US20030120012A1 - Alpha olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems - Google Patents
Alpha olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems Download PDFInfo
- Publication number
- US20030120012A1 US20030120012A1 US10/328,339 US32833902A US2003120012A1 US 20030120012 A1 US20030120012 A1 US 20030120012A1 US 32833902 A US32833902 A US 32833902A US 2003120012 A1 US2003120012 A1 US 2003120012A1
- Authority
- US
- United States
- Prior art keywords
- vinyl
- monomer
- catalyst
- interpolymer product
- vinylidene aromatic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003054 catalyst Substances 0.000 title claims abstract description 64
- 229920002554 vinyl polymer Polymers 0.000 title claims abstract description 61
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 title claims abstract description 54
- 238000000034 method Methods 0.000 title claims abstract description 50
- 230000008569 process Effects 0.000 title claims abstract description 34
- 239000004711 α-olefin Substances 0.000 title claims description 34
- 239000000178 monomer Substances 0.000 claims abstract description 87
- 125000002573 ethenylidene group Chemical group [*]=C=C([H])[H] 0.000 claims abstract description 17
- 238000006116 polymerization reaction Methods 0.000 claims abstract description 9
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 claims description 27
- 239000005977 Ethylene Substances 0.000 claims description 27
- 125000001931 aliphatic group Chemical group 0.000 claims description 26
- -1 ethylene, propylene, 1-butene Chemical group 0.000 claims description 24
- 238000002844 melting Methods 0.000 claims description 23
- 230000008018 melting Effects 0.000 claims description 23
- 230000009477 glass transition Effects 0.000 claims description 17
- 238000000113 differential scanning calorimetry Methods 0.000 claims description 13
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- 239000010936 titanium Substances 0.000 claims description 12
- 125000004432 carbon atom Chemical group C* 0.000 claims description 10
- 238000010348 incorporation Methods 0.000 claims description 10
- 229910052719 titanium Inorganic materials 0.000 claims description 10
- 238000012163 sequencing technique Methods 0.000 claims description 9
- 229910052799 carbon Inorganic materials 0.000 claims description 8
- 125000001183 hydrocarbyl group Chemical group 0.000 claims description 8
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 7
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 7
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 7
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 claims description 6
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 6
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical group [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 claims description 6
- 230000009257 reactivity Effects 0.000 claims description 6
- 238000004611 spectroscopical analysis Methods 0.000 claims description 5
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 claims description 5
- LIKMAJRDDDTEIG-UHFFFAOYSA-N 1-hexene Chemical compound CCCCC=C LIKMAJRDDDTEIG-UHFFFAOYSA-N 0.000 claims description 4
- KAKZBPTYRLMSJV-UHFFFAOYSA-N Butadiene Chemical class C=CC=C KAKZBPTYRLMSJV-UHFFFAOYSA-N 0.000 claims description 4
- 125000004122 cyclic group Chemical group 0.000 claims description 4
- 125000000058 cyclopentadienyl group Chemical group C1(=CC=CC1)* 0.000 claims description 4
- 229910052726 zirconium Inorganic materials 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 claims description 3
- OBAJXDYVZBHCGT-UHFFFAOYSA-N tris(pentafluorophenyl)borane Chemical compound FC1=C(F)C(F)=C(F)C(F)=C1B(C=1C(=C(F)C(F)=C(F)C=1F)F)C1=C(F)C(F)=C(F)C(F)=C1F OBAJXDYVZBHCGT-UHFFFAOYSA-N 0.000 claims description 3
- 125000004178 (C1-C4) alkyl group Chemical group 0.000 claims description 2
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 claims description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 2
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 claims description 2
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 claims description 2
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 claims description 2
- 229910052751 metal Inorganic materials 0.000 claims description 2
- 239000002184 metal Substances 0.000 claims description 2
- 125000001181 organosilyl group Chemical group [SiH3]* 0.000 claims description 2
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 claims description 2
- 125000004226 phenanthren-1-yl group Chemical group [H]C1=C([H])C([H])=C2C(C([H])=C([H])C3=C(*)C([H])=C([H])C([H])=C23)=C1[H] 0.000 claims description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 claims description 2
- 229910052710 silicon Inorganic materials 0.000 claims description 2
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 claims 3
- KWKAKUADMBZCLK-UHFFFAOYSA-N 1-octene Chemical compound CCCCCCC=C KWKAKUADMBZCLK-UHFFFAOYSA-N 0.000 claims 2
- 150000004703 alkoxides Chemical class 0.000 claims 1
- 125000005843 halogen group Chemical group 0.000 claims 1
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims 1
- TVMXDCGIABBOFY-UHFFFAOYSA-N n-Octanol Natural products CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 claims 1
- JFLKFZNIIQFQBS-FNCQTZNRSA-N trans,trans-1,4-Diphenyl-1,3-butadiene Chemical compound C=1C=CC=CC=1\C=C\C=C\C1=CC=CC=C1 JFLKFZNIIQFQBS-FNCQTZNRSA-N 0.000 claims 1
- VPGLGRNSAYHXPY-UHFFFAOYSA-L zirconium(2+);dichloride Chemical compound Cl[Zr]Cl VPGLGRNSAYHXPY-UHFFFAOYSA-L 0.000 claims 1
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 68
- 229920000642 polymer Polymers 0.000 description 23
- 230000000052 comparative effect Effects 0.000 description 21
- 239000000203 mixture Substances 0.000 description 18
- 239000000523 sample Substances 0.000 description 17
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Natural products CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 12
- 239000000243 solution Substances 0.000 description 10
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 102100035959 Cationic amino acid transporter 2 Human genes 0.000 description 8
- 108091006231 SLC7A2 Proteins 0.000 description 8
- 125000003118 aryl group Chemical group 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- 229920001577 copolymer Polymers 0.000 description 6
- 239000003431 cross linking reagent Substances 0.000 description 6
- VXNZUUAINFGPBY-UHFFFAOYSA-N 1-Butene Chemical compound CCC=C VXNZUUAINFGPBY-UHFFFAOYSA-N 0.000 description 5
- 101100494773 Caenorhabditis elegans ctl-2 gene Proteins 0.000 description 5
- 101100112369 Fasciola hepatica Cat-1 gene Proteins 0.000 description 5
- 238000005481 NMR spectroscopy Methods 0.000 description 5
- 101100005271 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) cat-1 gene Proteins 0.000 description 5
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004793 Polystyrene Substances 0.000 description 4
- 0 [1*]C(=C)C[Ar] Chemical compound [1*]C(=C)C[Ar] 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 4
- 239000010426 asphalt Substances 0.000 description 4
- 238000004132 cross linking Methods 0.000 description 4
- 238000005227 gel permeation chromatography Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 239000012968 metallocene catalyst Substances 0.000 description 4
- 125000001434 methanylylidene group Chemical group [H]C#[*] 0.000 description 4
- 125000001570 methylene group Chemical group [H]C([H])([*:1])[*:2] 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920002223 polystyrene Polymers 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 150000003254 radicals Chemical class 0.000 description 4
- 229920006132 styrene block copolymer Polymers 0.000 description 4
- 125000001424 substituent group Chemical group 0.000 description 4
- QPFMBZIOSGYJDE-QDNHWIQGSA-N 1,1,2,2-tetrachlorethane-d2 Chemical compound [2H]C(Cl)(Cl)C([2H])(Cl)Cl QPFMBZIOSGYJDE-QDNHWIQGSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000012190 activator Substances 0.000 description 3
- 230000006835 compression Effects 0.000 description 3
- 238000007334 copolymerization reaction Methods 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- BXOUVIIITJXIKB-UHFFFAOYSA-N ethene;styrene Chemical compound C=C.C=CC1=CC=CC=C1 BXOUVIIITJXIKB-UHFFFAOYSA-N 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 3
- 230000002195 synergetic effect Effects 0.000 description 3
- AQZWEFBJYQSQEH-UHFFFAOYSA-N 2-methyloxaluminane Chemical compound C[Al]1CCCCO1 AQZWEFBJYQSQEH-UHFFFAOYSA-N 0.000 description 2
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- PMPVIKIVABFJJI-UHFFFAOYSA-N C1CCC1 Chemical compound C1CCC1 PMPVIKIVABFJJI-UHFFFAOYSA-N 0.000 description 2
- PYDWENZSRZGYFM-UHFFFAOYSA-N C[Si](=CC=1C(C2=CC=CC(=C2C=1)C1=CC=CC=C1)[Zr])C Chemical compound C[Si](=CC=1C(C2=CC=CC(=C2C=1)C1=CC=CC=C1)[Zr])C PYDWENZSRZGYFM-UHFFFAOYSA-N 0.000 description 2
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 2
- 229910017544 NdCl3 Inorganic materials 0.000 description 2
- BLRPTPMANUNPDV-UHFFFAOYSA-N Silane Chemical compound [SiH4] BLRPTPMANUNPDV-UHFFFAOYSA-N 0.000 description 2
- 239000004708 Very-low-density polyethylene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- XYLMUPLGERFSHI-UHFFFAOYSA-N alpha-Methylstyrene Chemical compound CC(=C)C1=CC=CC=C1 XYLMUPLGERFSHI-UHFFFAOYSA-N 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000007906 compression Methods 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 150000001935 cyclohexenes Chemical class 0.000 description 2
- QOXHZZQZTIGPEV-UHFFFAOYSA-K cyclopenta-1,3-diene;titanium(4+);trichloride Chemical compound Cl[Ti+](Cl)Cl.C=1C=C[CH-]C=1 QOXHZZQZTIGPEV-UHFFFAOYSA-K 0.000 description 2
- 239000006185 dispersion Substances 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000009977 dual effect Effects 0.000 description 2
- 229920001971 elastomer Polymers 0.000 description 2
- HQQADJVZYDDRJT-UHFFFAOYSA-N ethene;prop-1-ene Chemical group C=C.CC=C HQQADJVZYDDRJT-UHFFFAOYSA-N 0.000 description 2
- QHZOMAXECYYXGP-UHFFFAOYSA-N ethene;prop-2-enoic acid Chemical compound C=C.OC(=O)C=C QHZOMAXECYYXGP-UHFFFAOYSA-N 0.000 description 2
- 239000000835 fiber Substances 0.000 description 2
- 239000006260 foam Substances 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000001475 halogen functional group Chemical group 0.000 description 2
- 229920005669 high impact polystyrene Polymers 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 229920000554 ionomer Polymers 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- 229920001179 medium density polyethylene Polymers 0.000 description 2
- 239000004701 medium-density polyethylene Substances 0.000 description 2
- CPOFMOWDMVWCLF-UHFFFAOYSA-N methyl(oxo)alumane Chemical compound C[Al]=O CPOFMOWDMVWCLF-UHFFFAOYSA-N 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 239000012768 molten material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- ATINCSYRHURBSP-UHFFFAOYSA-K neodymium(iii) chloride Chemical compound Cl[Nd](Cl)Cl ATINCSYRHURBSP-UHFFFAOYSA-K 0.000 description 2
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 230000000379 polymerizing effect Effects 0.000 description 2
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 2
- 125000004805 propylene group Chemical group [H]C([H])([H])C([H])([*:1])C([H])([H])[*:2] 0.000 description 2
- 230000005855 radiation Effects 0.000 description 2
- 229920005604 random copolymer Polymers 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 229910000077 silane Inorganic materials 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 238000013179 statistical model Methods 0.000 description 2
- 150000003440 styrenes Chemical class 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 229920001862 ultra low molecular weight polyethylene Polymers 0.000 description 2
- 229920001866 very low density polyethylene Polymers 0.000 description 2
- OJOWICOBYCXEKR-APPZFPTMSA-N (1S,4R)-5-ethylidenebicyclo[2.2.1]hept-2-ene Chemical class CC=C1C[C@@H]2C[C@@H]1C=C2 OJOWICOBYCXEKR-APPZFPTMSA-N 0.000 description 1
- 125000000008 (C1-C10) alkyl group Chemical group 0.000 description 1
- 125000004765 (C1-C4) haloalkyl group Chemical group 0.000 description 1
- NVZWEEGUWXZOKI-UHFFFAOYSA-N 1-ethenyl-2-methylbenzene Chemical class CC1=CC=CC=C1C=C NVZWEEGUWXZOKI-UHFFFAOYSA-N 0.000 description 1
- JZHGRUMIRATHIU-UHFFFAOYSA-N 1-ethenyl-3-methylbenzene Chemical class CC1=CC=CC(C=C)=C1 JZHGRUMIRATHIU-UHFFFAOYSA-N 0.000 description 1
- SDRZFSPCVYEJTP-UHFFFAOYSA-N 1-ethenylcyclohexene Chemical compound C=CC1=CCCCC1 SDRZFSPCVYEJTP-UHFFFAOYSA-N 0.000 description 1
- SBYMUDUGTIKLCR-UHFFFAOYSA-N 2-chloroethenylbenzene Chemical compound ClC=CC1=CC=CC=C1 SBYMUDUGTIKLCR-UHFFFAOYSA-N 0.000 description 1
- VSKJLJHPAFKHBX-UHFFFAOYSA-N 2-methylbuta-1,3-diene;styrene Chemical compound CC(=C)C=C.C=CC1=CC=CC=C1.C=CC1=CC=CC=C1 VSKJLJHPAFKHBX-UHFFFAOYSA-N 0.000 description 1
- DXIJHCSGLOHNES-UHFFFAOYSA-N 3,3-dimethylbut-1-enylbenzene Chemical compound CC(C)(C)C=CC1=CC=CC=C1 DXIJHCSGLOHNES-UHFFFAOYSA-N 0.000 description 1
- YYTUUFMWKBIPEY-UHFFFAOYSA-N 3-ethenylcyclohexene Chemical compound C=CC1CCCC=C1 YYTUUFMWKBIPEY-UHFFFAOYSA-N 0.000 description 1
- JLBJTVDPSNHSKJ-UHFFFAOYSA-N 4-Methylstyrene Chemical class CC1=CC=C(C=C)C=C1 JLBJTVDPSNHSKJ-UHFFFAOYSA-N 0.000 description 1
- BBDKZWKEPDTENS-UHFFFAOYSA-N 4-Vinylcyclohexene Chemical compound C=CC1CCC=CC1 BBDKZWKEPDTENS-UHFFFAOYSA-N 0.000 description 1
- PNFXYXGUPOYYKO-UHFFFAOYSA-N C1(=CC=CC=C1)C=CC=CC1=CC=CC=C1.C[Si](=CC=1C(C2=CC=CC(=C2C1)C1=CC=CC=C1)[Zr])C Chemical compound C1(=CC=CC=C1)C=CC=CC1=CC=CC=C1.C[Si](=CC=1C(C2=CC=CC(=C2C1)C1=CC=CC=C1)[Zr])C PNFXYXGUPOYYKO-UHFFFAOYSA-N 0.000 description 1
- 125000000041 C6-C10 aryl group Chemical group 0.000 description 1
- OKTJSMMVPCPJKN-OUBTZVSYSA-N Carbon-13 Chemical compound [13C] OKTJSMMVPCPJKN-OUBTZVSYSA-N 0.000 description 1
- 239000004593 Epoxy Substances 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 1
- AFCARXCZXQIEQB-UHFFFAOYSA-N N-[3-oxo-3-(2,4,6,7-tetrahydrotriazolo[4,5-c]pyridin-5-yl)propyl]-2-[[3-(trifluoromethoxy)phenyl]methylamino]pyrimidine-5-carboxamide Chemical compound O=C(CCNC(=O)C=1C=NC(=NC=1)NCC1=CC(=CC=C1)OC(F)(F)F)N1CC2=C(CC1)NN=N2 AFCARXCZXQIEQB-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 229910010068 TiCl2 Inorganic materials 0.000 description 1
- 229910003074 TiCl4 Inorganic materials 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- XDUBESXMVHKXOP-UHFFFAOYSA-L [Cl-].[Cl-].C[Si](=CC=1C(C2=CC=CC(=C2C=1)C1=CC=CC=C1)[Zr+2])C Chemical compound [Cl-].[Cl-].C[Si](=CC=1C(C2=CC=CC(=C2C=1)C1=CC=CC=C1)[Zr+2])C XDUBESXMVHKXOP-UHFFFAOYSA-L 0.000 description 1
- 239000004676 acrylonitrile butadiene styrene Substances 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- XECAHXYUAAWDEL-UHFFFAOYSA-N acrylonitrile butadiene styrene Chemical compound C=CC=C.C=CC#N.C=CC1=CC=CC=C1 XECAHXYUAAWDEL-UHFFFAOYSA-N 0.000 description 1
- 238000012644 addition polymerization Methods 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 150000008064 anhydrides Chemical class 0.000 description 1
- 150000001540 azides Chemical class 0.000 description 1
- MTAZNLWOLGHBHU-UHFFFAOYSA-N butadiene-styrene rubber Chemical compound C=CC=C.C=CC1=CC=CC=C1 MTAZNLWOLGHBHU-UHFFFAOYSA-N 0.000 description 1
- IAQRGUVFOMOMEM-UHFFFAOYSA-N butene Natural products CC=CC IAQRGUVFOMOMEM-UHFFFAOYSA-N 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000522 cyclooctenyl group Chemical group C1(=CCCCCCC1)* 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 150000001993 dienes Chemical class 0.000 description 1
- 238000012674 dispersion polymerization Methods 0.000 description 1
- 210000004177 elastic tissue Anatomy 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 238000011067 equilibration Methods 0.000 description 1
- 229920005676 ethylene-propylene block copolymer Polymers 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 229910052735 hafnium Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000005984 hydrogenation reaction Methods 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000001746 injection moulding Methods 0.000 description 1
- 229920000092 linear low density polyethylene Polymers 0.000 description 1
- 239000004707 linear low-density polyethylene Substances 0.000 description 1
- FPYJFEHAWHCUMM-UHFFFAOYSA-N maleic anhydride Chemical compound O=C1OC(=O)C=C1 FPYJFEHAWHCUMM-UHFFFAOYSA-N 0.000 description 1
- 238000013008 moisture curing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 150000002848 norbornenes Chemical class 0.000 description 1
- 125000002868 norbornyl group Chemical group C12(CCC(CC1)C2)* 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 125000002081 peroxide group Chemical group 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 239000002685 polymerization catalyst Substances 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- HJWLCRVIBGQPNF-UHFFFAOYSA-N prop-2-enylbenzene Chemical compound C=CCC1=CC=CC=C1 HJWLCRVIBGQPNF-UHFFFAOYSA-N 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000005060 rubber Substances 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 230000000707 stereoselective effect Effects 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 125000003011 styrenyl group Chemical group [H]\C(*)=C(/[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 238000010998 test method Methods 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- XJDNKRIXUMDJCW-UHFFFAOYSA-J titanium tetrachloride Chemical compound Cl[Ti](Cl)(Cl)Cl XJDNKRIXUMDJCW-UHFFFAOYSA-J 0.000 description 1
- ZWYDDDAMNQQZHD-UHFFFAOYSA-L titanium(ii) chloride Chemical compound [Cl-].[Cl-].[Ti+2] ZWYDDDAMNQQZHD-UHFFFAOYSA-L 0.000 description 1
- 238000004073 vulcanization Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 238000004260 weight control Methods 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/08—Styrene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
- C08F210/02—Ethene
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F10/00—Homopolymers and copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F210/00—Copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F212/00—Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring
- C08F212/02—Monomers containing only one unsaturated aliphatic radical
- C08F212/04—Monomers containing only one unsaturated aliphatic radical containing one ring
- C08F212/06—Hydrocarbons
- C08F212/12—Monomers containing a branched unsaturated aliphatic radical or a ring substituted by an alkyl radical
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/65912—Component covered by group C08F4/64 containing a transition metal-carbon bond in combination with an organoaluminium compound
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/42—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors
- C08F4/44—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides
- C08F4/60—Metals; Metal hydrides; Metallo-organic compounds; Use thereof as catalyst precursors selected from light metals, zinc, cadmium, mercury, copper, silver, gold, boron, gallium, indium, thallium, rare earths or actinides together with refractory metals, iron group metals, platinum group metals, manganese, rhenium technetium or compounds thereof
- C08F4/62—Refractory metals or compounds thereof
- C08F4/64—Titanium, zirconium, hafnium or compounds thereof
- C08F4/659—Component covered by group C08F4/64 containing a transition metal-carbon bond
- C08F4/6592—Component covered by group C08F4/64 containing a transition metal-carbon bond containing at least one cyclopentadienyl ring, condensed or not, e.g. an indenyl or a fluorenyl ring
Definitions
- the present invention relates to a thermoplastic interpolymer product comprising an ⁇ -olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer and/or at least one hindered aliphatic or cycloaliphatic vinyl or vinylidene aromatic monomer and, in at least one aspect, is characterized as having substantially synergistic thermal properties.
- the invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein at least two of the catalyst systems have (a) different monomer incorporation capabilities or reactivities and (b) the same or, optionally, different monomer sequencing and/or tacticity characteristics.
- the interpolymer product is useful, for example, for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
- interpolymer made using multiple catalyst systems can provide improved thermal properties such as substantially higher meting points at substantially comparable crystallinities or diffused T g responses.
- Blends comprising ⁇ -olefin/vinylidene aromatic monomer and/or hindered aliphatic or cycloaliphatic vinylidene monomer interpolymers are described in WO 95/27755, in the names of Chung P. Park et al. and WO 98/10018, in the names of Martin J. Guest et al., the disclosures of which are incorporated herein by reference. All of the exemplified compositions consisted of physical melt blend preparations using component interpolymers made from a single catalyst composition. That is, the blends were not made using an in-situ or multiple reactor interpolymerization technique, nor were they manufactured using multiple catalyst compositions and, as such, all component polymers were monocatalyzed.
- melt blending is not known to provide independent or unique control of thermal resistance, melting behavior and glass transition characteristics as no complete data of such attributes are reported in WO 95/27755 nor WO 98/10018.
- known ⁇ -olefin/vinyl or vinylidene aromatic interpolymers have several important attributes, they also exhibit several important deficiencies.
- known ⁇ -olefin/vinyl or vinylidene aromatic interpolymer compositions, whether monocatalyzed or the melt blends are characterized as having relatively low maximum service temperatures and narrow glass transition temperature ranges or widths (i.e.
- the broad aspect of the invention is an interpolymer product comprising an ⁇ -olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer wherein the interpolymer product is characterized as having:
- DSC differential scanning calorimetry
- TMA thermal mechanical analysis
- DMS dynamic mechanical spectroscopy
- the inventive interpolymer product comprises ethylene as the ⁇ -olefin and styrene as the at least one vinyl or vinylidene aromatic monomer and is characterized as having:
- DSC differential scanning calorimetry
- TMA thermal mechanical analysis
- DMS dynamic mechanical spectroscopy
- the interpolymer product is dominantly substantially random, random, or alternating (i.e. more than 50 weight percent of the product is characterized as having the particular sequence).
- the product is more than 70 weight percent, more preferably more than 80 weight percent and most preferably more than 90 weight percent substantially random.
- the interpolymer product is substantially random with respect to all incorporated vinyl or vinylidene aromatic monomer sequences of more than three units.
- the interpolymer product can be partially substantially random, random, alternately, diadic, triadic, tetradic or any combination thereof. That is, the interpolymer product can be variably incorporated and optionally variably sequenced.
- the interpolymer product can be variably incorporated and dominantly substantially random where the two catalyst systems (e.g. CAT1 and CAT2) employed both characteristically provide a substantially random monomer sequencing. Such is believed to be the case as to incorporation even where the incorporation ratio between the two catalyst systems is 50/50.
- the interpolymer product can be variably incorporated and variably sequenced where, for example, the two catalyst systems employed both characteristically provide a different monomer sequence.
- the inventive interpolymer product can be variably incorporated and optionally variably sequenced and/or variably atactic, isotactic, syndiotactic or a combination thereof. That is, the inventive interpolymer product can have a mixed, the same or a different tacticity (i.e. atactic, isotactic, syndiotactic or combinations thereof) with respect to any partial or total sequence variety.
- the interpolymer product has improved thermal property attributes and comprises random, substantially random or alternating (or any combination thereof) hard and soft segments or blocks.
- the interpolymer has a high degree of alternating monomer sequencing (i.e. the interpolymer gives peaks at all three chemical shift regions of the main chain methylene and methyne carbons and the peak areas of these regions is not less than 70 percent of the total peak area of the main chain methylene and methyne carbons), a high degree of isotacticity (i.e. the isotactic diad is not less than 0.55) is most preferred
- Another aspect of the invention is an interpolymer product comprising ⁇ -olefin and at least one vinyl or vinylidene aromatic monomer made using at least two single site catalyst systems in at least one reaction environment or reactor wherein the catalyst systems are selected and operated to provide different monomer incorporation capabilities or reactivities.
- a third aspect of the invention is a process for making an interpolymer product, the product comprising an ⁇ -olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer, the process comprising
- the inventive interpolymer product has surprisingly improved thermal properties.
- thermal property attributes can be controlled independent of monomer concentration and substantially independent of crystallinity or glass transition peak temperature.
- the melting point and/or thermal resistance of the inventive interpolymer product is substantially higher than that of a comparative substantially random interpolymer having an equivalent vinyl or vinylidene aromatic concentration and/or substantially comparably crystallinity.
- the inventive interpolymer product is surprisingly characterized by a more diffuse (i.e. broader) T g temperature range or width at equivalent vinyl or vinylidene aromatic concentration.
- the inventive interpolymer product is characterized by various physical property enhancements such as, but not limited to, improved processability in terms of shear thinning and melt strength improvement from molecular weight control; improved mechanical properties such as impact resistance and tensile elongation; improved control of stress relaxation and elastic recovery attributes; improved control of surface characteristics for enhancement such as paintability, and combinations thereof.
- FIG. 1 shows the baseline method applied to the G′′ versus temperature curve of Inventive Example 13.
- FIG. 2 is a plot of the highest peak melting point versus weight percent interpolymerized styrene for Inventive Examples 1 and 2 and comparative runs 3-12.
- FIG. 3 is a plot of the maximum service temperature versus weight percent interpolymerized styrene for Inventive Examples 1 and 2 and comparative runs 3-5.
- FIG. 4 is a plot of the weight percent crystallinity versus weight percent interpolymerized styrene for Inventive Examples 1 and 2 and comparative runs 3-12.
- FIG. 5 is a plot of the Tg (by tan ⁇ ) versus weight percent interpolymerized styrene for Inventive Example 13 and several monocatalyzed comparative runs.
- FIG. 6 shows an overlay of the G′′ versus temperature curves for Inventive Example 13 and comparative run 14.
- FIG. 7 shows an overlay of the G′′ versus temperature curves for comparative runs 15-17.
- interpolymer is used herein to indicate a polymer wherein at least two different monomers are polymerized. That is, the polymer contains a plurality of polymerized monomers as such two, three, four and so on.
- copolymer as employed herein means a polymer wherein at least two different monomers are polymerized to form the copolymer.
- interpolymer and “copolymer” as, herein, both terms can refer to a polymer comprised of, for example, three polymerized monomers.
- the term “different catalsy systems” is used herein in reference to catalyst systems which incorporate monomers at different amount during interpolymerization. While the term principally refers to catalyst systems having different chemical compositions relative to one another, the term generally refers to any difference that results in different monomer incorporation or different polymerization reactivities or rates. As such, the term also refers to differences in concentrations, operating conditions, injection methods or timing and the like where the catalyst systems have the same chemical composition.
- the term “variably incorporated” as used herein refers an interpolymer product manufactured using at least two catalyst systems wherein during interpolymerization the catalyst systems are operated at different incorporation or reactivity rates.
- the interpolymer product having a total styrene content of 36 weight percent is variably incorporated where one catalyst system incorporates 22 weight percent styrene and the other catalyst system incorporates 48 weight percent styrene and the production split between the two catalyst systems is 47/53 weight percentages.
- Suitable “pseudo-random” interpolymers are described in U.S. Pat. No. 5,703,187, the disclosure of which is incorporated herein in its entirety by reference.
- Suitable “alternating” interpolymers are those in which the aliphatic alpha-olefin monomer (A) and hindered vinylidene monomer (B) occur in repeat alternate sequences on the polymer chain in atactic or stereospecific structures (such as isotactic or syndiotactic) or in combinations of the general formula (AB) n .
- Suitable “random” interpolymers are those in which the monomer units are incorporated into the chain wherein can there exist various combinations of ordering including blockiness where either the aliphatic alpha-olefin monomer (A) or hindered vinylidene monomer (B) or both can be repeated adjacent to one another.
- Substantially random ethylene/vinyl or vinylidene aromatic interpolymers are especially preferred interpolymer products of the present invention.
- Representative of substantially random ethylene/vinyl aromatic interpolymers are substantially random ethylene/styrene interpolymers.
- a substantially random interpolymer comprises in polymerized form i) one or more ⁇ -olefin monomers, ii) one or more vinyl or vinylidene aromatic monomers, or one or more sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers, or both; and optionally iii) other polymerizable ethylenically unsaturated monomer(s).
- substantially random in the substantially random interpolymer resulting from polymerizing i) one or more ⁇ -olefin monomers; ii) one or more vinyl or vinylidene aromatic monomers or one or more sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers, or both; and optionally iii) other polymerizable ethylenically unsaturated monomer(s) as used herein generally means that the distribution of the monomers of said interpolymer can be described by the Bernoulli statistical model or by a first or second order Markovian statistical model, as described by J. C.
- Substantially random interpolymers do not contain more than 15 mole percent of the total amount of vinyl or vinylidene aromatic monomer in blocks of vinyl or vinylidene aromatic monomer of more than 3 units.
- the dominantly substantially random interpolymer is not characterized by a high degree (greater than 50 mol %) of either isotacticity or syndiotacticity.
- the peak areas corresponding to the main chain methylene and methine carbons representing either meso diad sequences or racemic diad sequences should not exceed 75 percent of the total peak area of the main chain methylene and methine carbons.
- substantially random interpolymer it is meant a substantially random interpolymer produced from the above-mentioned monomers.
- Suitable ⁇ -olefin monomers which are useful for preparing the inventive interpolymer product include, for example, ⁇ -olefin monomers containing from about 2 to about 20, preferably from about 2 to about 12, more preferably from about 2 to about 8 carbon atoms.
- Preferred such monomers include ethylene, propylene, butene-1, 4-methyl-1-pentene, hexene-1 and octene-1.
- Most preferred are ethylene or a combination of ethylene with C 3- C 8 ⁇ -olefins. These ⁇ -olefins do not contain an aromatic moiety.
- Suitable vinyl or vinylidene aromatic monomers which can be employed to prepare the interpolymer product include, for example, those represented by the following formula:
- R 1 is selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl; each R 2 is independently selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl; Ar is a phenyl group or a phenyl group substituted with from about 1 to about 5 substituents selected from the group consisting of halo, C 1-4 -alkyl, and C 1-4 -haloalkyl; and n has a value from zero to about 4, preferably from zero to about 2, most preferably zero.
- Particularly suitable such monomers include styrene and lower alkyl- or halogen-substituted derivatives thereof.
- Exemplary monovinyl or monovinylidene aromatic monomers include styrene, vinyl toluene, ⁇ -methylstyrene, t-butyl styrene or chlorostyrene, including all isomers of these compounds.
- Preferred monomers include styrene, ⁇ -methyl styrene, the lower alkyl-(C 1 -C 4 ) or phenyl-ring substituted derivatives of styrene, such as for example, ortho-, meta-, and para-methylstyrene, the ring halogenated styrenes, para-vinyl toluene or mixtures thereof.
- a more preferred aromatic monovinyl monomer is styrene.
- sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers it is meant addition polymerizable vinyl or vinylidene monomers corresponding to the formula:
- a 1 is a sterically bulky, aliphatic or cycloaliphatic substituent of up to 20 carbons
- R 1 is selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl
- each R 2 is independently selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl
- R 1 and A 1 together form a ring system.
- sterically bulky is meant that the monomer bearing this substituent is normally incapable of addition polymerization by standard Ziegler-Natta polymerization catalysts at a rate comparable with ethylene polymerizations.
- ⁇ -Olefin monomers containing from about 2 to about 20 carbon atoms and having a linear aliphatic structure such as ethylene, propylene, butene-1, hexene-1 and octene-1 are not considered to be sterically hindered aliphatic monomers.
- Preferred sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene compounds are monomers in which one of the carbon atoms bearing ethylenic unsaturation is tertiary or quaternary substituted.
- substituents include cyclic aliphatic groups such as cyclohexyl, cyclohexenyl, cyclooctenyl, or ring alkyl or aryl substituted derivatives thereof, tert-butyl or norbornyl.
- Most preferred sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene compounds are the various isomeric vinyl-ring substituted derivatives of cyclohexene and substituted cyclohexenes, and 5-ethylidene-2-norbornene.
- 1-, 3-, and 4-vinylcyclohexene are particularly suitable.
- the inventive interpolymer product usually contains from about 5 to about 65, preferably from about 5 to about 55, more preferably from about 10 to about 50 mole percent of at least one vinyl or vinylidene aromatic monomer; or sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomer; or both; and from about 35 to about 95, preferably from about 45 to about 95, more preferably from about 50 to about 90 mole percent of at least one aliphatic ⁇ -olefin having from about 2 to about 20 carbon atoms.
- Other optional polymerizable ethylenically unsaturated monomer(s) include strained ring olefins such as norbornene and C 1-10 -alkyl or C 6-10 -aryl substituted norbornenes, with an exemplary substantially random interpolymer being ethylene/styrene/norbornene.
- the most preferred inventive interpolymer product are interpolymers of ethylene and styrene and interpolymers of ethylene, styrene and at least one ⁇ -olefin containing from about 3 to about 8 carbon atoms.
- the number average molecular weight (M n ) of the inventive interpolymer product is usually greater than 5,000, preferably from about 20,000 to about 1,000,000, more preferably from 50,000 to 500,000.
- Semi-crystalline inventive interpolymer products i.e. those having a measurably crystallinity using differential scanning calorimetry
- DSC crystallinity, DMS glass transition temperature, DSC highest peak melting point temperature and maximum service temperature by thermal mechanical analysis (TMA).
- amorphous inventive interpolymer products i.e. those having no measurable crystallinity using differential scanning calorimetry and which typically contain greater than 48 weight percent vinyl or vinylidene aromatic monomer
- glass transition characteristics i.e., T g and peak widths at half peak temperature height
- the glass transition temperature (T g ) of the inventive interpolymer product is preferably in the range from about ⁇ 40° C. to about +60° C., more preferably from about ⁇ 30° C. to about +50° C., most preferably from about ⁇ 10° C. to about +40° C., as measured by differential mechanical scanning (DMS) using loss modulus (G′′) data.
- the melting point of the inventive semicrystalline interpolymer product is preferably in the range from about 0° C. to about 160° C., as determined using differential scanning calorimetry (DSC).
- the inventive interpolymer product has a polydispersity greater than 4, preferably greater than 7, as determined using gel permeation chromatography (GPC).
- the inventive interpolymer product may be modified by typical grafting, hydrogenation, functionalizing, or other reactions well known to those skilled in the art.
- the interpolymer product may be readily sulfonated or chlorinated to provide functionalized derivatives according to established techniques.
- the interpolymer product may also be modified by various chain extending or crosslinking processes including, but not limited to peroxide-, silane-, sulfur-, radiation-, or azide-based cure systems.
- a full description of the various crosslinking technologies is described in copending U.S. patent application Ser. Nos. 08/921,641 and 08/921,642, both filed on Aug. 27, 1997, the disclosures of both of which are incorporated herein by reference.
- Dual cure systems which use a combination of heat, moisture cure, and/or radiation steps, may also be effectively employed. Dual cure systems are disclosed and claimed in U.S. patent application Ser. No. 536,022, filed on Sep. 29, 1995, in the names of K. L. Walton and S. V. Karande, the disclosure of which is incorporated herein by reference. Particularly desirable dual-cure systems employ peroxide crosslinking agents in conjunction with silane crosslinking agents, peroxide crosslinking agents in conjunction with radiation, sulfur-containing crosslinking agents in conjunction with silane crosslinking agents, and combinations thereof.
- inventive interpolymer product may also be modified by various other crosslinking processes including, but not limited to, the incorporation of a diene component as a termonomer in its preparation and subsequent crosslinking by the aforementioned methods and further methods including vulcanization via the vinyl group using sulfur for example as the crosslinking agent.
- the interpolymer product can also be mixed or blended (including melt blended) with other natural and/or synthetic materials such as, including, but not limited to, conventional (i.e. those not variably incorporated) ⁇ -olefin/vinyl or vinylidene aromatic interpolymers, substantially linear ethylene interpolymers, homogeneously branched linear ethylene interpolymers, heterogeneously branched linear ethylene interpolymers (e.g., linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE) and ultra low or very low density polyethylene (ULDPE or VLDPE)), elastomers, rubbers, polystyrene (especially high impact polystyrenes (HIPs)), styrene block polymers (e.g.
- conventional i.e. those not variably incorporated
- ⁇ -olefin/vinyl or vinylidene aromatic interpolymers substantially linear ethylene interpolymers, homogeneously
- styrene butadiene block copolymers styrene butadiene block copolymers, styrene/ethylene propylene/styrene block copolymers, styrene/ethylene-butylene/styrene block copolymers, styrene/isoprene/styrene block copolymers, and styrene/butadiene/styrene block copolymers), polyethers (especially aromatic polyethers), polypropylene, polysulfones, polycarbonates, polyamides, ABS, epoxies, ethylene/propylene interpolymers, anhydride modified polyethylenes (e.g., maleic anhydride grafted LLDPE and HDPE) as well as high pressure polyethylenes such as, for example, but not limited to, low density polyethylene (LDPE), ethylene/acrylic acid (EAA) interpolymers and ionomers, ethylene
- the inventive interpolymer product is manufacture using (that is, by contacting monomers with) at least two single site or metallocene catalyst systems in at least one reaction environment or reactor.
- the process comprises at two reaction environments or reactors operated in series or parallel, and preferably in series configuration.
- the interpolymerization process can be solution, gas phase, particle form (i.e. slurry or dispersion polymerization) type or any combination thereof such as where multiple reaction environments or reactors are employed and at least one environment or reactor is in solution mode and at least one other is in particle form or gas phase mode.
- a solution interpolymerization process is preferred.
- interpolymerization operating conditions comprise pressures from about atmospheric up to about 3,000 atmospheres and temperatures from about ⁇ 30° C. to about 200° C.
- the at least one reaction environment or reactor may be a sphere, stirred tank, tube or loop configuration or design or any combination thereof such as where multiple reaction environments or reactors are employed.
- a loop configuration (including a multiple loop configuration) is preferred due to its tendency to provide improved product conversion and productivity.
- Suitable catalysts for use in the present invention include, but are not limited to, those represented by the formula:
- each R is independently, each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to about 30 preferably from 1 to about 20 more preferably from 1 to about 10 carbon or silicon atoms or two R groups together form a divalent derivative of such group.
- R independently each occurrence is (including where appropriate all isomers) hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, phenyl or silyl or (where appropriate) two such R groups are linked together forming a fused ring system such as indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, or octahydrofluorenyl.
- catalysts include, for example, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium dichloride, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium 1,4-diphenyl-1,3-butadiene, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium di-C 1-4 alkyl, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium di-C 1-4 alkoxide, or any combination thereof and the like.
- titanium-based catalysts [N-(1,1-dimethylethyl)-1,1-dimethyl-1-[(1,2,3,4,5-h)-1,5,6,7-tetrahydro-s-indacen-1-yl]silanaminato(2-)-N]titanium dimethyl; (1-indenyl)(tert-butylamido)dimethyl-silane titanium dimethyl; ((3-tert-butyl)(1,2,3,4,5-h)-1-indenyl)(tert-butylamido)dimethylsilane titanium dimethyl; and ((3-iso-propyl)(1,2,3,4,5-h)-1-indenyl)(tert-butyl amido)dimethylsilane titanium dimethyl, or any combination thereof and the like.
- Suitable catalyst systems for use as at least one, both or all of the least two catalyst systems required by the inventive process include, but are not limited to, those described by Longo and Grassi in Makromol. Chem. , Volume 191, pages 2387 to 2396 [1990]; D'Anniello et al. in Journal of Applied Polymer Science , Volume 58, pages 1701-1706 [1995]; Xu and Lin in Polymer Preprints, Am.Chem.Soc.,Div.Polym.Chem. , Volume 35, pages 686,687 [1994]; Lu et al. in Journal of Applied Polymer Science , Volume 53, pages 1453 to 1460 [1994]; Sernetz and Mulhaupt, in Macromol.
- Still other suitable catalyst systems for use as at least one, both or all of the least two catalyst systems required by the inventive process include, but are not limited to, those described or used in Plastics Technology , p. 25 (September 1992); WO 98,10018 by Martin J. Guest et al; WO 95/27755 by Chung P. Park et al., WO 95/32095 by John G. Bradfute et al. (W. R. Grace & Co.); WO 94/00500 by R. B. Pannell (Exxon Chemical Patents, Inc.); WO 97/42240 by Van Tol et al.; U.S. application Ser. No. 07/545,403, filed Jul.
- catalyst systems include, but are not limited to, that described by Francis J. Timmers et al. in U.S. application Ser. No. 08/708,809, filed Sep. 4, 1996, and those based on the cation, ⁇ 1 : ⁇ 5 -tert-Butyl(dimethyl-fluorenylsilyl)-amido ⁇ bis(trimethylsilyl)methyl ⁇ titanium(II), described by Guangxue Xu, Institute of Polymer Science, Zhongshan University, Guangzhou 510275.
- the preferred class of single site or metallocene catalyst system for use in the present invention as at least one, both or all of the at least two catalyst systems is a constrained geometry catalyst system. More preferably, both and most preferably all of the at least two catalyst systems are constrained geometry catalyst systems.
- the interpolymer product with its unique thermal property attributes is useful in a variety of applications including, for example, for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings (especially compression and injection molding), coatings (especially extrusion coating) thermoforms, profiles and fibers (especially elastic fibers and nonwoven fabrics or composites).
- the molecular weight and molecular weight distribution of the interpolymer product of the present invention can be conveniently determined using gel permeation chromatography (GPC) procedures and methods.
- the melting point and weight percent crystallinity of the interpolymer product can be conveniently determined by differential scanning calorimetry using a Dupont DSC-910 unit. In order to eliminate any previous thermal history, samples are first heated to 200° C. Heating and cooling curves are recorded at 10° C./minute. Melting (from second heat) and crystallization temperatures are recorded from the peak temperatures of the endotherm and exotherm, respectively. The peak with the highest amplitude is taken as the melting point temperature for the sample. The highest amplitude requirement is especially important where a curve shows multiple peaks or a peak is associated with a shoulder or hump. Weight percent crystallinity (based on the total weight of the interpolymer product) is taken from an integration of the area under the endothermic curve to provide heat of fusion (in Joules/gram) which is then divided by 292 Joules/gram.
- the glass transition temperature of the interpolymer product is determined using solid state dynamic mechanical spectroscopy (DMS) wherein compression molded samples are tested using a Rheometrics 800E mechanical spectrometer. Compression molded sample preparation is performed by melting the sample at 190° C. for 3 minutes and compression molding at 190° C. and under 20,000 lbs. (9072 kg) of pressure for another 2 minutes. Subsequently, the molten material is quenched in a press equilibrated to room temperature. The DMS testing is performed in torsional rectangular geometry mode under a constant nitrogen purge of about 2 scm. Samples are cooled to ⁇ 100° C.
- DMS solid state dynamic mechanical spectroscopy
- Loss modulus (G′′) data from ramped temperatures are collected isothermally at 5° C. intervals. From a plot of loss modulus (G′′) versus temperature in degrees Celsius, the peak with the highest amplitude (in dynes/cm 2 ) is taken as the glass transition temperature (peak T g temperature) in ° C. for the sample.
- the plot of loss modulus (G′′) versus temperature in degrees Celsius is also used to determine the peak width at half the height of the peak T g temperature for the inventive interpolymer product.
- the baseline of the loss modulus versus temperature plot can be conveniently drawn using the baseline method wherein a straight line tangent to the G′′ versus temperature curve is drawn as illustrated in FIG. 1.
- Half peak height (in dynes/cm 2 ) is the value (in dynes/cm 2 ) at the apex of the peak with highest amplitude divided by 2.
- the glass transition temperature range or width is the measure in ° C. across the peak at half height.
- the x-y coordinates at the apex of the peak with the highest amplitude and at that peak's half height can be determined using a DMS software add-ons or by importing the curve into a data analysis software package such as, for example, ORGIN supplied by MicroCal which feature cursor displays or assignments for the coordinates.
- the maximum service temperature of the inventive interpolymer product is conveniently determined using a thermal mechanical analyzer (Perkin-Elmer TMA 7 series). Samples are scanned at 5° C./minute and the load is set at 1 Newton. The point at which the TMA probe penetrates 1 mm into the sample is taken as the maximum service temperature for the sample.
- the weight percent styrene and atactic polystyrene for the interpolymer product can be conveniently determined using proton nuclear magnetic resonance ( 1 H N.M.R).
- NMR samples are prepared in 1,1,2,2-tetrachloroethane-d 2 (TCE-d 2 ) at 1.6-3.2 percent polymer by weight.
- TCE-d 2 1,1,2,2-tetrachloroethane-d 2
- product is weighed directly into a 5 mm sample tube, a 0.75 mL aliquot of TCE-d 2 is added by syringe and the tube is capped with a tight-fitting polyethylene cap.
- the sample is heated in a water bath at 85° C. to soften the sample.
- the capped samples are occasionally brought to reflux about three separate times for about 15 seconds using a heat gun.
- the sample is loaded into the Proton NMR unit immediately after the last reflux subsides.
- Proton NMR spectra are accumulated on a Varian VXR 300 with the sample probe at 80° C. and referenced to the residual protons of TCE-d 2 at 5.99 ppm. Delay times are about 1 second and data are collected in triplicate on each sample. The total analysis time per sample is about 10 minutes and the instrumental conditions were as follows:
- Integrals are measured around the labeled protons. Integral A 7.1 (aromatic, around 7.1 ppm) is believed to be the three ortho/para protons; and integral A 6.6 (aromatic, around 6.6 ppm) the two meta protons.
- the two aliphatic protons labeled a resonate at 1.5 ppm; and the single proton labeled b resonate at 1.9 ppm.
- the aliphatic region is integrated from about 0.8 to 2.5 ppm and is referred to as A a1 .
- Region A 6.6 is assigned the value of 1.
- Ratio A1 is integral A a1 / A 6.6 . All spectra collected have a 1.5:1:1.5 integration ratio of (o+p):m:(( ⁇ +b). The ratio of aromatic to aliphatic protons is 5 to 3. The aliphatic ratio is 2 to 1.
- s c and e c are styrene and ethylene proton fractions in the interpolymer product, respectively, and S c and E are mole fractions of styrene monomer and ethylene monomer in the interpolymer product, respectively.
- the total styrene content can also be determined by quantitative Fourier Transform Infrared spectroscopy (FTIR) and by Raman spectroscopy.
- FTIR quantitative Fourier Transform Infrared spectroscopy
- Raman spectroscopy quantitative Fourier Transform Infrared spectroscopy
- the catalyst was prepared in a drybox by successively adding solutions of MMAO-3A (Akzo Nobel); B(C 6 F 5 ) 3 (Boulder Scientific); CAT1 (Titanium, [1,1′-(h4-1,3-butadiene-1,4-diyl)bis[benzene]][1-[(1,2,3,3a, 11b-h)-1H-cyclopenta[1]phenanthren-1-yl]-N-(1,1-dimethylethyl)-1,1-dimethylsilanaminato(2-)-kN]-(CAS#199876-47-6)); and CAT2 (i.e.
- the catalyst solution was then transferred by syringe to a catalyst addition loop and injected into the reactor over approximately 2 minutes using a flow of high pressure solvent (toluene). The polymerization was allowed to proceed for 10 minutes while feeding ethylene on demand to maintain the desired pressure.
- the amount of ethylene consumed during the reaction was monitored using a mass flow meter.
- the interpolymer product solution was dumped from the reactor into a nitrogen-purged glass kettle. An aliquot of an additive solution (66.7 g of IRGAFOS® 168 and 33.3 g of IRGANOX® 1010, both supplied by Ciba Specialty Chemicals, in 500 mL of toluene) was added to this kettle in the amounts noted in Table 1 and the solution stirred thoroughly.
- the interpolymer product solution was dumped into a tray, air dried for several days, then thoroughly dried in a vacuum oven. The weights of the interpolymer products were recorded and their efficiencies calculated as grams of polymer per gram of titanium.
- Comparative run 15 was prepared from a melt blend of two component polymers (comparative runs 16 and 17).
- the actual melt blending was performed using a Haake mixer equipped with a Rheomix 3000 bowl. About 180 grams of the component polymers (total) were first dry blended, then fed into the mixer and permitted to equilibrate to 190° C. The feeding and temperature equilibration took about 3 to 5 min. The molten material was mixed at 190° C. and 40 rpm for about 10 minutes and then removed from the mixer and permitted to cool to ambient.
- FIGS. 2 and 3 show Inventive Examples 1 and 2 exhibit substantially synergistic thermal properties.
- the DSC melting point and TMA maximum service temperature of these semi-crystalline interpolymer products were significantly improved over monocatalyzed interpolymers.
- FIG. 4 indicates that the weight percent crystallinity for the inventive examples is generally higher than that of comparative monocatalyzed CAT1 interpolymers and substantially equivalent to that of comparative interpolymers monocatalyzed CAT2 interpolymers. Or at least, the crystallinity results of monocatalyzed CAT2 interpolymers vary widely.
- FIG. 5 shows that the Tg temperature of Inventive Example 13 is generally similar to that of monocatalyzed comparative interpolymer.
- FIG. 6 show the Tg temperature range or width of Inventive Example 13 is substantially broader than comparative interpolymer.
- FIG. 7 shows that typical melt blends substantially approximate the Tg width of their respective component interpolymers. Since Inventive Example 13 would ordinarily be expected to follow melt blend results and performance attributes, the fact that the inventive product is characterized by (1) a single Tg peak having a shoulder rather than two separate and distinct peaks and (2) a substantially broader Tg width is a completely unexpected surprise.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
- Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)
Abstract
A process for making an interpolymer product that includes contacting at least one α-olefinic monomer and at least one vinyl or vinylidene monomer in the presence of at least a first single site catalyst and second single site catalyst in a reactor system, and effectuating the polymerization of the monomers in the reactor.
Description
- This is a continuation application of U.S. patent application Ser. No. 09/506,422, filed Feb. 17, 2000, which claims benefit of U.S. Provisional Patent Application No. 60/120,347, filed Feb. 17, 1999, both of which are incorporated by reference herein in their entirety.
- Not applicable.
- Not applicable.
- The present invention relates to a thermoplastic interpolymer product comprising an α-olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer and/or at least one hindered aliphatic or cycloaliphatic vinyl or vinylidene aromatic monomer and, in at least one aspect, is characterized as having substantially synergistic thermal properties. The invention also relates to a process for manufacturing the interpolymer product wherein the process comprises employing two or more single site catalyst systems in at least one reaction environment (or reactor) and wherein at least two of the catalyst systems have (a) different monomer incorporation capabilities or reactivities and (b) the same or, optionally, different monomer sequencing and/or tacticity characteristics. With unique thermal property attributes, the interpolymer product is useful, for example, for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings, thermoforms, profiles and fibers.
- The generic class of materials covered by α-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers and including materials such as substantially random α-olefin/vinyl aromatic interpolymers are known in the art and offer a range of material structures and properties which makes them useful in various applications. For example, U.S. Pat. No. 5,460,818, the disclosure of which is incorporated herein by reference, describes substantially random α-olefin/vinyl aromatic monomer interpolymers as compatibilizers for blends of polyethylene and polystyrene. However, known methods and procedures for manufacturing α-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers do not provide independent control of material properties and attributes. That is, crystallinity, melting point and glass transition characteristics are known to inevitably vary with comonomer concentration where increase concentrations result in lower crystallinities, melting point temperatures, glass transition temperatures and service temperatures.
- There are several known methods for preparing α-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers such as those described by Francis J. Timmers et al. in U.S. application Ser. No. 08/708,809, filed Sep. 4, 1996; John G. Bradfute et al. (W. R. Grace & Co.) in WO 95/32095; R. B. Pannell (Exxon Chemical Patents, inc.) in WO 94/00500; and inPlastics Technology, p. 25 (September 1992), the disclosures of which are incorporated herein by reference.
- Numerous other preparative methods for α-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymers have been described in the literature. For example, Longo and Grassi (Makromol. Chem., Volume 191, pages 2387 to 2396 [1990]) and D'Anniello et al. (Journal of Applied Polymer Science, Volume 58, pages 1701-1706 [1995]), the disclosures of which are incorporated herein by reference, reported the use of a catalytic system based on methylalumoxane (MAO) and cyclopentadienyltitanium trichloride (CpTiCl3) to prepare an ethylene-styrene copolymer. Xu and Lin (Polymer Preprints, Am. Chem. Soc., Div. Polym. Chem.,
Volume 35, pages 686,687 [1994]), the disclosure of which is incorporated herein by reference, have reported copolymerization using a MgCl2/TiCl4/NdCl3/Al(iBu)3 catalyst to give random copolymers of styrene and propylene. Lu et al. (Journal of Applied Polymer Science, Volume 53, pages 1453 to 1460 [1994]), the disclosure of which is incorporated herein by reference, have described the copolymerization of ethylene and styrene using a Ticl4/NdCl3/MgCl2/al(Et)3 catalyst. Sernetz and Mulhaupt, (Macromol. Chem. Phys., V. 197, pp. 1071-1083, 1997), the disclosure of which is incorporated herein by reference, have described the influence of polymerization conditions on the copolymerization of styrene with ethylene using Me2Si(Me4Cp)(n-tert-butyl)TiCl2/Methylaluminoxane Ziegler-Natta catalysts. Copolymers of ethylene and styrene produced by bridged metallocene catalysts have been described by Arai, Toshiaki and Suzuki (Polymer Preprints, Am. Chem. Soc., Div. Polym. Chem., Volume 38, pages 349, 350 [1997]), the disclosure of which is incorporated herein by reference. Also, random copolymers of ethylene and styrene having high isotacticity are disclosed in Polymer Preprints, Vol. 39, no. 1, March 1998 by Toru Aria et al., the disclosure of which is incorporated herein by reference. - Also several patent describe the manufacture of α-olefin/vinyl aromatic monomer interpolymers such as propylene/styrene and butene/styrene in U.S. Pat. No. 5,244,996, issued to Mitsui Petrochemical Industries Ltd.; U.S. Pat. No. 5,652,315, also issued to Mitsui Petrochemical Industries Ltd.; or DE 197 11 339 A1 to Denki Kagaku Kogyo KK, the disclosures of all three of which are incorporated herein by reference. Ethylene/styrene copolymer produced by bridged metallocene catalysts are also described in U.S. Pat. No. 5,652,315, issued to Mitsui Toatsu Chemicals, Inc.
- Pseudo-random ethylene/vinyl aromatic interpolymers and the catalyst systems for making the same are disclosed in U.S. Pat. No. 5,703,187 and EP 416 815 A2, the disclosures of which are incorporated herein by reference.
- U.S. patent application Ser. No. 08/991,836, filed Dec. 16, 1997 and WO 98/10018, the disclosures of both of which are incorporated herein, in their entireties, by reference, indicate that a suitable method for manufacturing substantially random ethylene/vinyl aromatic interpolymers involves polymerizing a mixture of polymerizable monomers in the presence of one or more metallocene or constrained geometry catalysts in combination with various cocatalysts. However, the exemplified compositions therein all involve the same single catalyst composition of a titanium-based constrained geometry catalyst together with tris (pentafluorophenyl)boron as the activator and methylaluminoxane as the cocatalyst. That is, all reported examples were monocatalyzed interpolymers. Furthermore, there is no explicit disclosure in these descriptions that interpolymer made using multiple catalyst systems can provide improved thermal properties such as substantially higher meting points at substantially comparable crystallinities or diffused Tg responses.
- Blends comprising α-olefin/vinylidene aromatic monomer and/or hindered aliphatic or cycloaliphatic vinylidene monomer interpolymers are described in
WO 95/27755, in the names of Chung P. Park et al. and WO 98/10018, in the names of Martin J. Guest et al., the disclosures of which are incorporated herein by reference. All of the exemplified compositions consisted of physical melt blend preparations using component interpolymers made from a single catalyst composition. That is, the blends were not made using an in-situ or multiple reactor interpolymerization technique, nor were they manufactured using multiple catalyst compositions and, as such, all component polymers were monocatalyzed. - Moreover, melt blending is not known to provide independent or unique control of thermal resistance, melting behavior and glass transition characteristics as no complete data of such attributes are reported in
WO 95/27755 nor WO 98/10018. Thus it remains, although known α-olefin/vinyl or vinylidene aromatic interpolymers have several important attributes, they also exhibit several important deficiencies. For example, known α-olefin/vinyl or vinylidene aromatic interpolymer compositions, whether monocatalyzed or the melt blends, are characterized as having relatively low maximum service temperatures and narrow glass transition temperature ranges or widths (i.e. less than 15° C.) which limit their usefulness for elevated temperature service/applications as well as for applications which require the effective glass transition to span across a broad temperatures range. It is an object of the present invention to solve the problem of deficient thermal characteristics exhibited by known α-olefin/vinyl or vinylidene aromatic interpolymers. - We have discovered a new family of α-olefin/vinyl aromatic interpolymer products which are characterized as having substantially synergistic and improved thermal characteristics. The broad aspect of the invention is an interpolymer product comprising an α-olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer wherein the interpolymer product is characterized as having:
- A1) a melting point, as determined using differential scanning calorimetry, equal to or greater than the product of the equation:
- melting point=128−1.3333×total weight percent interpolymerized vinyl and/or vinylidene aromatic monomer,
- preferably, equal to or greater than the product of the equation:
- melting point=144−1.53×total weight percent interpolymerized vinyl and/or vinylidene aromatic monomer,
- more preferably, equal to or greater than the product of the equation:
- melting point=160−1.66667×total weight percent interpolymerized vinyl and/or vinylidene aromatic monomer,
- or
- A2) a highest peak melting point temperature (as determined using differential scanning calorimetry (DSC)) or a maximum service temperature (as determined using thermal mechanical analysis (TMA)) equal to or greater than 16 percent, preferably 30 percent, more preferably 50 percent higher than the melting point or maximum service temperature of a CAT2 monocatalyzed substantially random □-olefin/vinyl or vinylidene aromatic monomer interpolymer having an equivalent total mol percent interpolymerized vinyl and/or vinylidene aromatic monomer concentration,
- or
- B) a glass transition temperature range or width at half peak temperature height of greater than or equal to 15° C., preferably greater than or equal to 20° C., more preferably greater than or equal to 25° C., most preferably greater than or equal to 30° C., as determined using dynamic mechanical spectroscopy (DMS) loss modulus (G″) data.
- In a preferred embodiment, the inventive interpolymer product comprises ethylene as the α-olefin and styrene as the at least one vinyl or vinylidene aromatic monomer and is characterized as having:
- A) a highest peak melting point temperature (as determined using differential scanning calorimetry (DSC)) or a maximum service temperature (as determined using thermal mechanical analysis (TMA)) equal to or greater than 16 percent, preferably 30 percent, more preferably 50 percent higher than the melting point or maximum service temperature of a CAT2 monocatalyzed substantially random ethylene/styrene interpolymer having an equivalent total mol percent interpolymerized vinyl and/or vinylidene concentration,
- or
- B) a glass transition temperature range or width at half peak temperature height of greater than or equal to 15° C., preferably greater than or equal to 20° C., more preferably greater than or equal to 25° C., most preferably greater than or equal to 30° C., as determined using dynamic mechanical spectroscopy (DMS) loss modulus (G″) data.
- In other embodiments, the interpolymer product is dominantly substantially random, random, or alternating (i.e. more than 50 weight percent of the product is characterized as having the particular sequence). Preferably, the product is more than 70 weight percent, more preferably more than 80 weight percent and most preferably more than 90 weight percent substantially random. In especially preferred embodiments, the interpolymer product is substantially random with respect to all incorporated vinyl or vinylidene aromatic monomer sequences of more than three units.
- In other embodiments, the interpolymer product can be partially substantially random, random, alternately, diadic, triadic, tetradic or any combination thereof. That is, the interpolymer product can be variably incorporated and optionally variably sequenced. For example, the interpolymer product can be variably incorporated and dominantly substantially random where the two catalyst systems (e.g. CAT1 and CAT2) employed both characteristically provide a substantially random monomer sequencing. Such is believed to be the case as to incorporation even where the incorporation ratio between the two catalyst systems is 50/50. The interpolymer product can be variably incorporated and variably sequenced where, for example, the two catalyst systems employed both characteristically provide a different monomer sequence.
- In still other embodiments, the inventive interpolymer product can be variably incorporated and optionally variably sequenced and/or variably atactic, isotactic, syndiotactic or a combination thereof. That is, the inventive interpolymer product can have a mixed, the same or a different tacticity (i.e. atactic, isotactic, syndiotactic or combinations thereof) with respect to any partial or total sequence variety. Of particular interest (especially for elastic article applications) is an embodiment where the interpolymer product has improved thermal property attributes and comprises random, substantially random or alternating (or any combination thereof) hard and soft segments or blocks.
- Where the interpolymer has a high degree of alternating monomer sequencing (i.e. the interpolymer gives peaks at all three chemical shift regions of the main chain methylene and methyne carbons and the peak areas of these regions is not less than 70 percent of the total peak area of the main chain methylene and methyne carbons), a high degree of isotacticity (i.e. the isotactic diad is not less than 0.55) is most preferred
- Another aspect of the invention is an interpolymer product comprising α-olefin and at least one vinyl or vinylidene aromatic monomer made using at least two single site catalyst systems in at least one reaction environment or reactor wherein the catalyst systems are selected and operated to provide different monomer incorporation capabilities or reactivities.
- A third aspect of the invention is a process for making an interpolymer product, the product comprising an α-olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer, the process comprising
- a) selecting at least two single site catalyst systems,
- b) feeding the catalysts systems to at least one reaction environment or reactor, and
- c) controlling the reaction environment (or reactor), catalyst systems and interpolymerization conditions such that the catalyst systems operate or function at different vinyl or vinylidene aromatic monomer incorporation capabilities or interpolymerization reactivity rates.
- In certain aspects, the inventive interpolymer product has surprisingly improved thermal properties. For example, thermal property attributes can be controlled independent of monomer concentration and substantially independent of crystallinity or glass transition peak temperature. In particular aspects, as unique features, the melting point and/or thermal resistance of the inventive interpolymer product is substantially higher than that of a comparative substantially random interpolymer having an equivalent vinyl or vinylidene aromatic concentration and/or substantially comparably crystallinity. Alternatively, in other aspects and when amorphous, the inventive interpolymer product is surprisingly characterized by a more diffuse (i.e. broader) Tg temperature range or width at equivalent vinyl or vinylidene aromatic concentration.
- In particular embodiments, the inventive interpolymer product is characterized by various physical property enhancements such as, but not limited to, improved processability in terms of shear thinning and melt strength improvement from molecular weight control; improved mechanical properties such as impact resistance and tensile elongation; improved control of stress relaxation and elastic recovery attributes; improved control of surface characteristics for enhancement such as paintability, and combinations thereof.
- The commercial benefit of the present invention is now α-olefin/vinyl or vinylidene aromatic interpolymers with improved thermal characteristics are available. With improvements such as, for example, significantly higher maximum service temperatures, it now possible to provide elastic articles (e.g. waist bands in undergarments) which retain their elastic properties after exposure to elevated temperatures such as laundry dryers.
- FIG. 1 shows the baseline method applied to the G″ versus temperature curve of Inventive Example 13.
- FIG. 2 is a plot of the highest peak melting point versus weight percent interpolymerized styrene for Inventive Examples 1 and 2 and comparative runs 3-12.
- FIG. 3 is a plot of the maximum service temperature versus weight percent interpolymerized styrene for Inventive Examples 1 and 2 and comparative runs 3-5.
- FIG. 4 is a plot of the weight percent crystallinity versus weight percent interpolymerized styrene for Inventive Examples 1 and 2 and comparative runs 3-12.
- FIG. 5 is a plot of the Tg (by tan δ) versus weight percent interpolymerized styrene for Inventive Example 13 and several monocatalyzed comparative runs.
- FIG. 6 shows an overlay of the G″ versus temperature curves for Inventive Example 13 and
comparative run 14. - FIG. 7 shows an overlay of the G″ versus temperature curves for comparative runs 15-17.
- The term “interpolymer” is used herein to indicate a polymer wherein at least two different monomers are polymerized. That is, the polymer contains a plurality of polymerized monomers as such two, three, four and so on.
- The term “copolymer” as employed herein means a polymer wherein at least two different monomers are polymerized to form the copolymer. Thus, as used herein, there is overlap between the terms “interpolymer” and “copolymer” as, herein, both terms can refer to a polymer comprised of, for example, three polymerized monomers.
- The term “different catalsy systems” is used herein in reference to catalyst systems which incorporate monomers at different amount during interpolymerization. While the term principally refers to catalyst systems having different chemical compositions relative to one another, the term generally refers to any difference that results in different monomer incorporation or different polymerization reactivities or rates. As such, the term also refers to differences in concentrations, operating conditions, injection methods or timing and the like where the catalyst systems have the same chemical composition.
- The term “variably incorporated” as used herein refers an interpolymer product manufactured using at least two catalyst systems wherein during interpolymerization the catalyst systems are operated at different incorporation or reactivity rates. For example, the interpolymer product having a total styrene content of 36 weight percent is variably incorporated where one catalyst system incorporates 22 weight percent styrene and the other catalyst system incorporates 48 weight percent styrene and the production split between the two catalyst systems is 47/53 weight percentages.
- Suitable “pseudo-random” interpolymers are described in U.S. Pat. No. 5,703,187, the disclosure of which is incorporated herein in its entirety by reference.
- Suitable “alternating” interpolymers are those in which the aliphatic alpha-olefin monomer (A) and hindered vinylidene monomer (B) occur in repeat alternate sequences on the polymer chain in atactic or stereospecific structures (such as isotactic or syndiotactic) or in combinations of the general formula (AB)n.
- Suitable “random” interpolymers are those in which the monomer units are incorporated into the chain wherein can there exist various combinations of ordering including blockiness where either the aliphatic alpha-olefin monomer (A) or hindered vinylidene monomer (B) or both can be repeated adjacent to one another.
- Substantially random ethylene/vinyl or vinylidene aromatic interpolymers are especially preferred interpolymer products of the present invention. Representative of substantially random ethylene/vinyl aromatic interpolymers are substantially random ethylene/styrene interpolymers.
- A substantially random interpolymer comprises in polymerized form i) one or more α-olefin monomers, ii) one or more vinyl or vinylidene aromatic monomers, or one or more sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers, or both; and optionally iii) other polymerizable ethylenically unsaturated monomer(s).
- The term “substantially random” in the substantially random interpolymer resulting from polymerizing i) one or more α-olefin monomers; ii) one or more vinyl or vinylidene aromatic monomers or one or more sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomers, or both; and optionally iii) other polymerizable ethylenically unsaturated monomer(s) as used herein generally means that the distribution of the monomers of said interpolymer can be described by the Bernoulli statistical model or by a first or second order Markovian statistical model, as described by J. C. Randall inPOLYMER SEQUENCE DETERMINATION, Carbon-13 NMR Method, Academic Press New York, 1977, pp. 71-78, the disclosure of which is incorporated herein by reference. Substantially random interpolymers do not contain more than 15 mole percent of the total amount of vinyl or vinylidene aromatic monomer in blocks of vinyl or vinylidene aromatic monomer of more than 3 units.
- Preferably, the dominantly substantially random interpolymer is not characterized by a high degree (greater than 50 mol %) of either isotacticity or syndiotacticity. This means that in the carbon−13 NMR spectrum of the substantially random interpolymer, the peak areas corresponding to the main chain methylene and methine carbons representing either meso diad sequences or racemic diad sequences should not exceed 75 percent of the total peak area of the main chain methylene and methine carbons. By the subsequently used term “substantially random interpolymer” it is meant a substantially random interpolymer produced from the above-mentioned monomers.
- Suitable α-olefin monomers which are useful for preparing the inventive interpolymer product include, for example, α-olefin monomers containing from about 2 to about 20, preferably from about 2 to about 12, more preferably from about 2 to about 8 carbon atoms. Preferred such monomers include ethylene, propylene, butene-1, 4-methyl-1-pentene, hexene-1 and octene-1. Most preferred are ethylene or a combination of ethylene with C3-C8 α-olefins. These α-olefins do not contain an aromatic moiety.
-
- wherein R1 is selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl; each R2 is independently selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl; Ar is a phenyl group or a phenyl group substituted with from about 1 to about 5 substituents selected from the group consisting of halo, C1-4-alkyl, and C1-4-haloalkyl; and n has a value from zero to about 4, preferably from zero to about 2, most preferably zero. Particularly suitable such monomers include styrene and lower alkyl- or halogen-substituted derivatives thereof. Exemplary monovinyl or monovinylidene aromatic monomers include styrene, vinyl toluene, α-methylstyrene, t-butyl styrene or chlorostyrene, including all isomers of these compounds. Preferred monomers include styrene, α-methyl styrene, the lower alkyl-(C1-C4) or phenyl-ring substituted derivatives of styrene, such as for example, ortho-, meta-, and para-methylstyrene, the ring halogenated styrenes, para-vinyl toluene or mixtures thereof. A more preferred aromatic monovinyl monomer is styrene.
-
- wherein A1 is a sterically bulky, aliphatic or cycloaliphatic substituent of up to 20 carbons, R1 is selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl; each R2 is independently selected from the group of radicals consisting of hydrogen and alkyl radicals containing from about 1 to about 4 carbon atoms, preferably hydrogen or methyl; or alternatively R1 and A1 together form a ring system.
- By the term “sterically bulky” is meant that the monomer bearing this substituent is normally incapable of addition polymerization by standard Ziegler-Natta polymerization catalysts at a rate comparable with ethylene polymerizations.
- α-Olefin monomers containing from about 2 to about 20 carbon atoms and having a linear aliphatic structure such as ethylene, propylene, butene-1, hexene-1 and octene-1 are not considered to be sterically hindered aliphatic monomers. Preferred sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene compounds are monomers in which one of the carbon atoms bearing ethylenic unsaturation is tertiary or quaternary substituted. Examples of such substituents include cyclic aliphatic groups such as cyclohexyl, cyclohexenyl, cyclooctenyl, or ring alkyl or aryl substituted derivatives thereof, tert-butyl or norbornyl. Most preferred sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene compounds are the various isomeric vinyl-ring substituted derivatives of cyclohexene and substituted cyclohexenes, and 5-ethylidene-2-norbornene. Especially suitable are 1-, 3-, and 4-vinylcyclohexene.
- The inventive interpolymer product usually contains from about 5 to about 65, preferably from about 5 to about 55, more preferably from about 10 to about 50 mole percent of at least one vinyl or vinylidene aromatic monomer; or sterically hindered aliphatic or cycloaliphatic vinyl or vinylidene monomer; or both; and from about 35 to about 95, preferably from about 45 to about 95, more preferably from about 50 to about 90 mole percent of at least one aliphatic α-olefin having from about 2 to about 20 carbon atoms.
- Other optional polymerizable ethylenically unsaturated monomer(s) include strained ring olefins such as norbornene and C1-10-alkyl or C6-10-aryl substituted norbornenes, with an exemplary substantially random interpolymer being ethylene/styrene/norbornene.
- The most preferred inventive interpolymer product are interpolymers of ethylene and styrene and interpolymers of ethylene, styrene and at least one α-olefin containing from about 3 to about 8 carbon atoms.
- The number average molecular weight (Mn) of the inventive interpolymer product is usually greater than 5,000, preferably from about 20,000 to about 1,000,000, more preferably from 50,000 to 500,000.
- Semi-crystalline inventive interpolymer products (i.e. those having a measurably crystallinity using differential scanning calorimetry) can be conveniently characterized by DSC crystallinity, DMS glass transition temperature, DSC highest peak melting point temperature and maximum service temperature by thermal mechanical analysis (TMA). Conversely, amorphous inventive interpolymer products (i.e. those having no measurable crystallinity using differential scanning calorimetry and which typically contain greater than 48 weight percent vinyl or vinylidene aromatic monomer) are conveniently characterized by glass transition characteristics (i.e., Tg and peak widths at half peak temperature height) as determined using dynamic mechanical spectroscopy (DMS).
- The glass transition temperature (Tg) of the inventive interpolymer product is preferably in the range from about −40° C. to about +60° C., more preferably from about −30° C. to about +50° C., most preferably from about −10° C. to about +40° C., as measured by differential mechanical scanning (DMS) using loss modulus (G″) data. The melting point of the inventive semicrystalline interpolymer product is preferably in the range from about 0° C. to about 160° C., as determined using differential scanning calorimetry (DSC).
- In especially preferred embodiments, the inventive interpolymer product has a polydispersity greater than 4, preferably greater than 7, as determined using gel permeation chromatography (GPC).
- The inventive interpolymer product may be modified by typical grafting, hydrogenation, functionalizing, or other reactions well known to those skilled in the art. The interpolymer product may be readily sulfonated or chlorinated to provide functionalized derivatives according to established techniques. The interpolymer product may also be modified by various chain extending or crosslinking processes including, but not limited to peroxide-, silane-, sulfur-, radiation-, or azide-based cure systems. A full description of the various crosslinking technologies is described in copending U.S. patent application Ser. Nos. 08/921,641 and 08/921,642, both filed on Aug. 27, 1997, the disclosures of both of which are incorporated herein by reference.
- Dual cure systems, which use a combination of heat, moisture cure, and/or radiation steps, may also be effectively employed. Dual cure systems are disclosed and claimed in U.S. patent application Ser. No. 536,022, filed on Sep. 29, 1995, in the names of K. L. Walton and S. V. Karande, the disclosure of which is incorporated herein by reference. Particularly desirable dual-cure systems employ peroxide crosslinking agents in conjunction with silane crosslinking agents, peroxide crosslinking agents in conjunction with radiation, sulfur-containing crosslinking agents in conjunction with silane crosslinking agents, and combinations thereof.
- The inventive interpolymer product may also be modified by various other crosslinking processes including, but not limited to, the incorporation of a diene component as a termonomer in its preparation and subsequent crosslinking by the aforementioned methods and further methods including vulcanization via the vinyl group using sulfur for example as the crosslinking agent.
- The interpolymer product can also be mixed or blended (including melt blended) with other natural and/or synthetic materials such as, including, but not limited to, conventional (i.e. those not variably incorporated) α-olefin/vinyl or vinylidene aromatic interpolymers, substantially linear ethylene interpolymers, homogeneously branched linear ethylene interpolymers, heterogeneously branched linear ethylene interpolymers (e.g., linear low density polyethylene (LLDPE), medium density polyethylene (MDPE), high density polyethylene (HDPE) and ultra low or very low density polyethylene (ULDPE or VLDPE)), elastomers, rubbers, polystyrene (especially high impact polystyrenes (HIPs)), styrene block polymers (e.g. styrene butadiene block copolymers, styrene/ethylene propylene/styrene block copolymers, styrene/ethylene-butylene/styrene block copolymers, styrene/isoprene/styrene block copolymers, and styrene/butadiene/styrene block copolymers), polyethers (especially aromatic polyethers), polypropylene, polysulfones, polycarbonates, polyamides, ABS, epoxies, ethylene/propylene interpolymers, anhydride modified polyethylenes (e.g., maleic anhydride grafted LLDPE and HDPE) as well as high pressure polyethylenes such as, for example, but not limited to, low density polyethylene (LDPE), ethylene/acrylic acid (EAA) interpolymers and ionomers, ethylene/methacrylic acid (EMAA) interpolymers and ionomers, ethylene/vinyl acetate (EVA) interpolymers and ethylene/methacrylate (EMA) interpolymers, and any combination thereof.
- The inventive interpolymer product is manufacture using (that is, by contacting monomers with) at least two single site or metallocene catalyst systems in at least one reaction environment or reactor. In particular embodiments, the process comprises at two reaction environments or reactors operated in series or parallel, and preferably in series configuration.
- The interpolymerization process can be solution, gas phase, particle form (i.e. slurry or dispersion polymerization) type or any combination thereof such as where multiple reaction environments or reactors are employed and at least one environment or reactor is in solution mode and at least one other is in particle form or gas phase mode. However, a solution interpolymerization process is preferred.
- Preferably, interpolymerization operating conditions comprise pressures from about atmospheric up to about 3,000 atmospheres and temperatures from about −30° C. to about 200° C.
- The at least one reaction environment or reactor may be a sphere, stirred tank, tube or loop configuration or design or any combination thereof such as where multiple reaction environments or reactors are employed. However, a loop configuration (including a multiple loop configuration) is preferred due to its tendency to provide improved product conversion and productivity.
-
- wherein each Cp is independently, each occurrence, a substituted cyclopentadienyl group π-bound to M; E is C or Si; M is a group IV metal, preferably Zr or Hf. most preferably Zr; each R is independently, each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to about 30 preferably from 1 to about 20 more preferably from 1 to about 10 carbon or silicon atoms; each R′ is independently, each occurrence, hydrogen, halo, hydrocarbyl, hydrocarbyloxy, silahydrocarbyl, hydrocarbylsilyl containing up to about 30 preferably from 1 to about 20 more preferably from 1 to about 10 carbon or silicon atoms or two R′ groups together can be a C1-10 hydrocarbyl substituted 1,3-butadiene; m is 1 or 2; and optionally, but preferably in the presence of an activating cocatalyst. Particularly, suitable substituted cyclopentadienyl groups include those illustrated by the formula:
- wherein each R is independently, each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to about 30 preferably from 1 to about 20 more preferably from 1 to about 10 carbon or silicon atoms or two R groups together form a divalent derivative of such group. Preferably, R independently each occurrence is (including where appropriate all isomers) hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, phenyl or silyl or (where appropriate) two such R groups are linked together forming a fused ring system such as indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, or octahydrofluorenyl.
- Particularly preferred catalysts include, for example, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium dichloride, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))
zirconium 1,4-diphenyl-1,3-butadiene, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium di-C1-4alkyl, racemic-(dimethylsilanediyl(2-methyl-4-phenylindenyl))zirconium di-C1-4alkoxide, or any combination thereof and the like. - Also included are the titanium-based catalysts, [N-(1,1-dimethylethyl)-1,1-dimethyl-1-[(1,2,3,4,5-h)-1,5,6,7-tetrahydro-s-indacen-1-yl]silanaminato(2-)-N]titanium dimethyl; (1-indenyl)(tert-butylamido)dimethyl-silane titanium dimethyl; ((3-tert-butyl)(1,2,3,4,5-h)-1-indenyl)(tert-butylamido)dimethylsilane titanium dimethyl; and ((3-iso-propyl)(1,2,3,4,5-h)-1-indenyl)(tert-butyl amido)dimethylsilane titanium dimethyl, or any combination thereof and the like.
- Other suitable catalyst systems for use as at least one, both or all of the least two catalyst systems required by the inventive process include, but are not limited to, those described by Longo and Grassi inMakromol. Chem., Volume 191, pages 2387 to 2396 [1990]; D'Anniello et al. in Journal of Applied Polymer Science, Volume 58, pages 1701-1706 [1995]; Xu and Lin in Polymer Preprints, Am.Chem.Soc.,Div.Polym.Chem.,
Volume 35, pages 686,687 [1994]; Lu et al. in Journal of Applied Polymer Science, Volume 53, pages 1453 to 1460 [1994]; Sernetz and Mulhaupt, in Macromol. Chem. Phys., v. 197, pp 1071-1083, 1997); and Arai, Toshiaki and Suzuki in Polymer Preprints, Am.Chem.Soc.,Div.Polym.Chem., Volume 38, pages 349, 350 [1997], the disclosures of all of which are incorporated herein by reference in their entireties. - Still other suitable catalyst systems for use as at least one, both or all of the least two catalyst systems required by the inventive process include, but are not limited to, those described or used inPlastics Technology, p. 25 (September 1992); WO 98,10018 by Martin J. Guest et al; WO 95/27755 by Chung P. Park et al., WO 95/32095 by John G. Bradfute et al. (W. R. Grace & Co.); WO 94/00500 by R. B. Pannell (Exxon Chemical Patents, Inc.); WO 97/42240 by Van Tol et al.; U.S. application Ser. No. 07/545,403, filed Jul. 3, 1990 corresponding to EP-A-416,815; U.S. application Ser. No. 07/702,475, filed May 20, 1991 corresponding to EP-A-514,828; U.S. application Ser. No. 07/876,268, filed May 1, 1992 corresponding to EP-A-520,732; U.S. application Ser. No. 08/241,523, filed May 12, 1994; U.S. application Ser. No. 08/991,836, filed Dec. 16, 1997; as well as
EP 0 892 014; DE 197 11 339; DE 195 42 356 based on WO 97/18248; and U.S. Pat. Nos: 5,460,818; 5,62,315; 5,703,187; 5,055,438; 5,057,475; 5,096,867; 5,064,802; 5,132,380; 5,189,192; 5,321,106; 5,347,024; 5,043,408; 5,350,723; 5,374,696; 5,399,635; 5,460,993; 5,244,996; and 5,556,928, all of which publications, applications and patents are incorporated herein by reference in their entireties. - Other particularly suitable catalyst systems include, but are not limited to, that described by Francis J. Timmers et al. in U.S. application Ser. No. 08/708,809, filed Sep. 4, 1996, and those based on the cation, η1:η5-tert-Butyl(dimethyl-fluorenylsilyl)-amido{bis(trimethylsilyl)methyl}titanium(II), described by Guangxue Xu, Institute of Polymer Science, Zhongshan University, Guangzhou 510275.
- The preferred class of single site or metallocene catalyst system for use in the present invention as at least one, both or all of the at least two catalyst systems is a constrained geometry catalyst system. More preferably, both and most preferably all of the at least two catalyst systems are constrained geometry catalyst systems.
- The interpolymer product with its unique thermal property attributes is useful in a variety of applications including, for example, for impact, bitumen and asphalt modification, adhesives, dispersions or latexes and fabricated articles such as, but not limited to, foams, films, sheet, moldings (especially compression and injection molding), coatings (especially extrusion coating) thermoforms, profiles and fibers (especially elastic fibers and nonwoven fabrics or composites).
- The molecular weight and molecular weight distribution of the interpolymer product of the present invention can be conveniently determined using gel permeation chromatography (GPC) procedures and methods.
- The melting point and weight percent crystallinity of the interpolymer product can be conveniently determined by differential scanning calorimetry using a Dupont DSC-910 unit. In order to eliminate any previous thermal history, samples are first heated to 200° C. Heating and cooling curves are recorded at 10° C./minute. Melting (from second heat) and crystallization temperatures are recorded from the peak temperatures of the endotherm and exotherm, respectively. The peak with the highest amplitude is taken as the melting point temperature for the sample. The highest amplitude requirement is especially important where a curve shows multiple peaks or a peak is associated with a shoulder or hump. Weight percent crystallinity (based on the total weight of the interpolymer product) is taken from an integration of the area under the endothermic curve to provide heat of fusion (in Joules/gram) which is then divided by 292 Joules/gram.
- The glass transition temperature of the interpolymer product is determined using solid state dynamic mechanical spectroscopy (DMS) wherein compression molded samples are tested using a Rheometrics 800E mechanical spectrometer. Compression molded sample preparation is performed by melting the sample at 190° C. for 3 minutes and compression molding at 190° C. and under 20,000 lbs. (9072 kg) of pressure for another 2 minutes. Subsequently, the molten material is quenched in a press equilibrated to room temperature. The DMS testing is performed in torsional rectangular geometry mode under a constant nitrogen purge of about 2 scm. Samples are cooled to −100° C. and run at a fixed oscillation frequency of 10 rad/sec using a torsional set strain of 0.05 percent. Loss modulus (G″) data from ramped temperatures are collected isothermally at 5° C. intervals. From a plot of loss modulus (G″) versus temperature in degrees Celsius, the peak with the highest amplitude (in dynes/cm2) is taken as the glass transition temperature (peak Tg temperature) in ° C. for the sample.
- The plot of loss modulus (G″) versus temperature in degrees Celsius is also used to determine the peak width at half the height of the peak Tg temperature for the inventive interpolymer product. The baseline of the loss modulus versus temperature plot can be conveniently drawn using the baseline method wherein a straight line tangent to the G″ versus temperature curve is drawn as illustrated in FIG. 1. Half peak height (in dynes/cm2) is the value (in dynes/cm2) at the apex of the peak with highest amplitude divided by 2. The glass transition temperature range or width is the measure in ° C. across the peak at half height. For particular precision, the x-y coordinates at the apex of the peak with the highest amplitude and at that peak's half height can be determined using a DMS software add-ons or by importing the curve into a data analysis software package such as, for example, ORGIN supplied by MicroCal which feature cursor displays or assignments for the coordinates.
- The maximum service temperature of the inventive interpolymer product is conveniently determined using a thermal mechanical analyzer (Perkin-Elmer TMA 7 series). Samples are scanned at 5° C./minute and the load is set at 1 Newton. The point at which the TMA probe penetrates 1 mm into the sample is taken as the maximum service temperature for the sample.
- The weight percent styrene and atactic polystyrene for the interpolymer product can be conveniently determined using proton nuclear magnetic resonance (1H N.M.R). In the determinations, NMR samples are prepared in 1,1,2,2-tetrachloroethane-d2 (TCE-d2) at 1.6-3.2 percent polymer by weight. For each determination, product is weighed directly into a 5 mm sample tube, a 0.75 mL aliquot of TCE-d2 is added by syringe and the tube is capped with a tight-fitting polyethylene cap. The sample is heated in a water bath at 85° C. to soften the sample. To provide mixing, the capped samples are occasionally brought to reflux about three separate times for about 15 seconds using a heat gun. The sample is loaded into the Proton NMR unit immediately after the last reflux subsides.
- Proton NMR spectra are accumulated on a Varian VXR 300 with the sample probe at 80° C. and referenced to the residual protons of TCE-d2 at 5.99 ppm. Delay times are about 1 second and data are collected in triplicate on each sample. The total analysis time per sample is about 10 minutes and the instrumental conditions were as follows:
- Varian VXR-300, standard1H:
- Sweep Width, 5000 Hz
- Acquisition Time, 3.002 sec
- Pulse Width, 8 μsec
- Frequency, 300 MHz
- Delay, 1 sec
- Transients, 16
- Initially, a1H NMR spectrum for a sample of the polystyrene, STYRON™ 680 (available form the Dow Chemical Company, Midland, Mich.) is acquired with a delay time of one second. The protons are “labeled”: β, branch; α, alpha; o, ortho; m, meta; ρ, para, as shown in FIG. 1 of U.S. patent application Ser. No. 08/991,836.
- Integrals are measured around the labeled protons. Integral A7.1 (aromatic, around 7.1 ppm) is believed to be the three ortho/para protons; and integral A6.6 (aromatic, around 6.6 ppm) the two meta protons. The two aliphatic protons labeled a resonate at 1.5 ppm; and the single proton labeled b resonate at 1.9 ppm. The aliphatic region is integrated from about 0.8 to 2.5 ppm and is referred to as Aa1.
- Region A6.6 is assigned the value of 1. Ratio A1 is integral Aa1/ A6.6. All spectra collected have a 1.5:1:1.5 integration ratio of (o+p):m:((α+b). The ratio of aromatic to aliphatic protons is 5 to 3. The aliphatic ratio is 2 to 1.
- The following equations are used to determine the degree of styrene incorporation in the interpolymer product:
- (C Phenyl)=C7.1+A7.1−(1.5×A6.6)
- (C Aliphatic)=Ca1−(15×A6.6)
- sc=(C Phenyl)/5
- ec=(C Aliphatic−(3×sc))/4
- E=ec/(ec+sc)
- Sc=sc/(ec+sc)
-
- where sc and ec are styrene and ethylene proton fractions in the interpolymer product, respectively, and Sc and E are mole fractions of styrene monomer and ethylene monomer in the interpolymer product, respectively.
-
- The total styrene content can also be determined by quantitative Fourier Transform Infrared spectroscopy (FTIR) and by Raman spectroscopy.
- Polymerization experiments were performed to manufacture Inventive Examples 1, 2 and 13 using a 1 gallon stirred Autoclave Engineers reactor. For each example, the reactor was charged with the desired amounts of toluene and styrene using a mass flow meter. Hydrogen was added by expansion from a 75 mL vessel, then the reactor was heated to the desired polymerization temperature and saturated with ethylene to the desired pressure. The catalyst was prepared in a drybox by successively adding solutions of MMAO-3A (Akzo Nobel); B(C6F5)3 (Boulder Scientific); CAT1 (Titanium, [1,1′-(h4-1,3-butadiene-1,4-diyl)bis[benzene]][1-[(1,2,3,3a, 11b-h)-1H-cyclopenta[1]phenanthren-1-yl]-N-(1,1-dimethylethyl)-1,1-dimethylsilanaminato(2-)-kN]-(CAS#199876-47-6)); and CAT2 (i.e. Titanium, [N-(1,1-dimethylethyl)-1,1-dimethyl-1-[(1,2,3,4,5-h)-2,3,4,5-tetramethyl-2,4-cyclopentadien-1-yl]silanaminato(2-)-kN][(1,2,3,4-h)-1,3-pentadiene]-(CAS#169104-71-6)) to enough additional solvent to give a total volume of 12 mL. The catalyst solution was then transferred by syringe to a catalyst addition loop and injected into the reactor over approximately 2 minutes using a flow of high pressure solvent (toluene). The polymerization was allowed to proceed for 10 minutes while feeding ethylene on demand to maintain the desired pressure. The amount of ethylene consumed during the reaction was monitored using a mass flow meter. The interpolymer product solution was dumped from the reactor into a nitrogen-purged glass kettle. An aliquot of an additive solution (66.7 g of IRGAFOS® 168 and 33.3 g of IRGANOX® 1010, both supplied by Ciba Specialty Chemicals, in 500 mL of toluene) was added to this kettle in the amounts noted in Table 1 and the solution stirred thoroughly. The interpolymer product solution was dumped into a tray, air dried for several days, then thoroughly dried in a vacuum oven. The weights of the interpolymer products were recorded and their efficiencies calculated as grams of polymer per gram of titanium.
TABLE 1 Inventive Example 1 2 13 Temperature, (° C.) 90 95 75 C2 Pressure, (psig) 200 300 100 C2 loaded, (g) 85.0 119.7 48.5 Toluene, (g) 800 800 600 Styrene, (g) 800 800 1000 H2, (psig) 50 25 25 H2, (mmol) 10.4 5.2 5.2 CAT2(μmol) 10 10 10 CAT1(μmol) 2 1 1 Ti/B/AI* 1:5:5 1:5:5 1:5:5 C2 Max Rate, (g/min) 41.2 42.5 3.7 C2 Total, (g) 117.1 111.7 21.5 Additive Solution (mL) 2.2 2.3 0.4 Polymer Yield, g poly 246.0 141.2 68.6 Efficiency (g poly/g Ti) 427,975 267,983 130,195 Mw 269.6 244.3 381.5 Mn 34.2 21.7 22.5 Mw/Mn 7.9 11.3 17.0 % Interpolymerized 47.8 35.8 64.8 Styrene by wt. (NMR) % aPS by wt. (NMR) 3.3 5.4 13.0 - The same polymerization run as described above for Inventive Example 1 was separately repeated, except only CAT1 (with the same activator and cocatalyst and molar ratios) was used to manufacture comparative runs 3-7 and only CAT2 1 (with the same activator and cocatalyst and molar ratios) was used to manufacture comparative runs 8-12, 14, 16 and 17. That is, these comparative runs were all monocatalyzed.
-
Comparative run 15 was prepared from a melt blend of two component polymers (comparative runs 16 and 17). The actual melt blending was performed using a Haake mixer equipped with a Rheomix 3000 bowl. About 180 grams of the component polymers (total) were first dry blended, then fed into the mixer and permitted to equilibrate to 190° C. The feeding and temperature equilibration took about 3 to 5 min. The molten material was mixed at 190° C. and 40 rpm for about 10 minutes and then removed from the mixer and permitted to cool to ambient. - The physical properties of the Inventive Examples 1 and 2 and comparative runs 3-12 were determined according to procedures and methods described herein above or incorporated herein above by reference. The results of these determinations are reported in Table 2.
TABLE 2 Wt % DSC Melting DSC Wt % TMA Max. Service Example Styrene Point, ° C. Crystallinity Temp., ° C. Inv. Ex 136 100 15 99 Inv. Ex 248 80 6 66 Run 3 42 26 3 50 Run 435 54 10 64 Run 530 61 13 74 Run 6 47.8 20 1 ND Run 7 35.8 52 10 ND Run 8 28 77 18 ND Run 9 47.8 43 3 ND Run 10 35.8 70 15 ND Run 11 30.7 69 8 ND Run 12 22 84 17 ND - The glass transition temperature and temperature range or width was determined for Inventive Example 13 and several other comparative runs, including the melt blended sample (comparative run 15). Table 3 reports the glass transition test results.
TABLE 3 Tg Temp Wt % DMS Tg Range or Example Styrene Temp., ° C. width, ° C. Inv. Ex 1365 −11, 5* 34 Inv. Ex 1365 15 Run 1466 14* 10 Run 1466 20 Run 1565 2, 24* 11, 10 Run 1673 25* 10 Run 1673 31 Run 1758 −3* 11 Run 1758 3 Run 18 26 −7 Run 19 52 −2 Run 2048 −5 Run 21 56 3 Run 22 67 21 - FIGS. 2 and 3 show Inventive Examples 1 and 2 exhibit substantially synergistic thermal properties. The DSC melting point and TMA maximum service temperature of these semi-crystalline interpolymer products were significantly improved over monocatalyzed interpolymers.
- In contrast to FIGS. 2 and 3, FIG. 4 indicates that the weight percent crystallinity for the inventive examples is generally higher than that of comparative monocatalyzed CAT1 interpolymers and substantially equivalent to that of comparative interpolymers monocatalyzed CAT2 interpolymers. Or at least, the crystallinity results of monocatalyzed CAT2 interpolymers vary widely.
- While FIG. 5 shows that the Tg temperature of Inventive Example 13 is generally similar to that of monocatalyzed comparative interpolymer. But FIG. 6 show the Tg temperature range or width of Inventive Example 13 is substantially broader than comparative interpolymer. FIG. 7 shows that typical melt blends substantially approximate the Tg width of their respective component interpolymers. Since Inventive Example 13 would ordinarily be expected to follow melt blend results and performance attributes, the fact that the inventive product is characterized by (1) a single Tg peak having a shoulder rather than two separate and distinct peaks and (2) a substantially broader Tg width is a completely unexpected surprise.
Claims (21)
1. An interpolymer product comprising an α-olefin interpolymerized with at least one vinyl or vinylidene aromatic monomer wherein the interpolymer product is characterized as having:
A) a melting point, as determined using differential scanning calorimetry, equal to or greater than the product of the equation:
melting point=128−1.3333×total weight percent interpolymerized vinyl and/or vinylidene aromatic monomer,
or
B) a glass transition temperature range or width at half peak temperature height of greater than or equal to 15° C., preferably greater than or equal to 20° C., more preferably greater than or equal to 25° C., most preferably greater than or equal to 30° C., as determined using dynamic mechanical spectroscopy (DMS) loss modulus (G″) data.
11. A process for making an interpolymer product, comprising:
a) contacting at least one α-olefinic monomer and at least one vinyl or vinylidene monomer in the presence of at least a first single site catalyst and second single site catalyst in a reactor system;
b) effectuating the polymerization of the monomers in the reactor.
12. The process of claim 11 , wherein the vinyl or vinylidene aromatic monomer is a hindered aliphatic or cycloaliphatic vinyl or vinylidene aromatic monomer.
13. The process of claim 11 , wherein the process further includes providing at least one hindered aliphatic or cycloaliphatic vinyl or vinylidene aromatic monomer.
14. The process of claim 11 , 12, or 13, wherein the at least one α-olefin further comprises ethylene and at least on additional α-olefin having from about 3 to about 8 carbon atoms.
15. The process of claim 11 , wherein the first and second catalysts have different vinyl or vinylidene aromatic monomer incorporation capabilities or interpolymerization reactivity rates.
16. The process of claim 11 , wherein the first catalyst has a first monomer sequencing characteristic and second catalyst has a second monomer sequencing characteristic and the first and second monomer sequencing characteristics are substantially similar.
17. The process of claim 11 , wherein the first catalyst has a first monomer sequencing characteristic and second catalyst has a second monomer sequencing characteristic and the first and second monomer sequencing characteristics are different.
18. The process of claim 11 wherein the first catalyst or second catalyst is a constrained geometry catalyst.
19. The process of claim 11 , wherein the interpolymer product is substantially random, random, or alternating.
20. The process of claim 11 , wherein the interpolymer product is partially substantially random, triadic, tetradic or combinations thereof.
21. The process of claim 11 wherein the α-olefinic monomer is selected from the group consisting of ethylene, propylene, 1-butene, 1-hexene, 1-octene.
22. The process of claim 11 wherein the reactor system comprises at least two reactors operated in series.
23. The process of claim 11 , wherein the reactor system comprises at least two reactors operated in parallel.
24. The process of claim 11 , wherein the at least a first single site catalyst or second single site catalyst follows the formula
wherein each Cp is independently, in each occurrence, a substituted cyclopentadienyl group π-bound to M; E is C or Si; M is a group IV metal; each R is independently, in each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to about 30 carbon or silicon atoms; each R′ is independently, in each occurrence, H, halo, hydrocarbyl, hyrocarbyloxy, silahydrocarbyl, hydrocarbylsilyl containing up to about 30 carbon or silicon atoms or two R′ groups together can be a C1-10 hydrocarbyl substituted 1,3-butadiene; m is 1 or 2;
25. The process of claim 24 wherein the substituted cyclopentadienyl groups include those illustrated by the formula:
wherein each R is independently, in each occurrence, H, hydrocarbyl, silahydrocarbyl, or hydrocarbylsilyl, containing up to about 30 carbon or silicon atoms or two R groups together form a divalent derivative of such group.
26. The process of claim 25 wherein R independently in each occurrence is hydrogen, methyl, ethyl, propyl, butyl, pentyl, hexyl, benzyl, phenyl or silyl or two such R groups are linked together forming a fused ring system such as indenyl, fluorenyl, tetrahydroindenyl, tetrahydrofluorenyl, or octahydrofluorenyl.
27. The process of claim 11 wherein the at least first and second catalysts are selected from the group consisting of racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl))zirconium dichloride, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl))zirconium 1,4-diphenyl-1,3-butadiene, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl))zirconium di-C1-4 alkyl, racemic-(dimethylsilanediyl)-bis-(2-methyl-4-phenylindenyl)) zirconium di-C1-4 alkoxide, and combinations thereof.
28. The process of claim 18 wherein the constrained geometry catalyst is selected from [N-(1,1-dimethylethyl)-1,1-dimethyl-1-[(1,2,3,4,5-η)-1,5,6,7-tetrahydro-s-indacen-1-yl]silanaminato(2-)-N]titanium dimethyl; (1-indenyl)(tert-butylamido) dimethyl-silane titanium dimethyl; ((3-tert-butyl)(1,2,3,4,5-η)-1-indenyl)(tert-butylamido) dimethylsilane titanium dimethyl; and ((3-iso-propyl)(1,2,3,4,5-η)-1-indenyl)(tert-butyl amido)dimethylsilane titanium dimethyl, and combinations thereof.
29. The process of claim 11 wherein at least of the catalysts further includes at least one activating cocatalyst.
30. The process of claim 29 wherein the at least the first catalyst comprises titanium, [1,1′(h4-1,3-butadiene-1,4-diyl)bis[benzene]][1-[(1,2,3,3a,11b-h)-1H-cyclopenta[1]phenanthren-1-yl]-N-(1,1-dimethylethyl)-1,1-dimethylsilananimato(2-)-kN], the second catalyst comprises titanium, [N-(1,1-dimethyletheyl)-1,1-dimethyl-1-[(1,2,3,4,5-h)-2,3,4,5-tetramethyl-2,4-cyclopentadien-1-yl]silananimato(2-)-kN][1,2,3,4-h)-1,3-pentadiene]; and the at least one activating cocatalyst includes MMAO and B(C6F5)3.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/328,339 US20030120012A1 (en) | 1999-02-17 | 2002-12-23 | Alpha olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12034799P | 1999-02-17 | 1999-02-17 | |
US09/506,422 US6552148B1 (en) | 1999-02-17 | 2000-02-17 | α-olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
US10/328,339 US20030120012A1 (en) | 1999-02-17 | 2002-12-23 | Alpha olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/506,422 Continuation US6552148B1 (en) | 1999-02-17 | 2000-02-17 | α-olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030120012A1 true US20030120012A1 (en) | 2003-06-26 |
Family
ID=22389682
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/506,422 Expired - Fee Related US6552148B1 (en) | 1999-02-17 | 2000-02-17 | α-olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
US10/328,339 Abandoned US20030120012A1 (en) | 1999-02-17 | 2002-12-23 | Alpha olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/506,422 Expired - Fee Related US6552148B1 (en) | 1999-02-17 | 2000-02-17 | α-olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems |
Country Status (11)
Country | Link |
---|---|
US (2) | US6552148B1 (en) |
EP (1) | EP1157048B1 (en) |
JP (1) | JP2002537423A (en) |
KR (1) | KR20010102153A (en) |
CN (1) | CN1341130A (en) |
AR (1) | AR022608A1 (en) |
AT (1) | ATE420122T1 (en) |
AU (1) | AU3368200A (en) |
CA (1) | CA2363025A1 (en) |
DE (1) | DE60041327D1 (en) |
WO (1) | WO2000049059A1 (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020161130A1 (en) * | 1999-09-13 | 2002-10-31 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production |
US20040102588A1 (en) * | 2001-05-15 | 2004-05-27 | Toru Arai | Process for producing olefin/aromatic vinyl compound copolymer |
US20070010616A1 (en) * | 2004-03-17 | 2007-01-11 | Dow Global Technologies Inc. | Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers |
US20070066756A1 (en) * | 2005-09-16 | 2007-03-22 | Dow Global Technologies Inc. | Polymer blends from interpolymer of ethylene/alpha olefin with improved compatibility |
US20080161497A1 (en) * | 2001-08-17 | 2008-07-03 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US20080269366A1 (en) * | 2007-04-27 | 2008-10-30 | Dow Global Technologies Inc. | Microporous films from compatibilized polymeric blends |
US20090105417A1 (en) * | 2005-03-17 | 2009-04-23 | Walton Kim L | Polymer Blends from Interpolymers of Ethylene/Alpha-Olefin with Improved Compatibility |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6506866B2 (en) * | 1994-11-17 | 2003-01-14 | Dow Global Technologies Inc. | Ethylene copolymer compositions |
JPH09309926A (en) * | 1996-05-17 | 1997-12-02 | Dow Chem Co:The | Production of ethylene copolymer |
US6369176B1 (en) * | 1999-08-19 | 2002-04-09 | Dupont Dow Elastomers Llc | Process for preparing in a single reactor polymer blends having a broad molecular weight distribution |
MY131000A (en) | 2001-03-16 | 2007-07-31 | Dow Global Technologies Inc | High melt strength polymers and method of making same |
ES2291639T3 (en) | 2002-06-04 | 2008-03-01 | UNION CARBIDE CHEMICALS & PLASTICS TECHNOLOGY CORPORATION | POLYMER COMPOSITIONS AND METHOD TO PREPARE PIPES OF THEM. |
ES2293344T3 (en) | 2003-08-19 | 2008-03-16 | Dow Global Technologies Inc. | SUITABLE INTERPOLYMERS FOR USE IN THERMOPLASTIC TAILS AND PROCESSES TO PREPARE THEM. |
KR20130118866A (en) * | 2010-09-08 | 2013-10-30 | 덴끼 가가꾸 고교 가부시키가이샤 | Resin having improved adhesion properties, and sheet |
US9884929B2 (en) * | 2013-04-30 | 2018-02-06 | Dow Global Technologies Llc | Ethylene/alpha-olefin interpolymer composition |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2840605B2 (en) * | 1989-03-20 | 1998-12-24 | 出光興産株式会社 | Styrene copolymer and method for producing the same |
NZ235032A (en) * | 1989-08-31 | 1993-04-28 | Dow Chemical Co | Constrained geometry complexes of titanium, zirconium or hafnium comprising a substituted cyclopentadiene ligand; use as olefin polymerisation catalyst component |
JP3216748B2 (en) * | 1993-07-23 | 2001-10-09 | 出光興産株式会社 | Catalyst for producing aromatic vinyl compound polymer composition and method for producing aromatic vinyl compound polymer composition using the same |
CN1081195C (en) * | 1994-09-02 | 2002-03-20 | 陶氏化学公司 | Thermoset elastomers |
US5543484A (en) * | 1994-11-18 | 1996-08-06 | The Penn State Research Foundation | α-olefin/para-alkylstyrene copolymers |
DE19711339B4 (en) * | 1996-03-19 | 2008-09-11 | Denki Kagaku Kogyo K.K. | Copolymer of ethylene and aromatic vinyl compound, process for its preparation, molded articles thereof and composition comprising the copolymer |
JP3659760B2 (en) * | 1996-03-19 | 2005-06-15 | 電気化学工業株式会社 | Ethylene-aromatic vinyl compound copolymer and process for producing the same |
AU2411597A (en) * | 1996-05-03 | 1997-11-26 | Dsm N.V. | Process for the co-polymerization of an olefin and a vinyl aromatic monomer |
ZA977907B (en) * | 1996-09-04 | 1999-03-03 | Dow Chemical Co | Alpha-olefin/vinylidene aromatic monomer and/or hindered aliphatic or cycloaliphatic vinylidene monomer interpolymers |
-
2000
- 2000-02-16 AR ARP000100657A patent/AR022608A1/en unknown
- 2000-02-17 DE DE60041327T patent/DE60041327D1/en not_active Expired - Lifetime
- 2000-02-17 AU AU33682/00A patent/AU3368200A/en not_active Abandoned
- 2000-02-17 EP EP00911857A patent/EP1157048B1/en not_active Expired - Lifetime
- 2000-02-17 CN CN00803950A patent/CN1341130A/en active Pending
- 2000-02-17 WO PCT/US2000/004121 patent/WO2000049059A1/en not_active Application Discontinuation
- 2000-02-17 CA CA002363025A patent/CA2363025A1/en not_active Abandoned
- 2000-02-17 KR KR1020017010344A patent/KR20010102153A/en not_active Withdrawn
- 2000-02-17 AT AT00911857T patent/ATE420122T1/en not_active IP Right Cessation
- 2000-02-17 US US09/506,422 patent/US6552148B1/en not_active Expired - Fee Related
- 2000-02-17 JP JP2000599795A patent/JP2002537423A/en active Pending
-
2002
- 2002-12-23 US US10/328,339 patent/US20030120012A1/en not_active Abandoned
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040147681A1 (en) * | 1999-09-13 | 2004-07-29 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production |
US6803422B2 (en) | 1999-09-13 | 2004-10-12 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production |
US6878779B2 (en) | 1999-09-13 | 2005-04-12 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production |
US20020161130A1 (en) * | 1999-09-13 | 2002-10-31 | Denki Kagaku Kogyo Kabushiki Kaisha | Cross-copolymerized olefin/aromatic vinyl compound/diene copolymer and process for its production |
US20040102588A1 (en) * | 2001-05-15 | 2004-05-27 | Toru Arai | Process for producing olefin/aromatic vinyl compound copolymer |
US7022794B2 (en) | 2001-05-15 | 2006-04-04 | Denki Kagaku Kogyo Kabushiki Kaisha | Process for producing olefin/aromatic vinyl copolymer |
US20080161497A1 (en) * | 2001-08-17 | 2008-07-03 | Dow Global Technologies Inc. | Bimodal polyethylene composition and articles made therefrom |
US20070010616A1 (en) * | 2004-03-17 | 2007-01-11 | Dow Global Technologies Inc. | Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers |
US7863379B2 (en) | 2004-03-17 | 2011-01-04 | Dow Global Technologies Inc. | Impact modification of thermoplastics with ethylene/alpha-olefin interpolymers |
US20090105417A1 (en) * | 2005-03-17 | 2009-04-23 | Walton Kim L | Polymer Blends from Interpolymers of Ethylene/Alpha-Olefin with Improved Compatibility |
US8084537B2 (en) * | 2005-03-17 | 2011-12-27 | Dow Global Technologies Llc | Polymer blends from interpolymers of ethylene/α-olefin with improved compatibility |
US20070066756A1 (en) * | 2005-09-16 | 2007-03-22 | Dow Global Technologies Inc. | Polymer blends from interpolymer of ethylene/alpha olefin with improved compatibility |
US7906587B2 (en) | 2005-09-16 | 2011-03-15 | Dow Global Technologies Llc | Polymer blends from interpolymer of ethylene/α olefin with improved compatibility |
US20080269366A1 (en) * | 2007-04-27 | 2008-10-30 | Dow Global Technologies Inc. | Microporous films from compatibilized polymeric blends |
Also Published As
Publication number | Publication date |
---|---|
WO2000049059A1 (en) | 2000-08-24 |
KR20010102153A (en) | 2001-11-15 |
AR022608A1 (en) | 2002-09-04 |
US6552148B1 (en) | 2003-04-22 |
DE60041327D1 (en) | 2009-02-26 |
EP1157048B1 (en) | 2009-01-07 |
ATE420122T1 (en) | 2009-01-15 |
JP2002537423A (en) | 2002-11-05 |
CA2363025A1 (en) | 2000-08-24 |
EP1157048A1 (en) | 2001-11-28 |
CN1341130A (en) | 2002-03-20 |
AU3368200A (en) | 2000-09-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6552148B1 (en) | α-olefin/vinyl or vinylidene aromatic interpolymer product and process for making same using multiple catalyst systems | |
US6281289B1 (en) | Polypropylene/ethylene polymer fiber having improved bond performance and composition for making the same | |
AU2002258526B2 (en) | High melt strength polymers and method of making same | |
US20040038022A1 (en) | Method of making a polypropylene fabric having high strain rate elongation and method of using the same | |
CA2322571A1 (en) | Structures and fabricated articles having shape memory made from .alpha.-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic vinyl or vinylidene interpolymers | |
US6319577B1 (en) | Sheets, films, fibers foams or latices prepared from blends of substantially random interpolymers | |
US6479594B1 (en) | Sulfonated substantially random interpolymers, blends therewith and articles made therefrom | |
US6201067B1 (en) | Polymeric blend compositions of α-olefin/vinylidene aromatic monomer interpolymers and aromatic polyethers | |
EP1126969A1 (en) | Fabricated articles produced from alpha-olefin/vinyl or vinylidene aromatic and/or hindered aliphatic or cycloaliphatic vinyl or vinylidene interpolymer compositions | |
AU2001263430A1 (en) | Substantially random interpolymer grafted with one or more olefinically unsaturated organic monomers | |
AU2002257063B2 (en) | Method of making interpolymers and products made therefrom | |
MXPA01005814A (en) | Mel-bondable polypropylene/ethylene polymer fiber and composition for making the same | |
CZ76399A3 (en) | Mixtures of interpolymers of alpha-olefin/vinylidene aromatic monomers and/or protected aliphatic or cycloaliphatic vinylidene monomers and their use | |
MXPA99002104A (en) | BLENDS OF&agr;-OLEFIN/VINYLIDENE AROMATIC MONOMER AND/OR HINDERED ALIPHATIC OR CYCLOALIPHATIC VINYLIDENE MONOMER INTERPOLYMERS | |
MXPA00006956A (en) | Thermoplastic blends of alpha-olefin/vinylidene aromatic monomer interpolymers with aromatic polyethers | |
AU2002257063A1 (en) | Method of making interpolymers and products made therefrom | |
EP1290049A1 (en) | Substantially random interpolymer grafted with one or more olefinically unsaturated organic monomers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |