US20030128521A1 - Electronic packages having good reliability comprising low modulus thermal interface materials - Google Patents
Electronic packages having good reliability comprising low modulus thermal interface materials Download PDFInfo
- Publication number
- US20030128521A1 US20030128521A1 US10/035,209 US3520902A US2003128521A1 US 20030128521 A1 US20030128521 A1 US 20030128521A1 US 3520902 A US3520902 A US 3520902A US 2003128521 A1 US2003128521 A1 US 2003128521A1
- Authority
- US
- United States
- Prior art keywords
- thermal interface
- interface material
- thermally conductive
- heat
- shear modulus
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/36—Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
- H01L23/373—Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
- H01L23/3737—Organic materials with or without a thermoconductive filler
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/42—Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
- H01L23/433—Auxiliary members in containers characterised by their shape, e.g. pistons
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/10—Bump connectors; Manufacturing methods related thereto
- H01L2224/15—Structure, shape, material or disposition of the bump connectors after the connecting process
- H01L2224/16—Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
- H01L2224/161—Disposition
- H01L2224/16151—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/16221—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/16225—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/16227—Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation the bump connector connecting to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32225—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/26—Layer connectors, e.g. plate connectors, solder or adhesive layers; Manufacturing methods related thereto
- H01L2224/31—Structure, shape, material or disposition of the layer connectors after the connecting process
- H01L2224/32—Structure, shape, material or disposition of the layer connectors after the connecting process of an individual layer connector
- H01L2224/321—Disposition
- H01L2224/32151—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/32221—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/32245—Disposition the layer connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73201—Location after the connecting process on the same surface
- H01L2224/73203—Bump and layer connectors
- H01L2224/73204—Bump and layer connectors the bump connector being embedded into the layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/73—Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
- H01L2224/732—Location after the connecting process
- H01L2224/73251—Location after the connecting process on different surfaces
- H01L2224/73253—Bump and layer connectors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/80—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
- H01L2224/83—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
- H01L2224/831—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus
- H01L2224/83102—Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector the layer connector being supplied to the parts to be connected in the bonding apparatus using surface energy, e.g. capillary forces
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/91—Methods for connecting semiconductor or solid state bodies including different methods provided for in two or more of groups H01L2224/80 - H01L2224/90
- H01L2224/92—Specific sequence of method steps
- H01L2224/921—Connecting a surface with connectors of different types
- H01L2224/9212—Sequential connecting processes
- H01L2224/92122—Sequential connecting processes the first connecting process involving a bump connector
- H01L2224/92125—Sequential connecting processes the first connecting process involving a bump connector the second connecting process involving a layer connector
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01019—Potassium [K]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/01—Chemical elements
- H01L2924/01078—Platinum [Pt]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/10—Details of semiconductor or other solid state devices to be connected
- H01L2924/102—Material of the semiconductor or solid state bodies
- H01L2924/1025—Semiconducting materials
- H01L2924/10251—Elemental semiconductors, i.e. Group IV
- H01L2924/10253—Silicon [Si]
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15312—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a pin array, e.g. PGA
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/161—Cap
- H01L2924/1615—Shape
- H01L2924/16152—Cap comprising a cavity for hosting the device, e.g. U-shaped cap
Definitions
- This invention relates to an improved electronic package and a curable material useful as a thermal material therein.
- TIM thermal interface material
- U.S. Pat. No. 6,238,596 discloses a method of improving the thermal conductivity of gel TIM polymer systems by incorporating carbon microfibers, with other fillers, in the thermal interface material.
- Other solutions to the demand for increasingly effective heat dissipation have also been proposed.
- U.S. Pat. No. 6,218,730 by means of mechanical standoffs, the TIM gap is reduced to provide a shorter heat transfer path and thereby a reduction in the thermal resistance of the TIM. Improvements in packaging design include those disclosed in Assignee's U.S. Pat. No. 6,188,576, which account for varying amounts of heat generated by separate chips within a package.
- a method of making a heat dissipation arrangement involving the formation of a gel pad on the inner surface of a heat spreader to cover exposed faces of chips on a circuit board is described in U.S. Pat. No. 6, 162,663. Properties of the gel pad are specified to dissipate heat while at the same time physically protecting the chip from mechanical stresses or avoiding the transmission of such stresses to the bare silicon chips.
- a cured gel TIM to form the pad is specified to have a cohesive strength greater than its adhesive strength, a compressive modulus of less than 1.38 MPa, and a thermal conductivity of greater than 1.0 W/m ° C.
- Gel TIMs typically comprise a crosslinkable silicone polymer, such as a vinyl-terminated silicone oil, a crosslinker, such as a silane hydride crosslinker, and a thermally conductive filler. Before cure, these materials have properties similar to greases. They have high bulk thermal conductivities and low surface energies, and they conform well to surface irregularities upon dispense and assembly, which contributes to thermal contact resistance minimization. After cure, gel TIMs are crosslinked, filled polymers, and the crosslinking reaction provides cohesive strength to circumvent the pump-out issues exhibited by greases during temperature cycling.
- FIG. 1 is a cross-sectional view, not to scale, of an electronic package according to an example embodiment of the invention.
- FIG. 2A are curves of G′ and G′′ as a function of curing time measured by a strain-controlled rheometer, particularly a Rheometric Dynamic Analyzer (RDA) for a thermal material (TIM 1) of the invention.
- RDA Rheometric Dynamic Analyzer
- FIG. 2B are RDA curves of another thermal material (TIM 2) of the invention.
- FIG. 3 are RDA curves of a comparative thermal material (TIM 3) that does not have a G′/G′′ crossover.
- FIG. 4 presents plots of measured thermal resistance, Rjc, values obtained for a large-die flip-chip test vehicle comprising respective ones of the TIMs from FIGS. 2A, 2B and 3 as a function of baking time at 125° C. for up to 384 hours.
- FIGS. 5A and 5B are CSAM images of test vehicles showing the development of voids during bake for comparative thermal material TIM 3 which does not have a G′ and G′′ crossover, for respective times—after assembly (before bake)—FIG. 5A and after 125° C. bake for 384 hours—FIG. 5B.
- FIG. 6 is a diagram illustrating a polymer chain as one structure component in a formulation of a curable TIM according to one example embodiment of the invention.
- FIG. 7 is a diagram illustrating a chain extender as one structure component in the formulation of the curable TIM according to the example embodiment of the invention.
- FIG. 8 is a diagram illustrating a crosslinker as one structure component in the formulation of the curable TIM according to the example embodiment of the invention.
- FIG. 9 shows plots of the mean thermal resistance (Rjc) versus the number of temperature cycles for test coupons comprising gel TIMs used in the study where the slopes of the plots represent the degradation rate of the material during temperature cycling.
- FIG. 10 is a plot of the temperature cycling degradation rate of thermal resistance reported in FIG. 9 as a function of G′/G′′, where the data points are G′/G′′ for each sample studied.
- FIG. 1 an electronic package 1 according to an example embodiment of the invention is depicted in FIG. 1.
- the electronic package is a processor assembly in the example embodiment, comprising a heat-generating electronic component 2 in the form of an integrated circuit chip or die.
- the chip is electrically coupled on its front, lower side to a substrate 3 of the package by soldered connections 4 which join the chip to a printed circuit or other electrical structure on the upper surface of the substrate.
- a plurality of interconnectors 5 in the form of pins protrude from the lower surface of the substrate for electrically connecting the chip 3 within the package in a computer, for example.
- a thermally conductive member 6 is mounted on the substrate at its periphery with a central, planar surface of the heat spreader extending over the back side of the chip.
- a thermal interface material 7 according to the present invention is located in heat conducting relation between the back of the chip and the heat spreader.
- the package further includes another thermally conductive member, namely a heat sink 8 .
- the heat sink is mounted on the package in heat conducting relation with the integrated heat spreader via a further thermal interface material 9 .
- the thermal interface material 7 in the package includes a polymer matrix and thermally conductive filler.
- the thermal interface material is formulated to have a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and to have a gel point, as indicated by a value for G′/G′′ of greater than or equal to (one, e.g., ⁇ 1) 1, where G′′ is the loss shear modulus of the thermal interface material.
- G′ storage shear modulus
- the thermal interface material 7 is a cured silicone-based gel wherein the polymer matrix is a crosslinked silicone polymer, but it is envisioned that other polymer matrices could be used for the TIM, such as those based on polyurethanes, polyureas, anhydride-containing polymers and the like.
- the crosslinkable silicone polymer employed in the uncured TIM is a vinyl terminated silicone polymer, e.g., a silicone oil based composition.
- FIG. 6 is a diagram illustrating a polymer chain of this material as one structure component in a formulation of the curable TIM according to the example embodiment.
- the structure component includes at least one unit of oxygen-silicone (O—Si) and an plurality of hydrocarbons to make up the silicon oil and vinyl groups.
- O—Si group in parenthesis represents a polymer.
- the subscript “m” to the polymer is the degree of polymerization and represents a polymer chain of the structure component where “m” is in the range of 10-1000 (e.g., when “m” is equal to 10, the polymer chain is 10 polymer units long, etc.).
- the silicone-oil base when combined with vinyl (e.g., CH double bond ( ⁇ ) CH 2 ) forms a vinyl-terminated silicone oil having the structure component in FIG. 6 (where CH is carbon hydrate and CH 2 is methylene radical).
- the vinyl groups are at the ends of the polymer chain.
- the vinyl-termination of the silicone oil is denoted by the symbol “H 2 C ⁇ CH—” or “—CH ⁇ CH 2 ”.
- the vinyl-terminated silicone oil structure of FIG. 6 includes a plurality of hydrocarbons C 1 to C 26 . These hydrocarbons are denoted by R 1 to R 4 .
- R 1 , R 2 , R 3 and R 4 are independently selected from C 1 to C 26 .
- R 1 , R 2 , R 3 and R 4 can be selected to be the same or to be different.
- silicone oil is vinyl terminated poly(diethyl siloxane) (i.e., the structure component where R 1 , R 2 , R 3 and R 4 are methyl (C 1 ).
- the thermal interface material 7 of the example embodiment further comprises a crosslinker and a chain extender.
- the crosslinker is a silane hydride crosslinker and the chain extender is a silicone polymer having terminal siloxane hydride units.
- FIG. 7 is a diagram illustrating a chain extender as one structure component in the formulation of the curable TIM according to the example embodiment. The structure component in FIG.
- the chain extender or structure component may be long or short depending on the number of polymer (O—Si) composition used in the structure. In other words, the degree of polymerization of the chain extender depends on the number “n” used and can range from approximately 10 to approximately 10,000.
- the chain extender 7 used as the chain extender for the polymer chain described in FIG. 6 has two hydrogen (H) components located at the two ends of the silicone oil based material (O—Si—O—Si chain).
- the chain extender also includes a plurality of hydrocarbons C 1 to C 26 , which are denoted by R 5 to R 8 .
- the R 5 , R 6 , R 7 and R 8 components are independently selected from the C 1 to C 26 hydrocarbons group.
- the chain extender is hydrogen terminated poly(dimethylsiloxane) (i.e., the structure component in FIG. 7 where R 5 , R 6 , R 7 and R 8 are methyl (C 1 )).
- the extender is combined with the vinyl-terminated silicone oil to control the modulus, i.e., storage shear modulus G′ of the gel TIM.
- the crosslinker in the thermal interface material 7 of the example embodiment is a silicone crosslinker whose structure is shown in FIG. 8.
- the structure includes at least one polymer unit (shown in parenthesis with a subscript “y”), at least one crosslinkable unit (shown in bracket with a subscript “x”), silicone and a plurality of hydrocarbons C 1 to C 26 , which are denoted by R 9 to R 14 .
- R 9 to R 14 are independently selected from the hydrocarbons C 1 to C 26 group. In the example embodiment, R 1 to R 14 are all methyl (CH 3 ).
- the subscripts “x” and “y” are the degrees of polymerization where “x” is in the range of 3-100 and “y” is in the range of 10-10,000.
- the crosslinker when combined with the vinyl terminated silicone oil together with other additives form a basic formulation of the gel TIM.
- some of the crosslinker is replaced with the chain extender to obtain a reduced modulus G′. That is, the ratio of the chain extender of FIG. 7 to the crosslinker of FIG. 8 is controlled such that the mole fraction of Si—H equivalents from the chain extender to the total Si—H equivalents from both the crosslinker and the chain extender in the formulation is in the range of 0.1 to 1. More specifically, in the example embodiment, this ratio is approximately 0.6.
- the TIM formulation may contain more than one chain extender and/or crosslinker.
- the crosslinker of FIG. 7 in the formulation comprises a plurality of silicone hydride (Si—H) units.
- the chain extender of FIG. 8 comprises two Si—H units. These two Si—H units are located at the two ends of the polymer chain as noted previously.
- the chain extender helps reduce the number of crosslinks in the curable TIM. This results in the reduction of the storage shear modulus G′ that reduces the thermal resistance due to the TIM.
- the device i.e., a central processing unit
- the device i.e., a central processing unit
- G′ of the cured gel TIM it has been found that by reducing the storage shear modulus G′ of the cured gel TIM to less than about 100 kPa with the material having a gel point, as indicated by a value of G′/G′′ of ⁇ 1, where G′′ is the loss shear modulus of the cured thermal interface material, a good reliability for high performance electronic packages can be obtained both at end of line as well as post reliability testing as discussed further below. More particularly, a preferred, upper limit for G′ is less than 70 kPa (at 120° C.) with the material having a gel point as described above.
- the gel TIM formulation in the example embodiment includes a platinum catalyst.
- the chain extender is also approximately the size of the crosslinker in the formulation (i.e., the value of “n” in the chain extender is about the same as the sum of the values of “y” and “x” in the crosslinker structure).
- the cross-linkable TIM is formulated by mixing the components together to produce a gel which may be applied by dispensing methods to any particular surface and cured at a certain temperature (i.e., room temperature/125° C., or other temperature).
- the aforementioned components of the gel TIM formulation are combined to form a low modulus G′ gel TIM formulation.
- the order that the components are combined together is not critical to the formulation of the TIM.
- composition In addition to the Pt catalyst, other additives to aid the curing reaction can be included in the composition.
- the ratio of silicone Si—H equivalents from the chain extender to the silicone-hydrogen equivalents from the crosslinker is adjusted such that it yields the desired modulus G′ value.
- the crosslinking reaction that occurs during cure involves the formation of a silicone-carbon bond by reaction of the vinyl group with the silicone hydride group.
- silicone-hydrogen to silicone-vinyl molar ratio is a critical formulation parameter for controlling the properties of the silicone matrix after cure.
- the value of silicone-hydrogen to silicon-vinyl ratio is preferably in the range of about 2 to 0.6.
- the use of silicone-hydrogen to silicone-vinyl values outside this range may result in materials that have G′ values outside of the desired range.
- the silicone-hydrogen to silicone-vinyl ratio is approximately 1.0.
- the base silicone oil can have a wide range of molecular weights.
- silicone oils with low molecular weights are desirable because lower molecular weight silicone oils provide TIMs with improved processability due to their reduced viscosity before cure.
- thermally conductive fillers of the TIM due to reduced entropy loss upon becoming confined to the surface of the filler and permits higher filler loadings, which provide higher bulk thermal conductivities.
- the thermally conductive filler of the TIM 7 of the example embodiment is an important component for improving the bulk thermal conductivity of the thermal material.
- the thermal material of the example embodiment has a bulk thermal conductivity of 3.4 W/mK.
- fillers include metals, such as aluminum, silver, copper and the like; ceramics, such as aluminum nitride, aluminum oxide, zinc oxide, boron nitride, aluminum nitride, and the like; silver coated aluminum, carbon fibers, alloys and any combinations thereof.
- filler average particle sizes and particle distributions can be used in the practice of the invention. Fillers with larger average filler sizes provide higher bulk thermal conductivities; however, they also give higher bond line thicknesses that reduce thermal performance. Therefore, the average particle size must be selected in a range that balances these factors for a high performance formal interface material. Typically, the average particle size is less than about 300 microns. In the example embodiment, the average particle size is less than approximately 30 microns.
- Gel TIMs comprising chain extension technology can be cured over a wide range of temperatures and/or times.
- the cure time and temperature can be controlled by the choices of catalyst selection, catalyst concentration, and the optional use of catalyst inhibitors and retarders, known to those skilled in the art.
- the chain extenders react more quickly than typical silicone crosslinkers, and, therefore, typically require modifications of the catalyst selection, concentration, inhibitors, etc., in order to provide a balance of reactivity during cure and sufficiently long shelf life and pot life.
- compositions of the thermal material of the invention may also contain other additives including, but not limited to, catalysts for the curing reaction as noted above, coupling agents for the filler, adhesion promoters, coloring agents, and other additives known to those skilled in the art.
- the TIM 7 in the package 1 of the invention has two key functions. One function is to dissipate heat and the other function is to serve as a material that absorbs stresses.
- the stresses on the TIM are due to the mismatch in the coefficients of thermal expansion of the materials being coupled by the TIM, i.e., the silicon die and the copper metal of the heat spreader.
- the TIM between the die and the heat spreader receives stresses exerted from the die and the heat spreader.
- the gel polymer matrix TIMs having a reduced modulus, i.e., a storage shear modulus G′ less than about 100 kPa at 125° C., according to the invention are better able to absorb these stresses without delaminating from the surfaces. It is also observed that these TIMs according to the present invention have reduced thermal interfacial resistance and are therefore better able to conduct heat. These observations are substantiated by the results of performance tests reported below.
- G′ and G′′ of the gel TIM There are several formulation factors that significantly impact the G′ and G′′ of the gel TIM. These include the silicone oil molecular weight, the crosslinker molecular weight, the ratio of silicone oil to crosslinker, and the number of crosslinking sites per crosslinker molecule.
- the gel TIMs used in the study comprised the same basic formulation as described above except that to varying degrees some or all of the crosslinker was replaced with chain extender, which was a silicone polymer comprising terminal siloxane hydride units.
- the concentration of crosslinker plus chain extender was adjusted as needed in order to maintain a constant ratio of vinyl groups from the polymer matrix structure of FIG. 6 to total siloxane hydride groups from the chain extender and crosslinker of FIGS. 7 and 8, respectively.
- a longer linear silicone polymer is produced, which results in a material with lower crosslink density.
- the resulting silicone matrix material is linear, i.e., does not have any side chains or crosslinks.
- a rheometer i.e., a strain-controlled rheometer
- Eta* The dynamic shear viscosity
- ⁇ ′ and ⁇ ′′ are real and imaginary parts of the shear viscosity.
- G′ is equal to a constant shear modulus and G′′ is 0, whereas for Newtonian fluid, ⁇ ′ is just the true fluid viscosity and ⁇ ′′ is zero.
- G′ is the elastic part and G′′ is the viscous part of the mechanical response of the material. If the material behaves more like a solid then G′/G′′>1 and if it behaves more like a liquid G′/G′′ ⁇ 1. Therefore, when during cure the grease-like thermal material of the invention transitions into the gel stage, then G′/G′′>1 and crossover of the G′ and G′′ curves is observed.
- the storage shear modulus G′ and loss shear modulus G′′ were measured as a characteristic property for the gels as it was not possible to measure properties such as Young's modulus or hardness for these gels which, although fully cured, were very soft such that measurement of hardness was not possible.
- FIGS. 2A and 2B Measurement curves from the rheometer tests of two materials, TIM 1 and TIM 2, according to the invention are shown in FIGS. 2A and 2B. Curves of a comparative material, TIM 3, wherein 100% of the crosslinker was replaced with chain extender are depicted in FIG. 3.
- TIM 1 material reported in FIG. 2A 60% of the crosslinker was replaced with chain extender, and the measured values for G′ and G′′ were 36.9 kPa and 13.8 kPa, respectively, after a curing time of 5630 seconds.
- the curves for G′ and G′′ cross over one another such that G′/G′′ for the cured material is 2.67.
- G′/G′′ is 0.62.
- the material TIM 2 reported in FIG. 2B had an amount of its crosslinker greater than 60 but less than 100% replaced with chain extender and yielded measured values for G′ and G′′ of 12.8 and 5.6 kPa, respectively.
- the value of G′/G′′ for the cured material is 2.27, reflecting the crossover of the curves apparent in FIG. 2B.
- Table I below sets forth the different measured values for G′ and G′′ for four of the different Theological formulations, A, B, C and D, of the gel TIM. TABLE I G′ G′′ Formulation (k Pa) (k Pa) G′/G′′ A 460 46.7 9.85 B 215 39.6 5.43 C 36.9 13.81 2.67 D 1.37 2.21 0.62
- Formulation C is material TIM 1 of the invention whose curves of G′ and G′′ are reported in FIG. 2A.
- Formulation D is the comparative material TIM 3 are reported in FIG. 2A.
- Formulation D is the comparative material TIM 3 reported in FIG. 3.
- Formulations A and B are materials having 0% and 40%, respectively, of crosslinker replaced with chain extender.
- Performance tests were performed on test coupons, in a package like that in FIG. 1, of the four different thermal material formulations A, B, C and D.
- Test coupons were prepared by placing uncured TIM between silicon and a copper heat spreader, subjecting the sample to a force of about 60 psi, and curing the samples at 125° C. for one hour.
- the bond line thicknesses (BLTs) of the samples were determined to be about 30 ⁇ m.
- the thermal materials of the invention advantageously permit BLTs which are preferably within the range of 10-50 ⁇ m.
- the cured TIM of formulation C according to the invention exhibited greater adhesive strength than cohesive strength as indicated by predominately cohesive failure of the material upon removal of the heat spreader by both lid shear and lid pull tests.
- the mean total thermal resistance (Rjc) was measured for each gel TIM by averaging the value of 16 individual samples in this configuration. The samples were then subjected to temperature cycling from 125° C. to ⁇ 55° C., with Rjc measured after 100 and 250 cycles.
- the plot of Rjc versus the number of cycles for each of the four gel TIM formulations used in the study is presented in FIG. 9 .
- the slope of each plot is interpreted to be the degradation rate of thermal performance during temperature cycling.
- the rate of degradation of the material D with no G′ and G′′ crossover is noticably greater than that of TIM C of the present invention.
- the initial contact resistance with the TIM C of the invention is also substantially less than that with TIMs A and B.
- FIG. 10 presents a plot of degradation rate in temperature cycling (determined as described above) versus the ratio G′/G′′ for a series of TIMs that include the four gel TIM formulations used in the study as well as several additional TIM formulations.
- the data points are G′/G′′ for each sample studied.
- the plot shows that TIM formulations that lack a gel point such that G′/G′′ is less than one rapidly degrade during temperature cycling, while gel TIMs with G′/G′′ greater than one show essentially the same degradation rate during temperature cycling. Similar degradation of thermal performance was also observed in bake as shown in FIG. 4 for the TIM1 and TIM2 materials of the invention and the comparative material TIM3.
- the thermal materials are especially useful as the TIM between the die and the integrated heat spreader of the flip-chip packages; however, they can be used in a variety of applications including mobile and enabling applications in which a thermal interface material is needed between the chip and the heat removal hardware such as heat fins, fans, vapor chambers, and the like.
- a thermal interface material is needed between the chip and the heat removal hardware such as heat fins, fans, vapor chambers, and the like.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Materials Engineering (AREA)
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Compositions Of Macromolecular Compounds (AREA)
Abstract
An electronic package includes a heat-generating electronic component such as an integrated circuit chip, a thermally conductive member, which may be an integrated heat spreader, and a low modulus thermal interface material in heat conducting relation between the electronic component and the thermally conductive member. Increased thermal performance requirements at the electronic component level are met by the thermal interface material, which includes a polymer matrix and thermally conductive filler, which has a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and which has a gel point, as indicated by a value of G′/G″ of ≧1, where G″ is the loss shear modulus of the thermal interface material. The values for G′ and G″ are measured by a strain-controlled rheometer.
Description
- This invention relates to an improved electronic package and a curable material useful as a thermal material therein.
- Electronic components such as integrated circuit chips can generate sufficient heat so that a heat dissipation arrangement must be provided. A common expedient for this purpose is to transfer heat from the component using a thermally conductive member, for example an integrated heat spreader and/or a heat sink, thermally connected to the circuit board or component. A thermal interface material (TIM) is used between the component or circuit board and the thermally conductive member to establish thermal contact and lower the thermal resistance. The TIM technologies used for electronic packages encompass several classes of materials such as phase change materials, epoxies, greases, and gels.
- Due to the increasing performance demands for electronic components such as microprocessors, improving heat dissipation is one of the central issues. The recent trend in microprocessor architecture has been to increase the number of transistors (higher power), shrink processor size (smaller die), and increase clock speeds (high frequency) in order to meet the market demand for high performance microprocessors. These have resulted in the escalation of both the raw power as well as the power density (hot spots) at the silicon die level, which increase the demand for effective means of heat dissipation.
- High performance, high power processors require the use of integrated heat spreaders. The well-known thermal greases, epoxies and phase change TIM materials that are currently available in the market do not meet the performance requirement for packages comprising an integrated heat spreader. In response, highly conductive, low modulus, crosslinked gel TIMs were developed.
- U.S. Pat. No. 6,238,596 discloses a method of improving the thermal conductivity of gel TIM polymer systems by incorporating carbon microfibers, with other fillers, in the thermal interface material. Other solutions to the demand for increasingly effective heat dissipation have also been proposed. In U.S. Pat. No. 6,218,730, by means of mechanical standoffs, the TIM gap is reduced to provide a shorter heat transfer path and thereby a reduction in the thermal resistance of the TIM. Improvements in packaging design include those disclosed in Assignee's U.S. Pat. No. 6,188,576, which account for varying amounts of heat generated by separate chips within a package. Imparting a consistent TIM thickness and thereby allowing the uniform transfer of heat are named advantages of the techniques for the application of TIMs by screen printing the TIM composition upon a substrate to form a layer followed by curing the layer, disclosed in U.S. Pat. Nos. 6,020,424 and 6,210,520.
- A method of making a heat dissipation arrangement involving the formation of a gel pad on the inner surface of a heat spreader to cover exposed faces of chips on a circuit board is described in U.S. Pat. No. 6, 162,663. Properties of the gel pad are specified to dissipate heat while at the same time physically protecting the chip from mechanical stresses or avoiding the transmission of such stresses to the bare silicon chips. A cured gel TIM to form the pad is specified to have a cohesive strength greater than its adhesive strength, a compressive modulus of less than 1.38 MPa, and a thermal conductivity of greater than 1.0 W/m ° C.
- Gel TIMs typically comprise a crosslinkable silicone polymer, such as a vinyl-terminated silicone oil, a crosslinker, such as a silane hydride crosslinker, and a thermally conductive filler. Before cure, these materials have properties similar to greases. They have high bulk thermal conductivities and low surface energies, and they conform well to surface irregularities upon dispense and assembly, which contributes to thermal contact resistance minimization. After cure, gel TIMs are crosslinked, filled polymers, and the crosslinking reaction provides cohesive strength to circumvent the pump-out issues exhibited by greases during temperature cycling. Their modulus (E) is low enough (on the order of mega-pascal, MPa, range compared to giga-pascal, GPa, range observed for epoxies) that the material can still dissipate internal stresses and prevent interfacial delamination. Thus, the low modulus properties of these filled gels are attractive from a material integration standpoint.
- However, it is often found that maintaining low thermal interface resistance in electronic packages employing gel TIMs currently used in the industry, is difficult. This is especially true for organic flip-chip packages, which introduce significant thermal-mechanical stress on the thermal interface material during reliability stress testing from the relative flexing of the die and the heat spreader with changes in temperature due to the differences in their coefficients of thermal expansion. One of the main technical challenges for gel TIM formulation is optimizing the mechanical properties such that the cured gel dissipates the thermal-mechanical stresses that arise due to the mismatch of thermal expansion coefficients of the chip and heat spreader, to thereby avoid delamination of the gel TIM. There is in need for an improved electronic package comprising a gel TIM, which can reliability meet not only the end of line package performance requirements but also the end of life performance requirements.
- FIG. 1 is a cross-sectional view, not to scale, of an electronic package according to an example embodiment of the invention.
- FIG. 2A are curves of G′ and G″ as a function of curing time measured by a strain-controlled rheometer, particularly a Rheometric Dynamic Analyzer (RDA) for a thermal material (TIM 1) of the invention.
- FIG. 2B are RDA curves of another thermal material (TIM 2) of the invention.
- FIG. 3 are RDA curves of a comparative thermal material (TIM 3) that does not have a G′/G″ crossover.
- FIG. 4 presents plots of measured thermal resistance, Rjc, values obtained for a large-die flip-chip test vehicle comprising respective ones of the TIMs from FIGS. 2A, 2B and3 as a function of baking time at 125° C. for up to 384 hours.
- FIGS. 5A and 5B are CSAM images of test vehicles showing the development of voids during bake for comparative
thermal material TIM 3 which does not have a G′ and G″ crossover, for respective times—after assembly (before bake)—FIG. 5A and after 125° C. bake for 384 hours—FIG. 5B. - FIG. 6 is a diagram illustrating a polymer chain as one structure component in a formulation of a curable TIM according to one example embodiment of the invention.
- FIG. 7 is a diagram illustrating a chain extender as one structure component in the formulation of the curable TIM according to the example embodiment of the invention.
- FIG. 8 is a diagram illustrating a crosslinker as one structure component in the formulation of the curable TIM according to the example embodiment of the invention.
- FIG. 9 shows plots of the mean thermal resistance (Rjc) versus the number of temperature cycles for test coupons comprising gel TIMs used in the study where the slopes of the plots represent the degradation rate of the material during temperature cycling.
- FIG. 10 is a plot of the temperature cycling degradation rate of thermal resistance reported in FIG. 9 as a function of G′/G″, where the data points are G′/G″ for each sample studied.
- Referring now to the drawings, an
electronic package 1 according to an example embodiment of the invention is depicted in FIG. 1. The electronic package is a processor assembly in the example embodiment, comprising a heat-generatingelectronic component 2 in the form of an integrated circuit chip or die. The chip is electrically coupled on its front, lower side to asubstrate 3 of the package by solderedconnections 4 which join the chip to a printed circuit or other electrical structure on the upper surface of the substrate. A plurality ofinterconnectors 5 in the form of pins protrude from the lower surface of the substrate for electrically connecting thechip 3 within the package in a computer, for example. A thermallyconductive member 6, more particularly an integrated heat spreader, is mounted on the substrate at its periphery with a central, planar surface of the heat spreader extending over the back side of the chip. Athermal interface material 7 according to the present invention is located in heat conducting relation between the back of the chip and the heat spreader. The package further includes another thermally conductive member, namely aheat sink 8. The heat sink is mounted on the package in heat conducting relation with the integrated heat spreader via a furtherthermal interface material 9. - The
thermal interface material 7 in the package includes a polymer matrix and thermally conductive filler. According to the invention, the thermal interface material is formulated to have a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and to have a gel point, as indicated by a value for G′/G″ of greater than or equal to (one, e.g., ≧1) 1, where G″ is the loss shear modulus of the thermal interface material. It has been found that with these mechanical properties, the package has good reliability and meets performance requirements for heat dissipation in high performance microprocessors for both end of line and end of life. A thermal interface material with these properties has been found to minimize the thermal contact resistance Rc between the interface material and the adjacent surfaces of the chip and the integrated heat spreader, while avoiding delamination of the TIM with the adjacent components and degradation of thermal performance in reliability tests. - In the example embodiment, the
thermal interface material 7 is a cured silicone-based gel wherein the polymer matrix is a crosslinked silicone polymer, but it is envisioned that other polymer matrices could be used for the TIM, such as those based on polyurethanes, polyureas, anhydride-containing polymers and the like. In the example embodiment, the crosslinkable silicone polymer employed in the uncured TIM is a vinyl terminated silicone polymer, e.g., a silicone oil based composition. FIG. 6 is a diagram illustrating a polymer chain of this material as one structure component in a formulation of the curable TIM according to the example embodiment. - From FIG. 6, it is apparent that the structure component includes at least one unit of oxygen-silicone (O—Si) and an plurality of hydrocarbons to make up the silicon oil and vinyl groups. The O—Si group in parenthesis represents a polymer. The subscript “m” to the polymer is the degree of polymerization and represents a polymer chain of the structure component where “m” is in the range of 10-1000 (e.g., when “m” is equal to 10, the polymer chain is 10 polymer units long, etc.). The silicone-oil base (i.e., O—Si—O—Si with hydrocarbons) when combined with vinyl (e.g., CH double bond (═) CH2) forms a vinyl-terminated silicone oil having the structure component in FIG. 6 (where CH is carbon hydrate and CH2 is methylene radical). The vinyl groups are at the ends of the polymer chain. The vinyl-termination of the silicone oil is denoted by the symbol “H2C═CH—” or “—CH═CH2”. The vinyl-terminated silicone oil structure of FIG. 6 includes a plurality of hydrocarbons C1 to C26. These hydrocarbons are denoted by R1 to R4. It is contemplated that R1, R2, R3 and R4 are independently selected from C1 to C26. In other words, R1, R2, R3 and R4 can be selected to be the same or to be different. In the example embodiment, silicone oil is vinyl terminated poly(diethyl siloxane) (i.e., the structure component where R1, R2, R3 and R4 are methyl (C1).
- The
thermal interface material 7 of the example embodiment further comprises a crosslinker and a chain extender. In the example embodiment, the crosslinker is a silane hydride crosslinker and the chain extender is a silicone polymer having terminal siloxane hydride units. FIG. 7 is a diagram illustrating a chain extender as one structure component in the formulation of the curable TIM according to the example embodiment. The structure component in FIG. 7 includes a silicone oil based material, which is represented by the parenthesis with the subscript “n” (where “n” is a positive whole number which may be in the range of 10-200) and Si—H/H—Si (silicone hydrate) at two ends of the silicone oil (e.g., O—Si—O—Si—O—Si, etc., chain structure). The chain extender or structure component may be long or short depending on the number of polymer (O—Si) composition used in the structure. In other words, the degree of polymerization of the chain extender depends on the number “n” used and can range from approximately 10 to approximately 10,000. The chain extender structure component (H-terminated silicone oil) of FIG. 7 used as the chain extender for the polymer chain described in FIG. 6 has two hydrogen (H) components located at the two ends of the silicone oil based material (O—Si—O—Si chain). The chain extender also includes a plurality of hydrocarbons C1 to C26, which are denoted by R5 to R8. The R5, R6, R7 and R8 components are independently selected from the C1 to C26 hydrocarbons group. In the example embodiment, the chain extender is hydrogen terminated poly(dimethylsiloxane) (i.e., the structure component in FIG. 7 where R5, R6, R7 and R8 are methyl (C1)). The extender is combined with the vinyl-terminated silicone oil to control the modulus, i.e., storage shear modulus G′ of the gel TIM. - The crosslinker in the
thermal interface material 7 of the example embodiment is a silicone crosslinker whose structure is shown in FIG. 8. As seen therein, the structure includes at least one polymer unit (shown in parenthesis with a subscript “y”), at least one crosslinkable unit (shown in bracket with a subscript “x”), silicone and a plurality of hydrocarbons C1 to C26, which are denoted by R9 to R14. R9 to R14 are independently selected from the hydrocarbons C1 to C26 group. In the example embodiment, R1 to R14 are all methyl (CH3). The subscripts “x” and “y” are the degrees of polymerization where “x” is in the range of 3-100 and “y” is in the range of 10-10,000. The crosslinker when combined with the vinyl terminated silicone oil together with other additives form a basic formulation of the gel TIM. However, in the example embodiment in order to obtain the desired low modulus to meet the needs for high performing processors, some of the crosslinker is replaced with the chain extender to obtain a reduced modulus G′. That is, the ratio of the chain extender of FIG. 7 to the crosslinker of FIG. 8 is controlled such that the mole fraction of Si—H equivalents from the chain extender to the total Si—H equivalents from both the crosslinker and the chain extender in the formulation is in the range of 0.1 to 1. More specifically, in the example embodiment, this ratio is approximately 0.6. - It is contemplated that the TIM formulation may contain more than one chain extender and/or crosslinker. The crosslinker of FIG. 7 in the formulation comprises a plurality of silicone hydride (Si—H) units. The chain extender of FIG. 8 comprises two Si—H units. These two Si—H units are located at the two ends of the polymer chain as noted previously. The chain extender helps reduce the number of crosslinks in the curable TIM. This results in the reduction of the storage shear modulus G′ that reduces the thermal resistance due to the TIM. With low resistance in the package, the device (i.e., a central processing unit) can operate at faster speeds since the TIM with low resistance can get more heat out from the device. It has been found that by reducing the storage shear modulus G′ of the cured gel TIM to less than about 100 kPa with the material having a gel point, as indicated by a value of G′/G″ of ≧1, where G″ is the loss shear modulus of the cured thermal interface material, a good reliability for high performance electronic packages can be obtained both at end of line as well as post reliability testing as discussed further below. More particularly, a preferred, upper limit for G′ is less than 70 kPa (at 120° C.) with the material having a gel point as described above.
- The gel TIM formulation in the example embodiment includes a platinum catalyst. The chain extender is also approximately the size of the crosslinker in the formulation (i.e., the value of “n” in the chain extender is about the same as the sum of the values of “y” and “x” in the crosslinker structure). The cross-linkable TIM is formulated by mixing the components together to produce a gel which may be applied by dispensing methods to any particular surface and cured at a certain temperature (i.e., room temperature/125° C., or other temperature). The aforementioned components of the gel TIM formulation are combined to form a low modulus G′ gel TIM formulation. The order that the components are combined together is not critical to the formulation of the TIM. In addition to the Pt catalyst, other additives to aid the curing reaction can be included in the composition. The ratio of silicone Si—H equivalents from the chain extender to the silicone-hydrogen equivalents from the crosslinker is adjusted such that it yields the desired modulus G′ value.
- The crosslinking reaction that occurs during cure involves the formation of a silicone-carbon bond by reaction of the vinyl group with the silicone hydride group. It is noted that it is well known to those skilled in the art that the silicone-hydrogen to silicone-vinyl molar ratio is a critical formulation parameter for controlling the properties of the silicone matrix after cure. However, a wide range of values can be used in the practice of this invention. The value of silicone-hydrogen to silicon-vinyl ratio is preferably in the range of about 2 to 0.6. The use of silicone-hydrogen to silicone-vinyl values outside this range may result in materials that have G′ values outside of the desired range. In the example embodiment, the silicone-hydrogen to silicone-vinyl ratio is approximately 1.0.
- Since the chain extension technology forms linear, high molecular weight silicone polymers during cure, the base silicone oil can have a wide range of molecular weights. However, silicone oils with low molecular weights are desirable because lower molecular weight silicone oils provide TIMs with improved processability due to their reduced viscosity before cure. Moreover, thermally conductive fillers of the TIM due to reduced entropy loss upon becoming confined to the surface of the filler and permits higher filler loadings, which provide higher bulk thermal conductivities.
- The thermally conductive filler of the
TIM 7 of the example embodiment is an important component for improving the bulk thermal conductivity of the thermal material. The thermal material of the example embodiment has a bulk thermal conductivity of 3.4 W/mK. Although the filler selection and weight percent in the formulation are key parameters for the performance of the thermal interface material, these parameters are well understood by those skilled in the art and are not critical to the practice of the invention. Therefore, a wide variety of fillers and filler loadings can be used in the practice of the invention. Examples of these fillers include metals, such as aluminum, silver, copper and the like; ceramics, such as aluminum nitride, aluminum oxide, zinc oxide, boron nitride, aluminum nitride, and the like; silver coated aluminum, carbon fibers, alloys and any combinations thereof. - Similarly, a wide variety of filler average particle sizes and particle distributions can be used in the practice of the invention. Fillers with larger average filler sizes provide higher bulk thermal conductivities; however, they also give higher bond line thicknesses that reduce thermal performance. Therefore, the average particle size must be selected in a range that balances these factors for a high performance formal interface material. Typically, the average particle size is less than about 300 microns. In the example embodiment, the average particle size is less than approximately 30 microns.
- Gel TIMs comprising chain extension technology can be cured over a wide range of temperatures and/or times. The cure time and temperature can be controlled by the choices of catalyst selection, catalyst concentration, and the optional use of catalyst inhibitors and retarders, known to those skilled in the art. In general, the chain extenders react more quickly than typical silicone crosslinkers, and, therefore, typically require modifications of the catalyst selection, concentration, inhibitors, etc., in order to provide a balance of reactivity during cure and sufficiently long shelf life and pot life. In addition, the compositions of the thermal material of the invention may also contain other additives including, but not limited to, catalysts for the curing reaction as noted above, coupling agents for the filler, adhesion promoters, coloring agents, and other additives known to those skilled in the art.
- Generally, the
TIM 7 in thepackage 1 of the invention has two key functions. One function is to dissipate heat and the other function is to serve as a material that absorbs stresses. The stresses on the TIM are due to the mismatch in the coefficients of thermal expansion of the materials being coupled by the TIM, i.e., the silicon die and the copper metal of the heat spreader. The TIM between the die and the heat spreader receives stresses exerted from the die and the heat spreader. It is observed that the gel polymer matrix TIMs having a reduced modulus, i.e., a storage shear modulus G′ less than about 100 kPa at 125° C., according to the invention are better able to absorb these stresses without delaminating from the surfaces. It is also observed that these TIMs according to the present invention have reduced thermal interfacial resistance and are therefore better able to conduct heat. These observations are substantiated by the results of performance tests reported below. - A study was made of different gel TIM formulations, each with a different storage shear modulus G′, but the same bulk thermal conductivity of 3.4 W/mK. There are several formulation factors that significantly impact the G′ and G″ of the gel TIM. These include the silicone oil molecular weight, the crosslinker molecular weight, the ratio of silicone oil to crosslinker, and the number of crosslinking sites per crosslinker molecule. The gel TIMs used in the study comprised the same basic formulation as described above except that to varying degrees some or all of the crosslinker was replaced with chain extender, which was a silicone polymer comprising terminal siloxane hydride units. In these formulations, the concentration of crosslinker plus chain extender was adjusted as needed in order to maintain a constant ratio of vinyl groups from the polymer matrix structure of FIG. 6 to total siloxane hydride groups from the chain extender and crosslinker of FIGS. 7 and 8, respectively. Upon reaction of the chain extender with vinyl-terminated silicone oil during cure, a longer linear silicone polymer is produced, which results in a material with lower crosslink density. In the extreme case in which all of the crosslinker is replaced with chain extender, the resulting silicone matrix material is linear, i.e., does not have any side chains or crosslinks.
- A rheometer (i.e., a strain-controlled rheometer) was used for monitoring the curing reaction of the different gel TIM formulations and measuring the G′ and G″ of the cured gels at elevated temperatures. In each of the tests, about 0.5 grams of one of the thermal materials was placed between two 25 mm parallel plates with a gap of 2 mm. The sample was heated to 125° C. at a rate of 10° C./min and then held at that temperature for 1 hour while subjecting the sample to a shear stress by rotating the upper plate at 1 rad/sec at constant strain of 10%. The dynamic shear viscosity (Eta*) was also measured. Eta* is given by equation (1).
- Eta*={square root}{square root over (η′2+η″2)} (1)
- where η′ and η″ are real and imaginary parts of the shear viscosity. For a perfectly elastic solid, G′ is equal to a constant shear modulus and G″ is 0, whereas for Newtonian fluid, η′ is just the true fluid viscosity and η″ is zero. One way to interpret G′ and G″ is that G′ is the elastic part and G″ is the viscous part of the mechanical response of the material. If the material behaves more like a solid then G′/G″>1 and if it behaves more like a liquid G′/G″<1. Therefore, when during cure the grease-like thermal material of the invention transitions into the gel stage, then G′/G″>1 and crossover of the G′ and G″ curves is observed. The storage shear modulus G′ and loss shear modulus G″ were measured as a characteristic property for the gels as it was not possible to measure properties such as Young's modulus or hardness for these gels which, although fully cured, were very soft such that measurement of hardness was not possible.
- Measurement curves from the rheometer tests of two materials,
TIM 1 andTIM 2, according to the invention are shown in FIGS. 2A and 2B. Curves of a comparative material,TIM 3, wherein 100% of the crosslinker was replaced with chain extender are depicted in FIG. 3. In theTIM 1 material reported in FIG. 2A, 60% of the crosslinker was replaced with chain extender, and the measured values for G′ and G″ were 36.9 kPa and 13.8 kPa, respectively, after a curing time of 5630 seconds. The curves for G′ and G″ cross over one another such that G′/G″ for the cured material is 2.67. In contrast, the comparative material TIM3 reported in FIG. 3 has curves with no crossover and values for G′ and G″ of 1.37 and 2.21, respectively. Thus, G′/G″ is 0.62. Thematerial TIM 2 reported in FIG. 2B had an amount of its crosslinker greater than 60 but less than 100% replaced with chain extender and yielded measured values for G′ and G″ of 12.8 and 5.6 kPa, respectively. The value of G′/G″ for the cured material is 2.27, reflecting the crossover of the curves apparent in FIG. 2B. - Table I below sets forth the different measured values for G′ and G″ for four of the different Theological formulations, A, B, C and D, of the gel TIM.
TABLE I G′ G″ Formulation (k Pa) (k Pa) G′/G″ A 460 46.7 9.85 B 215 39.6 5.43 C 36.9 13.81 2.67 D 1.37 2.21 0.62 - Formulation C is
material TIM 1 of the invention whose curves of G′ and G″ are reported in FIG. 2A. Formulation D is thecomparative material TIM 3 are reported in FIG. 2A. Formulation D is thecomparative material TIM 3 reported in FIG. 3. Formulations A and B are materials having 0% and 40%, respectively, of crosslinker replaced with chain extender. - Performance tests were performed on test coupons, in a package like that in FIG. 1, of the four different thermal material formulations A, B, C and D. Test coupons were prepared by placing uncured TIM between silicon and a copper heat spreader, subjecting the sample to a force of about 60 psi, and curing the samples at 125° C. for one hour. The bond line thicknesses (BLTs) of the samples were determined to be about 30 μm. The thermal materials of the invention advantageously permit BLTs which are preferably within the range of 10-50 μm. The cured TIM of formulation C according to the invention exhibited greater adhesive strength than cohesive strength as indicated by predominately cohesive failure of the material upon removal of the heat spreader by both lid shear and lid pull tests.
- The mean total thermal resistance (Rjc) was measured for each gel TIM by averaging the value of 16 individual samples in this configuration. The samples were then subjected to temperature cycling from 125° C. to −55° C., with Rjc measured after 100 and 250 cycles. The plot of Rjc versus the number of cycles for each of the four gel TIM formulations used in the study is presented in FIG.9. The plots show that the initial Rjc value (number of cycles=0) decreases with decreasing G′ value. The slope of each plot is interpreted to be the degradation rate of thermal performance during temperature cycling. The rate of degradation of the material D with no G′ and G″ crossover is noticably greater than that of TIM C of the present invention. The initial contact resistance with the TIM C of the invention is also substantially less than that with TIMs A and B.
- FIG. 10 presents a plot of degradation rate in temperature cycling (determined as described above) versus the ratio G′/G″ for a series of TIMs that include the four gel TIM formulations used in the study as well as several additional TIM formulations. The data points are G′/G″ for each sample studied. The plot shows that TIM formulations that lack a gel point such that G′/G″ is less than one rapidly degrade during temperature cycling, while gel TIMs with G′/G″ greater than one show essentially the same degradation rate during temperature cycling. Similar degradation of thermal performance was also observed in bake as shown in FIG. 4 for the TIM1 and TIM2 materials of the invention and the comparative material TIM3.
- CSAM analyses revealed that the formulations that lack a G′/G″ crossover tend to form voids that are very similar to those observed for grease TIMs due to pump-out. Representative initial and post reliability stress CSAM images of a test coupon comprising gel TIM D are presented in FIGS. 5A and 5B. Based on this result, according to the present invention, there exists an optimum range of values for the shear modulus of polymer TIMs minimizing thermal contact resistance with lower BLT for a given pressure while avoiding delamination and reliability test failures even in high performance electronic packages made of materials having widely different coefficients of thermal expansion. These advantages are possible where the polymer matrix with thermally conductive filler has a storage shear modulus G′ at 125° C. of less than 100 kPa, and has a gel point, as indicated by a value of G′/G″ of ≧1, where G″ is the loss shear modulus of the thermal interface material.
- This concludes the description of the example embodiment. Although the present invention has been described with reference to an example embodiment thereof it should be understood that numerous other modifications and embodiments can be devised by those skilled in the art that will fall within the spirit and scope of the principles of this invention. More particularly, reasonable variations and modifications are possible in the component parts and/or arrangements of the subject combination arrangement within the scope of the foregoing disclosure, the drawings and the appended claims without departing from the spirit of the invention. For example, the electronic packages of the invention may have a variety of form factors including pin grid arrays, ball grid arrays and ball grid arrays with pinned interposers. The thermal materials are especially useful as the TIM between the die and the integrated heat spreader of the flip-chip packages; however, they can be used in a variety of applications including mobile and enabling applications in which a thermal interface material is needed between the chip and the heat removal hardware such as heat fins, fans, vapor chambers, and the like. In addition to variations and modifications in the component parts and/or arrangements, alternative uses will also be apparent to those skilled in the art.
Claims (20)
1. An electronic package comprising:
a heat-generating electronic component;
a thermally conductive member;
a thermal interface material in heat conducting relation between the electronic component and the thermally conductive member;
wherein the thermal interface material includes a polymer matrix and thermally conductive filler, which has a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and has a gel point, as indicated by a value for G′/G″ of ≧1, where G″ is the loss shear modulus of the thermal interface material.
2. The electronic package according to claim 1 ,
wherein the values for G′ and G″ are measured by a strain-controlled rheometer.
3. The electronic package according to claim 1 ,
wherein the electronic component is an integrated circuit chip.
4. The electronic package according to claim 3 , further comprising a substrate electrically coupled to a front side of the integrated circuit chip.
5. The electronic package according to claim 4 ,
wherein the thermally conductive member is an integrated heat spreader in heat conducting relation with a back side of the integrated circuit chip via the thermal interface material.
6. The electronic package according to claim 5 , further comprising a heat sink in heat conducting relation with the thermally conductive member via a further thermal interface material.
7. The electronic package according to claim 1 , wherein the polymer matrix of the thermal interface material includes a crosslinked silicone polymer.
8. The electronic package according to claim 1 , wherein the electronic package is a processor assembly.
9. A processor assembly comprising:
an integrated circuit chip;
a substrate electrically coupled to a front side of the integrated circuit chip;
an integrated heat spreader mounted on the substrate with a planar surface of the heat spreader extending over a back side of the chip;
a thermal interface material in heat conducting relation between the back side of the integrated circuit chip and the planar surface of the heat spreader;
wherein the thermal interface material includes a polymer matrix and thermally conductive filler, which has a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and has a gel point, as indicated by a value for G′/G″ of ≧1, where G″ is the loss shear modulus of the thermal interface material.
10. The processor assembly according to claim 9 , further comprising a heat sink arranged on a side of the integrated heat spreader opposite the chip, and a further thermal interface material in heat conducting relation between the integrated heat spreader and the heat sink.
11. The processor assembly according to claim 10 , wherein the further thermal interface material is the same as the thermal interface material between the chip and the integrated heat spreader.
12. A method of dissipating heat from a heat-generating electronic component comprising:
transferring heat from the component to a thermally conductive member with a thermal interface material, which includes a polymer matrix and thermally conductive filler, located between the component and the thermally conductive member;
wherein the method includes providing as the thermal interface material, a material which has a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and has a gel point, as indicated by a value for G′/G″ of ≧1, where G″ is the loss shear modulus of the thermal interface material, where the values of G′ and G″ are measured by a strain-controlled rheometer.
13. The method according to claim 12 , further comprising transferring heat from the thermally conductive member to a heat sink by a further thermal interface material between the thermally conductive member and the heat sink.
14. A curable material useful as thermal material comprising:
at least one crosslinkable polymer;
a crosslinker; and
a thermally conductive filler;
wherein the material upon curing has a storage shear modulus (G′) at 125° C. of less than about 100 kPa, and has a gel point, as indicated by a G′/G″ crossover where G″ is the loss shear modulus of the material, where G′ and G″ are measured by a strain-controlled rheometer.
15. The curable material according to claim 14 , wherein the at least one crosslinkable polymer includes a silicone polymer.
16. The curable material according to claim 15 , wherein the silicone polymer is a vinyl terminated silicone oil.
17. The curable material according to claim 15 , wherein the crosslinker comprises a silane hydride crosslinker.
18. The curable material according to claim 14 , further comprising a chain extender.
19. The curable material according to claim 18 , wherein the chain extender comprises a silicone polymer having terminal silane hydride units.
20. The curable material according to claim 14 , wherein the at least one cross linkable polymer includes a vinyl terminated silicone oil and wherein the material further comprises a chain extender which includes a silicone polymer comprising terminal silane hydride units; the ratio of the chain extender to the crosslinker being such that the mole fraction of Si—H equivalents from the chain extender to the total Si—H equivalents from both the crosslinker and the chain extender is approximately 0.1 to 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/035,209 US6597575B1 (en) | 2002-01-04 | 2002-01-04 | Electronic packages having good reliability comprising low modulus thermal interface materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/035,209 US6597575B1 (en) | 2002-01-04 | 2002-01-04 | Electronic packages having good reliability comprising low modulus thermal interface materials |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030128521A1 true US20030128521A1 (en) | 2003-07-10 |
US6597575B1 US6597575B1 (en) | 2003-07-22 |
Family
ID=21881302
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/035,209 Expired - Lifetime US6597575B1 (en) | 2002-01-04 | 2002-01-04 | Electronic packages having good reliability comprising low modulus thermal interface materials |
Country Status (1)
Country | Link |
---|---|
US (1) | US6597575B1 (en) |
Cited By (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030143382A1 (en) * | 2002-01-31 | 2003-07-31 | Xu Youzhi E. | Heat transfer through covalent bonding of thermal interface material |
US20030168731A1 (en) * | 2002-03-11 | 2003-09-11 | Matayabas James Christopher | Thermal interface material and method of fabricating the same |
US20040099410A1 (en) * | 2002-11-26 | 2004-05-27 | Prosenjit Ghosh | Decreasing thermal contact resistance at a material interface |
US20060043579A1 (en) * | 2004-08-31 | 2006-03-02 | Jun He | Transistor performance enhancement using engineered strains |
US20060158857A1 (en) * | 2005-01-20 | 2006-07-20 | Uwe Luckner | Heat sink for surface-mounted semiconductor devices |
US20070025089A1 (en) * | 2005-07-29 | 2007-02-01 | Delta Electronics, Inc. | Heat-dissipating device and method for radiating heat via natural convection |
US7347354B2 (en) | 2004-03-23 | 2008-03-25 | Intel Corporation | Metallic solder thermal interface material layer and application of the same |
WO2009035907A2 (en) * | 2007-09-11 | 2009-03-19 | Dow Corning Corporation | Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use |
US20090146292A1 (en) * | 2007-12-05 | 2009-06-11 | Drake Peter J | Semiconductor device thermal connection |
US20100328895A1 (en) * | 2007-09-11 | 2010-12-30 | Dorab Bhagwagar | Composite, Thermal Interface Material Containing the Composite, and Methods for Their Preparation and Use |
US20110080713A1 (en) * | 2009-10-06 | 2011-04-07 | Shinko Electric Industries Co., Ltd. | Interposer mounted wiring board and electronic component device |
US20110317393A1 (en) * | 2010-06-23 | 2011-12-29 | Matthias Drobnitzky | Operating Container for a Magnetic Resonance Apparatus |
US20130265721A1 (en) * | 2007-11-05 | 2013-10-10 | Laird Technologies, Inc. | Thermal Interface Materials with Thin Film or Metallization |
DE102014105594A1 (en) * | 2014-04-17 | 2015-10-22 | Conti Temic Microelectronic Gmbh | ELECTRONIC SYSTEM |
CN105338783A (en) * | 2014-07-01 | 2016-02-17 | 联想(北京)有限公司 | Heat dissipation device for electronic equipment |
US9318450B1 (en) * | 2014-11-24 | 2016-04-19 | Raytheon Company | Patterned conductive epoxy heat-sink attachment in a monolithic microwave integrated circuit (MMIC) |
US20160268179A1 (en) * | 2015-03-11 | 2016-09-15 | Kabushiki Kaisha Toshiba | Semiconductor device and electronic device |
US20170117208A1 (en) * | 2015-10-26 | 2017-04-27 | Infineon Technologies Austria Ag | Thermal interface material having defined thermal, mechanical and electric properties |
US20170280595A1 (en) * | 2014-11-27 | 2017-09-28 | Kabushiki Kaisha Toyota Jidoshokki | Electronic device |
US20170287625A1 (en) * | 2014-12-11 | 2017-10-05 | Ckd Corporation | Coil cooling structure |
US20170309542A1 (en) * | 2014-10-31 | 2017-10-26 | Dexerials Corporation | Heat Conduction Sheet, Heat Conduction Sheet Manufacture Method, Heat Radiation Member, and Semiconductor Device |
US20180068926A1 (en) * | 2015-03-27 | 2018-03-08 | Intel Corporation | Energy storage material for thermal management and associated techniques and configurations |
CN109415619A (en) * | 2016-07-26 | 2019-03-01 | 霍尼韦尔国际公司 | Gel-type thermal interfacial material |
US10410784B2 (en) * | 2016-05-31 | 2019-09-10 | Shindengen Electric Manufacturing Co., Ltd. | Magnetic component |
US10428257B2 (en) | 2014-07-07 | 2019-10-01 | Honeywell International Inc. | Thermal interface material with ion scavenger |
US10428256B2 (en) | 2017-10-23 | 2019-10-01 | Honeywell International Inc. | Releasable thermal gel |
CN110309522A (en) * | 2018-03-27 | 2019-10-08 | 丰田自动车株式会社 | Method for predicting deterioration of fats and oils, fats and oils, and method for producing fats and oils |
US10501671B2 (en) * | 2016-07-26 | 2019-12-10 | Honeywell International Inc. | Gel-type thermal interface material |
US10781349B2 (en) | 2016-03-08 | 2020-09-22 | Honeywell International Inc. | Thermal interface material including crosslinker and multiple fillers |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
US20220151108A1 (en) * | 2019-07-23 | 2022-05-12 | Henkel Ag & Co. Kgaa | Thermal management of high heat flux multicomponent assembly |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
WO2025006442A1 (en) * | 2023-06-30 | 2025-01-02 | Honeywell International Inc. | Highly thermally conductive hybrid thermal interface material |
Families Citing this family (45)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7060747B2 (en) * | 2001-03-30 | 2006-06-13 | Intel Corporation | Chain extension for thermal materials |
US6744132B2 (en) * | 2002-01-29 | 2004-06-01 | International Business Machines Corporation | Module with adhesively attached heat sink |
US6882041B1 (en) * | 2002-02-05 | 2005-04-19 | Altera Corporation | Thermally enhanced metal capped BGA package |
US7147367B2 (en) * | 2002-06-11 | 2006-12-12 | Saint-Gobain Performance Plastics Corporation | Thermal interface material with low melting alloy |
US6841867B2 (en) * | 2002-12-30 | 2005-01-11 | Intel Corporation | Gel thermal interface materials comprising fillers having low melting point and electronic packages comprising these gel thermal interface materials |
US6956285B2 (en) * | 2003-01-15 | 2005-10-18 | Sun Microsystems, Inc. | EMI grounding pins for CPU/ASIC chips |
US6943436B2 (en) * | 2003-01-15 | 2005-09-13 | Sun Microsystems, Inc. | EMI heatspreader/lid for integrated circuit packages |
JP2007527105A (en) * | 2003-06-06 | 2007-09-20 | ハネウエル・インターナシヨナル・インコーポレーテツド | Thermal coupling system and manufacturing method thereof |
US20050049350A1 (en) * | 2003-08-25 | 2005-03-03 | Sandeep Tonapi | Thin bond-line silicone adhesive composition and method for preparing the same |
US6909043B1 (en) | 2003-11-12 | 2005-06-21 | Sun Microsystems, Inc. | EMI seal for system chassis |
US20050157480A1 (en) * | 2004-01-16 | 2005-07-21 | Huei-Hsin Sun | Waterproof, vibration-proof, and heat dissipative housing of an electronic element |
US7239507B1 (en) | 2004-03-24 | 2007-07-03 | Sun Microsystems, Inc. | Slot frame with guide tabs for reducing EMI gaps |
US7023089B1 (en) * | 2004-03-31 | 2006-04-04 | Intel Corporation | Low temperature packaging apparatus and method |
US7180179B2 (en) * | 2004-06-18 | 2007-02-20 | International Business Machines Corporation | Thermal interposer for thermal management of semiconductor devices |
US20060014309A1 (en) * | 2004-07-13 | 2006-01-19 | Sachdev Krishna G | Temporary chip attach method using reworkable conductive adhesive interconnections |
US7434308B2 (en) | 2004-09-02 | 2008-10-14 | International Business Machines Corporation | Cooling of substrate using interposer channels |
US7265993B1 (en) * | 2005-05-16 | 2007-09-04 | Sun Microsystems, Inc. | Dispersive interconnect system for EMI reduction |
US7250576B2 (en) * | 2005-05-19 | 2007-07-31 | International Business Machines Corporation | Chip package having chip extension and method |
US7595468B2 (en) * | 2005-11-07 | 2009-09-29 | Intel Corporation | Passive thermal solution for hand-held devices |
US7534649B2 (en) * | 2006-05-12 | 2009-05-19 | Intel Corporation | Thermoset polyimides for microelectronic applications |
WO2007148881A2 (en) * | 2006-06-21 | 2007-12-27 | Lg Electronics Inc. | Method of supporting data retransmission in a mobile communication system |
US7679185B2 (en) * | 2006-11-09 | 2010-03-16 | Interplex Qlp, Inc. | Microcircuit package having ductile layer |
US20080266786A1 (en) * | 2007-04-25 | 2008-10-30 | Behdad Jafari | Method and apparatus for heat dissipation |
US20090040721A1 (en) * | 2007-08-07 | 2009-02-12 | Coolit Systems Inc. | Computer cooling system and method |
US7906857B1 (en) * | 2008-03-13 | 2011-03-15 | Xilinx, Inc. | Molded integrated circuit package and method of forming a molded integrated circuit package |
US7808099B2 (en) * | 2008-05-06 | 2010-10-05 | International Business Machines Corporation | Liquid thermal interface having mixture of linearly structured polymer doped crosslinked networks and related method |
JP2012503890A (en) * | 2008-09-26 | 2012-02-09 | パーカー.ハニフィン.コーポレイション | Thermally conductive gel pack |
US20100103619A1 (en) * | 2008-10-23 | 2010-04-29 | Gamal Refai-Ahmed | Interchangeable Heat Exchanger for a Circuit Board |
WO2011137360A1 (en) | 2010-04-30 | 2011-11-03 | Indium Corporation | Thermal interface materials with good reliability |
US20130032324A1 (en) * | 2011-08-03 | 2013-02-07 | Aldridge Russell W | Thermal solution with spring-loaded interface |
TWI484897B (en) * | 2012-01-20 | 2015-05-11 | Lite On Technology Corp | Heat dissipation structure and electronic device having the same |
US20130192794A1 (en) * | 2012-01-30 | 2013-08-01 | International Business Machines Corporation | Interchangeable cooling system for integrated circuit and circuit board |
US9041192B2 (en) | 2012-08-29 | 2015-05-26 | Broadcom Corporation | Hybrid thermal interface material for IC packages with integrated heat spreader |
US8920919B2 (en) | 2012-09-24 | 2014-12-30 | Intel Corporation | Thermal interface material composition including polymeric matrix and carbon filler |
US10373891B2 (en) | 2013-06-14 | 2019-08-06 | Laird Technologies, Inc. | Methods for establishing thermal joints between heat spreaders or lids and heat sources |
WO2015084778A1 (en) | 2013-12-05 | 2015-06-11 | Honeywell International Inc. | Stannous methansulfonate solution with adjusted ph |
US9613933B2 (en) | 2014-03-05 | 2017-04-04 | Intel Corporation | Package structure to enhance yield of TMI interconnections |
KR102470083B1 (en) | 2014-12-05 | 2022-11-23 | 허니웰 인터내셔널 인코포레이티드 | High performance thermal interface materials with low thermal impedance |
US10231338B2 (en) | 2015-06-24 | 2019-03-12 | Intel Corporation | Methods of forming trenches in packages structures and structures formed thereby |
US10312177B2 (en) | 2015-11-17 | 2019-06-04 | Honeywell International Inc. | Thermal interface materials including a coloring agent |
JP6301978B2 (en) * | 2016-01-26 | 2018-03-28 | デクセリアルズ株式会社 | HEAT CONDUCTIVE SHEET, HEAT CONDUCTIVE SHEET MANUFACTURING METHOD, HEAT DISSIBLING MEMBER AND SEMICONDUCTOR DEVICE |
JP7160579B2 (en) * | 2018-06-28 | 2022-10-25 | トヨタ自動車株式会社 | thermally conductive structure or semiconductor device |
JP7622403B2 (en) | 2020-11-17 | 2025-01-28 | 富士電機株式会社 | Semiconductor device manufacturing method |
US11553624B1 (en) * | 2021-06-23 | 2023-01-10 | Lenovo (United States) Inc. | Integrated thermal interface detachment mechanism for inaccessible interfaces |
US12200910B2 (en) * | 2022-01-14 | 2025-01-14 | Raytheon Company | Clamped pyrolytic graphite sheets for heat spreading |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4838347A (en) * | 1987-07-02 | 1989-06-13 | American Telephone And Telegraph Company At&T Bell Laboratories | Thermal conductor assembly |
US4974119A (en) | 1988-09-14 | 1990-11-27 | The Charles Stark Draper Laboratories, Inc. | Conforming heat sink assembly |
US5137959A (en) | 1991-05-24 | 1992-08-11 | W. R. Grace & Co.-Conn. | Thermally conductive elastomer containing alumina platelets |
KR100245971B1 (en) * | 1995-11-30 | 2000-03-02 | 포만 제프리 엘 | Heat sink assembly using adhesion promoting layer for bonding polymeric adhesive to metal and the method of making the same |
AU723258B2 (en) | 1996-04-29 | 2000-08-24 | Parker-Hannifin Corporation | Conformal thermal interface material for electronic components |
US5781412A (en) * | 1996-11-22 | 1998-07-14 | Parker-Hannifin Corporation | Conductive cooling of a heat-generating electronic component using a cured-in-place, thermally-conductive interlayer having a filler of controlled particle size |
US6020424A (en) | 1997-06-30 | 2000-02-01 | Ferro Corporation | Screen printable thermally curing conductive gel |
US5968606A (en) | 1997-06-30 | 1999-10-19 | Ferro Corporation | Screen printable UV curable conductive material composition |
US6096414A (en) | 1997-11-25 | 2000-08-01 | Parker-Hannifin Corporation | High dielectric strength thermal interface material |
US5978223A (en) | 1998-02-09 | 1999-11-02 | International Business Machines Corporation | Dual heat sink assembly for cooling multiple electronic modules |
US6218730B1 (en) | 1999-01-06 | 2001-04-17 | International Business Machines Corporation | Apparatus for controlling thermal interface gap distance |
US5989459A (en) | 1999-03-09 | 1999-11-23 | Johnson Matthey, Inc. | Compliant and crosslinkable thermal interface materials |
US6238596B1 (en) | 1999-03-09 | 2001-05-29 | Johnson Matthey Electronics, Inc. | Compliant and crosslinkable thermal interface materials |
US6162663A (en) | 1999-04-20 | 2000-12-19 | Schoenstein; Paul G. | Dissipation of heat from a circuit board having bare silicon chips mounted thereon |
US6188576B1 (en) | 1999-05-13 | 2001-02-13 | Intel Corporation | Protective cover and packaging for multi-chip memory modules |
US6311769B1 (en) * | 1999-11-08 | 2001-11-06 | Space Systems/Loral, Inc. | Thermal interface materials using thermally conductive fiber and polymer matrix materials |
US6469379B1 (en) * | 2001-03-30 | 2002-10-22 | Intel Corporation | Chain extension for thermal materials |
-
2002
- 2002-01-04 US US10/035,209 patent/US6597575B1/en not_active Expired - Lifetime
Cited By (55)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030143382A1 (en) * | 2002-01-31 | 2003-07-31 | Xu Youzhi E. | Heat transfer through covalent bonding of thermal interface material |
US6761813B2 (en) * | 2002-01-31 | 2004-07-13 | Intel Corporation | Heat transfer through covalent bonding of thermal interface material |
US20040164383A1 (en) * | 2002-01-31 | 2004-08-26 | Xu Youzhi E. | Heat transfer through covalent bonding of thermal interface material |
US20030168731A1 (en) * | 2002-03-11 | 2003-09-11 | Matayabas James Christopher | Thermal interface material and method of fabricating the same |
US7210227B2 (en) * | 2002-11-26 | 2007-05-01 | Intel Corporation | Decreasing thermal contact resistance at a material interface |
US20040099410A1 (en) * | 2002-11-26 | 2004-05-27 | Prosenjit Ghosh | Decreasing thermal contact resistance at a material interface |
US20070169345A1 (en) * | 2002-11-26 | 2007-07-26 | Prosenjit Ghosh | Decreasing thermal contact resistance at a material interface |
US7347354B2 (en) | 2004-03-23 | 2008-03-25 | Intel Corporation | Metallic solder thermal interface material layer and application of the same |
US20060043579A1 (en) * | 2004-08-31 | 2006-03-02 | Jun He | Transistor performance enhancement using engineered strains |
US7679145B2 (en) * | 2004-08-31 | 2010-03-16 | Intel Corporation | Transistor performance enhancement using engineered strains |
US7230831B2 (en) | 2005-01-20 | 2007-06-12 | Infineon Technologies Ag | Heat sink for surface-mounted semiconductor devices |
DE102005002812A1 (en) * | 2005-01-20 | 2006-08-03 | Infineon Technologies Ag | Heatsink for Surface Mounted Semiconductor Devices and Assembly Processes |
DE102005002812B4 (en) * | 2005-01-20 | 2013-07-18 | Infineon Technologies Ag | Heatsink for Surface Mounted Semiconductor Devices and Assembly Processes |
US20060158857A1 (en) * | 2005-01-20 | 2006-07-20 | Uwe Luckner | Heat sink for surface-mounted semiconductor devices |
US20070025089A1 (en) * | 2005-07-29 | 2007-02-01 | Delta Electronics, Inc. | Heat-dissipating device and method for radiating heat via natural convection |
US8334592B2 (en) | 2007-09-11 | 2012-12-18 | Dow Corning Corporation | Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use |
WO2009035907A2 (en) * | 2007-09-11 | 2009-03-19 | Dow Corning Corporation | Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use |
WO2009035907A3 (en) * | 2007-09-11 | 2009-04-23 | Dow Corning | Thermal interface material, electronic device containing the thermal interface material, and methods for their preparation and use |
US20100208432A1 (en) * | 2007-09-11 | 2010-08-19 | Dorab Bhagwagar | Thermal Interface Material, Electronic Device Containing the Thermal Interface Material, and Methods for Their Preparation and Use |
US20100328895A1 (en) * | 2007-09-11 | 2010-12-30 | Dorab Bhagwagar | Composite, Thermal Interface Material Containing the Composite, and Methods for Their Preparation and Use |
US20130265721A1 (en) * | 2007-11-05 | 2013-10-10 | Laird Technologies, Inc. | Thermal Interface Materials with Thin Film or Metallization |
US9795059B2 (en) * | 2007-11-05 | 2017-10-17 | Laird Technologies, Inc. | Thermal interface materials with thin film or metallization |
US7880298B2 (en) * | 2007-12-05 | 2011-02-01 | Raytheon Company | Semiconductor device thermal connection |
WO2009075930A1 (en) * | 2007-12-05 | 2009-06-18 | Raytheon Company | Semiconductor device thermal connection |
US20090146292A1 (en) * | 2007-12-05 | 2009-06-11 | Drake Peter J | Semiconductor device thermal connection |
US8379400B2 (en) * | 2009-10-06 | 2013-02-19 | Shinko Electric Industries Co., Ltd. | Interposer mounted wiring board and electronic component device |
US20110080713A1 (en) * | 2009-10-06 | 2011-04-07 | Shinko Electric Industries Co., Ltd. | Interposer mounted wiring board and electronic component device |
US20110317393A1 (en) * | 2010-06-23 | 2011-12-29 | Matthias Drobnitzky | Operating Container for a Magnetic Resonance Apparatus |
DE102014105594A1 (en) * | 2014-04-17 | 2015-10-22 | Conti Temic Microelectronic Gmbh | ELECTRONIC SYSTEM |
CN105338783A (en) * | 2014-07-01 | 2016-02-17 | 联想(北京)有限公司 | Heat dissipation device for electronic equipment |
US10428257B2 (en) | 2014-07-07 | 2019-10-01 | Honeywell International Inc. | Thermal interface material with ion scavenger |
US9922901B2 (en) * | 2014-10-31 | 2018-03-20 | Dexerials Corporation | Heat conduction sheet, heat conduction sheet manufacture method, heat radiation member, and semiconductor device |
US20170309542A1 (en) * | 2014-10-31 | 2017-10-26 | Dexerials Corporation | Heat Conduction Sheet, Heat Conduction Sheet Manufacture Method, Heat Radiation Member, and Semiconductor Device |
US9318450B1 (en) * | 2014-11-24 | 2016-04-19 | Raytheon Company | Patterned conductive epoxy heat-sink attachment in a monolithic microwave integrated circuit (MMIC) |
US20170280595A1 (en) * | 2014-11-27 | 2017-09-28 | Kabushiki Kaisha Toyota Jidoshokki | Electronic device |
US10085368B2 (en) * | 2014-11-27 | 2018-09-25 | Kabushiki Kaisha Toyota Jidoshokki | Electronic device |
EP3226287A4 (en) * | 2014-11-27 | 2018-08-01 | Kabushiki Kaisha Toyota Jidoshokki | Electronic device |
US20170287625A1 (en) * | 2014-12-11 | 2017-10-05 | Ckd Corporation | Coil cooling structure |
US9831150B2 (en) * | 2015-03-11 | 2017-11-28 | Toshiba Memory Corporation | Semiconductor device and electronic device |
US20160268179A1 (en) * | 2015-03-11 | 2016-09-15 | Kabushiki Kaisha Toshiba | Semiconductor device and electronic device |
US20180068926A1 (en) * | 2015-03-27 | 2018-03-08 | Intel Corporation | Energy storage material for thermal management and associated techniques and configurations |
US20170117208A1 (en) * | 2015-10-26 | 2017-04-27 | Infineon Technologies Austria Ag | Thermal interface material having defined thermal, mechanical and electric properties |
US10781349B2 (en) | 2016-03-08 | 2020-09-22 | Honeywell International Inc. | Thermal interface material including crosslinker and multiple fillers |
US10410784B2 (en) * | 2016-05-31 | 2019-09-10 | Shindengen Electric Manufacturing Co., Ltd. | Magnetic component |
TWI731123B (en) * | 2016-07-26 | 2021-06-21 | 美商哈尼威爾國際公司 | Gel-type thermal interface material |
CN109415619A (en) * | 2016-07-26 | 2019-03-01 | 霍尼韦尔国际公司 | Gel-type thermal interfacial material |
US10501671B2 (en) * | 2016-07-26 | 2019-12-10 | Honeywell International Inc. | Gel-type thermal interface material |
US11041103B2 (en) | 2017-09-08 | 2021-06-22 | Honeywell International Inc. | Silicone-free thermal gel |
US10428256B2 (en) | 2017-10-23 | 2019-10-01 | Honeywell International Inc. | Releasable thermal gel |
US11072706B2 (en) | 2018-02-15 | 2021-07-27 | Honeywell International Inc. | Gel-type thermal interface material |
CN110309522A (en) * | 2018-03-27 | 2019-10-08 | 丰田自动车株式会社 | Method for predicting deterioration of fats and oils, fats and oils, and method for producing fats and oils |
US11373921B2 (en) | 2019-04-23 | 2022-06-28 | Honeywell International Inc. | Gel-type thermal interface material with low pre-curing viscosity and elastic properties post-curing |
US20220151108A1 (en) * | 2019-07-23 | 2022-05-12 | Henkel Ag & Co. Kgaa | Thermal management of high heat flux multicomponent assembly |
US12238899B2 (en) * | 2019-07-23 | 2025-02-25 | Henkel Ag & Co. Kgaa | Thermal management of high heat flux multicomponent assembly |
WO2025006442A1 (en) * | 2023-06-30 | 2025-01-02 | Honeywell International Inc. | Highly thermally conductive hybrid thermal interface material |
Also Published As
Publication number | Publication date |
---|---|
US6597575B1 (en) | 2003-07-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6597575B1 (en) | Electronic packages having good reliability comprising low modulus thermal interface materials | |
US7060747B2 (en) | Chain extension for thermal materials | |
US6841867B2 (en) | Gel thermal interface materials comprising fillers having low melting point and electronic packages comprising these gel thermal interface materials | |
EP1559114B1 (en) | Heat softening thermally conductive compositions and methods for their preparation | |
US6791839B2 (en) | Thermal interface materials and methods for their preparation and use | |
KR100739001B1 (en) | Heat dissipation structure of electronic component and heat dissipation sheet used for it | |
US20070131913A1 (en) | Thermal interface material and semiconductor device incorporating the same | |
WO2015092889A1 (en) | Curable thermally conductive grease, heat dissipation structure, and method for producing heat dissipation structure | |
US20030151898A1 (en) | Heat-dissipating member, manufacturing method and installation method | |
Pan et al. | Assembly and reliability challenges for next generation high thermal TIM materials | |
KR20150073950A (en) | Semiconductor device | |
Chano et al. | Rheology of thermal interface materials composed of silicone gels | |
JP2005060594A (en) | Thermally conductive sheet with adhesive layer | |
TWI627717B (en) | Thermally conductive board | |
Kohli et al. | Advanced thermal interface materials for enhanced flip chip BGA | |
Lall et al. | Evolution of TIM/Copper Interface under Wide Temperature Excursions | |
CN115725185B (en) | Thermal interface material based on liquid metal bridging aluminum powder and preparation method thereof | |
US20070131055A1 (en) | Thermal interface material and semiconductor device incorporating the same | |
US20120279697A1 (en) | Thermal interface material with phenyl ester | |
Lee | Thermo-mechanical properties of high performance thermal interface gap filler pads | |
CN119752196A (en) | Thermally conductive silicone composite materials and electronic devices | |
CN116178965A (en) | Heat conduction silicone grease and assembly thereof | |
JP2001110960A (en) | Heat dissipating sheet | |
Hunadi et al. | Thermal greases with exceptionally high thermal conductivity and low thermal resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: INTEL CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:MATAYABAS, JAMES C. JR.;KONING, PAUL A.;WANG, JINLIN;REEL/FRAME:012834/0597;SIGNING DATES FROM 20020307 TO 20020315 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |