intraarticular, intracardiac, intracranial, intratumor, direct to an organ, by eardrops, by nosedrops, intraurethral, endoscopically to the upper gastrointestinal tract, to the sigmoid, or to the colon, by cystoscopy, by thorascope, by arthroscope, by mediastinoscopy, by endoscopic retrograde chlolangiopancreatography, by Omaya reservoir, by angiography including cardiac catheterization and cerebral angiography, intrauterine, intravaginal, to the bone marrow, to hair follicles, to the vitreous and aqueous humor, to the sinuses, to the ureter/pelvis of the kidney, to the fallopian tube, and to lymph nodes.
- The complexes have a diameter which is less than double the theoretical minimum diameter of a complex of the single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere. For the purposes of this invention, “about 1:1” encompasses from 1.5:1 to 1:1.5.
- Turbidity parameter can be assessed by determining the absorbance of a composition. In a preferred embodiment a Zeiss MCS501 UV-Vis spectrometer is used. Other spectrometers as are known in the art can be substituted. Suitable wavelengths for collection absorbance measurements are between about 330nm and 420 nm.
- The invention is explained in particular applications in the examples which follow.
- Resistance to serum nucleases is, among other properties, an important feature of any effective gene therapy vector designed to be administered systemically. Ideally, engineering this resistance should not compromise other desirable properties of a vector, such as its small size and colloidal stability. We have developed reagents and methods that permit us to reproducibly compact plasmid DNA with polylysine-polyethylene glycol (PEG) conjugates to form small particles having defined morphology (PLASmin™ complexes). Some of these formulations are stable in serum and do not aggregate in physiologic saline. By changing components and conditions of the compaction procedure, size and shape of the particles can be modified. To evaluate potential correlations between serum stability and the physical state of PLASmin™ complexes, we have prepared a matrix of 24 formulations using polylysines of various lengths and substituted with PEG to various extents. FIG. 9D. Polylysines having exactly 15, 30, and 45 residues were obtained by solid-phase synthesis. These polymers contained an N-terminal cysteine residue that was used to conjugate PEG. Various mixtures of PEG-substituted and non-substituted polylysines we re used to obtain different PLASmin™ complexes. Stability of the complexes in 75% mouse serum was tested by incubating compacted DNA at 37° C. for up to 5 days and determining half-life of DNA degradation. Simultaneously, physical characteristics of the complexes in 150 mM NaCl were determined. Morphology was visualized by transmission electron microscopy (FIG. 10 and FIG. 17). DNA condensed with acetate and bicarbonate salts of CK30 polylysine assumed forms of long (100-300 nm) and narrow (10-20 nm) rods and relaxed toroids (˜50-100 nm diameter, 10-20 nm width); the TFA salt resulted in much shorter rods (<60 nm by 20-30 nm) and small globules (20-30 nm); the chloride form of CK30 did not compact DNA at all (FIG. 10), while CK45/chloride (FIG. 17) gave results similar to CK30/acetate. Colloidal instability (tendency to aggregate) was evaluated by a sedimentation assay. Additionally, light scattering of solutions containing PLASmin™ complexes was measured and expressed as a turbidity parameter (FIG. 8). We found that all PLASmin™ complexes (FIG. 9A) were much more stable in serum than naked DNA. The half-life for compacted DNA ranged from ˜2-17 hr, while naked DNA was completely digested within a few minutes. We also found a correlation (r2=0.77) between half-life of degradation and colloidal instability of PLASmin™ complexes: particles that tended to aggregate were more resistant to nucleases. The tendency to aggregate also correlated with morphology of the complexes: rod-like complexes did not aggregate; thus, they all showed very similar serum stability, independent of their composition (t1/2˜2-5 hr). In contrast, spherical complexes showed various extents of tendency to aggregate depending on polylysine chain-length and PEG content. There was little difference in serum stability between small globules and rod-like particles. In agreement with the prediction that aggregated particles should scatter various light wavelengths differently than small complexes, we found a good correlation (r2=0.88) between colloidal instability of PLASmin™ complexes and turbidity of their solutions (FIG. 9B): stable complexes had turbidity parameter around −4 to −5 (in accordance with the Rayleigh law), while for the largest and least stable particles this value increased to −1.3. Consequently, the turbidity parameter also correlated with the half-life of DNA degradation in serum (r2=0.73; FIG. 9C). Thus, we conclude that the turbidity parameter, which is easy to determine, can be conveniently used to preliminarily screen various formulations of compacted DNA and predict their colloidal stability as well as serum stability.
- Effective gene transfer to lung would facilitate therapies for pulmonary diseases, such as cystic fibrosis, and may provide a potent means for administering mucosal vaccines. Although direct instillation of naked DNA into mouse airways generates measurable transgene expression, the level of expression is low, and the duration of expression is short. We have developed reagents and formulation methods that compact single molecules of plasmid DNA into 20-25 nm particles (PLASmin™ complexes). Unlike naked DNA, these complexes are protected from nuclease digestion and are stable in serum. Additionally, PLASmin™ complexes do not aggregate in physiologic saline and can be concentrated to over 12 mg/ml of DNA. To determine if PLASmin™ complexes would generate significant levels of gene expression in lung, we instilled naked and PLASmin™ complexes into the lungs of C57BL/6J mice via direct intratracheal administration. These compacted particles consisted of plasmid DNA and PEG-substituted polylysine polymers consisting of 30 lysine residues. The plasmid construct encoded a luciferase reporter gene transcriptionally controlled by a CMV enhancer, an elongation factor 1-alpha (EF1-alpha) promoter, EF1-
alpha intron 1, the RU5 translational enhancer from HTLV I, and an SV40 late polyadenylation signal. A DNA dose of 100 ug was administered in 25 or 50 ul of 150 mM NaCl. At 2, 4, 5, or 12 days following gene transfer, extracts were prepared from both lungs and luciferase activity was measured as relative light units per mg of protein (FIG. 6). Whereas naked DNA generated a signal of approximately 4,000 RLU/mg onday 2 and 1,100 RLU/mg onday 4, PLASmin™ complexes generated approximately 1,100,000 RLU/mg onday 2, and 630,000 rlu/mg onday 4. Gene expression persisted for at least 12 days after gene transfer, although at lower levels. These compacted DNA particles produced 400-fold enhanced gene expression compared to naked DNA onday 2, and over 1,300-fold improved gene expression onday 4. In contrast to whole lung extracts, less gene expression was noted in trachea, and no expression in liver (data not shown). In dose response studies, peak levels of transgene expression was observed using a 100 ug dose (FIG. 7). In summary, we have determined that PLASmin™ complexes effectively deliver and express transgenes in mouse lung following direct intra-tracheal administration. In studies in progress, the beta-galactosidase reporter gene is being utilized to define the cell type(s) being transfected. PLASmin™ complexes may provide an appropriate gene transfer method for diverse pulmonary diseases and/or mucosal vaccines. - Gene transfer in muscle cells following an intramuscular injection provides a means of safe and effective vaccination, and provides therapeutic levels of recombinant proteins, such as factor IX, factor VIII, or alpha-1 anti-trypsin.
- To optimize formulations of PLASmin™ DNA for intramuscular administration, various preparation of compacted DNA encoding the luciferase reporter gene were administered to CD2 mice by single injection in the tibialis anterior muscle. Gene expression was assayed at various days post gene transfer and is presented as relative light units (RLU)/mg protein. In FIG. 1, expression of compacted DNA formulated with the acetate salt of CK30 polycation (complexed with
PEG 10 kD) was enhanced, as measured by luciferase activity on bothdays PEG 10 kD, acetate complexes in FIG. 1. The enhanced gene expression of complexes prepared using the acetate salt of CK30,PEG 10 kD, was confirmed. (FIG. 3) In this experiment, the CK30 polycation generated better luciferase activity than the CK45 polymer, and CK30 yielded higher levels of luciferase activity when complexed with 10 kD rather than 5 kD PEG. The duration of gene expression produced by acetate complexes consisting of either CK30 or CK45, both complexes withPEG 10 kD, were next evaluated, and the results are shown in FIG. 4. In this study, the CK30 polycation gave the best level of reporter gene activity, and the level of activity was better onday 7 thandays PEG 10 kD. A time course to 30 days was performed. Although gene expression ondays days % PEG 10 kD complexes generated better reporter gene activity than either the 70% or 40% substitutions. In summary, the best formulation of compacted DNA in these studies was the acetate salt of CK30 polycation having a 100% substitution withPEG 10 kD. - Prior to injection, animals are anesthetized by intraperitoneal injection with a rodent cocktail of ketamine, xylazine, and acepromazine. A volume of 150 ul anesthetic is administered per mouse, at a concentration of 21.5 mg/ml ketamine, 10.7 mg/ml xylazine, and 0.36 mg/ml acepromazine. The final dose is 0.32 mg ketamine, 1.6 mg xylazine, and 0.054 mg acepromazaine per mouse.
- A volume of 25 ml of each plasmid DNA formulation is administered intratracheally to each animal using a 22-gauge needle. A plastic catheter is placed in the trachea of the mice via a percutaneous approach. The resulting does per animal is 300 ug, 100 ug, 30 ug, and 10 ug DNA per mouse.
- After injection, animals are anesthetized by carbon dioxide and sacrificed. The animals are bled and rinsed intra-arterially with phosphate buffered saline. The lungs, trachea, and liver are isolated and rinsed in the saline. Tissue samples are immediately frozen on liquid nitrogen, and then stored at −70° C.
- Lung tissue is homogenized using Polytron in lysis buffer. Protein concentration is determined. Luciferase activity of the homogenates is determined by luciferase assay.
- The stability of PLASmin™ DNA upon freezing and lyophilization was assessed. Particles were tested with sucrose, trehalose, or no excipient. Particles were tested with and without polyethylene glycol, and with TFA or acetate as the counterion to the polyethylene glycol. DNA stability was assessed by a low (3400×g×1 min) spin to pellet aggregates, and monitoring the absorbance of DNA in the supernatant. See FIG. 11. Stability of the complexes with acetate as the counterion surpassed other formulations in the absence of excipient.
- The turbidity parameter is defined as the slope of a straight line obtained by plotting log of apparent absorbance of light versus log of incident wavelength of the light. The wavelength used is between about 330 nm and 420 nm. A preparation is identified as colloidally stable if a turbidity parameter of less than −3 is determined. A preparation is identified as colloidally unstable if a turbidity parameter of greater than or equal to −3 is determined.
- The turbidity parameter of the compacted nucleic acid particles was assessed before and after lyophilization using various excipients, counterions, and with or without polyethylene glycol. See FIG. 12. Sucrose and trehalose were found to be very effective in maintaining the properties of the pre-lyophilization particles. PEG-acetate similarly was effective in maintaining these properties.
- Particles were observed under the electron microscope before and after lyophilization. See FIG. 13. Particles made with CK30-PEG10k acetate in the presence of 0.5 M trehalose look similarly rod-like before and after lyophilization and rehydration.
- Particles were observed before and after lyophilization and rehydration under the electron microscope. The ellipsoidal particles of compacted DNA made with CK30 TFA (counterion) in the presence of 0.5M sucrose look identical before and after lyophilization and rehydration. See FIG. 14.
- Gene transfer experiments using lyophilized and rehydrated PLASmin™ complexes were performed, comparing them to pre-lyophilization preparations. Luciferase enzyme was encoded by the complexes and its activity was measured as a means of monitoring gene transfer. While sucrose and trehalose were effective in protecting the gene transfer activity to all particles, particles which contained polyethylene glycol (10 kdal) and acetate as a counterion were surprisingly stable to lyophilization, even in the absence of cryoprotectant excipient (disaccharide). See FIG. 15.
- Polylysines having an N-terminal cysteine and exactly 30 or 45 lysine residues (CK30 or CK45, respectively) were obtained as trifluoroacetate (TFA) salts by solid-phase synthesis. The cysteine residue was then used to conjugate polyethylene glycol (MW 10,000) to form PEG-ylated polylysines CK30P10K and CK45P10K. The TFA counterion was exchanged with acetate, bicarbonate, or chloride by gel filtration. DNA was condensed by these polylysines, dialyzed against 0.9% NaCl, and concentrated to 1 or 4 mg/ml using centrifugal concentrators before analysis. Plasmid DNA having 5921 bp was comprised of kanamycin resistance and luciferase genes, elongation factor-1α promoter and first intron, CMV enhancer, RU5 translational enhancer from HTLV I, SV40 late polyadenylation site, and ColE1 origin of replication was used.
- Colloidal stability for the DNA complexes was determined by measuring sedimentation of condensed DNA during centrifugation (3,400 for 1 min) and scattering of light (turbidity) in the wavelength range of 330-415 nm. The turbidity parameter is the slope of a straight line obtained by plotting log of apparent absorbance (due to scattering) vs. log of incident wavelength in a range outside the true absorption by DNA or peptides (330-415 nm). According to the Rayleigh law, particles that are small compared to the wavelength of light should have Turbidity Parameter of −4. Larger particles, however, scatter light differently and have Turbidity Parameters in the range of ˜−1 to −3. Very large aggregates, have a Turbidity Parameter of ˜−1. We have found that all the tested DNA formulations were colloidally stable in normal saline (0.9% NaCl) as judged by sedimentation and turbidity measurements. We also found that the ability of polylysines to condense DNA depends on type of associated counterions and length of polylysine. CK30P10k with chloride represents the extreme case since it does not condense DNA or condenses it very poorly. (FIG. 16).
- DNA compacted by CK30P10K with various counterions was electrophoresed through an agarose gel to examine the effect of counterion on net charge of condensed DNA. DNA samples were loaded directly on the gel (1.5 μg) or after trypsin treatment for 40 min (0.2 μg) to remove polylysine and visualize DNA integrity and relative quantities of supercoiled, nicked, and linear plasmid forms. DNA either migrated to the cathode (CK30/acetate, CK30/bicarbonate, CK45/chloride), remained in the well (CK30/TFA), or migrated to the anode (CK30/chloride). (FIG. 18). Therefore, counterions influence effective net charge of condensed DNA as visualized by gel electrophoresis. Acetate and bicarbonate bound to CK30P10k and chloride bound to CK45P10k result in slightly positive net charge, while TFA results in electrically neutral complexes.
- Serum stability was also evaluated for each of the compacted DNA complexes. This was assessed by incubating DNA samples with 75% mouse serum at 37° C. for 2 hr, removing polylysine by trypsinization, and evaluating DNA integrity by gel electrophoresis. Under these conditions, properly condensed DNA is stable, although some nicking and linearization (very little) occurs. Naked DNA, on the other hand, is completely digested within a few minutes (FIG. 18). We found that the ability of polylysines to condense and protect DNA depends on type of associated counterions and length of polylysine. CK30P10k with chloride again represents the extreme case since it does not condense DNA or condenses it very poorly and does not protect against nucleases.
- Intramuscular gene delivery was assessed for each of the counterion forms of CK30P10K. Fifty μl of DNA was injected into quadriceps of each leg of CD-1 mice (4-6 weeks old). The total dose was 100 μg. Prior to the injection, the animals were anesthetized by intraperitoneal injection of a rodent cocktail of Ketamine, Xylazine, and Acepromazine. One day after the injection, the mice were terminated and entire quadrceps removed and processed. Protein and luciferase activity were determined. (FIG. 19).
- The morphology of the compacted DNA complexes appears to have influenced their in vivo transfection efficiency. CK30/TFA gave the lowest expression (RLU/mg protein), CK30/acetate and CK30/bicarbonate (more relaxed structures) gave 10-100-fold higher RLU/mg, and CK30/chloride gave the expression at the level of naked DNA (same as or 10-fold higher than CK30/acetate, depending on harvest day). We have found that naked DNA is more efficient than condensed DNA and the TFA formulation is much less efficient than other forms of condensed DNA for intramuscular gene delivery.
- Intranasal gene delivery was assessed for each of the counterion forms of CK30P10K. Twenty five μl of DNA was administered in 5-μl aliquots into nostrils of C57/BL6 mice using an automated pipette. The total dose was 100 μg. Prior to the injection, the animals were anesthetized by intraperitoneal injection of a rodent cocktail of Ketamine, Xylazine, and Acepromazine. Two days after the injection, the mice were terminated and entire lungs removed and processed. Protein and luciferase activity were determined (FIG. 20). In intranasal application, the acetate, bicarbonate, and TFA formulations of condensed DNA are the most efficient among the tested formulations, and naked DNA and CK45/chloride were much less effective. We also found that condensed DNA administered intranasally in water is about 10-fold less efficient than the same DNA administered in saline.
- Literature Cited
- 1. Cooper, M. J. (1996) Non-infectious gene transfer and expression systems for cancer gene therapy.
- 2. Semin.Oncol. 23:172-188 Weiss, R. and Nelson, D. Washington Post, Sep. 29, 1999, page A1.
- 3. Takeshita, S., Gai, D., Leclerc, G., Pickering, J. G., Riesssen, R., Wier, L., and Isner, J. M. (1994) Increased gene expression after liposome-mediated arterial gene transfer associated with intimal smooth muscle cell proliferation. J. Clin. Invest. 93:652-661.
- 4. Zabner, J., Fasbender, A. J., Moninger, T., Poellinger, D. A., and Welsh, M. J. (1995) Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270:18997-19007.
- 5. Wilke, M., Fortunati, E., van den Broek, M., Hoogeveen, A. T., and Scholte, B. J. (1996) Efficacy of a peptide-based gene delivery system depends on mitotic activity. Gene Ther. 3:1133-1142.
- 6. Fasbender, A., Zabner, J., Zeiher, B. G., and Welsh, M. J. (1997) A low rate of cell proliferation and reduce DNA uptake limit cationic lipid-mediated gene transfer to primary cultures of ciliated human airway epithelia. Gene Ther. 41173-1180.
- 7. Sebestyen, M. G., Ludtke, J. J., Bassik, M. C., Zhang, G., Budker, V., Lukhtanov, E. A., Hagstrom, J. E., and Wolff. J. A. (1998) DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat. Biotechnol. 16:80-85.
- 8. Jiang, C., O'Connor, S. P., Fang, S. L., Wang, K. X., Marshall, J., Williams, J. L., Wilburn, B., Echelard, Y., and Cheng, S. (1998) Efficiency of cationic lipid-mediated transfection of polarized and differentiated airway epithelial cells in vitro and in vivo.
- 9. Tseng, W. C., Haselton, F. R., and Giorgio, T. D. (1999) Mitosis enhances transgene expression of plasmid delivered by cationic liposomes. Biochim. Biophy. Acta 1445:53-64.
- 10. Mortimer, J., Tam, P., MacLachlan, I., Graham, R. W., Saravolac, E. G., and Joshi, P. B. (1999) Cationic lipid-mediated transfection of cells in culture requires mitotic activity. Gene Ther. 6:403-411.
- 11. Mirzayans, R., Aubin, R., and Paterson, M. (1992) Differential expression and stability of foreign genes introduced into human fibroblasts by nuclear versus cytoplasmic microinjection. Mutat. Res. 281:115-122.
- 12. Dworetzky, S. T. and Feldherr, C. M. (1988) Translocation of RNA-coated gold particles through the nuclear pores of oocytes. J. Cell Biol. 106:575-584.
- 13. Feldherr, C. M. and Akin D. (1991) Signal-mediated nuclear transport in proliferating and growth-arrested BALB/c 3T3 cells. J. Cell Biol. 115:933-939.
Claims (186)
1. A method of estimating the colloidal stability of a preparation of compacted nucleic acids, comprising the steps of:
determining a turbidity parameter of a solution of compacted nucleic acid, wherein the turbidity parameter is defined as the slope of a straight line obtained by plotting log of apparent absorbance of light versus log of incident wavelength of the light, wherein said wavelength is between about 330 nm and 420 nm;
identifying the preparation as colloidally stable if a turbidity parameter of less than −3 is determined and identifying the preparation as colloidally unstable if a turbidity parameter of greater than or equal to −3 is determined.
2. A non-naturally occurring composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecules having a counterion selected from the group consisting of acetate, bicarbonate, and chloride, wherein said complex is compacted to a diameter which is less than (a) double the theoretical diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger.
3. The composition of claim 2 wherein the polycation molecules are polylysine or a polylysine derivative.
4. The composition of claim 3 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
5. The composition of claim 2 , said complex is compacted to a diameter of less than 90 nm.
6. The composition of claim 2 , wherein the nucleic acid complex is compacted to a diameter less than 30 nm.
7. The composition of claim 2 , wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
8. The composition of claim 2 , wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
9. The composition of claim 2 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
10. A method of preparing a composition according to claim 2 which comprises mixing the nucleic acid with the polycation having acetate as a counterion, at a salt concentration sufficient for compaction of the complex.
11. The method of claim 10 in which the mixing is monitored to detect, prevent or correct, the formation of aggregated or relaxed complexes.
12. The method of claim 10 wherein the salt is NaCl.
13. The method of claim 10 wherein the nucleic acid and the polycation are each, at the time of mixing, in a solution having a salt concentration of 0.05 to 1.5 M.
14. The method of claim 10 in which the molar ratio of the phosphate groups of the nucleic acid to the positively charged groups of the polycation is in the range of 4:1 to 1:4.
15. The method of claim 10 in which the polycation is added to the nucleic acid, while vortexing at high speed.
16. The method of claim 10 in which the nucleic acid is added to the polycation, while vortexing at high speed.
17. The method of claim 10 wherein the mixing is monitored by a method selected from the group consisting of electron microscopy, light scattering, circular dichroism, and absorbance measurement.
18. The method of claim 10 wherein the polycation molecules are polylysine or a polylysine derivative.
19. The method of claim 18 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
20. A non-naturally occurring composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, wherein said polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate, and chloride, said polycation molecule having a nucleic acid binding moiety through which it is complexed to the nucleic acid, wherein said nucleic acid molecule encodes at least one functional protein, wherein said complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
21. The composition of claim 20 wherein the polycation molecules are polylysine or a polylysine derivative.
22. The composition of claim 21 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
23. The non-naturally occurring composition of claim 20 wherein said nucleic acid molecule comprises a promoter which controls transcription of an RNA molecule encoding the functional protein.
24. The non-naturally occurring composition of claim 20 wherein the protein is therapeutic.
25. The non-naturally occurring composition of claim 20 wherein the complexe is compacted to a diameter which is less than 50 nm.
26. The non-naturally occurring composition of claim 20 wherein the complex is compacted to a diameter which is less than 30 nm.
27. The non-naturally occurring composition of claim 20 wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
28. The non-naturally occurring composition of claim 20 wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
29. A non-naturally occurring composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single double-stranded cDNA molecule and one or more polycation molecules, said polycation molecules having a counterion selected from the group consisting of acetate, bicarbonate, and chloride, wherein said cDNA molecule encodes at least one functional protein, wherein said complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single cDNA molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
30. The composition of claim 29 wherein the polycation molecules are polylysine or a polylysine derivative.
31. The composition of claim 30 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
32. A non-naturally occurring composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecules having a counterion selected from the group consisting of acetate, bicarbonate, and chloride, wherein said nucleic acid molecule encodes at least one antisense nucleic acid, wherein said complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
33. The composition of claim 32 wherein the polycation molecules are polylysine or a polylysine derivative.
34. The composition of claim 33 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
35. A non-naturally occurring composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecule having a counterion selected from the group consisting of acetate, bicarbonate, and chloride, wherein said nucleic acid molecule is an RNA molecule, wherein said complex is compacted to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger.
36. The composition of claim 35 wherein the polycation molecules are polylysine or a polylysine derivative.
37. The composition of claim 36 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
38. A method of preparing a composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said method comprising:
mixing a nucleic acid molecule with a polycation molecule at a salt concentration sufficient for compaction of the complex to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger, whereby unaggregated nucleic acid complexes are formed, wherein each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules, and wherein said polycation molecules have a counterion selected from the group consisting of bicarbonate and chloride.
39. The method of claim 38 wherein the polycation molecules are polylysine or a polylysine derivative.
40. The method of claim 39 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
41. A method of preparing a composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said method comprising:
mixing a nucleic acid molecule with a polycation molecule in a solvent to form a complex, said mixing being performed in the absence of added salt, whereby the nucleic acid forms soluble complexes with the polycation molecule without forming aggregates, wherein each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules, wherein the complexes have a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger, wherein the polycation has acetate as a counterion.
42. The method of claim 41 wherein the polycation molecules are polylysine or a polylysine derivative.
43. The method of claim 42 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
44. A method of preparing a composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said method comprising:
mixing a nucleic acid molecule with a polycation molecule in a solvent to form a complex, said mixing being performed in the absence of added salt, whereby the nucleic acid forms soluble complexes with the polycation molecule without forming aggregates, wherein each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules, wherein the complexes have a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger, wherein the polycation has a counterion selected from the group consisting of bicarbonate and chloride.
45. The method of claim 44 wherein the polycation molecules are polylysine or a polylysine derivative.
46. The method of claim 45 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
47. Non-naturally occurring, soluble compacted complexes of a nucleic acid and a polycation molecule made by the process of claim 10 .
48. Non-naturally occurring, soluble compacted complexes of a nucleic acid and a polycation molecule made by the process of claim 38 .
49. Non-naturally occurring, soluble compacted complexes of a nucleic acid and a polycation molecule made by the process of claim 41 .
50. Non-naturally occurring, soluble compacted complexes of a nucleic acid and a polycation made by the process of claim 44 .
51. The complexes of claim 47 wherein the polycation molecules are polylysine or a polylysine derivative.
52. The complexes of claim 51 wherein the polylysine derivative is polylysine peptide with a cysteine residue
53. The complexes of claim 48 wherein the polycation molecules are polylysine or a polylysine derivative.
54. The complexes of claim 53 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
55. The complexes of claim 49 wherein the polycation molecules are polylysine or a polylysine derivative.
56. The complexes of claim 55 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
57. The complexes of claim 50 wherein the polycation molecules are polylysine or a polylysine derivative.
58. The complexes of claim 57 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
59. A method of preventing or treating a disease or other clinical condition in a subject which comprises:
administering intramuscularly or to the lung of the subject a prophylactically or therapeutically effective amount of a composition comprising:
unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecule having acetate as a counterion, wherein said complex is compacted to a diameter which is less than (a) double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger,
said nucleic acid being one whose integration, hybridization or expression within target cells of said subject prevents or treats said disease or other clinical condition.
60. The method of claim 59 wherein the step of administering is by inhalation.
61. The method of claim 59 wherein the step of administering is by intramuscular injection.
62. The method of claim 59 wherein the polycation molecules are polylysine or a polylysine derivative.
63. The method of claim 62 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
64. A method of preventing or treating a disease or other clinical condition in a subject which comprises:
administering intramuscularly or to the lung of the subject a prophylactically or therapeutically effective amount of a composition comprising:
unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecule having a counterion selected from the group consisting of bicarbonate and chloride,
wherein said complex is compacted to a diameter which is less than (a) double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or (b) 30 nm, whichever is larger,
said nucleic acid being one whose integration, hybridization or expression within target cells of said subject prevents or treats said disease or other clinical condition.
65. The method of claim 64 wherein the polycation molecules are polylysine or a polylysine derivative.
66. The method of claim 65 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
67. The method of claim 64 wherein the step of administering is by inhalation.
68. The method of claim 64 wherein the step of administering is by intramuscular injection.
69. The composition of claim 20 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
70. The composition of claim 29 wherein the nucleic acid complexes are associated with a lipid.
71. The composition of claim 29 wherein said complex is compacted to a diameter of less than 90 nm.
72. The composition of claim 29 wherein the nucleic acid complex is compacted to a diameter less than 30 nm.
73. The composition of claim 29 wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
74. The composition of claim 29 wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
75. The composition of claim 29 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
76. The composition of claim 32 wherein said complex is compacted to a diameter of less than 90 nm.
77. The composition of claim 32 wherein the nucleic acid complex is compacted to a diameter less than 30 nm.
78. The composition of claim 32 wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
79. The composition of claim 32 wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
80. The composition of claim 32 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
81. The composition of claim 35 said complex is compacted to a diameter of less than 90 nm.
82. The composition of claim 35 wherein the nucleic acid complex is compacted to a diameter less than 30 nm.
83. The composition of claim 35 wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
84. The composition of claim 35 wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
85. The composition of claim 35 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
86. The method of claim 38 wherein the salt is NaCl.
87. The method of claim 38 wherein the nucleic acid and the polycation are each, at the time of mixing, in a solution having a salt concentration of 0.05 to 1.5 M.
88. The method of claim 38 in which the mixing is monitored to detect, prevent or correct, the formation of aggregated or relaxed complexes.
89. The method of claim 38 in which the molar ratio of the phosphate groups of the nucleic acid to the positively charged groups of the polycation is in the range of 4:1 to 1:4.
90. The method of claim 38 in which the polycation is added to the nucleic acid, while vortexing at high speed.
91. The method of claim 38 in which the nucleic acid is added to the polycation, while vortexing at high speed.
92. The method of claim 38 wherein the mixing is monitored by a method selected from the group consisting of electron microscopy, light scattering, circular dichroism, and absorbance measurement.
93. The method of claim 41 in which the mixing is monitored to detect, prevent or correct, the formation of aggregated or relaxed complexes.
94. The method of claim 41 in which the molar ratio of the phosphate groups of the nucleic acid to the positively charged groups of the polycation is in the range of 4:1 to 1:4.
95. The method of claim 41 in which the polycation is added to the nucleic acid, while vortexing at high speed.
96. The method of claim 41 in which the nucleic acid is added to the polycation, while vortexing at high speed.
97. The method of claim 41 wherein the mixing is monitored by a method selected from the group consisting of electron microscopy, light scattering, circular dichroism, and absorbance measurement.
98. The method of claim 44 in which the mixing is monitored to detect, prevent or correct, the formation of aggregated or relaxed complexes.
99. The method of claim 44 in which the molar ratio of the phosphate groups of the nucleic acid to the positively charged groups of the polycation is in the range of 4:1 to 1:4.
100. The method of claim 44 in which the polycation is added to the nucleic acid, while vortexing at high speed.
101. The method of claim 44 in which the nucleic acid is added to the polycation, while vortexing at high speed.
102. The method of claim 44 wherein the mixing is monitored by a method selected from the group consisting of electron microscopy, light scattering, circular dichroism, and absorbance measurement.
103. A non-naturally occurring composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said polycation molecules having a counterion selected from the group consisting of acetate, bicarbonate, and chloride.
104. The composition of claim 103 wherein the counterion is acetate.
105. The composition of claim 2 wherein said polycation is CK15-60P10 and the counterion is acetate, wherein CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
106. The composition of claim 105 wherein the polycation molecule comprises 30 residues of lysine.
107. The composition of claim 105 wherein the polycation molecule comprises a targeting moiety.
108. The composition of claim 105 , said complex is compacted to a diameter of less than 90 nm.
109. The composition of claim 105 , wherein the nucleic acid complex is compacted to a diameter less than 30 nm.
110. The composition of claim 105 , wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
111. The composition of claim 105 , wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
112. The composition of claim 105 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
113. The composition of claim 105 which is lyophilized.
114. The composition of claim 105 which is rehydrated after lyophilization.
115. The composition of claim 105 which does not contain a disaccharide.
116. A method of delivering polynucleotides to cells comprising:
contacting the composition of claim 114 with cells, whereby the nucleic acid is delivered to and taken up by the cells.
117. The method of claim 116 wherein the composition does not contain a disaccharide.
118. The composition of claim 20 wherein the polycation is CK15-60P10, and the counterion is acetate, wherein CK15-60 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
119. The composition of claim 118 wherein the polycation molecule comprises 30 residues of lysine.
120. The composition of claim 118 wherein the polycation molecule comprises a targeting moiety.
121. The composition of claim 118 which is lyophilized.
122. The non-naturally occurring composition of claim 118 wherein said nucleic acid molecule comprises a promoter which controls transcription of an RNA molecule encoding the functional protein.
123. The non-naturally occurring composition of claim 118 wherein the protein is therapeutic.
124. The non-naturally occurring composition of claim 118 wherein the complex is compacted to a diameter which is less than 50 nm.
125. The non-naturally occurring composition of claim 118 wherein the complex is compacted to a diameter which is less than 30 nm.
126. The non-naturally occurring composition of claim 118 wherein the nucleic acid complex is compacted to a diameter less than 23 nm.
127. The non-naturally occurring composition of claim 118 wherein the nucleic acid complex is compacted to a diameter not more than 12 nm.
128. The composition of claim 118 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
129. The composition of claim 118 which is rehydrated after lyophilization.
130. The composition of claim 118 which does not contain a disaccharide.
131. A method of delivering polynucleotides to cells comprising:
contacting the composition of claim 129 with cells, wherein the polynucleotide encodes a protein, whereby the protein is expressed.
132. The composition of claim 29 wherein said polycation is CK15-60P10, and said counterion is acetate, wherein CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
133. The composition of claim 132 wherein the polycation molecule comprises 30 residues of lysine.
134. The composition of claim 132 wherein the polycation molecule comprises a targeting moiety.
135. The composition of claim 132 which is lyophilized.
136. The composition of claim 132 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
137. The composition of claim 132 which is rehydrated after lyophilization.
138. The composition of claim 132 which does not contain a disaccharide.
139. A method of delivering polynucleotides to cells comprising:
contacting the composition of claim 137 with cells, wherein the polynucleotide encodes a protein, whereby the protein is expressed.
140. The composition of claim 32 wherein said polycation is CK15-60P10, and the counterion is acetate, wherein CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
141. The composition of claim 140 wherein the polycation molecule comprises 30 residues of lysine.
142. The composition of claim 140 wherein the polycation molecule comprises a targeting moiety.
143. The composition of claim 140 which is lyophilized.
144. The composition of claim 140 wherein said complex is compacted to a diameter which is less than double the theoretical diameter of a complex of said single nucleic acid and a sufficient number of positively charged residues to provide a charge ratio of about 1:1, in the form of a condensed sphere.
145. The composition of claim 140 which is rehydrated after lyophilization.
146. The composition of claim 140 which does not contain a disaccharide.
147. A method of delivering polynucleotides to cells comprising:
contacting the compositions of claim 145 with cells, wherein the polynucleotide encodes an antisense nucleic acid, whereby the antisense nucleic acid is expressed.
148. The composition of claim 35 wherein said polycation is CK15-60P10, and said counterion is acetate, wherein CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
149. The composition of claim 148 wherein the polycation molecule comprises 30 residues of lysine.
150. The composition of claim 148 wherein the polycation molecule comprises a targeting moiety.
151. The composition of claim 148 which is lyophilized.
152. The composition of claim 148 which is lyophilized and rehydrated.
153. The composition of claim 148 which does not contain a disaccharide.
154. A method of delivering polynucleotides to cells comprising:
contacting the composition of claim 152 with cells, whereby the polynucleotide is delivered to and taken up by the cells.
155. The method of claim 41 , wherein said polycation is CK15-60P10, and said counterion is acetate, wherein CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
156. The method of claim 155 further comprising lyophilizing the unaggregated nucleic acid complexes.
157. The method of claim 156 further comprising rehydrating the lyophilized nucleic acid complexes.
158. The method of claim 155 wherein the polycation molecule comprises 30 residues of lysine.
159. The method of claim 155 wherein the polycation molecule comprises a targeting moiety.
160. A method of preparing a composition comprising unaggregated nucleic acid complexes, each complex consisting essentially of a single nucleic acid molecule and one or more polycation molecules, said method comprising:
mixing a nucleic acid molecule with a polycation molecule at a salt concentration sufficient for compaction of the complex to a diameter which is less than double the theoretical minimum diameter of a complex of said single nucleic acid molecule and a sufficient number of polycation molecules to provide a charge ratio of about 1:1, in the form of a condensed sphere, or 30 nm, whichever is larger, whereby unaggregated nucleic acid complexes are formed, wherein each complex consists essentially of a single nucleic acid molecule and one or more polycation molecules, and wherein said polycation molecules have a counterion selected from the group consisting of acetate, bicarbonate and chloride.
161. The method of claim 160 wherein the counterion is acetate.
162. The method of claim 160 wherein the polycation molecules are polylysine or a polylysine derivative.
163. The method of claim 162 wherein the polylysine derivative is polylysine peptide with a cysteine residue.
164. Non-naturally occurring, soluble compacted complexes of a nucleic acid and a polycation molecule made by the method of claim 160 .
165. The method of claim 160 wherein the salt is NaCl.
166. The method of claim 160 wherein the nucleic acid and the polycation are each, at the time of mixing, in a solution having a salt concentration of 0.05 to 1.5 M.
167. The method of claim 160 in which the mixing is monitored to detect, prevent or correct, the formation of aggregated or relaxed complexes.
168. The method of claim 160 in which the molar ratio of the phosphate groups of the nucleic acid to the positively charged groups of the polycation is in the range of 4:1 to 1:4.
169. The method of claim 160 in which the polycation is added to the nucleic acid, while vortexing at high speed.
170. The method of claim 160 in which the nucleic acid is added to the polycation, while vortexing at high speed.
171. The method of claim 160 wherein the mixing is monitored by a method selected from the group consisting of electron microscopy, light scattering, circular diochroism, and absorbance measurement.
172. The method of claim 160 , wherein said polycation is CK15-60P10 and the counterion is acetate, wherein CK15-60P10 is a polyamino acid polymer of one N-terminal cysteine and 15-60 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 10 kdal is attached to the cysteine residue.
173. The method of claim 172 further comprising lyophilizing the unaggregated nucleic acid complexes.
174. The method of claim 173 further comprising rehydrating the lyophilized nucleic acid complexes.
175. The method of claim 172 wherein the polycation molecule comprises 30 residues of lysine.
176. The method of claim 172 wherein the polycation molecule comprises a targeting moiety.
177. The composition of claim 2 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
178. The composition of claim 20 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
179. The composition of claim 29 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
180. The composition of claim 32 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
181. The composition of claim 35 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
182. The composition of claim 41 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
183. The composition of claim 160 wherein said polycation is CK30P5 or CK45P5 and the counterion is acetate, wherein CK30P5 or CK45P5 is a polyamino acid polymer of one N-terminal cysteine and 30 or 45 lysine residues, wherein a molecule of polyethylene glycol having an average molecular weight of 5 kdal is attached to the cysteine residue.
184. The method of claim 10 wherein the nucleic acid and the polycation are each, at the time of mixing, in a solution having a salt concentration of 0.0 M.
185. The method of claim 38 wherein the nucleic acid and the polycation are each, at the time of mixing, in a solution having a salt concentration of 0.0 M.
186. The method of claim 160 wherein the nucleic acid and the polycation are each, at the time of mixing, in a solution having a salt concentration of 0.0 M.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/307,555 US20030134818A1 (en) | 2000-05-31 | 2002-12-02 | Lyophilizable and enhanced compacted nucleic acids |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20794900P | 2000-05-31 | 2000-05-31 | |
US28741901P | 2001-05-01 | 2001-05-01 | |
US09/867,693 US20020042388A1 (en) | 2001-05-01 | 2001-05-31 | Lyophilizable and enhanced compacted nucleic acids |
US10/307,555 US20030134818A1 (en) | 2000-05-31 | 2002-12-02 | Lyophilizable and enhanced compacted nucleic acids |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/867,693 Division US20020042388A1 (en) | 2000-05-31 | 2001-05-31 | Lyophilizable and enhanced compacted nucleic acids |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030134818A1 true US20030134818A1 (en) | 2003-07-17 |
Family
ID=26964440
Family Applications (6)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/867,693 Abandoned US20020042388A1 (en) | 2000-05-31 | 2001-05-31 | Lyophilizable and enhanced compacted nucleic acids |
US10/305,078 Abandoned US20030078229A1 (en) | 2000-05-31 | 2002-11-27 | Lyophilizable and enhanced compacted nucleic acids |
US10/305,089 Abandoned US20030078230A1 (en) | 2000-05-31 | 2002-11-27 | Lyophilizable and enhanced compacted nucleic acids |
US10/307,555 Abandoned US20030134818A1 (en) | 2000-05-31 | 2002-12-02 | Lyophilizable and enhanced compacted nucleic acids |
US10/307,284 Abandoned US20030171322A1 (en) | 2000-05-31 | 2002-12-02 | Lyophilizable and enhanced compacted nucleic acids |
US10/656,192 Expired - Fee Related US8017577B2 (en) | 2000-05-31 | 2003-09-08 | Lyophilizable and enhanced compacted nucleic acids |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/867,693 Abandoned US20020042388A1 (en) | 2000-05-31 | 2001-05-31 | Lyophilizable and enhanced compacted nucleic acids |
US10/305,078 Abandoned US20030078229A1 (en) | 2000-05-31 | 2002-11-27 | Lyophilizable and enhanced compacted nucleic acids |
US10/305,089 Abandoned US20030078230A1 (en) | 2000-05-31 | 2002-11-27 | Lyophilizable and enhanced compacted nucleic acids |
Family Applications After (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/307,284 Abandoned US20030171322A1 (en) | 2000-05-31 | 2002-12-02 | Lyophilizable and enhanced compacted nucleic acids |
US10/656,192 Expired - Fee Related US8017577B2 (en) | 2000-05-31 | 2003-09-08 | Lyophilizable and enhanced compacted nucleic acids |
Country Status (1)
Country | Link |
---|---|
US (6) | US20020042388A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060018882A1 (en) * | 2004-06-21 | 2006-01-26 | Kaemmerer William F | Medical devices and methods for delivering compositions to cells |
US20110213328A1 (en) * | 2004-03-18 | 2011-09-01 | Medtronic, Inc. | Methods and Systems for Treatment of Neurological Diseases of the Central Nervous System |
Families Citing this family (96)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7124985B2 (en) * | 2002-04-19 | 2006-10-24 | Crain Enterprises, Inc. | Geomatic pole support with telescoping legs and locks |
US7605249B2 (en) | 2002-11-26 | 2009-10-20 | Medtronic, Inc. | Treatment of neurodegenerative disease through intracranial delivery of siRNA |
US7829694B2 (en) | 2002-11-26 | 2010-11-09 | Medtronic, Inc. | Treatment of neurodegenerative disease through intracranial delivery of siRNA |
US7618948B2 (en) | 2002-11-26 | 2009-11-17 | Medtronic, Inc. | Devices, systems and methods for improving and/or cognitive function through brain delivery of siRNA |
US7994149B2 (en) | 2003-02-03 | 2011-08-09 | Medtronic, Inc. | Method for treatment of Huntington's disease through intracranial delivery of sirna |
US7732591B2 (en) * | 2003-11-25 | 2010-06-08 | Medtronic, Inc. | Compositions, devices and methods for treatment of huntington's disease through intracranial delivery of sirna |
CN100439515C (en) * | 2003-03-03 | 2008-12-03 | 清华大学 | A nucleic acid analysis lab-on-a-chip system and its application |
WO2005054431A2 (en) * | 2003-12-01 | 2005-06-16 | 454 Corporation | Method for isolation of independent, parallel chemical micro-reactions using a porous filter |
US7692219B1 (en) | 2004-06-25 | 2010-04-06 | University Of Hawaii | Ultrasensitive biosensors |
ES2534301T3 (en) | 2004-11-12 | 2015-04-21 | Asuragen, Inc. | Procedures and compositions involving miRNA and miRNA inhibitor molecules |
WO2007008246A2 (en) | 2004-11-12 | 2007-01-18 | The Board Of Trustees Of The Leland Stanford Junior University | Charge perturbation detection system for dna and other molecules |
US9695472B2 (en) | 2005-03-04 | 2017-07-04 | Intel Corporation | Sensor arrays and nucleic acid sequencing applications |
US9040237B2 (en) * | 2005-03-04 | 2015-05-26 | Intel Corporation | Sensor arrays and nucleic acid sequencing applications |
US20060253068A1 (en) * | 2005-04-20 | 2006-11-09 | Van Bilsen Paul | Use of biocompatible in-situ matrices for delivery of therapeutic cells to the heart |
US7902352B2 (en) * | 2005-05-06 | 2011-03-08 | Medtronic, Inc. | Isolated nucleic acid duplex for reducing huntington gene expression |
WO2006121960A2 (en) * | 2005-05-06 | 2006-11-16 | Medtronic, Inc. | Methods and sequences to suppress primate huntington gene expression |
US9133517B2 (en) | 2005-06-28 | 2015-09-15 | Medtronics, Inc. | Methods and sequences to preferentially suppress expression of mutated huntingtin |
US20080280843A1 (en) * | 2006-05-24 | 2008-11-13 | Van Bilsen Paul | Methods and kits for linking polymorphic sequences to expanded repeat mutations |
US9273356B2 (en) | 2006-05-24 | 2016-03-01 | Medtronic, Inc. | Methods and kits for linking polymorphic sequences to expanded repeat mutations |
KR101485495B1 (en) | 2006-08-01 | 2015-01-22 | 보드 오브 리전츠 오브 더 유니버시티 오브 텍사스 시스템 | Identification of microRNAs that activate beta-myosin heavy chain expression |
US20080039415A1 (en) * | 2006-08-11 | 2008-02-14 | Gregory Robert Stewart | Retrograde transport of sirna and therapeutic uses to treat neurologic disorders |
US8324367B2 (en) | 2006-11-03 | 2012-12-04 | Medtronic, Inc. | Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity |
US9375440B2 (en) * | 2006-11-03 | 2016-06-28 | Medtronic, Inc. | Compositions and methods for making therapies delivered by viral vectors reversible for safety and allele-specificity |
US7819842B2 (en) | 2006-11-21 | 2010-10-26 | Medtronic, Inc. | Chronically implantable guide tube for repeated intermittent delivery of materials or fluids to targeted tissue sites |
US7988668B2 (en) * | 2006-11-21 | 2011-08-02 | Medtronic, Inc. | Microsyringe for pre-packaged delivery of pharmaceuticals |
US8349167B2 (en) | 2006-12-14 | 2013-01-08 | Life Technologies Corporation | Methods and apparatus for detecting molecular interactions using FET arrays |
US11339430B2 (en) | 2007-07-10 | 2022-05-24 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
EP2677309B9 (en) | 2006-12-14 | 2014-11-19 | Life Technologies Corporation | Methods for sequencing a nucleic acid using large scale FET arrays, configured to measure a limited pH range |
US8262900B2 (en) * | 2006-12-14 | 2012-09-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes using large scale FET arrays |
US20080171906A1 (en) * | 2007-01-16 | 2008-07-17 | Everaerts Frank J L | Tissue performance via hydrolysis and cross-linking |
NZ583024A (en) | 2007-07-31 | 2012-04-27 | Regents The Univeristy Of Texas System Board Of | An agonist of miR-29a, miR-29b or miR-29c that prevents tissue fibrosis and uses thereof |
EP2265291B1 (en) | 2008-03-17 | 2016-10-19 | The Board of Regents of The University of Texas System | Identification of micro-rnas involved in neuromuscular synapse maintenance and regeneration |
EP2307577B1 (en) | 2008-06-25 | 2015-06-03 | Life Technologies Corporation | Methods for measuring analytes using large scale fet arrays |
US20100301398A1 (en) | 2009-05-29 | 2010-12-02 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
US20100137143A1 (en) | 2008-10-22 | 2010-06-03 | Ion Torrent Systems Incorporated | Methods and apparatus for measuring analytes |
EP2379720B1 (en) | 2009-01-20 | 2016-08-17 | Alona Zilberberg | Mir-21 promoter driven targeted cancer therapy |
CA2758531C (en) | 2009-04-14 | 2018-11-13 | Derren Barken | Inflammatory bowel disease prognostics |
US8673627B2 (en) | 2009-05-29 | 2014-03-18 | Life Technologies Corporation | Apparatus and methods for performing electrochemical reactions |
US8776573B2 (en) | 2009-05-29 | 2014-07-15 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
US20120261274A1 (en) | 2009-05-29 | 2012-10-18 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
CN105543259A (en) * | 2009-10-30 | 2016-05-04 | 斯特莱科生物有限公司 | Novel therapeutic RNA interference techniques targeting PDX-1 oncogene in PDX-1 expressing neuroendocrine tumors |
CA2777539C (en) | 2009-10-30 | 2016-09-13 | Gradalis, Inc. | Novel therapeutic rna interference technology targeted to the pdx-1 oncogene in pdx-1 expressing neuroendocrine tumors |
WO2011060098A1 (en) | 2009-11-10 | 2011-05-19 | Prometheus Laboratories Inc. | Methods for predicting post-surgery risk associated with ileal pouch-anal anastomosis |
WO2011108930A1 (en) | 2010-03-04 | 2011-09-09 | Interna Technologies Bv | A MiRNA MOLECULE DEFINED BY ITS SOURCE AND ITS DIAGNOSTIC AND THERAPEUTIC USES IN DISEASES OR CONDITIONS ASSOCIATED WITH EMT |
TW201716791A (en) | 2010-06-30 | 2017-05-16 | 生命技術公司 | Methods and apparatus for testing ISFET arrays |
CN103154718B (en) | 2010-06-30 | 2015-09-23 | 生命科技公司 | The electric charge accumulation circuit of sensing ion and method |
CN103189986A (en) | 2010-06-30 | 2013-07-03 | 生命科技公司 | Transistor circuits for detection and measurement of chemical reactions and compounds |
US11307166B2 (en) | 2010-07-01 | 2022-04-19 | Life Technologies Corporation | Column ADC |
WO2012006222A1 (en) | 2010-07-03 | 2012-01-12 | Life Technologies Corporation | Chemically sensitive sensor with lightly doped drains |
EP3369817A1 (en) | 2010-07-06 | 2018-09-05 | InteRNA Technologies B.V. | Mirna and its diagnostic and therapeutic uses in diseases or conditions associated with melanoma , or in diseases or conditions with activated braf pathway |
US8444835B2 (en) | 2010-09-09 | 2013-05-21 | Intel Corporation | Electronic and fluidic interface |
US9618475B2 (en) | 2010-09-15 | 2017-04-11 | Life Technologies Corporation | Methods and apparatus for measuring analytes |
EP2619564B1 (en) | 2010-09-24 | 2016-03-16 | Life Technologies Corporation | Matched pair transistor circuits |
EP2474617A1 (en) | 2011-01-11 | 2012-07-11 | InteRNA Technologies BV | Mir for treating neo-angiogenesis |
WO2013059732A1 (en) | 2011-10-21 | 2013-04-25 | Nestec S.A. | Methods for improving inflammatory bowel disease diagnosis |
US9970984B2 (en) | 2011-12-01 | 2018-05-15 | Life Technologies Corporation | Method and apparatus for identifying defects in a chemical sensor array |
WO2013095132A1 (en) | 2011-12-22 | 2013-06-27 | Interna Technologies B.V. | Mirna for treating head and neck cancer |
US8821798B2 (en) | 2012-01-19 | 2014-09-02 | Life Technologies Corporation | Titanium nitride as sensing layer for microwell structure |
US8747748B2 (en) | 2012-01-19 | 2014-06-10 | Life Technologies Corporation | Chemical sensor with conductive cup-shaped sensor surface |
US9486540B2 (en) | 2012-03-09 | 2016-11-08 | Northeastern University | Methods for delivery to the central nervous system of nucleic acid nanoparticles to treat central nervous system disorders |
US8786331B2 (en) | 2012-05-29 | 2014-07-22 | Life Technologies Corporation | System for reducing noise in a chemical sensor array |
EP3800256A1 (en) | 2012-11-06 | 2021-04-07 | InteRNA Technologies B.V. | Combination to be used in therapeutic use against diseases or conditions associated with melanoma, or in diseases or conditions associated with activated b-raf pathway |
US20150337375A1 (en) | 2012-12-21 | 2015-11-26 | The Trustees Of Columbia University In The City Of New York | Biomarkers for chronic traumatic encephalopathy |
US9080968B2 (en) | 2013-01-04 | 2015-07-14 | Life Technologies Corporation | Methods and systems for point of use removal of sacrificial material |
US9841398B2 (en) | 2013-01-08 | 2017-12-12 | Life Technologies Corporation | Methods for manufacturing well structures for low-noise chemical sensors |
US8962366B2 (en) | 2013-01-28 | 2015-02-24 | Life Technologies Corporation | Self-aligned well structures for low-noise chemical sensors |
US8841217B1 (en) | 2013-03-13 | 2014-09-23 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
US8963216B2 (en) | 2013-03-13 | 2015-02-24 | Life Technologies Corporation | Chemical sensor with sidewall spacer sensor surface |
WO2014151551A1 (en) | 2013-03-15 | 2014-09-25 | Baylor Research Institute | Ulcerative colitis (uc)-associated colorectal neoplasia markers |
US9835585B2 (en) | 2013-03-15 | 2017-12-05 | Life Technologies Corporation | Chemical sensor with protruded sensor surface |
WO2014149780A1 (en) | 2013-03-15 | 2014-09-25 | Life Technologies Corporation | Chemical sensor with consistent sensor surface areas |
US9116117B2 (en) | 2013-03-15 | 2015-08-25 | Life Technologies Corporation | Chemical sensor with sidewall sensor surface |
JP6671274B2 (en) | 2013-03-15 | 2020-03-25 | ライフ テクノロジーズ コーポレーション | Chemical device with thin conductive element |
CN105283758B (en) | 2013-03-15 | 2018-06-05 | 生命科技公司 | Chemical sensor with consistent sensor surface area |
US20140336063A1 (en) | 2013-05-09 | 2014-11-13 | Life Technologies Corporation | Windowed Sequencing |
US10458942B2 (en) | 2013-06-10 | 2019-10-29 | Life Technologies Corporation | Chemical sensor array having multiple sensors per well |
US9951330B2 (en) | 2013-07-11 | 2018-04-24 | The Trustees Of Columbia University In The City Of New York | Micrornas that silence tau expression |
US10172916B2 (en) | 2013-11-15 | 2019-01-08 | The Board Of Trustees Of The Leland Stanford Junior University | Methods of treating heart failure with agonists of hypocretin receptor 2 |
WO2015074010A2 (en) | 2013-11-18 | 2015-05-21 | Beth Israel Deaconess Medical Center, Inc. | Compositions and methods for cardiac regeneration |
EP3234576B1 (en) | 2014-12-18 | 2023-11-22 | Life Technologies Corporation | High data rate integrated circuit with transmitter configuration |
US10077472B2 (en) | 2014-12-18 | 2018-09-18 | Life Technologies Corporation | High data rate integrated circuit with power management |
KR20170097712A (en) | 2014-12-18 | 2017-08-28 | 라이프 테크놀로지스 코포레이션 | Methods and apparatus for measuring analytes using large scale fet arrays |
US10894960B2 (en) | 2016-08-30 | 2021-01-19 | Children's Hospital Medical Center | Compositions and methods for nucleic acid transfer |
WO2018191348A1 (en) | 2017-04-11 | 2018-10-18 | University Of Maryland, Baltimore | Compositions and methods for treating inflammation and cancer |
BR112020005995A2 (en) | 2017-10-03 | 2020-09-29 | Aptahem Ab | nucleic acid molecule with anti-inflammatory and anticoagulant properties and organ protection |
WO2019086603A1 (en) | 2017-11-03 | 2019-05-09 | Interna Technologies B.V. | Mirna molecule, equivalent, antagomir, or source thereof for treating and/or diagnosing a condition and/or a disease associated with neuronal deficiency or for neuronal (re)generation |
WO2019108570A2 (en) | 2017-11-29 | 2019-06-06 | Copernicus Therapeutics, Inc. | Gene therapy for ocular improvement |
WO2023070072A1 (en) | 2021-10-21 | 2023-04-27 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Retroelement-generated transcription factor decoys |
EP4426832A1 (en) | 2021-11-03 | 2024-09-11 | The J. David Gladstone Institutes, A Testamentary Trust Established under The Will of J. David Gladstone | Precise genome editing using retrons |
WO2023141602A2 (en) | 2022-01-21 | 2023-07-27 | Renagade Therapeutics Management Inc. | Engineered retrons and methods of use |
WO2023183627A1 (en) | 2022-03-25 | 2023-09-28 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Production of reverse transcribed dna (rt-dna) using a retron reverse transcriptase from exogenous rna |
EP4499839A1 (en) | 2022-03-25 | 2025-02-05 | The J. David Gladstone Institutes, A Testamentary Trust Established under The Will of J. David Gladstone | Methods of assessing engineered retron activity, and uses thereof |
WO2023183589A1 (en) | 2022-03-25 | 2023-09-28 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Rt-dna fidelity and retron genome editing |
WO2023196725A1 (en) | 2022-04-07 | 2023-10-12 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Continuous multiplexed phage genome engineering using a retron editing template |
WO2024044673A1 (en) | 2022-08-24 | 2024-02-29 | The J. David Gladstone Institutes, A Testamentary Trust Established Under The Will Of J. David Gladstone | Dual cut retron editors for genomic insertions and deletions |
WO2025081042A1 (en) | 2023-10-12 | 2025-04-17 | Renagade Therapeutics Management Inc. | Nickase-retron template-based precision editing system and methods of use |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5656611A (en) * | 1994-11-18 | 1997-08-12 | Supratek Pharma Inc. | Polynucleotide compositions |
US5844107A (en) * | 1994-03-23 | 1998-12-01 | Case Western Reserve University | Compacted nucleic acids and their delivery to cells |
US6008336A (en) * | 1994-03-23 | 1999-12-28 | Case Western Reserve University | Compacted nucleic acids and their delivery to cells |
US6177274B1 (en) * | 1998-05-20 | 2001-01-23 | Expression Genetics, Inc. | Hepatocyte targeting polyethylene glyco-grafted poly-L-lysine polymeric gene carrier |
US6281005B1 (en) * | 1999-05-14 | 2001-08-28 | Copernicus Therapeutics, Inc. | Automated nucleic acid compaction device |
US6312727B1 (en) * | 1996-11-06 | 2001-11-06 | Etienne H Schacht | Delivery of nucleic acid materials |
US20030068363A1 (en) * | 1988-06-23 | 2003-04-10 | Anergen, Inc. A Wholly-Owned Subsidiary Of Corixa Corporation | MHC conjugates useful in ameliorating autoimmunity |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0730660A4 (en) | 1993-10-29 | 1998-02-25 | Incyte Pharma Inc | Chimeric proteins including protease nexin-1 variants |
US6126964A (en) * | 1996-01-04 | 2000-10-03 | Mirus Corporation | Process of making a compound by forming a polymer from a template drug |
US5994316A (en) | 1996-02-21 | 1999-11-30 | The Immune Response Corporation | Method of preparing polynucleotide-carrier complexes for delivery to cells |
US5948878A (en) | 1997-04-15 | 1999-09-07 | Burgess; Stephen W. | Cationic polymers for nucleic acid transfection and bioactive agent delivery |
CA2299119C (en) | 1999-02-23 | 2013-02-05 | Qiagen Gmbh | A method of stabilizing and/or isolating nucleic acids |
US6875748B2 (en) | 2000-04-21 | 2005-04-05 | Vical Incorporated | Compositions and methods for in vivo delivery of polynucleotide-based therapeutics |
-
2001
- 2001-05-31 US US09/867,693 patent/US20020042388A1/en not_active Abandoned
-
2002
- 2002-11-27 US US10/305,078 patent/US20030078229A1/en not_active Abandoned
- 2002-11-27 US US10/305,089 patent/US20030078230A1/en not_active Abandoned
- 2002-12-02 US US10/307,555 patent/US20030134818A1/en not_active Abandoned
- 2002-12-02 US US10/307,284 patent/US20030171322A1/en not_active Abandoned
-
2003
- 2003-09-08 US US10/656,192 patent/US8017577B2/en not_active Expired - Fee Related
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030068363A1 (en) * | 1988-06-23 | 2003-04-10 | Anergen, Inc. A Wholly-Owned Subsidiary Of Corixa Corporation | MHC conjugates useful in ameliorating autoimmunity |
US5844107A (en) * | 1994-03-23 | 1998-12-01 | Case Western Reserve University | Compacted nucleic acids and their delivery to cells |
US6008336A (en) * | 1994-03-23 | 1999-12-28 | Case Western Reserve University | Compacted nucleic acids and their delivery to cells |
US5656611A (en) * | 1994-11-18 | 1997-08-12 | Supratek Pharma Inc. | Polynucleotide compositions |
US6312727B1 (en) * | 1996-11-06 | 2001-11-06 | Etienne H Schacht | Delivery of nucleic acid materials |
US6177274B1 (en) * | 1998-05-20 | 2001-01-23 | Expression Genetics, Inc. | Hepatocyte targeting polyethylene glyco-grafted poly-L-lysine polymeric gene carrier |
US6281005B1 (en) * | 1999-05-14 | 2001-08-28 | Copernicus Therapeutics, Inc. | Automated nucleic acid compaction device |
US6506890B1 (en) * | 1999-05-14 | 2003-01-14 | Mark J. Cooper | Method of nucleic acid compaction |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20110213328A1 (en) * | 2004-03-18 | 2011-09-01 | Medtronic, Inc. | Methods and Systems for Treatment of Neurological Diseases of the Central Nervous System |
US20060018882A1 (en) * | 2004-06-21 | 2006-01-26 | Kaemmerer William F | Medical devices and methods for delivering compositions to cells |
Also Published As
Publication number | Publication date |
---|---|
US20030078230A1 (en) | 2003-04-24 |
US20020042388A1 (en) | 2002-04-11 |
US20030171322A1 (en) | 2003-09-11 |
US8017577B2 (en) | 2011-09-13 |
US20030078229A1 (en) | 2003-04-24 |
US20040048787A1 (en) | 2004-03-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8017577B2 (en) | Lyophilizable and enhanced compacted nucleic acids | |
Ziady et al. | Transfection of airway epithelium by stable PEGylated poly-L-lysine DNA nanoparticles in vivo | |
EP0986404B1 (en) | Gene therapy delivery system for targeting to endothelia | |
US11235071B2 (en) | Compositions of nucleic acid-containing nanoparticles for in vivo delivery | |
JP4285766B2 (en) | Deliver to dense nucleic acids and cells | |
Mahato | Non-viral peptide-based approaches to gene delivery | |
US6251599B1 (en) | Stabilized nucleic acid compositions and methods of preparation and use thereof | |
Gorman et al. | Efficient in vivo delivery of DNA to pulmonary cells using the novel lipid EDMPC | |
ES2286857T3 (en) | CONDENSED PLASMID-LIPOSOMA COMPLEX FOR TRANSFECTION. | |
Cho et al. | Macromolecular versus smallmolecule therapeutics: drug discovery, development and clinical considerations | |
JP2006526658A5 (en) | ||
Yu et al. | Increasing stiffness promotes pulmonary retention of ligand-directed dexamethasone-loaded nanoparticle for enhanced acute lung inflammation therapy | |
US6133026A (en) | Condensed plasmid-liposome complex for transfection | |
US6974698B1 (en) | Methods for delivering biologically active molecules into cells | |
JP2022531207A (en) | Compositionally defined plasmid DNA / polycation nanoparticles and method for producing the same | |
EP1289567B1 (en) | Lyophilizable and enhanced compacted nucleic acids | |
KR20050038005A (en) | Use of urease for inhibiting cancer cell growth | |
Wang et al. | Inflammatory stimulus-responsive polymersomes reprogramming glucose metabolism mitigates rheumatoid arthritis | |
AU2001265208A1 (en) | Lyophilizable and enhanced compacted nucleic acids | |
US20020155157A1 (en) | Compositions and methods for polynucleotide delivery | |
US20220339294A1 (en) | Nanoparticles for selective tissue or cellular uptake | |
US5744326A (en) | Use of viral CIS-acting post-transcriptional regulatory sequences to increase expression of intronless genes containing near-consensus splice sites | |
Ziady et al. | Defining strategies to extend duration of gene expression from targeted compacted DNA vectors | |
Gómez-Valadés et al. | Copolymers of poly-l-lysine with serine and tryptophan form stable DNA vectors: implications for receptor-mediated gene transfer | |
Kim et al. | An efficient liposomal gene delivery vehicle using Sendai F/HN proteins and protamine |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |