US20030116637A1 - Heat pump defrost control - Google Patents
Heat pump defrost control Download PDFInfo
- Publication number
- US20030116637A1 US20030116637A1 US10/295,972 US29597202A US2003116637A1 US 20030116637 A1 US20030116637 A1 US 20030116637A1 US 29597202 A US29597202 A US 29597202A US 2003116637 A1 US2003116637 A1 US 2003116637A1
- Authority
- US
- United States
- Prior art keywords
- exterior
- fan
- reversing valve
- fan motor
- activating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000010438 heat treatment Methods 0.000 claims abstract description 20
- 230000003213 activating effect Effects 0.000 claims abstract description 14
- 238000001816 cooling Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims abstract description 12
- 238000010257 thawing Methods 0.000 claims abstract description 5
- 230000000977 initiatory effect Effects 0.000 claims abstract 2
- 239000003570 air Substances 0.000 description 27
- 239000003507 refrigerant Substances 0.000 description 8
- 238000004378 air conditioning Methods 0.000 description 3
- 230000005494 condensation Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 230000008014 freezing Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000012080 ambient air Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000009423 ventilation Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B47/00—Arrangements for preventing or removing deposits or corrosion, not provided for in another subclass
- F25B47/02—Defrosting cycles
- F25B47/022—Defrosting cycles hot gas defrosting
- F25B47/025—Defrosting cycles hot gas defrosting by reversing the cycle
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/41—Defrosting; Preventing freezing
- F24F11/42—Defrosting; Preventing freezing of outdoor units
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B2400/00—General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
- F25B2400/01—Heaters
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F25—REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
- F25B—REFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
- F25B30/00—Heat pumps
- F25B30/02—Heat pumps of the compression type
Definitions
- the present invention relates generally to heating, ventilation, and air conditioning control. More specifically, the present invention relates to the control of the defrost cycle of a heat pump.
- the formation of ice on the exterior coil reduces the effectiveness of the coil as a heat transfer unit.
- the exterior coil is designed to transfer heat from the ambient exterior air to the refrigerant inside the coil. To achieve this function an exterior fan draws ambient exterior air across the metallic coil. When ice forms on the coil the fan can no longer draw air across the coil and the heat transfer process is interrupted.
- the primary method is to switch the system into the air conditioning mode so that the heat from the interior may be used to defrost the exterior coil.
- the system then operates as a typical air conditioner, transferring heat from the interior to the exterior coil via a compressor and expansion valve system.
- the refrigerant in the exterior coil becomes very warm and removes the ice on the exterior coil, while the refrigerant in the interior coil becomes very cool.
- Interior air that is then passed over the cool interior coil blows out into the heated space. This is known in the industry as “cold blow.”
- auxiliary heating elements are activated to heat the cool air that is blown over the cool interior coil and into the heated area.
- auxiliary heating elements to prevent “cold blow,” while also not overheating the air to create a “hot blow” effect.
- the auxiliary heat is provided by several discrete elements that are activated as needed to maintain a comfortable temperature, while in another system the discrete elements are activated based on the need in the prior defrost cycle and then adjusted as needed.
- Such systems require multiple discrete heating elements and a more complex control circuit than standard heat pump systems. Such systems also tend to take a few minutes to heat up causing an initial “cold blow” followed by a warm or comfortable air supply.
- a heat pump system having an exterior coil, an exterior fan and fan motor, an interior blower, a reversing valve, and an auxiliary heater element.
- a method for defrosting the exterior coil may include the steps of: activating the auxiliary heater element for a period of time; and after the period of time has passed, activating the exterior fan and fan motor and shifting the reversing valve to a cooling mode.
- Another feature of the present invention is that the delay between activating the auxiliary heater element and shifting the reversing valve and deactivating the exterior fan and fan motor may either be predetermined or calculated based on variable factors. The timing of this delay and the other steps of this method are determined by a control unit associated with the various parts of the heat pump system.
- the heat pump system of the present invention is believed to result in less “cold blow” during the defrost cycle of a typical heat pump system, by providing additional heat into the air in the space to be heated and in the duct work and sufficient warm-up time for the auxiliary heater element, without significantly adding to the equipment or operational costs of the system.
- FIG. 1 is a partial, perspective view of heat pump system incorporating the present invention.
- FIG. 2 is partial, perspective view of an electric auxiliary heating element incorporating the present invention.
- FIG. 3 is flow diagram of an embodiment of the present invention.
- FIG. 1 illustrates a typical heat pump system 10 incorporating the present invention.
- a heat pump system 10 is typically comprised of: an interior coil 12 ; exterior coil 14 , located outside the space to be heated or cooled; compressor 16 ; reversing valve 18 ; and expansion valves 20 and 22 , all connected by suitable piping 24 as shown.
- Refrigerant 26 travels through the piping 24 between the coils 12 and 14 , valves 18 , 20 and 22 , and compressor 16 .
- Interior coil 12 and exterior coil 14 each act as either a condensing coil or evaporator coil depending upon the mode of operation.
- the mode of operation either a cooling or heating mode, is switched by shifting reversing valve 18 .
- Each expansion valve 20 or 22 operates in only one mode, such that while in the heating, mode only expansion valve 20 is operative and while in the cooling, or air conditioning, mode only expansion valve 22 is operative.
- an exterior fan 28 also typically located outside the space to be heated or cooled; exterior fan motor 30 ; interior blower 32 ; and an interior housing 46 , in which interior coil 12 , blower 32 , and a portion of piping 24 are disposed.
- Exterior fan 28 draws ambient exterior air over exterior coil 14 to transfer heat efficiently between the exterior air at an ambient outdoor temperature, and the refrigerant 26 in exterior coil 14 .
- Exterior fan motor 30 drives exterior fan 28 .
- coil 14 , fan 28 and motor 30 are disposed in a suitable, conventional housing (not shown) disposed outside the interior space to be heated or cooled.
- Interior blower 32 draws air over interior coil 12 in interior housing 46 to efficiently transfer heat between the return air 48 and the refrigerant 26 in interior coil 12 .
- Blower 32 draws return air 48 into interior housing 46 from a return air plenum 40 . After the return air 48 passes through return air plenum 40 into interior housing 46 , it passes over interior coil 12 and through blower 32 . The return air 48 then exits blower 32 , passes through auxiliary heater housing 34 , and exits outwardly as supply air 52 through a supply air plenum 54 to a climate controlled interior space (not shown).
- FIG. 2 A detailed view of the auxiliary heater housing 34 , with its side walls formed by wall portions of housing 46 not shown for drawing clarity, is shown in FIG. 2, including auxiliary heater element 36 , control unit 38 and thermistor 42 .
- Auxiliary heater element 36 is activated by control unit 38 dependent upon how control unit 38 is programmed and configured.
- Thermistor 42 supplies temperature information to control unit 38 via thermistor leads 40 that connect thermistor 42 to control unit 38 .
- Power is supplied to control unit 38 through conventional power leads 44 .
- FIG. 3 is a flow diagram of the preferred embodiment of the invention.
- Cooling cycle 62 then begins, wherein reversing valve 18 is shifted to cooling, or cooling mode, and exterior fan motor 30 and fan 28 are deactivated.
- the duration of delay cycle 60 may be a preset amount of time, a calculated amount of time based upon exterior temperature, or it may be calculated based upon other pertinent conditions.
- the control unit 38 After running in this defrost mode, or cooling cycle 62 , for a sufficient amount of time to heat up and remove the frozen condensate or ice from the exterior coil 14 , the control unit 38 then ends the cooling cycle 60 , thus ending the defrost cycle 64 .
- the time required to complete the defrost cycle 64 is determined by the programming of the control unit 38 .
- the duration of the defrost cycle 64 may be a preset amount of time, a calculated amount of time based upon exterior temperature, or it may be calculated based upon other pertinent conditions.
- the heating cycle 66 begins, wherein exterior fan motor 30 and fan 28 are activated, auxiliary heater element 36 is deactivated, and reversing valve 18 is shifted for the heating mode of operation. Accordingly, auxiliary heater element 36 has sufficient time to provide additional heated air to the interior space and interior duct work, prior to shifting the reversing valve 18 and deactivating the exterior fan 28 and fan motor 30 to begin a cooling cycle to defrost the exterior coil 14 . This prevents “cold blow” by providing additional heated air before the defrosting of the exterior coil, so that a higher air temperature, or warmer interior space is maintained for a period of time before the cooling mode begins to defrost the exterior coil.
- Control Unit 38 could be any suitable type of control device including, among others, a small computer, circuit board, or solid state electronic controls circuitry, or any other device to provide the requisite control signals.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Mechanical Engineering (AREA)
- Thermal Sciences (AREA)
- General Engineering & Computer Science (AREA)
- Defrosting Systems (AREA)
- Air Conditioning Control Device (AREA)
Abstract
A heat pump system is provided having an exterior coil, an exterior fan and fan motor, an interior blower, a reversing valve, and an auxiliary heater element. A method for defrosting the exterior coil includes the steps of initiating a defrost cycle by activating the auxiliary heater element for a period of time, and thereafter deactivating the exterior fan and fan motor and shifting the reversing valve to a cooling mode. After the defrost cycle has ended, the reversing valve is shifted to a heating mode, the exterior fan and fan motor are activated, and the auxiliary heater element is deactivated. The heat pump system results in less “cold blow” during the defrost cycle of a typical heat pump system, by providing additional heat to the interior space and interior duct work before the system is operated in a cooling mode to defrost the exterior coil.
Description
- This application claims the benefit of U.S. Provisional Patent Application Serial No. 60/334,731, filed Nov. 15, 2001, and entitled “Heat Pump Defrost Control.”
- 1. Field of the Invention
- The present invention relates generally to heating, ventilation, and air conditioning control. More specifically, the present invention relates to the control of the defrost cycle of a heat pump.
- 2. Description of the Related Art
- In a heat pump system running in a heating mode, it is common for ice to form on the exterior coil of the system. As the system is operating in a heating mode, the exterior coil can become very cool as it attempts to transfer heat from the exterior ambient air to the refrigerant in the exterior coil. As the coil cools below the dew point of the ambient exterior air, condensation will occur on the coil. If the coil cools below freezing, or if the ambient exterior air is below the freezing point of water, the condensation will form ice on the coil. This is common in most areas where heat pumps are used.
- The formation of ice on the exterior coil reduces the effectiveness of the coil as a heat transfer unit. The exterior coil is designed to transfer heat from the ambient exterior air to the refrigerant inside the coil. To achieve this function an exterior fan draws ambient exterior air across the metallic coil. When ice forms on the coil the fan can no longer draw air across the coil and the heat transfer process is interrupted.
- Therefore, methods have been developed to defrost the exterior coil of common heat pump systems. The primary method is to switch the system into the air conditioning mode so that the heat from the interior may be used to defrost the exterior coil. The system then operates as a typical air conditioner, transferring heat from the interior to the exterior coil via a compressor and expansion valve system. The refrigerant in the exterior coil becomes very warm and removes the ice on the exterior coil, while the refrigerant in the interior coil becomes very cool. Interior air that is then passed over the cool interior coil blows out into the heated space. This is known in the industry as “cold blow.”
- “Cold blow” is typically counteracted by using auxiliary heating elements. When the heat pump system is switched to defrost the exterior coil, three events typically occur simultaneously: the exterior fan is deactivated; the reversing valve shifts from the heat to the cool mode; and the auxiliary heating element or elements are activated. The fan is deactivated to stop the cooling effect on the formed ice and to allow the ice to defrost. The reversing valve is shifted to provide hot refrigerant to the exterior coil to defrost it. The auxiliary heating elements are activated to heat the cool air that is blown over the cool interior coil and into the heated area.
- Various systems have been proposed for the control of the auxiliary heating elements to prevent “cold blow,” while also not overheating the air to create a “hot blow” effect. In one proposed system the auxiliary heat is provided by several discrete elements that are activated as needed to maintain a comfortable temperature, while in another system the discrete elements are activated based on the need in the prior defrost cycle and then adjusted as needed. Such systems require multiple discrete heating elements and a more complex control circuit than standard heat pump systems. Such systems also tend to take a few minutes to heat up causing an initial “cold blow” followed by a warm or comfortable air supply.
- It would be advantageous to prevent “cold blow” using the existing equipment in a typical heat pump system. It would be cost effective to avoid “cold blow” without requiring the use of extra heating elements or more expensive circuitry.
- In accordance with the present invention, a heat pump system is provided having an exterior coil, an exterior fan and fan motor, an interior blower, a reversing valve, and an auxiliary heater element. A method for defrosting the exterior coil may include the steps of: activating the auxiliary heater element for a period of time; and after the period of time has passed, activating the exterior fan and fan motor and shifting the reversing valve to a cooling mode.
- Another feature of the present invention is that the delay between activating the auxiliary heater element and shifting the reversing valve and deactivating the exterior fan and fan motor may either be predetermined or calculated based on variable factors. The timing of this delay and the other steps of this method are determined by a control unit associated with the various parts of the heat pump system.
- The heat pump system of the present invention is believed to result in less “cold blow” during the defrost cycle of a typical heat pump system, by providing additional heat into the air in the space to be heated and in the duct work and sufficient warm-up time for the auxiliary heater element, without significantly adding to the equipment or operational costs of the system.
- FIG. 1 is a partial, perspective view of heat pump system incorporating the present invention.
- FIG. 2 is partial, perspective view of an electric auxiliary heating element incorporating the present invention.
- FIG. 3 is flow diagram of an embodiment of the present invention.
- While the invention will be described in connection with the preferred embodiment, it will be understood that it is not intended to limit the invention to that embodiment. On the contrary, it is intended to cover all alternatives, modifications, and equivalents as may be included within the spirit and scope of the invention as defined by the appended claims.
- FIG. 1 illustrates a typical
heat pump system 10 incorporating the present invention. Aheat pump system 10 is typically comprised of: aninterior coil 12;exterior coil 14, located outside the space to be heated or cooled;compressor 16; reversingvalve 18; andexpansion valves suitable piping 24 as shown. Refrigerant 26 travels through thepiping 24 between thecoils valves compressor 16.Interior coil 12 andexterior coil 14 each act as either a condensing coil or evaporator coil depending upon the mode of operation. The mode of operation, either a cooling or heating mode, is switched by shiftingreversing valve 18. Eachexpansion valve expansion valve 20 is operative and while in the cooling, or air conditioning, mode onlyexpansion valve 22 is operative. - Also illustrated in FIG. 1 are: an
exterior fan 28, also typically located outside the space to be heated or cooled;exterior fan motor 30;interior blower 32; and aninterior housing 46, in whichinterior coil 12,blower 32, and a portion ofpiping 24 are disposed.Exterior fan 28 draws ambient exterior air overexterior coil 14 to transfer heat efficiently between the exterior air at an ambient outdoor temperature, and therefrigerant 26 inexterior coil 14.Exterior fan motor 30 drivesexterior fan 28. As is known in theart coil 14,fan 28 andmotor 30 are disposed in a suitable, conventional housing (not shown) disposed outside the interior space to be heated or cooled.Interior blower 32 draws air overinterior coil 12 ininterior housing 46 to efficiently transfer heat between thereturn air 48 and therefrigerant 26 ininterior coil 12.Blower 32 drawsreturn air 48 intointerior housing 46 from areturn air plenum 40. After thereturn air 48 passes throughreturn air plenum 40 intointerior housing 46, it passes overinterior coil 12 and throughblower 32. Thereturn air 48 then exits blower 32, passes throughauxiliary heater housing 34, and exits outwardly assupply air 52 through asupply air plenum 54 to a climate controlled interior space (not shown). - A detailed view of the
auxiliary heater housing 34, with its side walls formed by wall portions ofhousing 46 not shown for drawing clarity, is shown in FIG. 2, includingauxiliary heater element 36,control unit 38 andthermistor 42.Auxiliary heater element 36 is activated bycontrol unit 38 dependent upon howcontrol unit 38 is programmed and configured. Thermistor 42 supplies temperature information to controlunit 38 via thermistor leads 40 that connectthermistor 42 to controlunit 38. Power is supplied to controlunit 38 through conventional power leads 44. - FIG. 3 is a flow diagram of the preferred embodiment of the invention. Once the defrost cycle56 is initiated, as desired or necessary, to remove, or defrost, ice disposed upon
exterior coil 14, theauxiliary heat cycle 58 begins, whereinauxiliary heater element 36 is activated. In the preferred embodiment described above,system control unit 38 would activateauxiliary heater element 36. A delay cycle 60 then begins, which is a period of time sufficient to allow the auxiliary heater element to warm up and supply additionalheated supply air 52 into the interior space and conventional duct work, by air being blown byblower 32 throughheater housing 34 and overheater element 36.Cooling cycle 62 then begins, wherein reversingvalve 18 is shifted to cooling, or cooling mode, andexterior fan motor 30 andfan 28 are deactivated. The duration of delay cycle 60 may be a preset amount of time, a calculated amount of time based upon exterior temperature, or it may be calculated based upon other pertinent conditions. After running in this defrost mode, or coolingcycle 62, for a sufficient amount of time to heat up and remove the frozen condensate or ice from theexterior coil 14, thecontrol unit 38 then ends the cooling cycle 60, thus ending thedefrost cycle 64. The time required to complete thedefrost cycle 64 is determined by the programming of thecontrol unit 38. The duration of thedefrost cycle 64 may be a preset amount of time, a calculated amount of time based upon exterior temperature, or it may be calculated based upon other pertinent conditions. Once thedefrost cycle 64 is complete, theheating cycle 66 begins, whereinexterior fan motor 30 andfan 28 are activated,auxiliary heater element 36 is deactivated, and reversingvalve 18 is shifted for the heating mode of operation. Accordingly,auxiliary heater element 36 has sufficient time to provide additional heated air to the interior space and interior duct work, prior to shifting the reversingvalve 18 and deactivating theexterior fan 28 andfan motor 30 to begin a cooling cycle to defrost theexterior coil 14. This prevents “cold blow” by providing additional heated air before the defrosting of the exterior coil, so that a higher air temperature, or warmer interior space is maintained for a period of time before the cooling mode begins to defrost the exterior coil. - It shall be noted that any type of
heater element 36 could be utilized, including using a plurality ofheater elements 36.Control Unit 38 could be any suitable type of control device including, among others, a small computer, circuit board, or solid state electronic controls circuitry, or any other device to provide the requisite control signals. - It is to be understood that the invention is not limited to the exact details of the construction, operation, exact materials or embodiment shown and described, as obvious modifications and equivalents will be apparent to one skilled in the art. Accordingly, the invention is therefore to be limited only by the scope of the appended claims.
Claims (9)
1. For a heat pump system having an exterior coil, an exterior fan and fan motor, an interior blower, a reversing valve, and an auxiliary heater element, a method for defrosting the exterior coil comprising the steps of:
a. first activating the auxiliary heater element for a period of time; and
b. after the period of time has passed, deactivating the exterior fan and fan motor and shifting the reversing valve to a cooling mode.
2. The method of claim 1 wherein the deactivating of the exterior fan motor and shifting the reversing valves occurs a predetermined period of time after the activating of the auxiliary heater element.
3. The method of claim 1 wherein the deactivating of the exterior fan motor and shifting the reversing valve occurs a variable period of time after the activating of the auxiliary heater element.
4. For a heat pump system having an exterior coil, an exterior fan and fan motor, an interior blower, a reversing valve, and an auxiliary heater element, a method for defrosting the exterior coil comprising the steps:
a. initiating a defrost cycle;
b. activating the auxiliary heating element for a period of time during the period of time the auxiliary heater element is activated, operating the interior blow to pass air over the auxiliary heater element;
c. deactivating the exterior fan motor and shifting the reversing valve to end the defrost cycle; and
d. shifting the reversing valve, activating the exterior fan and fan motor, and deactivating the auxiliary heater element:
5. The method of claim 4 , wherein the deactivating of the exterior fan and fan motor and shifting the reversing valve occurs a predetermined period of time after the activating of the auxiliary heater element.
6. The method of claim 4 wherein the de-activating of the exterior fan and fan motor and shifting the reversing valve occurs a variable period of time time after the activating of the auxiliary heater element.
7. A heat pump system comprising:
at least one exterior coil;
an exterior fan and fan motor;
an interior blower;
a reversing valve;
an auxiliary heater unit; and
a control unit associated with the exterior fan and fan motor, reversing valve, and auxiliary heating unit, the control unit configured to defrost the at least one coil by activating the auxiliary heating unit for a period of time prior to shifting the reversing valve and prior to deactivating the fan and fan motor.
8. The heat pump system of claim 7 , wherein the control unit is configured to defrost the coils by activating the auxiliary heating unit for a predetermined period of time prior to shifting the reversing valve or de-activating the fan motor.
9. The heat pump system of claim 7 , wherein the control unit is configured to defrost the coils by activating the auxiliary heating unit for a variable period of time prior to shifting the reversing valve or de-activating the fan motor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/295,972 US20030116637A1 (en) | 2001-11-15 | 2002-11-15 | Heat pump defrost control |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US33473101P | 2001-11-15 | 2001-11-15 | |
US10/295,972 US20030116637A1 (en) | 2001-11-15 | 2002-11-15 | Heat pump defrost control |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030116637A1 true US20030116637A1 (en) | 2003-06-26 |
Family
ID=23308566
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/295,972 Abandoned US20030116637A1 (en) | 2001-11-15 | 2002-11-15 | Heat pump defrost control |
Country Status (2)
Country | Link |
---|---|
US (1) | US20030116637A1 (en) |
CA (1) | CA2411823A1 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100051713A1 (en) * | 2008-08-26 | 2010-03-04 | Lg Electronics Inc. | Hot water circulation system associated with heat pump and method for controlling the same |
US20100090017A1 (en) * | 2008-10-11 | 2010-04-15 | Reza Naghshineh | Hybrid heating system and method |
US20100106319A1 (en) * | 2008-10-27 | 2010-04-29 | Lennox Industries Inc. | Method of controlling equipment in a heating, ventilation and air conditioning network |
US20110057046A1 (en) * | 2009-09-10 | 2011-03-10 | Lennox Industries, Incorporated | Heating system controller, a heating system and a method of operating a heating system |
US20110125328A1 (en) * | 2009-11-24 | 2011-05-26 | Friedrich Air Conditioning Co., A Division Of U.S. Natural Resources, Inc. | Control System for a Room Air Conditioner and/or Heat Pump |
US20110209489A1 (en) * | 2010-03-01 | 2011-09-01 | Lawson Sr Reynold Kenneth | Heat pump defrost control |
US8091372B1 (en) | 2009-03-11 | 2012-01-10 | Mark Ekern | Heat pump defrost system |
US8433446B2 (en) | 2008-10-27 | 2013-04-30 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8437877B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8437878B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8442693B2 (en) | 2008-10-27 | 2013-05-14 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8452906B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8452456B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8463442B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8463443B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US8527096B2 (en) | 2008-10-24 | 2013-09-03 | Lennox Industries Inc. | Programmable controller and a user interface for same |
US8543243B2 (en) | 2008-10-27 | 2013-09-24 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8548630B2 (en) | 2008-10-27 | 2013-10-01 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8560125B2 (en) | 2008-10-27 | 2013-10-15 | Lennox Industries | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8564400B2 (en) | 2008-10-27 | 2013-10-22 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8600558B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8615326B2 (en) | 2008-10-27 | 2013-12-24 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655490B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655491B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8661165B2 (en) | 2008-10-27 | 2014-02-25 | Lennox Industries, Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8694164B2 (en) | 2008-10-27 | 2014-04-08 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
US8713697B2 (en) | 2008-07-09 | 2014-04-29 | Lennox Manufacturing, Inc. | Apparatus and method for storing event information for an HVAC system |
US8725298B2 (en) | 2008-10-27 | 2014-05-13 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network |
US8744629B2 (en) | 2008-10-27 | 2014-06-03 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8761945B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
US8762666B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries, Inc. | Backup and restoration of operation control data in a heating, ventilation and air conditioning network |
US8774210B2 (en) | 2008-10-27 | 2014-07-08 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8788100B2 (en) | 2008-10-27 | 2014-07-22 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8798796B2 (en) | 2008-10-27 | 2014-08-05 | Lennox Industries Inc. | General control techniques in a heating, ventilation and air conditioning network |
US8802981B2 (en) | 2008-10-27 | 2014-08-12 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
US8855825B2 (en) | 2008-10-27 | 2014-10-07 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8874815B2 (en) | 2008-10-27 | 2014-10-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network |
US8892797B2 (en) | 2008-10-27 | 2014-11-18 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8977794B2 (en) | 2008-10-27 | 2015-03-10 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8994539B2 (en) | 2008-10-27 | 2015-03-31 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9268345B2 (en) | 2008-10-27 | 2016-02-23 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US9325517B2 (en) | 2008-10-27 | 2016-04-26 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9432208B2 (en) | 2008-10-27 | 2016-08-30 | Lennox Industries Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US9632490B2 (en) | 2008-10-27 | 2017-04-25 | Lennox Industries Inc. | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
US9651925B2 (en) | 2008-10-27 | 2017-05-16 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US9678486B2 (en) | 2008-10-27 | 2017-06-13 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US20180195788A1 (en) * | 2017-01-11 | 2018-07-12 | Stiebel Eltron Gmbh & Co.Kg | Method of Defrosting a Heat Pump Device as Well as a Heat Pump Device |
JP2019138599A (en) * | 2018-02-15 | 2019-08-22 | 株式会社富士通ゼネラル | Air conditioner |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5758507A (en) * | 1996-08-12 | 1998-06-02 | Schuster; Don A. | Heat pump defrost control |
-
2002
- 2002-11-14 CA CA002411823A patent/CA2411823A1/en not_active Abandoned
- 2002-11-15 US US10/295,972 patent/US20030116637A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5758507A (en) * | 1996-08-12 | 1998-06-02 | Schuster; Don A. | Heat pump defrost control |
Cited By (53)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8713697B2 (en) | 2008-07-09 | 2014-04-29 | Lennox Manufacturing, Inc. | Apparatus and method for storing event information for an HVAC system |
US8657207B2 (en) * | 2008-08-26 | 2014-02-25 | Lg Electronics Inc. | Hot water circulation system associated with heat pump and method for controlling the same |
US20100051713A1 (en) * | 2008-08-26 | 2010-03-04 | Lg Electronics Inc. | Hot water circulation system associated with heat pump and method for controlling the same |
US20100090017A1 (en) * | 2008-10-11 | 2010-04-15 | Reza Naghshineh | Hybrid heating system and method |
US8527096B2 (en) | 2008-10-24 | 2013-09-03 | Lennox Industries Inc. | Programmable controller and a user interface for same |
US8661165B2 (en) | 2008-10-27 | 2014-02-25 | Lennox Industries, Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8892797B2 (en) | 2008-10-27 | 2014-11-18 | Lennox Industries Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8433446B2 (en) | 2008-10-27 | 2013-04-30 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8437877B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8437878B2 (en) | 2008-10-27 | 2013-05-07 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8442693B2 (en) | 2008-10-27 | 2013-05-14 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8452906B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8452456B2 (en) | 2008-10-27 | 2013-05-28 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8463442B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US8725298B2 (en) | 2008-10-27 | 2014-05-13 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and conditioning network |
US20100106319A1 (en) * | 2008-10-27 | 2010-04-29 | Lennox Industries Inc. | Method of controlling equipment in a heating, ventilation and air conditioning network |
US8543243B2 (en) | 2008-10-27 | 2013-09-24 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8548630B2 (en) | 2008-10-27 | 2013-10-01 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8560125B2 (en) | 2008-10-27 | 2013-10-15 | Lennox Industries | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8564400B2 (en) | 2008-10-27 | 2013-10-22 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8600559B2 (en) * | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | Method of controlling equipment in a heating, ventilation and air conditioning network |
US8600558B2 (en) | 2008-10-27 | 2013-12-03 | Lennox Industries Inc. | System recovery in a heating, ventilation and air conditioning network |
US8615326B2 (en) | 2008-10-27 | 2013-12-24 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655490B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries, Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8655491B2 (en) | 2008-10-27 | 2014-02-18 | Lennox Industries Inc. | Alarm and diagnostics system and method for a distributed architecture heating, ventilation and air conditioning network |
US9678486B2 (en) | 2008-10-27 | 2017-06-13 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9651925B2 (en) | 2008-10-27 | 2017-05-16 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US9632490B2 (en) | 2008-10-27 | 2017-04-25 | Lennox Industries Inc. | System and method for zoning a distributed architecture heating, ventilation and air conditioning network |
US9432208B2 (en) | 2008-10-27 | 2016-08-30 | Lennox Industries Inc. | Device abstraction system and method for a distributed architecture heating, ventilation and air conditioning system |
US8463443B2 (en) | 2008-10-27 | 2013-06-11 | Lennox Industries, Inc. | Memory recovery scheme and data structure in a heating, ventilation and air conditioning network |
US8744629B2 (en) | 2008-10-27 | 2014-06-03 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8761945B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries Inc. | Device commissioning in a heating, ventilation and air conditioning network |
US8762666B2 (en) | 2008-10-27 | 2014-06-24 | Lennox Industries, Inc. | Backup and restoration of operation control data in a heating, ventilation and air conditioning network |
US8774210B2 (en) | 2008-10-27 | 2014-07-08 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8788100B2 (en) | 2008-10-27 | 2014-07-22 | Lennox Industries Inc. | System and method for zoning a distributed-architecture heating, ventilation and air conditioning network |
US8798796B2 (en) | 2008-10-27 | 2014-08-05 | Lennox Industries Inc. | General control techniques in a heating, ventilation and air conditioning network |
US8802981B2 (en) | 2008-10-27 | 2014-08-12 | Lennox Industries Inc. | Flush wall mount thermostat and in-set mounting plate for a heating, ventilation and air conditioning system |
US8855825B2 (en) | 2008-10-27 | 2014-10-07 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US8874815B2 (en) | 2008-10-27 | 2014-10-28 | Lennox Industries, Inc. | Communication protocol system and method for a distributed architecture heating, ventilation and air conditioning network |
US8694164B2 (en) | 2008-10-27 | 2014-04-08 | Lennox Industries, Inc. | Interactive user guidance interface for a heating, ventilation and air conditioning system |
US8977794B2 (en) | 2008-10-27 | 2015-03-10 | Lennox Industries, Inc. | Communication protocol system and method for a distributed-architecture heating, ventilation and air conditioning network |
US8994539B2 (en) | 2008-10-27 | 2015-03-31 | Lennox Industries, Inc. | Alarm and diagnostics system and method for a distributed-architecture heating, ventilation and air conditioning network |
US9325517B2 (en) | 2008-10-27 | 2016-04-26 | Lennox Industries Inc. | Device abstraction system and method for a distributed-architecture heating, ventilation and air conditioning system |
US9268345B2 (en) | 2008-10-27 | 2016-02-23 | Lennox Industries Inc. | System and method of use for a user interface dashboard of a heating, ventilation and air conditioning network |
US8091372B1 (en) | 2009-03-11 | 2012-01-10 | Mark Ekern | Heat pump defrost system |
US9261282B2 (en) * | 2009-09-10 | 2016-02-16 | Lennox Industries Inc. | Heating system controller, a heating system and a method of operating a heating system |
US20110057046A1 (en) * | 2009-09-10 | 2011-03-10 | Lennox Industries, Incorporated | Heating system controller, a heating system and a method of operating a heating system |
US9535408B2 (en) * | 2009-11-24 | 2017-01-03 | Friedrich Air Conditioning Co., Ltd | Control system for a room air conditioner and/or heat pump |
US20110125328A1 (en) * | 2009-11-24 | 2011-05-26 | Friedrich Air Conditioning Co., A Division Of U.S. Natural Resources, Inc. | Control System for a Room Air Conditioner and/or Heat Pump |
US20110209489A1 (en) * | 2010-03-01 | 2011-09-01 | Lawson Sr Reynold Kenneth | Heat pump defrost control |
US20180195788A1 (en) * | 2017-01-11 | 2018-07-12 | Stiebel Eltron Gmbh & Co.Kg | Method of Defrosting a Heat Pump Device as Well as a Heat Pump Device |
JP2019138599A (en) * | 2018-02-15 | 2019-08-22 | 株式会社富士通ゼネラル | Air conditioner |
JP7000902B2 (en) | 2018-02-15 | 2022-01-19 | 株式会社富士通ゼネラル | Air conditioner |
Also Published As
Publication number | Publication date |
---|---|
CA2411823A1 (en) | 2003-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030116637A1 (en) | Heat pump defrost control | |
EP0279143B1 (en) | Integrated heat pump system | |
US6931870B2 (en) | Time division multi-cycle type cooling apparatus and method for controlling the same | |
JP3073636B2 (en) | Indirect cooling refrigerator | |
US5332028A (en) | Method and apparatus for controlling supplemental electric heat during heat pump defrost | |
US4313313A (en) | Apparatus and method for defrosting a heat exchanger of a refrigeration circuit | |
US5729994A (en) | Radiation type air conditioning system having dew-condensation preventing mechanism | |
JP2919829B2 (en) | Cooling / heating combined air conditioner and control method therefor | |
US6318095B1 (en) | Method and system for demand defrost control on reversible heat pumps | |
US5095711A (en) | Method and apparatus for enhancement of heat pump defrost | |
CN102472569B (en) | A refrigerator operating independently of the ambient temperature | |
US4840220A (en) | Heat pump with electrically heated heat accumulator | |
JPH109725A (en) | Air conditioner | |
EP1318037A3 (en) | Vehicle air conditioner with hot-gas heater cycle | |
KR20190046058A (en) | Airconditioning apparatus for electric vehicle | |
JP2661440B2 (en) | Air conditioner | |
KR20070030072A (en) | Control method of defrosting operation of air conditioner | |
KR100234080B1 (en) | Air conditioner and defrosting method in heating mode therefor | |
JPH07218055A (en) | Defrost control method for air conditioner | |
JPH10274448A (en) | Air-conditioning device | |
JPH06344764A (en) | Air conditioner for vehicle | |
JPH07318229A (en) | Defrosting method for refrigerated showcases | |
KR100211602B1 (en) | Defrosting time control method of airconditioner | |
JPH11311471A (en) | Method for controlling refrigerator | |
KR19990062162A (en) | Refrigerator and its humidity control method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: GOODMAN MANUFACTURING COMPANY, L.P., TEXAS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ELLINGHAM, JEFFREY R.;REEL/FRAME:013800/0413 Effective date: 20030221 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, TEXAS Free format text: SECURITY INTEREST;ASSIGNOR:GOODMAN MANUFACTURING COMPANY, L.P.;REEL/FRAME:014725/0870 Effective date: 20031121 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |