US20030119748A1 - C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ice/ced-3 family of cysteine proteases - Google Patents
C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ice/ced-3 family of cysteine proteases Download PDFInfo
- Publication number
- US20030119748A1 US20030119748A1 US10/260,732 US26073202A US2003119748A1 US 20030119748 A1 US20030119748 A1 US 20030119748A1 US 26073202 A US26073202 A US 26073202A US 2003119748 A1 US2003119748 A1 US 2003119748A1
- Authority
- US
- United States
- Prior art keywords
- amino
- alkyl
- substituted
- mmol
- acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- -1 (N-substituted)-2-indolyl Chemical class 0.000 title claims description 198
- 239000003112 inhibitor Substances 0.000 title description 14
- 101150055276 ced-3 gene Proteins 0.000 title description 9
- 108010005843 Cysteine Proteases Proteins 0.000 title description 6
- 102000005927 Cysteine Proteases Human genes 0.000 title description 6
- 108010016626 Dipeptides Proteins 0.000 title 1
- 210000004899 c-terminal region Anatomy 0.000 title 1
- 239000008194 pharmaceutical composition Substances 0.000 claims abstract description 33
- 208000037906 ischaemic injury Diseases 0.000 claims abstract description 12
- 208000023275 Autoimmune disease Diseases 0.000 claims abstract description 9
- 208000027866 inflammatory disease Diseases 0.000 claims abstract description 9
- 230000004770 neurodegeneration Effects 0.000 claims abstract description 9
- 208000015122 neurodegenerative disease Diseases 0.000 claims abstract description 9
- 150000001875 compounds Chemical class 0.000 claims description 110
- 125000000217 alkyl group Chemical group 0.000 claims description 63
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 52
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 49
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 41
- 125000001072 heteroaryl group Chemical group 0.000 claims description 33
- 125000003884 phenylalkyl group Chemical group 0.000 claims description 31
- 238000000034 method Methods 0.000 claims description 29
- 150000001413 amino acids Chemical class 0.000 claims description 18
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 15
- 201000010099 disease Diseases 0.000 claims description 11
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 11
- 150000003839 salts Chemical class 0.000 claims description 11
- 125000003545 alkoxy group Chemical group 0.000 claims description 10
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 9
- 125000003118 aryl group Chemical group 0.000 claims description 8
- 125000000547 substituted alkyl group Chemical group 0.000 claims description 7
- 125000004414 alkyl thio group Chemical group 0.000 claims description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 claims description 6
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 6
- 239000003937 drug carrier Substances 0.000 claims description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 5
- 125000005843 halogen group Chemical group 0.000 claims description 5
- 229910052760 oxygen Inorganic materials 0.000 claims description 5
- 125000001624 naphthyl group Chemical group 0.000 claims description 4
- 239000001301 oxygen Substances 0.000 claims description 4
- 125000005346 substituted cycloalkyl group Chemical group 0.000 claims description 4
- 229910052717 sulfur Inorganic materials 0.000 claims description 4
- 125000004953 trihalomethyl group Chemical group 0.000 claims description 4
- 125000004434 sulfur atom Chemical group 0.000 claims description 3
- 229910052805 deuterium Inorganic materials 0.000 claims description 2
- 125000004970 halomethyl group Chemical group 0.000 claims description 2
- 125000004431 deuterium atom Chemical group 0.000 claims 1
- 239000000203 mixture Substances 0.000 abstract description 53
- 150000002475 indoles Chemical class 0.000 abstract description 3
- 230000001363 autoimmune Effects 0.000 abstract description 2
- 230000002757 inflammatory effect Effects 0.000 abstract description 2
- 230000002265 prevention Effects 0.000 abstract description 2
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 500
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 405
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 279
- 239000000243 solution Substances 0.000 description 211
- 235000019439 ethyl acetate Nutrition 0.000 description 144
- 229940073584 methylene chloride Drugs 0.000 description 142
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 127
- 239000000047 product Substances 0.000 description 125
- QTBSBXVTEAMEQO-UHFFFAOYSA-N acetic acid Substances CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 116
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical class CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 104
- 239000011541 reaction mixture Substances 0.000 description 102
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 96
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 88
- 239000007787 solid Substances 0.000 description 85
- 239000000843 powder Substances 0.000 description 65
- 239000012299 nitrogen atmosphere Substances 0.000 description 63
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 53
- 239000012267 brine Substances 0.000 description 53
- 229910052938 sodium sulfate Inorganic materials 0.000 description 53
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical compound O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 53
- 150000007659 semicarbazones Chemical class 0.000 description 52
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 48
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 48
- CHKVPAROMQMJNQ-UHFFFAOYSA-M potassium bisulfate Chemical compound [K+].OS([O-])(=O)=O CHKVPAROMQMJNQ-UHFFFAOYSA-M 0.000 description 46
- 229910000343 potassium bisulfate Inorganic materials 0.000 description 46
- 235000011152 sodium sulphate Nutrition 0.000 description 44
- 239000000741 silica gel Substances 0.000 description 43
- 229910002027 silica gel Inorganic materials 0.000 description 43
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 38
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 37
- DTQVDTLACAAQTR-UHFFFAOYSA-N Trifluoroacetic acid Chemical compound OC(=O)C(F)(F)F DTQVDTLACAAQTR-UHFFFAOYSA-N 0.000 description 37
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 37
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 30
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 28
- 238000005160 1H NMR spectroscopy Methods 0.000 description 27
- 239000006260 foam Substances 0.000 description 27
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 26
- 239000012043 crude product Substances 0.000 description 23
- 238000001665 trituration Methods 0.000 description 22
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 20
- NROKBHXJSPEDAR-UHFFFAOYSA-M potassium fluoride Chemical compound [F-].[K+] NROKBHXJSPEDAR-UHFFFAOYSA-M 0.000 description 20
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 19
- ZMANZCXQSJIPKH-UHFFFAOYSA-N Triethylamine Chemical compound CCN(CC)CC ZMANZCXQSJIPKH-UHFFFAOYSA-N 0.000 description 18
- 229940024606 amino acid Drugs 0.000 description 17
- 235000001014 amino acid Nutrition 0.000 description 17
- 239000007864 aqueous solution Substances 0.000 description 17
- 229910052757 nitrogen Inorganic materials 0.000 description 16
- 238000003756 stirring Methods 0.000 description 16
- BLRHMMGNCXNXJL-UHFFFAOYSA-N 1-methylindole Chemical class C1=CC=C2N(C)C=CC2=C1 BLRHMMGNCXNXJL-UHFFFAOYSA-N 0.000 description 14
- 238000006243 chemical reaction Methods 0.000 description 14
- NKLCNNUWBJBICK-UHFFFAOYSA-N dess–martin periodinane Chemical compound C1=CC=C2I(OC(=O)C)(OC(C)=O)(OC(C)=O)OC(=O)C2=C1 NKLCNNUWBJBICK-UHFFFAOYSA-N 0.000 description 14
- 239000011734 sodium Substances 0.000 description 14
- WMFOQBRAJBCJND-UHFFFAOYSA-M Lithium hydroxide Chemical compound [Li+].[OH-] WMFOQBRAJBCJND-UHFFFAOYSA-M 0.000 description 13
- 125000006239 protecting group Chemical group 0.000 description 13
- 235000002639 sodium chloride Nutrition 0.000 description 13
- CTSLXHKWHWQRSH-UHFFFAOYSA-N oxalyl chloride Chemical compound ClC(=O)C(Cl)=O CTSLXHKWHWQRSH-UHFFFAOYSA-N 0.000 description 12
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 11
- NPZTUJOABDZTLV-UHFFFAOYSA-N hydroxybenzotriazole Substances O=C1C=CC=C2NNN=C12 NPZTUJOABDZTLV-UHFFFAOYSA-N 0.000 description 11
- 239000010410 layer Substances 0.000 description 11
- 239000003921 oil Substances 0.000 description 11
- 235000019198 oils Nutrition 0.000 description 11
- 239000011369 resultant mixture Substances 0.000 description 11
- 235000003704 aspartic acid Nutrition 0.000 description 10
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 10
- 239000012044 organic layer Substances 0.000 description 10
- 239000011698 potassium fluoride Substances 0.000 description 10
- 235000003270 potassium fluoride Nutrition 0.000 description 10
- 125000001424 substituent group Chemical group 0.000 description 10
- MAHAMBLNIDMREX-UHFFFAOYSA-N 1-methylindole-2-carboxylic acid Chemical compound C1=CC=C2N(C)C(C(O)=O)=CC2=C1 MAHAMBLNIDMREX-UHFFFAOYSA-N 0.000 description 9
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 9
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 9
- 239000007832 Na2SO4 Substances 0.000 description 9
- 229960005261 aspartic acid Drugs 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 9
- 239000000706 filtrate Substances 0.000 description 9
- 125000001041 indolyl group Chemical group 0.000 description 9
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 8
- 229960003767 alanine Drugs 0.000 description 8
- 239000002244 precipitate Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 8
- 0 *C.C[Y].[1*]N1C2=C(C=CC=C2)C([2*])C1C(=O)*NC(CC)C(B)=O Chemical compound *C.C[Y].[1*]N1C2=C(C=CC=C2)C([2*])C1C(=O)*NC(CC)C(B)=O 0.000 description 7
- ASOKPJOREAFHNY-UHFFFAOYSA-N 1-Hydroxybenzotriazole Chemical compound C1=CC=C2N(O)N=NC2=C1 ASOKPJOREAFHNY-UHFFFAOYSA-N 0.000 description 7
- GJUWQBPANAXORP-IEIXJENWSA-N 3-[[(2s)-2-amino-3-methylbutanoyl]amino]-5-fluoro-4-hydroxypentanoic acid Chemical compound CC(C)[C@H](N)C(=O)NC(CC(O)=O)C(O)CF GJUWQBPANAXORP-IEIXJENWSA-N 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- HCUARRIEZVDMPT-UHFFFAOYSA-N Indole-2-carboxylic acid Chemical compound C1=CC=C2NC(C(=O)O)=CC2=C1 HCUARRIEZVDMPT-UHFFFAOYSA-N 0.000 description 7
- 102000000589 Interleukin-1 Human genes 0.000 description 7
- 108010002352 Interleukin-1 Proteins 0.000 description 7
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 7
- 102000035195 Peptidases Human genes 0.000 description 7
- 108091005804 Peptidases Proteins 0.000 description 7
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 7
- 235000004279 alanine Nutrition 0.000 description 7
- 125000003277 amino group Chemical group 0.000 description 7
- 229940088598 enzyme Drugs 0.000 description 7
- 238000001819 mass spectrum Methods 0.000 description 7
- 108090000765 processed proteins & peptides Proteins 0.000 description 7
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 7
- 239000002904 solvent Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- WVDDGKGOMKODPV-UHFFFAOYSA-N Benzyl alcohol Chemical compound OCC1=CC=CC=C1 WVDDGKGOMKODPV-UHFFFAOYSA-N 0.000 description 6
- 101000793880 Homo sapiens Caspase-3 Proteins 0.000 description 6
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 6
- 239000004365 Protease Substances 0.000 description 6
- 230000000694 effects Effects 0.000 description 6
- 239000012065 filter cake Substances 0.000 description 6
- 229910052736 halogen Inorganic materials 0.000 description 6
- 150000002367 halogens Chemical class 0.000 description 6
- RXWGCTMBVXAMRP-YJBOKZPZSA-N (3s)-3-[[(2s)-2-[(1-benzylindole-2-carbonyl)amino]propanoyl]amino]-4-oxobutanoic acid Chemical compound OC(=O)C[C@@H](C=O)NC(=O)[C@H](C)NC(=O)C1=CC2=CC=CC=C2N1CC1=CC=CC=C1 RXWGCTMBVXAMRP-YJBOKZPZSA-N 0.000 description 5
- DXSGDMXZRYUFPU-JQWIXIFHSA-N (3s)-3-[[(2s)-2-[(1-methylindole-2-carbonyl)amino]propanoyl]amino]-4-oxobutanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C=O)=CC2=C1 DXSGDMXZRYUFPU-JQWIXIFHSA-N 0.000 description 5
- HBAFRPVLCMEXRF-GJZGRUSLSA-N (3s)-3-[[(2s)-4-methyl-2-[(1-methylindole-2-carbonyl)amino]pentanoyl]amino]-4-oxobutanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(O)=O)C=O)=CC2=C1 HBAFRPVLCMEXRF-GJZGRUSLSA-N 0.000 description 5
- GUAVXCSZSKSTBL-UHFFFAOYSA-N 1,3-dimethylindole-2-carboxylic acid Chemical compound C1=CC=C2C(C)=C(C(O)=O)N(C)C2=C1 GUAVXCSZSKSTBL-UHFFFAOYSA-N 0.000 description 5
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 5
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 5
- 102100029855 Caspase-3 Human genes 0.000 description 5
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 5
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 5
- 150000003857 carboxamides Chemical class 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 238000003818 flash chromatography Methods 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 239000001257 hydrogen Substances 0.000 description 5
- 230000002401 inhibitory effect Effects 0.000 description 5
- 238000010647 peptide synthesis reaction Methods 0.000 description 5
- 229920006395 saturated elastomer Polymers 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 229960004441 tyrosine Drugs 0.000 description 5
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 5
- 229960004295 valine Drugs 0.000 description 5
- 239000004474 valine Substances 0.000 description 5
- 125000002987 valine group Chemical group [H]N([H])C([H])(C(*)=O)C([H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 5
- CNMDSGOJWOYTNY-ZFWWWQNUSA-N (3s)-3-[[(2s)-1-(1-methylindole-2-carbonyl)pyrrolidine-2-carbonyl]amino]-4-oxobutanoic acid Chemical compound C=1C2=CC=CC=C2N(C)C=1C(=O)N1CCC[C@H]1C(=O)N[C@@H](CC(O)=O)C=O CNMDSGOJWOYTNY-ZFWWWQNUSA-N 0.000 description 4
- XXLIEPKIZNDTGZ-ROUUACIJSA-N (3s)-3-[[(2s)-2-[(1-methylindole-2-carbonyl)amino]-3-phenylpropanoyl]amino]-4-oxobutanoic acid Chemical compound C([C@H](NC(=O)C=1N(C2=CC=CC=C2C=1)C)C(=O)N[C@@H](CC(O)=O)C=O)C1=CC=CC=C1 XXLIEPKIZNDTGZ-ROUUACIJSA-N 0.000 description 4
- PJUPKRYGDFTMTM-UHFFFAOYSA-N 1-hydroxybenzotriazole;hydrate Chemical compound O.C1=CC=C2N(O)N=NC2=C1 PJUPKRYGDFTMTM-UHFFFAOYSA-N 0.000 description 4
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 4
- 239000004471 Glycine Substances 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 4
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 4
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 4
- 241000699670 Mus sp. Species 0.000 description 4
- 229910004878 Na2S2O4 Inorganic materials 0.000 description 4
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 4
- OBTCMSPFOITUIJ-FSPLSTOPSA-N Val-Asp Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(O)=O)CC(O)=O OBTCMSPFOITUIJ-FSPLSTOPSA-N 0.000 description 4
- 125000003295 alanine group Chemical group N[C@@H](C)C(=O)* 0.000 description 4
- 125000002877 alkyl aryl group Chemical group 0.000 description 4
- 230000006907 apoptotic process Effects 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000004587 chromatography analysis Methods 0.000 description 4
- ZUOUZKKEUPVFJK-UHFFFAOYSA-N diphenyl Chemical compound C1=CC=CC=C1C1=CC=CC=C1 ZUOUZKKEUPVFJK-UHFFFAOYSA-N 0.000 description 4
- 239000000284 extract Substances 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 229960002449 glycine Drugs 0.000 description 4
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 4
- 230000002427 irreversible effect Effects 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000001404 mediated effect Effects 0.000 description 4
- JVBXVOWTABLYPX-UHFFFAOYSA-L sodium dithionite Chemical compound [Na+].[Na+].[O-]S(=O)S([O-])=O JVBXVOWTABLYPX-UHFFFAOYSA-L 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000003679 valine derivatives Chemical class 0.000 description 4
- XSWGYDGQPGYRSM-GUYCJALGSA-N (3s)-3-[[(2s)-3-methyl-2-[(1-methylindole-2-carbonyl)amino]butanoyl]amino]-4-oxobutanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C=O)=CC2=C1 XSWGYDGQPGYRSM-GUYCJALGSA-N 0.000 description 3
- ZDTHNMIDVRITAI-NSHDSACASA-N (3s)-3-[[2-[(1-methylindole-2-carbonyl)amino]acetyl]amino]-4-oxobutanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)NCC(=O)N[C@@H](CC(O)=O)C=O)=CC2=C1 ZDTHNMIDVRITAI-NSHDSACASA-N 0.000 description 3
- PBYIIRLNRCVTMQ-UHFFFAOYSA-N 2,3,5,6-tetrafluorophenol Chemical compound OC1=C(F)C(F)=CC(F)=C1F PBYIIRLNRCVTMQ-UHFFFAOYSA-N 0.000 description 3
- MRUDNSFOFOQZDA-UHFFFAOYSA-N 2,6-dichlorobenzoic acid Chemical compound OC(=O)C1=C(Cl)C=CC=C1Cl MRUDNSFOFOQZDA-UHFFFAOYSA-N 0.000 description 3
- CWSLEHFYHTTZEG-UHFFFAOYSA-N 2-[(1-methylindole-2-carbonyl)amino]acetic acid Chemical compound C1=CC=C2N(C)C(C(=O)NCC(O)=O)=CC2=C1 CWSLEHFYHTTZEG-UHFFFAOYSA-N 0.000 description 3
- GONUYDANRODTCF-IBYPIGCZSA-N 3-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-5-fluoro-4-oxopentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CF)=C(C)C2=C1 GONUYDANRODTCF-IBYPIGCZSA-N 0.000 description 3
- VDUMIILQKMNZQH-TYJDENFWSA-N 3-[[(2s)-2-[(3-chloro-1-methylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-5-fluoro-4-oxopentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CF)=C(Cl)C2=C1 VDUMIILQKMNZQH-TYJDENFWSA-N 0.000 description 3
- NNLKCRBFWCFKAE-TYJDENFWSA-N 3-[[(2s)-2-[(3-chloro-5-fluoro-1-methylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-5-fluoro-4-oxopentanoic acid Chemical compound FC1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CF)=C(Cl)C2=C1 NNLKCRBFWCFKAE-TYJDENFWSA-N 0.000 description 3
- ZDFHZBNRZWFQGT-UBDBMELISA-N 3-[[(2s)-2-[cyclohexyl-[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]propanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound O=C([C@H](C)N(C(=O)C1=C(C2=CC=CC=C2N1C)CC(C)C)C1CCCCC1)NC(CC(O)=O)C(=O)COC1=C(F)C(F)=CC(F)=C1F ZDFHZBNRZWFQGT-UBDBMELISA-N 0.000 description 3
- MUQBIARLSNTSIU-CTLOQAHHSA-N 3-[[(2s)-2-[cyclohexyl-[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]propanoyl]amino]-4-oxo-5-[2-phenyl-5-(trifluoromethyl)pyrazol-3-yl]oxypentanoic acid Chemical compound O=C([C@H](C)N(C(=O)C1=C(C2=CC=CC=C2N1C)CC(C)C)C1CCCCC1)NC(CC(O)=O)C(=O)COC1=CC(C(F)(F)F)=NN1C1=CC=CC=C1 MUQBIARLSNTSIU-CTLOQAHHSA-N 0.000 description 3
- LDZGLMASLBGOMJ-KESSSICBSA-N 3-[[(2s)-3-methyl-2-[(1-methylindole-2-carbonyl)amino]butanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1)C)C(C)C)NC(CC(O)=O)C(=O)COC1=C(F)C(F)=CC(F)=C1F LDZGLMASLBGOMJ-KESSSICBSA-N 0.000 description 3
- DNAHOOXCKOKPQB-KEKNWZKVSA-N 3-[[(2s)-4-methyl-2-[[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]pentanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1CC(C)C)C)CC(C)C)NC(CC(O)=O)C(=O)COC1=C(F)C(F)=CC(F)=C1F DNAHOOXCKOKPQB-KEKNWZKVSA-N 0.000 description 3
- HFORUDQKZLLZKD-CGAIIQECSA-N 5-(2,6-dichlorobenzoyl)oxy-3-[[(2s)-4-methyl-2-[[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]pentanoyl]amino]-4-oxopentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1CC(C)C)C)CC(C)C)NC(CC(O)=O)C(=O)COC(=O)C1=C(Cl)C=CC=C1Cl HFORUDQKZLLZKD-CGAIIQECSA-N 0.000 description 3
- SJPMVZONOYXKEM-ZUILJJEPSA-N 5-(2-fluorophenoxy)-3-[[(2s)-3-methyl-2-[[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]butanoyl]amino]-4-oxopentanoic acid Chemical compound O=C([C@H](C(C)C)NC(=O)C1=C(C2=CC=CC=C2N1C)CC(C)C)NC(CC(O)=O)C(=O)COC1=CC=CC=C1F SJPMVZONOYXKEM-ZUILJJEPSA-N 0.000 description 3
- XXNJIOIIBGIUSN-QBGQUKIHSA-N 5-[(2,6-dichlorophenyl)methoxy]-3-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-4-oxopentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)NC(CC(O)=O)C(=O)COCC1=C(Cl)C=CC=C1Cl XXNJIOIIBGIUSN-QBGQUKIHSA-N 0.000 description 3
- WKXJGJUQRPRCSL-IMMUGOHXSA-N 5-fluoro-3-[[(2s)-3-methyl-2-[(1-phenylindole-2-carbonyl)amino]butanoyl]amino]-4-oxopentanoic acid Chemical compound OC(=O)CC(C(=O)CF)NC(=O)[C@H](C(C)C)NC(=O)C1=CC2=CC=CC=C2N1C1=CC=CC=C1 WKXJGJUQRPRCSL-IMMUGOHXSA-N 0.000 description 3
- VXVJQJBILUAILL-AUCFXJAVSA-N 5-fluoro-4-hydroxy-3-[[(2s)-3-methyl-2-[(1-methylindole-2-carbonyl)amino]butanoyl]amino]pentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(O)CF)=CC2=C1 VXVJQJBILUAILL-AUCFXJAVSA-N 0.000 description 3
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 3
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 3
- DNIAPMSPPWPWGF-UHFFFAOYSA-N Propylene glycol Chemical compound CC(O)CO DNIAPMSPPWPWGF-UHFFFAOYSA-N 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 239000002253 acid Substances 0.000 description 3
- 125000002252 acyl group Chemical group 0.000 description 3
- 150000001294 alanine derivatives Chemical class 0.000 description 3
- 150000001371 alpha-amino acids Chemical class 0.000 description 3
- 235000008206 alpha-amino acids Nutrition 0.000 description 3
- 125000001584 benzyloxycarbonyl group Chemical group C(=O)(OCC1=CC=CC=C1)* 0.000 description 3
- 230000037396 body weight Effects 0.000 description 3
- 125000002057 carboxymethyl group Chemical group [H]OC(=O)C([H])([H])[*] 0.000 description 3
- 150000001768 cations Chemical class 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000003085 diluting agent Substances 0.000 description 3
- 239000002270 dispersing agent Substances 0.000 description 3
- 238000010494 dissociation reaction Methods 0.000 description 3
- 230000005593 dissociations Effects 0.000 description 3
- 238000009472 formulation Methods 0.000 description 3
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 3
- 125000005553 heteroaryloxy group Chemical group 0.000 description 3
- 125000000623 heterocyclic group Chemical group 0.000 description 3
- 230000005764 inhibitory process Effects 0.000 description 3
- 230000000302 ischemic effect Effects 0.000 description 3
- 208000017169 kidney disease Diseases 0.000 description 3
- 229960003136 leucine Drugs 0.000 description 3
- 239000002480 mineral oil Substances 0.000 description 3
- 235000010446 mineral oil Nutrition 0.000 description 3
- 208000010125 myocardial infarction Diseases 0.000 description 3
- 125000004433 nitrogen atom Chemical group N* 0.000 description 3
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 3
- 229960005190 phenylalanine Drugs 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 239000000651 prodrug Substances 0.000 description 3
- 229940002612 prodrug Drugs 0.000 description 3
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 3
- 235000017557 sodium bicarbonate Nutrition 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 3
- 239000003981 vehicle Substances 0.000 description 3
- PUPZLCDOIYMWBV-UHFFFAOYSA-N (+/-)-1,3-Butanediol Chemical compound CC(O)CCO PUPZLCDOIYMWBV-UHFFFAOYSA-N 0.000 description 2
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical group OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 2
- ADTFVAMJPLIMQK-ZDUSSCGKSA-N (2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(O)=O)=C(C)C2=C1 ADTFVAMJPLIMQK-ZDUSSCGKSA-N 0.000 description 2
- CTEAXOBMSMPQMZ-BBRMVZONSA-N (2s)-2-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]butanedioic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O)=C(C)C2=C1 CTEAXOBMSMPQMZ-BBRMVZONSA-N 0.000 description 2
- KHDSUOHYQJGABF-JSGCOSHPSA-N (2s)-2-[[(2s)-3-methyl-2-[(2-oxo-2-phenylmethoxyacetyl)amino]butanoyl]amino]butanedioic acid Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)C(=O)OCC1=CC=CC=C1 KHDSUOHYQJGABF-JSGCOSHPSA-N 0.000 description 2
- OWPAUPSHSLPOKG-NSHDSACASA-N (2s)-3-methyl-2-[(2-oxo-2-phenylmethoxyacetyl)amino]butanoic acid Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)C(=O)OCC1=CC=CC=C1 OWPAUPSHSLPOKG-NSHDSACASA-N 0.000 description 2
- HQTVQPUSLNHRJO-WHFBIAKZSA-N (3s)-3-[[(2s)-2-aminopropanoyl]amino]-4-oxobutanoic acid Chemical compound C[C@H](N)C(=O)N[C@H](C=O)CC(O)=O HQTVQPUSLNHRJO-WHFBIAKZSA-N 0.000 description 2
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 2
- UAPFDLZBUJBXEU-UHFFFAOYSA-N 1-[(2,6-dichlorophenyl)methoxy]ethanol Chemical compound CC(O)OCC1=C(Cl)C=CC=C1Cl UAPFDLZBUJBXEU-UHFFFAOYSA-N 0.000 description 2
- NJZQOCCEDXRQJM-UHFFFAOYSA-N 1-benzylindole Chemical class C1=CC2=CC=CC=C2N1CC1=CC=CC=C1 NJZQOCCEDXRQJM-UHFFFAOYSA-N 0.000 description 2
- YOETUEMZNOLGDB-UHFFFAOYSA-N 2-methylpropyl carbonochloridate Chemical compound CC(C)COC(Cl)=O YOETUEMZNOLGDB-UHFFFAOYSA-N 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- DPEOHMYVSHDSMR-KESSSICBSA-N 3-[[(2s)-2-[(5-fluoro-1-methylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=C(F)C=C2C=1)C)C(C)C)NC(CC(O)=O)C(=O)COC1=C(F)C(F)=CC(F)=C1F DPEOHMYVSHDSMR-KESSSICBSA-N 0.000 description 2
- QMFVWKOVRYGBNP-MRNPHLECSA-N 3-[[(2s)-3-methyl-2-[(2-oxo-2-phenylmethoxyacetyl)amino]butanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound N([C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)COC=1C(=C(F)C=C(F)C=1F)F)C(=O)C(=O)OCC1=CC=CC=C1 QMFVWKOVRYGBNP-MRNPHLECSA-N 0.000 description 2
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 2
- VCKPUUFAIGNJHC-UHFFFAOYSA-N 3-hydroxykynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC(O)=C1N VCKPUUFAIGNJHC-UHFFFAOYSA-N 0.000 description 2
- 125000002103 4,4'-dimethoxytriphenylmethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C(*)(C1=C([H])C([H])=C(OC([H])([H])[H])C([H])=C1[H])C1=C([H])C([H])=C(OC([H])([H])[H])C([H])=C1[H] 0.000 description 2
- BVJARYZEWGBDJQ-BPZDKFOGSA-N 4-hydroxy-3-[[(2s)-3-methyl-2-[(2-oxo-2-phenylmethoxyacetyl)amino]butanoyl]amino]-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound N([C@@H](C(C)C)C(=O)NC(CC(O)=O)C(O)COC=1C(=C(F)C=C(F)C=1F)F)C(=O)C(=O)OCC1=CC=CC=C1 BVJARYZEWGBDJQ-BPZDKFOGSA-N 0.000 description 2
- HVYAJNBIVUJHGB-WIIYFNMSSA-N 5-(2,6-dichlorobenzoyl)oxy-3-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-4-oxopentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)NC(CC(O)=O)C(=O)COC(=O)C1=C(Cl)C=CC=C1Cl HVYAJNBIVUJHGB-WIIYFNMSSA-N 0.000 description 2
- HFINLNQDGZTSHF-JVHFYALYSA-N 5-(4-fluorophenoxy)-3-[[(2s)-3-methyl-2-[[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]butanoyl]amino]-4-oxopentanoic acid Chemical compound O=C([C@H](C(C)C)NC(=O)C1=C(C2=CC=CC=C2N1C)CC(C)C)NC(CC(O)=O)C(=O)COC1=CC=C(F)C=C1 HFINLNQDGZTSHF-JVHFYALYSA-N 0.000 description 2
- ZALQXIFXRVCICB-GCKKQHTFSA-N 5-[(2,6-dichlorophenyl)methoxy]-3-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-4-hydroxypentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)NC(CC(O)=O)C(O)COCC1=C(Cl)C=CC=C1Cl ZALQXIFXRVCICB-GCKKQHTFSA-N 0.000 description 2
- VHBZPXUPBJXHNN-VYIIXAMBSA-N 5-bromo-3-[[(2s)-3-methyl-2-[(2-oxo-2-phenylmethoxyacetyl)amino]butanoyl]amino]-4-oxopentanoic acid Chemical compound OC(=O)CC(C(=O)CBr)NC(=O)[C@H](C(C)C)NC(=O)C(=O)OCC1=CC=CC=C1 VHBZPXUPBJXHNN-VYIIXAMBSA-N 0.000 description 2
- ZOPXUHDPGGHISS-UHFFFAOYSA-N 5-fluoro-1-methylindole-2-carboxylic acid Chemical compound FC1=CC=C2N(C)C(C(O)=O)=CC2=C1 ZOPXUHDPGGHISS-UHFFFAOYSA-N 0.000 description 2
- GGDBQNVNWQLRRH-AUCFXJAVSA-N 5-fluoro-3-[[(2s)-2-[(5-fluoro-1-methylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-4-hydroxypentanoic acid Chemical compound FC1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(O)CF)=CC2=C1 GGDBQNVNWQLRRH-AUCFXJAVSA-N 0.000 description 2
- RVOCNKFHSJVDPH-UWBLVGDVSA-N 5-fluoro-3-[[(2s)-3-methyl-2-[(1-methylindole-2-carbonyl)amino]butanoyl]amino]-4-oxopentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CF)=CC2=C1 RVOCNKFHSJVDPH-UWBLVGDVSA-N 0.000 description 2
- QSOMHLNNNBUDOL-HCPAQRILSA-N 5-fluoro-4-hydroxy-3-[[(2s)-3-methyl-2-[(1-phenylindole-2-carbonyl)amino]butanoyl]amino]pentanoic acid Chemical compound OC(=O)CC(C(O)CF)NC(=O)[C@H](C(C)C)NC(=O)C1=CC2=CC=CC=C2N1C1=CC=CC=C1 QSOMHLNNNBUDOL-HCPAQRILSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- 101150047706 CASP6 gene Proteins 0.000 description 2
- 108090000426 Caspase-1 Proteins 0.000 description 2
- 229920002261 Corn starch Polymers 0.000 description 2
- YXHKONLOYHBTNS-UHFFFAOYSA-N Diazomethane Chemical compound C=[N+]=[N-] YXHKONLOYHBTNS-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- SIKJAQJRHWYJAI-UHFFFAOYSA-N Indole Chemical compound C1=CC=C2NC=CC2=C1 SIKJAQJRHWYJAI-UHFFFAOYSA-N 0.000 description 2
- 206010061218 Inflammation Diseases 0.000 description 2
- 102000006992 Interferon-alpha Human genes 0.000 description 2
- 108010047761 Interferon-alpha Proteins 0.000 description 2
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 2
- ODKSFYDXXFIFQN-BYPYZUCNSA-P L-argininium(2+) Chemical compound NC(=[NH2+])NCCC[C@H]([NH3+])C(O)=O ODKSFYDXXFIFQN-BYPYZUCNSA-P 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 2
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 2
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- AYCPARAPKDAOEN-LJQANCHMSA-N N-[(1S)-2-(dimethylamino)-1-phenylethyl]-6,6-dimethyl-3-[(2-methyl-4-thieno[3,2-d]pyrimidinyl)amino]-1,4-dihydropyrrolo[3,4-c]pyrazole-5-carboxamide Chemical compound C1([C@H](NC(=O)N2C(C=3NN=C(NC=4C=5SC=CC=5N=C(C)N=4)C=3C2)(C)C)CN(C)C)=CC=CC=C1 AYCPARAPKDAOEN-LJQANCHMSA-N 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- LOUPRKONTZGTKE-WZBLMQSHSA-N Quinine Chemical compound C([C@H]([C@H](C1)C=C)C2)C[N@@]1[C@@H]2[C@H](O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-WZBLMQSHSA-N 0.000 description 2
- ASNFTDCKZKHJSW-REOHCLBHSA-N Quisqualic acid Chemical group OC(=O)[C@@H](N)CN1OC(=O)NC1=O ASNFTDCKZKHJSW-REOHCLBHSA-N 0.000 description 2
- KEAYESYHFKHZAL-UHFFFAOYSA-N Sodium Chemical compound [Na] KEAYESYHFKHZAL-UHFFFAOYSA-N 0.000 description 2
- DKGAVHZHDRPRBM-UHFFFAOYSA-N Tert-Butanol Chemical compound CC(C)(C)O DKGAVHZHDRPRBM-UHFFFAOYSA-N 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 150000001241 acetals Chemical group 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 230000009471 action Effects 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 125000000304 alkynyl group Chemical group 0.000 description 2
- 239000007900 aqueous suspension Substances 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 239000012298 atmosphere Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000019445 benzyl alcohol Nutrition 0.000 description 2
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 2
- 239000004305 biphenyl Substances 0.000 description 2
- 235000010290 biphenyl Nutrition 0.000 description 2
- 210000004556 brain Anatomy 0.000 description 2
- 239000002775 capsule Substances 0.000 description 2
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 2
- 125000002843 carboxylic acid group Chemical group 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000011097 chromatography purification Methods 0.000 description 2
- 239000008120 corn starch Substances 0.000 description 2
- 239000010779 crude oil Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- 125000004122 cyclic group Chemical group 0.000 description 2
- 235000014113 dietary fatty acids Nutrition 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000003480 eluent Substances 0.000 description 2
- 239000002532 enzyme inhibitor Substances 0.000 description 2
- 229940125532 enzyme inhibitor Drugs 0.000 description 2
- 239000000194 fatty acid Substances 0.000 description 2
- 229930195729 fatty acid Natural products 0.000 description 2
- 150000004665 fatty acids Chemical class 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- 125000005456 glyceride group Chemical group 0.000 description 2
- 150000002391 heterocyclic compounds Chemical class 0.000 description 2
- 229960002885 histidine Drugs 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 235000014304 histidine Nutrition 0.000 description 2
- 150000004677 hydrates Chemical class 0.000 description 2
- 125000004029 hydroxymethyl group Chemical group [H]OC([H])([H])* 0.000 description 2
- 230000004054 inflammatory process Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 2
- 210000003734 kidney Anatomy 0.000 description 2
- YGPSJZOEDVAXAB-UHFFFAOYSA-N kynurenine Chemical compound OC(=O)C(N)CC(=O)C1=CC=CC=C1N YGPSJZOEDVAXAB-UHFFFAOYSA-N 0.000 description 2
- 239000008101 lactose Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 125000000040 m-tolyl group Chemical group [H]C1=C([H])C(*)=C([H])C(=C1[H])C([H])([H])[H] 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 230000004060 metabolic process Effects 0.000 description 2
- MRIRGKVUYCQFCT-UHFFFAOYSA-N methyl 2-[(1-methylindole-2-carbonyl)amino]acetate Chemical compound C1=CC=C2N(C)C(C(=O)NCC(=O)OC)=CC2=C1 MRIRGKVUYCQFCT-UHFFFAOYSA-N 0.000 description 2
- 238000002156 mixing Methods 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 2
- 239000000346 nonvolatile oil Substances 0.000 description 2
- 125000003261 o-tolyl group Chemical group [H]C1=C([H])C(*)=C(C([H])=C1[H])C([H])([H])[H] 0.000 description 2
- 150000002892 organic cations Chemical class 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 125000004430 oxygen atom Chemical group O* 0.000 description 2
- 229940094443 oxytocics prostaglandins Drugs 0.000 description 2
- 229910052763 palladium Inorganic materials 0.000 description 2
- 238000005897 peptide coupling reaction Methods 0.000 description 2
- 239000003208 petroleum Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 150000003180 prostaglandins Chemical class 0.000 description 2
- 125000002098 pyridazinyl group Chemical group 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 239000012312 sodium hydride Substances 0.000 description 2
- 229910000104 sodium hydride Inorganic materials 0.000 description 2
- 239000012453 solvate Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 239000011593 sulfur Substances 0.000 description 2
- 239000000375 suspending agent Substances 0.000 description 2
- 239000006188 syrup Substances 0.000 description 2
- 235000020357 syrup Nutrition 0.000 description 2
- OCIPGRSCNGXXJB-FVKWTLKZSA-N tert-butyl 3-[[(2s)-2-amino-3-methylbutanoyl]amino]-4-hydroxy-5-(2,3,5,6-tetrafluorophenoxy)pentanoate Chemical compound CC(C)[C@H](N)C(=O)NC(CC(=O)OC(C)(C)C)C(O)COC1=C(F)C(F)=CC(F)=C1F OCIPGRSCNGXXJB-FVKWTLKZSA-N 0.000 description 2
- WMIKJADMDQBSTD-YBJSGSKQSA-N tert-butyl 3-[[(2s)-3-methyl-2-[[1-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]indole-2-carbonyl]amino]butanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoate Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1)CC(=O)OC(C)(C)C)C(C)C)NC(CC(=O)OC(C)(C)C)C(=O)COC1=C(F)C(F)=CC(F)=C1F WMIKJADMDQBSTD-YBJSGSKQSA-N 0.000 description 2
- RLFOZYVIJJLQBA-UHFFFAOYSA-N tert-butyl 5-[(2,6-dichlorophenyl)methoxy]-4-hydroxy-3-nitropentanoate Chemical compound CC(C)(C)OC(=O)CC([N+]([O-])=O)C(O)COCC1=C(Cl)C=CC=C1Cl RLFOZYVIJJLQBA-UHFFFAOYSA-N 0.000 description 2
- 229960002898 threonine Drugs 0.000 description 2
- 238000011200 topical administration Methods 0.000 description 2
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 2
- 125000002221 trityl group Chemical group [H]C1=C([H])C([H])=C([H])C([H])=C1C([*])(C1=C(C(=C(C(=C1[H])[H])[H])[H])[H])C1=C([H])C([H])=C([H])C([H])=C1[H] 0.000 description 2
- HMJIYCCIJYRONP-UHFFFAOYSA-N (+-)-Isradipine Chemical compound COC(=O)C1=C(C)NC(C)=C(C(=O)OC(C)C)C1C1=CC=CC2=NON=C12 HMJIYCCIJYRONP-UHFFFAOYSA-N 0.000 description 1
- VCGRFBXVSFAGGA-UHFFFAOYSA-N (1,1-dioxo-1,4-thiazinan-4-yl)-[6-[[3-(4-fluorophenyl)-5-methyl-1,2-oxazol-4-yl]methoxy]pyridin-3-yl]methanone Chemical compound CC=1ON=C(C=2C=CC(F)=CC=2)C=1COC(N=C1)=CC=C1C(=O)N1CCS(=O)(=O)CC1 VCGRFBXVSFAGGA-UHFFFAOYSA-N 0.000 description 1
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 1
- IZQODKKJJRLEGA-VIFPVBQESA-N (2r)-2-(2-pyridin-4-ylethylamino)-3-sulfanylpropanoic acid Chemical compound OC(=O)[C@H](CS)NCCC1=CC=NC=C1 IZQODKKJJRLEGA-VIFPVBQESA-N 0.000 description 1
- IRJCBFDCFXCWGO-SCSAIBSYSA-N (2r)-2-azaniumyl-2-(3-oxo-1,2-oxazol-5-yl)acetate Chemical group [O-]C(=O)[C@H]([NH3+])C1=CC(=O)NO1 IRJCBFDCFXCWGO-SCSAIBSYSA-N 0.000 description 1
- LDDMACCNBZAMSG-BDVNFPICSA-N (2r,3r,4s,5r)-3,4,5,6-tetrahydroxy-2-(methylamino)hexanal Chemical compound CN[C@@H](C=O)[C@@H](O)[C@H](O)[C@H](O)CO LDDMACCNBZAMSG-BDVNFPICSA-N 0.000 description 1
- CZKBOQAAEZZWNN-LURJTMIESA-N (2s)-2-(4-aminoanilino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=C(N)C=C1 CZKBOQAAEZZWNN-LURJTMIESA-N 0.000 description 1
- MSJVZYZBQGBEQX-BYPYZUCNSA-N (2s)-2-(ethenylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC=C MSJVZYZBQGBEQX-BYPYZUCNSA-N 0.000 description 1
- WTKYBFQVZPCGAO-LURJTMIESA-N (2s)-2-(pyridin-3-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=CN=C1 WTKYBFQVZPCGAO-LURJTMIESA-N 0.000 description 1
- SAAQPSNNIOGFSQ-LURJTMIESA-N (2s)-2-(pyridin-4-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC1=CC=NC=C1 SAAQPSNNIOGFSQ-LURJTMIESA-N 0.000 description 1
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 description 1
- WRQSUCJAKAMYMQ-YFKPBYRVSA-N (2s)-2-(thiophen-3-ylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC=1C=CSC=1 WRQSUCJAKAMYMQ-YFKPBYRVSA-N 0.000 description 1
- TVYGDHGAJIURNC-REOHCLBHSA-N (2s)-2-(trifluoromethylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC(F)(F)F TVYGDHGAJIURNC-REOHCLBHSA-N 0.000 description 1
- FVNKWWBXNSNIAR-BYPYZUCNSA-N (2s)-2-amino-3-(2-sulfanylidene-1,3-dihydroimidazol-4-yl)propanoic acid Chemical group OC(=O)[C@@H](N)CC1=CNC(=S)N1 FVNKWWBXNSNIAR-BYPYZUCNSA-N 0.000 description 1
- POGSZHUEECCEAP-ZETCQYMHSA-N (2s)-2-amino-3-(3-amino-4-hydroxyphenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(N)=C1 POGSZHUEECCEAP-ZETCQYMHSA-N 0.000 description 1
- NSEFEMVEUDJWIH-LURJTMIESA-N (2s)-2-amino-3-(4-hydroxy-3-phosphonophenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(P(O)(O)=O)=C1 NSEFEMVEUDJWIH-LURJTMIESA-N 0.000 description 1
- VXGXODOSTOUUBH-LURJTMIESA-N (2s)-2-amino-3-(4-hydroxy-3-sulfophenyl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(S(O)(=O)=O)=C1 VXGXODOSTOUUBH-LURJTMIESA-N 0.000 description 1
- NXANGIZFHQQBCC-VIFPVBQESA-N (2s)-2-amino-3-(6-hydroxy-1h-indol-3-yl)propanoic acid Chemical compound OC1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 NXANGIZFHQQBCC-VIFPVBQESA-N 0.000 description 1
- RXZQHZDTHUUJQJ-LURJTMIESA-N (2s)-2-amino-3-(furan-2-yl)propanoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=CO1 RXZQHZDTHUUJQJ-LURJTMIESA-N 0.000 description 1
- IOABLDGLYOGEHY-QMMMGPOBSA-N (2s)-2-amino-3-[2-(trifluoromethyl)phenyl]propanoic acid Chemical group OC(=O)[C@@H](N)CC1=CC=CC=C1C(F)(F)F IOABLDGLYOGEHY-QMMMGPOBSA-N 0.000 description 1
- VWTFNYVAFGYEKI-QMMMGPOBSA-N (2s)-2-azaniumyl-3-(3,4-dimethoxyphenyl)propanoate Chemical compound COC1=CC=C(C[C@H](N)C(O)=O)C=C1OC VWTFNYVAFGYEKI-QMMMGPOBSA-N 0.000 description 1
- MXWMFBYWXMXRPD-YFKPBYRVSA-N (2s)-2-azaniumyl-4-[(2-methylpropan-2-yl)oxy]-4-oxobutanoate Chemical compound CC(C)(C)OC(=O)C[C@H](N)C(O)=O MXWMFBYWXMXRPD-YFKPBYRVSA-N 0.000 description 1
- LOVUSASSMLUWRR-REOHCLBHSA-N (2s)-2-hydrazinylpropanoic acid Chemical compound NN[C@@H](C)C(O)=O LOVUSASSMLUWRR-REOHCLBHSA-N 0.000 description 1
- JIDDDPVQQUHACU-YFKPBYRVSA-N (2s)-pyrrolidine-2-carbaldehyde Chemical group O=C[C@@H]1CCCN1 JIDDDPVQQUHACU-YFKPBYRVSA-N 0.000 description 1
- MOMXRUPZPRETGB-XLLULAGJSA-N (3s)-2-amino-3-formyl-5-[(1-methylindole-2-carbonyl)amino]-4-oxopentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)NCC(=O)[C@H](C=O)C(N)C(O)=O)=CC2=C1 MOMXRUPZPRETGB-XLLULAGJSA-N 0.000 description 1
- GDHMBYYUIKVXAH-ZANVPECISA-N (3s)-3-[[(2s)-2-[[1-(carboxymethyl)indole-2-carbonyl]amino]propanoyl]amino]-3-hydroxypropanoic acid Chemical compound C1=CC=C2N(CC(O)=O)C(C(=O)N[C@@H](C)C(=O)N[C@@H](O)CC(O)=O)=CC2=C1 GDHMBYYUIKVXAH-ZANVPECISA-N 0.000 description 1
- VVGZYNCPBZQBOZ-XPUUQOCRSA-N (3s)-3-[[(2s)-2-amino-3-methylbutanoyl]amino]-4-oxobutanoic acid Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C=O)CC(O)=O VVGZYNCPBZQBOZ-XPUUQOCRSA-N 0.000 description 1
- IUWWPIHUJSOXLT-LPHOPBHVSA-N (3s)-3-hydroxy-3-[[(2s)-2-[(1-methylindole-2-carbonyl)amino]-3-phenylpropanoyl]amino]propanoic acid Chemical compound C([C@H](NC(=O)C=1N(C2=CC=CC=C2C=1)C)C(=O)N[C@@H](O)CC(O)=O)C1=CC=CC=C1 IUWWPIHUJSOXLT-LPHOPBHVSA-N 0.000 description 1
- GWQLFLGWBNHIPZ-BQBZGAKWSA-N (3s)-4-oxo-3-[[(2s)-pyrrolidine-2-carbonyl]amino]butanoic acid Chemical compound OC(=O)C[C@@H](C=O)NC(=O)[C@@H]1CCCN1 GWQLFLGWBNHIPZ-BQBZGAKWSA-N 0.000 description 1
- IXGVQJZZSJUADL-RDJOHKMMSA-N (3s,5s)-2-amino-5-[[1-(carboxymethyl)indole-2-carbonyl]amino]-3-formyl-4-oxohexanoic acid Chemical compound C1=CC=C2N(CC(O)=O)C(C(=O)N[C@@H](C)C(=O)[C@H](C=O)C(N)C(O)=O)=CC2=C1 IXGVQJZZSJUADL-RDJOHKMMSA-N 0.000 description 1
- VSOJZNZZHNXSQX-JCYILVPMSA-N (4s)-2-(1-amino-3-bromo-2-oxopropyl)-4-[(1,3-dimethylindole-2-carbonyl)amino]-5-methyl-3-oxohexanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)C(C(N)C(=O)CBr)C(O)=O)=C(C)C2=C1 VSOJZNZZHNXSQX-JCYILVPMSA-N 0.000 description 1
- CRZJLDNERGYRAV-ACBHZAAOSA-N (4s)-2-(1-amino-3-dimethylphosphoryloxy-2-oxopropyl)-4-[(1,3-dimethylindole-2-carbonyl)amino]-5-methyl-3-oxohexanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)C(C(N)C(=O)COP(C)(C)=O)C(O)=O)=C(C)C2=C1 CRZJLDNERGYRAV-ACBHZAAOSA-N 0.000 description 1
- PLAWNAHJDDMLSL-PPUMFKDSSA-N (4s)-2-(1-amino-3-diphenylphosphoryloxy-2-oxopropyl)-4-[(1,3-dimethylindole-2-carbonyl)amino]-5-methyl-3-oxohexanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)C(C(O)=O)C(N)C(=O)COP(=O)(C=1C=CC=CC=1)C1=CC=CC=C1 PLAWNAHJDDMLSL-PPUMFKDSSA-N 0.000 description 1
- MGCCYMUXSXZTNM-WNMGUVTHSA-N (4s)-2-[1-amino-2-oxo-3-[2-phenyl-5-(trifluoromethyl)pyrazol-3-yl]oxypropyl]-4-[(1,3-dimethylindole-2-carbonyl)amino]-5-methyl-3-oxohexanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)C(C(O)=O)C(N)C(=O)COC1=CC(C(F)(F)F)=NN1C1=CC=CC=C1 MGCCYMUXSXZTNM-WNMGUVTHSA-N 0.000 description 1
- CUNNAHLKTIFMFA-PJUZOBRJSA-N (4s)-2-[1-amino-2-oxo-3-[3-(phenylcarbamoyl)naphthalen-2-yl]oxypropyl]-4-[(1,3-dimethylindole-2-carbonyl)amino]-5-methyl-3-oxohexanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)C(C(O)=O)C(N)C(=O)COC1=CC2=CC=CC=C2C=C1C(=O)NC1=CC=CC=C1 CUNNAHLKTIFMFA-PJUZOBRJSA-N 0.000 description 1
- IYTJDECZFYJMJM-VNXZQDSDSA-N (4s)-2-[1-amino-3-(2,6-dichlorobenzoyl)oxy-2-oxopropyl]-4-[(1,3-dimethylindole-2-carbonyl)amino]-5-methyl-3-oxohexanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1C)C)C(C)C)C(C(O)=O)C(N)C(=O)COC(=O)C1=C(Cl)C=CC=C1Cl IYTJDECZFYJMJM-VNXZQDSDSA-N 0.000 description 1
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- WRIDQFICGBMAFQ-UHFFFAOYSA-N (E)-8-Octadecenoic acid Natural products CCCCCCCCCC=CCCCCCCC(O)=O WRIDQFICGBMAFQ-UHFFFAOYSA-N 0.000 description 1
- NYPYHUZRZVSYKL-UHFFFAOYSA-N -3,5-Diiodotyrosine Natural products OC(=O)C(N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-UHFFFAOYSA-N 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical group C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- OSJVTYVKQNOXPP-UHFFFAOYSA-N 1,2,3,4-tetrahydroquinoline-2-carboxylic acid Chemical group C1=CC=C2NC(C(=O)O)CCC2=C1 OSJVTYVKQNOXPP-UHFFFAOYSA-N 0.000 description 1
- MLDRHFMFIOZUDG-UHFFFAOYSA-N 1-(3-phenylpropyl)indole Chemical class C1=CC2=CC=CC=C2N1CCCC1=CC=CC=C1 MLDRHFMFIOZUDG-UHFFFAOYSA-N 0.000 description 1
- CLJWONSYPYOJFK-UHFFFAOYSA-N 1-(3-phenylpropyl)indole-2-carboxylic acid Chemical compound OC(=O)C1=CC2=CC=CC=C2N1CCCC1=CC=CC=C1 CLJWONSYPYOJFK-UHFFFAOYSA-N 0.000 description 1
- FPEQRKPJPIZXBX-UHFFFAOYSA-N 1-(ethyliminomethylideneamino)-3-methylbutan-1-amine Chemical compound CCN=C=NC(N)CC(C)C FPEQRKPJPIZXBX-UHFFFAOYSA-N 0.000 description 1
- SYYLBTHATZNOSE-UHFFFAOYSA-N 1-[2-[(2-methylpropan-2-yl)oxy]-2-oxoethyl]indole-2-carboxylic acid Chemical compound C1=CC=C2N(CC(=O)OC(C)(C)C)C(C(O)=O)=CC2=C1 SYYLBTHATZNOSE-UHFFFAOYSA-N 0.000 description 1
- WOXWUZCRWJWTRT-UHFFFAOYSA-N 1-amino-1-cyclohexanecarboxylic acid Chemical group OC(=O)C1(N)CCCCC1 WOXWUZCRWJWTRT-UHFFFAOYSA-N 0.000 description 1
- NILQLFBWTXNUOE-UHFFFAOYSA-N 1-aminocyclopentanecarboxylic acid Chemical group OC(=O)C1(N)CCCC1 NILQLFBWTXNUOE-UHFFFAOYSA-N 0.000 description 1
- DMMXSSBHARRUHS-UHFFFAOYSA-N 1-benzylindole-2-carboxylic acid Chemical compound OC(=O)C1=CC2=CC=CC=C2N1CC1=CC=CC=C1 DMMXSSBHARRUHS-UHFFFAOYSA-N 0.000 description 1
- LDVAEPRTKCUBTE-UHFFFAOYSA-N 1-but-1-enylindole Chemical class C1=CC=C2N(C=CCC)C=CC2=C1 LDVAEPRTKCUBTE-UHFFFAOYSA-N 0.000 description 1
- 125000004973 1-butenyl group Chemical group C(=CCC)* 0.000 description 1
- KGOAFYFADYADOI-UHFFFAOYSA-N 1-methyl-3-(2-methylpropyl)indole-2-carboxylic acid Chemical compound C1=CC=C2C(CC(C)C)=C(C(O)=O)N(C)C2=C1 KGOAFYFADYADOI-UHFFFAOYSA-N 0.000 description 1
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 1
- WMHIWHPGXRRKJM-UHFFFAOYSA-N 1-phenylindole-2-carboxylic acid Chemical compound OC(=O)C1=CC2=CC=CC=C2N1C1=CC=CC=C1 WMHIWHPGXRRKJM-UHFFFAOYSA-N 0.000 description 1
- 125000000453 2,2,2-trichloroethyl group Chemical group [H]C([H])(*)C(Cl)(Cl)Cl 0.000 description 1
- ZIIUUSVHCHPIQD-UHFFFAOYSA-N 2,4,6-trimethyl-N-[3-(trifluoromethyl)phenyl]benzenesulfonamide Chemical compound CC1=CC(C)=CC(C)=C1S(=O)(=O)NC1=CC=CC(C(F)(F)F)=C1 ZIIUUSVHCHPIQD-UHFFFAOYSA-N 0.000 description 1
- AHDSRXYHVZECER-UHFFFAOYSA-N 2,4,6-tris[(dimethylamino)methyl]phenol Chemical compound CN(C)CC1=CC(CN(C)C)=C(O)C(CN(C)C)=C1 AHDSRXYHVZECER-UHFFFAOYSA-N 0.000 description 1
- CHHHXKFHOYLYRE-UHFFFAOYSA-M 2,4-Hexadienoic acid, potassium salt (1:1), (2E,4E)- Chemical compound [K+].CC=CC=CC([O-])=O CHHHXKFHOYLYRE-UHFFFAOYSA-M 0.000 description 1
- OMGHIGVFLOPEHJ-UHFFFAOYSA-N 2,5-dihydro-1h-pyrrol-1-ium-2-carboxylate Chemical group OC(=O)C1NCC=C1 OMGHIGVFLOPEHJ-UHFFFAOYSA-N 0.000 description 1
- KLIDCXVFHGNTTM-UHFFFAOYSA-N 2,6-dimethoxyphenol Chemical group COC1=CC=CC(OC)=C1O KLIDCXVFHGNTTM-UHFFFAOYSA-N 0.000 description 1
- PDFGFQUSSYSWNI-UHFFFAOYSA-N 2-(bromomethyl)-1,3-dichlorobenzene Chemical compound ClC1=CC=CC(Cl)=C1CBr PDFGFQUSSYSWNI-UHFFFAOYSA-N 0.000 description 1
- OQMYZVWIXPPDDE-UHFFFAOYSA-N 2-(cyclohexylazaniumyl)acetate Chemical group OC(=O)CNC1CCCCC1 OQMYZVWIXPPDDE-UHFFFAOYSA-N 0.000 description 1
- TXHAHOVNFDVCCC-UHFFFAOYSA-N 2-(tert-butylazaniumyl)acetate Chemical compound CC(C)(C)NCC(O)=O TXHAHOVNFDVCCC-UHFFFAOYSA-N 0.000 description 1
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- IRZQDMYEJPNDEN-UHFFFAOYSA-N 2-azaniumyl-3-phenylbutanoate Chemical group OC(=O)C(N)C(C)C1=CC=CC=C1 IRZQDMYEJPNDEN-UHFFFAOYSA-N 0.000 description 1
- WTOFYLAWDLQMBZ-UHFFFAOYSA-N 2-azaniumyl-3-thiophen-2-ylpropanoate Chemical compound OC(=O)C(N)CC1=CC=CS1 WTOFYLAWDLQMBZ-UHFFFAOYSA-N 0.000 description 1
- HOSWPDPVFBCLSY-UHFFFAOYSA-N 2-azaniumyl-4-oxobutanoate Chemical compound OC(=O)C(N)CC=O HOSWPDPVFBCLSY-UHFFFAOYSA-N 0.000 description 1
- 125000006276 2-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C(*)C([H])=C1[H] 0.000 description 1
- 125000004182 2-chlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(*)C([H])=C1[H] 0.000 description 1
- AAYYJYDNERMSOZ-UHFFFAOYSA-N 2-fluoropentanoic acid Chemical class CCCC(F)C(O)=O AAYYJYDNERMSOZ-UHFFFAOYSA-N 0.000 description 1
- HFHFGHLXUCOHLN-UHFFFAOYSA-N 2-fluorophenol Chemical compound OC1=CC=CC=C1F HFHFGHLXUCOHLN-UHFFFAOYSA-N 0.000 description 1
- 125000004198 2-fluorophenyl group Chemical group [H]C1=C([H])C(F)=C(*)C([H])=C1[H] 0.000 description 1
- 125000001622 2-naphthyl group Chemical group [H]C1=C([H])C([H])=C2C([H])=C(*)C([H])=C([H])C2=C1[H] 0.000 description 1
- LEACJMVNYZDSKR-UHFFFAOYSA-N 2-octyldodecan-1-ol Chemical compound CCCCCCCCCCC(CO)CCCCCCCC LEACJMVNYZDSKR-UHFFFAOYSA-N 0.000 description 1
- LQJBNNIYVWPHFW-UHFFFAOYSA-N 20:1omega9c fatty acid Natural products CCCCCCCCCCC=CCCCCCCCC(O)=O LQJBNNIYVWPHFW-UHFFFAOYSA-N 0.000 description 1
- 125000004189 3,4-dichlorophenyl group Chemical group [H]C1=C([H])C(Cl)=C(Cl)C([H])=C1* 0.000 description 1
- 125000002774 3,4-dimethoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C(OC([H])([H])[H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- NYPYHUZRZVSYKL-ZETCQYMHSA-N 3,5-diiodo-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC(I)=C(O)C(I)=C1 NYPYHUZRZVSYKL-ZETCQYMHSA-N 0.000 description 1
- CANORYAAKDQNJV-UHFFFAOYSA-N 3-(1H-imidazol-2-yl)naphthalen-2-ol Chemical compound OC1=CC2=CC=CC=C2C=C1C1=NC=CN1 CANORYAAKDQNJV-UHFFFAOYSA-N 0.000 description 1
- PFDUUKDQEHURQC-UHFFFAOYSA-N 3-Methoxytyrosine Chemical group COC1=CC(CC(N)C(O)=O)=CC=C1O PFDUUKDQEHURQC-UHFFFAOYSA-N 0.000 description 1
- UMCMPZBLKLEWAF-BCTGSCMUSA-N 3-[(3-cholamidopropyl)dimethylammonio]propane-1-sulfonate Chemical compound C([C@H]1C[C@H]2O)[C@H](O)CC[C@]1(C)[C@@H]1[C@@H]2[C@@H]2CC[C@H]([C@@H](CCC(=O)NCCC[N+](C)(C)CCCS([O-])(=O)=O)C)[C@@]2(C)[C@@H](O)C1 UMCMPZBLKLEWAF-BCTGSCMUSA-N 0.000 description 1
- XWVZWYVDVJLWHH-PVARCSIZSA-N 3-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-5-fluoro-4-hydroxypentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(O)CF)=C(C)C2=C1 XWVZWYVDVJLWHH-PVARCSIZSA-N 0.000 description 1
- AEXMGMOGXWFWIH-ODOSRFNGSA-N 3-[[(2s)-2-[[1-(carboxymethyl)indole-2-carbonyl]amino]-3-methylbutanoyl]amino]-4-oxo-5-(2,3,5,6-tetrafluorophenoxy)pentanoic acid Chemical compound O=C([C@@H](NC(=O)C=1N(C2=CC=CC=C2C=1)CC(O)=O)C(C)C)NC(CC(O)=O)C(=O)COC1=C(F)C(F)=CC(F)=C1F AEXMGMOGXWFWIH-ODOSRFNGSA-N 0.000 description 1
- DGOIVHDEZHTYGL-YFKXAPIDSA-N 3-[[(2s)-2-[[1-(carboxymethyl)indole-2-carbonyl]amino]-3-methylbutanoyl]amino]-5-fluoro-4-oxopentanoic acid Chemical compound C1=CC=C2N(CC(O)=O)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CF)=CC2=C1 DGOIVHDEZHTYGL-YFKXAPIDSA-N 0.000 description 1
- YBWJQDKEEMDASW-LWAJAQLZSA-N 3-[[(2s)-2-[cyclohexyl-[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]propanoyl]amino]-5-(2,6-dichlorobenzoyl)oxy-4-oxopentanoic acid Chemical compound O=C([C@H](C)N(C(=O)C1=C(C2=CC=CC=C2N1C)CC(C)C)C1CCCCC1)NC(CC(O)=O)C(=O)COC(=O)C1=C(Cl)C=CC=C1Cl YBWJQDKEEMDASW-LWAJAQLZSA-N 0.000 description 1
- NRGSQINXIMQDDY-UHFFFAOYSA-N 3-amino-5-[(2,6-dichlorophenyl)methoxy]-4-hydroxypentanoic acid Chemical compound OC(=O)CC(N)C(O)COCC1=C(Cl)C=CC=C1Cl NRGSQINXIMQDDY-UHFFFAOYSA-N 0.000 description 1
- 125000006275 3-bromophenyl group Chemical group [H]C1=C([H])C(Br)=C([H])C(*)=C1[H] 0.000 description 1
- 125000004179 3-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(Cl)=C1[H] 0.000 description 1
- 125000004180 3-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C(F)=C1[H] 0.000 description 1
- 125000004208 3-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C([H])C(*)=C1[H] 0.000 description 1
- FBTSQILOGYXGMD-LURJTMIESA-N 3-nitro-L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C([N+]([O-])=O)=C1 FBTSQILOGYXGMD-LURJTMIESA-N 0.000 description 1
- KVCQTKNUUQOELD-UHFFFAOYSA-N 4-amino-n-[1-(3-chloro-2-fluoroanilino)-6-methylisoquinolin-5-yl]thieno[3,2-d]pyrimidine-7-carboxamide Chemical compound N=1C=CC2=C(NC(=O)C=3C4=NC=NC(N)=C4SC=3)C(C)=CC=C2C=1NC1=CC=CC(Cl)=C1F KVCQTKNUUQOELD-UHFFFAOYSA-N 0.000 description 1
- 125000004800 4-bromophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Br 0.000 description 1
- 125000004801 4-cyanophenyl group Chemical group [H]C1=C([H])C(C#N)=C([H])C([H])=C1* 0.000 description 1
- 125000004860 4-ethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])C([H])([H])[H] 0.000 description 1
- RHMPLDJJXGPMEX-UHFFFAOYSA-N 4-fluorophenol Chemical compound OC1=CC=C(F)C=C1 RHMPLDJJXGPMEX-UHFFFAOYSA-N 0.000 description 1
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 description 1
- 125000004203 4-hydroxyphenyl group Chemical group [H]OC1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 125000004217 4-methoxybenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1OC([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004199 4-trifluoromethylphenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C(F)(F)F 0.000 description 1
- AZXBADPWXOWMKQ-ZETCQYMHSA-N 5-[(2s)-2-amino-2-carboxyethyl]-2-hydroxybenzoic acid Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C(C(O)=O)=C1 AZXBADPWXOWMKQ-ZETCQYMHSA-N 0.000 description 1
- VEBQQZWPTGVRRZ-IBYPIGCZSA-N 5-bromo-3-[[(2s)-2-[(1,3-dimethylindole-2-carbonyl)amino]-3-methylbutanoyl]amino]-4-oxopentanoic acid Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CBr)=C(C)C2=C1 VEBQQZWPTGVRRZ-IBYPIGCZSA-N 0.000 description 1
- LEQDOOBHUAMOLD-LFABVHOISA-N 5-fluoro-3-[[(2s)-3-methyl-2-[[1-methyl-3-(2-methylpropyl)indole-2-carbonyl]amino]butanoyl]amino]-4-oxopentanoic acid Chemical compound C1=CC=C2C(CC(C)C)=C(C(=O)N[C@@H](C(C)C)C(=O)NC(CC(O)=O)C(=O)CF)N(C)C2=C1 LEQDOOBHUAMOLD-LFABVHOISA-N 0.000 description 1
- LDCYZAJDBXYCGN-VIFPVBQESA-N 5-hydroxy-L-tryptophan Chemical compound C1=C(O)C=C2C(C[C@H](N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-VIFPVBQESA-N 0.000 description 1
- 229940000681 5-hydroxytryptophan Drugs 0.000 description 1
- QSHLMQDRPXXYEE-UHFFFAOYSA-N 6-Hydroxytryptophan Natural products C1=CC(O)=C2C(CC(N)C(O)=O)=CNC2=C1 QSHLMQDRPXXYEE-UHFFFAOYSA-N 0.000 description 1
- CYJRNFFLTBEQSQ-UHFFFAOYSA-N 8-(3-methyl-1-benzothiophen-5-yl)-N-(4-methylsulfonylpyridin-3-yl)quinoxalin-6-amine Chemical compound CS(=O)(=O)C1=C(C=NC=C1)NC=1C=C2N=CC=NC2=C(C=1)C=1C=CC2=C(C(=CS2)C)C=1 CYJRNFFLTBEQSQ-UHFFFAOYSA-N 0.000 description 1
- QSBYPNXLFMSGKH-UHFFFAOYSA-N 9-Heptadecensaeure Natural products CCCCCCCC=CCCCCCCCC(O)=O QSBYPNXLFMSGKH-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 1
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 1
- 208000024827 Alzheimer disease Diseases 0.000 description 1
- NLXLAEXVIDQMFP-UHFFFAOYSA-N Ammonia chloride Chemical class [NH4+].[Cl-] NLXLAEXVIDQMFP-UHFFFAOYSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- 206010003827 Autoimmune hepatitis Diseases 0.000 description 1
- 206010055128 Autoimmune neutropenia Diseases 0.000 description 1
- 206010050245 Autoimmune thrombocytopenia Diseases 0.000 description 1
- MGFDZVIZMPYFKR-MICGUWQPSA-N BC(O)C(N)CC(C)=O.BC(O)C(N)CC(C)=O.C.CC(=O)CC(N)/C=N/NC(C)=O.CCOC1OC(=O)CC1N Chemical compound BC(O)C(N)CC(C)=O.BC(O)C(N)CC(C)=O.C.CC(=O)CC(N)/C=N/NC(C)=O.CCOC1OC(=O)CC1N MGFDZVIZMPYFKR-MICGUWQPSA-N 0.000 description 1
- 208000023328 Basedow disease Diseases 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- CIUUIPMOFZIWIZ-UHFFFAOYSA-N Bropirimine Chemical compound NC1=NC(O)=C(Br)C(C=2C=CC=CC=2)=N1 CIUUIPMOFZIWIZ-UHFFFAOYSA-N 0.000 description 1
- COVZYZSDYWQREU-UHFFFAOYSA-N Busulfan Chemical compound CS(=O)(=O)OCCCCOS(C)(=O)=O COVZYZSDYWQREU-UHFFFAOYSA-N 0.000 description 1
- PPFLRJOFUCFDFO-UHFFFAOYSA-M C.C.C.C.C.I.S.S[K].[KH].[KH] Chemical compound C.C.C.C.C.I.S.S[K].[KH].[KH] PPFLRJOFUCFDFO-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 241000819038 Chichester Species 0.000 description 1
- 235000001258 Cinchona calisaya Nutrition 0.000 description 1
- 102000029816 Collagenase Human genes 0.000 description 1
- 108060005980 Collagenase Proteins 0.000 description 1
- 208000035473 Communicable disease Diseases 0.000 description 1
- 244000110556 Cyclopia subternata Species 0.000 description 1
- 102000004127 Cytokines Human genes 0.000 description 1
- 108090000695 Cytokines Proteins 0.000 description 1
- LJCWONGJFPCTTL-SSDOTTSWSA-N D-4-hydroxyphenylglycine Chemical compound [O-]C(=O)[C@H]([NH3+])C1=CC=C(O)C=C1 LJCWONGJFPCTTL-SSDOTTSWSA-N 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- NXANGIZFHQQBCC-UHFFFAOYSA-N DL-6-Hydroxy-tryptophan Natural products OC1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 NXANGIZFHQQBCC-UHFFFAOYSA-N 0.000 description 1
- ASNFTDCKZKHJSW-UHFFFAOYSA-N DL-Quisqualic acid Chemical group OC(=O)C(N)CN1OC(=O)NC1=O ASNFTDCKZKHJSW-UHFFFAOYSA-N 0.000 description 1
- 238000006646 Dess-Martin oxidation reaction Methods 0.000 description 1
- BWLUMTFWVZZZND-UHFFFAOYSA-N Dibenzylamine Chemical compound C=1C=CC=CC=1CNCC1=CC=CC=C1 BWLUMTFWVZZZND-UHFFFAOYSA-N 0.000 description 1
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 1
- GKQLYSROISKDLL-UHFFFAOYSA-N EEDQ Chemical compound C1=CC=C2N(C(=O)OCC)C(OCC)C=CC2=C1 GKQLYSROISKDLL-UHFFFAOYSA-N 0.000 description 1
- 241000792859 Enema Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- 108010017213 Granulocyte-Macrophage Colony-Stimulating Factor Proteins 0.000 description 1
- 102100039620 Granulocyte-macrophage colony-stimulating factor Human genes 0.000 description 1
- 208000015023 Graves' disease Diseases 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 229910004373 HOAc Inorganic materials 0.000 description 1
- 208000035186 Hemolytic Autoimmune Anemia Diseases 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- 102000008100 Human Serum Albumin Human genes 0.000 description 1
- 108091006905 Human Serum Albumin Proteins 0.000 description 1
- LCWXJXMHJVIJFK-UHFFFAOYSA-N Hydroxylysine Natural products NCC(O)CC(N)CC(O)=O LCWXJXMHJVIJFK-UHFFFAOYSA-N 0.000 description 1
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical group O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 1
- IRJCBFDCFXCWGO-UHFFFAOYSA-N Ibotenic acid Natural products OC(=O)C(N)C1=CC(=O)NO1 IRJCBFDCFXCWGO-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010002350 Interleukin-2 Proteins 0.000 description 1
- SNDPXSYFESPGGJ-BYPYZUCNSA-N L-2-aminopentanoic acid Chemical group CCC[C@H](N)C(O)=O SNDPXSYFESPGGJ-BYPYZUCNSA-N 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Chemical group OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- AGPKZVBTJJNPAG-UHNVWZDZSA-N L-allo-Isoleucine Chemical group CC[C@@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-UHNVWZDZSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical group OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 1
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical class OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 description 1
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- UCUNFLYVYCGDHP-BYPYZUCNSA-N L-methionine sulfone Chemical compound CS(=O)(=O)CC[C@H](N)C(O)=O UCUNFLYVYCGDHP-BYPYZUCNSA-N 0.000 description 1
- SNDPXSYFESPGGJ-UHFFFAOYSA-N L-norVal-OH Chemical group CCCC(N)C(O)=O SNDPXSYFESPGGJ-UHFFFAOYSA-N 0.000 description 1
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical group CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 1
- DZLNHFMRPBPULJ-VKHMYHEASA-N L-thioproline Chemical group OC(=O)[C@@H]1CSCN1 DZLNHFMRPBPULJ-VKHMYHEASA-N 0.000 description 1
- KKCIOUWDFWQUBT-AWEZNQCLSA-N L-thyronine Chemical compound C1=CC(C[C@H](N)C(O)=O)=CC=C1OC1=CC=C(O)C=C1 KKCIOUWDFWQUBT-AWEZNQCLSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- 239000000867 Lipoxygenase Inhibitor Substances 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- YFGBQHOOROIVKG-FKBYEOEOSA-N Met-enkephalin Chemical compound C([C@@H](C(=O)N[C@@H](CCSC)C(O)=O)NC(=O)CNC(=O)CNC(=O)[C@@H](N)CC=1C=CC(O)=CC=1)C1=CC=CC=C1 YFGBQHOOROIVKG-FKBYEOEOSA-N 0.000 description 1
- 108010042237 Methionine Enkephalin Proteins 0.000 description 1
- XCOBLONWWXQEBS-KPKJPENVSA-N N,O-bis(trimethylsilyl)trifluoroacetamide Chemical compound C[Si](C)(C)O\C(C(F)(F)F)=N\[Si](C)(C)C XCOBLONWWXQEBS-KPKJPENVSA-N 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- CGMKIOXMUMZDAP-UHFFFAOYSA-N OC1=CC(C(F)(F)F)=NN1C1=CC=CC=C1 Chemical compound OC1=CC(C(F)(F)F)=NN1C1=CC=CC=C1 CGMKIOXMUMZDAP-UHFFFAOYSA-N 0.000 description 1
- 239000005642 Oleic acid Substances 0.000 description 1
- ZQPPMHVWECSIRJ-UHFFFAOYSA-N Oleic acid Natural products CCCCCCCCC=CCCCCCCCC(O)=O ZQPPMHVWECSIRJ-UHFFFAOYSA-N 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical class OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 208000018737 Parkinson disease Diseases 0.000 description 1
- 102000015439 Phospholipases Human genes 0.000 description 1
- 108010064785 Phospholipases Proteins 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 229920001214 Polysorbate 60 Polymers 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 208000032319 Primary lateral sclerosis Diseases 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 102000007327 Protamines Human genes 0.000 description 1
- 108010007568 Protamines Proteins 0.000 description 1
- 239000007868 Raney catalyst Substances 0.000 description 1
- NPXOKRUENSOPAO-UHFFFAOYSA-N Raney nickel Chemical compound [Al].[Ni] NPXOKRUENSOPAO-UHFFFAOYSA-N 0.000 description 1
- 229910000564 Raney nickel Inorganic materials 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- ZOCLAPYLSUCOGI-UHFFFAOYSA-M S[K] Chemical compound S[K] ZOCLAPYLSUCOGI-UHFFFAOYSA-M 0.000 description 1
- 206010039710 Scleroderma Diseases 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 206010040070 Septic Shock Diseases 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- FKNQFGJONOIPTF-UHFFFAOYSA-N Sodium cation Chemical compound [Na+] FKNQFGJONOIPTF-UHFFFAOYSA-N 0.000 description 1
- HVUMOYIDDBPOLL-XWVZOOPGSA-N Sorbitan monostearate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O HVUMOYIDDBPOLL-XWVZOOPGSA-N 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 208000031981 Thrombocytopenic Idiopathic Purpura Diseases 0.000 description 1
- 206010043781 Thyroiditis chronic Diseases 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 description 1
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 description 1
- 206010067584 Type 1 diabetes mellitus Diseases 0.000 description 1
- 206010046298 Upper motor neurone lesion Diseases 0.000 description 1
- 208000036142 Viral infection Diseases 0.000 description 1
- XAKBSHICSHRJCL-UHFFFAOYSA-N [CH2]C(=O)C1=CC=CC=C1 Chemical group [CH2]C(=O)C1=CC=CC=C1 XAKBSHICSHRJCL-UHFFFAOYSA-N 0.000 description 1
- 229940124532 absorption promoter Drugs 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- DPXJVFZANSGRMM-UHFFFAOYSA-N acetic acid;2,3,4,5,6-pentahydroxyhexanal;sodium Chemical compound [Na].CC(O)=O.OCC(O)C(O)C(O)C(O)C=O DPXJVFZANSGRMM-UHFFFAOYSA-N 0.000 description 1
- 238000010669 acid-base reaction Methods 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 230000001154 acute effect Effects 0.000 description 1
- 125000004423 acyloxy group Chemical group 0.000 description 1
- 125000005073 adamantyl group Chemical group C12(CC3CC(CC(C1)C3)C2)* 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 239000003513 alkali Substances 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- QWCKQJZIFLGMSD-UHFFFAOYSA-N alpha-aminobutyric acid Chemical group CCC(N)C(O)=O QWCKQJZIFLGMSD-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- CEGOLXSVJUTHNZ-UHFFFAOYSA-K aluminium tristearate Chemical compound [Al+3].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O CEGOLXSVJUTHNZ-UHFFFAOYSA-K 0.000 description 1
- 229940063655 aluminum stearate Drugs 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 150000001414 amino alcohols Chemical class 0.000 description 1
- 125000004202 aminomethyl group Chemical group [H]N([H])C([H])([H])* 0.000 description 1
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 1
- 239000005557 antagonist Substances 0.000 description 1
- 229940121363 anti-inflammatory agent Drugs 0.000 description 1
- 239000002260 anti-inflammatory agent Substances 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 206010003246 arthritis Diseases 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 150000001510 aspartic acids Chemical class 0.000 description 1
- 201000005000 autoimmune gastritis Diseases 0.000 description 1
- 201000000448 autoimmune hemolytic anemia Diseases 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 210000003651 basophil Anatomy 0.000 description 1
- 235000013871 bee wax Nutrition 0.000 description 1
- 239000012166 beeswax Substances 0.000 description 1
- UPABQMWFWCMOFV-UHFFFAOYSA-N benethamine Chemical compound C=1C=CC=CC=1CNCCC1=CC=CC=C1 UPABQMWFWCMOFV-UHFFFAOYSA-N 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid group Chemical group C(C1=CC=CC=C1)(=O)O WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 1
- 125000004541 benzoxazolyl group Chemical group O1C(=NC2=C1C=CC=C2)* 0.000 description 1
- WGQKYBSKWIADBV-UHFFFAOYSA-O benzylaminium Chemical compound [NH3+]CC1=CC=CC=C1 WGQKYBSKWIADBV-UHFFFAOYSA-O 0.000 description 1
- WTOFYLAWDLQMBZ-LURJTMIESA-N beta(2-thienyl)alanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CS1 WTOFYLAWDLQMBZ-LURJTMIESA-N 0.000 description 1
- 230000003851 biochemical process Effects 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-O bis(2-hydroxyethyl)azanium Chemical compound OCC[NH2+]CCO ZBCBWPMODOFKDW-UHFFFAOYSA-O 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 125000001246 bromo group Chemical group Br* 0.000 description 1
- 229950009494 bropirimine Drugs 0.000 description 1
- 210000004900 c-terminal fragment Anatomy 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 125000002837 carbocyclic group Chemical group 0.000 description 1
- 150000001728 carbonyl compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 125000006244 carboxylic acid protecting group Chemical group 0.000 description 1
- 239000012876 carrier material Substances 0.000 description 1
- 239000004359 castor oil Substances 0.000 description 1
- 235000019438 castor oil Nutrition 0.000 description 1
- 150000001767 cationic compounds Chemical class 0.000 description 1
- UOCJDOLVGGIYIQ-PBFPGSCMSA-N cefatrizine Chemical group S([C@@H]1[C@@H](C(N1C=1C(O)=O)=O)NC(=O)[C@H](N)C=2C=CC(O)=CC=2)CC=1CSC=1C=NNN=1 UOCJDOLVGGIYIQ-PBFPGSCMSA-N 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 210000003169 central nervous system Anatomy 0.000 description 1
- 229940081733 cetearyl alcohol Drugs 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 125000002668 chloroacetyl group Chemical group ClCC(=O)* 0.000 description 1
- 210000001612 chondrocyte Anatomy 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- LOUPRKONTZGTKE-UHFFFAOYSA-N cinchonine Natural products C1C(C(C2)C=C)CCN2C1C(O)C1=CC=NC2=CC=C(OC)C=C21 LOUPRKONTZGTKE-UHFFFAOYSA-N 0.000 description 1
- 125000000490 cinnamyl group Chemical group C(C=CC1=CC=CC=C1)* 0.000 description 1
- NNBZCPXTIHJBJL-AOOOYVTPSA-N cis-decalin Chemical compound C1CCC[C@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-AOOOYVTPSA-N 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 229960002424 collagenase Drugs 0.000 description 1
- 239000008119 colloidal silica Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000002648 combination therapy Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000004802 cyanophenyl group Chemical group 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 229960002433 cysteine Drugs 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 150000001944 cysteine derivatives Chemical class 0.000 description 1
- 239000002852 cysteine proteinase inhibitor Substances 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 150000001975 deuterium Chemical group 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- WGLUMOCWFMKWIL-UHFFFAOYSA-N dichloromethane;methanol Chemical compound OC.ClCCl WGLUMOCWFMKWIL-UHFFFAOYSA-N 0.000 description 1
- 235000005911 diet Nutrition 0.000 description 1
- 230000037213 diet Effects 0.000 description 1
- 229940116901 diethyldithiocarbamate Drugs 0.000 description 1
- LMBWSYZSUOEYSN-UHFFFAOYSA-N diethyldithiocarbamic acid Chemical compound CCN(CC)C(S)=S LMBWSYZSUOEYSN-UHFFFAOYSA-N 0.000 description 1
- 230000004069 differentiation Effects 0.000 description 1
- FSBVERYRVPGNGG-UHFFFAOYSA-N dimagnesium dioxido-bis[[oxido(oxo)silyl]oxy]silane hydrate Chemical compound O.[Mg+2].[Mg+2].[O-][Si](=O)O[Si]([O-])([O-])O[Si]([O-])=O FSBVERYRVPGNGG-UHFFFAOYSA-N 0.000 description 1
- ZZVUWRFHKOJYTH-UHFFFAOYSA-N diphenhydramine Chemical group C=1C=CC=CC=1C(OCCN(C)C)C1=CC=CC=C1 ZZVUWRFHKOJYTH-UHFFFAOYSA-N 0.000 description 1
- BEQVQKJCLJBTKZ-UHFFFAOYSA-N diphenylphosphinic acid Chemical compound C=1C=CC=CC=1P(=O)(O)C1=CC=CC=C1 BEQVQKJCLJBTKZ-UHFFFAOYSA-N 0.000 description 1
- ZPWVASYFFYYZEW-UHFFFAOYSA-L dipotassium hydrogen phosphate Chemical compound [K+].[K+].OP([O-])([O-])=O ZPWVASYFFYYZEW-UHFFFAOYSA-L 0.000 description 1
- 229910000396 dipotassium phosphate Inorganic materials 0.000 description 1
- 235000019797 dipotassium phosphate Nutrition 0.000 description 1
- BNIILDVGGAEEIG-UHFFFAOYSA-L disodium hydrogen phosphate Chemical compound [Na+].[Na+].OP([O-])([O-])=O BNIILDVGGAEEIG-UHFFFAOYSA-L 0.000 description 1
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Chemical group OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000890 drug combination Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 238000002330 electrospray ionisation mass spectrometry Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 230000001804 emulsifying effect Effects 0.000 description 1
- 239000008387 emulsifying waxe Substances 0.000 description 1
- 239000007920 enema Substances 0.000 description 1
- 229940095399 enema Drugs 0.000 description 1
- 238000006911 enzymatic reaction Methods 0.000 description 1
- 238000001952 enzyme assay Methods 0.000 description 1
- 210000003979 eosinophil Anatomy 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- BEFDCLMNVWHSGT-UHFFFAOYSA-N ethenylcyclopentane Chemical compound C=CC1CCCC1 BEFDCLMNVWHSGT-UHFFFAOYSA-N 0.000 description 1
- 230000005284 excitation Effects 0.000 description 1
- 230000029142 excretion Effects 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 125000002485 formyl group Chemical group [H]C(*)=O 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- UHBYWPGGCSDKFX-VKHMYHEASA-N gamma-carboxy-L-glutamic acid Chemical compound OC(=O)[C@@H](N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-VKHMYHEASA-N 0.000 description 1
- 210000001035 gastrointestinal tract Anatomy 0.000 description 1
- 229960002989 glutamic acid Drugs 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 229960002743 glutamine Drugs 0.000 description 1
- 235000004554 glutamine Nutrition 0.000 description 1
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 150000002373 hemiacetals Chemical class 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 230000036571 hydration Effects 0.000 description 1
- 238000006703 hydration reaction Methods 0.000 description 1
- 125000005597 hydrazone group Chemical group 0.000 description 1
- COQRGFWWJBEXRC-UHFFFAOYSA-N hydron;methyl 2-aminoacetate;chloride Chemical compound Cl.COC(=O)CN COQRGFWWJBEXRC-UHFFFAOYSA-N 0.000 description 1
- QJHBJHUKURJDLG-UHFFFAOYSA-N hydroxy-L-lysine Natural products NCCCCC(NO)C(O)=O QJHBJHUKURJDLG-UHFFFAOYSA-N 0.000 description 1
- 229960002591 hydroxyproline Drugs 0.000 description 1
- 125000002883 imidazolyl group Chemical group 0.000 description 1
- 239000002955 immunomodulating agent Substances 0.000 description 1
- 229940121354 immunomodulator Drugs 0.000 description 1
- 230000004957 immunoregulator effect Effects 0.000 description 1
- PZOUSPYUWWUPPK-UHFFFAOYSA-N indole Natural products CC1=CC=CC2=C1C=CN2 PZOUSPYUWWUPPK-UHFFFAOYSA-N 0.000 description 1
- RKJUIXBNRJVNHR-UHFFFAOYSA-N indolenine Natural products C1=CC=C2CC=NC2=C1 RKJUIXBNRJVNHR-UHFFFAOYSA-N 0.000 description 1
- QNRXNRGSOJZINA-UHFFFAOYSA-N indoline-2-carboxylic acid Chemical group C1=CC=C2NC(C(=O)O)CC2=C1 QNRXNRGSOJZINA-UHFFFAOYSA-N 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 229940102223 injectable solution Drugs 0.000 description 1
- 229940102213 injectable suspension Drugs 0.000 description 1
- 229910001411 inorganic cation Inorganic materials 0.000 description 1
- 238000007917 intracranial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007919 intrasynovial administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 125000002346 iodo group Chemical group I* 0.000 description 1
- 238000005342 ion exchange Methods 0.000 description 1
- 239000013038 irreversible inhibitor Substances 0.000 description 1
- 229960000310 isoleucine Drugs 0.000 description 1
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 1
- QXJSBBXBKPUZAA-UHFFFAOYSA-N isooleic acid Natural products CCCCCCCC=CCCCCCCCCC(O)=O QXJSBBXBKPUZAA-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 125000000842 isoxazolyl group Chemical group 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 201000010901 lateral sclerosis Diseases 0.000 description 1
- 239000000787 lecithin Substances 0.000 description 1
- 235000010445 lecithin Nutrition 0.000 description 1
- 229940067606 lecithin Drugs 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 210000004324 lymphatic system Anatomy 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 239000000391 magnesium silicate Substances 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 229910000386 magnesium trisilicate Inorganic materials 0.000 description 1
- 229940099273 magnesium trisilicate Drugs 0.000 description 1
- 235000019793 magnesium trisilicate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000002503 metabolic effect Effects 0.000 description 1
- 239000003475 metalloproteinase inhibitor Substances 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- AFVFQIVMOAPDHO-UHFFFAOYSA-N methanesulfonic acid Substances CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 229960004452 methionine Drugs 0.000 description 1
- 125000004184 methoxymethyl group Chemical group [H]C([H])([H])OC([H])([H])* 0.000 description 1
- 150000004702 methyl esters Chemical class 0.000 description 1
- BDGDWWGTAFXEEW-UHFFFAOYSA-N methylsulfinylmethane;oxalyl dichloride Chemical compound CS(C)=O.ClC(=O)C(Cl)=O BDGDWWGTAFXEEW-UHFFFAOYSA-N 0.000 description 1
- 125000004092 methylthiomethyl group Chemical group [H]C([H])([H])SC([H])([H])* 0.000 description 1
- 229940042472 mineral oil Drugs 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000002808 molecular sieve Substances 0.000 description 1
- 239000012452 mother liquor Substances 0.000 description 1
- 208000005264 motor neuron disease Diseases 0.000 description 1
- 201000006417 multiple sclerosis Diseases 0.000 description 1
- 206010028417 myasthenia gravis Diseases 0.000 description 1
- ACTNHJDHMQSOGL-UHFFFAOYSA-N n',n'-dibenzylethane-1,2-diamine Chemical compound C=1C=CC=CC=1CN(CCN)CC1=CC=CC=C1 ACTNHJDHMQSOGL-UHFFFAOYSA-N 0.000 description 1
- SMOAVRFWHRNBHP-GUYCJALGSA-N n-[(2s)-1-[[(2s)-4-(2-carbamoylhydrazinyl)-1,4-dioxobutan-2-yl]amino]-3-methyl-1-oxobutan-2-yl]-1-methylindole-2-carboxamide Chemical compound C1=CC=C2N(C)C(C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=NNC(N)=O)C=O)=CC2=C1 SMOAVRFWHRNBHP-GUYCJALGSA-N 0.000 description 1
- 239000007922 nasal spray Substances 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 125000006501 nitrophenyl group Chemical group 0.000 description 1
- 231100000344 non-irritating Toxicity 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- JFNLZVQOOSMTJK-KNVOCYPGSA-N norbornene Chemical compound C1[C@@H]2CC[C@H]1C=C2 JFNLZVQOOSMTJK-KNVOCYPGSA-N 0.000 description 1
- GLDOVTGHNKAZLK-UHFFFAOYSA-N octadecan-1-ol Chemical compound CCCCCCCCCCCCCCCCCCO GLDOVTGHNKAZLK-UHFFFAOYSA-N 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid Chemical compound CCCCCCCC\C=C/CCCCCCCC(O)=O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 239000004006 olive oil Substances 0.000 description 1
- 235000008390 olive oil Nutrition 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 239000012074 organic phase Substances 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 125000001715 oxadiazolyl group Chemical group 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 150000002923 oximes Chemical class 0.000 description 1
- LDCYZAJDBXYCGN-UHFFFAOYSA-N oxitriptan Natural products C1=C(O)C=C2C(CC(N)C(O)=O)=CNC2=C1 LDCYZAJDBXYCGN-UHFFFAOYSA-N 0.000 description 1
- 125000003854 p-chlorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1Cl 0.000 description 1
- 125000006503 p-nitrobenzyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1[N+]([O-])=O)C([H])([H])* 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 125000001037 p-tolyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)C([H])([H])[H] 0.000 description 1
- IPCSVZSSVZVIGE-UHFFFAOYSA-N palmitic acid group Chemical group C(CCCCCCCCCCCCCCC)(=O)O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 239000000816 peptidomimetic Substances 0.000 description 1
- 125000001151 peptidyl group Chemical group 0.000 description 1
- 239000000546 pharmaceutical excipient Substances 0.000 description 1
- 230000000144 pharmacologic effect Effects 0.000 description 1
- UYWQUFXKFGHYNT-UHFFFAOYSA-N phenylmethyl ester of formic acid Natural products O=COCC1=CC=CC=C1 UYWQUFXKFGHYNT-UHFFFAOYSA-N 0.000 description 1
- ASUOLLHGALPRFK-UHFFFAOYSA-N phenylphosphonoylbenzene Chemical group C=1C=CC=CC=1P(=O)C1=CC=CC=C1 ASUOLLHGALPRFK-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 235000021317 phosphate Nutrition 0.000 description 1
- XYFCBTPGUUZFHI-UHFFFAOYSA-O phosphonium Chemical compound [PH4+] XYFCBTPGUUZFHI-UHFFFAOYSA-O 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 125000005544 phthalimido group Chemical group 0.000 description 1
- HXEACLLIILLPRG-UHFFFAOYSA-N pipecolic acid Chemical group OC(=O)C1CCCCN1 HXEACLLIILLPRG-UHFFFAOYSA-N 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 description 1
- 239000001818 polyoxyethylene sorbitan monostearate Substances 0.000 description 1
- 235000010989 polyoxyethylene sorbitan monostearate Nutrition 0.000 description 1
- 229920001451 polypropylene glycol Polymers 0.000 description 1
- 229940113124 polysorbate 60 Drugs 0.000 description 1
- 229920000053 polysorbate 80 Polymers 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 239000004302 potassium sorbate Substances 0.000 description 1
- 235000010241 potassium sorbate Nutrition 0.000 description 1
- 229940069338 potassium sorbate Drugs 0.000 description 1
- ISDZZAZYUPHOFG-UHFFFAOYSA-M potassium;2,3,5,6-tetrafluorophenolate Chemical compound [K+].[O-]C1=C(F)C(F)=CC(F)=C1F ISDZZAZYUPHOFG-UHFFFAOYSA-M 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 102000004196 processed proteins & peptides Human genes 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 230000035755 proliferation Effects 0.000 description 1
- 229960002429 proline Drugs 0.000 description 1
- 235000013930 proline Nutrition 0.000 description 1
- 125000001500 prolyl group Chemical group [H]N1C([H])(C(=O)[*])C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 229950008679 protamine sulfate Drugs 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000000561 purinyl group Chemical group N1=C(N=C2N=CNC2=C1)* 0.000 description 1
- 125000003373 pyrazinyl group Chemical group 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 125000004076 pyridyl group Chemical group 0.000 description 1
- 125000000714 pyrimidinyl group Chemical group 0.000 description 1
- 125000000719 pyrrolidinyl group Chemical group 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 229960000948 quinine Drugs 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 229940100618 rectal suppository Drugs 0.000 description 1
- 239000006215 rectal suppository Substances 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 230000002441 reversible effect Effects 0.000 description 1
- 230000036303 septic shock Effects 0.000 description 1
- 208000013223 septicemia Diseases 0.000 description 1
- 229960001153 serine Drugs 0.000 description 1
- 150000003355 serines Chemical class 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- XGVXKJKTISMIOW-ZDUSSCGKSA-N simurosertib Chemical compound N1N=CC(C=2SC=3C(=O)NC(=NC=3C=2)[C@H]2N3CCC(CC3)C2)=C1C XGVXKJKTISMIOW-ZDUSSCGKSA-N 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- URGAHOPLAPQHLN-UHFFFAOYSA-N sodium aluminosilicate Chemical compound [Na+].[Al+3].[O-][Si]([O-])=O.[O-][Si]([O-])=O URGAHOPLAPQHLN-UHFFFAOYSA-N 0.000 description 1
- 239000012279 sodium borohydride Substances 0.000 description 1
- 229910000033 sodium borohydride Inorganic materials 0.000 description 1
- 235000019812 sodium carboxymethyl cellulose Nutrition 0.000 description 1
- 229920001027 sodium carboxymethylcellulose Polymers 0.000 description 1
- 230000003381 solubilizing effect Effects 0.000 description 1
- 239000004334 sorbic acid Substances 0.000 description 1
- 235000010199 sorbic acid Nutrition 0.000 description 1
- 229940075582 sorbic acid Drugs 0.000 description 1
- WSWCOQWTEOXDQX-MQQKCMAXSA-N sorbic acid group Chemical group C(\C=C\C=C\C)(=O)O WSWCOQWTEOXDQX-MQQKCMAXSA-N 0.000 description 1
- 239000001587 sorbitan monostearate Substances 0.000 description 1
- 235000011076 sorbitan monostearate Nutrition 0.000 description 1
- 229940035048 sorbitan monostearate Drugs 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 125000005017 substituted alkenyl group Chemical group 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- UIUJIQZEACWQSV-UHFFFAOYSA-N succinic semialdehyde Chemical class OC(=O)CCC=O UIUJIQZEACWQSV-UHFFFAOYSA-N 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 210000001179 synovial fluid Anatomy 0.000 description 1
- 210000002437 synoviocyte Anatomy 0.000 description 1
- 230000002194 synthesizing effect Effects 0.000 description 1
- 201000000596 systemic lupus erythematosus Diseases 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- WHXMOTMCYKDBDR-QWRGUYRKSA-N tert-butyl (3s)-3-[[(2s)-2-amino-4-methylpentanoyl]amino]-n-carbamoyl-4-oxobutanehydrazonate Chemical compound CC(C)C[C@H](N)C(=O)N[C@H](C=O)CC(OC(C)(C)C)=NNC(N)=O WHXMOTMCYKDBDR-QWRGUYRKSA-N 0.000 description 1
- QHYQEYIFTIIWFH-UHFFFAOYSA-N tert-butyl 3-nitropropanoate Chemical compound CC(C)(C)OC(=O)CC[N+]([O-])=O QHYQEYIFTIIWFH-UHFFFAOYSA-N 0.000 description 1
- ILMRJRBKQSSXGY-UHFFFAOYSA-N tert-butyl(dimethyl)silicon Chemical group C[Si](C)C(C)(C)C ILMRJRBKQSSXGY-UHFFFAOYSA-N 0.000 description 1
- MHXBHWLGRWOABW-UHFFFAOYSA-N tetradecyl octadecanoate Chemical compound CCCCCCCCCCCCCCCCCC(=O)OCCCCCCCCCCCCCC MHXBHWLGRWOABW-UHFFFAOYSA-N 0.000 description 1
- 125000001412 tetrahydropyranyl group Chemical group 0.000 description 1
- CZDYPVPMEAXLPK-UHFFFAOYSA-N tetramethylsilane Chemical compound C[Si](C)(C)C CZDYPVPMEAXLPK-UHFFFAOYSA-N 0.000 description 1
- OSBSFAARYOCBHB-UHFFFAOYSA-N tetrapropylammonium Chemical compound CCC[N+](CCC)(CCC)CCC OSBSFAARYOCBHB-UHFFFAOYSA-N 0.000 description 1
- 125000003831 tetrazolyl group Chemical group 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 125000004525 thiadiazinyl group Chemical group S1NN=C(C=C1)* 0.000 description 1
- 125000001113 thiadiazolyl group Chemical group 0.000 description 1
- 125000005307 thiatriazolyl group Chemical group S1N=NN=C1* 0.000 description 1
- 125000001544 thienyl group Chemical group 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- FGMPLJWBKKVCDB-UHFFFAOYSA-N trans-L-hydroxy-proline Chemical group ON1CCCC1C(O)=O FGMPLJWBKKVCDB-UHFFFAOYSA-N 0.000 description 1
- NNBZCPXTIHJBJL-UHFFFAOYSA-N trans-decahydronaphthalene Natural products C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 1
- NNBZCPXTIHJBJL-MGCOHNPYSA-N trans-decalin Chemical compound C1CCC[C@@H]2CCCC[C@H]21 NNBZCPXTIHJBJL-MGCOHNPYSA-N 0.000 description 1
- 125000004306 triazinyl group Chemical group 0.000 description 1
- 150000003852 triazoles Chemical class 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- 125000003866 trichloromethyl group Chemical group ClC(Cl)(Cl)* 0.000 description 1
- 125000004044 trifluoroacetyl group Chemical group FC(C(=O)*)(F)F 0.000 description 1
- 229960004799 tryptophan Drugs 0.000 description 1
- 208000035408 type 1 diabetes mellitus 1 Diseases 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 230000009385 viral infection Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 239000001993 wax Substances 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 210000002268 wool Anatomy 0.000 description 1
- 238000010626 work up procedure Methods 0.000 description 1
- 230000029663 wound healing Effects 0.000 description 1
- 150000003751 zinc Chemical class 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/02—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K5/00—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof
- C07K5/02—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link
- C07K5/0202—Peptides containing up to four amino acids in a fully defined sequence; Derivatives thereof containing at least one abnormal peptide link containing the structure -NH-X-X-C(=0)-, X being an optionally substituted carbon atom or a heteroatom, e.g. beta-amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/04—Drugs for disorders of the alimentary tract or the digestive system for ulcers, gastritis or reflux esophagitis, e.g. antacids, inhibitors of acid secretion, mucosal protectants
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/16—Drugs for disorders of the alimentary tract or the digestive system for liver or gallbladder disorders, e.g. hepatoprotective agents, cholagogues, litholytics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P1/00—Drugs for disorders of the alimentary tract or the digestive system
- A61P1/18—Drugs for disorders of the alimentary tract or the digestive system for pancreatic disorders, e.g. pancreatic enzymes
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P13/00—Drugs for disorders of the urinary system
- A61P13/12—Drugs for disorders of the urinary system of the kidneys
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P15/00—Drugs for genital or sexual disorders; Contraceptives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P19/00—Drugs for skeletal disorders
- A61P19/02—Drugs for skeletal disorders for joint disorders, e.g. arthritis, arthrosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/14—Drugs for disorders of the nervous system for treating abnormal movements, e.g. chorea, dyskinesia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P25/00—Drugs for disorders of the nervous system
- A61P25/28—Drugs for disorders of the nervous system for treating neurodegenerative disorders of the central nervous system, e.g. nootropic agents, cognition enhancers, drugs for treating Alzheimer's disease or other forms of dementia
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P29/00—Non-central analgesic, antipyretic or antiinflammatory agents, e.g. antirheumatic agents; Non-steroidal antiinflammatory drugs [NSAID]
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/04—Antibacterial agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/06—Immunosuppressants, e.g. drugs for graft rejection
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/08—Antiallergic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P43/00—Drugs for specific purposes, not provided for in groups A61P1/00-A61P41/00
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P9/00—Drugs for disorders of the cardiovascular system
- A61P9/10—Drugs for disorders of the cardiovascular system for treating ischaemic or atherosclerotic diseases, e.g. antianginal drugs, coronary vasodilators, drugs for myocardial infarction, retinopathy, cerebrovascula insufficiency, renal arteriosclerosis
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
Definitions
- the present invention relates to novel classes of compounds which are inhibitors of interleukin-1 ⁇ converting enzyme and related proteases (“ICE/ced-3 family of cysteine proteases”).
- This invention also relates to pharmaceutical compositions comprising these compounds and to methods of using such pharmaceutical compositions.
- the compounds, pharmaceutical compositions and methods of this invention are particularly well suited for inhibiting the protease activity of the ICE/ced-3 family and consequently, may be advantageously used as agents against interleukin-1 (“IL-1”) mediated diseases, including inflammatory diseases, autoimmune diseases and neurodegenerative diseases and for inhibiting unwanted apoptosis in various disease states such as ischemic injury to the heart (e.g., myocardial infarction), brain (e.g., stroke), and kidney (e.g., ischemic kidney disease).
- IL-1 interleukin-1
- Interleukin 1 (“IL-1”) is a major pro-inflammatory and immunoregulatory protein that stimulates fibroblast differentiation and proliferation, the production of prostaglandins, collagenase and phospholipase by synovial cells and chondrocytes, basophil and eosinophil degranulation and neutrophil activation.
- IL-1 Interleukin 1
- it is involved in the pathogenesis of chronic and acute inflammatory and autoimmune diseases.
- IL-1 is predominantly produced by peripheral blood monocytes as part of the inflammatory response.
- IL-1 ⁇ is synthesized as a biologically inactive precursor, proIL-1 ⁇ .
- ProIL-1 ⁇ is cleaved by a cysteine protease called interleukin-1 ⁇ converting enzyme (“ICE”) between Asp-116 and Ala-117 to produce the biologically active C-terminal fragment found in human serum and synovial fluid.
- ICE interleukin-1 ⁇ converting enzyme
- ICE is a cysteine protease localized primarily in monocytes.
- ICE In addition to promoting the pro-inflammatory and immunoregulatory properties of IL-1 ⁇ , ICE, and particularly its homologues, also appear to be involved in the regulation of cell death or apoptosis. Yuan, J. et al., Cell, 75:641-652 (1993); Miura, M. et al., Cell, 75:653-660 (1993); Nett-Giordalisi, M. A. et al., J. Cell Biochem., 17B:117 (1993).
- ICE or ICE/ced-3 homologues are thought to be associated with the regulation of apoptosis in neurogenerative diseases, such as Alzheimer's and Parkinson's disease. Marx, J. and M. Baringa, Science, 259:760-762 (1993); Gagliardini, V. et al., Science, 263:826-828 (1994).
- disease states in which inhibitors of the ICE/ced-3 family of cysteine proteases may be useful as therapeutic agents include: infectious diseases, such as meningitis and salpingitis; septic shock, respiratory diseases; inflammatory conditions, such as arthritis, cholangitis, colitis, encephalitis, endocerolitis, hepatitis, pancreatitis and reperfusion injury, ischemic diseases such as the myocardial infarction, stroke and ischemic kidney disease; immune-based diseases, such as hypersensitivity; auto-immune diseases, such as multiple sclerosis; bone diseases; and certain neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.
- infectious diseases such as meningitis and salpingitis
- septic shock respiratory diseases
- inflammatory conditions such as arthritis, cholangitis, colitis, encephalitis, endocerolitis, hepatitis, pancreatitis and reperfusion injury
- ischemic diseases such as the myocardial infarction, stroke and
- ICE/ced-3 inhibitors represent a class of compounds useful for the control of the above-listed disease states.
- Peptide and peptidyl inhibitors of ICE have been described.
- such inhibitors have been typically characterized by undesirable pharmacologic properties, such as poor oral absorption, poor stability and rapid metabolism.
- undesirable properties have hampered their development into effective drugs.
- the present invention satisfies this need and provide related advantages as well.
- a further aspect of the instant invention is pharmaceutical compositions comprising a compound of the above Formula 1 and a pharmaceutically-acceptable carrier therefor.
- Another aspects of this invention involve a method for treating an autoimmune disease, an inflammatory disease, or a neurodegenerative disease comprising administering an effective amount of a pharmaceutical composition discussed above to a patient in need of such treatment.
- Another aspect of the instant invention is a method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury comprising administering an effective amount of the pharmaceutical composition discussed above to a patient in need of such treatment.
- the compounds of this invention incorporate an N-substituted indole ring as a peptidomimetic structural fragment.
- the N-substituted indole compounds of the instant invention have high activity as inhibitors of ICE/ced-3 protease family of enzymes. These compounds also demonstrate other advantages relative to known peptidic inhibitors.
- n 1 or 2;
- R 3 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
- R 4 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
- R 5 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
- A is a natural or unnatural amino acid
- B is a hydrogen atom, a deuterium atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl, halomethyl, CH 2 ZR 6 , CH 2 OCO(aryl), or CH 2 OCO(heteroaryl), or CH 2 OPO(R 7 )R 8 , where Z is an oxygen, OC( ⁇ O) or a sulfur atom;
- R 6 is phenyl, substituted phenyl, phenylalkyl, (substituted phenyl)alkyl, heteroaryl or (heteroaryl)alkyl;
- R 7 and R 8 are independently selected from a group consistent of alkyl, cycloalkyl, phenyl, substituted phenyl, phenylalkyl, (substituted phenyl) alkyl and (cycloalkyl)alkyl;
- X and Y are independently selected from the group consisting of a hydrogen atom, halo, trihalomethyl, amino, protected amino, an amino salt, mono-substituted amino, di-substituted amino, carboxy, protected carboxy, a carboxylate salt, hydroxy, protected hydroxy, a salt of a hydroxy group, lower alkoxy, lower alkylthio, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl;
- alkyl means a straight or branched C 1 to C 8 carbon chain such as methyl, ethyl, tert-butyl, iso-propyl, iso-butyl, n-octyl, and the like.
- cycloalkyl means a mono-, bi-, or tricyclic ring that is either fully saturated or partially unsaturated. Examples of such a ring include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, cis- or trans decalin, bicyclo[2.2.1]hept-2-ene, cyclohex-1-enyl, cyclopent-1-enyl, 1,4-cyclooctadienyl, and the like.
- (cycloalkyl)alkyl means the above-defined alkyl group substituted with one of the above cycloalkyl rings. Examples of such a group include (cyclohexyl)methyl, 3-(cyclopropyl)-n-propyl, 5-(cyclopentyl)hexyl, 6-(adamantyl)hexyl, and the like.
- substituted phenyl specifies a phenyl group substituted with one or more, and preferably one or two, moieties chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, trifluoromethyl, C 1 to C 7 alkyl, C 1 to C 7 alkoxy, C 1 to C 7 acyl, C 1 to C 7 acyloxy, heteroaryl, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted) amino, protected (monosubstituted) amino, (disubstituted)amino, carboxamide, protected carboxamide, N—(C 1 to C 6 alkyl or alkoxy)carboxamide, protected N—(C 1 to C 6 alkyl or alkoxy)carboxamide, N,N-di(C 1 to C 6 alkyl or alkoxy)carboxamide,
- substituted phenyl includes a mono- or di(halo)phenyl group such as 2-, 3-or 4-chlorophenyl, 2,6-dichlorophenyl, 2,5-dichlorophenyl, 3,4-dichlorophenyl, 2-,3- or 4-bromophenyl, 3,4-dibromophenyl, 3-chloro-4-fluorophenyl, 2-, 3- or 4-fluorophenyl and the like, as well as tri- or tetra(halo)phenyl groups such as 2,3,5,6-fluorophenyl; a mono or di(hydroxy)phenyl group such as 2-, 3-, or 4-hydroxyphenyl, 2,4-dihydroxyphenyl, the protected-hydroxy derivatives thereof and the like; a nitrophenyl group such as 2-, 3-, or 4-nitrophenyl; a cyanophenyl group, for example, 2-,3- or 4-cyanophen
- substituted phenyl represents disubstituted phenyl groups wherein the substituents are different, for example, 3-methyl-4-hydroxyphenyl, 3-chloro-4-hydroxyphenyl, 2-methoxy-4-bromophenyl, 4-ethyl-2-hydroxyphenyl, 3-hydroxy-4-nitrophenyl, 2-hydroxy-4-chlorophenyl, and the like.
- (substituted phenyl)alkyl means one of the above substituted phenyl groups attached to one of the above-described alkyl groups.
- groups include 2-phenyl-1-chloroethyl, 2-(4′-methoxyphenyl)ethyl, 4-(2′,6′-dihydroxy phenyl)n-hexyl, 2-(5′-cyano-3′-methoxyphenyl)n-pentyl, 3-(2′,6′-dimethylphenyl)n-propyl, 4-chloro-3-aminobenzyl, 6-(4′-methoxyphenyl)-3-carboxy(n-hexyl), 5-(4′-aminomethylphenyl)-3-(aminomethyl)n-pentyl, 5-phenyl-3-oxo-n-pent-1-yl, (4-hydroxynapth-2-yl)methyl, and the like.
- halo and “halogen” refer to the fluoro, chloro, bromo or iodo groups. There can be one or more halogen, which are the same or different. Preferred halogens are chloro and fluoro.
- aryl refers to aromatic five and six membered carbocyclic rings. Six membered rings are preferred.
- heteroaryl denotes optionally substituted five-membered or six-membered rings that have 1 to 4 heteroatoms, such as oxygen, sulfur and/or nitrogen atoms, in particular nitrogen, either alone or in conjunction with sulfur or oxygen ring atoms. These five-membered or six-membered rings are fully unsaturated.
- heteroaryl thienyl, furyl, pyrrolyl, pyrrolidinyl, imidazolyl, isoxazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, thiatriazolyl, oxatriazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, oxazinyl, triazinyl, thiadiazinyl tetrazolo, 1,5-[b]pyridazinyl and purinyl, as well as benzo-fused derivatives, for example, benzoxazolyl, benzothiazolyl, benzimidazolyl and indolyl.
- Substituents for the above optionally substituted heteroaryl rings are from one to three halo, trihalomethyl, carboxamide, amino, protected amino, amino salts, mono-substituted amino, di-substituted amino, carboxy, protected carboxy, carboxylate salts, hydroxy, protected hydroxy, salts of a hydroxy group, lower alkoxy, lower alkylthio, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl groups.
- heteroaryl group substituted with substituents for the heteroaryl group.
- trihalomethyl can be trifluoromethyl, trichloromethyl, tribromomethyl or triiodomethyl
- lower alkoxy means a C 1 to C 4 alkoxy group
- lower alkylthio means a C 1 to C 4 alkylthio group.
- substituted alkyl means the above-defined alkyl group substituted from one to three times by a hydroxy, protected hydroxy, amino, protected amino, cyano, halo, trifluoromethyl, mono-substituted amino, di-substituted amino, lower alkoxy, lower alkylthio, carboxy, protected carboxy, or a carboxy, amino, and/or hydroxy salt.
- substituted (cycloalkyl)alkyl and “substituted cycloalkyl” are as defined above substituted with the same groups as listed for a “substituted alkyl” group.
- (monosubstituted)amino refers to an amino group with one substituent chosen from the group consisting of phenyl, substituted phenyl, alkyl, substituted alkyl, C 1 to C 7 acyl, C 2 to C 7 alkenyl, C 2 to C 7 substituted alkenyl, C 2 to C 7 alkynyl, C 7 to C 16 alkylaryl, C 7 to C 16 substituted alkylaryl and heteroaryl group.
- the (monosubstituted)amino can additionally have an amino-protecting group as encompassed by the term “protected (monosubstituted)amino.”
- the term “(disubstituted)amino” refers to amino groups with two substituents chosen from the group consisting of phenyl, substituted phenyl, alkyl, substituted alkyl, C 1 to C 7 acyl, C 2 to C 7 alkenyl, C 2 to C 7 alkynyl, C 7 to C 16 alkylaryl, C 7 to C 16 substituted alkylaryl and heteroaryl. The two substituents can be the same or different.
- heteroaryl(alkyl) denotes an alkyl group as defined above, substituted at any position by a heteroaryl group, as above defined.
- the above optionally substituted five-membered or six-membered heterocyclic rings can optionally be fused to a aromatic 5-membered or 6-membered aryl or heteroaryl ring system.
- the rings can be optionally fused to an aromatic 5-membered or 6-membered ring system such as a pyridine or a triazole system, and preferably to a benzene ring.
- the term “pharmaceutically-acceptable salt” encompasses those salts that form with the carboxylate anions and includes salts formed with the organic and inorganic cations such as those chosen from the alkali and alkaline earth metals, (for example, lithium, sodium, potassium, magnesium, barium and calcium); and ammonium ion; and the organic cations (for example, dibenzylammonium, benzylammonium, 2-hydroxyethylammonium, bis(2-hydroxyethyl)ammonium, phenylethylbenzylammonium, dibenzylethylenediammonium, and like cations.)
- Other cations encompassed by the above term include the protonated form of procaine, quinine and N-methylglucosamine, the protonated forms of basic amino acids such as glycine, omithine, histidine, phenylglycine, lysine, and arginine.
- any zwitterionic form of the instant compounds formed by a carboxylic acid and an amino group is referred to by this term.
- a preferred cation for the carboxylate anion is the sodium cation.
- the term includes salts that form by standard acid-base reactions with basic groups (such as amino groups) and includes organic or inorganic acids.
- Such acids include hydrochloric, sulfuric, phosphoric, acetic, succinic, citric, lactic, maleic, fumaric, palmitic, cholic, pamoic, mucic, D-glutamic, D-camphoric, glutaric, phthalic, tartaric, lauric, stearic, salicyclic, methanesulfonic, benzenesulfonic, sorbic, picric, benzoic, cinnamic, and the like acids.
- the compounds of Formula I may also exist as solvates and hydrates. Thus, these compounds may crystallize with, for example, waters of hydration, or one, a number of, or any fraction thereof of molecules of the mother liquor solvent.
- the solvates and hydrates of such compounds are included within the scope of this invention.
- carboxy-protecting group refers to one of the ester derivatives of the carboxylic acid group commonly employed to block or protect the carboxylic acid group while reactions are carried out on other functional groups on the compound.
- carboxylic acid protecting groups include t-butyl, 4-nitrobenzyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, 2,4-dimethoxybenzyl, 2,4,6-trimethoxybenzyl, 2,4,6-trimethylbenzyl, pentamethylbenzyl, 3,4-methylenedioxybenzyl, benzhydryl, 4,4′-dimethoxytrityl, 4,4′,4′′-trimethoxytrityl, 2-phenylpropyl, trimethylsilyl, t-butyldimethylsilyl, phenacyl, 2,2,2-trichloroethyl, ⁇ -(trimethylsilyl)ethyl, ⁇ -(di)
- carboxy-protecting group employed is not critical so long as the derivatized carboxylic acid is stable to the conditions of subsequent reaction(s) and can be removed at the appropriate point without disrupting the remainder of the molecule. Further examples of these groups are found in C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973, Chapter 5, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” 2nd ed., John Wiley and Sons, New York, N.Y., 1991, Chapter 5, each of which is incorporated herein by reference.
- a related term is “protected carboxy,” which refers to a carboxy group substituted with one of the above carboxy-protecting groups.
- hydroxy-protecting group refers to readily cleavable groups bonded to hydroxyl groups, such as the tetrahydropyranyl, 2-methoxyprop-2-yl, 1-ethoxyeth-1-yl, methoxymethyl, ⁇ -methoxyethoxymethyl, methylthiomethyl, t-butyl, t-amyl, trityl, 4-methoxytrityl, 4,4′-dimethoxytrityl, 4,4′,4′′-trimethoxytrityl, benzyl, allyl, trimethylsilyl, (t-butyl)dimethylsilyl, 2,2,2-trichloroethoxycarbonyl, and the like.
- hydroxy-protecting groups are described by C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973, Chapters 3 and 4, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” Second Edition, John Wiley and Sons, New York, N.Y., 1991, Chapters 2 and 3.
- a preferred hydroxy-protecting group is the tert-butyl group.
- protected hydroxy denotes a hydroxy group bonded to one of the above hydroxy-protecting groups.
- amino-protecting group refers to substituents of the amino group commonly employed to block or protect the amino functionality while reacting other functional groups of the molecule.
- protected (monosubstituted)amino means there is an amino-protecting group on the monosubstituted amino nitrogen atom.
- amino-protecting groups include the formyl (“For”) group, the trityl group, the phthalimido group, the trichloroacetyl group, the trifluoroacetyl group, the chloroacetyl, bromoacetyl, and iodoacetyl groups, urethane-type protecting groups, such as t-butoxycarbonyl (“Boc”), 2-(4-biphenylyl)propyl-2-oxycarbonyl (“Bpoc”), 2-phenylpropyl-2-oxycarbonyl (“Poc”), 2-(4-xenyl)isopropoxycarbonyl, 1,1-diphenylethyl-1-oxycarbonyl, 1,1-diphenylpropyl-1-oxycarbonyl, 2-(3,5-dimethoxyphenyl)propyl-2-oxycarbonyl (“Ddz”), 2-(p-toluyl)propyl-2-oxycarbonyl
- amino-protecting group employed is not critical so long as the derivatized amino group is stable to the conditions of the subsequent reaction(s) and can be removed at the appropriate point without disrupting the remainder of the molecule.
- Preferred amino-protecting groups are Boc, Cbz and Fmoc.
- Further examples of amino-protecting groups embraced by the above term are well known in organic synthesis and the peptide art and are described by, for example, T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” 2nd ed., John Wiley and Sons, New York, N.Y., 1991, Chapter 7, M.
- naturally occurring amino acids refers to both the naturally occurring amino acids and other non-proteinogenic ⁇ -amino acids commonly utilized by those in the peptide chemistry arts when preparing synthetic analogues of naturally occurring peptides, including D and L forms.
- the naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, ⁇ -carboxyglutamic acid, arginine, ornithine and lysine.
- unnatural alpha-amino acids include hydroxylysine, citrulline, kynurenine, (4-aminophenyl)alanine, 3-(2′-naphthyl)alanine, 3-(1′-naphthyl)alanine, methionine sulfone, (t-butyl)alanine, (t-butyl)glycine, 4-hydroxyphenyl-glycine, aminoalanine, phenylglycine, vinylalanine, propargyl-gylcine, 1,2,4-triazolo-3-alanine, thyronine, 6-hydroxytryptophan, 5-hydroxytryptophan, 3-hydroxy-kynurenine, 3-aminotyrosine, trifluoromethylalanine, 2-thienylalanine, (2-(4-pyridyl)ethyl)cysteine, 3,4-dimethoxy-phenylalanine, 3-(2′-thio
- Any of these ⁇ -amino acids may be substituted with a methyl group at the alpha position, a halogen at any position of the aromatic residue on the ⁇ -amino side chain, or an appropriate protective group at the O, N, or S atoms of the side chain residues.
- Appropriate protective groups are discussed above.
- compounds of this invention may also take the hemi-ketal, hemi-acetal, ketal or acetal form, which forms are included in the instant invention.
- a semicarbazone may be formed with the resulting aldehyde.
- Such semicarbazones are also included as compounds of Formula 1, as well as the pharmaceutical compositions containing those compounds.
- Such semicarbazones also include, for example, semicarbazone derivatives of the optimal groups and embodiments of the 4-oxo-butanoic acid derivatives of the compounds of Formula 1 set forth below.
- the compounds of this invention may be modified by appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of exertion.
- a given biological system e.g., blood, lymphatic system, central nervous system
- the compounds may be altered to pro-drug form such that the desired compound is created in the body of the patient as the result of the action of metabolic or other biochemical processes on the pro-drug.
- pro-drug forms include ketal, acetal, oxime, and hydrazone forms of compounds which contain ketone or aldehyde groups, especially where they occur in the group donated as “A” in Formula 1 or the modified aspartic or glutamic residues attached to the group denoted as “A”.
- n is one, more so when G is carbonyl group and B is a hydrogen atom, and especially so when R 3 is a hydrogen atom or a t-butyl group.
- R 3 is a hydrogen atom or a t-butyl group.
- N-methylindole compounds Within this group of 4-oxobutanoic compounds is a group of optimal compounds wherein R 1 is a methyl group, that is, the N-methylindole compounds.
- R 1 is a methyl group, that is, the N-methylindole compounds.
- One embodiment of this group of N-methylindole compounds occurs when A is an alanine, valine, leucine, phenylalanine, glycine or a proline residue.
- Another optimal group of 4-oxobutanoic compounds consists of the N-benzylindole compounds.
- one group of the N-benzylindole compounds occurs when A is an alanine residue.
- alanine compounds are those in which X, Y and R 2 are each a hydrogen atom, and especially so where R 3 is a hydrogen atom.
- An alternate optimal group of 4-oxobutanoic compounds occurs when the N-substituent of the indole group is a 1-butenyl group.
- An embodiment of this group of N-(1-butenyl)indole compounds occurs when A is a valine residue, and especially so when X, Y and R 2 are each a hydrogen atom.
- An optimal group of this latter group of compounds occurs when R 3 is a hydrogen atom.
- Yet another group of optimal 4-oxobutanoic compounds occurs when the N-substituent of the indole ring is a 2′-acetic acid residue.
- An exemplary group of the N-(2′-acetic acid compounds) occurs when A is an alanine residue.
- An embodiment of this particular group of alanine compounds occurs when X, Y and R 2 are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- a group of the 4-oxobutanoic compounds when the indole group is substituted on the nitrogen with 3′-propionic acid residue is another example of this invention.
- An optimal group of such N-(propionic acid)indole compounds occurs when A is an alanine residue.
- alanine compounds are those when X, Y and R 2 are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- Another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a monofluoromethyl group.
- An embodiment of these monofluoromethyl compounds occurs when R 3 is a hydrogen atom or a t-butyl group, and an even more so when A is a natural amino acid.
- An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “4-oxo-5-(fluoropentanoic acid) compounds”.
- R 1 is a methyl group, in other words, the N-methylindole compounds.
- An exemplary group of such N-methylindole compounds occurs when R 2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- Another exemplary group of such N-methylindole compounds occurs when R 2 is a chloro atom and X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- a third exemplary group of N-methylindole compounds occurs when R 2 is a chloro group, X is a 5-fluoro group, and Y is a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- a fourth exemplary group of N-methylindole compounds occurs when R 2 is iso-butyl and X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- Another optimal group of 4-oxo-5-(fluoro-pentanoic acid) compounds is composed of N-(3′-phenylprop-1-yl) indole compounds.
- a group of note within this latter class of compounds occurs when R 2 , X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- a third optimal group of 4-oxo-5-(fluoro-pentanoic acid) compounds has an N-(carboxymethyl or protected carboxymethyl) indole moiety.
- An embodiment of this group occurs wherein R 2 , X and Y are each a hydrogen atom, and especially so wherein R 3 is a hydrogen atom and the nitrogen atom of the indole ring is substituted with a carboxymethyl group.
- a fourth optimal group of 4-oxo-5 (fluoropentanoic acid) compounds has an N-(homoallyl)indole moiety.
- R 2 , X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- n is one and more so when B is a (2,6-dichorobenzyloxy)-methyl group.
- An embodiment of these (2,6-dichorobenzyloxy)methyl compounds occurs when R 3 is a hydrogen atom or a t-butyl group, and even more so when A is a natural amino acid.
- An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “(dichlorobenzyloxy)methyl” compounds.
- R 1 is a methyl group, in other words, the N-methylindole compounds.
- An exemplary group of such N-methylindole compounds occurs when R 2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- Another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a group of the formula CH 2 OPO(R 7 )R 8 .
- An embodiment of these phosphinyloxy-substituted compounds occurs when R 3 is a hydrogen atom or a t-butyl group, and an even more so when A is a natural amino acid.
- An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “phosphinyloxymethyl” compounds.
- One optimal group of phosphinyloxymethyl compounds occurs when R 7 and R 8 are each a phenyl group, and more so when R 1 is a methyl group, in other words, the N-methylindole compounds.
- An exemplary group of such N-methylindole compounds occurs when R 2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- Still another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a group CH 2 ZR 6 .
- Optimal embodiment further occurs when R 6 is a heteroaryl group, and more so when Z in an oxygen atom.
- An embodiment of these (heteroaryl) oxymethyl compounds occurs when R 3 is a hydrogen atom or a t-butyl group, and an even more so when A is a natural amino acid.
- An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “heteroaryloxy” compounds.
- One optimal group of heteroaryloxy compounds occurs when the heteroaryloxy group is substituted or unsubstituted pyrazol-5-yloxymethyl, and especially so when this group is (1-phenyl-3-(trifluoromethyl)pyrazol-5-yl)oxymethyl, and even more so when R 1 is a methyl group, in other words, the N-methyliindole compounds.
- An exemplary group of such N-methylindole compounds occurs when R 2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R 3 is a hydrogen atom.
- Another optimal group of compounds of Formula 1 occurs when B is CH 2 ZR 6 and Z is oxygen or OC( ⁇ O).
- the compounds of Formula 1 may be synthesized using conventional techniques as discussed below. Advantageously, these compounds are conveniently synthesized from readily available starting materials.
- Formula (2) that is H 2 N-Z, is a modified aspartic or glutamic acid residue of Formulas 2a through 2d:
- the modified aspartic or glutamic acids of Formula 2a-d can be prepared by methods well known in the art. See, for example, European Patent Application 519,748; PCT Patent Application No. PCT/EP92/02472; PCT Patent Application No. PCT/US91/06595; PCT Patent Application No. PCT/US91/02339; European Patent Application No. 623,592; World Patent Application No. WO 93/09135; PCT Patent Application No. PCT/US94/08868; European Patent Application No. 623,606; European Patent Application No. 618,223; European Patent Application No. 533,226; European Patent Application No. 528,487; European Patent Application No.
- Step A The coupling reactions carried out under Step A are performed in the presence of a standard peptide coupling agent such as the combination of the combination of dicyclohexylcarbodiimide (DCC) and 1-hydroxy-benzotriazole (HOBt), as well as the BOP (benzotriazolyloxy-trio-(dimethylamino)phosphonium hexafluorophosphate) reagent, pyBOP (benzotriazolyloxy-tris(N-pyrolidinyl)phosphoniumhexafluorophosphate), HBTU (O-benzotriazolyly-tetramethylisouronium-hexafluorophosphate), and EEDQ (1-ethyloxycarbonyl-2-ethyloxy-1,2-dihydroquinoline) reagents, the combination of 1-ethyl(3,3′-dimethyl-1′-aminopropyl)carbodiimide (EDAC) and HOBt, and the combination
- Step B The amino protecting group is then removed and the resulting amine is coupled to the 2-(carboxy)indole of Formula 4 (Step B). Again, this coupling reaction uses the standard peptide coupling reactions mentioned above.
- the indole ring of Formula 4 can be substituted before the reaction in Step B or afterwards.
- the synthesis and substitution reactions of such an indole ring is well known, as is described, for example, in Brown, R. T. and Joule, J. A. in “Heterocyclic chemistry (ed. P. G. Sammes) (Vol. 4 of Comprehensive Organic Chemistry, ed. D. Barton and W. D. Ollis), (1979), Pergamon Press, Oxford; Houlihan, W.
- the alcohol moiety must be oxidized to the corresponding carbonyl compound prior to removal of the protecting groups.
- Preferred methods for the oxidation reaction include Swem oxidation (oxalyl chloride-dimethyl sulfoxide, methylene chloride at ⁇ 78° C. followed by triethylamine); and Dess-Martin oxidation (Dess-Martin periodinane, t-butanol, and methylene chloride.)
- the protecting groups contained in substructures of the Formula 2a-d and A are removed by methods well known in the art. These reactions and removal of some or all of the protecting groups are involved in Step C in the above Scheme.
- compositions of this invention comprise any of the compounds of Formula 1, of the present invention, and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable carrier, adjuvant or vehicle (hereinafter collectively referred to as “pharmaceutically-acceptable carriers”).
- pharmaceutically-acceptable carriers any pharmaceutically acceptable carrier, adjuvant or vehicle.
- Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchange, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin; buffer substances such as the various phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids; water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, and zinc salts; colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat, and the like.
- compositions will be understood to include the optimal groups and embodiments of the compounds of Formula 1 set forth above.
- compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or by an implanted reservoir. Oral and parenteral administration are preferred.
- parenteral as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
- the pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension.
- This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents.
- the sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol.
- suitable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution.
- sterile, fixed oils are conventionally employed as a solvent or suspending medium.
- any bland fixed oil may be employed including synthetic mono- or diglycerides.
- Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions.
- These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
- compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions.
- carrier which are commonly used include lactose and corn starch.
- Lubricating agents such as magnesium stearate, are also typically added.
- useful diluents include lactose and dried corn starch.
- compositions of this invention may also be administered in the form of suppositories for rectal administration.
- These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature.
- suitable non-irritating excipient include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
- Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible to topical application.
- the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier.
- Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water.
- the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier.
- Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water.
- the pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-applied transdermal patches are also included in this invention.
- compositions of this invention may be administered by nasal aerosol or inhalation.
- Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
- the compounds of this invention may be used in combination with either conventional anti-inflammatory agents or with matrix metalloprotease inhibitors, lipoxygenase inhibitors and antagonists of cytokines other than IL-1 ⁇ .
- the compounds of this invention can also be administered in combination with immunomodulators (e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, diethyldithiocarbamate, tumor necrosis factor, naltrexons and rEPO) or with prostaglandins, to prevent or combat IL-1-mediated disease symptoms such as inflammation.
- immunomodulators e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, diethyldithiocarbamate, tumor necrosis factor, naltrexons and rEPO
- prostaglandins e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, dieth
- compositions according to this invention may be comprised of a combination of a compound of Formula 1 and another therapeutic or prophylactic agent mentioned above.
- the disease states which may be treated or prevented by the instant pharmaceutical compositions include, but are not limited to, inflammatory diseases, autoimmune diseases and neurodegenerative diseases, and for inhibiting unwanted apoptosis involved in ischemic injury, such as ischemic injury to the heart (e.g., myocardial infarction), brain (e.g., stroke), and kidney (e.g., ischemic kidney disease).
- ischemic injury to the heart (e.g., myocardial infarction), brain (e.g., stroke), and kidney (e.g., ischemic kidney disease).
- Methods of administering an effective amount of the above-described pharmaceutical compositions to mammals, also referred to herein as patients, in need of such treatment that is, those suffering from inflammatory diseases, autoimmune diseases, and neurodegenerative diseases are further aspects of the instant invention.
- Another aspect of the instant invention is a method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury comprising administering an effective amount of the pharmaceutical composition discussed above to a patient in need of such treatment.
- each of the methods directed to methods for treating inflammatory diseases, autoimmune diseases, neurodegenerative disease and preventing ischemic injury encompass using any of the optimal groups and embodiments of pharmaceutical compositions set forth above.
- Inflammatory disease which may be treated or prevented include, for example, septic shock, septicemia, and adult respiratory distress syndrome.
- Target autoimmune diseases include, for example, rheumatoid, arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, insulin-dependent diabetes mellitus, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, chronic active hepatitis, myasthenia gravis and multiple sclerosis.
- Target neurodegenerative diseases include, for example, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and primary lateral sclerosis.
- the pharmaceutical compositions of this invention may also be used to promote wound healing.
- Target diseases associated with harmful, apoptosis in other words, those associated with ischemic injury, includes myocardial infarction, stroke, and ischemic kidney disease.
- the pharmaceutical compositions of this invention may also be used to treat infectious diseases, especially those involved with viral infections.
- the term “effective amount” refers to dosage levels of the order of from about 0.05 milligrams to about 140 milligrams per kilogram of body weight per day for use in the treatment of the above-indicated conditions (typically about 2.5 milligrams to about 7 grams per patient per day).
- inflammation may be effectively treated by the administration of from about 0.01 to 50 milligrams of the compound per kilogram of body weight per day (about 0.5 milligrams to about 3.5 grams per patient per day).
- the amount of the compounds of Formula 1 that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration.
- a formulation intended for the oral administration of humans may contain from 0.5 milligrams to 5 grams of a compound of Formula 1 combined with an appropriate and convenient amount of a pharmaceutically-acceptable carrier which may vary from about 5 to about 95 percent of the total composition.
- Dosage unit forms will generally contain between from about 1 milligram to about 500 milligrams of an active compound of Formula 1.
- the specific “effective amount” for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular disease undergoing prevention or therapy.
- the compounds of this invention are also useful as commercial reagents which effectively bind to the ICE/ced-3 family of cysteine protease or other cysteine proteases.
- the compounds of this invention, and their derivatives may be used to block proteolysis of a target peptide or may be derivatized to bind to a stable resin as a tethered substrate for affinity chromatography applications.
- Fluorescence enzyme assays detecting the activity of the compounds of Formula 1 utilizing the recombinant ICE and CPP32 enzymes were performed essentially according to Thomberry et al. ( Nature, 356:768:774 (1992)) and Nicholson et al. ( Nature, 376:37-43 (1995)) respectively, (herein incorporated by reference) in 96 well microtiter plates.
- the substrate for these assays was Acetyl-Tyr-Val-Ala-Asp-amino-4-methylcoumarin (AMC) for the ICE assay and Acetyl-Asp-Glu-Val-Asp-amino-4-methylcoumarin for the CPP32 and Mch5 assays.
- Enzyme reactions were run in ICE buffer (25 mM HEPES, 1 mM EDTA, 0.1% CHAPS, 10% sucrose, pH 7.5) containing 2 mM DTT at room temperature in duplicate.
- ICE buffer 25 mM HEPES, 1 mM EDTA, 0.1% CHAPS, 10% sucrose, pH 7.5
- the assays were performed by mixing the following components:
- the enzyme and the compound of Formula 1 to be assayed were preincubated in the microtitre plate wells for 30 minutes at room temperature prior to the addition of substrate to initiate the reaction. Fluorescent AMC product formation was monitored for one hour at room temperature by measuring the fluorescence emission at 460 nm using an excitation wavelength of 360 nm. The fluorescence change in duplicate (control) wells were averaged and the mean values were plotted as a function of inhibitor concentration to determine the inhibitor concentration producing 50% inhibition (IC 50 ).
- the reference compound for this assay was Cbz-ValAlaAsp-H, which had an IC 50 for ICE of 0.064 ⁇ M and for CPP32 of 47 ⁇ M.
- the product formation at time t may be expressed as:
- E, I, EI, and E-I denote the active enzyme, inhibitor, non-covalent enzyme-inhibitor complex and covalent enzyme-inhibitor adduct, respectively.
- the K 1 value is the overall dissociation constant of reversible binding steps, and k 3 is the irreversible rate constant.
- the [S] and K s values are the substrate concentration and the dissociation constant of the substrate bound to the enzyme, respectively.
- [E] T is the total enzyme concentration.
- the reaction mixture was partitioned between ethyl acetate and 5% KHSO 4 solution.
- the ethyl acetate solution was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated to give 153 mg of brown foam.
- the foam was purified by flash chromatograph on silica gel using 2% methanol-methylene chloride as the eluent to give the title product as a light brown foam (50 mg).
- reaction mixture was diluted with ethyl acetate, washed successively with saturated sodium bicarbonate solution and brine, dried under sodium sulfate, and concentrated to give a yellow foam. Trituration of the foam with ether afforded the title product as a slightly yellow powder (146 mg, 55%).
- the reaction mixture was partitioned between 5% KHSO 4 solution and ethyl acetate.
- the ethyl acetate solution was washed successively with 5% KHSO 4 solution, saturated sodium bicarbonate solution (2 ⁇ ) and brine, dried over sodium sulfate, and concentrated to give a foam as crude product. Trituration of the foam with ether afforded the title product as a white powder (161 mg, 55%).
- DMAP (367 mg, 3.0 mmol) and EDAC (748 mg, 3.9 mmol) were added as solids to a solution of 1,3-dimethylindole-2-carboxylic acid (568 mg, 3.3 mmol) in DMF (5 mL), and the resultant mixture was stirred for 10 minutes under a nitrogen atmosphere at 0° C.
- a methylene chloride solution of the methyl ester of valine (553 mg, 3.3 mmol, in 5 mL of methylene chloride) was added to the mixture, and the mixture was first stirred for one hour at 0° C. then for 5 hours at room temperature.
- reaction mixture was partitioned between ethyl acetate and 5% KHSO 4 solution and the aqueous solution was back-extracted with ethyl acetate.
- the combined ethyl acetate washes were in turn washed with 5% KHSO 4 solution saturated sodium bicarbonate solution (2 ⁇ ) and brine, dried over sodium sulfate, and concentrated to give the title product as a yellow syrup (900 mg).
- a 1,4-dioxane solution (5 mL) of the above yellow syrup was treated with an aqueous solution of lithium hydroxide (1.0 M LiOH, 3.0 mL) and the resultant mixture was stirred for 1 hour at room temperature (the mixture became homogeneous).
- the reaction mixture was acidified with 1 M hydrochloric acid and extracted with ethyl acetate (3 ⁇ ). The combined ethyl acetate solutions were washed with brine, dried over sodium sulfate, and concentrated to give the title product as a yellow foam (839 mg).
- reaction mixture was partitioned between ethyl acetate and 5% KHSO 4 solution and the aqueous solution was back-extracted with ethyl acetate.
- the combined ethyl acetate solutions were washed with 5% KHSO 4 solution, saturated sodium bicarbonate solution (2 ⁇ ) and brine, dried over sodium sulfate, and concentrated to give a foam.
- the foam was triturated with ether to yield the title product as a slightly brown solid (224 mg, 65%).
- Triethylamine (0.15 mL, 1.08 mmol) was added dropwise to the reaction mixture and the mixture was stirred for 10 minutes at ⁇ 78° C. and then was allowed to warm to room temperature.
- the reaction mixture was partitioned between ethyl acetate and 5% KHSO 4 solution and the aqueous layer was back-extracted with ethyl acetate.
- the combined ethyl acetate solutions were washed with 5% KHSO 4 solution and brine, dried over sodium sulfate, and concentrated to give a brown foam.
- the foam was triturated with ether to afford the title product as a light brown powder (64 mg).
- Triethylamine (0.30 mL, 2.1 mmol) was added dropwise to the mixture, and the resultant mixture was stirred for 10 minutes at ⁇ 78° C., then was allowed to warm to room temperature.
- the reaction mixture was partitioned between ethyl acetate and 5% KHSO 4 solution and the aqueous layer was back-extracted with ethyl acetate.
- the combined ethyl acetate solutions were washed with 5% KHSO 4 solution and brine, dried over sodium sulfate, and concentrated to give a crude product.
- the crude product was triturated to yield the title product as a slightly yellow powder (181 mg).
- TLC ethyl acetate/hexanes 1:1
- R f 0.43.
- reaction mixture was filtered through silica gel with ethyl acetate as the eluent.
- the filtrate was concentrated and chromatographed on silica gel with ethyl acetate/hexanes (approximately 1:2 to approximately 1:1) to yield the title product as a yellow oil (100 mg).
- HOBt (3.19 g, 20.8 mmol) and EDAC (5.60 g, 29.2 mmol) were added to a stirred solution of N-carbobenzyloxycarbonyl valine (5.24 g, 20.8 mmol) in methylene chloride/DMF (60 ml/30 ml) at 0° C. under nitrogen. After 15 min, aspartic acid ⁇ -methyl, ⁇ -tert-butyl diester (5.00 g, 20.8 mmol) was added as a solid followed neat 4-methylmorpholine (2.40 ml, 21.8 mmol). After stirring at 0° C.
- reaction mixture was then partitioned between ethyl acetate and 5% KHSO 4 solution and the aqueous solution was back-extracted with ethyl acetate.
- the combined extracts were washed with saturated NaHCO 3 solution, water, and brine, dried over sodium sulfate, and concentrated to give a solid.
- the solid was triturated with ether to give N-[1,3-dimethyl-indole-2-cabonyl) valinyl] aspartic acid, ⁇ -methyl, ⁇ -tert-butyl diester as a white powder (2.87 g, 67%).
- Trifluoroacetic acid (1.0 ml) was added to a solution of N-(1,3-dimethylindole-2-cabonyl)-valinyl-3-amino-5-[3-(imidazol-2-yl)-naphthyl-2-oxy]-4-oxo-pentanoic acid, tert-butyl ester (21.8 mg, 0.032 mmol) in methylene chloride (2.0 ml) containing anisole (0.30 ml). The mixture was stirred under nitrogen for 1.5 hour and concentrated.
- the titled product was prepared in the same way as described in Examples 77 and 78 using leucine instead of valine.
- Example 82 The titled product (55 mg, 82%) was prepared as described in Example 82 using the product of Example 95 (54.7 mg, 0.086 mmol), potassium fluoride (12.6 mg, 0.22 mmol), and 1-phenyl-3-(trifluoromethyl)pyrazol-5-ol (19.7 mg, 0.086 mmol) in DMF (2.0 ml).
- Example 77 The procedure of Example 77 was followed using N-(valinyl)-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (213.9 mg, 0.47 mmol), 1,3-dimethylindole-2-carboxylic acid (107 mg, 0.57 mmol), NMM (0.3 ml, 2.8 mmol), HOBt (151 mg, 0.99 mmol), and EDAC (198 mg, 1.04 mmol) in methylene chloride to prepare the titled product (210 mg, 71%).
- Example 80 The procedure of Example 80 was followed using N-[(1,3-dimethyl-indole-2-cabonyl)valinyl]-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester to prepare the titled product.
- Example 77 The procedure of Example 77 was followed using the product of Example 106 (197.0 mg, 0.44 mmol), 1-methylindole-2-carboxylic acid (152 mg, 0.87 mmol), NMM (0.047 ml, 0.44 mmol), HOBt (144 mg, 0.96 mmol), and EDAC (183 mg, 0.96 mmol) in methylene chloride to prepare the titled product (156 mg, 58%).
- Example 77 The procedure of Example 77 was followed using the product of Example 106 (212.5 mg, 0.47 mmol), 5-fluoro-1-methylindole-2-carboxylic acid (181 mg, 0.94 mmol), NMM (0.05 ml, 0.44 mmol), HOBt (151 mg, 1.03 mmol), and EDAC (196 mg, 1.03 mmol) in methylene chloride to prepare the title product.
- Example 77 The procedure of Example 77 was followed using the product of Example 106 (400.0 mg, 0.90 mmol), 1-[(tert-butyloxycarbonyl)methyl]indole-2-carboxylic acid (200 mg, 0.73 mmol), NMM (0.1 ml), HOBt (246 mg, 1.63 mmol), and EDAC (304 mg, 1.60 mmol) in methylene chloride to prepare the titled product (341 mg, 68%).
- Example 1A 50% INHIBITORY CONCENTRATIONS IC 50 FOR FORMULA A mICE CPP32
- Example R 1 A IC 50 ( ⁇ M) IC 50 ( ⁇ M) 4 CH 3 Ala 0.177 >10 7 CH 3 Pro 11.7 >50 10 CH 3 Val 0.531 2.48 13 CH 3 Leu 5.52 5.62 16 CH 3 Phe 3.34 49.8 21 CH 3 Gly 34.7 >50 24 CH 2 Ph Ala 0.393 >50 27 (CH 2 ) 2 CH ⁇ CH 2 Val 0.313 1.45 30 CH 2 CO 2 H Ala 1.63 >50 33 (CH 2 ) 2 CO 2 H Ala 0.198 >50 reference — — 0.064 47.0
- the compounds of Examples 43 and 70-75 had K i values (mICE) of 8 ⁇ M or less, while compounds 71, 72 and 74 had K i values of less than 1 ⁇ M.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Immunology (AREA)
- Biomedical Technology (AREA)
- Neurosurgery (AREA)
- Neurology (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Molecular Biology (AREA)
- Genetics & Genomics (AREA)
- Crystallography & Structural Chemistry (AREA)
- Rheumatology (AREA)
- Urology & Nephrology (AREA)
- Physical Education & Sports Medicine (AREA)
- Pulmonology (AREA)
- Communicable Diseases (AREA)
- Pain & Pain Management (AREA)
- Psychiatry (AREA)
- Heart & Thoracic Surgery (AREA)
- Transplantation (AREA)
- Cardiology (AREA)
- Vascular Medicine (AREA)
- Oncology (AREA)
- Psychology (AREA)
- Orthopedic Medicine & Surgery (AREA)
- Hospice & Palliative Care (AREA)
Abstract
This invention is directed to novel (N-substituted) indole ICE/ced-3-inhibitor compounds. The invention is also directed to pharmaceutical compositions of such indole compounds, plus the use of such compositions in the treatment of patients suffering inflammatory, autoimmune and neurodegenerative diseases, for the prevention of ischemic injury.
Description
- This is a continuation-in-part of prior pending U.S. patent application Ser. No. 09/260,816 filed on Mar. 2, 1999, which is a continuation-in-part of U.S. patent application Ser. No. 08/928,989 filed on Sep. 12, 1997, which is a continuation-in-part of U.S. patent application Ser. No. 08/767,175 filed on Dec. 16, 1996.
- 1. Field of the Invention
- The present invention relates to novel classes of compounds which are inhibitors of interleukin-1β converting enzyme and related proteases (“ICE/ced-3 family of cysteine proteases”). This invention also relates to pharmaceutical compositions comprising these compounds and to methods of using such pharmaceutical compositions. The compounds, pharmaceutical compositions and methods of this invention are particularly well suited for inhibiting the protease activity of the ICE/ced-3 family and consequently, may be advantageously used as agents against interleukin-1 (“IL-1”) mediated diseases, including inflammatory diseases, autoimmune diseases and neurodegenerative diseases and for inhibiting unwanted apoptosis in various disease states such as ischemic injury to the heart (e.g., myocardial infarction), brain (e.g., stroke), and kidney (e.g., ischemic kidney disease).
- 2. Background Information
- Interleukin 1 (“IL-1”) is a major pro-inflammatory and immunoregulatory protein that stimulates fibroblast differentiation and proliferation, the production of prostaglandins, collagenase and phospholipase by synovial cells and chondrocytes, basophil and eosinophil degranulation and neutrophil activation. Oppenheim, J. H. et al.,Immunology Today, 7:45-56 (1986). As such, it is involved in the pathogenesis of chronic and acute inflammatory and autoimmune diseases. IL-1 is predominantly produced by peripheral blood monocytes as part of the inflammatory response. Mosely, B. S. et al., Proc. Nat. Acad. Sci., 84:4572-4576 (1987); Lonnemann, G. et al., Eur. J. Immunol., 19:1531-1536 (1989).
- IL-1β is synthesized as a biologically inactive precursor, proIL-1β. ProIL-1β is cleaved by a cysteine protease called interleukin-1β converting enzyme (“ICE”) between Asp-116 and Ala-117 to produce the biologically active C-terminal fragment found in human serum and synovial fluid. Sleath, P. R. et al.,J. Biol. Chem., 265:14526-14528 (1992); A. D. Howard et al., J. Immunol., 147:2964-2969 (1991).
- ICE is a cysteine protease localized primarily in monocytes. In addition to promoting the pro-inflammatory and immunoregulatory properties of IL-1β, ICE, and particularly its homologues, also appear to be involved in the regulation of cell death or apoptosis. Yuan, J. et al.,Cell, 75:641-652 (1993); Miura, M. et al., Cell, 75:653-660 (1993); Nett-Giordalisi, M. A. et al., J. Cell Biochem., 17B:117 (1993). In particular, ICE or ICE/ced-3 homologues are thought to be associated with the regulation of apoptosis in neurogenerative diseases, such as Alzheimer's and Parkinson's disease. Marx, J. and M. Baringa, Science, 259:760-762 (1993); Gagliardini, V. et al., Science, 263:826-828 (1994).
- Thus, disease states in which inhibitors of the ICE/ced-3 family of cysteine proteases may be useful as therapeutic agents include: infectious diseases, such as meningitis and salpingitis; septic shock, respiratory diseases; inflammatory conditions, such as arthritis, cholangitis, colitis, encephalitis, endocerolitis, hepatitis, pancreatitis and reperfusion injury, ischemic diseases such as the myocardial infarction, stroke and ischemic kidney disease; immune-based diseases, such as hypersensitivity; auto-immune diseases, such as multiple sclerosis; bone diseases; and certain neurodegenerative diseases, such as Alzheimer's and Parkinson's disease.
- ICE/ced-3 inhibitors represent a class of compounds useful for the control of the above-listed disease states. Peptide and peptidyl inhibitors of ICE have been described. However, such inhibitors have been typically characterized by undesirable pharmacologic properties, such as poor oral absorption, poor stability and rapid metabolism. Plattner, J. J. and D. W. Norbeck, inDrug Discovery Technologies, C. R. Clark and W. H. Moos, Eds. (Ellis Horwood, Chichester, England, 1990), pp. 92-126. These undesirable properties have hampered their development into effective drugs.
- Accordingly, the need exists for compounds that can effectively inhibit the action of the ICE/ced-3 family of proteases, for use as agents for preventing unwanted apoptosis and for treating chronic and acute forms of IL-1 mediated diseases, such as inflammatory, autoimmune or neurodegenerative diseases. The present invention satisfies this need and provide related advantages as well.
- One aspect of the instant invention is the compounds of Formula 1, set forth below.
- A further aspect of the instant invention is pharmaceutical compositions comprising a compound of the above Formula 1 and a pharmaceutically-acceptable carrier therefor.
- Other aspects of this invention involve a method for treating an autoimmune disease, an inflammatory disease, or a neurodegenerative disease comprising administering an effective amount of a pharmaceutical composition discussed above to a patient in need of such treatment.
- Another aspect of the instant invention is a method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury comprising administering an effective amount of the pharmaceutical composition discussed above to a patient in need of such treatment.
- The compounds of this invention incorporate an N-substituted indole ring as a peptidomimetic structural fragment. Despite lacking a hydrogen bond donor equivalent to the P3 amide nitrogen of known peptidic inhibitors of ICE, the N-substituted indole compounds of the instant invention have high activity as inhibitors of ICE/ced-3 protease family of enzymes. These compounds also demonstrate other advantages relative to known peptidic inhibitors.
-
- wherein:
- n is 1 or 2;
- R1 is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl or (CH2)mCO2R4, wherein m=1-4, and R4 is as defined below;
- R2 is a hydrogen atom, chloro, alkyl, cycloalkyl, cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl or (CH2)pCO2R5, wherein p=0-4, and R5 is as defined below;
- R3 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
- R4 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
- R5 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
- A is a natural or unnatural amino acid;
- B is a hydrogen atom, a deuterium atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl, halomethyl, CH2ZR6, CH2OCO(aryl), or CH2OCO(heteroaryl), or CH2OPO(R7)R8, where Z is an oxygen, OC(═O) or a sulfur atom;
- R6 is phenyl, substituted phenyl, phenylalkyl, (substituted phenyl)alkyl, heteroaryl or (heteroaryl)alkyl;
- R7 and R8 are independently selected from a group consistent of alkyl, cycloalkyl, phenyl, substituted phenyl, phenylalkyl, (substituted phenyl) alkyl and (cycloalkyl)alkyl; and
- X and Y are independently selected from the group consisting of a hydrogen atom, halo, trihalomethyl, amino, protected amino, an amino salt, mono-substituted amino, di-substituted amino, carboxy, protected carboxy, a carboxylate salt, hydroxy, protected hydroxy, a salt of a hydroxy group, lower alkoxy, lower alkylthio, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl;
- or a pharmaceutically acceptable salt or stereoisomer thereof.
- As used in the above formula, the term “alkyl” means a straight or branched C1 to C8 carbon chain such as methyl, ethyl, tert-butyl, iso-propyl, iso-butyl, n-octyl, and the like.
- The term “cycloalkyl” means a mono-, bi-, or tricyclic ring that is either fully saturated or partially unsaturated. Examples of such a ring include cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, adamantyl, cyclooctyl, cis- or trans decalin, bicyclo[2.2.1]hept-2-ene, cyclohex-1-enyl, cyclopent-1-enyl, 1,4-cyclooctadienyl, and the like.
- The term “(cycloalkyl)alkyl” means the above-defined alkyl group substituted with one of the above cycloalkyl rings. Examples of such a group include (cyclohexyl)methyl, 3-(cyclopropyl)-n-propyl, 5-(cyclopentyl)hexyl, 6-(adamantyl)hexyl, and the like.
- The term “substituted phenyl” specifies a phenyl group substituted with one or more, and preferably one or two, moieties chosen from the groups consisting of halogen, hydroxy, protected hydroxy, cyano, nitro, trifluoromethyl, C1 to C7 alkyl, C1 to C7 alkoxy, C1 to C7 acyl, C1 to C7 acyloxy, heteroaryl, carboxy, protected carboxy, carboxymethyl, protected carboxymethyl, hydroxymethyl, protected hydroxymethyl, amino, protected amino, (monosubstituted) amino, protected (monosubstituted) amino, (disubstituted)amino, carboxamide, protected carboxamide, N—(C1 to C6 alkyl or alkoxy)carboxamide, protected N—(C1 to C6 alkyl or alkoxy)carboxamide, N,N-di(C1 to C6 alkyl or alkoxy)carboxamide, N—((C1 to C6 alkyl)sulfonyl)amino, N-(phenylsulfonyl)amino or by a substituted or unsubstituted phenyl group, such that in the latter case a biphenyl or naphthyl group results, including biphenyl or naphthyl groups optionally substituted with one or more substituents as identified above.
- Examples of the term “substituted phenyl” includes a mono- or di(halo)phenyl group such as 2-, 3-or 4-chlorophenyl, 2,6-dichlorophenyl, 2,5-dichlorophenyl, 3,4-dichlorophenyl, 2-,3- or 4-bromophenyl, 3,4-dibromophenyl, 3-chloro-4-fluorophenyl, 2-, 3- or 4-fluorophenyl and the like, as well as tri- or tetra(halo)phenyl groups such as 2,3,5,6-fluorophenyl; a mono or di(hydroxy)phenyl group such as 2-, 3-, or 4-hydroxyphenyl, 2,4-dihydroxyphenyl, the protected-hydroxy derivatives thereof and the like; a nitrophenyl group such as 2-, 3-, or 4-nitrophenyl; a cyanophenyl group, for example, 2-,3- or 4-cyanophenyl; a mono- or di(alkyl)phenyl group such as 2-, 3-, or 4-methylphenyl, 2,4-dimethylphenyl, 2-, 3- or 4-(iso-propyl)phenyl, 2-, 3-, or 4-ethylphenyl, 2-, 3- or 4-(n-propyl)phenyl and the like; a mono or di(alkoxy)phenyl group, for example, 2,6-dimethoxyphenyl, 2-, 3- or 4-(iso-propoxy)phenyl, 2-, 3- or 4-(t-butoxy)phenyl, 3-ethoxy-4-methoxyphenyl and the like; 2-, 3- or 4-trifluoromethylphenyl; a mono- or dicarboxyphenyl or (protected carboxy)phenyl group such as 2-, 3- or 4-carboxyphenyl or 2,4-di(protected carboxy)phenyl; a mono- or di(hydroxymethyl)phenyl or (protected hydroxymethyl)phenyl such as 2-, 3- or 4-(protected hydroxymethyl)phenyl or 3,4-di(hydroxymethyl)phenyl; a mono- or di(aminomethyl)phenyl or (protected aminomethyl)phenyl such as 2-, 3- or 4-(aminomethyl)phenyl or 2,4-(protected aminomethyl)phenyl; or a mono- or di(N-(methylsulfonylamino))phenyl such as 2, 3 or 4-(N-(methylsulfonylamino))phenyl. Also, the term “substituted phenyl” represents disubstituted phenyl groups wherein the substituents are different, for example, 3-methyl-4-hydroxyphenyl, 3-chloro-4-hydroxyphenyl, 2-methoxy-4-bromophenyl, 4-ethyl-2-hydroxyphenyl, 3-hydroxy-4-nitrophenyl, 2-hydroxy-4-chlorophenyl, and the like.
- The term “(substituted phenyl)alkyl” means one of the above substituted phenyl groups attached to one of the above-described alkyl groups. Examples of such groups include 2-phenyl-1-chloroethyl, 2-(4′-methoxyphenyl)ethyl, 4-(2′,6′-dihydroxy phenyl)n-hexyl, 2-(5′-cyano-3′-methoxyphenyl)n-pentyl, 3-(2′,6′-dimethylphenyl)n-propyl, 4-chloro-3-aminobenzyl, 6-(4′-methoxyphenyl)-3-carboxy(n-hexyl), 5-(4′-aminomethylphenyl)-3-(aminomethyl)n-pentyl, 5-phenyl-3-oxo-n-pent-1-yl, (4-hydroxynapth-2-yl)methyl, and the like.
- The terms “halo” and “halogen” refer to the fluoro, chloro, bromo or iodo groups. There can be one or more halogen, which are the same or different. Preferred halogens are chloro and fluoro.
- The term “aryl” refers to aromatic five and six membered carbocyclic rings. Six membered rings are preferred.
- The term “heteroaryl” denotes optionally substituted five-membered or six-membered rings that have 1 to 4 heteroatoms, such as oxygen, sulfur and/or nitrogen atoms, in particular nitrogen, either alone or in conjunction with sulfur or oxygen ring atoms. These five-membered or six-membered rings are fully unsaturated.
- The following ring systems are examples of the heterocyclic (whether substituted or unsubstituted) radicals denoted by the term “heteroaryl”: thienyl, furyl, pyrrolyl, pyrrolidinyl, imidazolyl, isoxazolyl, triazolyl, thiadiazolyl, oxadiazolyl, tetrazolyl, thiatriazolyl, oxatriazolyl, pyridyl, pyrimidyl, pyrazinyl, pyridazinyl, oxazinyl, triazinyl, thiadiazinyl tetrazolo, 1,5-[b]pyridazinyl and purinyl, as well as benzo-fused derivatives, for example, benzoxazolyl, benzothiazolyl, benzimidazolyl and indolyl.
- Substituents for the above optionally substituted heteroaryl rings are from one to three halo, trihalomethyl, carboxamide, amino, protected amino, amino salts, mono-substituted amino, di-substituted amino, carboxy, protected carboxy, carboxylate salts, hydroxy, protected hydroxy, salts of a hydroxy group, lower alkoxy, lower alkylthio, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl groups. Substituents for the heteroaryl group are as heretofore defined, or as set forth below. As used in conjunction with the above substituents for heteroaryl rings, “trihalomethyl” can be trifluoromethyl, trichloromethyl, tribromomethyl or triiodomethyl, “lower alkoxy” means a C1 to C4 alkoxy group, similarly, “lower alkylthio” means a C1 to C4 alkylthio group. The term “substituted alkyl” means the above-defined alkyl group substituted from one to three times by a hydroxy, protected hydroxy, amino, protected amino, cyano, halo, trifluoromethyl, mono-substituted amino, di-substituted amino, lower alkoxy, lower alkylthio, carboxy, protected carboxy, or a carboxy, amino, and/or hydroxy salt. As used in conjunction with the substituents for the heteroaryl rings, the terms “substituted (cycloalkyl)alkyl” and “substituted cycloalkyl” are as defined above substituted with the same groups as listed for a “substituted alkyl” group. The term “(monosubstituted)amino” refers to an amino group with one substituent chosen from the group consisting of phenyl, substituted phenyl, alkyl, substituted alkyl, C1 to C7 acyl, C2 to C7 alkenyl, C2 to C7 substituted alkenyl, C2 to C7 alkynyl, C7 to C16 alkylaryl, C7 to C16 substituted alkylaryl and heteroaryl group. The (monosubstituted)amino can additionally have an amino-protecting group as encompassed by the term “protected (monosubstituted)amino.” The term “(disubstituted)amino” refers to amino groups with two substituents chosen from the group consisting of phenyl, substituted phenyl, alkyl, substituted alkyl, C1 to C7 acyl, C2 to C7 alkenyl, C2 to C7 alkynyl, C7 to C16 alkylaryl, C7 to C16 substituted alkylaryl and heteroaryl. The two substituents can be the same or different. The term “heteroaryl(alkyl)” denotes an alkyl group as defined above, substituted at any position by a heteroaryl group, as above defined.
- Furthermore, the above optionally substituted five-membered or six-membered heterocyclic rings can optionally be fused to a aromatic 5-membered or 6-membered aryl or heteroaryl ring system. For example, the rings can be optionally fused to an aromatic 5-membered or 6-membered ring system such as a pyridine or a triazole system, and preferably to a benzene ring.
- The term “pharmaceutically-acceptable salt” encompasses those salts that form with the carboxylate anions and includes salts formed with the organic and inorganic cations such as those chosen from the alkali and alkaline earth metals, (for example, lithium, sodium, potassium, magnesium, barium and calcium); and ammonium ion; and the organic cations (for example, dibenzylammonium, benzylammonium, 2-hydroxyethylammonium, bis(2-hydroxyethyl)ammonium, phenylethylbenzylammonium, dibenzylethylenediammonium, and like cations.) Other cations encompassed by the above term include the protonated form of procaine, quinine and N-methylglucosamine, the protonated forms of basic amino acids such as glycine, omithine, histidine, phenylglycine, lysine, and arginine. Furthermore, any zwitterionic form of the instant compounds formed by a carboxylic acid and an amino group is referred to by this term. A preferred cation for the carboxylate anion is the sodium cation. Furthermore, the term includes salts that form by standard acid-base reactions with basic groups (such as amino groups) and includes organic or inorganic acids. Such acids include hydrochloric, sulfuric, phosphoric, acetic, succinic, citric, lactic, maleic, fumaric, palmitic, cholic, pamoic, mucic, D-glutamic, D-camphoric, glutaric, phthalic, tartaric, lauric, stearic, salicyclic, methanesulfonic, benzenesulfonic, sorbic, picric, benzoic, cinnamic, and the like acids.
- The compounds of Formula I may also exist as solvates and hydrates. Thus, these compounds may crystallize with, for example, waters of hydration, or one, a number of, or any fraction thereof of molecules of the mother liquor solvent. The solvates and hydrates of such compounds are included within the scope of this invention.
- The term “carboxy-protecting group” as used herein refers to one of the ester derivatives of the carboxylic acid group commonly employed to block or protect the carboxylic acid group while reactions are carried out on other functional groups on the compound. Examples of such carboxylic acid protecting groups include t-butyl, 4-nitrobenzyl, 4-methoxybenzyl, 3,4-dimethoxybenzyl, 2,4-dimethoxybenzyl, 2,4,6-trimethoxybenzyl, 2,4,6-trimethylbenzyl, pentamethylbenzyl, 3,4-methylenedioxybenzyl, benzhydryl, 4,4′-dimethoxytrityl, 4,4′,4″-trimethoxytrityl, 2-phenylpropyl, trimethylsilyl, t-butyldimethylsilyl, phenacyl, 2,2,2-trichloroethyl, β-(trimethylsilyl)ethyl, β-(di(n-butyl)methylsilyl)ethyl, p-toluenesulfonylethyl, 4-nitrobenzylsulfonylethyl, allyl, cinnamyl, 1-(trimethylsilylmethyl)-propenyl and like moieties. The species of carboxy-protecting group employed is not critical so long as the derivatized carboxylic acid is stable to the conditions of subsequent reaction(s) and can be removed at the appropriate point without disrupting the remainder of the molecule. Further examples of these groups are found in C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973, Chapter 5, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” 2nd ed., John Wiley and Sons, New York, N.Y., 1991, Chapter 5, each of which is incorporated herein by reference. A related term is “protected carboxy,” which refers to a carboxy group substituted with one of the above carboxy-protecting groups.
- The term “hydroxy-protecting group” refers to readily cleavable groups bonded to hydroxyl groups, such as the tetrahydropyranyl, 2-methoxyprop-2-yl, 1-ethoxyeth-1-yl, methoxymethyl, β-methoxyethoxymethyl, methylthiomethyl, t-butyl, t-amyl, trityl, 4-methoxytrityl, 4,4′-dimethoxytrityl, 4,4′,4″-trimethoxytrityl, benzyl, allyl, trimethylsilyl, (t-butyl)dimethylsilyl, 2,2,2-trichloroethoxycarbonyl, and the like.
- Further examples of hydroxy-protecting groups are described by C. B. Reese and E. Haslam, “Protective Groups in Organic Chemistry,” J. G. W. McOmie, Ed., Plenum Press, New York, N.Y., 1973, Chapters 3 and 4, respectively, and T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” Second Edition, John Wiley and Sons, New York, N.Y., 1991, Chapters 2 and 3. A preferred hydroxy-protecting group is the tert-butyl group. The related term “protected hydroxy” denotes a hydroxy group bonded to one of the above hydroxy-protecting groups.
- The term “amino-protecting group” as used herein refers to substituents of the amino group commonly employed to block or protect the amino functionality while reacting other functional groups of the molecule. The term “protected (monosubstituted)amino” means there is an amino-protecting group on the monosubstituted amino nitrogen atom.
- Examples of such amino-protecting groups include the formyl (“For”) group, the trityl group, the phthalimido group, the trichloroacetyl group, the trifluoroacetyl group, the chloroacetyl, bromoacetyl, and iodoacetyl groups, urethane-type protecting groups, such as t-butoxycarbonyl (“Boc”), 2-(4-biphenylyl)propyl-2-oxycarbonyl (“Bpoc”), 2-phenylpropyl-2-oxycarbonyl (“Poc”), 2-(4-xenyl)isopropoxycarbonyl, 1,1-diphenylethyl-1-oxycarbonyl, 1,1-diphenylpropyl-1-oxycarbonyl, 2-(3,5-dimethoxyphenyl)propyl-2-oxycarbonyl (“Ddz”), 2-(p-toluyl)propyl-2-oxycarbonyl, cyclopentanyloxycarbonyl, 1-methylcyclopentanyl-oxycarbonyl, cyclohexanyloxy-carbonyl, 1-methylcyclohexanyloxycarbonyl, 2-methylcyclohexanyl-oxycarbonyl, 2-(4-toluylsulfonyl)ethoxycarbonyl, 2-(methylsulfonyl)ethoxycarbonyl, 2-(triphenylphosphino)ethoxycarbonyl, 9-fluorenylmethoxycarbonyl (“Fmoc”), 2-(trimethylsilyl)ethoxycarbonyl, allyloxycarbonyl, 1-(trimethylsilylmethyl)prop-1-enyloxycarbonyl, 5-benzisoxalylmethoxycarbonyl, 4-acetoxybenzyl-oxycarbonyl, 2,2,2-trichloroethoxycarbonyl, 2-ethynyl-2-propoxycarbonyl, cyclopropylmethoxycarbonyl, isobornyloxycarbonyl, 1-piperidyloxycarbonyl, benzyloxycarbonyl (“Cbz”), 4-phenylbenzyloxycarbonyl, 2-methylbenzyloxycarbonyl, α-2,4,5,-tetramethylbenzyloxycarbonyl (“Tmz”), 4-methoxybenzyloxycarbonyl, 4-fluorobenzyloxycarbonyl, 4-chlorobenzyloxycarbonyl, 3-chlorobenzyloxycarbonyl, 2-chlorobenzyloxycarbonyl, 2,4-dichlorobenzyloxycarbonyl, 4-bromobenzyloxycarbonyl, 3-bromobenzyloxycarbonyl, 4-nitrobenzyloxycarbonyl, 4-cyanobenzyloxycarbonyl, 4-(decyloxy)benzyloxycarbonyl and the like; the benzoylmethylsulfonyl group, the 2,2,5,7,8-pentamethylchroman-6-sulfonyl group (“PMC”), the dithiasuccinoyl (“Dts”) group, the 2-(nitro)phenyl-sulfenyl group (“Nps”), the diphenylphosphine oxide group, and like amino-protecting groups. The species of amino-protecting group employed is not critical so long as the derivatized amino group is stable to the conditions of the subsequent reaction(s) and can be removed at the appropriate point without disrupting the remainder of the molecule. Preferred amino-protecting groups are Boc, Cbz and Fmoc. Further examples of amino-protecting groups embraced by the above term are well known in organic synthesis and the peptide art and are described by, for example, T. W. Greene and P. G. M. Wuts, “Protective Groups in Organic Synthesis,” 2nd ed., John Wiley and Sons, New York, N.Y., 1991, Chapter 7, M. Bodanzsky, “Principles of Peptide Synthesis,” 1st and 2nd revised Ed., Springer-Verlag, New York, N.Y., 1984 and 1993, and J. M. Stewart and J. D. Young, “Solid Phase Peptide Synthesis,” 2nd Ed., Pierce Chemical Co., Rockford, Ill., 1984, E. Atherton and R. C. Shephard, “Solid Phase Peptide Synthesis—A Practical Approach” IRL Press, Oxford, England (1989), each of which is incorporated herein by reference. The related term “protected amino” defines an amino group substituted with an amino-protecting group discussed above.
- The terms “natural and unnatural amino acid” refers to both the naturally occurring amino acids and other non-proteinogenic α-amino acids commonly utilized by those in the peptide chemistry arts when preparing synthetic analogues of naturally occurring peptides, including D and L forms. The naturally occurring amino acids are glycine, alanine, valine, leucine, isoleucine, serine, methionine, threonine, phenylalanine, tyrosine, tryptophan, cysteine, proline, histidine, aspartic acid, asparagine, glutamic acid, glutamine, γ-carboxyglutamic acid, arginine, ornithine and lysine. Examples of unnatural alpha-amino acids include hydroxylysine, citrulline, kynurenine, (4-aminophenyl)alanine, 3-(2′-naphthyl)alanine, 3-(1′-naphthyl)alanine, methionine sulfone, (t-butyl)alanine, (t-butyl)glycine, 4-hydroxyphenyl-glycine, aminoalanine, phenylglycine, vinylalanine, propargyl-gylcine, 1,2,4-triazolo-3-alanine, thyronine, 6-hydroxytryptophan, 5-hydroxytryptophan, 3-hydroxy-kynurenine, 3-aminotyrosine, trifluoromethylalanine, 2-thienylalanine, (2-(4-pyridyl)ethyl)cysteine, 3,4-dimethoxy-phenylalanine, 3-(2′-thiazolyl)alanine, ibotenic acid, 1-amino-1-cyclopentane-carboxylic acid, 1-amino-1-cyclohexanecarboxylic acid, quisqualic acid, 3-(trifluoromethylphenyl)alanine, (cyclohexyl)glycine, thiohistidine, 3-methoxytyrosine, norleucine, norvaline, alloisoleucine, homoarginine, thioproline, dehydro-proline, hydroxyproline, homoproline, indoline-2-carboxylic acid, 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid, 1,2,3,4-tetrahydroquinoline-2-carboxylic acid, α-amino-n-butyric acid, cyclohexylalanine, 2-amino-3-phenylbutyric acid, phenylalanine substituted at the ortho, meta, or para position of the phenyl moiety with one or two of the following groups: a (C1 to C4)alkyl, a (C1 to C4)alkoxy, a halogen or a nitro group, or substituted once with a methylenedioxy group; β-2- and 3-thienylalanine; β-2- and 3-furanylalanine; β-2-, 3- and 4-pyridylalanine; β-(benzothienyl-2- and 3-yl)alanine; β-(1- and 2-naphthyl)alanine; O-alkylated derivatives of serine, threonine or tyrosine; S-alkylated cysteine, S-alkylated homocysteine, the O-sulfate, O-phosphate and O-carboxylate esters of tyrosine; 3-(sulfo)tyrosine, 3-(carboxy)tyrosine, 3-(phospho)tyrosine, the 4-methane-sulfonic acid ester of tyrosine, 4-methanephosphonic acid ester of tyrosine, 3,5-diiodotyrosine, 3-nitrotyrosine, ε-alkyllysine, and delta-alkyl omithine. Any of these α-amino acids may be substituted with a methyl group at the alpha position, a halogen at any position of the aromatic residue on the α-amino side chain, or an appropriate protective group at the O, N, or S atoms of the side chain residues. Appropriate protective groups are discussed above.
- Depending on the choice of solvent and other conditions known to the practitioner skilled in the art, compounds of this invention may also take the hemi-ketal, hemi-acetal, ketal or acetal form, which forms are included in the instant invention.
- In addition, it should be understood that the equilibrium forms of the compounds of this invention may include tautomeric forms. All such forms of these compounds are expressly included in the present invention.
- Also, it will be understood by those skilled in the art that when B in Formula 1 is a hydrogen atom, a semicarbazone may be formed with the resulting aldehyde. Such semicarbazones are also included as compounds of Formula 1, as well as the pharmaceutical compositions containing those compounds. Such semicarbazones also include, for example, semicarbazone derivatives of the optimal groups and embodiments of the 4-oxo-butanoic acid derivatives of the compounds of Formula 1 set forth below.
- The compounds of this invention may be modified by appropriate functionalities to enhance selective biological properties. Such modifications are known in the art and include those which increase biological penetration into a given biological system (e.g., blood, lymphatic system, central nervous system), increase oral availability, increase solubility to allow administration by injection, alter metabolism and alter rate of exertion. In addition, the compounds may be altered to pro-drug form such that the desired compound is created in the body of the patient as the result of the action of metabolic or other biochemical processes on the pro-drug. Some examples of pro-drug forms include ketal, acetal, oxime, and hydrazone forms of compounds which contain ketone or aldehyde groups, especially where they occur in the group donated as “A” in Formula 1 or the modified aspartic or glutamic residues attached to the group denoted as “A”.
- In the above Formula 1, a group of optimal compounds occurs when n is one, more so when G is carbonyl group and B is a hydrogen atom, and especially so when R3 is a hydrogen atom or a t-butyl group. Of note within this group of compounds as those when A is naturally-occurring amino acid. This latter group of compounds will be referred to herein as the “4-oxobutanoic compounds”.
- Within this group of 4-oxobutanoic compounds is a group of optimal compounds wherein R1 is a methyl group, that is, the N-methylindole compounds. One embodiment of this group of N-methylindole compounds occurs when A is an alanine, valine, leucine, phenylalanine, glycine or a proline residue. Compounds of note within each one of these groups of natural amino acid, N-methylindole compounds occur when the N-methylindole is otherwise unsubstituted, that is, wherein X, Y and R2 are each a hydrogen atom, and optimally so when R3 is a hydrogen atom.
- Another optimal group of 4-oxobutanoic compounds consists of the N-benzylindole compounds. For example, one group of the N-benzylindole compounds occurs when A is an alanine residue. Of note within this group of alanine compounds are those in which X, Y and R2 are each a hydrogen atom, and especially so where R3 is a hydrogen atom.
- An alternate optimal group of 4-oxobutanoic compounds occurs when the N-substituent of the indole group is a 1-butenyl group. An embodiment of this group of N-(1-butenyl)indole compounds occurs when A is a valine residue, and especially so when X, Y and R2 are each a hydrogen atom. An optimal group of this latter group of compounds occurs when R3 is a hydrogen atom.
- Yet another group of optimal 4-oxobutanoic compounds occurs when the N-substituent of the indole ring is a 2′-acetic acid residue. An exemplary group of the N-(2′-acetic acid compounds) occurs when A is an alanine residue. An embodiment of this particular group of alanine compounds occurs when X, Y and R2 are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- A group of the 4-oxobutanoic compounds when the indole group is substituted on the nitrogen with 3′-propionic acid residue is another example of this invention. An optimal group of such N-(propionic acid)indole compounds occurs when A is an alanine residue. Of note within this group of alanine compounds are those when X, Y and R2 are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- Another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a monofluoromethyl group. An embodiment of these monofluoromethyl compounds occurs when R3 is a hydrogen atom or a t-butyl group, and an even more so when A is a natural amino acid. An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “4-oxo-5-(fluoropentanoic acid) compounds”.
- One optimal group of 4-oxo-5-(fluoropentanoic acid) compounds occurs when R1 is a methyl group, in other words, the N-methylindole compounds. An exemplary group of such N-methylindole compounds occurs when R2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom. Another exemplary group of such N-methylindole compounds occurs when R2 is a chloro atom and X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom. A third exemplary group of N-methylindole compounds occurs when R2 is a chloro group, X is a 5-fluoro group, and Y is a hydrogen atom, and especially so when R3 is a hydrogen atom. A fourth exemplary group of N-methylindole compounds occurs when R2 is iso-butyl and X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- Another optimal group of 4-oxo-5-(fluoro-pentanoic acid) compounds is composed of N-(3′-phenylprop-1-yl) indole compounds. A group of note within this latter class of compounds occurs when R2, X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- A third optimal group of 4-oxo-5-(fluoro-pentanoic acid) compounds has an N-(carboxymethyl or protected carboxymethyl) indole moiety. An embodiment of this group occurs wherein R2, X and Y are each a hydrogen atom, and especially so wherein R3 is a hydrogen atom and the nitrogen atom of the indole ring is substituted with a carboxymethyl group.
- A fourth optimal group of 4-oxo-5 (fluoropentanoic acid) compounds has an N-(homoallyl)indole moiety. One embodiment of note within this group occurs when R2, X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- Yet another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a (2,6-dichorobenzyloxy)-methyl group. An embodiment of these (2,6-dichorobenzyloxy)methyl compounds occurs when R3 is a hydrogen atom or a t-butyl group, and even more so when A is a natural amino acid. An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “(dichlorobenzyloxy)methyl” compounds.
- One optimal group of (dichlorobenzyloxy)methyl compounds occurs when R1 is a methyl group, in other words, the N-methylindole compounds. An exemplary group of such N-methylindole compounds occurs when R2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- Another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a group of the formula CH2OPO(R7)R8. An embodiment of these phosphinyloxy-substituted compounds occurs when R3 is a hydrogen atom or a t-butyl group, and an even more so when A is a natural amino acid. An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “phosphinyloxymethyl” compounds.
- One optimal group of phosphinyloxymethyl compounds occurs when R7 and R8 are each a phenyl group, and more so when R1 is a methyl group, in other words, the N-methylindole compounds. An exemplary group of such N-methylindole compounds occurs when R2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- Still another optimal group of compounds of Formula 1 occurs wherein n is one and more so when B is a group CH2ZR6. Optimal embodiment further occurs when R6 is a heteroaryl group, and more so when Z in an oxygen atom. An embodiment of these (heteroaryl) oxymethyl compounds occurs when R3 is a hydrogen atom or a t-butyl group, and an even more so when A is a natural amino acid. An example of these compounds wherein A is a natural amino acid occurs when A is a valine residue. This latter group of valine compounds will be referred to herein as the “heteroaryloxy” compounds.
- One optimal group of heteroaryloxy compounds occurs when the heteroaryloxy group is substituted or unsubstituted pyrazol-5-yloxymethyl, and especially so when this group is (1-phenyl-3-(trifluoromethyl)pyrazol-5-yl)oxymethyl, and even more so when R1 is a methyl group, in other words, the N-methyliindole compounds. An exemplary group of such N-methylindole compounds occurs when R2 is a methyl group and X and Y are each a hydrogen atom, and especially so when R3 is a hydrogen atom.
- Another optimal group of compounds of Formula 1 occurs when B is CH2ZR6 and Z is oxygen or OC(═O).
- The compounds of Formula 1 may be synthesized using conventional techniques as discussed below. Advantageously, these compounds are conveniently synthesized from readily available starting materials.
-
-
- In the above Scheme 1, “PG” stands for an amino protecting group and “A” stands for a natural or unnatural amino acid, as discussed above.
- The modified aspartic or glutamic acids of Formula 2a-d can be prepared by methods well known in the art. See, for example, European Patent Application 519,748; PCT Patent Application No. PCT/EP92/02472; PCT Patent Application No. PCT/US91/06595; PCT Patent Application No. PCT/US91/02339; European Patent Application No. 623,592; World Patent Application No. WO 93/09135; PCT Patent Application No. PCT/US94/08868; European Patent Application No. 623,606; European Patent Application No. 618,223; European Patent Application No. 533,226; European Patent Application No. 528,487; European Patent Application No. 618,233; PCT Patent Application No. PCT/EP92/02472; World Patent Application No. WO 93/09135; PCT Patent Application No. PCT/US93/03589; and PCT Patent Application No. PCT/US93/00481, all of which are herein incorporated by reference.
- The coupling reactions carried out under Step A are performed in the presence of a standard peptide coupling agent such as the combination of the combination of dicyclohexylcarbodiimide (DCC) and 1-hydroxy-benzotriazole (HOBt), as well as the BOP (benzotriazolyloxy-trio-(dimethylamino)phosphonium hexafluorophosphate) reagent, pyBOP (benzotriazolyloxy-tris(N-pyrolidinyl)phosphoniumhexafluorophosphate), HBTU (O-benzotriazolyly-tetramethylisouronium-hexafluorophosphate), and EEDQ (1-ethyloxycarbonyl-2-ethyloxy-1,2-dihydroquinoline) reagents, the combination of 1-ethyl(3,3′-dimethyl-1′-aminopropyl)carbodiimide (EDAC) and HOBt, and the like, as discussed in J. Jones, “Amino Acid and Peptide Synthesis,” Steven G. Davis ed., Oxford University Press, Oxford, pp. 25-41 (1992); M. Bodanzky, “Principles of Peptide Synthesis,” Hafner et al. ed., Springer-Verlag, Berlin Heidelberg, pp. 9-52 and pp. 202-251 (1984); M. Bodanzky, “Peptide Chemistry, A Practical Textbook,” Springer-Verlag, Berlin Heidelberg, pp. 55-73 and pp. 129-180; and Stewart and Young, “Solid Phase Peptide Synthesis,” Pierce Chemical Company, (1984), all of which are herein incorporated by reference. The amino protecting group is then removed and the resulting amine is coupled to the 2-(carboxy)indole of Formula 4 (Step B). Again, this coupling reaction uses the standard peptide coupling reactions mentioned above. The indole ring of Formula 4 can be substituted before the reaction in Step B or afterwards. The synthesis and substitution reactions of such an indole ring is well known, as is described, for example, in Brown, R. T. and Joule, J. A. in “Heterocyclic chemistry (ed. P. G. Sammes) (Vol. 4 of Comprehensive Organic Chemistry, ed. D. Barton and W. D. Ollis), (1979), Pergamon Press, Oxford; Houlihan, W. J., (ed.) in “Indoles (The Chemistry of Heterocyclic Compounds [ed. A. Weissburger and E. C. Taylor], Vol. 25, Parts 1-3), Wiley Interscience, New York (1972); and Saxton, J. E. (ed.) in “Indoles (The Chemistry of Heterocyclic Compounds),” [ed. A. Weissburger and E. C. Taylor], Vol. 25, Part 4), Wiley Interscience, New York, (1979); all of which are incorporated herewith by reference.
- In the case where the coupling reaction was carried out with the amino alcohol of Formula 2c, the alcohol moiety must be oxidized to the corresponding carbonyl compound prior to removal of the protecting groups. Preferred methods for the oxidation reaction include Swem oxidation (oxalyl chloride-dimethyl sulfoxide, methylene chloride at −78° C. followed by triethylamine); and Dess-Martin oxidation (Dess-Martin periodinane, t-butanol, and methylene chloride.) The protecting groups contained in substructures of the Formula 2a-d and A are removed by methods well known in the art. These reactions and removal of some or all of the protecting groups are involved in Step C in the above Scheme.
- Pharmaceutical compositions of this invention comprise any of the compounds of Formula 1, of the present invention, and pharmaceutically acceptable salts thereof, with any pharmaceutically acceptable carrier, adjuvant or vehicle (hereinafter collectively referred to as “pharmaceutically-acceptable carriers”). These compositions also include the groups and embodiments of compounds discussed above, as well as the compounds of the Examples discussed below. Pharmaceutically acceptable carriers, adjuvants and vehicles that may be used in the pharmaceutical compositions of this invention include, but are not limited to, ion exchange, alumina, aluminum stearate, lecithin, serum proteins, such as human serum albumin; buffer substances such as the various phosphates, glycine, sorbic acid, potassium sorbate, partial glyceride mixtures of saturated vegetable fatty acids; water, salts or electrolytes, such as protamine sulfate, disodium hydrogen phosphate, potassium hydrogen phosphate, sodium chloride, and zinc salts; colloidal silica, magnesium trisilicate, polyvinyl pyrrolidone, cellulose-based substances, polyethylene glycol, sodium carboxymethylcellulose, polyarylates, waxes, polyethylene-polyoxypropylene-block polymers, polyethylene glycol and wool fat, and the like.
- Such pharmaceutical compositions will be understood to include the optimal groups and embodiments of the compounds of Formula 1 set forth above.
- The pharmaceutical compositions of this invention may be administered orally, parenterally, by inhalation spray, topically, rectally, nasally, buccally, vaginally or by an implanted reservoir. Oral and parenteral administration are preferred. The term “parenteral” as used herein includes subcutaneous, intracutaneous, intravenous, intramuscular, intra-articular, intrasynovial, intrasternal, intrathecal, intralesional and intracranial injection or infusion techniques.
- The pharmaceutical compositions may be in the form of a sterile injectable preparation, for example, as a sterile injectable aqueous or oleaginous suspension. This suspension may be formulated according to techniques known in the art using suitable dispersing or wetting agents (such as, for example, Tween 80) and suspending agents. The sterile injectable preparation may also be a sterile injectable solution or suspension in a non-toxic parenterally-acceptable diluent or solvent, for example, as a solution in 1,3-butanediol. Among the acceptable vehicles and solvents that may be employed are mannitol, water, Ringer's solution and isotonic sodium chloride solution. In addition, sterile, fixed oils are conventionally employed as a solvent or suspending medium. For this purpose, any bland fixed oil may be employed including synthetic mono- or diglycerides. Fatty acids, such as oleic acid and its glyceride derivatives are useful in the preparation of injectables, as are natural pharmaceutically-acceptable oils, such as olive oil or castor oil, especially in their polyoxyethylated versions. These oil solutions or suspensions may also contain a long-chain alcohol diluent or dispersant.
- The pharmaceutical compositions of this invention may be orally administered in any orally acceptable dosage form including, but not limited to, capsules, tablets, and aqueous suspensions and solutions. In the case of tablets for oral use, carrier which are commonly used include lactose and corn starch. Lubricating agents, such as magnesium stearate, are also typically added. For oral administration in capsule form useful diluents include lactose and dried corn starch. When aqueous suspensions are administered orally, the active ingredient is combined with emulsifying and suspending agents. If desired, certain sweetening and/or flavoring and/or coloring agents may be added.
- The pharmaceutical compositions of this invention may also be administered in the form of suppositories for rectal administration. These compositions can be prepared by mixing a compound of this invention with a suitable non-irritating excipient which is solid at room temperature but liquid at the rectal temperature. Such materials include, but are not limited to, cocoa butter, beeswax and polyethylene glycols.
- Topical administration of the pharmaceutical compositions of this invention is especially useful when the desired treatment involves areas or organs readily accessible to topical application. For application topically to the skin, the pharmaceutical composition should be formulated with a suitable ointment containing the active components suspended or dissolved in a carrier. Carriers for topical administration of the compounds of this invention include, but are not limited to, mineral oil, liquid petroleum, white petroleum, propylene glycol, polyoxyethylene, polyoxypropylene compound, emulsifying wax and water. Alternatively, the pharmaceutical composition can be formulated with a suitable lotion or cream containing the active compound suspended or dissolved in a carrier. Suitable carriers include, but are not limited to, mineral oil, sorbitan monostearate, polysorbate 60, cetyl esters wax, cetearyl alcohol, 2-octyldodecanol, benzyl alcohol and water. The pharmaceutical compositions of this invention may also be topically applied to the lower intestinal tract by rectal suppository formulation or in a suitable enema formulation. Topically-applied transdermal patches are also included in this invention.
- The pharmaceutical compositions of this invention may be administered by nasal aerosol or inhalation. Such compositions are prepared according to techniques well-known in the art of pharmaceutical formulation and may be prepared as solutions in saline, employing benzyl alcohol or other suitable preservatives, absorption promoters to enhance bioavailability, fluorocarbons, and/or other solubilizing or dispersing agents known in the art.
- The compounds of this invention may be used in combination with either conventional anti-inflammatory agents or with matrix metalloprotease inhibitors, lipoxygenase inhibitors and antagonists of cytokines other than IL-1β.
- The compounds of this invention can also be administered in combination with immunomodulators (e.g., bropirimine, anti-human alpha interferon antibody, IL-2, GM-CSF, methionine enkephalin, interferon alpha, diethyldithiocarbamate, tumor necrosis factor, naltrexons and rEPO) or with prostaglandins, to prevent or combat IL-1-mediated disease symptoms such as inflammation.
- When the compounds of this invention are administered in combination therapies with other agents, they may be administered sequentially or concurrently to the patient. Alternatively, pharmaceutical compositions according to this invention may be comprised of a combination of a compound of Formula 1 and another therapeutic or prophylactic agent mentioned above.
- The disease states which may be treated or prevented by the instant pharmaceutical compositions include, but are not limited to, inflammatory diseases, autoimmune diseases and neurodegenerative diseases, and for inhibiting unwanted apoptosis involved in ischemic injury, such as ischemic injury to the heart (e.g., myocardial infarction), brain (e.g., stroke), and kidney (e.g., ischemic kidney disease). Methods of administering an effective amount of the above-described pharmaceutical compositions to mammals, also referred to herein as patients, in need of such treatment (that is, those suffering from inflammatory diseases, autoimmune diseases, and neurodegenerative diseases are further aspects of the instant invention.
- Another aspect of the instant invention is a method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury comprising administering an effective amount of the pharmaceutical composition discussed above to a patient in need of such treatment.
- Also, each of the methods directed to methods for treating inflammatory diseases, autoimmune diseases, neurodegenerative disease and preventing ischemic injury encompass using any of the optimal groups and embodiments of pharmaceutical compositions set forth above.
- Inflammatory disease which may be treated or prevented include, for example, septic shock, septicemia, and adult respiratory distress syndrome. Target autoimmune diseases include, for example, rheumatoid, arthritis, systemic lupus erythematosus, scleroderma, chronic thyroiditis, Graves' disease, autoimmune gastritis, insulin-dependent diabetes mellitus, autoimmune hemolytic anemia, autoimmune neutropenia, thrombocytopenia, chronic active hepatitis, myasthenia gravis and multiple sclerosis. Target neurodegenerative diseases include, for example, amyotrophic lateral sclerosis, Alzheimer's disease, Parkinson's disease, and primary lateral sclerosis. The pharmaceutical compositions of this invention may also be used to promote wound healing. Target diseases associated with harmful, apoptosis, in other words, those associated with ischemic injury, includes myocardial infarction, stroke, and ischemic kidney disease. The pharmaceutical compositions of this invention may also be used to treat infectious diseases, especially those involved with viral infections.
- The term “effective amount” refers to dosage levels of the order of from about 0.05 milligrams to about 140 milligrams per kilogram of body weight per day for use in the treatment of the above-indicated conditions (typically about 2.5 milligrams to about 7 grams per patient per day). For example, inflammation may be effectively treated by the administration of from about 0.01 to 50 milligrams of the compound per kilogram of body weight per day (about 0.5 milligrams to about 3.5 grams per patient per day).
- The amount of the compounds of Formula 1 that may be combined with the carrier materials to produce a single dosage form will vary depending upon the host treated and the particular mode of administration. For example, a formulation intended for the oral administration of humans may contain from 0.5 milligrams to 5 grams of a compound of Formula 1 combined with an appropriate and convenient amount of a pharmaceutically-acceptable carrier which may vary from about 5 to about 95 percent of the total composition. Dosage unit forms will generally contain between from about 1 milligram to about 500 milligrams of an active compound of Formula 1.
- It will be understood, however, that the specific “effective amount” for any particular patient will depend upon a variety of factors including the activity of the specific compound employed, the age, body weight, general health, sex, diet, time of administration, route of administration, rate of excretion, drug combination and the severity of the particular disease undergoing prevention or therapy.
- Although this invention focuses on the use of the compounds disclosed herein for preventing and treating IL-1-mediated diseases, the compounds of this invention can also be used as inhibitory agents for other cysteine proteases.
- The compounds of this invention are also useful as commercial reagents which effectively bind to the ICE/ced-3 family of cysteine protease or other cysteine proteases. As commercial reagents, the compounds of this invention, and their derivatives, may be used to block proteolysis of a target peptide or may be derivatized to bind to a stable resin as a tethered substrate for affinity chromatography applications. These and other uses which characterize commercial cysteine protease inhibitors will be evident to those of ordinary skill in the art.
- The following Examples are intended to illustrate but not limit the present invention.
- In the following Examples, proton NMR spectra were obtained at 300 MHz; chemical shifts are quoted downfield from internal tetramethylsilane.
- A. Determination of IC50 Values
- Fluorescence enzyme assays detecting the activity of the compounds of Formula 1 utilizing the recombinant ICE and CPP32 enzymes were performed essentially according to Thomberry et al. (Nature, 356:768:774 (1992)) and Nicholson et al. (Nature, 376:37-43 (1995)) respectively, (herein incorporated by reference) in 96 well microtiter plates. The substrate for these assays was Acetyl-Tyr-Val-Ala-Asp-amino-4-methylcoumarin (AMC) for the ICE assay and Acetyl-Asp-Glu-Val-Asp-amino-4-methylcoumarin for the CPP32 and Mch5 assays. Enzyme reactions were run in ICE buffer (25 mM HEPES, 1 mM EDTA, 0.1% CHAPS, 10% sucrose, pH 7.5) containing 2 mM DTT at room temperature in duplicate. The assays were performed by mixing the following components:
- 50 μl of either ICE, Mch2, Mch5 or CPP32 (18.8, 38, 8.1 and 0.153 nM concentrations, respectively) enzyme in ICE buffer containing either 8.0 (ICE, Mch2, CPP32) or 20 (Mch5) mM DTT;
- 50 μl of either the compound of Formula 1 or ICE buffer (control); and
- 100 μl of 20 μM substrate.
- The enzyme and the compound of Formula 1 to be assayed were preincubated in the microtitre plate wells for 30 minutes at room temperature prior to the addition of substrate to initiate the reaction. Fluorescent AMC product formation was monitored for one hour at room temperature by measuring the fluorescence emission at 460 nm using an excitation wavelength of 360 nm. The fluorescence change in duplicate (control) wells were averaged and the mean values were plotted as a function of inhibitor concentration to determine the inhibitor concentration producing 50% inhibition (IC50). The reference compound for this assay was Cbz-ValAlaAsp-H, which had an IC50 for ICE of 0.064 μM and for CPP32 of 47 μM.
- B. Determination of the Dissociation Constant K1 and Irreversible Rate Constant k3 for Irreversible Inhibitors
-
-
- where E, I, EI, and E-I denote the active enzyme, inhibitor, non-covalent enzyme-inhibitor complex and covalent enzyme-inhibitor adduct, respectively. The K1 value is the overall dissociation constant of reversible binding steps, and k3 is the irreversible rate constant. The [S] and Ks values are the substrate concentration and the dissociation constant of the substrate bound to the enzyme, respectively. [E]T is the total enzyme concentration.
- The above equations were used to determine the K1 and k3 values of a given inhibitor bound to a ICE/ced-3 family protease. Thus, a continuous assay was run for sixty minutes at various concentrations of the inhibitor and the substrate. The assay was formulated essentially the same as described in Example 1A above, except that the reaction was initiated by adding the enzyme to the substrate-inhibitor mixture. The K1 and k3 values were obtained by simulating the product AMC formation as a function of time according to Equation 1. The reference compound for this assay was Cbz-ValAlaAsp-CH2F.
- 1-Methylindole-2-carboxylic acid (107 mg, 0.6 mmol) and (3S)-3-(alaninyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (188 mg, 96%, 0.6 mmol) were dissolved in DMF (2 mL) then both 1-hydroxybenzotriazole-hydrate (96 mg, 0.63 mmol) and 1-(3-dimethylaminopropyl)-3-ethyl carbodiimide hydrochloride (EDAC) (161 mg, 0.84 mmol) was added to the resultant mixture under a nitrogen atmosphere at 0° C. Stirring was continued for 1 hour at 0° C. and an additional 20 hours at room temperature. The reaction mixture was diluted with ethyl acetate, washed successively with saturated aqueous sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated to give a yellow solid. Trituration of the solid with ether afforded the title product as a slightly yellow powder (213 mg, 77%). TLC (methanol/methylene chloride: 1/9, silica gel):Rf=0.47; 1H-NMR (CDCl3+CD3OD): δ 7.96 (d, J=8.0, 1H), 7.57-7.67 (m, 2H), 7.31-7.42 (m, 2H), 7.13-7.19 (m, 2H), 7.06 (s, 1H), 4.91 (m, 1H), 4.65 (q, J=7.1, 1H), 4.01 (s, 3H), 2.59-2.78 (m, J=5.6, 15.7, 2H), 1.49 (d, J=7.1, 3H), 1.39 (s, 9H).
- (3S)-3-[(1-Methylindole-2-carbonyl)alaninyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (127 mg, 0.28 mmol) was suspended in anisole (0.2 mL) and methylene chloride (2 mL) and the suspension was treated with trifluroacetic acid (TFA) (1 mL). The resulting solution was stirred for 2 hours under a nitrogen atmosphere at room temperature. The reaction mixture was then concentrated and chased with methylene chloride to give a purple foam. Trituration of the foam with ether gave the title product as a purple powder (108 mg, 97%). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.27; 1H-NMR (CD3OD): δ 7.62 (d, J=8.0, 1H), 7.44 (d, J=8.2, 1H), 7.24-7.32 (m, 2H), 7.07-7.13 (m, 2H), 4.91 (m, 1H), 4.56 (q, J=7.1, 1H), 3.98 (s, 3H), 2.78 (d, J=6.5, 2H), 1.49 (d, J=7.3, 3H).
- (3S)-3-[(1-Methylindole-2-carbonyl)alaninyl]amino-4-oxobutanoic acid, semicarbazone (87 mg, 0.22 mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resultant mixture was stirred for 4 hours under a nitrogen atmosphere at room temperature. The reaction mixture was diluted with water and extracted twice with ethyl acetate. The ethyl acetate solution was washed with brine, dried over sodium sulfate and concentrated to give a glassy material which was triturated with ether to afford the title product as a gray powder (24 mg, 32%). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.44; 1H-NMR (CD3OD): δ 7.62 (d, J=8.0, 1H), 7.44 (dd, J=0.8, 8.4, 1H), 7.26-7.32 (m, 1H), 7.08-7.13 (m, 2H), 4.63-4.53 (m, 2H), 4.31 (m, 1H), 3.99 (s, 3H), 2.48-2.73 (m, 2H), 1.46 (7.1, 3H).
- 1-Methylindole-2-carboxylic acid (102 mg, 0.58 mmol) and (3S)-3-(prolinyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (189 mg, 0.58 mmol) were dissolved in methylene chloride (2 mL) and DMF (1 mL) and then both 4-dimethylamino pyridine (DMAP) (71 mg, 0.58 mmol) and EDAC (155 mg, 0.81 mmol) were added to the mixture under a nitrogen atmosphere at 0° C. Stirring was continued for 1 hour at 0° C. and an additional 2 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution. The ethyl acetate solution was washed with saturated sodium bicarbonate solution and brine, dried over sodium sulfate and concentrated to give 153 mg of brown foam. The foam was purified by flash chromatograph on silica gel using 2% methanol-methylene chloride as the eluent to give the title product as a light brown foam (50 mg). TLC: methanol/methylene chloride: 5/95, silica gel): Rf=0.27; 1H-NMR (CDCl3+CD3OD): δ 8.87 (bs, 1H), 7.63 (d, J=7.7, 1H), 7.38-7.50 (m, 2H), 7.17-7.13 (m, 1H), 6.85 (bs, 1H), 4.90-4.81 (m, 2H), 3.92-3.74 (m, 5H), 2.78-1.93 (m, 6H), 1.37 (s, 9H).
- (3S)-3-[(1-Methylindole-2-carbonyl)prolinyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (50 mg, 0.1 mmol) was dissolved in anisole (0.2 mL) and methylenechloride (2 mL) and the resultant solution was treated with TFA (1 mL). This reaction mixture was then stirred for 1 hour under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo and chased with methylene chloride to give a purple film. The film was triturated with ether to afford the title product as a purple powder (47 mg). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.18; 1H-NMR (CD3OD): δ 7.63-6.93 (m, 6H), 6.67 (bs, 1H), 4.89-4.50 (m, 2H), 3.86-3,74 (m, 5H), 2.82-2.74 (m, 2H), 2.40-2.30 (m, 1H), 2.15-1.90 (m, 3H).
- (3S)-3-[(1-Methylindole-2-carbonyl)prolinyl]amino-4-oxobutanoic acid, semicarbazone (87 mg, 0.22) mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resulting mixture was stirred for 4 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, and extracted twice with ethyl acetate. The ethyl acetate solution was washed with brine, dried over sodium sulfate and concentrated to give brown oil (22 mg) which was triturated with ether to afford the title product as a light brown powder (8 mg). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.28; MS for C19H21N3O5+H+=372; C19H21N3O5G−H+=370).
- 1-Methylindole-2-carboxylic acid (88 mg, 0.5 mmol) and (3S)-3-(Valinyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (163 mg, 0.5 mmol) were dissolved in DMF (1 mL) and methylene chloride (2 mL) then both DMAP (61 mg, 0.50 mmol) and EDAC (134 mg, 0.7 mmol) were added to the solution under a nitrogen atmosphere at 0° C. Stirring was continued for 1 hour at 0° C. and an additional 4 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution. The ethyl acetate solution was washed successively with 5% KHSO4 solution, saturated sodium bicarbonate solution and brine solutions, dried over sodium sulfate, and concentrated to give a yellow foam. Trituration of the foam with ether afforded the title product as a slightly yellow powder (203 mg, 86%). TLC (methanol/methylene chloride: 5/95, silica gel): Rf=0.17.
- (3S)-3-[(1-Methylindole-2-carbonyl)valinyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (170 mg, 0.36 mmol) was dissolved in anisole (0.2 mL) and methylene chloride (2 mL) and the resulting solution was treated with TFA (1 mL). The resulting solution was stirred for 3.5 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo and chased with methylene chloride to give a purple foam. Trituration of the foam with ether afforded the title product as a solid purple powder (133 mg, 89%).
- (3S)-3-[(1-Methylindole-2-carbonyl)valinyl]amino-4-oxobutanoic acid, semicarbazone (136 mg, 0.33 mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resulting mixture was stirred for 5 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, and extracted twice with ethyl acetate. The combined ethyl acetate solutions were washed with brine, dried over sodium sulfate and concentrated in vacuo to give a purple foam which was triturated with ether to afford the title product as a purple powder (40 mg, 33%). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.36; MS for C19H23N3O5+H+=374; C19H23N3O5GH+=372.
- 1-Methylindole-2-carboxylic acid (70 mg, 0.4 mmol) and 3(S)-(Leucinyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (131 mg, 0.4 mmol) were dissolved in methylene chloride (2 mL) and both DMAP (49 mg, 0.40 mmol) and EDAC (107 mg, 0.56 mmol) were added to the solution under a nitrogen atmosphere at 0° C. Stirring was continued for 1 hour at 0° C. and an additional 3 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution. The ethyl acetate solution was washed successively with 5% KHSO4 solution, saturated with sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated in vacuo to give a crude solid. Trituration of the solid with either afforded the title product as a white powder (156 mg, 80%). TLC (methanol/methylene chloride: 5/95, silica gel): Rf=0.42; 1H-NMR (CDCl3+CD3OD): δ 8.18 (s, 1H), 7.66-7.11 (m, 6H), 6.97 (s, 1H), 6.32 (d, J=7.7, 1H), 4.95-4.88 (m, 1H), 4.70-4.62 (m, 1H), 4.03 (s, 3H), 2.82-2.56 (m, 2H), 1.87-1.58 (m, 3H), 1.38 (9H), 1.00 (t, J-6.3, 6H).
- (3S)-3-[(1-Methylindole-2-carbonyl)leucinyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (132 mg, 0.27 mmol) was dissolved in anisole (0.2 mL) and methylene chloride (2 mL) and the resulting solution was treated with TFA (1 mL). The resulting solution was stirred for 3 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo and chased with methylene chloride to give a pink foam. Trituration of the foam with ether afforded the title product as a pink powder (108 mg, 92%). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.22; 1H-NMR (CD3OD): δ 7.62 (dt, J=8.0, 1.1, 1H), 7.45 (dd, J=8.5, 0.8, 1H), 732-7.23 (m, 2H), 7.13-7.08 (m, 2H), 4.94-4.89 (m, 1H), 4.64-4.59 (m, 1H), 3.98 (s, 3H), 2.78 (d, J=6.2, 2H), 1.82-1.70 (m, 3H), 1.02 (d, J=6.0, 3H), 0.99 (d, J=6.3, 3H).
- (3S)-3-[(1-Methylindole-2-carbonyl)leucinyl]amino-4-oxobutanoic acid, semicarbazone (90 mg, 0.21 mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resulting solution was stirred for 7 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, and extracted twice with ethyl acetate. The ethyl acetate solution was washed with brine, dried over sodium sulfate, and concentrated in vacuo to give a purple foam which was triturated with ether to afford the title product as a purple powder (35 mg, 43%). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.45; MS for C20H25N3O5; M+H+=388; M−H+=386.
- 1-Methylindole-2-carboxylic acid (72 mg, 0.41 mmol) and 3(S)-(phenylalaninyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (154 mg, 0.41 mmol) were dissolved in methylene chloride (2 mL) and both DMAP (53 mg, 0.43 mmol) and EDAC (109 mg, 0.57 mmol) were added to the solution under a nitrogen atmosphere at 0° C. Stirring was continued for 1 hour at 0° C. and an additional 4 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution, successively, dried over sodium sulfate, and concentrate to give a white solid. Trituration of the solid with ether afforded the title product as a white powder (179 mg, 82%). TLC (methanol/methylene chloride: 5/95, silica gel): Rf=0.44.
- (3S)-3-[(1-Methylindole-2-carbonyl) phenylalaninyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (154 mg, 0.30 mmol) was dissolved in anisole (0.2 mL) and methylene chloride (2 mL) and the resulting solution was treated with TFA (1 mL). The resulting solution was stirred for 4 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo and azeotroped with methylene chloride to give a purple solid. Trituration of the solid with ether afforded the title product as a purple powder (141 mg, 100%). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.25.
- (3S)-3-[(1-Methylindole-2-carbonyl)phenyl-alaninyl]amino-4-oxobutanoic acid, semicarbazone (116 mg, 0.25 mmol) were dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resulting solution was stirred for 9 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, and extracted twice with ethyl acetate. The ethyl acetate solution was washed with brine, dried over sodium sulfate and concentrated to give a crude product which was triturated with ether to afford the title product as a brown powder (26 mg, 25%). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.33; MS for C23H21N3O5; M+H+=422; M−H+=420.
- DMAP (1.222 g, 0.01 mol) and EDAC (2.680 g, 0.014 mol) were added as solids to a solution of 1-methylindole-2-carboxylic acid (1.752 g, 0.01 mol) and glycine methyl ester hydrochloride (1.256 g, 0.01 mol) in methylene chloride (30 mL) and DMF (5 mL) under a nitrogen atmosphere at 0° C. Stirring was continued for 1 hour at 0° C. and then for 3 hours at room temperature. The reaction mixture was partitioned with ethyl acetate and 5% KHSO4 solution and the aqueous layer was extracted with ethyl acetate. The combined ethyl acetate solution was washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) solution and brine, dried over sodium sulfate, and concentrated to give a purple powder as crude product. Trituration of the powder with ether afforded the title product (1.734 mg, 70%). TLC (methanol/methylene chloride 1:9): Rf=0.61; 1H-NMR (CDCl3): δ 7.65 (dt, J=8.0, 1.1, 1H), 7.41-7.31 (m, 2H), 7.16 (dd, J=6.6, 1.4, 1H) 6.96 (d, J=0.5, 1H), 6.67 (bs, 1H), 4.25 (d, J=5.2, 2H), 4.05 (s, 3H), 3.82 (s, 3H).
- (1-Methylindole-2-carbonyl)glycine methyl ester (1.687 g, 6.85 mmol) was dissolved in 1,4-dioxane (10 mL) and was treated with 1 N lithium hydroxide (7.0 mL, aq) with stirring. The reaction mixture turned clear immediately and was acidified with 1N HCl and concentrated to remove 1,4-dioxane to result in a purple precipitate. The precipitate was filtered, washed with water, and dried in vacuo to give the title product as a purple powder (1.482 g, 93%). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.28; 1H-NMR (CD3OD): δ 7.61 (dt, J=8.2, 1H). 7.44 (dd, J=8.5, 0.8, 1H), 7.32-7.26 (m, 1H), 7.13-7.09 (m, 1H), 7.04 (s, 1H), 4.08 (s, 2H), 3.99 (s, 3H).
- (1-Methylindole-2-carbonyl)glycine (186 mg, 0.8 mmol) was dissolved in methylene chloride (5 mL) and DMF (1 mL) and the resulting solution was treated with 1-hydroxybenzotriazole hydrate (129 mg, 0.84 mmol) and EDAC (215 mg, 1.12 mmol) under a nitrogen atmosphere and the reaction mixture stirred for 10 minutes at 0° C. 3(S)-Amino-4-oxobutanoic acid, t-butyl ester semicarbazone p-toluenesulfate (312 mg, 0.8 mmol) followed by N-methylmorpholine (0.09 mL, 0.8 mmol), were added to the reaction mixture and the mixture was stirred for 1 hour at 0° C. and an additional 4 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4, and the product precipitated out during the work-up. The white precipitate from the aqueous portion was obtained by filtration and washing with water and ether. Another portion of white precipitate was obtained by concentration of the organic layer and trituration of the residue with ether. The combined precipitate was the title product (297 mg, 66%). TLC (methanol/methylene chloride: 1/9, silica gel): Rf=0.42; 1H-NMR (CDCl3) δ 7.65 (d, J=8.0, 1H), 7.41-7.34 (m, 2H), 7.19-7.13 (m, 2H), 7.05 (d, J=0.5, 1H), 4.95-4.93 (m, 1H), 4.08 (s, 2H), 4.03 (s, 3H), 2.79-2.59 (m, 2H), 1.41 (s, 9H).
- (3S)-3-[(1-Methylindole-2-carbonyl)glycinyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (118 mg, 0.26 mmol) was dissolved in anisole (0.2 mL) and methylene chloride (2 mL) and the resulting solution was treated with TFA (1 mL). The resulting solution was stirred for 3 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo and chased with methylene chloride to give a green solid. Trituration of the solid with ether afforded the title product as a green powder (88 mg, 87%). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.47; 1H-NMR (CD3OD): δ 7.63-7.08 (m, 6H), 4.95 (m, 1H), 4.05 (s, 2H), 4.01 (s, 3H), 3.77 (d, J=5.8, 2H).
- (3S)-3-[(1-Methylindole-2-carbonyl)glycinyl]amino-4-oxobutanoic acid, semicarbazone (76 mg, 0.20 mmol) was dissolved in a mixture of methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the mixture was stirred for 6 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, extracted twice with ethyl acetate. The combined ethyl acetate solutions were washed with brine, dried over sodium sulfate, and concentrated to give a crude product which was triturated with ether to afford the title product as a light yellow powder (29 mg, 44%). TLC (methylene chloride:methanol:acetic acid, 8:1:1, silica gel): Rf=0.61; MS for C16H17N3O5:M+H+, 330. 1H-NMR (CD3OD): δ 7.73-7.08 (m, 5H), 4.90-3.8 (m, 7H), 2.72-2.47 (m, 2H).
- 1-Benzylindole-2-carboxylic acid (477 mg, 1.9 mmol) and 3(S)-(alaninyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (581 mg, 1.9 mmol) were dissolved in methylene chloride (8 mL) and both DMAP (232 mg, 1.9 mmol) and EDAC (498 mg, 2.6 mmol) were added to the solution under a nitrogen atmosphere at 0° C. The resultant solution was stirred for 1 hour at 0° C. and an additional 2 hours at room temperature. The reaction mixture was diluted with ethyl acetate, washed successively with saturated sodium bicarbonate solution and brine, dried over sodium sulfate, and concentrated to give a yellow foam. Flash column chromatographic purification of the foam (silica gel, methanol/methylene chloride 2-5%) afforded the title product as a white powder (570 mg, 56%). TLC (methanol/methylene chloride: 1/9, silica gel): Rf=0.38; 1H-NMR (CDCl3): δ 8.60 (bs, 1H), 7.67 (dd, J=8.0, 1.1, 1H), 7.50 (d, J=8.0, 1H), 7.33-7.01 (m, 8H), 6.79 (d, J=7.4, 1H), 5.78 (s, 2H), 4.87-4.83 (m, 1H), 4.67-4.62 (m, 1H), 2.73-2.43 (m, 2H), 1.46 (d, J=7.1, 3H), 1.39 (s, 9H).
- (3S)-3-[(1-Benzylindole-2-carbonyl)alaninyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (247 mg, 0.46 mmol) was dissolved in anisole (0.5 mL) and methylene chloride (2 mL) and the resultant mixture was treated with TFA (1 mL). The resulting solution was stirred for 3.5 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride to give a light green solid. Trituration of the solid with ether afforded the title product as a green powder (215 mg, 98%). TLC (methylene chloride:methanol:acetic acid, 8:1:1, silica gel): Rf=0.50; 1H-NMR (CD3OD): δ 8.26 (d, J=8.0, 1H), 7.65 (d, J=8.0, 1H), 7.39 (dd, J=8.5, 0.8, 1H), 7.26-7.01 (m, 8H), 5.79 (d, J=7.4, 2H), 4.56-4.49 (m, 1H), 2.77-2.62 (m, 2H), 1.43 (d, J=7.4, 3H).
- (3S)-3-[(1-Benzylindole-2-carbonyl)alaninyl]amino-4-oxobutanoic acid, semicarbazone (176 mg, 0.37 mmol) was dissolved in methanol (4.5 mL), formaldehyde (1.5 mL, 37% wt. aq) and acetic acid (1.5 mL) and the resulting mixture was stirred for 4 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, and extracted twice with ethyl acetate. The ethyl acetate solution was washed with brine, dried over sodium sulfate, and concentrated to give a crude product which was triturated with ether to afford the title product as a light green powder (113 mg, 72%). TLC: (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.38; MS for C23H23N3O5; M+H+=422; M−H+=420. 1H-NMR (CD3OD): δ 7.65 (d, J=8.0, 1H), 7.37 (dd, J=8.2, 0.8, 1H), 7.24-7.04 (m, 8H), 5.87-5.73 (m, 2H) 4.60-4.49 (m, 2H), 4.32-4.23 (m, 1H), 2.69-2.44 (m, 2H), 1.41 (d, J=7.1, 2 sets, 3H).
- [1-(4′-Butenyl)indole]-2-carboxylic acid (108 mg, 0.5 mmol) and 3(S)-(valinyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (163 mg, 0.5 mmol) were dissolved in methylene chloride (3 mL). To this solution was added both DMAP (61 mg, 0.5 mmol) and EDAC (134 mg, 0.7 mmol) under a nitrogen atmosphere at 0° C. and the resultant reaction mixture was stirred for 1 hour at 0° C. and an additional 5 hours at room temperature. The reaction mixture was diluted with ethyl acetate, washed successively with saturated sodium bicarbonate solution and brine, dried under sodium sulfate, and concentrated to give a yellow foam. Trituration of the foam with ether afforded the title product as a slightly yellow powder (146 mg, 55%). TLC (methanol/methylene chloride: 1/9, silica gel): Rf=0.23; 1H-NMR (CDCl3): δ 8.69 (bs, 1H), 7.64 (d, J=8.0, 1H) 7.41-7.13 (m, 3H), 6.99 (s, 1H), 6.91 (d, J=8.8, 1H), 5.85-5.71 (m, 1H), 5.04-4.94 (m, 3H), 4.65-4.45 (m, 3H), 3.52-2.50 (m, 4H), 2.33-2.26 (m, 1H), 1.41 (s, 9H), 1.05-1.02 (m, 6H).
- (3S)-3-[(1-(4′-Butenyl)indole-2-carbonyl) valinyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (126 mg, 0.24 mmol) was dissolved in anisole (0.2 mL) and methylene chloride (2 mL) and the resulting solution was treated with TFA (1 mL). The acidified reaction mixture was stirred for 4 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride to give a crude solid. Trituration of the solid with ether afforded the title product as a purple powder (99 mg, 88%). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.36; 1H-NMR (CD3OD): δ 8,46 (d, J=8.0, 1H) 8.12 (d, J=8.2, 1H), 7.62 (d, J=8.0, 1H), 7.46 (dd, J=8.5, 0.8, 1H), 7.31-7.21 (m, 2H), 7.31-7.05 (m, 2H), 5.84-5.70 (m, 1H), 4.99-4.78 (m, 3H), 4.62-4.57 (m, 2H), 4.39-4.33 (m, 1H), 2.88-2.69 (m, 2H), 2.52-2.45 (m, 2H), 2.24-2.15 (m, 1H), 1.07-1.02 (m, 6H).
- (3S)-3-[(1-(4′-Butenyl)indole-2-carbonyl) valinyl]amino-4-oxobutanoic acid, semicarbazone (79 mg, 0.17 mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resulting mixture was stirred for 7 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water, and extracted twice with ethyl acetate. The ethyl combined acetate solutions were washed with brine, dried over sodium sulfate and concentrated to give a crude product which was triturated with ether to afford the title product as a light purple powder (24 mg, 34%). TLC (methylene chloride:methanol:acetic acid, 20:1:1, silica gel): Rf=0.60; MS for C22H27N3O5:M+H+=414; M−H+=412. 1H-NMR (CD3OD): δ 8.09-8.05 (m, 1H), 7.62 (d, J=8.0, 1H), 7.46 (dd, J=8.5, 0.8, 1H), 7.31-7.25 (m, 1H), 7.13-7.07 (m, 2H), 5.85-5.71 (m, 1H), 4.99-4.90 (m, 3H), 4.62-4.54 (m, 3H), 4.41-4.30 (m, 2H), 2.75-2.46 (m, 4H), 2.22-2.14 (m, 1H), 1.06-1.02 (m, 6H).
- 1-[2′-(1′-t-Butoxy-1′-oxo)ethyl]indole-2-carboxylic acid (220 mg, 0.8 mmol) and 3(S)-(alaninyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (241 mg, 0.8 mmol) were dissolved in methylene chloride (3 mL) and DMF (1 mL) and the resulting solution was treated with both DMAP (98 mg, 0.8 mmol) and EDAC (211 mg. 1.1 mmol). The resultant reaction mixture was stirred for 1 hour at 0EC and then an additional 3 hours at room temperature to give a white precipitate. The reaction mixture was concentrated to remove methylene chloride and quenched with 5% KHSO4 solution. The white solid was collected by filtration, washed with water and ether and dried in vacuo to afford the title product as a white powder (297 mg, 66%). TLC (methanol/methylene chloride: 1/9, silica gel): Rf=0.27. 1H-NMR: (CD3OD): δ 7.65 (d, J=8.0, 1H), 7.41 (d, J=8.0, 1H), 7.26 (s, 1H), 7.22 (d, J=3.0, 1H), 7.16-7.11 (m, 1H), 5.32 (d, J=2.2, 2H), 4.94-4.89 (m, 1H), 4.54 (q, J=7.1, 1H), 2.76 (d, 2H), 1.48 (d, J=7.4, 3H).
- (3S)-3-[(1-(2′-(1′-t-butoxy-1′-oxo)ethyl) indole-2-carbonyl)]amino-4-oxobutanoic acid, t-butyl ester, semicarbazone (274 mg, 0.51 mmol) in methylene chloride (2 mL) was treated with TFA (1 mL). The resulting solution was stirred for 2 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride to give a solid. Trituration of the solid with ether gave the title product as a light gray powder (262 mg). TLC (methylene chloride:methanol:acetic acid, 8:1:1, silica gel): Rf=0.08. 1H-NMR (CD3OD): δ 7.65 (d, J=8.0, 1H), 7.41 (d, J=8.0, 1H), 7.26 (s, 1H), 7.22 (d, J=3.0, 1H), 7.16-7.11 (m, 1H), 5.32 (d, J=2.2, 2H), 4.94-4.89 (m, 1H), 4.54 (q, J=7.1, 1H), 2.76 (d, 2H), 1.48 (d, J=7.4, 3H).
- (3S)-3-[(1-(Carboxymethyl)indole-2-carbonyl) alaninyl]amino-4-oxobutanoic acid, semicarbazone (241 mg, 0.47 mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resulting solution was stirred for 3 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated in vacuo, diluted with water and extracted twice with ethyl acetate. The combined ethyl acetate solutions were washed with brine, dried under sodium sulfate and concentrated to give a glassy material which was triturated with ether to afford the title product as a slightly yellow powder (114 mg, 63%). TLC methylene chloride:methanol:acetic acid, 8:1:1, silica gel): Rf=0.16. 1H-NMR (CD3OD): δ 7.65 (d, J=8.0, 1H), 7.40 (d, J=8.2, 1H), 7.33-7.27 (m, 1H), 7.24 (s, 1H), 7.16-7.10 (m, 1H), 5.36 and 5.26 (AB, J=17.9, 2H), 4.64-4.50 (m, 2H), 4.34-4.20 (m, 1H), 2.72-2.48 (m, 2H), 1.45 (d, J=7.14, 3H, 2 sets).
- 1-(3′-(1′-t-Butoxy-1′-oxo)propyl)indole-2-carboxylic acid (147 mg, 0.51 mmol) was dissolved in DMF 3 mL) and to the resulting solution was added both DMAP (68 mg, 0.56 mmol) and EDAC (140 mg, 0.73 mmol). Stirring was continued for 10 minutes under a nitrogen atmosphere at 0° C. (3S)-3-(Alaninyl)amino-4-oxobutanoic acid, t-butyl ester semicarbazone (154 mg, 0.51 mmol) was added to the reaction mixture, and the mixture was stirred for 1 hour at 0° C. and then an additional 4 hours at room temperature. The reaction mixture was partitioned between 5% KHSO4 solution and ethyl acetate. The ethyl acetate solution was washed successively with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give a foam as crude product. Trituration of the foam with ether afforded the title product as a white powder (161 mg, 55%). TLC (methanol/methylene chloride: 1/9, silica gel): Rf=0.36; 1H-NMR (CD3OD): δ 7.62 (d, J=8.0, 1H), 7.50 (d, J=8.2, 1H), 7.29 (t, J-8.2, 1H), 7.22 (d, J=3.0, 1H), 7.16 (s, 1H), 7.11 (t, J=7.4, 1H), 4.96-4.90 (m, 1H), 4.82-4.72 (m, 2H), 4.56 (q, J=7.1, 1H), 2.78-2.66 (m, 4H), 1.49 (d, J=7.4, 3H), 1.40 (s, 9H), 1.28 (s, 9H).
- (3S)-3-[(1-(3′-(1′-t-Butoxy-1′-oxo)propyl) indole-2-carbonyl)alaninyl]amino-4-oxobutanoic acid, t-butyl ester semicarbazone (140 mg, 0.24 mmol) was dissolved in anisole (0.2 mL) and methylene chloride (2 mL) and the suspension was treated with TFA (1 mL). The resulting solution was stirred for 2 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride to give a solid. Trituration of the solid with ether gave the title product as a colorless powder (107 mg, 95%). TLC (methylene chloride:methanol:acetic acid, 8:1:1, silica gel): Rf=0.17; 1H-NMR (CD3OD): δ 7.62 (d, J=8.0, 1H), 7.50 (d, J=8.2, 1H) 7.32-7.27 (m. 1H), 7.23 (d, J=3.0, 1H), 7.13-7.08 (m, 2H), 4.97-4.90 (m, 1H), 4.80-4.69 (m, 1H), 4.54 (q, J=7.1, 1H), 2.82-2.73 (m, 4H), 1.49 (d, J=7.1, 3H).
- (3S)-3-[(1-(2′-Carboxyethyl)indole-2-carbonyl) alaninyl]amino-4-oxobutanoic acid, semicarbazone (95 mg, 0.21 mmol) was dissolved in methanol (3 mL), formaldehyde (1 mL, 37% wt. aq) and acetic acid (1 mL) and the resultant solution was stirred for 4 hours under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated to remove methanol, diluted with water and extracted twice with ethyl acetate. The combined ethyl acetate solutions were washed with brine, dried over sodium sulfate and concentrated to give a glassy material which was triturated with ether to afford the title product as a slightly yellow powder (20 mg, 20%). TLC (methylene chloride:methanol:acetic acid, 8:1:1, silica gel): Rf=0.26; 1H-NMR (CD3OD): δ 7.62 (d, J=8.0, 1H), 7.51 (d, J=1H), 7.32-7.27 (m, 1H), 7.13-7.08 (m, 2H), 4.80-4.76 (m, 2H), 4.68-4.52 (m, 2H), 4.37-4.25 (m, 1H), 2.84-2.50 (m, 3H), 1.47 (d, J=7.1, 3H, 2 sets).
- Sodium hydride (1.76 g, 0.044 mol, 60% wt. in mineral oil) was slowly added to a solution of ethylene glycol (11.2 mL) in dry THF (100 mL). The resultant mixture was stirred briefly under a nitrogen atmosphere at room temperature. α-Bromo-2,6-dichlorotoluene (9.894 g, 0.04 mol) was added to the mixture and the mixture was stirred for an additional 5.5 hours under a nitrogen atmosphere at room temperature. Additional sodium hydride (0.400 g) was added and the mixture was then stirred for 24 hours at room temperature. The reaction mixture was concentrated to remove THF, and the residue was partitioned between ether and water. The aqueous layer was back extracted with ether (2×). The combined organic solution was washed with water and brine, dried over sodium sulfate, filtered and concentrated to give a crude oil. The oil was flash chromatographed on silica gel with ethyl acetate/hexanes (10-50%) to give the title product as a yellow oil (4.56 g, 51%). TLC (ethyl acetate/hexanes, 30/70): Rf=0.26. 1H-NMR (CDCl3): δ 7.35-7.18 (m, 3H), 4.84 (s, 2H), 3.76-3.66 (m, 4H).
- DMSO was added dropwise to a solution of (47.5 mL) oxalyl chloride (7.5 mL, 15.0 mmol, 2.0 M in methylene chloride) and the resultant reaction mixture was stirred for 10 min at −78° C. 2,6-Dichlorobenzyloxy-ethanol (2211 mg, 10 mmol) in dry methylene chloride (5 mL) was added dropwise to the mixture and the mixture was then stirred for 15 minutes under a nitrogen atmosphere at −78° C. Triethylamine (8.4 mL, 60 mmol) was added dropwise to the reaction mixture, and the resultant mixture was stirred for 10 min at −78° C., then allowed to warm to 0° C. (over a period of approximately 20 min). A methylene chloride solution of tert-butyl 3-nitropropionate (1927 mg, 11.0 mmol in 5 mL of dry methylene chloride) was added dropwise to the reaction mixture and the mixture was stirred for 1 hour. The residue was extracted with ether and the resultant white solid was collected by filtration. The organic filtrate was washed with 5% KHSO4 solution (2×) and brine, dried over sodium sulfate, and concentrated to give a crude oil (3.95 g). The oil was subjected to flash chromatography on silica gel with ethyl acetate/hexanes (1:2) to afford the title product as a yellow oil (2.917 g, 74%). TLC (ethyl acetate, hexanes, 60/40): Rf=0.54.
- A mixture of 5-(2′,6′-dichlorobenzyloxy)-4-hydroxy-3-nitropentanoic acid t-butyl ester (2.213 g, 0.0056 mol) and wet Raney nickel (3.4 g) in methanol (150 mL) was stirred for 2 hours under a hydrogen balloon at room temperature. The reaction mixture was filtered through Celite and the filter cake was washed with methanol. The filtrate was concentrated and chased with methylene chloride to give the title product (2.078 g, 100%). TLC (methanol/methylene chloride 1/9): Rf=0.21.
- DMAP (367 mg, 3.0 mmol) and EDAC (748 mg, 3.9 mmol) were added as solids to a solution of 1,3-dimethylindole-2-carboxylic acid (568 mg, 3.3 mmol) in DMF (5 mL), and the resultant mixture was stirred for 10 minutes under a nitrogen atmosphere at 0° C. A methylene chloride solution of the methyl ester of valine (553 mg, 3.3 mmol, in 5 mL of methylene chloride) was added to the mixture, and the mixture was first stirred for one hour at 0° C. then for 5 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate washes were in turn washed with 5% KHSO4 solution saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give the title product as a yellow syrup (900 mg).
- A 1,4-dioxane solution (5 mL) of the above yellow syrup was treated with an aqueous solution of lithium hydroxide (1.0 M LiOH, 3.0 mL) and the resultant mixture was stirred for 1 hour at room temperature (the mixture became homogeneous). The reaction mixture was acidified with 1 M hydrochloric acid and extracted with ethyl acetate (3×). The combined ethyl acetate solutions were washed with brine, dried over sodium sulfate, and concentrated to give the title product as a yellow foam (839 mg).1H-NMR (CD3OD): δ 7.58 (dt, J=8.0, 0.8, 1H), 7.37 (dd, J-8.0, 0.8, 1H), 7.29-7.24 (m, 1H), 7.12-7.06 (m, 1H), 4.57 (d, J=5.8, 1H), 3.80 (s, 3H), 2.48 (s, 3H), 3.34-2.28 (m, 1H), 1.10 (d, J=6.9, 3H), 1.07 (d, J=6.9, 3H).
- 1-Hydroxybenzotriazole hydrate (153 mg, 1.0 mmol) and EDAC (268 mg, 1.4 mmol) were added to a methylene chloride solution of N-(1,3-dimethylindole-2-carbonyl)valine (288 mg, 1.0 mmol, in 3 mL of methylene chloride). The resultant mixture was stirred for 10 minutes under a nitrogen atmosphere at room temperature. A methylene chloride solution of 3-amino-5-(2′,6′-dichlorobenzyloxy)-4-hydroxypentanoic acid, t-butyl ester (364 mg, 1.0 mmol, in 2 mL of methylene chloride) was added to the reaction mixture and the mixture was first stirred for one hour under a nitrogen atmosphere at 0° C., and then for 16 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give crude product (583 mg). The crude product was subjected to flash chromatography on silica gel with ethyl acetate/hexane (2/3) to give the title product as a white solid (260 mg). TLC (ethyl acetate/hexanes 1:1): Rf=0.38.
- Dess-Martin periodinane (195 mg) was added as a solid to a solution of N-[(1,3-dimethylindole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-(2′,6′-dichlorobenzyloxy)pentanoic acid, t-butyl ester (96 mg) in DMSO (1.5 ml). The resulting solution was stirred under a nitrogen atmosphere at room temperature for thirty minutes, then partitioned between EtOAc and water. The organic phase was washed with water (2×) and brine, dried (Na2SO4), and concentrated to give a white solid (83 mg). Flash chromatographic purification with EtOAc/hexanes (1:1) afforded the title product as a white solid (54 mg). TLC (EtOAc/hexanes; 1:1, silica gel): Rf=0.52.
- A solution of N-[(1,3-Dimethylindole-2-carbonyl)valinyl]-3-amino-4-oxo-5-(2′,6′-dichloro-benzyloxy)pentanoic acid, t-butyl ester (49 mg) in anisole (0.2 mL) and methylene chloride (2 mL) was treated with TFA (1 mL) and stirred for 30 minutes under a nitrogen atmosphere at room temperature. The resultant solution was concentrated and chased with methylene chloride to give a white solid as the crude product. The crude product was triturated with ether to yield the title product as a white powder (34 mg). MS for C28H31Cl2N3O6; MH+=576/578; (MH)−=574/576.
- 4-Dimethylaminopyridine (DMAP) (67 mg, 0.55 mmol) and 1-(3′-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC) (125 mg, 0.65 mmol) were added as solids to a DMF solution of 1,3-dimethylindole-2-carboxylic acid (95 mg, 0.5 mmol in 1 mL of DMF), and the resultant reaction mixture was stirred for 10 minutes under a nitrogen atmosphere at 0° C. A methylene chloride solution of N-(valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (153 mg, 0.5 mmol in 1 mL of methylene chloride) was added and the resultant reaction mixture was first stirred for 1 hour at 0° C. and then for 4 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×), and brine, dried over sodium sulfate, and concentrated to give a solid. The solid was triturated with ether/hexane to yield the title product as a white solid (134 mg, 56%). TLC (ethyl acetate/hexanes, 2:1): Rf=0.42. 1H-NMR (CDCl3): δ 7.59 (d, J=8.8, 1H), 7.37 (d, J=7.7, 1H), 7.29-7.24 (m, 1H), 7.12-7.07 (m, 1H), 4.49-4.26 (m, 5H), 3.81-3.79 (m, 3H), 2.66-2.47 (m, 5H), 2.22-2.10 (m, 1H), 1.45-1.41 (m, 9H), 1.09-1.03 (m, 6H).
- Dimethyl sulfoxide (0.09 mL, 1.25 mmol) was added to a solution of oxalyl chloride (0.19 mL, 2.0 M, 0.38 mmol) in methylene chloride (4 mL), and the resultant mixture was stirred for 10 minutes under a nitrogen atmosphere at −78° C. A dry methylene chloride solution of N-[1,3-dimethylindole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (119 mg, 0.25 mmol in 1 mL of dry methylene chloride), was added dropwise to the mixture and the resultant reaction mixture was stirred for 15 min at −78° C. Triethylamine (0.21 mL, 1.5 mmol) was added dropwise, and the reaction mixture was then stirred for 10 minutes at −78° C. then was allowed to warm to room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous layer was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution and brine, dried over sodium sulfate, and concentrated to give a crude product. The crude product was chromatographed with ethyl acetate/hexanes (2:1) on silica gel gave the title product as a white solid (48 mg, 41%). TLC (ethyl acetate/hexanes, 2:1): Rf=0.58.
- A solution of N-[(1,3-dimethylindole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (40 mg) in anisole (0.2 mL) and methylene chloride (2 mL) was treated with trifluoroacetic acid (1 mL), and the resultant reaction mixture was stirred for 30 minutes under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride to give a solid. The solid was triturated with ether to yield the title product as a brown powder (17 mg). TLC (methylene chloride/methanol/acetic acid, 20:1:1): Rf=0.40. MS for C21H26FN3O5: MH+=420; MH−=418.
- DMAP (95 mg, 0.78 mmol) and EDAC (200 mg, 1.04 mmol) were added as solid to a solution of 1-methylindole-2-carboxylic acid (130 mg, 0.74 mmol) and N-(valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (227 mg, 0.74 mmol) in methylene chloride (5 mL), and the resultant solution was stirred for 1 hour under a nitrogen atmosphere at 0° C. and then 4 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give a foam. The foam was triturated with ether to yield the title product as a slightly brown solid (224 mg, 65%). TLC (methanol/methylene chloride, 1:9): Rf=0.46.
- DMSO (0.06 mL, 0.9 mmol) was added to a solution of oxalyl chloride (0.14 mL, 2.0 M, 0.28 mmol, in 4 mL of methylene chloride) and the solution was then stirred for 10 minutes under a nitrogen atmosphere at −78° C. A solution of N-[(1-methylindole-2-carbonyl) valinyl]-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (85 mg, 0.18 mmol) in dry methylene chloride (1 mL), was added dropwise to the reaction mixture and the mixture was stirred for 15 minutes at −78° C. Triethylamine (0.15 mL, 1.08 mmol) was added dropwise to the reaction mixture and the mixture was stirred for 10 minutes at −78° C. and then was allowed to warm to room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous layer was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution and brine, dried over sodium sulfate, and concentrated to give a brown foam. The foam was triturated with ether to afford the title product as a light brown powder (64 mg). MS for C24H31ClFN3O5: (MH)−=494/496.
- A solution N-[(3-chloro-1-methylindole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (47 mg) in anisole (0.2 mL) and methylene chloride (2 mL) was treated with TFA (1 mL) and the resultant reaction mixture was stirred for 1 hour under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride, then triturated with ether to afford a brown powder (28 mg). The powder was subjected to flash chromatography on silica gel with methanol/methylene chloride containing a drop of acetic acid to give the title product (25 mg). TLC (methylene chloride/methanol, 9:1): Rf=0.29. MS for C20H23ClFN3O5: MH+=440.442; (M−H)−=438/440.
- DMAP (257 mg, 2.08 mmol) and EDAC (427 mg, 2.23 mmol) were added as solids to a solution of 5-fluoro-1-methylindole-2-carboxylic acid (359 mg, 86 mmol in 3 mL of DMF), and the resultant reaction mixture was stirred for 10 minutes under a nitrogen atmosphere at 0° C. N-(Valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (579 mg, 1.86 mmol) in DMF (3 mL) was added and the resulting solution was stirred for 1 hour under a nitrogen atmosphere at 0° C. and 4 hours at room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give the title product as a slightly yellow solid (0.827 mg). TLC (methanol/methylene chloride, 1.9): Rf=0.52.
- DMSO (0.60 mL, 8.5 mmol) was added to a methylene chloride solution of oxalyl chloride (2.1 mL, 2.0 M, 4.2 mmol, in 15 mL of methylene chloride), and the resultant reaction mixture was stirred for 10 minutes under a nitrogen atmosphere at −78° C. A methylene chloride solution of N-[(5-fluoro-1-methylindole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (820 mg, 1.7 mmol, in 8 mL of dry methylene chloride), and DMSO (0.4 mL) were added dropwise to the reaction mixture and stirred for 15 minutes at −78° C. TEA (1.4 mL, 10.2 mmol) was added to the mixture dropwise and the mixture was stirred for 10 minutes at −78° C., then was allowed to warm to room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous layer was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution and brine, dried over sodium sulfate, and concentrated to give the title product as a slightly yellow solid. Trituration with either afforded the title product as a white powder (705 mg, 85%). TLC (methanol/methylene chloride, 1:9): Rf=0.63. MS for C24H30ClF2N3O5: MH+=514/516; (M−H)−=512/514.
- A solution of N-[(3-chloro-5-fluoro-1-methylindole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (682 mg) in anisole (1 mL) and methylene chloride (10 mL) was treated with TFA (5 mL), and the resultant reaction mixture was stirred for 45 minutes under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride, then triturated with ether to afford the title product as a white powder (500 mg). MS for C20H22ClF2N3O5: MH+=458/460; (M−H)=456/458.
- DMAP (122 mg, 1.0 mmol) and EDAC (249 mg 1.3 mmol) were added as solids to a DMF solution of 1-(3′-phenylpropyl)indole-2-carboxylic acid (279 mg, 1.0 mmol, 2 mL in DMF), and the resultant mixture was stirred for 10 minutes under a nitrogen atmosphere at 0° C. A methylene chloride solution of N-(valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (306 mg, 1.0 mmol in 2 mL of methylene chloride) was added to the reaction mixture and the mixture was stirred for 1 hour under a nitrogen atmosphere at 0° C. and then 4 hours at room temperature. The yellow reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give a crude solid (0.827 g). The crude solid was subjected to flash chromatography on silica gel eluting with ethyl acetate/hexanes (1:2) afforded the title product as a slightly yellow solid (171 mg). TLC (ethyl acetate/hexanes 2:1): Rf=0.57.
- DMSO (0.11 mL, 1.5 mmol) was added to a methylene chloride solution of oxalyl chloride (0.22 mL, 2.0 M, 0.44 mmol in 3.5 mL in methylene chloride), and the resultant solution was stirred for 10 minutes under a nitrogen atmosphere at −78° C. A methylene chloride solution of N-[(1-(3′-phenylpropyl)indole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (169 mg, 0.3 mmol in 1.5 mL of dry methylene chloride) was added dropwise and the resulting solution stirred for 15 minutes at −78° C. Triethylamine (0.25 mL, 1.8 mmol) was added dropwise to the reaction mixture and the mixture was stirred for 10 minutes at −78° C., then was allowed to warm to room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous layer was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution and brine, dried over sodium sulfate, and concentrated to give a crude product. The crude product was triturated with hexanes to yield the title product as a slightly yellow powder (129 mg, 77%). TLC (ethyl acetate/hexanes 2:1): Rf=0.69.
- A solution of N-[(1-(3′-phenylpropyl)indole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (97 mg) in anisole (0.2 mL) and methylene chloride (2 mL) was treated with TFA (1 mL), and the resultant reaction mixture was stirred for 1 hour under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride, then triturated with ether to yield the title product as a slightly yellow powder (44 mg). TLC (methylene chloride/methanol/acetic acid, 20:1:1): Rf=0.4; MS (EI) for C32H40FN3O5: MH+=510; (M−H)−=508.
- DMAP (122 mg, 1.0 mmol) and EDAC (249 mg, 1.3 mmol) were added as solids to a DMF solution of 1-phenylindole-2-carboxylic acid (237 mg, 1.0 mmol in 2 mL DMF), and the resultant reaction mixture was stirred for 10 minutes under a nitrogen atmosphere at 0° C. A methylene chloride solution of N-(valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (306 mg, 1.0 mmol in 2 mL of methylene chloride) was added to the reaction mixture and the mixture was stirred for 1 hour under a nitrogen atmosphere at 0° C. and 4 hours at room temperature. The yellow reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give a colorless glass (0.827 g). The crude product was subjected to flash chromatography on silica gel with ethyl acetate/hexanes (1:2) to yield the title product as a white foam (400 mg, 78%). TLC (ethyl acetate/hexanes 1:1): Rf=0.27.
- DMSO (0.13 mL, 1.9 mmol) was added to a methylene chloride solution of oxalyl chloride (0.29 mL, 2.0 M, 0.58 mmol in 4 mL of methylene chloride), and the resultant solution was stirred for 10 minutes under a nitrogen atmosphere at 78° C. A methylene chloride solution of N-[(1-phenylindole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (200 mg, 0.38 mmol in 2 mL of dry methylene chloride) was added dropwise and resulting mixture stirred for 15 minutes at −78° C. Triethylamine (0.30 mL, 2.1 mmol) was added dropwise to the mixture, and the resultant mixture was stirred for 10 minutes at −78° C., then was allowed to warm to room temperature. The reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous layer was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution and brine, dried over sodium sulfate, and concentrated to give a crude product. The crude product was triturated to yield the title product as a slightly yellow powder (181 mg). TLC (ethyl acetate/hexanes 1:1): Rf=0.43.
- A solution of N-[(1-phenylindole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (154 mg) in anisole (0.2 mL) and methylene chloride (2 mL) was treated with TFA (1 mL), and the resultant reaction mixture was stirred for one hour under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride, then triturated with ether to yield the title product as a white powder (100 mg). TLC (methylene chloride/methanol/acetic acid, 20:1:1): Rf=0.38, MS for C25H26FN3O5: MH+=468; (M−H)−=466.
- DMAP (122 mg, 1.0 mmol) and EDAC (249 mg, 1.3 mmol) were added as solids to a DMF solution of (1-(2′-((1′-t-butoxy-1′-oxo)ethyl)indole-2-carboxylic acid (275 mg, 1.0 mmol in 2 mL of DMF), and the resultant solution was stirred for 10 minutes under a nitrogen atmosphere at 0° C. A methylene chloride solution of N-(valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (306 mg, 1.0 mmol in 2 mL of methylene chloride) was added to it, stirred for 1 hour under a nitrogen atmosphere at 0° C. and 4 hours at room temperature. The yellow reaction mixture was partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined ethyl acetate solutions were washed with 5% KHSO4 solution, saturated with sodium bicarbonate solution (2×) and brine, dried over sodium sulfate, and concentrated to give a colorless glass (0.827 g). The crude product was flash chromatographed on silica gel with ethyl acetate/hexane (1:1) to yield the title product as a white foam (461 mg). TLC (ethyl acetate/hexanes 30:70): Rf=0.11.
- A mixture of N-[(1-(2′-((1′-t-butoxy-1′-oxo)ethyl)indole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-fluoropentanic acid, t-butyl ester (230 mg, 0.41 mmol), N-methylmorpholine N-oxide (71 mg, 0.61 mmol) and powdered molecular sieves (205 mg) in dry methylene chloride (2 mL) was stirred for 1.5 hours under a nitrogen atmosphere at room temperature. Tetra(propyl)ammonium perruthenate (7 mg) was added and the resulting mixture was stirred for 2 hours under a nitrogen atmosphere at room temperature. The reaction mixture was filtered through silica gel with ethyl acetate as the eluent. The filtrate was concentrated and chromatographed on silica gel with ethyl acetate/hexanes (approximately 1:2 to approximately 1:1) to yield the title product as a yellow oil (100 mg). TLC (ethyl acetate/hexanes 30/70): Rf=0.27.
- A solution of N[(1-(2′-((1′-t-butoxy-1′-oxo)ethyl)indole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (100 mg) in anisole (0.2 mL) and methylene chloride (2 mL) was treated with TFA (1 mL). The resultant reaction mixture was stirred for 30 minutes under a nitrogen atmosphere at room temperature. The reaction mixture was concentrated and chased with methylene chloride, then triturated with ether to yield the title product as a light yellow powder (26 mg). TLC (methylene chloride/methanol, 8:1:1): Rf=0.32. MS for C21H24FN3O7: MH+=450; (M−H)−=448.
- To a solution of 1-methylindole-2-carboxylic acid (130 mg, 0.74 mmol) and N-(valinyl)-3-amino-4-hydroxy-5-fluoropentanoic acid, tert-butyl ester in methylene chloride (5 mL) and cooled to 0° C. Solid 4-dimethylaminopyridine (DMAP) (95 mg, 0.78 mmol) and 1-(3′-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC) (200 mg, 1.04 mmol) were added to the solution at 0° C. The reaction mixture was stirred at 0° C. for 1 h and allowed to warm slowly to room temperature. After 4 h the reaction was partitioned between ethyl acetate (EtOAc) and 5% KHSO4 aqueous solution. The organic layer was washed with 5% KHSO4 solution, saturated sodium bicarbonate solution, brine, dried (Na2SO4) and concentrated to a foam. The crude residue was triturated with diethyl ether and the solid filtered to afford the title compound as a light brown solid (224 mg, 65% yield). TLC (MeOH:CH2Cl2, 1:9): Rf=0.46.
- To a solution of N-[(1-methylindole-2-carbonyl)valinyl]-3-amino-4-hydroxy-5-fluoropentanoic acid, t-butyl ester (51 mg, 0.11 mmol) in DMSO (1 mL) was added Dess-Martin periodinane (110 mg). After 30 min at room temperature the reaction mixture was partitioned between ethyl acetate and water. The organic layer was washed with water and brine, dried and concentrated to a white solid. Trituration with diethyl ether and collection of the solid afforded the title compound as a white powder (25 mg, 49% yield). TLC (MeOH:CH2Cl2, 5:95): Rf=0.48.
- A solution of N-[(1-methylindole-2-carbonyl)valinyl]-3-amino-4-oxo-5-fluoropentanoic acid, t-butyl ester (19 mg, 0.041 mmol) and anisole (0.1 mL) in CH2Cl2 (1 mL) was treated with trifluoroacetic acid (0.5 mL) at room temperature. After 30 min the reaction mixture was concentrated and chased with methylene chloride. The crude residue was triturated with diethyl ether and the solid filtered to afford the title compound as a light brown solid (12 mg, 72% yield). TLC (AcOH:MeOH:CH2Cl2, 1:1:20): Rf=0.59. Mass Spectrum for C20H24FN3O5: [MH]+ 406, [MH]− 404.
- Following the methods set down in Examples 59-61, the following compounds were prepared:
- 57% yield; TLC (MeOH:CH2Cl2, 5:95): Rf=0.56. Mass Spectrum for C21H25F2N3O5 [MH]+ 438, [MH]− 436.
- 29% yield; TLC (MeOH:CH2Cl2, 1:9) Rf=0.33. Mass Spectrum for C23H28FN3O5: [MH]+ 446, [MNa]+ 468, [MH]− 444.
- 89% yield; TLC (MeOH:CH2Cl2, 9:1): Rf=0.14. Mass Spectrum for C20H23F2N3O5: [MH]+ 424, [MH]− 422.
- 50% yield; TLC (MeOH:CH2Cl2, 9:1): Rf=0.20. Mass Spectrum for C24H32FN3O5: [MH]+ 462, [MH]− 460.
- 38% yield; TLC (ethyl acetate: hexanes, 1:1): Rf=0.19. Mass Spectrum for C28H32FN3O5: [MH]+ 510, [MH]− 508.
- 78% yield; TLC (ethyl acetate: hexanes, 1:1): Rf=0.17. Mass Spectrum for C27H30FN3O6: [MH]+ 512, [MH]− 510.
- 1-Hydroxybenzotriazole hydrate (3.19 g, 20.8 mmol) and 1-(3′-dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDAC) (5.60 g, 29.2 mmol) were added to a stirred solution of N-carbobenzyloxycarbonyl valine (5.24 g, 20.8 mmol) in methylene chloride/dimethyl formamide (DMF) (60 ml/30 ml) at 01C under nitrogen. After 15 min, aspartic acid α-methyl, β-tert-butyl diester (5.00 g, 20.8 mmol) was added as a solid followed by neat 4-methylmorpholine (2.40 ml, 21.8 mmol). After stirring at 0° C. for 1 hour and at room temperature for 5 hours, the mixture was partitioned between ethyl acetate and 5% KHSO4 solution. The aqueous solution was back-extracted with ethyl acetate and the combined extracts were washed with saturated NaHCO3 and brine, dried over sodium sulfate, and concentrated to give a solid. Trituration with ether afforded of N-[carbobenzylaxycarbonyl valinyl]aspartic acid, α-methyl, β-tert-butyl diester as a white solid (8.36 g, 92%). TLC(CH2Cl2/MeOH, 95/5): Rf=0.48.
- A solution of the above product (4.00 g, 9.17 mmol) in 200 ml of methanol was stirred with palladium on activated carbon (0.45 g) under an atmosphere of hydrogen (1 atm) for 50 min. The reaction mixture was then filtered through a pad of Celite and the filter cake was washed with methanol and methylene chloride. The filtrates were combined and concentrated, and the residue was chased with methylene chloride to give N-[valinyl]aspartic acid, α-methyl, β-tert-butyl diester a white solid (2.75 g, 99%). TLC (CH2Cl2/MeOH, 95/5): Rf=0.10.
- To a turbid mixture of the above product (2.75 g, 9.11 mmol) and 1,3-dimethylindole-2-carboxylic acid (1.95 g, 10.3 mmol) in DMF (30 ml) was added 4-dimethylaminopyridine (DMAP) (1.26 g, 10.3 mmol) and 1-(3′-dimethylaminopropyl)-3-ethylcarpodiimide hydrochloride (EDAC) (2.37 g, 12.4 mmol). The reaction mixture was stirred under a nitrogen atmosphere at 0iC for 1 hour and at room temperature for 3 hours. The reaction mixture was then partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined extracts were washed with saturated NaHCO3 solution, water, and brine, dried over sodium sulfate, and concentrated to give a solid. The solid was triturated with ether to give N-[(1,3-dimethyl-indole-2-carbonyl)valinyl]aspartic acid, α-methyl, β-tert-butyl diester as a white powder (2.87 g, 67%). TLC (CH2Cl2/MeOH, 95/5): Rf=0.59.
- An aqueous solution of lithium hydroxide (1.0 M, 2.98 ml) was added dropwise to a suspension the above product (1.41 g, 2.98 mmol) in 1,4-dioxane (10 ml). After stirring at room temperature for 30 min, the resulting clear was acidified with 1 N hydrochloric acid solution and diluted with water. The resulting white precipitate was collected by suction filtration and washed successively with water and with a small amount of ether, affording N-[(1,3-dimethyl-indole-2-carbonyl)valinyl]aspartic acid, β-tert-butyl ester as a white powder (1.18 g, 86%). TLC(CH2Cl2/MeOH, 90/10): Rf=0.21.
- To a solution of the above product (1.03 g, 2.24 mmol) and 4-methylmorphorline (0.35 ml, 3.14 mmol) in THF (20 mL) at −10° C. under nitrogen was added dropwise isobutyl chloroformate (0.380 ml, 2.92 mmol). The reaction mixture was stirred under nitrogen at −10iC for 15 min and filtered. The filter cake was washed with dry THF and the filtrates were combined and cooled to 0iC. The filtrates were then treated with a freshly prepared ether solution of diazomethane (excess). After the mixture was stirred at 0° C. for 1 hour, a mixture of hydrobromic acid (48% wt. aq. solution) and acetic acid (6 ml, 1/1) was added dropwise till the gas evolution ceased. After another 5 min, the reaction mixture was concentrated and partitioned between ethyl acetate and water. The aqueous layer was back-extracted with ethyl acetate. The organic layers were combined, washed with water, saturated NaHCO3 solution, and brine, dried over sodium sulfate, and concentrated. The residue was triturated with ether to give the title compound as a white powder (1.00 g, 83%). TLC(CH2Cl2/MeOH, 95/5): Rf=0.88.
- To a mixture of 2,6-dichlorobenzoic acid (0.023 g, 0.12 mmol) and potassium fluoride (0.015 g, 0.25 mmol) at room temperature under nitrogen was added N-[(1,3-dimethyl-indole-2-carbonyl)valinyl]-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester (0.054 g, 0.10 mmol) in one portion. After stirring at room temperature for further 16 hrs, the mixture was partitioned between ethyl acetate and water. The organic layer was washed with water, saturated NaHCO3 solution, and brine, dried over sodium sulfate, and concentrated. Trituration with ether gave the title compound as a white powder (0.051 g, 79%). TLC(CH2Cl2/MeOH, 95/5): Rf=0.88.
- Trifluoroacetic acid (2 mL) was added to a stirred solution of N-(1,3-dimethyl-indole-2-carbonyl)-valinyl-3-amino-5-(2,6-dichlorobenzoyl)oxy-4-oxo-pentanoic acid, t-butyl ester (0.0340 g, 0.0526 mmol) in methylene chloride containing anisole (0.2 mL). The reaction mixture was stirred at room temperature under nitrogen for half an hour and concentrated. The residue was azeotroped with methylene chloride and triturated with ether to give the title compound as a white powder (0.0270 g, 87%). TLC(CH2Cl2/MeOH/AcOH, 20/1/1): Rf=0.43. MS for C28H29Cl2N3O7, [MH]+ 590/592, [MH]− 588/590.
- Following the methods set down in Examples 69-70, the following compounds were prepared:
- 24% yield; TLC(CH2Cl2/MeOH/AcOH, 20/1/1): Rf=0.31. MS for C33H36PN3O7, [MH]+ 618, [MH]− 616.
- 49% yield; TLC(CH2Cl2/MeOH, 90/10): Rf=0.29. MS for C31H32F3N5O6, [MH]+ 628, [MH]− 626.
- 68% yield; TLC(CH2Cl2/MeOH, 80/20): Rf=0.46. MS for C38H38N4O7, [MH]+ 663, [MH]− 661.
- 61% yield; TLC(CH2Cl2/MeOH/HOAc, 8/1/1): Rf=0.32. MS for C28H32N4O7, [MH]+ 537, [MH]− 535.
- 76% yield; TLC(CH2Cl2/MeOH, 90/10): Rf=0.12. MS for C23H32PN3O7, [MH]+ 494, [MH]− 492.
- HOBt (3.19 g, 20.8 mmol) and EDAC (5.60 g, 29.2 mmol) were added to a stirred solution of N-carbobenzyloxycarbonyl valine (5.24 g, 20.8 mmol) in methylene chloride/DMF (60 ml/30 ml) at 0° C. under nitrogen. After 15 min, aspartic acid α-methyl, β-tert-butyl diester (5.00 g, 20.8 mmol) was added as a solid followed neat 4-methylmorpholine (2.40 ml, 21.8 mmol). After stirring at 0° C. for 1 hour and at room temperature for 5 hours, the mixture was partitioned between ethyl acetate and 5% KHSO4 solution. The aqueous solution was back-extracted with ethyl acetate and the combined extracts were washed with saturated NaHCO3 and brine, dried over sodium sulfate, and concentrated to give a solid. Trituration with ether afforded N-[carbobenzyloxycarbonyl valinyl] aspartic acid, α-methyl, β-tert-butyl diester as a white solid (8.36 g, 92%). TLC (CH2Cl2/MeOH, 95/5): Rf=0.48.
- A solution of the above product (4.00 g, 9.17 mmol) in 200 ml of methanol was stirred with palladium on activated carbon (0.45 g) under an atmosphere of hydrogen (1 atm) for 50 min. The reaction mixture was then filtered through a pad of Celite and the filter cake was washed with methanol and methylene chloride. The filtrates were combined and concentrated, and the residue was chased with methylene chloride to give the title product, N-[valinyl] aspartic acid, α-methyl, β-tert-butyl diester as a white solid (2.75 g, 99%). TLC (CH2Cl2/MeOH, 95/5): Rf=0.10.
- To a stirred turbid mixture of N-[valinyl] aspartic acid, α-methyl, β-tert-butyl diester (2.75 g, 9.11 mmol) and 1,3-dimethylindole-2-carboxylic acid (1.95 g, 10.3 mmol) in DMF (30 ml) was added 4-dimethylaminopyridine (DMAP) (1.26 g, 10.3 mmol) and EDAC (2.37 g, 12.4 mmol). The reaction mixture was stirred under a nitrogen atmosphere at 0° C. for 1 hour and at room temperature for 3 hours. The reaction mixture was then partitioned between ethyl acetate and 5% KHSO4 solution and the aqueous solution was back-extracted with ethyl acetate. The combined extracts were washed with saturated NaHCO3 solution, water, and brine, dried over sodium sulfate, and concentrated to give a solid. The solid was triturated with ether to give N-[1,3-dimethyl-indole-2-cabonyl) valinyl] aspartic acid, α-methyl, β-tert-butyl diester as a white powder (2.87 g, 67%).
- An aqueous solution of LiOH (1.0 M, 2.98 mmol) was added dropwise to a suspension of the above product (1.41 g, 2.98 mmol) in 1,4-dioxane (10 ml). After stirring at room temperature for 30 min, the resulting clear solution was acidified with 1 N hydrochloric acid solution and diluted with water. The resulting white precipitate was collected by filtration and washed successively with water and with a small amount of ether, affording the title product, N-[1,3-dimethyl-indole-2-cabonyl) valinyl] aspartic acid, β-tert-butyl ester as a white solid (1.18 g, 86%). TLC (CH2Cl2/MeOH, 90/10): Rf=0.21.
- To a solution of N-[1,3-dimethyl-indole-2-cabonyl) valinyl] aspartic acid, α-tert-butyl ester (1.03 g, 2.24 mmol) and 4-methylmorpholine (0.35 ml, 3.14 mmol) in THF (20 ml) at −10° C. under nitrogen was added dropwise isobutyl chloroformate (0.380 ml, 2.92 mmol). The reaction mixture was stirred under nitrogen at −10° C. for 15 min and filtered. The filter cake was washed with dry THF and the filtrates were then treated with freshly prepared ether solution of diazomethane (excess). After the mixture was stirred at 0 C for 1 hour, a mixture of hydrobromic acid (48% wt. aq solution) and acetic acid (6 ml, 1/1) was added dropwise till the gas evolution ceased. After another 5 min, the reaction mixture was concentrated and partitioned between ethyl acetate and water. The aqueous layer was back-extracted with ethyl acetate. The organic layers were combined, washed with saturated NaHCO3 solution, and brine, dried over sodium sulfate, and concentrated. The residue was triturated with ether to give the title product, N-(1,3-dimethyl-indole-2-cabonyl)-valinyl-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester as a white powder (1.00 g, 83%). TLC (CH2Cl2/MeOH, 95/5): Rf=0.88.
- Potassium carbonate (15.5 mg, 0.112 mmol) was added to a solution of N-(1,3-dimethyl-indole-2-cabonyl)-valinyl-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester (60 mg, 0.112 mmol) and 3-(imidazol-2-yl)-naphth-2-ol (23.5 mg, 0.112 mmol) in DMF (1.5 ml). After stirring at room temperature for 3 hours, the reaction mixture was partitioned between ethyl acetate and water. The aqueous layer was back-extracted with ethyl acetate. The organic layers were combined, washed with saturated NaHCO3 solution, and brine, dried over sodium sulfate, and concentrated. The residue was triturated with ether to give the title product, N-(1,3-dimethyl-indole-2-cabonyl)-valinyl-3-amino-5-[3-(imidazol-2-yl)-naphthyl-2-oxy]-4-oxo-pentanoic acid, tert-butyl ester as a greenish solid (21.8 mg, 29%). TLC (CH2Cl2/MeOH, 90/10): Rf=0.49.
- Trifluoroacetic acid (1.0 ml) was added to a solution of N-(1,3-dimethylindole-2-cabonyl)-valinyl-3-amino-5-[3-(imidazol-2-yl)-naphthyl-2-oxy]-4-oxo-pentanoic acid, tert-butyl ester (21.8 mg, 0.032 mmol) in methylene chloride (2.0 ml) containing anisole (0.30 ml). The mixture was stirred under nitrogen for 1.5 hour and concentrated. The residue was re-dissolved in methylene chloride and concentrated and triturated with ether to give the titled product as a pale brown powder (17.4 mg, 89%). TLC (CH2Cl2/MeOH, 90/10): Rf=0.12. MS C34H35N5O6, [MH]+ =610, [MH]− =608.
- The titled product was prepared in the same way as described in Examples 77 and 78, starting from 1-methyl-3-isobutyl-indole-2-carboxylic acid and the titled product of Example 76.
- Potassium fluoride (21.6 mg, 0.37 mmol) was added to a solution of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)valinyl]-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester (86.1 mg, 0.149 mmol) and 2,3,5,6-tetrafluorophenol (27.0 mg, 0.163 mmol) in DMF (2.0 ml). After stirring at room temperature for 3 hours, the reaction mixture was partitioned between ethyl acetate and water. The aqueous layer was back-extracted with ethyl acetate. The organic layers were combined, washed with saturated NaHCO3 solution, and brine, dried over sodium sulfate, and concentrated. The residue was triturated with ether to give the titled product, N-(1-methyl-3-isobutyl-indole-2-cabonyl)-valinyl-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester as a white solid (43.8 mg, 44%). TLC (hexane/EtOAc, 50/50): Rf=0.50.
- Treatment of N-(1-methyl-3-isobutyl-indole-2-cabonyl)-valinyl-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (40 mg, 0.060 mmol) with TFA as described in Example 80 gave the titled product (23.5 mg, 0.039 mmol) as a white solid. MS C30H33F4N3O6, [M+H]+ =608, [M−H]− =606.
- The titled product (72 mg, 100%) was prepared as a white solid as described in Example 82 using the product of Example 81 (68.0 mg, 0.12 mmol), potassium fluoride (15.6 mg, 0.27 mmol), and 4-fluorophenol (13.4 mg, 0.12 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 50/50): Rf=0.48.
- Treatment of the product of Example 84 (72 mg, 0.118 mmol) with TFA as described in Example 80 gave the titled product (42.0 mg, 68%) as a pale yellow powder. MS C30H36FN3O6, [M+Na]+ =576, [M−H]− =552. TLC (hexane/EtOAc, 50/50): Rf=0.33.
- The titled product (76 mg, 100%) was prepared as a white solid as described in Example 82 using the product of Example 81 (72.0 mg, 0.124 mmol), potassium fluoride (16.5 mg, 0.284 mmol), and 2-fluorophenol (13.9 mg, 0.124 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 50/50): Rf=0.44.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)valinyl]-3-amino-4-oxo-5-(2-fluorophenyloxy)-pentanoic acid, tert-butyl ester (76 mg, 0.124 mmol) with TFA as described in Example 80 gave the titled product (25.0 mg, 36%) as a white powder. MS C30H36FN3O6, [M+Na]+ =554, [M−H]− =552. TLC (hexane/EtOAc, 50/50): Rf=0.21.
- The titled product was prepared in the same way as described in Examples 77 and 78 using leucine instead of valine. The titled product was obtained as a white powder with Rf=0.39 (hexane/EtOAc, 1/1).
- The titled product (63 mg, 100%, white solid) was prepared as described in Example 82 using N-[(1-methyl-3-isobutyl-indole-2-cabonyl)leucinyl]-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester (52.9 mg, 0.089 mmol), potassium fluoride (13.0 mg, 0.22 mmol), and 2,6-dichlorobenzoic acid (17.1 mg, 0.089 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 50/50): Rf=0.39.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)leucinyl]-3-amino-5-(2,6-dichlorobenzoyl) oxy-4-oxo pentanoic acid, tert-butyl ester (63 mg, 0.089 mmol) with TFA as described in Example 80 gave the titled product (34.5 mg, 60%) as a white powder. MS C32H37Cl2N3O7, [M+H]+ =646, [M−H]− =644. TLC (CH2Cl2/MeOH, 90/10): Rf=0.23.
- The titled product (47.6 mg, 72%, white solid) was prepared as described in Example 82 using the product of Example 88 (57.6 mg, 0.097 mmol), potassium fluoride (18.5 mg, 0.24 mmol), and 2,3,5,6-tetrafluorophenol (21.1 mg, 0.097 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 50/50): Rf=0.55.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)leucinyl]-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (47.6 mg, 0.070 mmol) with TFA as described in Example 80 gave the titled product (29.0 mg, 67%) as a white powder. MS C35H43F4N3O6, [M+Na]+ =644, [M−H]− =620. TLC (CH2Cl2/MeOH, 90/10): Rf=0.19.
- The titled product (30.0 mg, 93%, an oil) was prepared as described in Example 82 using the product of Example 88 (26.2 mg, 0.044 mmol), potassium fluoride (6.4 mg, 0.11 mmol), and diphenylphosphinic acid (9.7 mg, 0.044 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 50/50): Rf=0.11.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)leucinyl]-3-amino-5-(diphenylphosphoroxy)-4-oxo-pentanoic acid, tert-butyl ester (30.0 mg, 0.041 mmol) with TFA as described in Example 80 gave the titled product (13.7 mg, 50%) as a white powder. MS C37H44N3O7P, [M+Na]+ =696, [M−H]− =672. TLC (CH2Cl2/MeOH, 90/10): Rf=0.22.
- The titled product was prepared in the same way as described in Examples 77 and 78 using cyclohexylalanine instead of valine, giving the titled compound as a white powder. Rf=0.22 (hexane/EtOAc, 3/1).
- The titled product was prepared as described in Example 82 using N-[(1-methyl-3-isobutyl-indole-2-cabonyl)cyclohexylalaninyl]-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester (50.8 mg, 0.08 mmol), potassium fluoride (12.0 mg, 0.21 mmol), and 2,3,5,6-tetrafluorophenol (13.3 mg, 0.08 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 3/1): Rf=0.25.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)cyclohexylalaninyl]-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester with TFA as described in Example 80 gave the titled product (55.5 mg) as a white powder. MS C34H39F4N3O6, [M+Na]+ =684, [M−H]− =660. TLC (CH2Cl2/MeOH, 90/10): Rf=0.24.
- The titled product was prepared as described in Example 82 using the product of Example 95 (72 mg, 0.114 mmol), potassium fluoride (16.5 mg, 0.28 mmol), and 2,6-dichlorobenzoic acid (21.8 mg, 0.114 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 3/1): Rf=0.20.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)cyclohexylalaninyl]-3-amino-5-(2,6-dichlorobenzoyl) oxy-4-oxo-pentanoic acid, tert-butyl ester with TFA as described in Example 80 gave the titled product (54.2 mg) as a white powder. MS C35H41Cl2N3O7, [M+H]+ =686, [M−H]− =684. TLC (CH2Cl2/MeOH, 90/10): Rf=0.30.
- The titled product (55 mg, 82%) was prepared as described in Example 82 using the product of Example 95 (54.7 mg, 0.086 mmol), potassium fluoride (12.6 mg, 0.22 mmol), and 1-phenyl-3-(trifluoromethyl)pyrazol-5-ol (19.7 mg, 0.086 mmol) in DMF (2.0 ml). TLC (hexane/EtOAc, 2/1): Rf=0.29.
- Treatment of N-[(1-methyl-3-isobutyl-indole-2-cabonyl)cyclohexylalaninyl]-3-amino-4-oxo-5-[1-phenyl-3-(trifluoromethyl)pyrazol-5-yloxy]-pentanoic acid, tert-butyl ester (55 mg, 0.071 mmol) with TFA as described in Example 80 gave the titled product (24.6 mg, 48%) as a white powder. MS C38H44F4N5O6, [M+H]+ =746, [M−H]− =722. TLC (CH2Cl2/MeOH, 90/10): Rf=0.26.
- To a dry flask under nitrogen was added H-Asp(OtBu)—OH (12.07 g, 63.8 mmol) and dry CH3CN (210 ml). The cloudy solution was stirred and treated with neat BSTFA (34 ml, 127.5 mmol) via syringe. After stirring at room temperature for 30 min., a clear solution was obtained. To this solution was added Z-Val-O-Su (22.2 g, 63.8 mmol) as a solid in one portion. The resultant solution was stirred under nitrogen at room temperature for 48 hours. The solvents were removed in vacuo and the residue treated with 300 mL of water and extracted with EtOAc (2×). The combined organic layers were washed with 5% KHSO4, brine, dried over Na2SO4, filtered and concentrated to give the crude product (41.55 g, 98.34 mmol, >100%) as an oil. The resultant solid was triturated with ether to provide the titled product as a white solid (21.1 g, 78%). MS C21H30N2O7, [M=Na]+ =445, [M−H]− =421.
- The procedure of Example 78 was followed, but using N-[(carbobenzyloxycarbonyl)-valinyl] aspartic acid, β-tert-butyl ester to prepare the titled product as a white solid (6.39 g, 12.80 mmol, 85%). MS C22H31BrN2O6, [M+Na]+ =521/523, [M−H]− =497/499.
- To a solution of N-[(carbobenzyloxycarbonyl)valinyl]-3-amino-5-bromo-4-oxo-pentanoic acid, tert-butyl ester (3.36 g, 6.73 mmol) in acetone (20 ml) was added dry NaI (0.20 g, 1.35 mmol) and potassium (2,3,5,6-tetrafluoro)-phenoxide (1.37 g, 6.73 mmol) at room temperature and stirred for 1 hour. The reaction mixture was diluted with EtOAc, washed with brine, dried over Na2SO4, filtered and concentrated. The resultant solid was triturated with ether to provide the titled product as a white solid (3.53 g, 6.04 mmol, 89%). MS C28H32N2O7, [M+Na]+ =607, [M−H]− =583.
- A solution of N-[(carbobenzyloxycarbonyl)valinyl]-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (6.18 g, 10.57 mmol) in 1:1 MeOH/THF (100 ml) was cooled to 0° C. and NaBH4 (1.20 g, 31.72 mmol) was added and stirred for 2 hours. The reaction was diluted with saturated NH4Cl and extracted with CH2Cl2 (2×). The combined organic layers were washed with brine, dried over Na2SO4, filtered and concentrated to give the titled product as a white solid (6.14 g, 10.46 mmol, 98%). MS C28H34N2O7, [M+Na]+ =609, [M−H]− =585.
- To a solution of N-[(carbobenzyloxycarbonyl)valinyl]-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (6.12 g, 10.50 mmol) in MeOH (300 ml) was added 10% palladium on carbon (0.92 g) at room temperature. The reaction was stirred for 3 hours under hydrogen (1 atm), then filtered through a pad of celite. The filter cake was washed with MeOH. The filtrate was concentrated in vacuo to provide the titled product as a viscous yellow oil (4.69 g, 10.30 mmol, 98%). MS C20H20N2O5, [M+Na]+ =475, [M−H]− =451.
- The procedure of Example 77 was followed using N-(valinyl)-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (213.9 mg, 0.47 mmol), 1,3-dimethylindole-2-carboxylic acid (107 mg, 0.57 mmol), NMM (0.3 ml, 2.8 mmol), HOBt (151 mg, 0.99 mmol), and EDAC (198 mg, 1.04 mmol) in methylene chloride to prepare the titled product (210 mg, 71%).
- To a solution of N-[(1,3-dimethyl-indole-2-cabonyl)valinyl]-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (209 mg, 0.33 mmol) in CH2Cl2 (5.0 ml) was added Dess-Martin periodinane (181 mg, 0.43 mmol) and the solution stirred for 10 min. at room temperature. The reaction was quenched with Na2S2O4, diluted with EtOAc, washed with NaHCO3, and brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by chromatography (1:1 EtOAc/hexane) to give the titled product as a white solid (135 mg, 64%).
- The procedure of Example 80 was followed using N-[(1,3-dimethyl-indole-2-cabonyl)valinyl]-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester to prepare the titled product. MS C27H27F4N3O6, [M+Na]+ =588, [M−H]− =564.
- The procedure of Example 77 was followed using the product of Example 106 (197.0 mg, 0.44 mmol), 1-methylindole-2-carboxylic acid (152 mg, 0.87 mmol), NMM (0.047 ml, 0.44 mmol), HOBt (144 mg, 0.96 mmol), and EDAC (183 mg, 0.96 mmol) in methylene chloride to prepare the titled product (156 mg, 58%).
- To a solution of N-[(1-methyl-indole-2-cabonyl)valinyl]-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (141 mg, 0.23 mmol) in CH2Cl2 (5.0 ml) was added Dess-Martin periodinane (128 mg, 0.3 mmol) and the solution stirred for 10 min. at room temperature. The reaction was quenched with Na2S2O4, diluted with EtOAc, washed with NaHCO3, and brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by chromatography (1:1 EtOAc/hexane) to give the titled product as a white solid (129 mg, 92%).
- Treatment of N-[(1-methyl-indole-2-cabonyl)valinyl]-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (120 mg, 0.20 mmol) with TFA as described in Example 80 gave the titled product (104 mg, 95%) as a white powder. MS C26H25F4N3O6, [M+Na]+ =574, [M−H]− =550.
- The procedure of Example 77 was followed using the product of Example 106 (212.5 mg, 0.47 mmol), 5-fluoro-1-methylindole-2-carboxylic acid (181 mg, 0.94 mmol), NMM (0.05 ml, 0.44 mmol), HOBt (151 mg, 1.03 mmol), and EDAC (196 mg, 1.03 mmol) in methylene chloride to prepare the title product.
- To a solution of N-[(5-fluoro-1-methyl-indole-2-cabonyl)valinyl]-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (112.6 mg, 0.18 mmol) in CH2Cl2 (5.0 ml) was added Dess-Martin periodinane (95 mg, 0.22 mmol) and the solution stirred for 10 min. at room temperature. The reaction was quenched with Na2S2O4, diluted with EtOAc, washed with NaHCO3, and brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by chromatography (1:1 EtOAc/hexane) to give the titled product as a white solid (which was directly taken to the next step in Example 115).
- Treatment of the product from Example 114 with TFA as described in Example 80 gave the titled product (43 mg, 42%) as a white powder. MS C26H24F5N3O6, [M+Na]+ =592, [M−H]− =568.
- The procedure of Example 77 was followed using the product of Example 106 (400.0 mg, 0.90 mmol), 1-[(tert-butyloxycarbonyl)methyl]indole-2-carboxylic acid (200 mg, 0.73 mmol), NMM (0.1 ml), HOBt (246 mg, 1.63 mmol), and EDAC (304 mg, 1.60 mmol) in methylene chloride to prepare the titled product (341 mg, 68%).
- To a solution of N-{[1-(tert-butyl)oxycarbonylmethyl-indole-2-cabonyl]valinyl}-3-amino-4-hydroxy-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester (290 mg, 0.42 mmol) in CH2Cl2 (5.0 ml) was added Dess-Martin periodinane (204 mg, 0.48 mmol) and the solution stirred for 10 min. at room temperature. The reaction was quenched with Na2S2O4, diluted with EtOAc, washed with NaHCO3, and brine, dried over Na2SO4, filtered and concentrated in vacuo. The crude product was purified by chromatography (1:1 EtOAc/hexane) to give the titled product as a white solid (235 mg, 82%).
- Treatment of N-{[1-(tert-butyl)oxycarbonylmethyl-indole-2-cabonyl]valinyl}-3-amino-4-oxo-5-(2,3,5,6-tetrafluorophenyloxy)-pentanoic acid, tert-butyl ester with TFA as described in Example 80 gave the titled product as a white powder. MS C27H25F4N3O8, [M+H]+ =596, [M−H]− =594.
- A. IC50 Values
- The representative compounds listed in Table 1 were assayed by the procedures set forth in Example 1A.
TABLE 1 50% INHIBITORY CONCENTRATIONS IC50 FOR FORMULA A mICE CPP32 Example R1 A IC50 (μM) IC50 (μM) 4 CH3 Ala 0.177 >10 7 CH3 Pro 11.7 >50 10 CH3 Val 0.531 2.48 13 CH3 Leu 5.52 5.62 16 CH3 Phe 3.34 49.8 21 CH3 Gly 34.7 >50 24 CH2Ph Ala 0.393 >50 27 (CH2)2CH═CH2 Val 0.313 1.45 30 CH2CO2H Ala 1.63 >50 33 (CH2)2CO2H Ala 0.198 >50 reference — — 0.064 47.0 - B. Ki Values
-
- The compounds of Examples 43, 46, 49, 52, 55, 58 and 61-67 were found to have Ki values (mICE) of less than 5 μM, while compounds 52, 55, 58, 61-64 and 66-67 had Ki values of less than 1 μM.
-
- The compounds of Examples 43 and 70-75 had Ki values (mICE) of 8 μM or less, while compounds 71, 72 and 74 had Ki values of less than 1 μM.
- In addition, compounds of Examples 80, 83, 87, 90, 92, 94, 97, 99, 101, 109, 112, 115 and 118 were found to have an IC50 (mICE) of less than 1 μM.
- Although the invention has been described with reference to the examples provided above, it should be understood that various modifications can be made without departing from the spirit of the invention. Accordingly, the invention is limited only by the claims.
Claims (15)
1. A compound of the following formula:
wherein:
n is 1 or 2:
R1 is alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl or (CH2)mCO2R4, wherein m=1-4, and R4 is as defined below;
R2 is a hydrogen atom, chloro, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl or (CH2)pCO2R5, wherein p=0-4, and R5 is as defined below;
R3 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
R4 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
R5 is a hydrogen atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenylalkyl, or (substituted)phenylalkyl;
A is a natural or unnatural amino acid;
B is a hydrogen atom, a deuterium atom, alkyl, cycloalkyl, (cycloalkyl)alkyl, phenyl, (substituted)phenyl, phenylalkyl, (substituted)phenylalkyl, heteroaryl, (heteroaryl)alkyl, halomethyl, CH2ZR6, CH2OCO(aryl), or CH2OCO(heteroaryl), or CH2OPO(R7)R8, where Z is an oxygen, OC(═O) or a sulfur atom;
R6 is phenyl, substituted phenyl, phenylalkyl, (substituted phenyl)alkyl, heteroaryl or (heteroaryl)alkyl;
R7 and R8 are independently selected from a group consisting of alkyl, cycloalkyl, phenyl, substituted phenyl, phenylalkyl, (substituted phenyl)alkyl and (cycloalkyl)alkyl; and
X and Y are independently selected from the group consisting of a hydrogen atom, halo, trihalomethyl, amino, protected amino, an amino salt, mono-substituted amino, di-substituted amino, carboxy, protected carboxy, a carboxylate salt, hydroxy, protected hydroxy, a salt of a hydroxy group, lower alkoxy, lower alkylthio, alkyl, substituted alkyl, cycloalkyl, substituted cycloalkyl, (cycloalkyl)alkyl, substituted (cycloalkyl)alkyl, phenyl, substituted phenyl, phenylalkyl, and (substituted phenyl)alkyl;
or a pharmaceutically acceptable salt or stereoisomer thereof.
2. The compound of claim 1 wherein B is CH2ZR6.
3. The compound of claim 2 wherein B is CH2OC.(═O)R6.
4. The compound of claim 3 wherein R6 is substituted phenyl.
5. The compound of claim 3 where R6 is heteroaryl.
6. The compound of claim 2 wherein B is CH2OR6.
7. The compound of claim 6 wherein R6 is substituted phenyl.
8. The compound of claim 7 wherein R6 is tetra(halo)phenyl.
9. The compound of claim 8 wherein R6 is optionally substituted naphthyl.
10. The compound of claim 9 wherein R6 is naphthyl substituted with one or more heteroaryl groups.
11. A pharmaceutical composition comprising a compound of claim 1 and a pharmaceutically-acceptable carrier thereof.
12. A method for treating an autoimmune disease comprising administering an effective amount of a pharmaceutical composition of claim 11 to a patient in need of such treatment.
13. A method of treating an inflammatory disease comprising administering an effective amount of the pharmaceutical composition of claim 11 to a patient in need of such treatment.
14 A method of treating a neurodegenerative disease comprising administering an effective amount of the pharmaceutical composition of claim 11 to a patient in need of such treatment.
15. A method of preventing ischemic injury to a patient suffering from a disease associated with ischemic injury comprising administering an effective amount of the pharmaceutical composition of claim 11 to a patient in need of such treatment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/260,732 US20030119748A1 (en) | 1996-12-16 | 2002-09-30 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ice/ced-3 family of cysteine proteases |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/767,175 US5869519A (en) | 1996-12-16 | 1996-12-16 | C-terminal modified (n-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US08/928,989 US5877197A (en) | 1996-12-16 | 1997-09-12 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US26081699A | 1999-03-02 | 1999-03-02 | |
US09/345,724 US6184244B1 (en) | 1996-12-16 | 1999-06-30 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US09/747,317 US6489353B2 (en) | 1996-12-16 | 2000-12-20 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US10/260,732 US20030119748A1 (en) | 1996-12-16 | 2002-09-30 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ice/ced-3 family of cysteine proteases |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/747,317 Continuation US6489353B2 (en) | 1996-12-16 | 2000-12-20 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030119748A1 true US20030119748A1 (en) | 2003-06-26 |
Family
ID=26948195
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/345,724 Expired - Fee Related US6184244B1 (en) | 1996-12-16 | 1999-06-30 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US09/747,317 Expired - Lifetime US6489353B2 (en) | 1996-12-16 | 2000-12-20 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US10/260,732 Abandoned US20030119748A1 (en) | 1996-12-16 | 2002-09-30 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ice/ced-3 family of cysteine proteases |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/345,724 Expired - Fee Related US6184244B1 (en) | 1996-12-16 | 1999-06-30 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US09/747,317 Expired - Lifetime US6489353B2 (en) | 1996-12-16 | 2000-12-20 | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
Country Status (12)
Country | Link |
---|---|
US (3) | US6184244B1 (en) |
EP (1) | EP1159291A1 (en) |
JP (1) | JP2003503421A (en) |
KR (1) | KR20020004956A (en) |
CN (1) | CN1345332A (en) |
AU (1) | AU3721800A (en) |
BR (1) | BR0008584A (en) |
CA (1) | CA2365341A1 (en) |
HK (1) | HK1042502A1 (en) |
MX (1) | MXPA01008919A (en) |
NZ (1) | NZ513885A (en) |
WO (1) | WO2001000658A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060020016A1 (en) * | 2004-03-12 | 2006-01-26 | Tanoury Gerald J | Processes and intermediates |
US9994613B2 (en) | 2000-05-19 | 2018-06-12 | Vertex Pharmaceuticals Incorporated | Prodrug of an ICE inhibitor |
Families Citing this family (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6204261B1 (en) * | 1995-12-20 | 2001-03-20 | Vertex Pharmaceuticals Incorporated | Inhibitors of interleukin-1β Converting enzyme inhibitors |
US6610683B2 (en) * | 1996-09-12 | 2003-08-26 | Idun Pharmaceuticals, Inc. | Treatment of infectious disease using interleukin-1β-converting enzyme (ICE)/CED-3 family inhibitors |
US6184244B1 (en) * | 1996-12-16 | 2001-02-06 | Idun Pharmaceuticals, Inc. | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US6184210B1 (en) * | 1997-10-10 | 2001-02-06 | Cytovia, Inc. | Dipeptide apoptosis inhibitors and the use thereof |
CA2316172C (en) * | 1997-12-24 | 2010-02-02 | Aventis Pharma Deutschland Gmbh | Indole derivatives as inhibitors of factor xa |
PT1064298E (en) * | 1998-03-19 | 2009-01-02 | Vertex Pharma | Inhibitors of caspases |
US7053056B2 (en) * | 1998-07-02 | 2006-05-30 | Idun Pharmaceuticals, Inc. | C-terminal modified oxamyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
CN1176941C (en) * | 1999-04-09 | 2004-11-24 | 西托维亚公司 | Caspase inhibitors and their applications |
MXPA02002038A (en) | 1999-08-27 | 2002-10-31 | Cytovia Inc | SUBSTITUTED agr;HYDROXY ACID CASPASE INHIBITORS AND THE USE THEREOF. |
US6693134B2 (en) | 2001-05-29 | 2004-02-17 | Chemokine Therapeutics Corporation | Bicyclic aromatic chemokine receptor ligands |
US7410956B2 (en) * | 2002-02-11 | 2008-08-12 | Vertex Pharmaceuticals Incorporated | Caspase inhibitor prodrugs |
WO2003088917A2 (en) * | 2002-04-19 | 2003-10-30 | Vertex Pharmaceuticals Incorporated | Regulation of tnf-alpha |
US20060205771A1 (en) * | 2002-09-25 | 2006-09-14 | Mark Noble | Caspase inhibitors as anticancer agents |
PE20050159A1 (en) * | 2003-05-27 | 2005-04-19 | Vertex Pharma | DERIVATIVES OF 3- [2- (3-AMINO-2-OXO-2H-PYRIDIN-1-IL) -ACETILAMINO] -4-OXO-PENTANOICO AS CASPASE INHIBITORS |
WO2004108671A1 (en) * | 2003-06-06 | 2004-12-16 | Suven Life Sciences Limited | Substituted indoles with serotonin receptor affinity, process for their preparation and pharmaceutical compositions containing them |
US20050209162A1 (en) * | 2003-11-10 | 2005-09-22 | Amit Roy | Methods for monitoring IL-18 |
CA2566362C (en) | 2004-05-15 | 2013-09-10 | Vertex Pharmaceuticals Incorporated | Treating seizures using ice inhibitors |
CA2567080A1 (en) | 2004-05-27 | 2005-12-15 | Vertex Pharmaceuticals Incorporated | Ice inhibitors for the treatment of autoinflammatory diseases |
MX2007006258A (en) | 2004-11-24 | 2007-07-20 | Vertex Pharma | 3-[2-(3-acylamino-2-oxo-2h-pyridin-1-yl)-acetylamino]-4-oxo-pent anoic acid derivatives and their use as caspase inhibitors. |
JP2009502922A (en) * | 2005-07-28 | 2009-01-29 | バーテックス ファーマシューティカルズ インコーポレイテッド | Caspase inhibitor prodrug |
EP2635906A4 (en) | 2010-11-05 | 2014-04-02 | Univ Brandeis | ICE-INHIBITING COMPOUNDS AND ITS USES |
US9956260B1 (en) | 2011-07-22 | 2018-05-01 | The J. David Gladstone Institutes | Treatment of HIV-1 infection and AIDS |
TWI764977B (en) * | 2017-01-23 | 2022-05-21 | 大陸商正大天晴藥業集團股份有限公司 | Bicyclic compound as CASPASE inhibitor, pharmaceutical composition containing same and use thereof |
EP3766873A4 (en) * | 2018-03-13 | 2021-12-15 | Chia Tai Tianqing Pharmaceutical Group Co., Ltd. | Method for preparing caspase inhibitor |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5869519A (en) * | 1996-12-16 | 1999-02-09 | Idun Pharmaceuticals, Inc. | C-terminal modified (n-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US5877197A (en) * | 1996-12-16 | 1999-03-02 | Karanewsky; Donald S. | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US6184244B1 (en) * | 1996-12-16 | 2001-02-06 | Idun Pharmaceuticals, Inc. | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US20020128306A1 (en) * | 1996-09-12 | 2002-09-12 | Idun Pharmaceuticals, Inc. | Treatment of infectious disease using interleukin-1beta-converting enzyme (ice)/ced-3 family inhibitors |
US6528506B2 (en) * | 1996-09-12 | 2003-03-04 | Idun Pharmaceuticals, Inc. | Inhibition of apoptosis using interleukin-1β-converting enzyme (ICE)/CED-3 family inhibitors |
US6531467B2 (en) * | 1996-09-12 | 2003-03-11 | Idun Pharmaceuticals, Inc. | Inhibition of inflammation using interleukin-1β-converting enzyme (ICE)/CED-3 family inhibitors |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4965296A (en) | 1989-03-15 | 1990-10-23 | No Fire Engineering, Inc. | Intumescent fire-retardant and electrically-conductive coating material |
AU6056790A (en) | 1989-07-26 | 1991-03-11 | Optec Co., Ltd. | Light-emitting display device and light-emitting display system |
US5187411A (en) | 1989-09-01 | 1993-02-16 | Systems And Service International, Inc. | Discharge lamp life and lamp lumen life-extender module, circuitry, and methodology |
AU7775991A (en) | 1990-04-04 | 1991-10-30 | Immunex Corporation | Interleukin 1beta protease |
DE69226820T2 (en) | 1991-06-21 | 1999-05-12 | Merck & Co., Inc., Rahway, N.J. | Peptidyl derivatives as inhibitors of interleukin-1B converting enzymes |
DE4121608A1 (en) | 1991-06-29 | 1993-01-07 | Cts Consulting Gmbh | METHOD AND DEVICE FOR DEFROSTING ROADS |
US6348570B1 (en) | 1991-08-16 | 2002-02-19 | Merck & Co., Inc. | Chromophore containing compounds and their use in determining interleukin-1β convertase activity |
EP0533226A3 (en) | 1991-08-16 | 1993-08-18 | Merck & Co. Inc. | Novel chromophore containing compounds |
JP2759895B2 (en) | 1991-08-30 | 1998-05-28 | サノフィ | DNA sequence isolate encoding interleukin 1β protease |
GB9123326D0 (en) * | 1991-11-04 | 1991-12-18 | Sandoz Ltd | Improvements in or relating to organic compounds |
WO1993014777A1 (en) | 1992-01-31 | 1993-08-05 | Merck & Co., Inc. | PEPTIDYL DERIVATIVES AS INHIBITORS OF INTERLEUKIN-1β CONVERTING ENZYME |
US5246113A (en) | 1992-02-11 | 1993-09-21 | Riverwood International Corporation | Carrier for stacked articles |
US5663060A (en) | 1992-04-07 | 1997-09-02 | Emory University | Hybrid human/animal factor VIII |
ES2117133T3 (en) * | 1992-07-31 | 1998-08-01 | Pfizer | PEPTIDILIC DERIVATIVES OF ACID 4-AMINO-2,2-DIFLUORO-3-OXO-1,6-HEXANODIOICO AS ANTI-INFLAMMATORY AGENTS. |
US5514694A (en) * | 1992-09-21 | 1996-05-07 | Georgia Tech Research Corp | Peptidyl ketoamides |
EP0618223A3 (en) | 1993-03-08 | 1996-06-12 | Sandoz Ltd | Peptides inhibit the release of interleukin 1-beta useful as anti-inflammatory agents. |
TW494094B (en) | 1993-04-29 | 2002-07-11 | Vertex Pharma | Peptide analogs as irreversible interleukin-1β protease inhibitors and pharmaceutical compositions comprising the same |
US5462939A (en) | 1993-05-07 | 1995-10-31 | Sterling Winthrop Inc. | Peptidic ketones as interleukin-1β-converting enzyme inhibitors |
US5866545A (en) | 1993-08-13 | 1999-02-02 | Merck & Co., Inc. | Substituted ketone derivatives as inhibitors of interleukin-1β converting enzyme |
US5486623A (en) * | 1993-12-08 | 1996-01-23 | Prototek, Inc. | Cysteine protease inhibitors containing heterocyclic leaving groups |
US5716929A (en) | 1994-06-17 | 1998-02-10 | Vertex Pharmaceuticals, Inc. | Inhibitors of interleukin-1β converting enzyme |
US5498616A (en) * | 1994-11-04 | 1996-03-12 | Cephalon, Inc. | Cysteine protease and serine protease inhibitors |
US5556879A (en) | 1995-03-01 | 1996-09-17 | Rhone Merieux, Inc. | Aqueous spectinomycin borate solutions |
US5843904A (en) * | 1995-12-20 | 1998-12-01 | Vertex Pharmaceuticals, Inc. | Inhibitors of interleukin-1βconverting enzyme |
EP0929311B8 (en) * | 1996-09-12 | 2006-02-01 | Idun Pharmaceuticals, Inc. | INHIBITION OF APOPTOSIS USING INTERLEUKIN-1 beta-CONVERTING ENZYME (ICE)/CED-3 FAMILY INHIBITORS |
US6432628B1 (en) | 1997-08-26 | 2002-08-13 | Thomas Jefferson University | Caspase-14, an apoptotic protease, nucleic acids encoding and methods of use |
AU750170B2 (en) | 1997-10-30 | 2002-07-11 | Human Genome Sciences, Inc. | Caspase-14 polypeptides |
AU763721B2 (en) | 1998-07-17 | 2003-07-31 | Vlaams Interuniversitair Instituut Voor Biotechnologie Vzw | New caspase homologue |
-
1999
- 1999-06-30 US US09/345,724 patent/US6184244B1/en not_active Expired - Fee Related
-
2000
- 2000-03-02 NZ NZ513885A patent/NZ513885A/en not_active Application Discontinuation
- 2000-03-02 MX MXPA01008919A patent/MXPA01008919A/en unknown
- 2000-03-02 EP EP00916054A patent/EP1159291A1/en not_active Withdrawn
- 2000-03-02 CN CN00805717A patent/CN1345332A/en active Pending
- 2000-03-02 JP JP2001507064A patent/JP2003503421A/en active Pending
- 2000-03-02 CA CA002365341A patent/CA2365341A1/en not_active Abandoned
- 2000-03-02 WO PCT/US2000/005648 patent/WO2001000658A1/en not_active Application Discontinuation
- 2000-03-02 BR BR0008584-7A patent/BR0008584A/en not_active Application Discontinuation
- 2000-03-02 KR KR1020017011110A patent/KR20020004956A/en not_active Withdrawn
- 2000-03-03 AU AU37218/00A patent/AU3721800A/en not_active Abandoned
- 2000-12-20 US US09/747,317 patent/US6489353B2/en not_active Expired - Lifetime
-
2002
- 2002-06-05 HK HK02104248.0A patent/HK1042502A1/en unknown
- 2002-09-30 US US10/260,732 patent/US20030119748A1/en not_active Abandoned
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020128306A1 (en) * | 1996-09-12 | 2002-09-12 | Idun Pharmaceuticals, Inc. | Treatment of infectious disease using interleukin-1beta-converting enzyme (ice)/ced-3 family inhibitors |
US6528506B2 (en) * | 1996-09-12 | 2003-03-04 | Idun Pharmaceuticals, Inc. | Inhibition of apoptosis using interleukin-1β-converting enzyme (ICE)/CED-3 family inhibitors |
US6531467B2 (en) * | 1996-09-12 | 2003-03-11 | Idun Pharmaceuticals, Inc. | Inhibition of inflammation using interleukin-1β-converting enzyme (ICE)/CED-3 family inhibitors |
US5869519A (en) * | 1996-12-16 | 1999-02-09 | Idun Pharmaceuticals, Inc. | C-terminal modified (n-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US5877197A (en) * | 1996-12-16 | 1999-03-02 | Karanewsky; Donald S. | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US6184244B1 (en) * | 1996-12-16 | 2001-02-06 | Idun Pharmaceuticals, Inc. | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
US6489353B2 (en) * | 1996-12-16 | 2002-12-03 | Idun Pharmaceuticals, Inc. | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9994613B2 (en) | 2000-05-19 | 2018-06-12 | Vertex Pharmaceuticals Incorporated | Prodrug of an ICE inhibitor |
US20060020016A1 (en) * | 2004-03-12 | 2006-01-26 | Tanoury Gerald J | Processes and intermediates |
US7381827B2 (en) | 2004-03-12 | 2008-06-03 | Vertex Pharmaceuticals Incorporated | Processes and intermediates |
US20090048429A1 (en) * | 2004-03-12 | 2009-02-19 | Tanoury Gerald J | Processes and intermediates |
US7834200B2 (en) | 2004-03-12 | 2010-11-16 | Vertex Pharmaceuticals Incorporated | Processes and intermediates |
US20110071298A1 (en) * | 2004-03-12 | 2011-03-24 | Vertex Pharmaceuticals Incorporated | Processes and Intermediates |
US8293929B2 (en) | 2004-03-12 | 2012-10-23 | Vertex Pharmaceuticals Incorporated | Processes and intermediates |
Also Published As
Publication number | Publication date |
---|---|
US6489353B2 (en) | 2002-12-03 |
CA2365341A1 (en) | 2001-01-04 |
US20020025935A1 (en) | 2002-02-28 |
KR20020004956A (en) | 2002-01-16 |
AU3721800A (en) | 2001-01-31 |
CN1345332A (en) | 2002-04-17 |
MXPA01008919A (en) | 2002-08-30 |
HK1042502A1 (en) | 2002-08-16 |
BR0008584A (en) | 2002-06-11 |
WO2001000658A1 (en) | 2001-01-04 |
US6184244B1 (en) | 2001-02-06 |
EP1159291A1 (en) | 2001-12-05 |
JP2003503421A (en) | 2003-01-28 |
NZ513885A (en) | 2001-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6184244B1 (en) | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases | |
US5869519A (en) | C-terminal modified (n-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases | |
US5877197A (en) | C-terminal modified (N-substituted)-2-indolyl dipeptides as inhibitors of the ICE/ced-3 family of cysteine proteases | |
US6187771B1 (en) | Tricyclic compounds for the inhibition of the ICE/ced-3 protease family of enzymes | |
CA2265853C (en) | Inhibition of apoptosis using interleukin-1.beta.-converting enzyme (ice)/ced-3 family inhibitors | |
US6528506B2 (en) | Inhibition of apoptosis using interleukin-1β-converting enzyme (ICE)/CED-3 family inhibitors | |
US20020091089A1 (en) | (Substituted)acyl dipeptidyl inhibitors of the ICE/ced-3 family of cysteine proteases | |
EP0920444B1 (en) | C-TERMINAL MODIFIED (N-SUBSTITUTED)-2-INDOLYL DIPEPTIDES AS INHIBITORS OF THE ICE/ced-3 FAMILY OF CYSTEINE PROTEASES | |
US20030232788A1 (en) | (Substituted)acyl dipeptidyl inhibitors of the ICE/ced-3 family of cysteine proteases | |
EP0874850B1 (en) | Novel tricyclic compounds for the inhibition of the ice/ced-3 protease family of enzymes | |
US6525024B1 (en) | Inhibitors of the ICE/ced-3 family of cysteine proteases | |
EP1261583B1 (en) | INHIBITORS OF THE ICE/Ced-3 FAMILY OF CYSTEINE PROTEASES | |
AU775224B2 (en) | Inhibition of apoptosis using interleukin-1beta converting enzyme (ICE)/CED-3 family inhibitors | |
EP1647279A2 (en) | Inhibition of apoptosis using interleukin-1beta-converting enzyme (ICE)/CED-3 family inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |