US20030116410A1 - Guide rail spacer - Google Patents
Guide rail spacer Download PDFInfo
- Publication number
- US20030116410A1 US20030116410A1 US10/365,923 US36592303A US2003116410A1 US 20030116410 A1 US20030116410 A1 US 20030116410A1 US 36592303 A US36592303 A US 36592303A US 2003116410 A1 US2003116410 A1 US 2003116410A1
- Authority
- US
- United States
- Prior art keywords
- tube
- spacer
- support post
- guide rail
- rod
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G21/00—Supporting or protective framework or housings for endless load-carriers or traction elements of belt or chain conveyors
- B65G21/20—Means incorporated in, or attached to, framework or housings for guiding load-carriers, traction elements or loads supported on moving surfaces
- B65G21/2045—Mechanical means for guiding or retaining the load on the load-carrying surface
- B65G21/2063—Mechanical means for guiding or retaining the load on the load-carrying surface comprising elements not movable in the direction of load-transport
- B65G21/2072—Laterial guidance means
Definitions
- the present invention relates in general to guide rail spacers for use with guide rail assemblies used in assembly line and conveyor belt systems and, in particular, to an improved means for providing variable adjustment and positioning of a guide rail.
- Guide rails are used to direct the travel of articles along a predetermined path of an assembly line or conveyor system.
- the articles are conveyed in a belt or track during the processing and packaging procedures of a typical manufacturer.
- Dependable support and adjustment of the guide rails is important to ensure manufacturing efficiency and to prevent the articles from tipping over or falling off the conveyor system.
- a spacer is typically used to adjust among predetermined fixed positions with respect to the guide rail which it supports.
- prior art spacer designs have significant shortcomings. For example, although the prior art spacer designs disclose a two-position spacer, the spacer dangles freely from a lanyard proximal the guide rails, when neither position is used. Although this arrangement allows the spacer to be readily available for use, it can nevertheless inadvertently become tangled with or otherwise interfere with conveyor line operations.
- a guide rail spacer is provided that can be adjusted among a plurality of predetermined fixed positions with respect to the guide rail which it supports.
- the spacer can also be secured when not in use such that it does not interfere with conveyor line operations while remaining readily available for use.
- a further advantage of the present invention is that multi-functioning spacers may be mounted along a portion of the guide rail support to provide adjustment of a guide rail among predetermined fixed positions. Individual spacers maintain a plurality of mounting positions which allow one spacer to function as the equivalent of several spacers.
- the spacer is also constructed so that it does not interfere with conveyor line operations when not is use, but remains readily available for use.
- the spacer may also include a handle section for easy insertion and removal
- the spacer has a body defining a plurality of channels with the plurality of channels including a first channel interposed between a second channel and a third channel.
- the first channel and second channels sized and configured to accept the tube, and the third channel sized and configured to accept the housing element.
- FIG. 1 is a perspective view of a flexible guide rail support post supporting a pair of guide rails and having a spacer inserted in a first position in accordance with the teachings of the invention
- FIG. 2 is a perspective view of the spacer of FIG. 1;
- FIG. 3A is a side elevation view of the guide rail support post of FIG. 1, illustrating the spacer in a first position
- FIG. 3B is a side elevation view of the guide rail support post of FIG. 1, illustrating the spacer in a second position
- FIG. 3C is a side elevation view of the guide rail support post of FIG. 1, illustrating the spacer in a home position.
- the present embodiment of the guide rail spacer is disclosed in the context of an exemplary guide rail support post to support one or more guide rails on a conveyor assembly.
- the principles of the present invention are not limited to use with guide rail support posts or even conveyor assemblies for that matter. Instead, it will be understood by one skilled in the art, in light of the present disclosure, that the guide rail spacer disclosed herein can also be successfully utilized in a variety of other contexts.
- a “longitudinal axis” is generally parallel to the ends 48 , 50 of the spacer 30 when mounted on the guide rail support post 10 .
- a “lateral axis” is normal to the longitudinal axis and is generally parallel to the plane of the supported guide rails 13 , 14 .
- a “transverse axis” extends normal to both the longitudinal and lateral axes and along the vertical height of the support bar 2 .
- the “longitudinal direction” refers to a direction substantially parallel to the longitudinal axis; the “transverse direction” refers to a direction substantially parallel to the transverse axis; and the “lateral direction” refers to a direction substantially parallel to the lateral axis.
- proximal and distal are used consistently with the description of the exemplary application and in reference the guide rails 13 , 14 , proximal being closer to the guide rails 13 , 14 and distal being farther from the guide rails 13 , 14 .
- an exemplary guide rail support post 10 is comprised of a support bar 12 , a removable tube 14 , an exterior spring 16 , a housing element 18 , and a clamping means 20 .
- the cylindrical exterior spring 16 and cylindrical housing element 18 abut each other and encase the cylindrical tube 14 to form a working member.
- the working member is secured and positioned by the support bar 12 .
- a handle 22 is affixed to a distal end 24 of the tube 14 and the clamping device 20 is affixed to a proximal end 26 of the tube 14 (best seen by FIGS. 3 A-C).
- Application of a linear force onto the handle 22 advances the proximal end 26 of the tube 14 beyond the proximal end 28 of the housing element 18 (best seen by FIGS. 3 A-C) and compresses the spring 16 .
- the spring force returns the tube 14 to a resting position.
- a spacer 30 may then be mounted onto the exposed proximal end 26 of the tube 2 , thereby adjusting the support post 10 in a fixed position.
- one or more spacers 30 may be added or removed to allow adjustment among a variety of fixed positions.
- a more detailed description of the structure, assembly and operation of the guide rail support post 10 is provided in U.S. Pat. No. 5,819,911 issued to Ledingham and hereby incorporated by reference.
- the support post incorporates a spacer 30 that can be mounted onto the proximal end 26 of the tube 14 .
- the spacer 30 is constructed in a generally L-shaped design and has a first side 32 and a second side 34 , both sides 32 , 34 extending in the longitudinal and transverse directions.
- the first side 32 communicates with the second side 34 through an upper bridge 36 and a lower bridge 38 , both bridges 36 , 38 extending in the lateral direction.
- the upper bridge 38 bounds an upper portion 40 of the spacer 30 and the lower bridge 38 bounds a lower portion 42 of the spacer 30 .
- the upper and lower portions 40 , 42 of the spacer 30 communicate through a middle portion 44 which is formed therebetween.
- the spacer 30 also has a proximal end 48 and a distal end 50 that each extend in the transverse direction, the proximal and distal ends 48 , 50 are open or exposed.
- the upper portion 40 of the spacer 30 has a longitudinal length that is approximately equal to the longitudinal length of the middle portion 44 of the spacer 30 .
- the lower portion 42 of the spacer 30 has a longitudinal length that is approximately twice the longitudinal length of the longitudinal length of the upper and middle portions 48 , 44 .
- the lower portion 42 of the spacer 30 has a lateral length that is approximately equal to the lateral length of the middle portion 44 of the spacer 30 .
- the upper portion 40 of the spacer 30 has a lateral length that is preferably 1.1 to 2 times longer, and more preferably approximately 1.3 to 1.5 times longer, than the lateral length of the lower or middle portions 42 , 44 .
- the upper portion 40 , lower portion 42 and middle portion 44 of the spacer 30 preferably have transverse lengths that are approximately equal.
- a first or middle channel 52 is formed between the proximal and distal ends 48 , 50 of the spacer 30 .
- the middle channel 52 is bounded in the lateral direction by the first and second sides 32 , 34 of the spacer 30 .
- the middle channel 52 communicates with a lower channel 54 and an upper channel 56 in the transverse direction.
- the middle channel 52 is sized and configured to accept a portion of the tube 14 but not to accept a portion of the housing element 18 . That is, the tube 14 , which has a smaller radius than the radius of the middle channel 52 can pass through the middle channel 52 , while the housing element 18 , which has a larger radius than the radius of the middle channel 52 cannot pass through the middle channel 52 .
- a second or lower channel 54 is formed between the proximal and distal ends 48 , 50 of the spacer 30 .
- the lower channel 54 is bounded in the lateral direction by the first and second sides 32 , 34 of the spacer 30 and is bounded in the transverse direction by the lower bridge 38 , while also communicating with the middle channel 52 in the transverse direction.
- the lower channel 54 is sized and configured similar to the middle channel 52 such that the lower channel 54 can accept a portion of the tube 14 but not accept a portion of the housing element 18 . That is, the tube 14 , which has a smaller radius than the radius of the lower channel 54 can pass through the lower channel 54 , while the housing element 18 , which has a larger radius than the radius of the lower channel 54 , cannot pass through the lower channel 54 .
- a third or upper channel 56 is formed between the proximal and distal ends 48 , 50 of the spacer 30 .
- the upper channel 56 is bounded in the lateral direction by the first and second sides 32 , 34 of the spacer 30 and is bounded in the transverse direction by the upper bridge 36 while also communicating with the middle channel 52 in the transverse direction.
- the upper channel 56 is sized and configured such that the upper channel 56 can accept both a portion of the tube 14 and a portion of the housing element 18 . That is, the tube 14 , which has a smaller radius than the radius of the upper channel 56 can pass through the upper channel 56 , while the housing element 18 , which also has a smaller radius than the radius of the upper channel 56 can also pass through the upper channel 56 .
- the exterior and interior of the spacer 30 can be formed in a variety of geometric configurations.
- the illustrated embodiment shows the exterior of the lower and middle portions 42 , 44 of the spacer 30 as being generally linear and smooth, with the first and second sides 32 , 34 generally parallel in the longitudinal and transverse directions.
- the exterior of the upper portion 40 has an arcuate curvature, preferably semi-circular, in the transverse direction and is linear in the longitudinal direction.
- the illustrated embodiment shows the interior dimensions as being generally similar to the exterior dimensions. However, the upper and lower bridges 36 , 38 form arcuate curvatures which respectively form semi-circular segments within the second and third channels 54 , 56 .
- the illustrated channels 52 , 54 , 56 thus each form a region having a radius and capable of capturing a radial body.
- the cross-sectional configurations of the channels need not be radial but rather can form a variety of cross-sectional shapes.
- one or more of the channels can have an interior perimeter with a cross-sectional shape that is square, rectangular, circular, oval, triangular, pentagonal, octagonal and the like.
- the channels may combine to form a keyway with an aperture defining a home position (detailed below) with the other channels forming a slot extending into the aperture and defining a plurality of positions.
- the keyway may advantageously form a bounded region within the body of the spacer 30 .
- the above-described dimensions of the spacer 30 provide for fixing the proximal end 26 of the tube 14 beyond the proximal end 28 of the housing element 18 , thereby permitting adjustment of the guide rails 13 , 14 to a plurality of positions.
- this fixation comprises mounting the spacer 30 onto the proximal end 26 of the tube 14 .
- a linear force F is applied to the handle 22 , the force advances the tube 14 and compresses the spring 16 , the proximal end 26 of the tube 14 is thereby exposed beyond the proximal end 28 of the housing element 18 and capable of receiving a portion of the spacer 30 .
- the spring force returns the tube 14 to a resting position which corresponds to a fixed guide rail position.
- a plurality of spacers 30 may be mounted on the proximal end 26 of the tube 14 to provide additional varied guide rail positions.
- the spacer 30 is advantageously pre-placed between the clamp 20 and support 12 before the support 12 is connected to the guide rails 13 , 14 thereby longitudinally capturing the spacer 30 between the assembled clamp 20 and support 12 along the tube 16 and guide element 18 .
- FIGS. 3 A-C illustrate the spacer 30 mounted on either the proximal end 26 of the tube 14 or mounted across the guide element 18 . More specifically, FIG. 3A shows the spacer 30 mounted in a first position on the proximal end 26 of the tube 14 . FIG. 3B shows the spacer 30 mounted in a second position on the proximal end 26 of the tube 14 ; and FIG. 3C shows the spacer mounted in a third position over the circumferentially layered guide element 18 and tube 14 .
- the proximal end 26 of the tube 14 is exposed beyond the proximal end 26 of the housing element 18 and capable of receiving a portion of the spacer 30 , as described above.
- the middle channel 52 of the spacer 30 is transversely aligned around the tube 14 and the tube 14 subsequently released, the size and configuration of the middle channel 52 is such that the middle channel 52 can accept a portion of the tube 14 but cannot not accept a portion of the guide element 18 , as described above.
- This spacer 30 position corresponds to a first position where the spacer 30 extends the guide rail to a first predetermined length L1.
- the size and configuration of the lower channel 54 is such that the lower channel 54 can accept a portion of the tube 14 but cannot not accept a portion of the guide element 18 , as described above.
- the proximal end 48 of spacer 30 abuts the clamp 20 and the distal end 50 of the spacer 30 abuts the guide element 18 while a portion of the tube 14 extends within the lower channel 54 .
- This spacer 30 position corresponds to a second position where the spacer 30 extends the guide rail to a second predetermined length L2.
- the size and configuration of the upper channel 56 is such that the upper channel 56 can accept both a portion of the tube 14 and a portion of the guide element 18 , as described above.
- the guide element 18 and tube 14 both pass entirely through the upper channel 56 of the spacer 30 .
- the proximal ends 26 , 28 of the tube thus both abut the clamp 20 , with a portion of the tube 14 circumferentially layered within a portion of the guide element 18 , which, is within the upper channel 56 .
- This spacer 30 position corresponds to a third or home position where the spacer 30 extends the guide rail to a third predetermined length that is coextensive with not using the spacer 30 .
- the spacer 30 can be advantageously rotated 90 degrees to reduce undesired contact with the support post 10 (not shown).
- the spacer 30 may also incorporate a handle molded into the upper or lower bridge 36 , 38 . This handle allows easy insertion and removal of the spacer 30 .
- the tube 14 is approximately eight inches in length with an exterior radius of slightly less than one half inch.
- Both the exterior spring 16 and housing elements 18 are approximately four inches in length with an interior radius of slightly more than one half inch.
- the middle channel 52 of the spacer 30 has a longitudinal length of approximately one-half inch and an inner radius that is slightly larger than the outer radius of the tube 14 and slightly smaller than the outer radius of the guide element 18 , a preferably an inner radius of approximately one half inch.
- the lower channel 50 of the spacer 30 has a longitudinal length of approximately one inch and an inner radius that is slightly larger than the outer radius of the tube 14 and slightly smaller than the outer radius of the guide element 18 , a preferably an inner radius of approximately one half inch.
- the upper channel 56 of the spacer 30 has a longitudinal length of approximately one-half inch and an inner radius that is slightly larger than the outer radius of the guide element 18 , a preferably a radius of one-half to three-quarters of an inch.
- the illustrated spacer 30 is constructed in a unibody configuration of a rigid molded plastic. Plastic is preferred for its strength and low cost. However, there is no requirement that the spacer 30 be constructed of a unibody design and can be constructed of other materials such as metals, composites and other suitable materials depending on the particular application of the spacer.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Framework For Endless Conveyors (AREA)
Abstract
Description
- This is a continuation of application Ser. No. 09/696,746, filed on Oct. 24, 2000, which is a continuation of application Ser. No. 09/173,661, filed Oct. 15, 1998, now U.S. Pat. No. 6,135,271, which are incorporated herein by reference and made part of the present application.
- 1. Field of the Invention
- The present invention relates in general to guide rail spacers for use with guide rail assemblies used in assembly line and conveyor belt systems and, in particular, to an improved means for providing variable adjustment and positioning of a guide rail.
- 2. Description of the Related Art
- Guide rails are used to direct the travel of articles along a predetermined path of an assembly line or conveyor system. The articles are conveyed in a belt or track during the processing and packaging procedures of a typical manufacturer. Dependable support and adjustment of the guide rails is important to ensure manufacturing efficiency and to prevent the articles from tipping over or falling off the conveyor system.
- Typically, whenever a different article travels through the conveyor system, the guide rails must be adjusted to accommodate the specifications of that article. This entails adjusting the guide rails to certain vertical and horizontal distances from the conveyor system. Although previous guide rail support posts allowed for this adjustment procedure, they did not allow this procedure to be readily repeatable. That is, each time a different article was conveyed, the vertical and horizontal distance calibrations had to be performed anew. Depending on the complexity of the adjustments, this procedure could require significant amounts of time and cause unnecessary manufacturing downtime. This nonrepeatability problem has been addressed by U.S. Pat. No. 5,819,911 issued to Ledingham. This patent discloses a railing support post that can be adjusted with respect to the guide rail which it supports.
- A spacer is typically used to adjust among predetermined fixed positions with respect to the guide rail which it supports. However, prior art spacer designs have significant shortcomings. For example, although the prior art spacer designs disclose a two-position spacer, the spacer dangles freely from a lanyard proximal the guide rails, when neither position is used. Although this arrangement allows the spacer to be readily available for use, it can nevertheless inadvertently become tangled with or otherwise interfere with conveyor line operations.
- A need therefore exists for a guide rail spacer that can be adjusted among a plurality of predetermined fixed positions with respect to a guide rail supported by a guide rail support post. A need also exists for a spacer that can be secured when not in use such that it does not interfere with conveyor line operations while remaining readily available for use.
- In accordance with the present invention, a guide rail spacer is provided that can be adjusted among a plurality of predetermined fixed positions with respect to the guide rail which it supports. The spacer can also be secured when not in use such that it does not interfere with conveyor line operations while remaining readily available for use.
- A further advantage of the present invention is that multi-functioning spacers may be mounted along a portion of the guide rail support to provide adjustment of a guide rail among predetermined fixed positions. Individual spacers maintain a plurality of mounting positions which allow one spacer to function as the equivalent of several spacers. The spacer is also constructed so that it does not interfere with conveyor line operations when not is use, but remains readily available for use. The spacer may also include a handle section for easy insertion and removal
- In accordance with one aspect of the present invention, the spacer has a body defining a plurality of channels with the plurality of channels including a first channel interposed between a second channel and a third channel. The first channel and second channels sized and configured to accept the tube, and the third channel sized and configured to accept the housing element.
- Further aspects, features and advantages of the present invention will become apparent from the detailed description of the preferred embodiment that follows.
- The above-mentioned and other features of the invention will now be described with reference to the drawings of a preferred embodiment of the present guide rail spacer. The illustrated embodiment of the guide rail spacer is intended to illustrate, but not to limit the invention. The drawings contain the following figures:
- FIG. 1 is a perspective view of a flexible guide rail support post supporting a pair of guide rails and having a spacer inserted in a first position in accordance with the teachings of the invention;
- FIG. 2 is a perspective view of the spacer of FIG. 1;
- FIG. 3A is a side elevation view of the guide rail support post of FIG. 1, illustrating the spacer in a first position;
- FIG. 3B is a side elevation view of the guide rail support post of FIG. 1, illustrating the spacer in a second position; and
- FIG. 3C is a side elevation view of the guide rail support post of FIG. 1, illustrating the spacer in a home position.
- The present embodiment of the guide rail spacer is disclosed in the context of an exemplary guide rail support post to support one or more guide rails on a conveyor assembly. The principles of the present invention, however, are not limited to use with guide rail support posts or even conveyor assemblies for that matter. Instead, it will be understood by one skilled in the art, in light of the present disclosure, that the guide rail spacer disclosed herein can also be successfully utilized in a variety of other contexts.
- To assist in the description of the components of the illustrated embodiment, the following coordinate terms are used. A “longitudinal axis” is generally parallel to the
ends spacer 30 when mounted on the guiderail support post 10. A “lateral axis” is normal to the longitudinal axis and is generally parallel to the plane of the supportedguide rails guide rails guide rails guide rails - Referring to the drawings, and particularly to FIG. 1, an exemplary guide
rail support post 10 is comprised of asupport bar 12, aremovable tube 14, anexterior spring 16, ahousing element 18, and a clamping means 20. The cylindricalexterior spring 16 andcylindrical housing element 18 abut each other and encase thecylindrical tube 14 to form a working member. The working member is secured and positioned by thesupport bar 12. - A
handle 22 is affixed to adistal end 24 of thetube 14 and theclamping device 20 is affixed to aproximal end 26 of the tube 14 (best seen by FIGS. 3A-C). Application of a linear force onto thehandle 22 advances theproximal end 26 of thetube 14 beyond theproximal end 28 of the housing element 18 (best seen by FIGS. 3A-C) and compresses thespring 16. When the linear force is removed, the spring force returns thetube 14 to a resting position. Aspacer 30 may then be mounted onto the exposedproximal end 26 of the tube 2, thereby adjusting thesupport post 10 in a fixed position. In this manner, one ormore spacers 30 may be added or removed to allow adjustment among a variety of fixed positions. A more detailed description of the structure, assembly and operation of the guiderail support post 10 is provided in U.S. Pat. No. 5,819,911 issued to Ledingham and hereby incorporated by reference. - Referring to FIG. 2, the support post incorporates a
spacer 30 that can be mounted onto theproximal end 26 of thetube 14. Thespacer 30 is constructed in a generally L-shaped design and has afirst side 32 and asecond side 34, bothsides first side 32 communicates with thesecond side 34 through anupper bridge 36 and alower bridge 38, bothbridges upper bridge 38 bounds anupper portion 40 of thespacer 30 and thelower bridge 38 bounds alower portion 42 of thespacer 30. The upper andlower portions spacer 30 communicate through amiddle portion 44 which is formed therebetween. Thespacer 30 also has aproximal end 48 and adistal end 50 that each extend in the transverse direction, the proximal and distal ends 48,50 are open or exposed. - The
upper portion 40 of thespacer 30 has a longitudinal length that is approximately equal to the longitudinal length of themiddle portion 44 of thespacer 30. Thelower portion 42 of thespacer 30 has a longitudinal length that is approximately twice the longitudinal length of the longitudinal length of the upper andmiddle portions - The
lower portion 42 of thespacer 30 has a lateral length that is approximately equal to the lateral length of themiddle portion 44 of thespacer 30. Theupper portion 40 of thespacer 30 has a lateral length that is preferably 1.1 to 2 times longer, and more preferably approximately 1.3 to 1.5 times longer, than the lateral length of the lower ormiddle portions - The
upper portion 40,lower portion 42 andmiddle portion 44 of thespacer 30 preferably have transverse lengths that are approximately equal. - When so arranged, a first or
middle channel 52 is formed between the proximal and distal ends 48,50 of thespacer 30. Themiddle channel 52 is bounded in the lateral direction by the first andsecond sides spacer 30. Themiddle channel 52 communicates with alower channel 54 and anupper channel 56 in the transverse direction. Themiddle channel 52 is sized and configured to accept a portion of thetube 14 but not to accept a portion of thehousing element 18. That is, thetube 14, which has a smaller radius than the radius of themiddle channel 52 can pass through themiddle channel 52, while thehousing element 18, which has a larger radius than the radius of themiddle channel 52 cannot pass through themiddle channel 52. - A second or
lower channel 54 is formed between the proximal and distal ends 48,50 of thespacer 30. Thelower channel 54 is bounded in the lateral direction by the first andsecond sides spacer 30 and is bounded in the transverse direction by thelower bridge 38, while also communicating with themiddle channel 52 in the transverse direction. Thelower channel 54 is sized and configured similar to themiddle channel 52 such that thelower channel 54 can accept a portion of thetube 14 but not accept a portion of thehousing element 18. That is, thetube 14, which has a smaller radius than the radius of thelower channel 54 can pass through thelower channel 54, while thehousing element 18, which has a larger radius than the radius of thelower channel 54, cannot pass through thelower channel 54. - A third or
upper channel 56 is formed between the proximal and distal ends 48,50 of thespacer 30. Theupper channel 56 is bounded in the lateral direction by the first andsecond sides spacer 30 and is bounded in the transverse direction by theupper bridge 36 while also communicating with themiddle channel 52 in the transverse direction. Theupper channel 56 is sized and configured such that theupper channel 56 can accept both a portion of thetube 14 and a portion of thehousing element 18. That is, thetube 14, which has a smaller radius than the radius of theupper channel 56 can pass through theupper channel 56, while thehousing element 18, which also has a smaller radius than the radius of theupper channel 56 can also pass through theupper channel 56. - The exterior and interior of the
spacer 30 can be formed in a variety of geometric configurations. The illustrated embodiment shows the exterior of the lower andmiddle portions spacer 30 as being generally linear and smooth, with the first andsecond sides upper portion 40 has an arcuate curvature, preferably semi-circular, in the transverse direction and is linear in the longitudinal direction. The illustrated embodiment shows the interior dimensions as being generally similar to the exterior dimensions. However, the upper andlower bridges third channels channels spacer 30. - The above-described dimensions of the
spacer 30 provide for fixing theproximal end 26 of thetube 14 beyond theproximal end 28 of thehousing element 18, thereby permitting adjustment of the guide rails 13,14 to a plurality of positions. Preferably, this fixation comprises mounting thespacer 30 onto theproximal end 26 of thetube 14. When a linear force F is applied to thehandle 22, the force advances thetube 14 and compresses thespring 16, theproximal end 26 of thetube 14 is thereby exposed beyond theproximal end 28 of thehousing element 18 and capable of receiving a portion of thespacer 30. When the force F is removed, the spring force returns thetube 14 to a resting position which corresponds to a fixed guide rail position. A plurality ofspacers 30 may be mounted on theproximal end 26 of thetube 14 to provide additional varied guide rail positions. Thespacer 30 is advantageously pre-placed between theclamp 20 andsupport 12 before thesupport 12 is connected to the guide rails 13,14 thereby longitudinally capturing thespacer 30 between the assembledclamp 20 andsupport 12 along thetube 16 andguide element 18. - FIGS.3A-C illustrate the
spacer 30 mounted on either theproximal end 26 of thetube 14 or mounted across theguide element 18. More specifically, FIG. 3A shows thespacer 30 mounted in a first position on theproximal end 26 of thetube 14. FIG. 3B shows thespacer 30 mounted in a second position on theproximal end 26 of thetube 14; and FIG. 3C shows the spacer mounted in a third position over the circumferentially layeredguide element 18 andtube 14. - Referring to FIG. 3A, when linear force F is applied to the handle the
proximal end 26 of thetube 14 is exposed beyond theproximal end 26 of thehousing element 18 and capable of receiving a portion of thespacer 30, as described above. When themiddle channel 52 of thespacer 30 is transversely aligned around thetube 14 and thetube 14 subsequently released, the size and configuration of themiddle channel 52 is such that themiddle channel 52 can accept a portion of thetube 14 but cannot not accept a portion of theguide element 18, as described above. By this arrangement, theproximal end 48 ofspacer 30 abuts theclamp 20 and thedistal end 50 of thespacer 30 abuts theguide element 18 while a portion of thetube 14 extends within themiddle channel 52. Thisspacer 30 position corresponds to a first position where thespacer 30 extends the guide rail to a first predetermined length L1. - Referring to FIG. 3B, when the
spacer 30 is oriented similar to the spacer shown in FIG. 3A and described above, and thelower channel 54 is transversely aligned around thetube 14 and thetube 14 subsequently released, the size and configuration of thelower channel 54 is such that thelower channel 54 can accept a portion of thetube 14 but cannot not accept a portion of theguide element 18, as described above. By this arrangement, theproximal end 48 ofspacer 30 abuts theclamp 20 and thedistal end 50 of thespacer 30 abuts theguide element 18 while a portion of thetube 14 extends within thelower channel 54. Thisspacer 30 position corresponds to a second position where thespacer 30 extends the guide rail to a second predetermined length L2. - Referring to FIG. 3C, when the
spacer 30 is oriented similar to thespacer 30 shown in FIG. 3A and described above, and theupper channel 56 is transversely aligned with thetube 14 and thetube 14 subsequently released, the size and configuration of theupper channel 56 is such that theupper channel 56 can accept both a portion of thetube 14 and a portion of theguide element 18, as described above. By this arrangement, theguide element 18 andtube 14 both pass entirely through theupper channel 56 of thespacer 30. The proximal ends 26,28 of the tube thus both abut theclamp 20, with a portion of thetube 14 circumferentially layered within a portion of theguide element 18, which, is within theupper channel 56. Thisspacer 30 position corresponds to a third or home position where thespacer 30 extends the guide rail to a third predetermined length that is coextensive with not using thespacer 30. Thespacer 30 can be advantageously rotated 90 degrees to reduce undesired contact with the support post 10 (not shown). - The
spacer 30 may also incorporate a handle molded into the upper orlower bridge spacer 30. - In the preferred embodiment, the
tube 14 is approximately eight inches in length with an exterior radius of slightly less than one half inch. Both theexterior spring 16 andhousing elements 18 are approximately four inches in length with an interior radius of slightly more than one half inch. Themiddle channel 52 of thespacer 30 has a longitudinal length of approximately one-half inch and an inner radius that is slightly larger than the outer radius of thetube 14 and slightly smaller than the outer radius of theguide element 18, a preferably an inner radius of approximately one half inch. Thelower channel 50 of thespacer 30 has a longitudinal length of approximately one inch and an inner radius that is slightly larger than the outer radius of thetube 14 and slightly smaller than the outer radius of theguide element 18, a preferably an inner radius of approximately one half inch. Theupper channel 56 of thespacer 30 has a longitudinal length of approximately one-half inch and an inner radius that is slightly larger than the outer radius of theguide element 18, a preferably a radius of one-half to three-quarters of an inch. - The illustrated
spacer 30 is constructed in a unibody configuration of a rigid molded plastic. Plastic is preferred for its strength and low cost. However, there is no requirement that thespacer 30 be constructed of a unibody design and can be constructed of other materials such as metals, composites and other suitable materials depending on the particular application of the spacer. - The embodiments illustrated and described above are provided merely as examples of the spacer constructed in accordance with the present invention. Other changes and modifications can be made from the embodiments presented herein by those skilled in the art without departure from the spirit and scope of the invention, as defined by the appended claims.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/365,923 US6827205B2 (en) | 1998-10-15 | 2003-02-13 | Guide rail spacer |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/173,661 US6135271A (en) | 1998-10-15 | 1998-10-15 | Guide rail spacer |
US09/696,746 US6533110B1 (en) | 1998-10-15 | 2000-10-24 | Guide rail spacer |
US10/365,923 US6827205B2 (en) | 1998-10-15 | 2003-02-13 | Guide rail spacer |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/696,746 Continuation US6533110B1 (en) | 1998-10-15 | 2000-10-24 | Guide rail spacer |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030116410A1 true US20030116410A1 (en) | 2003-06-26 |
US6827205B2 US6827205B2 (en) | 2004-12-07 |
Family
ID=22632991
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/173,661 Expired - Lifetime US6135271A (en) | 1998-10-15 | 1998-10-15 | Guide rail spacer |
US09/696,746 Expired - Lifetime US6533110B1 (en) | 1998-10-15 | 2000-10-24 | Guide rail spacer |
US10/365,923 Expired - Lifetime US6827205B2 (en) | 1998-10-15 | 2003-02-13 | Guide rail spacer |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/173,661 Expired - Lifetime US6135271A (en) | 1998-10-15 | 1998-10-15 | Guide rail spacer |
US09/696,746 Expired - Lifetime US6533110B1 (en) | 1998-10-15 | 2000-10-24 | Guide rail spacer |
Country Status (1)
Country | Link |
---|---|
US (3) | US6135271A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2417718B (en) * | 2004-09-01 | 2007-10-24 | Zepf Technologies Uk Ltd | Adjustable conveyor guide |
US20100200373A1 (en) * | 2004-09-01 | 2010-08-12 | Mcalister Mark | Adjustable conveyor guide |
US10087012B1 (en) * | 2015-11-30 | 2018-10-02 | Span Tech Llc | Adjustable conveyor belt guide rail with retractable support |
USD910959S1 (en) | 2017-05-19 | 2021-02-16 | Span Tech Llc | Conveyor guiderail |
WO2021201751A1 (en) | 2020-03-30 | 2021-10-07 | Flexlink Ab | Conveyor guide rail attachment |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6135271A (en) | 1998-10-15 | 2000-10-24 | Valu Engineering, Inc. | Guide rail spacer |
US6830146B1 (en) | 2002-08-01 | 2004-12-14 | Cargotainer Adrian Fabricators, Inc. | Guide rail system for roller-type conveyors |
WO2004074146A1 (en) | 2003-02-18 | 2004-09-02 | Sidel (Canada) Inc. | Actuating assembly for an adjustable width guideway in a conveyor system for bottles |
FR2859655B1 (en) * | 2003-09-17 | 2005-12-09 | Gemt Groupement D Etudes Et De | PROTECTION SYSTEM, ESPECIALLY FOR CONVEYORS |
DE102004020195A1 (en) * | 2004-04-22 | 2005-11-17 | Linde Ag | Device for treating food with a conveyor belt for conveying the food through a treatment zone |
FR2918973A1 (en) * | 2007-07-20 | 2009-01-23 | Sidel Participations | IMPROVEMENTS TO THE (X) GUIDE (S) INSTALLED ON A CONVEYOR |
FR2918972B1 (en) * | 2007-07-20 | 2010-01-29 | Sidel Participations | GUIDE SUPPORT FOR CONVEYOR |
US9725246B2 (en) | 2008-05-20 | 2017-08-08 | Flexibility Engineering, Llc | Flow restricted positioner control apparatus and methods |
US8132665B2 (en) * | 2008-05-20 | 2012-03-13 | Advanced Manufacturing Technology For Bottles, Inc. | Position control apparatus and methods |
US9133865B2 (en) | 2008-05-20 | 2015-09-15 | Flexibility Engineering, Llc | Position control apparatus |
CA2716300C (en) * | 2009-10-02 | 2017-09-05 | Septimatech Group Inc. | Guide rail system |
US8464864B2 (en) * | 2010-10-29 | 2013-06-18 | Septimatech Group Inc. | Guide rail system |
US8695787B2 (en) | 2011-09-26 | 2014-04-15 | Septimatech Group Inc. | Guide rail system |
CA2882922C (en) | 2014-02-21 | 2020-12-01 | Septimatech Group Inc. | Guide rail system with cover element |
US9926095B2 (en) * | 2015-03-21 | 2018-03-27 | Richard W. Sigler, JR. | Reconfigured and upgraded component parts for a packaging labeler machine |
US9677576B2 (en) | 2015-09-14 | 2017-06-13 | Flexbility Engineering, LLC | Flow restricted positioner control apparatus and methods |
FR3080056B1 (en) * | 2018-04-16 | 2020-03-20 | Sidel Participations | METHOD FOR POSITIONING THERMAL PROTECTION RAMPS IN A PREFORM HEATING STATION |
MX2022011413A (en) | 2021-09-16 | 2023-03-17 | Fogg Filler Company Llc | Rotatable material transfer system with adjustment and related system components. |
US12157637B2 (en) | 2021-11-29 | 2024-12-03 | Cannon Equipment Llc | Guide system for conveyors |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US229670A (en) * | 1880-07-06 | caerick | ||
US930870A (en) * | 1909-01-19 | 1909-08-10 | Harry W Lewis | Rail-joint. |
GB489838A (en) * | 1938-01-07 | 1938-08-04 | Alfred Smallwood | A new or improved clamp for assembling scaffolding or the like |
CH335904A (en) * | 1955-03-08 | 1959-01-31 | Oederlin Cie Ag | Cable connection with at least two clamping points |
CH335905A (en) | 1955-07-01 | 1959-01-31 | Vogel Willy Fa | Oil distributors, especially for central lubrication |
US3059589A (en) * | 1959-02-18 | 1962-10-23 | Columbus Mckinnon Chain Corp | Trolley conveyor suspension device |
US3280962A (en) * | 1964-06-11 | 1966-10-25 | Stone Convevor Company Inc | Guiding means for container handling conveyors |
US3554353A (en) * | 1968-09-18 | 1971-01-12 | Emhart Corp | Adjustable lane guides |
US3647051A (en) * | 1970-05-26 | 1972-03-07 | Stone Conveyor Co Inc | Fast adjustment device for conveyor guide rails |
US3776350A (en) * | 1972-06-08 | 1973-12-04 | J Tice | Guide rail support |
US3800938A (en) * | 1972-08-18 | 1974-04-02 | Stone Conveyor Inc | Conveyor assembly with extrusions having inclined corners |
US4225035A (en) * | 1978-08-31 | 1980-09-30 | Owens-Illinois, Inc. | Guide rail system for use on inspection machines |
DE3035371A1 (en) * | 1980-09-19 | 1982-05-06 | Gefra B.V.,, s'Gravenzande | SUPPORT FOR THE SIDE GUIDE OF A CONVEYOR |
DE3116334A1 (en) * | 1981-04-24 | 1982-11-18 | Gefra B.V.,, s'Gravenzande | "DEVICE FOR FASTENING A SIDE GUIDE, A CONVEYOR DEVICE ON A POST" |
US5322160A (en) * | 1992-12-15 | 1994-06-21 | L'oreal | Conveyor belt changeover device |
US5492218A (en) * | 1994-11-01 | 1996-02-20 | Joseph E. Seagram & Sons, Ltd. | Adjustable railing support post for conveyor lines and method of use thereof |
US5626221A (en) * | 1995-10-06 | 1997-05-06 | Valu Engineering, Inc. | Tapered clamp support rod |
US6003662A (en) * | 1996-08-19 | 1999-12-21 | Fenner, Inc. | Quick-change guide rail support |
US5782339A (en) * | 1996-11-06 | 1998-07-21 | Drewitz; Hugues | Adjustable guide-rail for a conveyor belt |
US5927480A (en) * | 1997-06-13 | 1999-07-27 | Fenner, Inc. | Adjustable guide rail support |
US5819911A (en) * | 1997-09-22 | 1998-10-13 | Valu Engineering, Inc. | Flexible guide rail support post |
US5967259A (en) * | 1998-02-27 | 1999-10-19 | Williams; Dewell F. | Utility tray for stepladders |
US6135271A (en) | 1998-10-15 | 2000-10-24 | Valu Engineering, Inc. | Guide rail spacer |
-
1998
- 1998-10-15 US US09/173,661 patent/US6135271A/en not_active Expired - Lifetime
-
2000
- 2000-10-24 US US09/696,746 patent/US6533110B1/en not_active Expired - Lifetime
-
2003
- 2003-02-13 US US10/365,923 patent/US6827205B2/en not_active Expired - Lifetime
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2417718B (en) * | 2004-09-01 | 2007-10-24 | Zepf Technologies Uk Ltd | Adjustable conveyor guide |
US20080116042A1 (en) * | 2004-09-01 | 2008-05-22 | Mcalister Mark | Adjustable Conveyor Guide |
US20100200373A1 (en) * | 2004-09-01 | 2010-08-12 | Mcalister Mark | Adjustable conveyor guide |
US8132666B2 (en) | 2004-09-01 | 2012-03-13 | Zepf Technologies Uk Limited | Adjustable conveyor guide |
US10087012B1 (en) * | 2015-11-30 | 2018-10-02 | Span Tech Llc | Adjustable conveyor belt guide rail with retractable support |
USD910959S1 (en) | 2017-05-19 | 2021-02-16 | Span Tech Llc | Conveyor guiderail |
US11097901B2 (en) | 2017-05-19 | 2021-08-24 | Span Tech Llc | Adjustable conveyor belt guiderail and related methods |
WO2021201751A1 (en) | 2020-03-30 | 2021-10-07 | Flexlink Ab | Conveyor guide rail attachment |
US11702294B2 (en) | 2020-03-30 | 2023-07-18 | Flexlink Ab | Conveyor guide rail attachment |
Also Published As
Publication number | Publication date |
---|---|
US6827205B2 (en) | 2004-12-07 |
US6533110B1 (en) | 2003-03-18 |
US6135271A (en) | 2000-10-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6827205B2 (en) | Guide rail spacer | |
US5967295A (en) | Flexible guide rail support post | |
EP0850579A3 (en) | Mount for a spring device | |
TR25504A (en) | 1- (0- (CYCLOPROPYLCARBONYL) FENYL) SULFAMOIL-) 3- (4,6-DIMETOXIDE-2-PYRIMIDINYL) UREA AND THE PREPARATION FOR IT. | |
US6786672B2 (en) | Low profile rod clamp | |
EP1218267B1 (en) | Guide rail support bracket for conveyor system | |
CA2131490A1 (en) | Sieve Apparatus for Combine | |
DE59407001D1 (en) | Spring tines, conveyor and harvester | |
TR27560A (en) | Process for making high strength, low shrink polyamide yarn and yarn made with this process .. | |
US6105757A (en) | Rail and bed system | |
DE59005390D1 (en) | REEL DEVICE FOR TUBE BELT CONVEYORS AND THE LIKE. | |
EP0852124A3 (en) | Means for fixing slats to a mattress base | |
US6138962A (en) | Apparatus for holding open a mouth of a bag | |
FI933685L (en) | STABILA SALTER AV (+)-(1S,2R)-2-((N-(2-HYDROXYLAMINO-2-OXOETHYL)-N-METHYLAMINO)CARBONYL)CYKLOHEXAN-1-CARBOXYLSYRA, DERAS FRAMSTAELLNINGSMETODEROCH FARMACEUTISKA SAMMANSAETTNINGAR INNEHAOLLANDE DESSA | |
USD357487S (en) | Clamp bushing having an integrated conical mounting means | |
FR2698236B1 (en) | Machine for harvesting berries from shrubs, especially grapes. | |
JP2781310B2 (en) | Stem and culm conveyor | |
FR2693099B3 (en) | Nut centering device for implants with straightening, fixing, compression and spinal elongation devices. | |
CA2019540C (en) | Ribbon transducers | |
CA2262328A1 (en) | Armature winder | |
IT8921428A0 (en) | IMPROVEMENT FOR THE MECHANICAL STABILIZATION OF FLATTEN ELLIPTIC SPRING RESISTORS. | |
ITPE940016V0 (en) | LIFTING SYSTEM, WITH HANDLING ALONG THE VERTICAL AXIS AND WITH AN ADJUSTABLE HEIGHT OF 100/800 MM., OF THE CENTRAL PART OF A TABLE. | |
US20030155486A1 (en) | Method and apparatus for co-axial alignment through non-coaxial means | |
ITTO920539A0 (en) | DEVICE FOR MEASURING THE DEGREE OF HUMIDITY, FOR EXAMPLE FOR MEASURING THE DEGREE OF HUMIDITY OF FORAGE. | |
AU6249790A (en) | Side fixing wire slot for horticultural trellis frames, fence posts, and the like |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
REMI | Maintenance fee reminder mailed | ||
FPAY | Fee payment |
Year of fee payment: 4 |
|
SULP | Surcharge for late payment | ||
AS | Assignment |
Owner name: SOLUS INDUSTRIAL INNOVATIONS, LLC, KENTUCKY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:VALU ENGINEERING, INC.;REEL/FRAME:022868/0274 Effective date: 20090622 |
|
FEPP | Fee payment procedure |
Free format text: PAT HOLDER NO LONGER CLAIMS SMALL ENTITY STATUS, ENTITY STATUS SET TO UNDISCOUNTED (ORIGINAL EVENT CODE: STOL); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |