US20030114516A1 - Novel immunotherapeutic agents - Google Patents
Novel immunotherapeutic agents Download PDFInfo
- Publication number
- US20030114516A1 US20030114516A1 US10/316,673 US31667302A US2003114516A1 US 20030114516 A1 US20030114516 A1 US 20030114516A1 US 31667302 A US31667302 A US 31667302A US 2003114516 A1 US2003114516 A1 US 2003114516A1
- Authority
- US
- United States
- Prior art keywords
- carbon atoms
- alkyl
- dioxo
- azaindolin
- propionic acid
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000002955 immunomodulating agent Substances 0.000 title 1
- 108060008682 Tumor Necrosis Factor Proteins 0.000 claims abstract description 60
- 102000000852 Tumor Necrosis Factor-alpha Human genes 0.000 claims abstract description 60
- 102000004861 Phosphoric Diester Hydrolases Human genes 0.000 claims abstract description 9
- 108090001050 Phosphoric Diester Hydrolases Proteins 0.000 claims abstract description 9
- -1 carbethoxy, carbomethoxy, carbopropoxy, acetyl Chemical group 0.000 claims description 68
- 125000004432 carbon atom Chemical group C* 0.000 claims description 57
- 125000000217 alkyl group Chemical group 0.000 claims description 45
- 150000001875 compounds Chemical class 0.000 claims description 34
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 22
- 238000000034 method Methods 0.000 claims description 20
- RWRDLPDLKQPQOW-UHFFFAOYSA-N Pyrrolidine Chemical compound C1CCNC1 RWRDLPDLKQPQOW-UHFFFAOYSA-N 0.000 claims description 18
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 claims description 16
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 16
- 125000003545 alkoxy group Chemical group 0.000 claims description 15
- 125000001475 halogen functional group Chemical group 0.000 claims description 12
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 12
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 11
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 claims description 8
- 125000001424 substituent group Chemical group 0.000 claims description 8
- 241000124008 Mammalia Species 0.000 claims description 7
- 239000001257 hydrogen Substances 0.000 claims description 6
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 6
- 125000003118 aryl group Chemical group 0.000 claims description 5
- 125000004122 cyclic group Chemical group 0.000 claims description 5
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- 125000005592 polycycloalkyl group Polymers 0.000 claims description 4
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 claims description 3
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 claims description 3
- 125000000051 benzyloxy group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])O* 0.000 claims description 2
- 229910052799 carbon Inorganic materials 0.000 claims description 2
- 125000001624 naphthyl group Chemical group 0.000 claims description 2
- 125000004076 pyridyl group Chemical group 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims 4
- 125000001301 ethoxy group Chemical group [H]C([H])([H])C([H])([H])O* 0.000 claims 2
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 claims 2
- 239000008194 pharmaceutical composition Substances 0.000 claims 2
- 206010040070 Septic Shock Diseases 0.000 abstract description 8
- 230000010076 replication Effects 0.000 abstract description 6
- 206010006895 Cachexia Diseases 0.000 abstract description 5
- 206010014824 Endotoxic shock Diseases 0.000 abstract description 4
- 241001430294 unidentified retrovirus Species 0.000 abstract description 3
- 208000006673 asthma Diseases 0.000 abstract description 2
- 230000004968 inflammatory condition Effects 0.000 abstract description 2
- 239000003112 inhibitor Substances 0.000 abstract description 2
- 150000001408 amides Chemical class 0.000 abstract 1
- 150000003949 imides Chemical class 0.000 abstract 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-N dimethylselenoniopropionate Natural products CCC(O)=O XBDQKXXYIPTUBI-UHFFFAOYSA-N 0.000 description 90
- 235000019260 propionic acid Nutrition 0.000 description 44
- IUVKMZGDUIUOCP-BTNSXGMBSA-N quinbolone Chemical compound O([C@H]1CC[C@H]2[C@H]3[C@@H]([C@]4(C=CC(=O)C=C4CC3)C)CC[C@@]21C)C1=CCCC1 IUVKMZGDUIUOCP-BTNSXGMBSA-N 0.000 description 44
- 229940080818 propionamide Drugs 0.000 description 38
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 37
- 239000007787 solid Substances 0.000 description 34
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 32
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 28
- IAZDPXIOMUYVGZ-WFGJKAKNSA-N Dimethyl sulfoxide Chemical compound [2H]C([2H])([2H])S(=O)C([2H])([2H])[2H] IAZDPXIOMUYVGZ-WFGJKAKNSA-N 0.000 description 28
- 239000000203 mixture Substances 0.000 description 28
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 27
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 26
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 25
- 229910001868 water Inorganic materials 0.000 description 24
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 21
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 21
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 20
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 18
- 239000004480 active ingredient Substances 0.000 description 18
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 17
- FVSKHRXBFJPNKK-UHFFFAOYSA-N propionitrile Chemical compound CCC#N FVSKHRXBFJPNKK-UHFFFAOYSA-N 0.000 description 17
- 239000000243 solution Substances 0.000 description 17
- 241000725303 Human immunodeficiency virus Species 0.000 description 16
- 201000010099 disease Diseases 0.000 description 16
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 16
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 15
- 238000005160 1H NMR spectroscopy Methods 0.000 description 14
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 13
- 210000001744 T-lymphocyte Anatomy 0.000 description 13
- 229910052757 nitrogen Inorganic materials 0.000 description 13
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 12
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical group O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 12
- 210000004027 cell Anatomy 0.000 description 12
- 239000000047 product Substances 0.000 description 12
- 101000979342 Homo sapiens Nuclear factor NF-kappa-B p105 subunit Proteins 0.000 description 11
- 102100023050 Nuclear factor NF-kappa-B p105 subunit Human genes 0.000 description 11
- 239000000725 suspension Substances 0.000 description 11
- 208000030507 AIDS Diseases 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 108090000695 Cytokines Proteins 0.000 description 9
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 9
- 241000700605 Viruses Species 0.000 description 9
- 239000008101 lactose Substances 0.000 description 9
- 102000004127 Cytokines Human genes 0.000 description 8
- 229920002472 Starch Polymers 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 235000019359 magnesium stearate Nutrition 0.000 description 8
- 230000001404 mediated effect Effects 0.000 description 8
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 description 8
- 208000031886 HIV Infections Diseases 0.000 description 7
- 0 [7*]C(C[Y])N1[6*][5*]C1=O Chemical compound [7*]C(C[Y])N1[6*][5*]C1=O 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 239000003814 drug Substances 0.000 description 7
- 238000003818 flash chromatography Methods 0.000 description 7
- 239000000741 silica gel Substances 0.000 description 7
- 229910002027 silica gel Inorganic materials 0.000 description 7
- RGICSXKVRUULGR-UHFFFAOYSA-N 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propanoic acid Chemical compound COC1=CC=C(C(N)CC(O)=O)C=C1OC1CCCC1 RGICSXKVRUULGR-UHFFFAOYSA-N 0.000 description 6
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 6
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 6
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical class OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 6
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 6
- 206010028980 Neoplasm Diseases 0.000 description 6
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 description 6
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 229940079593 drug Drugs 0.000 description 6
- IVPVLWXITDDNIO-UHFFFAOYSA-N ethyl 1,3-dioxobenzo[f]isoindole-2-carboxylate Chemical compound C1=CC=C2C=C(C(N(C(=O)OCC)C3=O)=O)C3=CC2=C1 IVPVLWXITDDNIO-UHFFFAOYSA-N 0.000 description 6
- WFKYHKMHFVHCAX-UHFFFAOYSA-N ethyl 1,3-dioxopyrrolo[3,4-c]pyridine-2-carboxylate Chemical compound C1=NC=C2C(=O)N(C(=O)OCC)C(=O)C2=C1 WFKYHKMHFVHCAX-UHFFFAOYSA-N 0.000 description 6
- FBXVETNPPKPWIM-UHFFFAOYSA-N ethyl 5,7-dioxopyrrolo[3,4-b]pyridine-6-carboxylate Chemical compound C1=CN=C2C(=O)N(C(=O)OCC)C(=O)C2=C1 FBXVETNPPKPWIM-UHFFFAOYSA-N 0.000 description 6
- 230000005764 inhibitory process Effects 0.000 description 6
- 210000002540 macrophage Anatomy 0.000 description 6
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 6
- 239000008107 starch Substances 0.000 description 6
- 235000019698 starch Nutrition 0.000 description 6
- 239000000454 talc Substances 0.000 description 6
- 229910052623 talc Inorganic materials 0.000 description 6
- 230000006433 tumor necrosis factor production Effects 0.000 description 6
- 150000001412 amines Chemical class 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- VRHAQNTWKSVEEC-UHFFFAOYSA-N ethyl 1,3-dioxoisoindole-2-carboxylate Chemical compound C1=CC=C2C(=O)N(C(=O)OCC)C(=O)C2=C1 VRHAQNTWKSVEEC-UHFFFAOYSA-N 0.000 description 5
- 230000014509 gene expression Effects 0.000 description 5
- 230000002757 inflammatory effect Effects 0.000 description 5
- 238000010992 reflux Methods 0.000 description 5
- 210000002966 serum Anatomy 0.000 description 5
- DJGWCAKHYFQWHI-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound COC1=CC=C(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 DJGWCAKHYFQWHI-UHFFFAOYSA-N 0.000 description 4
- 208000011231 Crohn disease Diseases 0.000 description 4
- 108010010803 Gelatin Proteins 0.000 description 4
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- 208000037357 HIV infectious disease Diseases 0.000 description 4
- 206010061218 Inflammation Diseases 0.000 description 4
- SJRJJKPEHAURKC-UHFFFAOYSA-N N-Methylmorpholine Chemical compound CN1CCOCC1 SJRJJKPEHAURKC-UHFFFAOYSA-N 0.000 description 4
- 208000001388 Opportunistic Infections Diseases 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 4
- 239000002775 capsule Substances 0.000 description 4
- 239000012043 crude product Substances 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- 239000008273 gelatin Substances 0.000 description 4
- 229920000159 gelatin Polymers 0.000 description 4
- 235000019322 gelatine Nutrition 0.000 description 4
- 235000011852 gelatine desserts Nutrition 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 208000015181 infectious disease Diseases 0.000 description 4
- 230000004054 inflammatory process Effects 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 238000004519 manufacturing process Methods 0.000 description 4
- 230000002265 prevention Effects 0.000 description 4
- 239000011541 reaction mixture Substances 0.000 description 4
- 206010039073 rheumatoid arthritis Diseases 0.000 description 4
- 239000012258 stirred mixture Substances 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 230000009885 systemic effect Effects 0.000 description 4
- 230000029812 viral genome replication Effects 0.000 description 4
- OEPMGFJLYHJXDJ-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound COC1=CC=C(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 OEPMGFJLYHJXDJ-UHFFFAOYSA-N 0.000 description 3
- CLMDDIGKCKSXFB-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound CCOC1=CC(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 CLMDDIGKCKSXFB-UHFFFAOYSA-N 0.000 description 3
- XZNYILUOYJBJNR-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound CCOC1=CC(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 XZNYILUOYJBJNR-UHFFFAOYSA-N 0.000 description 3
- BXSJRAYIRCHLTL-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound COC1=CC(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 BXSJRAYIRCHLTL-UHFFFAOYSA-N 0.000 description 3
- ZZYRKVLOSQNXGH-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanoic acid Chemical compound CCOC1=CC(C(CC(O)=O)N2C(C3=NC=CC=C3C2=O)=O)=CC=C1OC1CCCC1 ZZYRKVLOSQNXGH-UHFFFAOYSA-N 0.000 description 3
- ZLBNCWAPIPZBPP-UHFFFAOYSA-N 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propanoic acid Chemical compound CCOC1=CC=C(C(N)CC(O)=O)C=C1OC1CCCC1 ZLBNCWAPIPZBPP-UHFFFAOYSA-N 0.000 description 3
- LBANREVQQWADJY-UHFFFAOYSA-N 3-amino-3-(4-cyclohexyloxy-3-ethoxyphenyl)propanoic acid Chemical compound CCOC1=CC(C(N)CC(O)=O)=CC=C1OC1CCCCC1 LBANREVQQWADJY-UHFFFAOYSA-N 0.000 description 3
- JVIKSVBAUXQTCK-UHFFFAOYSA-N 3-amino-3-(4-cyclohexyloxy-3-methoxyphenyl)propanoic acid Chemical compound COC1=CC(C(N)CC(O)=O)=CC=C1OC1CCCCC1 JVIKSVBAUXQTCK-UHFFFAOYSA-N 0.000 description 3
- NYARXHOZBDXTKE-UHFFFAOYSA-N 3-amino-3-(4-cyclopentyloxy-3-ethoxyphenyl)propanoic acid Chemical compound CCOC1=CC(C(N)CC(O)=O)=CC=C1OC1CCCC1 NYARXHOZBDXTKE-UHFFFAOYSA-N 0.000 description 3
- 206010001052 Acute respiratory distress syndrome Diseases 0.000 description 3
- 206010002556 Ankylosing Spondylitis Diseases 0.000 description 3
- 102000016289 Cell Adhesion Molecules Human genes 0.000 description 3
- 108010067225 Cell Adhesion Molecules Proteins 0.000 description 3
- 206010009900 Colitis ulcerative Diseases 0.000 description 3
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 3
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 3
- 206010024229 Leprosy Diseases 0.000 description 3
- 229930195725 Mannitol Natural products 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 201000006704 Ulcerative Colitis Diseases 0.000 description 3
- 208000036142 Viral infection Diseases 0.000 description 3
- 230000009471 action Effects 0.000 description 3
- 230000001154 acute effect Effects 0.000 description 3
- 201000000028 adult respiratory distress syndrome Diseases 0.000 description 3
- 150000001299 aldehydes Chemical class 0.000 description 3
- 230000002917 arthritic effect Effects 0.000 description 3
- 206010003246 arthritis Diseases 0.000 description 3
- 238000009835 boiling Methods 0.000 description 3
- 201000011510 cancer Diseases 0.000 description 3
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 3
- 208000024908 graft versus host disease Diseases 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 206010025135 lupus erythematosus Diseases 0.000 description 3
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 3
- 201000004792 malaria Diseases 0.000 description 3
- 239000000594 mannitol Substances 0.000 description 3
- 235000010355 mannitol Nutrition 0.000 description 3
- LMSJALBZSFJVLJ-UHFFFAOYSA-N methyl 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OC)C(C=1)=CC=C(OC)C=1OC1CCCC1 LMSJALBZSFJVLJ-UHFFFAOYSA-N 0.000 description 3
- 210000001616 monocyte Anatomy 0.000 description 3
- 201000006417 multiple sclerosis Diseases 0.000 description 3
- 239000012044 organic layer Substances 0.000 description 3
- 201000008482 osteoarthritis Diseases 0.000 description 3
- 230000036303 septic shock Effects 0.000 description 3
- 230000035939 shock Effects 0.000 description 3
- 239000002002 slurry Substances 0.000 description 3
- 229910000029 sodium carbonate Inorganic materials 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 238000013518 transcription Methods 0.000 description 3
- 230000035897 transcription Effects 0.000 description 3
- 230000009385 viral infection Effects 0.000 description 3
- HIXDQWDOVZUNNA-UHFFFAOYSA-N 2-(3,4-dimethoxyphenyl)-5-hydroxy-7-methoxychromen-4-one Chemical compound C=1C(OC)=CC(O)=C(C(C=2)=O)C=1OC=2C1=CC=C(OC)C(OC)=C1 HIXDQWDOVZUNNA-UHFFFAOYSA-N 0.000 description 2
- DLVRXXOQWPVUEU-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound CCOC1=CC=C(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 DLVRXXOQWPVUEU-UHFFFAOYSA-N 0.000 description 2
- QIAIONLYBONXJQ-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound CCOC1=CC=C(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 QIAIONLYBONXJQ-UHFFFAOYSA-N 0.000 description 2
- PSZRYQWTTKEENT-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanenitrile Chemical compound COC1=CC=C(C(CC#N)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 PSZRYQWTTKEENT-UHFFFAOYSA-N 0.000 description 2
- OHOXTJAQCQVJEZ-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanoic acid Chemical compound COC1=CC=C(C(CC(O)=O)N2C(C3=CC=CC=C3C2=O)=O)C=C1OC1CCCC1 OHOXTJAQCQVJEZ-UHFFFAOYSA-N 0.000 description 2
- DBDOHQQYHZKIEV-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 DBDOHQQYHZKIEV-UHFFFAOYSA-N 0.000 description 2
- ZCOBYXWRSBVZIC-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound CCOC1=CC(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCC1 ZCOBYXWRSBVZIC-UHFFFAOYSA-N 0.000 description 2
- YYBAGMBZWMMDOR-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound CCOC1=CC(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCC1 YYBAGMBZWMMDOR-UHFFFAOYSA-N 0.000 description 2
- WPENIPSBFFIMOH-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCC1 WPENIPSBFFIMOH-UHFFFAOYSA-N 0.000 description 2
- GDXXXLABFJBIJB-PBWFPOADSA-N 3-[(3ar,7as)-1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl]-3-phenylpropanoic acid Chemical compound O=C([C@@H]1CCCC[C@@H]1C1=O)N1C(CC(=O)O)C1=CC=CC=C1 GDXXXLABFJBIJB-PBWFPOADSA-N 0.000 description 2
- UJOYFRCOTPUKAK-UHFFFAOYSA-N 3-ammonio-3-phenylpropanoate Chemical compound [O-]C(=O)CC([NH3+])C1=CC=CC=C1 UJOYFRCOTPUKAK-UHFFFAOYSA-N 0.000 description 2
- IGHHPKMTZLYIQP-UHFFFAOYSA-N 3-cyclopentyloxy-4-ethoxybenzaldehyde Chemical compound CCOC1=CC=C(C=O)C=C1OC1CCCC1 IGHHPKMTZLYIQP-UHFFFAOYSA-N 0.000 description 2
- FZFWPURYSWKIRT-UHFFFAOYSA-N 3-cyclopentyloxy-4-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1OC1CCCC1 FZFWPURYSWKIRT-UHFFFAOYSA-N 0.000 description 2
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- USFZMSVCRYTOJT-UHFFFAOYSA-N Ammonium acetate Chemical compound N.CC(O)=O USFZMSVCRYTOJT-UHFFFAOYSA-N 0.000 description 2
- 239000005695 Ammonium acetate Substances 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 208000006386 Bone Resorption Diseases 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- 239000004471 Glycine Substances 0.000 description 2
- 208000009329 Graft vs Host Disease Diseases 0.000 description 2
- 241000282412 Homo Species 0.000 description 2
- 241000713340 Human immunodeficiency virus 2 Species 0.000 description 2
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 229920000168 Microcrystalline cellulose Polymers 0.000 description 2
- 239000002202 Polyethylene glycol Substances 0.000 description 2
- 201000004681 Psoriasis Diseases 0.000 description 2
- 206010063837 Reperfusion injury Diseases 0.000 description 2
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- HEMHJVSKTPXQMS-DYCDLGHISA-M Sodium hydroxide-d Chemical compound [Na+].[2H][O-] HEMHJVSKTPXQMS-DYCDLGHISA-M 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 239000004141 Sodium laurylsulphate Substances 0.000 description 2
- 235000021355 Stearic acid Nutrition 0.000 description 2
- 230000006044 T cell activation Effects 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 239000012190 activator Substances 0.000 description 2
- 235000019257 ammonium acetate Nutrition 0.000 description 2
- 229940043376 ammonium acetate Drugs 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000033115 angiogenesis Effects 0.000 description 2
- 238000003556 assay Methods 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 230000024279 bone resorption Effects 0.000 description 2
- 208000019664 bone resorption disease Diseases 0.000 description 2
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 2
- 230000003915 cell function Effects 0.000 description 2
- 238000009833 condensation Methods 0.000 description 2
- 230000005494 condensation Effects 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 210000000805 cytoplasm Anatomy 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000010790 dilution Methods 0.000 description 2
- 239000012895 dilution Substances 0.000 description 2
- 210000002889 endothelial cell Anatomy 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N ether Substances CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000000706 filtrate Substances 0.000 description 2
- 108091006104 gene-regulatory proteins Proteins 0.000 description 2
- 102000034356 gene-regulatory proteins Human genes 0.000 description 2
- 150000002430 hydrocarbons Chemical group 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 238000001727 in vivo Methods 0.000 description 2
- 230000001939 inductive effect Effects 0.000 description 2
- 230000002458 infectious effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 150000002596 lactones Chemical class 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- USKOCLIMPMFGGI-UHFFFAOYSA-N methyl 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound CCOC1=CC(C(CC(=O)OC)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 USKOCLIMPMFGGI-UHFFFAOYSA-N 0.000 description 2
- LFPOIGVRFDRDDN-UHFFFAOYSA-N methyl 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound CCOC1=CC(C(CC(=O)OC)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCC1 LFPOIGVRFDRDDN-UHFFFAOYSA-N 0.000 description 2
- UHOBSQMOWRZIMB-UHFFFAOYSA-N methyl 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propanoate Chemical compound CCOC1=CC=C(C(N)CC(=O)OC)C=C1OC1CCCC1 UHOBSQMOWRZIMB-UHFFFAOYSA-N 0.000 description 2
- UDHNWYRORFIKCM-UHFFFAOYSA-N methyl 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propanoate Chemical compound COC(=O)CC(N)C1=CC=C(OC)C(OC2CCCC2)=C1 UDHNWYRORFIKCM-UHFFFAOYSA-N 0.000 description 2
- HMLCPDUTXYPHCM-UHFFFAOYSA-N methyl 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propanoate;hydrochloride Chemical compound Cl.COC(=O)CC(N)C1=CC=C(OC)C(OC2CCCC2)=C1 HMLCPDUTXYPHCM-UHFFFAOYSA-N 0.000 description 2
- OLXZGQLPSPEFFS-UHFFFAOYSA-N methyl 3-amino-3-(4-cyclohexyloxy-3-ethoxyphenyl)propanoate Chemical compound CCOC1=CC(C(N)CC(=O)OC)=CC=C1OC1CCCCC1 OLXZGQLPSPEFFS-UHFFFAOYSA-N 0.000 description 2
- MPQJCKVYSWSCAW-UHFFFAOYSA-N methyl 3-amino-3-(4-cyclohexyloxy-3-methoxyphenyl)propanoate Chemical compound COC1=CC(C(N)CC(=O)OC)=CC=C1OC1CCCCC1 MPQJCKVYSWSCAW-UHFFFAOYSA-N 0.000 description 2
- LERYZDTUHKOLLK-UHFFFAOYSA-N methyl 3-amino-3-(4-cyclopentyloxy-3-ethoxyphenyl)propanoate Chemical compound CCOC1=CC(C(N)CC(=O)OC)=CC=C1OC1CCCC1 LERYZDTUHKOLLK-UHFFFAOYSA-N 0.000 description 2
- 235000019813 microcrystalline cellulose Nutrition 0.000 description 2
- 239000008108 microcrystalline cellulose Substances 0.000 description 2
- 229940016286 microcrystalline cellulose Drugs 0.000 description 2
- 230000007302 negative regulation of cytokine production Effects 0.000 description 2
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 2
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001223 polyethylene glycol Polymers 0.000 description 2
- 229940093429 polyethylene glycol 6000 Drugs 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 230000002947 procoagulating effect Effects 0.000 description 2
- 108090000623 proteins and genes Proteins 0.000 description 2
- 102000004169 proteins and genes Human genes 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 2
- 229940081974 saccharin Drugs 0.000 description 2
- 235000019204 saccharin Nutrition 0.000 description 2
- 239000000901 saccharin and its Na,K and Ca salt Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 208000017520 skin disease Diseases 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 235000019333 sodium laurylsulphate Nutrition 0.000 description 2
- 229910052938 sodium sulfate Inorganic materials 0.000 description 2
- 235000011152 sodium sulphate Nutrition 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- 239000008117 stearic acid Substances 0.000 description 2
- 150000003431 steroids Chemical class 0.000 description 2
- 230000000638 stimulation Effects 0.000 description 2
- UCSJYZPVAKXKNQ-HZYVHMACSA-N streptomycin Chemical compound CN[C@H]1[C@H](O)[C@@H](O)[C@H](CO)O[C@H]1O[C@@H]1[C@](C=O)(O)[C@H](C)O[C@H]1O[C@@H]1[C@@H](NC(N)=N)[C@H](O)[C@@H](NC(N)=N)[C@H](O)[C@H]1O UCSJYZPVAKXKNQ-HZYVHMACSA-N 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 230000001629 suppression Effects 0.000 description 2
- 208000011580 syndromic disease Diseases 0.000 description 2
- 229930192474 thiophene Natural products 0.000 description 2
- 210000001519 tissue Anatomy 0.000 description 2
- 108091006106 transcriptional activators Proteins 0.000 description 2
- 229940100445 wheat starch Drugs 0.000 description 2
- DNISEZBAYYIQFB-PHDIDXHHSA-N (2r,3r)-2,3-diacetyloxybutanedioic acid Chemical compound CC(=O)O[C@@H](C(O)=O)[C@H](C(O)=O)OC(C)=O DNISEZBAYYIQFB-PHDIDXHHSA-N 0.000 description 1
- KNDQHSIWLOJIGP-UMRXKNAASA-N (3ar,4s,7r,7as)-rel-3a,4,7,7a-tetrahydro-4,7-methanoisobenzofuran-1,3-dione Chemical compound O=C1OC(=O)[C@@H]2[C@H]1[C@]1([H])C=C[C@@]2([H])C1 KNDQHSIWLOJIGP-UMRXKNAASA-N 0.000 description 1
- MIOPJNTWMNEORI-GMSGAONNSA-N (S)-camphorsulfonic acid Chemical compound C1C[C@@]2(CS(O)(=O)=O)C(=O)C[C@@H]1C2(C)C MIOPJNTWMNEORI-GMSGAONNSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- GEYOCULIXLDCMW-UHFFFAOYSA-N 1,2-phenylenediamine Chemical compound NC1=CC=CC=C1N GEYOCULIXLDCMW-UHFFFAOYSA-N 0.000 description 1
- DELKIAOTTKBXPC-UHFFFAOYSA-N 3,4-dicyclohexyloxybenzaldehyde Chemical compound C1CCCCC1OC1=CC(C=O)=CC=C1OC1CCCCC1 DELKIAOTTKBXPC-UHFFFAOYSA-N 0.000 description 1
- BMQHHDGWBJODGM-UHFFFAOYSA-N 3-(2,3-dihydro-1h-inden-2-yloxy)-4-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1OC1CC2=CC=CC=C2C1 BMQHHDGWBJODGM-UHFFFAOYSA-N 0.000 description 1
- ABXFQIKFXNMUOU-UHFFFAOYSA-N 3-(2-methoxycyclopentyl)oxy-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanamide Chemical compound COC1CCCC1OC(CC(N)=O)N1C(=O)C2=CC3=CC=CC=C3C=C2C1 ABXFQIKFXNMUOU-UHFFFAOYSA-N 0.000 description 1
- BMLASIQIOYJBQT-UHFFFAOYSA-N 3-(3,4-dicyclohexyloxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)O)C(C=C1OC2CCCCC2)=CC=C1OC1CCCCC1 BMLASIQIOYJBQT-UHFFFAOYSA-N 0.000 description 1
- CCETZNBENFBCSU-UHFFFAOYSA-N 3-(3,4-dicyclohexyloxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanamide Chemical compound C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)N)C(C=C1OC2CCCCC2)=CC=C1OC1CCCCC1 CCETZNBENFBCSU-UHFFFAOYSA-N 0.000 description 1
- MXEKZGUTKQPWFK-UHFFFAOYSA-N 3-(3,4-dicyclopentyloxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoic acid Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)O)C(C=C1OC2CCCC2)=CC=C1OC1CCCC1 MXEKZGUTKQPWFK-UHFFFAOYSA-N 0.000 description 1
- OEMZQVSKPWZNMC-UHFFFAOYSA-N 3-(3,4-dicyclopentyloxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanamide Chemical compound C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)N)C(C=C1OC2CCCC2)=CC=C1OC1CCCC1 OEMZQVSKPWZNMC-UHFFFAOYSA-N 0.000 description 1
- WTGUYKUCSLEJTB-UHFFFAOYSA-N 3-(3,4-diethoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanamide Chemical compound C1=C(OCC)C(OCC)=CC=C1C(CC(N)=O)N1C(=O)C2=CC=CC=C2C1=O WTGUYKUCSLEJTB-UHFFFAOYSA-N 0.000 description 1
- HRBUGMXQXODPOI-UHFFFAOYSA-N 3-(3,4-diethoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanenitrile Chemical compound C1=C(OCC)C(OCC)=CC=C1C(CC#N)N1C(=O)C2=CC=CC=C2C1=O HRBUGMXQXODPOI-UHFFFAOYSA-N 0.000 description 1
- GKPXSGPDRIUIAD-UHFFFAOYSA-N 3-(3,4-dimethoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanamide Chemical compound C1=C(OC)C(OC)=CC=C1C(CC(N)=O)N1C(=O)C2=CC=CC=C2C1=O GKPXSGPDRIUIAD-UHFFFAOYSA-N 0.000 description 1
- JXUXUNROSFVHQZ-UHFFFAOYSA-N 3-(3,4-dimethoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanenitrile Chemical compound C1=C(OC)C(OC)=CC=C1C(CC#N)N1C(=O)C2=CC=CC=C2C1=O JXUXUNROSFVHQZ-UHFFFAOYSA-N 0.000 description 1
- NBURGNBRKZIYDR-UHFFFAOYSA-N 3-(3,4-dimethoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanoic acid Chemical compound C1=C(OC)C(OC)=CC=C1C(CC(O)=O)N1C(=O)C2=CC3=CC=CC=C3C=C2C1 NBURGNBRKZIYDR-UHFFFAOYSA-N 0.000 description 1
- XMLOBAKLWRIIGI-UHFFFAOYSA-N 3-(3-bicyclo[2.2.2]octanyloxy)-4-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1OC1C(CC2)CCC2C1 XMLOBAKLWRIIGI-UHFFFAOYSA-N 0.000 description 1
- RVSRRBBDRZNKPW-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanenitrile Chemical compound CCOC1=CC=C(C(CC#N)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 RVSRRBBDRZNKPW-UHFFFAOYSA-N 0.000 description 1
- DDYUBCCTNHWSQM-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanamide Chemical compound COC1=CC=C(C(CC(N)=O)N2C(C3=CC=CC=C3C2=O)=O)C=C1OC1CCCC1 DDYUBCCTNHWSQM-UHFFFAOYSA-N 0.000 description 1
- VDTZZBUUUQDVLL-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanamide Chemical compound COC1=CC=C(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2)=O)C=C1OC1CCCC1 VDTZZBUUUQDVLL-UHFFFAOYSA-N 0.000 description 1
- JNNKJWJMVHWBNC-UHFFFAOYSA-N 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanoic acid Chemical compound COC1=CC=C(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2)=O)C=C1OC1CCCC1 JNNKJWJMVHWBNC-UHFFFAOYSA-N 0.000 description 1
- ICGBIPYWRGXCPS-UHFFFAOYSA-N 3-(4-bicyclo[3.2.1]octanyloxy)-4-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1OC1C(C2)CCC2CC1 ICGBIPYWRGXCPS-UHFFFAOYSA-N 0.000 description 1
- LSHJQRRWLXEQJT-UHFFFAOYSA-N 3-(4-cyclobutyloxy-3-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCC1 LSHJQRRWLXEQJT-UHFFFAOYSA-N 0.000 description 1
- PQUYNJQMPZXJRE-UHFFFAOYSA-N 3-(4-cyclobutyloxy-3-methoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=NC=CC=C3C2=O)=O)=CC=C1OC1CCC1 PQUYNJQMPZXJRE-UHFFFAOYSA-N 0.000 description 1
- WPOFJJLCDDPANX-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-cyclopentyloxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanamide Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)N)C(C=C1OC2CCCC2)=CC=C1OC1CCCCC1 WPOFJJLCDDPANX-UHFFFAOYSA-N 0.000 description 1
- HGILTELPDUYECE-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-cyclopentyloxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanoic acid Chemical compound C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)O)C(C=C1OC2CCCC2)=CC=C1OC1CCCCC1 HGILTELPDUYECE-UHFFFAOYSA-N 0.000 description 1
- XGPRZTSFNPKIDG-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanenitrile Chemical compound CCOC1=CC(C(CC#N)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 XGPRZTSFNPKIDG-UHFFFAOYSA-N 0.000 description 1
- ZJHNIBJYHFJMBV-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanamide Chemical compound CCOC1=CC(C(CC(N)=O)N2C(C3=CC4=CC=CC=C4C=C3C2)=O)=CC=C1OC1CCCCC1 ZJHNIBJYHFJMBV-UHFFFAOYSA-N 0.000 description 1
- MEPHBROBFUBISO-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanoic acid Chemical compound CCOC1=CC(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2)=O)=CC=C1OC1CCCCC1 MEPHBROBFUBISO-UHFFFAOYSA-N 0.000 description 1
- MIRFYIIZGLMUPJ-UHFFFAOYSA-N 3-(4-cyclohexyloxy-3-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanenitrile Chemical compound COC1=CC(C(CC#N)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCCC1 MIRFYIIZGLMUPJ-UHFFFAOYSA-N 0.000 description 1
- MFNMVDSVVCZSTN-UHFFFAOYSA-N 3-(4-cyclopentyloxy-2-ethoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanamide Chemical compound C=1C=C(C(CC(N)=O)N2C(C3=NC=CC=C3C2=O)=O)C(OCC)=CC=1OC1CCCC1 MFNMVDSVVCZSTN-UHFFFAOYSA-N 0.000 description 1
- DFECWRSTJOGQLW-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanenitrile Chemical compound CCOC1=CC(C(CC#N)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)=CC=C1OC1CCCC1 DFECWRSTJOGQLW-UHFFFAOYSA-N 0.000 description 1
- GBCVMWLSSXNUFS-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanoic acid Chemical compound CCOC1=CC(C(CC(O)=O)N2C(C3=CC4=CC=CC=C4C=C3C2)=O)=CC=C1OC1CCCC1 GBCVMWLSSXNUFS-UHFFFAOYSA-N 0.000 description 1
- QKYDIVIFEBAAKU-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(5-oxo-7h-pyrrolo[3,4-b]pyridin-6-yl)propanamide Chemical compound CCOC1=CC(C(CC(N)=O)N2C(C3=CC=CN=C3C2)=O)=CC=C1OC1CCCC1 QKYDIVIFEBAAKU-UHFFFAOYSA-N 0.000 description 1
- APZOAUGTUPGSHI-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(5-oxo-7h-pyrrolo[3,4-b]pyridin-6-yl)propanoic acid Chemical compound CCOC1=CC(C(CC(O)=O)N2C(C3=CC=CN=C3C2)=O)=CC=C1OC1CCCC1 APZOAUGTUPGSHI-UHFFFAOYSA-N 0.000 description 1
- ZWKKDPBUYKWGRL-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1,3-dioxopyrrolo[3,4-c]pyridin-2-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=CN=CC=C3C2=O)=O)=CC=C1OC1CCCC1 ZWKKDPBUYKWGRL-UHFFFAOYSA-N 0.000 description 1
- CPJRWEGWVIXAQW-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1,3-dioxopyrrolo[3,4-c]pyridin-2-yl)propanoic acid Chemical compound COC1=CC(C(CC(O)=O)N2C(C3=CN=CC=C3C2=O)=O)=CC=C1OC1CCCC1 CPJRWEGWVIXAQW-UHFFFAOYSA-N 0.000 description 1
- BCJQTCNGGGGPLH-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1-oxo-3h-pyrrolo[3,4-c]pyridin-2-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=CC=NC=C3C2)=O)=CC=C1OC1CCCC1 BCJQTCNGGGGPLH-UHFFFAOYSA-N 0.000 description 1
- ASJKEHYUGJCYOF-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1-oxo-3h-pyrrolo[3,4-c]pyridin-2-yl)propanoic acid Chemical compound COC1=CC(C(CC(O)=O)N2C(C3=CC=NC=C3C2)=O)=CC=C1OC1CCCC1 ASJKEHYUGJCYOF-UHFFFAOYSA-N 0.000 description 1
- SKWRTTNTVBPINK-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=NC=CC=C3C2=O)=O)=CC=C1OC1CCCC1 SKWRTTNTVBPINK-UHFFFAOYSA-N 0.000 description 1
- ULVREZUVWIAUPZ-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanoic acid Chemical compound COC1=CC(C(CC(O)=O)N2C(C3=NC=CC=C3C2=O)=O)=CC=C1OC1CCCC1 ULVREZUVWIAUPZ-UHFFFAOYSA-N 0.000 description 1
- KCZCFTVVUYLHFF-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(5-oxo-7h-pyrrolo[3,4-b]pyridin-6-yl)propanamide Chemical compound COC1=CC(C(CC(N)=O)N2C(C3=CC=CN=C3C2)=O)=CC=C1OC1CCCC1 KCZCFTVVUYLHFF-UHFFFAOYSA-N 0.000 description 1
- MFADYWJGRYPPDF-UHFFFAOYSA-N 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(5-oxo-7h-pyrrolo[3,4-b]pyridin-6-yl)propanoic acid Chemical compound COC1=CC(C(CC(O)=O)N2C(C3=CC=CN=C3C2)=O)=CC=C1OC1CCCC1 MFADYWJGRYPPDF-UHFFFAOYSA-N 0.000 description 1
- IKPNUASWQZMHRA-UHFFFAOYSA-N 3-(4-ethoxy-3-methoxyphenyl)-3-(3-oxo-1h-benzo[f]isoindol-2-yl)propanoic acid Chemical compound C1=C(OC)C(OCC)=CC=C1C(CC(O)=O)N1C(=O)C2=CC3=CC=CC=C3C=C2C1 IKPNUASWQZMHRA-UHFFFAOYSA-N 0.000 description 1
- BWKUJKUGPWAWMC-UHFFFAOYSA-N 3-(4-ethoxy-3-methoxyphenyl)-3-(5-oxo-7h-pyrrolo[3,4-b]pyridin-6-yl)propanoic acid Chemical compound C1=C(OC)C(OCC)=CC=C1C(CC(O)=O)N1C(=O)C2=CC=CN=C2C1 BWKUJKUGPWAWMC-UHFFFAOYSA-N 0.000 description 1
- DNEDMVAPQGORFL-PBWFPOADSA-N 3-[(3as,7ar)-1,3-dioxo-3a,4,5,6,7,7a-hexahydroisoindol-2-yl]-3-phenylpropanamide Chemical compound O=C([C@@H]1CCCC[C@@H]1C1=O)N1C(CC(=O)N)C1=CC=CC=C1 DNEDMVAPQGORFL-PBWFPOADSA-N 0.000 description 1
- CKSBKRAURVFFQB-UHFFFAOYSA-N 3-amino-3-(3,4-dimethoxyphenyl)propanoic acid;hydrochloride Chemical compound Cl.COC1=CC=C(C(N)CC(O)=O)C=C1OC CKSBKRAURVFFQB-UHFFFAOYSA-N 0.000 description 1
- DUHKLDKZLFXIBQ-UHFFFAOYSA-N 3-cyclohexyloxy-4-ethoxybenzaldehyde Chemical compound CCOC1=CC=C(C=O)C=C1OC1CCCCC1 DUHKLDKZLFXIBQ-UHFFFAOYSA-N 0.000 description 1
- AZPIHDFAKLBDNB-UHFFFAOYSA-N 3-cyclohexyloxy-4-methoxybenzaldehyde Chemical compound COC1=CC=C(C=O)C=C1OC1CCCCC1 AZPIHDFAKLBDNB-UHFFFAOYSA-N 0.000 description 1
- VJKRZUBMKDMCOX-UHFFFAOYSA-N 4-cyclohexyloxy-3-ethoxybenzaldehyde Chemical compound CCOC1=CC(C=O)=CC=C1OC1CCCCC1 VJKRZUBMKDMCOX-UHFFFAOYSA-N 0.000 description 1
- WSPHCCYQWWGCFS-UHFFFAOYSA-N 4-cyclohexyloxy-3-methoxybenzaldehyde Chemical compound COC1=CC(C=O)=CC=C1OC1CCCCC1 WSPHCCYQWWGCFS-UHFFFAOYSA-N 0.000 description 1
- VPZVFXCBGLZFOZ-UHFFFAOYSA-N 4-cyclopentyloxy-3-ethoxybenzaldehyde Chemical compound CCOC1=CC(C=O)=CC=C1OC1CCCC1 VPZVFXCBGLZFOZ-UHFFFAOYSA-N 0.000 description 1
- UMIUDSWQJWYRLW-UHFFFAOYSA-N 4-cyclopentyloxy-3-methoxybenzaldehyde Chemical compound COC1=CC(C=O)=CC=C1OC1CCCC1 UMIUDSWQJWYRLW-UHFFFAOYSA-N 0.000 description 1
- ODHCTXKNWHHXJC-VKHMYHEASA-N 5-oxo-L-proline Chemical compound OC(=O)[C@@H]1CCC(=O)N1 ODHCTXKNWHHXJC-VKHMYHEASA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- JRLTTZUODKEYDH-UHFFFAOYSA-N 8-methylquinoline Chemical group C1=CN=C2C(C)=CC=CC2=C1 JRLTTZUODKEYDH-UHFFFAOYSA-N 0.000 description 1
- 206010048998 Acute phase reaction Diseases 0.000 description 1
- 240000003291 Armoracia rusticana Species 0.000 description 1
- 235000011330 Armoracia rusticana Nutrition 0.000 description 1
- 208000023275 Autoimmune disease Diseases 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- CBTLTHNUFAXDBE-UHFFFAOYSA-N C12=CC=3OCOC=3C=C2C23CCN(C)C3CCC3C2OC1O3 Chemical compound C12=CC=3OCOC=3C=C2C23CCN(C)C3CCC3C2OC1O3 CBTLTHNUFAXDBE-UHFFFAOYSA-N 0.000 description 1
- LSPHULWDVZXLIL-UHFFFAOYSA-N Camphoric acid Natural products CC1(C)C(C(O)=O)CCC1(C)C(O)=O LSPHULWDVZXLIL-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 206010007559 Cardiac failure congestive Diseases 0.000 description 1
- 206010063094 Cerebral malaria Diseases 0.000 description 1
- 206010010755 Conjunctivitis viral Diseases 0.000 description 1
- 229920002261 Corn starch Polymers 0.000 description 1
- IVOMOUWHDPKRLL-KQYNXXCUSA-N Cyclic adenosine monophosphate Chemical compound C([C@H]1O2)OP(O)(=O)O[C@H]1[C@@H](O)[C@@H]2N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-KQYNXXCUSA-N 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- ZNZYKNKBJPZETN-WELNAUFTSA-N Dialdehyde 11678 Chemical compound N1C2=CC=CC=C2C2=C1[C@H](C[C@H](/C(=C/O)C(=O)OC)[C@@H](C=C)C=O)NCC2 ZNZYKNKBJPZETN-WELNAUFTSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- 238000008157 ELISA kit Methods 0.000 description 1
- 208000037487 Endotoxemia Diseases 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 241000713800 Feline immunodeficiency virus Species 0.000 description 1
- 206010016654 Fibrosis Diseases 0.000 description 1
- 206010020164 HIV infection CDC Group III Diseases 0.000 description 1
- 206010019280 Heart failures Diseases 0.000 description 1
- 208000032843 Hemorrhage Diseases 0.000 description 1
- 101000611183 Homo sapiens Tumor necrosis factor Proteins 0.000 description 1
- 208000037147 Hypercalcaemia Diseases 0.000 description 1
- XQFRJNBWHJMXHO-RRKCRQDMSA-N IDUR Chemical compound C1[C@H](O)[C@@H](CO)O[C@H]1N1C(=O)NC(=O)C(I)=C1 XQFRJNBWHJMXHO-RRKCRQDMSA-N 0.000 description 1
- 102100034343 Integrase Human genes 0.000 description 1
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 1
- 229930182816 L-glutamine Natural products 0.000 description 1
- 241000713666 Lentivirus Species 0.000 description 1
- 201000009906 Meningitis Diseases 0.000 description 1
- 241000699666 Mus <mouse, genus> Species 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 206010062207 Mycobacterial infection Diseases 0.000 description 1
- 108010057466 NF-kappa B Proteins 0.000 description 1
- 102000003945 NF-kappa B Human genes 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 229930182555 Penicillin Natural products 0.000 description 1
- JGSARLDLIJGVTE-MBNYWOFBSA-N Penicillin G Chemical compound N([C@H]1[C@H]2SC([C@@H](N2C1=O)C(O)=O)(C)C)C(=O)CC1=CC=CC=C1 JGSARLDLIJGVTE-MBNYWOFBSA-N 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 206010037660 Pyrexia Diseases 0.000 description 1
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 1
- 108700005075 Regulator Genes Proteins 0.000 description 1
- 208000013616 Respiratory Distress Syndrome Diseases 0.000 description 1
- 208000004756 Respiratory Insufficiency Diseases 0.000 description 1
- 241001222774 Salmonella enterica subsp. enterica serovar Minnesota Species 0.000 description 1
- 206010040047 Sepsis Diseases 0.000 description 1
- 206010053879 Sepsis syndrome Diseases 0.000 description 1
- 201000010001 Silicosis Diseases 0.000 description 1
- VMHLLURERBWHNL-UHFFFAOYSA-M Sodium acetate Chemical compound [Na+].CC([O-])=O VMHLLURERBWHNL-UHFFFAOYSA-M 0.000 description 1
- 206010051379 Systemic Inflammatory Response Syndrome Diseases 0.000 description 1
- 230000024932 T cell mediated immunity Effects 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 102100026966 Thrombomodulin Human genes 0.000 description 1
- 108010079274 Thrombomodulin Proteins 0.000 description 1
- 102000002262 Thromboplastin Human genes 0.000 description 1
- 108010000499 Thromboplastin Proteins 0.000 description 1
- 206010044248 Toxic shock syndrome Diseases 0.000 description 1
- 231100000650 Toxic shock syndrome Toxicity 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- IVOMOUWHDPKRLL-UHFFFAOYSA-N UNPD107823 Natural products O1C2COP(O)(=O)OC2C(O)C1N1C(N=CN=C2N)=C2N=C1 IVOMOUWHDPKRLL-UHFFFAOYSA-N 0.000 description 1
- 206010058874 Viraemia Diseases 0.000 description 1
- 208000005914 Viral Conjunctivitis Diseases 0.000 description 1
- 108010067390 Viral Proteins Proteins 0.000 description 1
- 241000713325 Visna/maedi virus Species 0.000 description 1
- 102100029477 Vitamin K-dependent protein C Human genes 0.000 description 1
- 101710193900 Vitamin K-dependent protein C Proteins 0.000 description 1
- 208000027418 Wounds and injury Diseases 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 230000004658 acute-phase response Effects 0.000 description 1
- 208000011341 adult acute respiratory distress syndrome Diseases 0.000 description 1
- 210000005091 airway smooth muscle Anatomy 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 210000001132 alveolar macrophage Anatomy 0.000 description 1
- 150000001409 amidines Chemical class 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 208000007502 anemia Diseases 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 239000003242 anti bacterial agent Substances 0.000 description 1
- 230000000840 anti-viral effect Effects 0.000 description 1
- 229940088710 antibiotic agent Drugs 0.000 description 1
- 150000001491 aromatic compounds Chemical class 0.000 description 1
- 239000010425 asbestos Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 125000005605 benzo group Chemical group 0.000 description 1
- IZJDCINIYIMFGX-UHFFFAOYSA-N benzo[f][2]benzofuran-1,3-dione Chemical compound C1=CC=C2C=C3C(=O)OC(=O)C3=CC2=C1 IZJDCINIYIMFGX-UHFFFAOYSA-N 0.000 description 1
- ODBPKBWAGSAZBE-UHFFFAOYSA-N benzo[f]isoindole-1,3-dione Chemical compound C1=CC=C2C=C3C(=O)NC(=O)C3=CC2=C1 ODBPKBWAGSAZBE-UHFFFAOYSA-N 0.000 description 1
- 230000017531 blood circulation Effects 0.000 description 1
- 230000036765 blood level Effects 0.000 description 1
- 210000001185 bone marrow Anatomy 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- LSPHULWDVZXLIL-QUBYGPBYSA-N camphoric acid Chemical compound CC1(C)[C@H](C(O)=O)CC[C@]1(C)C(O)=O LSPHULWDVZXLIL-QUBYGPBYSA-N 0.000 description 1
- 125000006297 carbonyl amino group Chemical group [H]N([*:2])C([*:1])=O 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 230000001055 chewing effect Effects 0.000 description 1
- 210000003711 chorioallantoic membrane Anatomy 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 230000001684 chronic effect Effects 0.000 description 1
- KSDIHKMNSYWRFB-UHFFFAOYSA-N chrysen-2-amine Chemical compound C1=CC=CC2=CC=C3C4=CC=C(N)C=C4C=CC3=C21 KSDIHKMNSYWRFB-UHFFFAOYSA-N 0.000 description 1
- 230000005796 circulatory shock Effects 0.000 description 1
- 230000015271 coagulation Effects 0.000 description 1
- 238000005345 coagulation Methods 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000012050 conventional carrier Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000008120 corn starch Substances 0.000 description 1
- 210000004087 cornea Anatomy 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000006547 cyclononyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000000640 cyclooctyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C([H])([H])C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- 238000006114 decarboxylation reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 125000002704 decyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 229960003957 dexamethasone Drugs 0.000 description 1
- UREBDLICKHMUKA-CXSFZGCWSA-N dexamethasone Chemical compound C1CC2=CC(=O)C=C[C@]2(C)[C@]2(F)[C@@H]1[C@@H]1C[C@@H](C)[C@@](C(=O)CO)(O)[C@@]1(C)C[C@@H]2O UREBDLICKHMUKA-CXSFZGCWSA-N 0.000 description 1
- 208000035475 disorder Diseases 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000002222 downregulating effect Effects 0.000 description 1
- 239000008298 dragée Substances 0.000 description 1
- 230000002526 effect on cardiovascular system Effects 0.000 description 1
- 230000003511 endothelial effect Effects 0.000 description 1
- JCWPXXIEMCQQQR-UHFFFAOYSA-N ethyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(4-ethoxy-3-methoxyphenyl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OCC)C1=CC=C(OCC)C(OC)=C1 JCWPXXIEMCQQQR-UHFFFAOYSA-N 0.000 description 1
- UBNUBJHAUKPDNV-UHFFFAOYSA-N ethyl 3-(3,4-dimethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OCC)C1=CC=C(OC)C(OC)=C1 UBNUBJHAUKPDNV-UHFFFAOYSA-N 0.000 description 1
- VPZDEHWMMVDBRY-UHFFFAOYSA-N ethyl 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OCC)C(C=1)=CC=C(OC)C=1OC1CCCC1 VPZDEHWMMVDBRY-UHFFFAOYSA-N 0.000 description 1
- HHILHEFQDFIZFA-UHFFFAOYSA-N ethyl 3-(4-cyclohexyloxy-3-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OCC)C(C=C1OCC)=CC=C1OC1CCCCC1 HHILHEFQDFIZFA-UHFFFAOYSA-N 0.000 description 1
- FMRQCCKYSKLBOV-UHFFFAOYSA-N ethyl 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1,3-dioxopyrrolo[3,4-c]pyridin-2-yl)propanoate Chemical compound O=C1C2=CC=NC=C2C(=O)N1C(CC(=O)OCC)C(C=C1OC)=CC=C1OC1CCCC1 FMRQCCKYSKLBOV-UHFFFAOYSA-N 0.000 description 1
- OSVHIRNBWYBFAG-UHFFFAOYSA-N ethyl 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanoate Chemical compound O=C1C2=CC=CN=C2C(=O)N1C(CC(=O)OCC)C(C=C1OC)=CC=C1OC1CCCC1 OSVHIRNBWYBFAG-UHFFFAOYSA-N 0.000 description 1
- RIFGWPKJUGCATF-UHFFFAOYSA-N ethyl chloroformate Chemical compound CCOC(Cl)=O RIFGWPKJUGCATF-UHFFFAOYSA-N 0.000 description 1
- 230000004761 fibrosis Effects 0.000 description 1
- 230000003176 fibrotic effect Effects 0.000 description 1
- 230000009791 fibrotic reaction Effects 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- MCQOWYALZVKMAR-UHFFFAOYSA-N furo[3,4-b]pyridine-5,7-dione Chemical compound C1=CC=C2C(=O)OC(=O)C2=N1 MCQOWYALZVKMAR-UHFFFAOYSA-N 0.000 description 1
- KFKMGUPDWTWQFM-UHFFFAOYSA-N furo[3,4-c]pyridine-1,3-dione Chemical compound N1=CC=C2C(=O)OC(=O)C2=C1 KFKMGUPDWTWQFM-UHFFFAOYSA-N 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 230000000004 hemodynamic effect Effects 0.000 description 1
- 125000003187 heptyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000004051 hexyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 102000057041 human TNF Human genes 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000000148 hypercalcaemia Effects 0.000 description 1
- 208000030915 hypercalcemia disease Diseases 0.000 description 1
- 230000000222 hyperoxic effect Effects 0.000 description 1
- 239000005457 ice water Substances 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000003392 indanyl group Chemical group C1(CCC2=CC=CC=C12)* 0.000 description 1
- 208000027866 inflammatory disease Diseases 0.000 description 1
- 230000028709 inflammatory response Effects 0.000 description 1
- 238000001802 infusion Methods 0.000 description 1
- 239000003978 infusion fluid Substances 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 208000014674 injury Diseases 0.000 description 1
- 238000001361 intraarterial administration Methods 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000007913 intrathecal administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- 230000000302 ischemic effect Effects 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000004491 isohexyl group Chemical group C(CCC(C)C)* 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 125000001972 isopentyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 210000001865 kupffer cell Anatomy 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 231100000518 lethal Toxicity 0.000 description 1
- 230000001665 lethal effect Effects 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 230000036210 malignancy Effects 0.000 description 1
- 230000003211 malignant effect Effects 0.000 description 1
- 125000002960 margaryl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 230000010534 mechanism of action Effects 0.000 description 1
- RMIODHQZRUFFFF-UHFFFAOYSA-N methoxyacetic acid Chemical compound COCC(O)=O RMIODHQZRUFFFF-UHFFFAOYSA-N 0.000 description 1
- OJBNNXQUKODNGW-UHFFFAOYSA-N methyl 3-(3,4-dicyclohexyloxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OC)C(C=C1OC2CCCCC2)=CC=C1OC1CCCCC1 OJBNNXQUKODNGW-UHFFFAOYSA-N 0.000 description 1
- MFBMAEOAKJPQES-UHFFFAOYSA-N methyl 3-(3,4-dicyclopentyloxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OC)C(C=C1OC2CCCC2)=CC=C1OC1CCCC1 MFBMAEOAKJPQES-UHFFFAOYSA-N 0.000 description 1
- VXEIYDKYXFFKSG-UHFFFAOYSA-N methyl 3-(3,4-dimethoxyphenyl)-3-(1,3-dioxopyrrolo[3,4-c]pyridin-2-yl)propanoate Chemical compound O=C1C2=CC=NC=C2C(=O)N1C(CC(=O)OC)C1=CC=C(OC)C(OC)=C1 VXEIYDKYXFFKSG-UHFFFAOYSA-N 0.000 description 1
- UWYKPQZIYGMBDJ-UHFFFAOYSA-N methyl 3-(3-cyclopentyloxy-4-ethoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound CCOC1=CC=C(C(CC(=O)OC)N2C(C3=CC4=CC=CC=C4C=C3C2=O)=O)C=C1OC1CCCC1 UWYKPQZIYGMBDJ-UHFFFAOYSA-N 0.000 description 1
- QHRUOVZCUAYCJQ-UHFFFAOYSA-N methyl 3-(3-cyclopentyloxy-4-methoxyphenyl)-3-(1,3-dioxoisoindol-2-yl)propanoate Chemical compound O=C1C2=CC=CC=C2C(=O)N1C(CC(=O)OC)C(C=1)=CC=C(OC)C=1OC1CCCC1 QHRUOVZCUAYCJQ-UHFFFAOYSA-N 0.000 description 1
- RXHAWJACKWPOJF-UHFFFAOYSA-N methyl 3-(4-cyclohexyloxy-3-methoxyphenyl)-3-(1,3-dioxobenzo[f]isoindol-2-yl)propanoate Chemical compound O=C1C2=CC3=CC=CC=C3C=C2C(=O)N1C(CC(=O)OC)C(C=C1OC)=CC=C1OC1CCCCC1 RXHAWJACKWPOJF-UHFFFAOYSA-N 0.000 description 1
- APJNDVOLWOWZDY-UHFFFAOYSA-N methyl 3-(4-cyclopentyloxy-3-ethoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanoate Chemical compound CCOC1=CC(C(CC(=O)OC)N2C(C3=NC=CC=C3C2=O)=O)=CC=C1OC1CCCC1 APJNDVOLWOWZDY-UHFFFAOYSA-N 0.000 description 1
- LQLFQEKGGXAWIN-UHFFFAOYSA-N methyl 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(1,3-dioxopyrrolo[3,4-c]pyridin-2-yl)propanoate Chemical compound O=C1C2=CC=NC=C2C(=O)N1C(CC(=O)OC)C(C=C1OC)=CC=C1OC1CCCC1 LQLFQEKGGXAWIN-UHFFFAOYSA-N 0.000 description 1
- HFYWWBPFJSVXDE-UHFFFAOYSA-N methyl 3-(4-cyclopentyloxy-3-methoxyphenyl)-3-(5,7-dioxopyrrolo[3,4-b]pyridin-6-yl)propanoate Chemical compound O=C1C2=CC=CN=C2C(=O)N1C(CC(=O)OC)C(C=C1OC)=CC=C1OC1CCCC1 HFYWWBPFJSVXDE-UHFFFAOYSA-N 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 230000009456 molecular mechanism Effects 0.000 description 1
- 210000002864 mononuclear phagocyte Anatomy 0.000 description 1
- 208000027531 mycobacterial infectious disease Diseases 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 125000001421 myristyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001971 neopentyl group Chemical group [H]C([*])([H])C(C([H])([H])[H])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 210000004498 neuroglial cell Anatomy 0.000 description 1
- 230000000926 neurological effect Effects 0.000 description 1
- 125000001400 nonyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000006186 oral dosage form Substances 0.000 description 1
- 230000011164 ossification Effects 0.000 description 1
- 210000000963 osteoblast Anatomy 0.000 description 1
- 210000002997 osteoclast Anatomy 0.000 description 1
- 125000000913 palmityl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 230000037361 pathway Effects 0.000 description 1
- 229940049954 penicillin Drugs 0.000 description 1
- 125000002958 pentadecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 210000005259 peripheral blood Anatomy 0.000 description 1
- 239000011886 peripheral blood Substances 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- 239000008363 phosphate buffer Substances 0.000 description 1
- 239000007981 phosphate-citrate buffer Substances 0.000 description 1
- 230000004983 pleiotropic effect Effects 0.000 description 1
- 229920000136 polysorbate Polymers 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 229960005205 prednisolone Drugs 0.000 description 1
- OIGNJSKKLXVSLS-VWUMJDOOSA-N prednisolone Chemical compound O=C1C=C[C@]2(C)[C@H]3[C@@H](O)C[C@](C)([C@@](CC4)(O)C(=O)CO)[C@@H]4[C@@H]3CCC2=C1 OIGNJSKKLXVSLS-VWUMJDOOSA-N 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004393 prognosis Methods 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 230000000770 proinflammatory effect Effects 0.000 description 1
- 238000011321 prophylaxis Methods 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 208000005069 pulmonary fibrosis Diseases 0.000 description 1
- 201000003651 pulmonary sarcoidosis Diseases 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000010410 reperfusion Effects 0.000 description 1
- 201000004193 respiratory failure Diseases 0.000 description 1
- 229910052895 riebeckite Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000001632 sodium acetate Substances 0.000 description 1
- 235000017281 sodium acetate Nutrition 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 229960005322 streptomycin Drugs 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 239000003826 tablet Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000001973 tert-pentyl group Chemical group [H]C([H])([H])C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 229940124597 therapeutic agent Drugs 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 208000037816 tissue injury Diseases 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 238000011269 treatment regimen Methods 0.000 description 1
- 125000002889 tridecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 230000004614 tumor growth Effects 0.000 description 1
- 125000002948 undecyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 241000701161 unidentified adenovirus Species 0.000 description 1
- 241001529453 unidentified herpesvirus Species 0.000 description 1
- 241000712461 unidentified influenza virus Species 0.000 description 1
- 230000007998 vessel formation Effects 0.000 description 1
- 230000003612 virological effect Effects 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000003643 water by type Substances 0.000 description 1
- 230000037314 wound repair Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
- C07D209/48—Iso-indoles; Hydrogenated iso-indoles with oxygen atoms in positions 1 and 3, e.g. phthalimide
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
- A61P35/02—Antineoplastic agents specific for leukemia
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D209/00—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D209/02—Heterocyclic compounds containing five-membered rings, condensed with other rings, with one nitrogen atom as the only ring hetero atom condensed with one carbocyclic ring
- C07D209/44—Iso-indoles; Hydrogenated iso-indoles
- C07D209/46—Iso-indoles; Hydrogenated iso-indoles with an oxygen atom in position 1
Definitions
- This invention relates to a method of reducing the level of cytokines and their precursors in mammals and to compounds and compositions useful therein.
- the invention pertains to a class of compounds which inhibit the action of phosphodiesterases, particularly PDE III and PDE IV, and the formation of TNF ⁇ and NF ⁇ B.
- the compounds of the present invention can be diagrammatically represented by the formula:
- R 5 is:
- a divalent cycloalkyl of 4 to 10 carbon atoms unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl or halo;
- di-substituted vinylene substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo; or
- ethylene unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino, substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;
- R 6 is —CO—, —CH 2 —, —CH 2 CO—, or —SO 2 —;
- R 7 is
- Y is —COX, —C ⁇ —N, —OR 8 , alkyl of 1 to5 carbon atoms, or aryl;
- X is —NH 2 ,—OH, —NHR, —R 9 , —OR 9 , or alkyl of 1 to 5 carbon atoms;
- R 8 is hydrogen or lower alkyl
- R 9 is alkyl or benzyl
- n has a value of 0, 1, 2, or 3.
- Y is preferably —C ⁇ N or —CO(CH 2 ) m CH 3 in which m has a value of 0, 1, 2, or 3;
- R 1 and R 2 is R 3 —X— and the other is hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, halo, or R 3 —X—;
- R 3 is monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms;
- X is —CH 2 — or —O—
- R 5 is:
- di-substituted vinylene substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo; or
- ethylene unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;
- R 6 is —CO—, —CH 2 —, or —CH 2 CO—;
- Y is —COX, —C ⁇ N, —OR 8 , alkyl of 1 to 5 carbon atoms, or aryl;
- X is —NH 2 ,—OH, —NHR, —R 9 , —OR 9 , or alkyl of 1 to 5 carbon atoms;
- R 8 is hydrogen or lower alkyl
- R 9 is alkyl or benzyl
- n has a value of 0, 1, 2, or 3.
- alkyl denotes a univalent saturated branched or straight hydrocarbon chain. Unless otherwise stated, such chains can contain from 1 to 18 carbon atoms.
- Representative of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, isohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, and the like.
- the alkyl group will contain from 1 to 6 carbon atoms. The same carbon content
- cycloalkyl denotes a univalent saturated cyclic hydrocarbon chain. Unless otherwise stated, such chains can contain up to 18 carbon atoms.
- Monocyclicalkyl refers to groups having a single ring group.
- Polycycloalkyl denotes hydrocarbon systems containing two or more ring systems with two or more ring carbon atoms in common.
- Benzocycloalkyl signifies a monocyclicalkyl group fused to a benzo group.
- monocycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, and cyclooctadecyl.
- polycycloalkyl examples include bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl, and bicyclo[2.2.2]octyl.
- Benzocycloalkyl is typified by tetrahydronaphthyl, indanyl, and 1.2-benzocycloheptanyl.
- Tumor necrosis factor ⁇ is a cytokine which is released primarily by mono-nuclear phagocytes in response to a number immunostimulators. When administered to animals or humans, it causes inflammation, fever, cardiovascular effects, hemorrhage, coagulation, and acute phase responses similar to those seen during acute infections and shock states. Excessive or unregulated TNF ⁇ production thus has been implicated in a number of disease conditions. These include endotoxemia and/or toxic shock syndrome ⁇ Tracey et al., Nature 330, 662-664 (1987) and Hinshaw et al., Circ.
- TNF ⁇ appears to be involved in bone resorption diseases, including arthritis. When activated, leukocytes will produce bone-resorption, an activity to which the data suggest TNF ⁇ contributes. ⁇ Bertolini et al., Nature 319, 516-518 (1986) and Johnson et al., Endocrinology 124(3), 1424-1427 (1989). ⁇ TNF ⁇ also has been shown to stimulate bone resorption and inhibit bone formation in vitro and in vivo through stimulation of osteoclast formation and activation combined with inhibition of osteoblast function. Although TNF ⁇ may be involved in many bone resorption diseases, including arthritis, the most compelling link with disease is the association between production of TNF ⁇ by tumor or host tissues and malignancy associated hypercalcemia ⁇ Calci.
- Cerebral malaria is a lethal hyperacute neurological syndrome associated with high blood levels of TNF ⁇ and the most severe complication occurring in malaria patients. Levels of serum TNF ⁇ correlated directly with the severity of disease and the prognosis in patients with acute malaria attacks ⁇ Grau et al., N. Engl. J. Med. 320(24), 1586-1591 (1989) ⁇ .
- TNF ⁇ Macrophage-induced angiogenesis TNF ⁇ is known to be mediated by TNF ⁇ .
- Leibovich et al. ⁇ Nature, 329, 630-632 (1987) ⁇ showed TNF ⁇ induces in vivo capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membranes at very low doses and suggest TNF ⁇ is a candidate for inducing angiogenesis in inflammation, wound repair, and tumor growth.
- TNF ⁇ production also has been associated with cancerous conditions, particularly induced tumors ⁇ Ching et al., Brit. J. Cancer, ( 1955) 72, 339-343, and Koch, Progress in Medicinal Chemistry, 22, 166-242 (1985) ⁇ .
- TNF ⁇ also plays a role in the area of chronic pulmonary inflammatory diseases.
- the deposition of silica particles leads to silicosis, a disease of progressive respiratory failure caused by a fibrotic reaction.
- Antibody to TNF ⁇ completely blocked the silica-induced lung fibrosis in mice ⁇ Pignet et al., Nature, 344, 245-247 (1990) ⁇ .
- High levels of TNF ⁇ production have been demonstrated in animal models of silica and asbestos induced fibrosis ⁇ Bissonnette et al., Inflammation 13(3), 329-339 (1989) ⁇ .
- TNF ⁇ is also implicated in the inflammatory response which follows reperfusion, called reperfusion injury, and is a major cause of tissue damage after loss of blood flow ⁇ Vedder et al., PNAS 87, 2643-2646 (1990) ⁇ .
- TNF ⁇ also alters the properties of endothelial cells and has various pro-coagulant activities, such as producing an increase in tissue factor pro-coagulant activity and suppression of the anticoagulant protein C pathway as well as down-regulating the expression of thrombomodulin ⁇ Sherry et al., J. Cell Biol. 107, 1269-1277 (1988) ⁇ .
- TNF ⁇ has pro-inflammatory activities which together with its early production (during the initial stage of an inflammatory event) make it a likely mediator of tissue injury in several important disorders including but not limited to, myocardial infarction, stroke and circulatory shock.
- TNF ⁇ -induced expression of adhesion molecules such as intercellular adhesion molecule (ICAM) or endothelial leukocyte adhesion molecule (ELAM) on endothelial cells ⁇ Munro et al., Am. J. Path. 135(1), 121-132 (1989) ⁇ .
- IAM intercellular adhesion molecule
- ELAM endothelial leukocyte adhesion molecule
- TNF ⁇ blockage with monoclonal anti-TNF ⁇ antibodies has been shown to be beneficial in rheumatoid arthritis ⁇ Elliot et al., Int. J. Pharmac. 1995 17(2), 141-145 ⁇ .
- High levels of TNF ⁇ are associated with Crohn's disease ⁇ von Dullemen et al., Gastroenterology, 1995 109(1), 129-135 ⁇ and clinical benefit has been achieved with TNF ⁇ antibody treatment.
- TNF ⁇ is a potent activator of retrovirus replication including activation of HIV-1.
- HIV Human Immunodeficiency Virus
- HIV-1 HIV-1
- HIV-2 HIV-2
- HIV-3 HIV-3
- T-cell mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms.
- HIV entry into the T lymphocyte requires T lymphocyte activation.
- Other viruses, such as HIV-1, HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation.
- the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication.
- Cytokines are implicated in activated T-cell mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by prevention or inhibition of cytokine production, notably TNF ⁇ , in an HIV-infected individual assists in limiting the maintenance of T lymphocyte caused by HIV infection.
- Monocytes, macrophages, and related cells have been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. ⁇ Rosenberg et al., The Immunopathogenesis of HIV Infection, Advances in Immunology, 57 (1989) ⁇ . Cytokines, such as TNF ⁇ , have been shown to activate HIV replication in monocytes and/or macrophages ⁇ Poli et al., Proc. Natl. Acad.
- TNF ⁇ cytokine production or activity aids in limiting HIV progression for T cells.
- Additional studies have identified TNF ⁇ as a common factor in the activation of HIV in vitro and has provided a clear mechanism of action via a nuclear regulatory protein found in the cytoplasm of cells (Osborn, et al., PNAS 86 2336-2340). This evidence suggests that a reduction of TNF ⁇ synthesis may have an antiviral effect in HIV infections, by reducing the transcription and thus virus production.
- AIDS viral replication of latent HIV in T cell and macrophage lines can be induced by TNF ⁇ ⁇ Folks et al., PNAS 86, 2365-2368 (1989) ⁇ .
- a molecular mechanism for the virus inducing activity is suggested by TNF ⁇ 's ability to activate a gene regulatory protein (NF ⁇ B) found in the cytoplasm of cells, which promotes HIV replication through binding to a viral regulatory gene sequence (LTR) ⁇ Osborn et al., PNAS 86, 2336-2340 (1989) ⁇ .
- TNF ⁇ in AIDS associated cachexia is suggested by elevated serum TNF ⁇ and high levels of spontaneous TNF ⁇ production in peripheral blood monocytes from patients ⁇ Wright et al., J. Immunol.
- TNF ⁇ has been implicated in various roles with other viral infections, such as the cytomegalia virus (CMV), influenza virus, adenovirus, and the herpes family of viruses for similar reasons as those noted.
- CMV cytomegalia virus
- influenza virus influenza virus
- adenovirus adenovirus
- herpes family of viruses for similar reasons as those noted.
- NF ⁇ B nuclear factor ⁇ B
- NF ⁇ B nuclear factor ⁇ B
- NF ⁇ B pleiotropic transcriptional activator
- NF ⁇ B has been implicated as a transcriptional activator in a variety of disease and inflammatory states and is thought to regulate cytokine levels including but not limited to TNF ⁇ and also to be an activator of HIV transcription (Dbaibo, et al., J. Biol. Chem. 1993, 17762-66; Duh et al., Proc. Natl. Acad. Sci. 1989, 86, 5974-78; Bachelerie et al., Nature 1991, 350, 709-12; Boswas et al., J.
- TNF ⁇ and NF ⁇ B levels are influenced by a reciprocal feedback loop. As noted above, the compounds of the present invention affect the levels of both TNF ⁇ and NF ⁇ B.
- cAMP adenosine 3′,5′-cyclic monophosphate
- TNF ⁇ levels and/or increasing cAMP levels thus constitutes a valuable therapeutic strategy for the treatment of many inflammatory, infectious, immunological or malignant diseases.
- diseases include but are not restricted to septic shock, sepsis, endotoxic shock, hemodynamic shock and sepsis syndrome, post ischemic reperfusion injury, malaria, mycobacterial infection, meningitis, psoriasis, congestive heart failure, fibrotic disease, cachexia, graft rejection, cancer, autoimmune disease, opportunistic infections in AIDS, rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, radiation damage, and hyperoxic alveolar injury.
- the compounds claimed in this patent inhibit the action of NF ⁇ B in the nucleus and thus are useful in the treatment of a variety of diseases including but not limited to rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, septic shock, septis, endotoxic shock, graft versus host disease, wasting, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, HIV, AIDS, and opportunistic infections in AIDS.
- diseases including but not limited to rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, septic shock, septis, endotoxic shock, graft versus host disease, wasting, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL
- the compounds can be used, under the supervision of qualified professionals, to inhibit the undesirable effects of TNF ⁇ or phosphodiesterase.
- the compounds can be administered orally, rectally, or parenterally, alone or in combination with other therapeutic agents including antibiotics, steroids, etc., to a mammal in need of treatment.
- Oral dosage forms include tablets, capsules, dragees, and similar shaped, compressed pharmaceutical forms.
- Isotonic saline solutions containing 20-100 milligrams/milliliter can be used for parenteral administration which includes intramuscular, intrathecal, intravenous and intra-arterial routes of administration. Rectal administration can be effected through the use of suppositories formulated from conventional carriers such as cocoa butter.
- Dosage regimens must be titrated to the particular indication, the age, weight, and general physical condition of the patient, and the response desired but generally doses will be from about 1 to about 1000 milligrams/day as needed in single or multiple daily administration.
- an initial treatment regimen can be copied from that known to be effective in interfering with TNF ⁇ activity for other TNF ⁇ mediated disease states by the compounds of the present invention.
- Treated individuals will be regularly checked for T cell numbers and T4/T8 ratios and/or measures of viremia such as levels of reverse transcriptase or viral proteins, and/or for progression of cytokine-mediated disease associated problems such as cachexia or muscle degeneration. If no effect is observed following the normal treatment regimen, then the amount of cytokine activity interfering agent administered is increased, e.g., by fifty percent a week.
- the compounds of the present invention can also be used topically in the treatment or prophylaxis of topical disease states mediated or exacerbated by excessive TNF ⁇ production, such as viral infections, for example those caused by the herpes viruses or viral conjunctivitis, psoriasis, other skin disorders and diseases, etc.
- TNF ⁇ mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples include feline immunodeficiency virus, equine infectious anaemia virus, caprine arthritis virus, visna virus, and maedi virus, as well as other lentiviruses.
- racemates of these isomers and the individual isomers themselves, as well as diastereoisomers when there are two or more chiral centers, are within the scope of the present invention.
- the racemates can be used as such or can be separated into their individual isomers mechanically as by chromatography using a chiral absorbent.
- the individual isomers can be prepared in chiral form or separated chemically from a mixture by forming salts with a chiral acid, such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, alpha-bromocamphoric acid, methoxyacetic acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolidone-5-carboxylic acid, and the like, and then freeing one or both of the resolved bases, optionally repeating the process, so as to obtain either or both isomers substantially free of the other; i.e., in a form having an optical purity of >95%.
- a chiral acid such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, alpha-bromocamphoric acid, methoxyacetic acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolidone-5-carboxylic acid, and the like
- TNF ⁇ Inhibition Assays can be performed as follows:
- PBMC isolation PBMC from normal donors were obtained by Ficoll-Hypaque density centrifugation. Cells were cultured in RPMI supplemented with 10% AB+ serum, 2 mM L-glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin.
- PBMC suspensions Drugs were dissolved in DMSO (Sigma Chemical), further dilutions were done in supplemented RPMI. The final DMSO concentration in the presence or absence of drug in the PBMC suspensions was 0.25 wt %. Drugs were assayed at half-log dilutions starting at 50 mg/mL. Drugs were added to PBMC (10 6 cells/mL) in 96 wells plates one hour before the addition of LPS.
- DMSO Sigma Chemical
- PBMC PBMC (10 6 cells/mL) in the presence or absence of drug were stimulated by treatment with 1 mg/mL of LPS from Salmonella minnesota R595 (List Biological Labs, Campbell, Calif.). Cells were then incubated at 37° C. for 18-20 hours. Supernatants were then harvested and assayed immediately for TNF ⁇ levels or kept frozen at ⁇ 70° C. (for not more than 4 days) until assayed.
- TNF ⁇ Determination The concentration of TNF ⁇ in the supernatant was determined by human TNF ⁇ ELISA kits (ENDOGEN, Boston, Mass.) according to the manufacturer's directions.
- Another assay procedure utilizes plates (Nunc Immunoplates, Roskilde, DK) which are treated with 5 mg/mL of purified rabbit anti-TNF ⁇ antibodies at 4° C. for 12 to 14 hours. The plates then are blocked for 2 hours at 25° C. with PBS/0.05% Tween containing 5 milligrams/milliliter BSA. After washing, 100 mL of unknowns as well as controls are applied and the plates incubated at 4° C. for 12 to 14 hours.
- the plates are washed and assayed with a conjugate of peroxidase (horseradish) and mouse anti-TNF ⁇ monoclonal antibodies, and the color developed with o-phenylenediamine in phosphate-citrate buffer containing 0.012% hydrogen peroxide and read at 492 nm.
- the compounds can be prepared using methods which are known per se. for example, a cyclic anhydride of lactone can be reacted with the appropriate amine:
- compounds in which R 6 is —CH 2 — can be formed through condensation of a dialdehyde with a disubstituted aromatic compound in the presence of refluxing acetic acid utilizing the method of Griggs et al., J. Chem. Soc. Chem. Comm., 1985, 1183-1184, the disclosure of which is incorporated herein by reference.
- the disubstituted aromatic starting materials can be obtained through condensation of an appropriately substituted aldehyde and malonic acid, with intermediate formation of the amidine and subsequent decarboxylation.
- the disubstituted aldehydes can be prepared utilizing classical methods for ether formation; e.g., reaction with the appropriate bromide in the presence of potassium carbonate. Numerous cycloalkyloxy benzaldehydes and procedures for preparing them are described in the literature. See, e.g., Ashton et al., J. Med. Chem., 1994, 37, 1696-1703; Saccomano et al., J. Med. Chem., 1994, 34,, 291-298; and Cheng et al., Org. and Med Chem. Lett., 1995, 5(17), 1969-1972, the disclosures of which are incorporated herein by reference.
- Typical compounds include 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxy-phenyl)propionic acid, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-ethoxyphenyl)propionic acid, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3,4-dimethoxyphenyl)propionic acid, 3-(1-oxo-benzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1-oxo-4-azaisoin
- Representative aldehyde starting materials include 3-cyclopentyloxy4-methoxybenzaldehyde, 3-cyclopentyloxy-4-ethoxybenzaldehyde, 3-cyclohexyloxy-4-cyclohexyloxybenzaldehyde, 3-(exo-bicyclo[2.2.1]hept2-yloxy)-4-methoxybenzaldehyde, 3-(endo-bicyclo[2.2.1]hept-2-yloxy)-4-methoxybenzaldehyde, 3-(bicyclo[2.2.2]oct-2-yloxy)-4-methoxybenzaldehyde, 3-(bicyclo[3.2.1]oct-2-yloxy)-4-methoxybenzaldehyde, 3-indan-2-yloxy-4-methoxybenzaldehyde, and 3-(endo-benzobicyclo(2.2.1]hept-2-yloxy)-4-methoxybenzaldehyde.
- 1,3-Dioxobenzo[f]isoindoline obtained from naphthalene-2,3-dicarboxylic acid anhydride through treatment with ammonia, is acylated as with ethyl chloroformate to yield 2-carbethoxy-1,3-dioxobenzo[f]isoindoline.
- Pyridine-2,3-dicarboxylic acid anhydride and pyridine-3,4-dicarboxylic acid anhydride are similarly converted to 2-carbethoxy-1,3-dioxo-4-azaisoindoline and 2-carbethoxy-1,3-dioxo-5-azaisoindoline.
- the reaction was monitored by HPLC (Waters Nova-Pak/C-18 column, 3.9 ⁇ 150 mm, 4 micron, 1 mL/min, 240 nm, 50/50 acetonitrile/phosphoric acid0.1% (aq)).
- HPLC Waters Nova-Pak/C-18 column, 3.9 ⁇ 150 mm, 4 micron, 1 mL/min, 240 nm, 50/50 acetonitrile/phosphoric acid0.1% (aq)).
- the reaction mixture was poured into a mixture of sodium bicarbonate (8.5 mL) and ice (40 g) and stirred until the ice had melted.
- the mixture was filtered and the solid was washed with copious amounts of water.
- the wet solid was dissolved in methylene chloride (25 mL) and the organic layer was separated and dried over MgSO 4 and concentrated in vacuo to a sticky semi-solid.
- Tablets each containing 50 milligrams of active ingredient, can be prepared in the following manner: Constituents (for 1000 tablets) active ingredient 50.0 grams lactose 50.7 grams wheat starch 7.5 grams polyethylene glycol 6000 5.0 grams talc 5.0 grams magnesium stearate 1.8 grams demineralized water q.s.
- the solid ingredients are first forced through a sieve of 0.6 mm mesh width.
- the active ingredient, the lactose, the talc, the magnesium stearate and half of the starch then are mixed.
- the other half of the starch is suspended in 40 milliliters of water and this suspension is added to a boiling solution of the polyethylene glycol in 100 milliliters of water.
- the resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water.
- the granulate is dried overnight at 35° C., forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.
- Tablets each containing 100 milligrams of active ingredient, can be prepared in the following manner: Constituents (for 1000 tablets) active ingredient 100.0 grams lactose 100.0 grams wheat starch 47.0 grams magnesium stearate 3.0 grams
- Tablets for chewing each containing 75 milligrams of active ingredient, can be prepared in the following manner: Composition (for 1000 tablets) active ingredient 75.0 grams mannitol 230.0 grams lactose 150.0 grams talc 21.0 grams glycine 12.5 grams stearic acid 10.0 grams saccharin 1.5 grams 5% gelatin solution q.s.
- All the solid ingredients are first forced through a sieve of 0.25 mm mesh width.
- the mannitol and the lactose are mixed, granulated with the addition of gelatin solution, forced through a sieve of 2 mm mesh width, dried at 50° C. and again forced through a sieve of 1.7 mm mesh width.
- the active ingredient, the glycine and the saccharin are carefully mixed, the mannitol, the lactose granulate, the stearic acid and the talc are added and the whole is mixed thoroughly and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking groove on the upper side.
- Tablets each containing 10 milligrams of active ingredient, can be prepared in the following manner: Composition (for 1000 tablets) active ingredient 10.0 grams lactose 328.5 grams corn starch 17.5 grams polyethylene glycol 6000 5.0 grams talc 25.0 grams magnesium stearate 4.0 grams demineralized water q.s.
- the solid ingredients are first forced through a sieve of 0.6 mm mesh width. Then the active ingredient, lactose, talc, magnesium stearate and half of the starch are intimately mixed. The other half of the starch is suspended in 65 milliliters of water and this suspension is added to a boiling solution of the polyethylene glycol in 260 milliliters of water. The resulting paste is added to the pulverulent substances, and the whole is mixed and granulated, if necessary with the addition of water. The granulate is dried overnight at 35° C., forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking notch on the upper side.
- Gelatin dry-filled capsules each containing 100 milligrams of active ingredient, can be prepared in the following manner: Composition (for 1000 capsules) active ingredient 100.0 grams microcrystalline cellulose 30.0 grams sodium lauryl sulphate 2.0 grams magnesium stearate 8.0 grams
- the sodium lauryl sulphate is sieved into the active ingredient through a sieve of 0.2 mm mesh width and the two components are intimately mixed for 10 minutes.
- the microcrystalline cellulose is then added through a sieve of 0.9 mm mesh width and the whole is again intimately mixed for 10 minutes.
- the magnesium stearate is added through a sieve of 0.8 mm width and, after mixing for a further 3 minutes, the mixture is introduced in portions of 140 milligrams each into size 0 (elongated) gelatin dry-fill capsules.
- a 0.2% injection or infusion solution can be prepared, for example, in the following manner: active ingredient 5.0 grams sodium chloride 22.5 grams phosphate buffer pH 7.4 300.0 grams demineralized water qs 2500.0 milliliters
- the active ingredient is dissolved in 1000 milliliters of water and filtered through a microfilter or slurried in 1000 mL of H 2 O.
- the buffer solution is added and the whole is made up to 2500 milliliters with water.
- portions of 1.0 or 2.5 milliliters each are introduced into glass ampoules (each containing respectively 2.0 or 5.0 milligrams of active ingredient).
Landscapes
- Organic Chemistry (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Medicinal Chemistry (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Pharmacology & Pharmacy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Hematology (AREA)
- Oncology (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
Novel amides and imides are inhibitors of tumor necrosis factorα and phosphodiesterase and can be used to combat cachexia, endotoxic shock, retrovirus replication, asthma, and inflammatory conditions.
Description
- This is a divisional of Ser. No. 09/007,135 filed Jan. 14, 1998, which is a continuation of both (1) Ser. No. 08/520,710 filed Aug. 29, 1995, issued as U.S. Pat. No. 5,728,845; and (2) Ser. No. 08/578,738 filed Dec. 26, 1995, issued as U.S. Pat. No. 5,728,844, the disclosures of which are incorporated herein by reference. Ser. No. 08/578,738 is a continuation-in-part of Ser. No. 08/520,710.
- This invention relates to a method of reducing the level of cytokines and their precursors in mammals and to compounds and compositions useful therein.
-
- in which:
- R5 is:
- (i) the divalent residue of pyridine, pyrrolidine, imidizole, or thiophene, wherein the two bonds of the divalent residue are on vicinal ring carbon atoms;
- (ii) a divalent cycloalkyl of 4 to 10 carbon atoms, unsubstituted or substituted with one or more substituents each selected independently of the other from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl or halo;
- (iii) di-substituted vinylene, substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo; or
- (iv) ethylene, unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino, substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;
- R6 is —CO—, —CH2—, —CH2CO—, or —SO2—;
- R7 is
- (i) cyclic or bicyclic alkyl of 4 to 12 carbon atoms;
- (ii) pyridyl;
- (iii) phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, straight or branched alkyl of 1 to 10 carbon atoms, straight or branched alkoxy of 1 to 10 carbon atoms, or halo;
- (iv) benzyl substituted with one to three substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo;
- (v) naphthyl; or
- (vi) benzyloxy;
- Y is —COX, —C≡—N, —OR8, alkyl of 1 to5 carbon atoms, or aryl;
- X is —NH2,—OH, —NHR, —R9, —OR9, or alkyl of 1 to 5 carbon atoms;
- R8 is hydrogen or lower alkyl;
- R9 is alkyl or benzyl; and,
- n has a value of 0, 1, 2, or 3.
- Within this group, Y is preferably —C≡N or —CO(CH2)mCH3 in which m has a value of 0, 1, 2, or 3; and
-
- in which:
- one of R1 and R2 is R3—X— and the other is hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, halo, or R3—X—;
- R3 is monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms;
- X is —CH2 — or —O—;
- R5 is:
- (i) the vicinally divalent residue of pyridine, pyrrolidine, imidizole, or thiophene, wherein the two bonds of the divalent residue are on vicinal ring carbon atoms;
- (ii) a vicinally divalent cycloalkyl of 4-10 carbon atoms, unsubstituted or substituted with 1 to 3 substituents each selected independently from the group consisting of nitro, cyano, halo, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, substituted amino, alkyl of 1 to 10 carbon atoms, alkoxy of 1 to 10 carbon atoms, phenyl;
- (iii) di-substituted vinylene, substituted with nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo; or
- (iv) ethylene, unsubstituted or substituted with 1 to 2 substituents each selected independently from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, carbamoyl substituted with and alkyl of 1 to 3 carbon atoms, acetoxy, carboxy, hydroxy, amino, amino substituted with an alkyl of 1 to 3 carbon atoms, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 4 carbon atoms, or halo;
- R6is —CO—, —CH2—, or —CH2CO—;
- Y is —COX, —C≡N, —OR8, alkyl of 1 to 5 carbon atoms, or aryl;
- X is —NH2,—OH, —NHR, —R9, —OR9, or alkyl of 1 to 5 carbon atoms;
- R8 is hydrogen or lower alkyl;
- R9 is alkyl or benzyl; and,
- n has a value of 0, 1, 2, or 3.
- The term alkyl as used herein denotes a univalent saturated branched or straight hydrocarbon chain. Unless otherwise stated, such chains can contain from 1 to 18 carbon atoms. Representative of such alkyl groups are methyl, ethyl, propyl, isopropyl, butyl, isobutyl, sec-butyl, tert-butyl, pentyl, isopentyl, neopentyl, tert-pentyl, hexyl, isohexyl, heptyl, octyl, nonyl, decyl, undecyl, dodecyl, tridecyl, tetradecyl, pentadecyl, hexadecyl, heptadecyl, octadecyl, and the like. When qualified by “lower”, the alkyl group will contain from 1 to 6 carbon atoms. The same carbon content applies to the parent term “alkane” and to derivative terms such as “alkoxy”.
- The term cycloalkyl as used herein denotes a univalent saturated cyclic hydrocarbon chain. Unless otherwise stated, such chains can contain up to 18 carbon atoms. Monocyclicalkyl refers to groups having a single ring group. Polycycloalkyl denotes hydrocarbon systems containing two or more ring systems with two or more ring carbon atoms in common. Benzocycloalkyl signifies a monocyclicalkyl group fused to a benzo group.
- Representative of monocycloalkyl groups are cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cyclooctyl, cyclononyl, cyclodecyl, cycloundecyl, cyclododecyl, cyclotridecyl, cyclotetradecyl, cyclopentadecyl, cyclohexadecyl, cycloheptadecyl, and cyclooctadecyl. Representative of polycycloalkyl include bicyclo[2.2.1]heptyl, bicyclo[3.2.1]octyl, and bicyclo[2.2.2]octyl. Benzocycloalkyl is typified by tetrahydronaphthyl, indanyl, and 1.2-benzocycloheptanyl.
- Tumor necrosis factor α, or TNFα, is a cytokine which is released primarily by mono-nuclear phagocytes in response to a number immunostimulators. When administered to animals or humans, it causes inflammation, fever, cardiovascular effects, hemorrhage, coagulation, and acute phase responses similar to those seen during acute infections and shock states. Excessive or unregulated TNFα production thus has been implicated in a number of disease conditions. These include endotoxemia and/or toxic shock syndrome {Tracey et al.,Nature 330, 662-664 (1987) and Hinshaw et al., Circ. Shock 30, 279-292 (1990)}; cachexia {Dezube et al., Lancet, 335 (8690), 662 (1990)} and Adult Respiratory Distress Syndrome where TNFα concentration in excess of 12,000 pg/mL have been detected in pulmonary aspirates from ARDS patients {Millar et al, Lancet 2(8665), 712-714 (1989)}. Systemic infusion of recombinant TNFα also resulted in changes typically seen in ARDS {Ferrai-Baliviera et al., Arch. Surg. 124(12), 1400-1405 (1989)}.
- TNFα appears to be involved in bone resorption diseases, including arthritis. When activated, leukocytes will produce bone-resorption, an activity to which the data suggest TNFα contributes. {Bertolini et al.,Nature 319, 516-518 (1986) and Johnson et al., Endocrinology 124(3), 1424-1427 (1989).} TNFα also has been shown to stimulate bone resorption and inhibit bone formation in vitro and in vivo through stimulation of osteoclast formation and activation combined with inhibition of osteoblast function. Although TNFα may be involved in many bone resorption diseases, including arthritis, the most compelling link with disease is the association between production of TNFα by tumor or host tissues and malignancy associated hypercalcemia {Calci. Tissue Int. (US) 46(Suppl.), S3-10 (1990)}. In Graft versus Host Reaction, increased serum TNFα levels have been associated with major complication following acute allogenic bone marrow transplants {Holler et al., Blood, 75(4), 1011.-1016 (1990)}.
- Cerebral malaria is a lethal hyperacute neurological syndrome associated with high blood levels of TNFα and the most severe complication occurring in malaria patients. Levels of serum TNFα correlated directly with the severity of disease and the prognosis in patients with acute malaria attacks {Grau et al.,N. Engl. J. Med. 320(24), 1586-1591 (1989)}.
- Macrophage-induced angiogenesis TNFα is known to be mediated by TNFα. Leibovich et al. {Nature, 329, 630-632 (1987)} showed TNFα induces in vivo capillary blood vessel formation in the rat cornea and the developing chick chorioallantoic membranes at very low doses and suggest TNFα is a candidate for inducing angiogenesis in inflammation, wound repair, and tumor growth. TNFα production also has been associated with cancerous conditions, particularly induced tumors {Ching et al., Brit. J. Cancer, (1955) 72, 339-343, and Koch, Progress in Medicinal Chemistry, 22, 166-242 (1985)}.
- TNFα also plays a role in the area of chronic pulmonary inflammatory diseases. The deposition of silica particles leads to silicosis, a disease of progressive respiratory failure caused by a fibrotic reaction. Antibody to TNFα completely blocked the silica-induced lung fibrosis in mice {Pignet et al.,Nature, 344, 245-247 (1990)}. High levels of TNFα production (in the serum and in isolated macrophages) have been demonstrated in animal models of silica and asbestos induced fibrosis {Bissonnette et al., Inflammation 13(3), 329-339 (1989)}. Alveolar macrophages from pulmonary sarcoidosis patients have also been found to spontaneously release massive quantities of TNFα as compared with macrophages from normal donors {Baughman et al., J. Lab. Clin. Med. 115(1), 36-42 (1990)}.
- TNFα is also implicated in the inflammatory response which follows reperfusion, called reperfusion injury, and is a major cause of tissue damage after loss of blood flow {Vedder et al.,PNAS 87, 2643-2646 (1990)}. TNFα also alters the properties of endothelial cells and has various pro-coagulant activities, such as producing an increase in tissue factor pro-coagulant activity and suppression of the anticoagulant protein C pathway as well as down-regulating the expression of thrombomodulin {Sherry et al., J. Cell Biol. 107, 1269-1277 (1988)}. TNFα has pro-inflammatory activities which together with its early production (during the initial stage of an inflammatory event) make it a likely mediator of tissue injury in several important disorders including but not limited to, myocardial infarction, stroke and circulatory shock. Of specific importance may be TNFα-induced expression of adhesion molecules, such as intercellular adhesion molecule (ICAM) or endothelial leukocyte adhesion molecule (ELAM) on endothelial cells {Munro et al., Am. J. Path. 135(1), 121-132 (1989)}.
- TNFα blockage with monoclonal anti-TNFα antibodies has been shown to be beneficial in rheumatoid arthritis {Elliot et al.,Int. J. Pharmac. 1995 17(2), 141-145}. High levels of TNFα are associated with Crohn's disease {von Dullemen et al., Gastroenterology, 1995 109(1), 129-135 } and clinical benefit has been achieved with TNFα antibody treatment.
- Moreover, it now is known that TNFα is a potent activator of retrovirus replication including activation of HIV-1. {Duh et al.,Proc. Nat. Acad. Sci. 86, 5974-5978 (1989); Poll et al., Proc. Nat. Acad. Sci. 87, 782-785 (1990); Monto et al., Blood 79, 2670 (1990); Clouse et al., J. Immunol. 142, 431-438 (1989); Poll et al., AIDS Res. Hum. Retrovirus, 191-197 (1992)}. AIDS results from the infection of T lymphocytes with Human Immunodeficiency Virus (HIV). At least three types or strains of HIV have been identified, i.e., HIV-1, HIV-2 and HIV-3. As a consequence of HIV infection, T-cell mediated immunity is impaired and infected individuals manifest severe opportunistic infections and/or unusual neoplasms. HIV entry into the T lymphocyte requires T lymphocyte activation. Other viruses, such as HIV-1, HIV-2 infect T lymphocytes after T cell activation and such virus protein expression and/or replication is mediated or maintained by such T cell activation. Once an activated T lymphocyte is infected with HIV, the T lymphocyte must continue to be maintained in an activated state to permit HIV gene expression and/or HIV replication. Cytokines, specifically TNFα, are implicated in activated T-cell mediated HIV protein expression and/or virus replication by playing a role in maintaining T lymphocyte activation. Therefore, interference with cytokine activity such as by prevention or inhibition of cytokine production, notably TNFα, in an HIV-infected individual assists in limiting the maintenance of T lymphocyte caused by HIV infection.
- Monocytes, macrophages, and related cells, such as kupffer and glial cells, also have been implicated in maintenance of the HIV infection. These cells, like T cells, are targets for viral replication and the level of viral replication is dependent upon the activation state of the cells. {Rosenberg et al.,The Immunopathogenesis of HIV Infection, Advances in Immunology, 57 (1989)}. Cytokines, such as TNFα, have been shown to activate HIV replication in monocytes and/or macrophages {Poli et al., Proc. Natl. Acad. Sci., 87, 782-784 (1990)}, therefore, prevention or inhibition of cytokine production or activity aids in limiting HIV progression for T cells. Additional studies have identified TNFα as a common factor in the activation of HIV in vitro and has provided a clear mechanism of action via a nuclear regulatory protein found in the cytoplasm of cells (Osborn, et al., PNAS 86 2336-2340). This evidence suggests that a reduction of TNFα synthesis may have an antiviral effect in HIV infections, by reducing the transcription and thus virus production.
- AIDS viral replication of latent HIV in T cell and macrophage lines can be induced by TNFα {Folks et al.,PNAS 86, 2365-2368 (1989)}. A molecular mechanism for the virus inducing activity is suggested by TNFα's ability to activate a gene regulatory protein (NFκB) found in the cytoplasm of cells, which promotes HIV replication through binding to a viral regulatory gene sequence (LTR) {Osborn et al., PNAS 86, 2336-2340 (1989)}. TNFα in AIDS associated cachexia is suggested by elevated serum TNFα and high levels of spontaneous TNFα production in peripheral blood monocytes from patients {Wright et al., J. Immunol. 141(1), 99-104 (1988)}. TNFα has been implicated in various roles with other viral infections, such as the cytomegalia virus (CMV), influenza virus, adenovirus, and the herpes family of viruses for similar reasons as those noted.
- The nuclear factor κB (NFκB) is a pleiotropic transcriptional activator (Lenardo, et al.,Cell 1989, 58, 227-29). NFκB has been implicated as a transcriptional activator in a variety of disease and inflammatory states and is thought to regulate cytokine levels including but not limited to TNFα and also to be an activator of HIV transcription (Dbaibo, et al., J. Biol. Chem. 1993, 17762-66; Duh et al., Proc. Natl. Acad. Sci. 1989, 86, 5974-78; Bachelerie et al., Nature 1991, 350, 709-12; Boswas et al., J. Acquired Immune Deficiency Syndrome 1993, 6, 778-786; Suzuki et al., Biochem. And Biophys. Res. Comm. 1993, 193, 277-83; Suzuki et al., Biochem. And Biophys. Res Comm. 1992, 189, 1709-15; Suzuki et al., Biochem. Mol. Bio. Int. 1993, 31(4), 693-700; Shakhov et al., Proc. Natl. Acad Sci. USA 1990, 171, 35-47; and Staal et al., Proc. Natl. Acad. Sci. USA 1990, 87, 9943-47). Thus, inhibition of NFκB binding can regulate transcription of cytokine gene(s) and through this modulation and other mechanisms be useful in the inhibition of a multitude of disease states. The compounds described herein can inhibit the action of NFκB in the nucleus and thus are useful in the treatment of a variety of diseases including but not limited to rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, septic shock, septis, endotoxic shock, graft versus host disease, wasting, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, rosy, HIV, AIDS, and opportunistic infections in AIDS. TNFα and NFκB levels are influenced by a reciprocal feedback loop. As noted above, the compounds of the present invention affect the levels of both TNFα and NFκB.
- Many cellular functions are mediated by levels of adenosine 3′,5′-cyclic monophosphate (cAMP). Such cellular functions can contribute to inflammatory conditions and diseases including asthma, inflammation, and other conditions (Lowe and Cheng,Drugs of the Future, 17(9), 799-807, 1992). It has been shown that the elevation of cAMP in inflammatory leukocytes inhibits their activation and the subsequent release of inflammatory mediators, including TNFα and NFκB. Increased levels of cAMP also leads to the relaxation of airway smooth muscle. Phosphodiesterases control the level of cAMP through hydrolysis and inhibitors of phosphodiesterases have been shown to increase cAMP levels.
- Decreasing TNFα levels and/or increasing cAMP levels thus constitutes a valuable therapeutic strategy for the treatment of many inflammatory, infectious, immunological or malignant diseases. These include but are not restricted to septic shock, sepsis, endotoxic shock, hemodynamic shock and sepsis syndrome, post ischemic reperfusion injury, malaria, mycobacterial infection, meningitis, psoriasis, congestive heart failure, fibrotic disease, cachexia, graft rejection, cancer, autoimmune disease, opportunistic infections in AIDS, rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, radiation damage, and hyperoxic alveolar injury. Prior efforts directed to the suppression of the effects of TNFα have ranged from the utilization of steroids such as dexamethasone and prednisolone to the use of both polyclonal and monoclonal antibodies {Beutler et al.,Science 234, 470-474 (1985); WO 92/11383}.
- The compounds claimed in this patent inhibit the action of NFκB in the nucleus and thus are useful in the treatment of a variety of diseases including but not limited to rheumatoid arthritis, rheumatoid spondylitis, osteoarthritis, other arthritic conditions, septic shock, septis, endotoxic shock, graft versus host disease, wasting, Crohn's disease, ulcerative colitis, multiple sclerosis, systemic lupus erythrematosis, ENL in leprosy, HIV, AIDS, and opportunistic infections in AIDS.
- It is not known at this time, however, how the compounds of the present invention regulate the levels of TNFα, NFκB, or both. As noted above, the compounds of the present invention affect the levels of both TNFα and NFκB.
- The compounds can be used, under the supervision of qualified professionals, to inhibit the undesirable effects of TNFα or phosphodiesterase. The compounds can be administered orally, rectally, or parenterally, alone or in combination with other therapeutic agents including antibiotics, steroids, etc., to a mammal in need of treatment. Oral dosage forms include tablets, capsules, dragees, and similar shaped, compressed pharmaceutical forms. Isotonic saline solutions containing 20-100 milligrams/milliliter can be used for parenteral administration which includes intramuscular, intrathecal, intravenous and intra-arterial routes of administration. Rectal administration can be effected through the use of suppositories formulated from conventional carriers such as cocoa butter.
- Dosage regimens must be titrated to the particular indication, the age, weight, and general physical condition of the patient, and the response desired but generally doses will be from about 1 to about 1000 milligrams/day as needed in single or multiple daily administration. In general, an initial treatment regimen can be copied from that known to be effective in interfering with TNFα activity for other TNFα mediated disease states by the compounds of the present invention. Treated individuals will be regularly checked for T cell numbers and T4/T8 ratios and/or measures of viremia such as levels of reverse transcriptase or viral proteins, and/or for progression of cytokine-mediated disease associated problems such as cachexia or muscle degeneration. If no effect is observed following the normal treatment regimen, then the amount of cytokine activity interfering agent administered is increased, e.g., by fifty percent a week.
- The compounds of the present invention can also be used topically in the treatment or prophylaxis of topical disease states mediated or exacerbated by excessive TNFα production, such as viral infections, for example those caused by the herpes viruses or viral conjunctivitis, psoriasis, other skin disorders and diseases, etc.
- The compounds can also be used in the veterinary treatment of mammals other than humans in need of prevention or inhibition of TNFα production. TNFα mediated diseases for treatment, therapeutically or prophylactically, in animals include disease states such as those noted above, but in particular viral infections. Examples include feline immunodeficiency virus, equine infectious anaemia virus, caprine arthritis virus, visna virus, and maedi virus, as well as other lentiviruses.
- These compounds possess at least one center of chirality and thus will exist as optical isomers. Both the racemates of these isomers and the individual isomers themselves, as well as diastereoisomers when there are two or more chiral centers, are within the scope of the present invention. The racemates can be used as such or can be separated into their individual isomers mechanically as by chromatography using a chiral absorbent. Alternatively, the individual isomers can be prepared in chiral form or separated chemically from a mixture by forming salts with a chiral acid, such as the individual enantiomers of 10-camphorsulfonic acid, camphoric acid, alpha-bromocamphoric acid, methoxyacetic acid, tartaric acid, diacetyltartaric acid, malic acid, pyrrolidone-5-carboxylic acid, and the like, and then freeing one or both of the resolved bases, optionally repeating the process, so as to obtain either or both isomers substantially free of the other; i.e., in a form having an optical purity of >95%.
- Prevention or inhibition of production of TNFα by these compounds can be conveniently assayed using methods known in the art. For example, TNFα Inhibition Assays can be performed as follows:
- PBMC isolation: PBMC from normal donors were obtained by Ficoll-Hypaque density centrifugation. Cells were cultured in RPMI supplemented with 10% AB+ serum, 2 mM L-glutamine, 100 U/mL penicillin and 100 mg/mL streptomycin.
- PBMC suspensions: Drugs were dissolved in DMSO (Sigma Chemical), further dilutions were done in supplemented RPMI. The final DMSO concentration in the presence or absence of drug in the PBMC suspensions was 0.25 wt %. Drugs were assayed at half-log dilutions starting at 50 mg/mL. Drugs were added to PBMC (106 cells/mL) in 96 wells plates one hour before the addition of LPS.
- Cell stimulation: PBMC (106 cells/mL) in the presence or absence of drug were stimulated by treatment with 1 mg/mL of LPS from Salmonella minnesota R595 (List Biological Labs, Campbell, Calif.). Cells were then incubated at 37° C. for 18-20 hours. Supernatants were then harvested and assayed immediately for TNFα levels or kept frozen at −70° C. (for not more than 4 days) until assayed.
- TNFα Determination: The concentration of TNFα in the supernatant was determined by human TNFα ELISA kits (ENDOGEN, Boston, Mass.) according to the manufacturer's directions.
- Another assay procedure utilizes plates (Nunc Immunoplates, Roskilde, DK) which are treated with 5 mg/mL of purified rabbit anti-TNFα antibodies at 4° C. for 12 to 14 hours. The plates then are blocked for 2 hours at 25° C. with PBS/0.05% Tween containing 5 milligrams/milliliter BSA. After washing, 100 mL of unknowns as well as controls are applied and the plates incubated at 4° C. for 12 to 14 hours. The plates are washed and assayed with a conjugate of peroxidase (horseradish) and mouse anti-TNFα monoclonal antibodies, and the color developed with o-phenylenediamine in phosphate-citrate buffer containing 0.012% hydrogen peroxide and read at 492 nm.
-
- in which R5, R6, R7, Y, and n are as defined above. The reaction can be effected analogously to the methods described in U.K. Patent Specification No. 1,036,694, the disclosure of which is incorporated herein by reference. Optionally acetic acid, with or without sodium acetate, can be added.
-
- In a further embodiment, compounds in which R6 is —CH2— can be formed through condensation of a dialdehyde with a disubstituted aromatic compound in the presence of refluxing acetic acid utilizing the method of Griggs et al., J. Chem. Soc. Chem. Comm., 1985, 1183-1184, the disclosure of which is incorporated herein by reference.
- The disubstituted aromatic starting materials can be obtained through condensation of an appropriately substituted aldehyde and malonic acid, with intermediate formation of the amidine and subsequent decarboxylation.
- The disubstituted aldehydes can be prepared utilizing classical methods for ether formation; e.g., reaction with the appropriate bromide in the presence of potassium carbonate. Numerous cycloalkyloxy benzaldehydes and procedures for preparing them are described in the literature. See, e.g., Ashton et al.,J. Med. Chem., 1994, 37, 1696-1703; Saccomano et al., J. Med. Chem., 1994, 34,, 291-298; and Cheng et al., Org. and Med Chem. Lett., 1995, 5(17), 1969-1972, the disclosures of which are incorporated herein by reference.
- Typical compounds include 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxy-phenyl)propionic acid, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-ethoxyphenyl)propionic acid, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3,4-dimethoxyphenyl)propionic acid, 3-(1-oxo-benzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1-oxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1-oxo-5-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1-oxo-4-azaisoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1-oxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-ethoxy-phenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-cyclohexyloxy-phenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)-propionamide, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-cyclobutyloxyphenyl)-propionamide, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-5-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclobutyloxyphenyl)propionamide, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1-oxobenzo [f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyl)propionamide, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3,4-dicyclopentyloxy-phenyl)propionamide, 3-(1-oxobenzo[f]isoindol-2-yl)-3-(3,4-dicyclohexyloxyphenyl)propionamide, 3-(1-oxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1-oxo-5-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1-oxo-4-azaisoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1-oxo-4-azaisoindol-2-yl)-3-(3-cyclohexyloxy-4-ethoxyphenyl)propionamide,3-( 1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3,4-dicyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3,4-dicyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, methyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3,4-dicyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3,4-dicyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxo-5-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, ethyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, ethyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, ethyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3-methoxy-4-ethoxyphenyl)propionate, ethyl 3-(1,3-dioxobenzo[f]isoindol-2-yl)-3-(3,4-dimethoxyphenyl)propionate, ethyl 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionate, ethyl 3-(1,3-dioxo-5-azaisoindol-2-yl)-3-(3-methoxy-4-cyclopentyloxyphenyl)propionate, ethyl and 3-(1,3-dioxo-4-azaisoindol-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate.
- Representative aldehyde starting materials include 3-cyclopentyloxy4-methoxybenzaldehyde, 3-cyclopentyloxy-4-ethoxybenzaldehyde, 3-cyclohexyloxy-4-cyclohexyloxybenzaldehyde, 3-(exo-bicyclo[2.2.1]hept2-yloxy)-4-methoxybenzaldehyde, 3-(endo-bicyclo[2.2.1]hept-2-yloxy)-4-methoxybenzaldehyde, 3-(bicyclo[2.2.2]oct-2-yloxy)-4-methoxybenzaldehyde, 3-(bicyclo[3.2.1]oct-2-yloxy)-4-methoxybenzaldehyde, 3-indan-2-yloxy-4-methoxybenzaldehyde, and 3-(endo-benzobicyclo(2.2.1]hept-2-yloxy)-4-methoxybenzaldehyde.
- The following examples will serve to further typify the nature of this invention but should not be construed as a limitation in the scope thereof, which scope is defined solely by the appended claims.
- A stirred suspension of 3-cyclopentyloxy-4-methoxybenzaldehyde (10.0 g, 45.4 mmol) and ammonium acetate (7.00 g, 90.8 mmol) in ethanol (95%, 30 mL) under nitrogen was heated to 45-50 ° C. and malonic acid (4.72 g, 45.4 mmol) was added. The solution was heated at reflux for 24 hours. A white solid precipitated, the mixture was allowed to cool to room temperature and was then filtered. The white solid was washed with ethanol, air dried and then dried in vacuo (60 ° C.,<1 mm) to afford 7.36 g (58%) of the product: mp 225-226 ° C.;1H NMR (D2O/NaOH/TSP) δ7.05−6.88 (m, 3H), 4.91−4.78 (m, 1H), 4.21−4.14 (m, 1H), 3.79 (s, 3H), 2.59−2.46 (m, 2H), 2.05−1.48 (m, 8H). Trace impurity peaks were present at 6.39 and 7.34 ppm. 13C NMR (D2O/NaOD/TSP) δ182.9, 150.7, 149.1, 140.6, 121.6, 116.0, 114.9, 83.9, 58.5, 55.3, 49.8, 34.9, 26.3.
- Similarly from equivalent amounts of 3-ethoxy-4-cyclopentyloxybenzaldehyde, 3-ethoxy-4-cyclohexyloxybenzaldehyde, 3-methoxy-4-cyclopentyloxybenzaldehyde, 3-methoxy-4-cyclohexyloxybenzaldehyde, 3-cyclohexyloxy-4-methoxybenzaldehyde, 3-cyclopentyloxy-4-ethoxybenzaldehyde, and 3-cyclohexyloxy-4-ethoxybenzaldehyde, there are respectively obtained according to the foregoing procedure 3-amino-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-amino-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-amino-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-amino-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-amino-3-(3-cyclohexyloxy)-4-ethoxyphenyl)-propionic acid.
- To a stirred mixture of 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid (2.34 g 8.40 mmol) and sodium carbonate (0.96 g, 9.05 mmol) in a mixture of water (20 mL) and acetonitrile (20 mL) under nitrogen was added N-carbethoxyphthalimide (1.9 g, 8.4 mmol). After 3 hours, the acetonitrile was removed in vacuo. The pH of the solution was adjusted to 1 with aqueous hydrogen chloride (4 N). Ether (5 mL) was added and the mixture stirred for 1 hour. The resulting slurry was filtered and the solid washed with water, air dried and then dried in vacuo (60° C.,<1 mm) to afford 2.92 g (85%) of the product as a white solid: mp 159-162° C.;1H NMR (DMSO-d6) δ12.40 (br s, 1H), 7.96−7.80 (m, 4H), 7.02 (s, 1H), 6.90 (s, 2H), 5.71−5.52 (m, 1H), 4.81−4.65 (m, 1H), 3.70 (s, 3H), 3.59−3.16 (m, 2H), 2.00−1.44 (m, 8H); 13C NMR (DMSO-d6) δ171.7, 167.6, 149.1, 146.8, 134.6, 131.2, 131.1, 123.1, 119.4, 113.9, 112.1, 79.5, 55.5, 50.1, 36.1, 32.1, 32.1, 23.5; Anal. Calcd for C23H23NO6. Theoretical: C, 67.47; H, 5.66; N, 3.42. Found: C, 67.34; H, 5.59; N, 3.14.
- By substituting an equivalent amount of 2-carbethoxy-1,3-dioxobenzo[f]isoindoline in the foregoing procedure, there is obtained 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid. Likewise from 2-carbethoxy-1,3-dioxo-4-azaisoindoline and 2-carbethoxy-1,3-dioxo-5-azaisoindoline there are respectively obtained 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid and 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid.
- 1,3-Dioxobenzo[f]isoindoline, obtained from naphthalene-2,3-dicarboxylic acid anhydride through treatment with ammonia, is acylated as with ethyl chloroformate to yield 2-carbethoxy-1,3-dioxobenzo[f]isoindoline. Pyridine-2,3-dicarboxylic acid anhydride and pyridine-3,4-dicarboxylic acid anhydride are similarly converted to 2-carbethoxy-1,3-dioxo-4-azaisoindoline and 2-carbethoxy-1,3-dioxo-5-azaisoindoline.
- Use in the procedure of this example of equivalent amounts of 2-carbethoxy-1,3-dioxo-benzo[f]isoindoline with 3-amino-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-amino-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-amino-3-(3-methoxy-4-cyclohexyl-oxyphenyl)propionic acid, 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-amino-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-amino-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid, all prepared as described in Example 1, yield 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid, respectively.
- Likewise by employing 2-carbethoxy-1,3-dioxo-4-azaisoindoline there are obtained from the same amines of Example 1 the compounds 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid.
- Similarly from 2-carbethoxy-1,3-dioxo-5-azaisoindoline there are obtained with the amines of Example 1 the compounds 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)-propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid, respectively.
- A mixture of 3-phthalimido-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid (2.05 g, 5.00 mmol), 1,1′-carbonyldiimidazole (0.91 g, 5.5 mmol) and 4-dimethylaminopyridine (trace) in THF (20 mL) was stirred for 1.5 hours under nitrogen at approximately 25° C. To the solution was added ammonium hydroxide (1.07 mL, 16.0 mmol, 28-30%) and stirring was continued for 1.5 hours. A small amount of solid precipitated during this time. The mixture was concentrated to half its volume and a white solid precipitated. The mixture was filtered, washed with a small amount of THF, air dried and dried in vacuo (60° C.,<1 mm) to afford 1.27 g of the crude product. The crude product was purified by flash column chromatography (silica gel, 5% MeOH/CH2Cl2) and the resulting white solid was dried in vacuo (60° C.,<1 mm) to afford 1 g (49%) of the product: mp 165-166° C.; 1H NMR (CDCl3) δ7.85−7.61 (m, 4H), 7.16−7.04 (m, 2H), 6.85−6.75 (m, 1H), 5.80 (dd, J=5.8, 10.4 Hz, 1H), 5.66 (br s, 1H), 5.54 (br s, 1H), 4.82−4.70 (m, 1H), 3.80 (s, 3H), 3.71 (dd, J=10.4, 15 Hz, 1H), 3.06 (dd, J=5.8, 15 Hz, 1H), 2.06−1.51 (m, 8H); 13C NMR (CDCl3) δ171.8, 168.3, 149.8, 147.7, 133.9, 131.8, 131.3, 123.3, 119.9, 114.6, 111.8, 80.4, 56.0, 51.6, 37.9, 32.7, 24.1; Anal. Calcd for C23H24N2O5. Theoretical: C, 67.63; H, 5.92; N, 6.86. Found: C, 67.25; H, 5.76; N, 6.68.
- Similarly from equivalent amounts of 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid, there are respectively obtained according to the forgoing procedure 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionamide, and 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionamide.
- To a cooled (ice bath temperatures) and stirred mixture of 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid (3.00 g, 10.7 mmol) in methanol (20 mL) under nitrogen was added thionyl chloride (1.8 mL, 2.3 mmol) dropwise via syringe. The resulting solution was stirred at 0° C. for 1 hour, the ice bath was removed and stirring was continued at room temperature for 1 hour and a white solid precipitated. The methanol was removed and the solid was slurred in hexane. The mixture was filtered and the white solid was washed with hexane, air dried and then dried in vacuo (60° C.,<1 mm) to afford 2.69 g (76%) of the product: mp 183-184.5° C.;1H NMR (DMSO-d6) δ8.76 (br s, 3H), 7.25 (s, 1H), 7.06−6.89 (m, 2H), 4.85−4.75 (m, 1H), 4.58−4.44 (m, 1H), 3.74 (s, 3H), 3.55 (s, 3H), 3.31−2.86 (m, 2H), 2.06−1.44 (m, 8H); 13C NMR (DMSO-d6) δ169.1, 149.3, 146.5, 128.4, 119.5, 113.5, 111.4, 79.0, 55.0, 51.2, 50.3, 38.2, 31.7, 31.6, 23.0; Anal. Calcd for C16H24ClNO4. Theoretical: C, 58.27; H, 7.33; N, 4.25. Found: C, 58.44; H, 7.34; N, 4.13.
- Similarly prepared from 3-amino-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionic acid, 3-amino-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionic acid, 3-amino-3-(3-methoxy-4-cyclohexyloxyphenyl)propionic acid, 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionic acid, 3-amino-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionic acid, 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionic acid, and 3-amino-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionic acid are methyl 3-amino-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-amino-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-amino-3-(3-methoxy-4-cyclohexyloxy-phenyl)propionate, methyl 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-amino-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionate, methyl 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionate, and methyl 3-amino-3-(3-cyclohexyloxy)-4-ethoxyphenyl)-propionate.
- To a stirred solution of methyl 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate hydrochloride (0.50 g, 1.52 mmol) and sodium carbonate (0.16 g, 1.52 mmol) in a mixture of water (5 mL) and acetonitrile (5 mL) under nitrogen was added N-carbethoxyphthalimide (0.34 g, 1.52 mmol). The solution was stirred for 3 hours at RT. The acetonitrile was removed in vacuo which afforded a two layer mixture which was extracted with CH2Cl2 (3×15 mL). The combined organic extracts were dried over MgSO4, filtered and then concentrated in vacuo to afford 0.77 g of the crude product as an oil. The crude product was purified by flash column chromatography (silica gel, 35/65, ethyl acetate/hexane) the resulting glassy solid was dried in vacuo to afford 0.48 g (75%) of the product as a white solid: mp 76-78° C.; 1H NMR (CDCl3) δ7.86−7.60 (m, 4H), 7.19−7.00 (m, 2H), 6.88−6.72 (m, 1H), 5.84−5.67 (m, 1H), 4.85−4.70 (m, 1H), 3.80 (s, 3H), 3.80−3.69 (m, 1H), 3.63 (s, 3H), 3.34−3.15 (m, 1H), 2.10−1.48 (m, 8H); 13C NMR (CDCl3) δ171.0, 168.0, 149.8, 147.6, 133.9, 131.8, 130.9, 123.2, 120.1, 114.6, 111.7, 80.4, 55.9, 51.8, 50.7, 35.9, 32.7, 24.0; Anal. Calcd for C24H25NO6. Theoretical: C, 68.03; H, 5.95; N, 3.31 Found: C, 67.77; H, 5.97; N, 3.20.
- Similarly from equivalent amounts of 2-carbethoxy-1,3-dioxobenzo[f]isoindoline, 2-carbethoxy-1,3-dioxo-4-azaisoindoline, and 2-carbethoxy-1,3-dioxo-5-azaisoindoline for N-carbethoxyphthalimide, there are respectively obtained according to the forgoing procedure methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, and methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate.
- Use in the procedure of this example of equivalent amounts of 2-carbethoxy-1,3-dioxobenzo[f]isoindoline with methyl 3-amino-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-amino-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-amino-3-(3-methoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-amino-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-amino-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionate, methyl 3-amino-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionate, and methyl 3-amino-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionate yields methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionate, and methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionate.
- Likewise by employing 2-carbethoxy-1,3-dioxo-4-azaisoindoline there are obtained from the same amines of Example 4 the compounds methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionate, and methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxy-phenyl)propionate.
- Similarly from 2-carbethoxy-1,3-dioxo-5-azaisoindoline there are obtained with the amines of Example 4 the compounds methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionate, methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionate, methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionate, methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionate, and methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionate.
- A stirred suspension of 3-(exobicyclo[2.2.1]hept-2-yloxy)-4-methoxybenzaldehyde (6.00 g, 24.4 mmol) and ammonium acetate (3.76 g, 48.8 mmol) in ethanol (95%, 20 mL) under nitrogen was heated to 45-50° C. and malonic acid (2.53 g, 24.4 mmol) was added. The solution was refluxed for 24 hours, allowed to cool to room temperature, and filtered. The solid was washed with ethanol, air dried, and dried in vacuo (60° C.,<1 mm) to afford 3.17 g (43%) of the product: mp 225-226° C.;1H NMR (D2O/NaOD/TSP) δ7.09−6.90 (m, 3H), 4.41−4.28 (m, 1H), 4.27−4.15 (m, 1H), 3.82 (s, 3H), 2.64−2.48 (m, 2H) 2.44 (s, 1H), 2.31 (s, 1H), 1.92−1.76 (m, 1H), 1.69−1.38 (m, 4H), 1.30−1.05 (m, 3H).
- To an ice bath cooled stirred suspension of 3-amino-3-(3-{exobicyclo[2.2.1]hept-2-yloxy}-4-methoxyphenyl)propionic acid (2.00 g, 6.55 mmol) in methanol (15 mL) under nitrogen was added thionyl chloride (1.56 mL, 13.1 mmol) dropwise via syringe. The resulting solution was stirred at 0° C. for 30 minutes, the ice bath was removed and stirring was continued at room temperature for 2.5 hours. The methanol was removed and the solid slurred in hexane (15 mL). The mixture was filtered and the white solid washed with hexane, air dried and then dried in vacuo (60° C.,<1 mm) to afford 1.97 g (85%) of the product: mp 197.5-201.5° C.;1H NMR (DMSO-d6) δ7.50 (br s, 3H), 7.18 (s, 1H), 7.07−6.88 (m, 2H), 4.56−4.42 (m, 1H), 4.30−4.19 (m, 1H), 3.74 (s, 3H), 3.54 (s, 3H), 3.41−2.85 (m, 3H), 2.37 (s, 1H), 2.27 (s, 1H), 1.92−1.75 (m, 1H), 1.64−1.03 (m, 6H); 13C NMR (DMSO-d6) δ169.4, 149.6, 146.4, 128.8, 120.0, 119.9, 113.8, 111.8, 80.1, 79.9, 55.5, 51.6, 50.7, 40.5, 39.2, 38.6, 34.8, 27.8, 23.7, 23.6.
- To a stirred solution of methyl 3-amino-3-(3-{exobicyclo[2.2.1]hept-2-yloxy}-4-methoxyphenyl)propionate hydrochloride (1.00 g, 2.81 mmol) and sodium carbonate (0.3 g, 2.8 mmol) in a mixture of water (10 mL) and acetonitrile (10 mL) under nitrogen was added N-carbethoxyphthalimide (0.64 g, 2.81 mmol). The solution was stirred for 3 hours at room temperature. The acetonitrile was remove in vacuo and the residue extracted with methylene chloride (3×30 ml). The combined organic extracts were dried over MgSO4, filtered and concentrated in vacuo to afford 1.44 g of the product. The product was further purified by flash column chromatography (silica gel, 20%, ethyl acetate/methylene chloride) to afford a white solid which was then dried in vacuo to afford 0.23 g (18%) of product: mp 47-48° C.; 1H NMR (CDCl3) δ7.86−7.61 (m, 4H), 7.14−7.00 ( m, 2H), 6.82−6.74 (m, 1H), 5.75 (dd, J=5.9, 10 Hz, 1H), 4.25−4.14 (m, 1H), 3.84−3.69 (m, 1H), 3.79 (s, 3H), 3.63 (s, 3H), 3.23 (dd, J=5.9, 16.5 Hz, 1H), 2.51−2.41 (m, 1H), 2.34−2.24 (m, 1H), 1.86−1.06 (m, 8H); 13C NMR (CDCl3) δ171.1, 168.1, 149.7, 147.2, 133.9, 131.8, 130.9, 123.3, 120.1, 120.0, 114.5, 114.4, 111.8, 81.1, 56.0, 51.9, 50.8, 41.1, 41.0, 39.9, 39.8, 35.9, 35.5, 35.3, 28.4, 24.3; HPLC 97%; Anal. Calcd for C26H27NO6. Theoretical: C, 69.47; H, 6.05; N, 3.12. Found: C, 69,22; H, 5.91; N, 2.95.
- Similarly from equivalent amounts of 2-carbethoxy-1,3-dioxobenzo[f]isoindoline, 2-carbethoxy-1,3-dioxo-4-azaisoindoline, and 2-carbethoxy-1,3-dioxo-5-azaisoindoline for N-carbethoxyphthalimide, there are respectively obtained according to the forgoing procedure methyl 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-{exobicyclo[2.2.1]hept-2-yloxy}-4-propionate, methyl 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-{exobicyclo[2.2.1]hept-2-yloxy}-4-methoxyphenyl)propionate, and methyl 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-{exobicyclo[2.2.1]-hept-2-yloxy}-4-methoxyphenyl)propionamide.
- To an ice bath cooled stirred suspension of 3-phthalimido-3-(3,4diethoxyphenyl)propionamide (0.96 g, 2.5 mmol), prepared for example as described in U.S. Pat. No. 5,463,063, and 4-methylmorpholine (0.66 mL, 6 mmol) in dimethylformamide (9 mL) under nitrogen, was added thionyl chloride (0.35 mL, 4.8 mmol) dropwise. There to was a slight exotherm after which the mixture was stirred at 0-5° C. for 30 minutes and at room temperature for 2 hours. The reaction was monitored by HPLC (Waters Nova-Pak/C-18 column, 3.9×150 mm, 4 micron, 1 mL/min, 240 nm, 50/50 acetonitrile/phosphoric acid0.1% (aq)). The reaction mixture was poured into a mixture of sodium bicarbonate (8.5 mL) and ice (40 g) and stirred until the ice had melted. The mixture was filtered and the solid was washed with copious amounts of water. The wet solid was dissolved in methylene chloride (25 mL) and the organic layer was separated and dried over MgSO4 and concentrated in vacuo to a sticky semi-solid. The solid was purified twice by flash column chromatography (silica gel, 3% ethyl acetate/methylene chloride) to afford a solid which was dried in vacuo (50° C.,<1 mm) to afford 0.5 g (55%) of product as a pale yellow solid; 1H NMR (CDCl3) δ7.91−7.65 (m, 4H), 7.12−6.98 (m, 2H), 6.90−6.78 (m, IH), 5.61 (dd, J=6.4,10.3 Hz, 1H), 4.19−3.96 (m, 4H), 3.83 (dd, J=10.3, 16.8 Hz, 1H), 3.26 (dd, J=6.4, 16.8 Hz, 1H), 1.55−1.30 (m, 6H); 13C NMR (CDCl3) δ167.7, 149.2, 148.9, 134.3, 131.5, 129.1, 123.6, 120.2, 116.9, 113.2, 112.9, 64.7, 64.5, 51.1, 21.1, 14.7; HPLC 98.4%. Anal. Calcd for C21H20N2O4. Theoretical: C, 69.22; H, 5.53; N, 7.69. Found: C, 69.06; H, 5.48; N, 7.58.
- Similarly obtained from 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionamide, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)-propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionamide, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1.3-dioxo-5-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionamide, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionamide, and 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionamide are 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionitrile, 3-(1,3-dioxobenzo[f]isoindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)-propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionitrile, 3-(1,3-dioxo-4-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclopentyloxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-ethoxy-4-cyclohexyloxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-methoxy-4-cyclohexyloxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-methoxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-methoxyphenyl)propionitrile, 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclopentyloxy-4-ethoxyphenyl)propionitrile, and 3-(1,3-dioxo-5-azaindolin-2-yl)-3-(3-cyclohexyloxy)-4-ethoxyphenyl)propionitrile.
- To an ice bath cooled stirred suspension of 3-phthalimido-3-(3,4-dimethoxy-phenyl)propionamide (1.77 g, 5.00 mmol) and 4-methylmorpholine (1.3 mL, 12 mmol) in dimethylformamide (17 mL) under nitrogen, was added thionyl chloride (0.7 mL, 9.6 mmol) dropwise via a syringe. There was a slight exotherm and after 30 minutes, the cooling bath was removed and the reaction mixture was stirred for 2 hours at room temperature. The reaction mixture was poured into a mixture of sodium bicarbonate (17 g) and 75 mL of ice water and stirred until the ice had melted. The slurry was filtered and the solid was washed with copious amounts of water. The wet solid was dissolved in methylene chloride (50 mL) and the organic layer was separated, dried over sodium sulfate, and concentrated in vacuo to afford an orange solid. The solid was purified by flash column chromatography (silica gel, 5/95 ethyl acetate/methylene chloride, 50 mm id column) to afford 1.32 g (79%) of the product as a white solid:1H NMR (CDCl3) δ7.9−7.6 (m, 4H), 7.10 (m, 2H), 6.83 (m, 1 H), 5.64 (dd, J=6.5, 10.2 Hz, 1H), 3.88 (s, 3H), 3.85 (s, 3H), 3.82 (dd, 1H), 3.30 (dd, J=6.5, 16.8 Hz, 1 H); 13C NMR (CDCl3) δ167.7, 149.5, 149.2, 134.4, 131.5, 129.1, 123.6, 120.1, 116.9, 111.1, 110.7, 56.0, 55.9, 51.1, 21. 1. Anal. Calcd for C19H16N2O4.0.18 H2O. Theoretical: C, 76.2. H, 4.85; N, 8.25. Found: C, 67.23; H, 4.79; N, 8.27.
- A stirred mixture 3-amino-3-phenylpropionic acid and cis-1,2-cyclohexanedicarboxylic anhydride in 10 mL of acetic acid under nitrogen was heated to reflux for 4 h and then allowed to cool to room temperature. The resulting mixture was concentrated to an orange yellow oil. This oil was crystallized from a 1/1 mixture of ethyl acetate/hexane to afford 1.77 g (58%) of 3-(cis-hexahydrophthalimido)-3-phenylpropionic acid as white crystals:1H NMR (DMSO-d6) δ12.45 (br s, 1 H, COOH), 7.33 (m, 5 H, Ph), 5.48 (dd, 1 H, J=6.3, 9.6, CH), 3.41 (dd, 1 H, J=16.5, 9.6 Hz), 3.14 (dd, 1H, J=16.5, 6.3 Hz), 2.50 (m, 2 H), 1.8-1.1 (m, 8 H); 13C NMR (DMSO-d6) δ179.3, 179.2, 171.7, 138.7, 128.4, 127.5, 126.8, 50.1, 38.7, 38.6, 35.2, 23.0, 22.9, 21.1. Anal. Calcd for C17H19NO4. Theory: C, 67.76; H, 6.36; N, 4.65. Found: C, 67.52; H, 6.20; N, 4.60.
- A mixture of 3-(cis-hexahydrophthalimido)-3-phenylpropionic acid (0.903 g, 3.00 mmol) and carbonyldiimidazole (0.525 g, 3.75 mmol) in 13 mL of anhydrous tetrahydrofuran under nitrogen was stirred for 1 hour, then 0.25 mL of concentrated ammonium hydroxide was added to the reaction solution. After 20 minutes, the reaction mixture was concentrated in vacuo to an oil. The oil was diluted with 20 mL-of water and the mixture extracted with ethyl acetate (20 mL). The organic layer was dried (sodium sulfate) and concentrated to afford an oil. The oil was then purified by flash chromatography (silica gel, 5/95 methanol/methylene chloride, Rf=0.3) to afford 210 mg of 3-(cis-hexahydrophthalimido)-3-phenylpropionamide as an oil which slowly crystallized to an ivory solid: 1H NMR (DMSO-d6) d7.49 (s, 1 H, NH), 7.4−7.2 (m, 5 H, Ar), 6.90 (s, 1 H, NH), 5.54 (t, 1 H, J=7.8 Hz, CH), 3.09 (d, 2 H, J=7.8 Hz, CH2), 2.95−2.80 (m, 2 H, CH2), 1.8−1.1 (m, 8 H); 13C NMR (DMSO-d6) δ179.6, 179.5, 171.5, 139.5, 128.6, 127.7, 127.2, 55.2, 50.6, 38.8, 36.5, 23.4, 23.3, 21.5
- A stirred mixture of cis-5-norbornene-endo-2,3-dicarboxylic anhydride (1.64 g, 10.0 mmol) and 3-amino-3-phenylpropionic acid (1.65 g, 10.0 mmol) in 15 mL of acetic acid under nitrogen was heated to reflux for 6 hours. The resulting reaction solution was concentrated in vacuo to an oil which was crystallized from a 1/1 mixture of ethyl acetate/hexane to afford 2.03 g (65%) of 3-(cis-5-norbonene-endo-2,3-dicarboxylic imide)-3-phenylpropionic acid as a white powder:1H NMR (DMSO-d6) δ12.41 (br s, 1 H, COOH), 7.29 (m, 5 H, Ph), 6.0−5.7 (m, 2 H), 5.37 (t, 1 H, J=7.7 Hz), 3.5−3.1 (m, 6 H), 1.49 (m, 2 H); 13CNMR (DMSO-d6) δ177.2, 177.1, 171.4, 138.3, 134.3, 134.0, 128.1, 127.5, 127.1, 51.4, 50.1, 44.8, 44.5, 44.4, 35.1. Anal. Calcd for C8H17NO4. Theory: C, 69.44; H, 5.50; N, 4.50. Found: C, 69.10; H, 5.33; N, 4.43.
- A stirred suspension of 3-amino-3-(3,4-dimethoxyphenyl)propionic acid hydrochloride (0.689 g, 2.50 mmol) and 4-pyridyldicarboxylic acid anhydride (0.373 g, 2.50 mmol) in 20 mL of acetic acid was refluxed for overnight. The cooled reaction was filtered to remove a trace amount of solid and the filtrate concentrated to a thick yellow oil. The oil was diluted with 20 mL of ethyl acetate and heated to reflux and allowed to cool to room temperature. The resulting slurry was filtered and the filtrate concentrated to afford a yellow oil which was purified by flash chromatography (silica gel, 2/8 ethyl acetate/methylene chloride) to afford 0.592 g (64%) of methyl 3-(1,3-dioxo-5-azaisoindol-2-yl)-3-(3,4-dimethoxyphenyl)-propionate as a yellow oil which slowly solidified to afford a very pale yellow solid:1H NMR (DMSO-d6) δ8.15−7.75 (m, 8 H, Ar), 7.75-7.4 (m, 4 h, Ar and CONH), 9.13 (s, 1 H, Ar), 9.11 (d, 1 H, J=4.8 Hz), 7.90 (d, 1 H, J=4.8 Hz), 7.03 (s, 1 H), 6.93 (m, 2 H), 5.67 (overlapping dd, 1 H), 3.74 (s, 3 H), 3.73 (s, 3 H), 3.56 (s, 3 H), 3.65−3.30 (m, 2 H); 13C NMR (DMSO-d6) δ170.7, 166.9, 166.5, 156.0, 148.6, 148.5, 144.1, 138.7, 130.4, 125.2, 119.1, 116.9, 111.6, 111.1, 55.4, 51.6, 50.1, 35.4.
- Tablets, each containing 50 milligrams of active ingredient, can be prepared in the following manner:
Constituents (for 1000 tablets) active ingredient 50.0 grams lactose 50.7 grams wheat starch 7.5 grams polyethylene glycol 6000 5.0 grams talc 5.0 grams magnesium stearate 1.8 grams demineralized water q.s. - The solid ingredients are first forced through a sieve of 0.6 mm mesh width. The active ingredient, the lactose, the talc, the magnesium stearate and half of the starch then are mixed. The other half of the starch is suspended in 40 milliliters of water and this suspension is added to a boiling solution of the polyethylene glycol in 100 milliliters of water. The resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water. The granulate is dried overnight at 35° C., forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.
- Tablets, each containing 100 milligrams of active ingredient, can be prepared in the following manner:
Constituents (for 1000 tablets) active ingredient 100.0 grams lactose 100.0 grams wheat starch 47.0 grams magnesium stearate 3.0 grams - All the solid ingredients are first forced through a sieve of 0.6 mm mesh width. The active ingredient, the lactose, the magnesium stearate and half of the starch then are mixed. The other half of the starch is suspended in 40 milliliters of water and this suspension is added to 100 milliliters of boiling water. The resulting paste is added to the pulverulent substances and the mixture is granulated, if necessary with the addition of water. The granulate is dried overnight at 35° C., forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 6 mm diameter which are concave on both sides.
- Tablets for chewing, each containing 75 milligrams of active ingredient, can be prepared in the following manner:
Composition (for 1000 tablets) active ingredient 75.0 grams mannitol 230.0 grams lactose 150.0 grams talc 21.0 grams glycine 12.5 grams stearic acid 10.0 grams saccharin 1.5 grams 5% gelatin solution q.s. - All the solid ingredients are first forced through a sieve of 0.25 mm mesh width. The mannitol and the lactose are mixed, granulated with the addition of gelatin solution, forced through a sieve of 2 mm mesh width, dried at 50° C. and again forced through a sieve of 1.7 mm mesh width. The active ingredient, the glycine and the saccharin are carefully mixed, the mannitol, the lactose granulate, the stearic acid and the talc are added and the whole is mixed thoroughly and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking groove on the upper side.
- Tablets, each containing 10 milligrams of active ingredient, can be prepared in the following manner:
Composition (for 1000 tablets) active ingredient 10.0 grams lactose 328.5 grams corn starch 17.5 grams polyethylene glycol 6000 5.0 grams talc 25.0 grams magnesium stearate 4.0 grams demineralized water q.s. - The solid ingredients are first forced through a sieve of 0.6 mm mesh width. Then the active ingredient, lactose, talc, magnesium stearate and half of the starch are intimately mixed. The other half of the starch is suspended in 65 milliliters of water and this suspension is added to a boiling solution of the polyethylene glycol in 260 milliliters of water. The resulting paste is added to the pulverulent substances, and the whole is mixed and granulated, if necessary with the addition of water. The granulate is dried overnight at 35° C., forced through a sieve of 1.2 mm mesh width and compressed to form tablets of approximately 10 mm diameter which are concave on both sides and have a breaking notch on the upper side.
- Gelatin dry-filled capsules, each containing 100 milligrams of active ingredient, can be prepared in the following manner:
Composition (for 1000 capsules) active ingredient 100.0 grams microcrystalline cellulose 30.0 grams sodium lauryl sulphate 2.0 grams magnesium stearate 8.0 grams - The sodium lauryl sulphate is sieved into the active ingredient through a sieve of 0.2 mm mesh width and the two components are intimately mixed for 10 minutes. The microcrystalline cellulose is then added through a sieve of 0.9 mm mesh width and the whole is again intimately mixed for 10 minutes. Finally, the magnesium stearate is added through a sieve of 0.8 mm width and, after mixing for a further 3 minutes, the mixture is introduced in portions of 140 milligrams each into size 0 (elongated) gelatin dry-fill capsules.
- A 0.2% injection or infusion solution can be prepared, for example, in the following manner:
active ingredient 5.0 grams sodium chloride 22.5 grams phosphate buffer pH 7.4 300.0 grams demineralized water qs 2500.0 milliliters - The active ingredient is dissolved in 1000 milliliters of water and filtered through a microfilter or slurried in 1000 mL of H2O. The buffer solution is added and the whole is made up to 2500 milliliters with water. To prepare dosage unit forms, portions of 1.0 or 2.5 milliliters each are introduced into glass ampoules (each containing respectively 2.0 or 5.0 milligrams of active ingredient).
Claims (13)
1. A compound of the formula:
wherein:
R5 is the divalent residue of pyrrolidine, wherein the two bonds of the divalent residue are on vicinal ring carbon atoms;
R6 is —CO—, —CH2—, or —CH2CO—;
R7 is
(i) cyclic or bicyclic alkyl of 4 to 12 carbon atoms;
(ii) pyridyl;
(iii) phenyl substituted with one or more substituents each selected independently of the other from nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, straight or branched alkyl of 1 to 10 carbon atoms, straight or branched alkoxy of 1 to 10 carbon atoms, or halo;
(iv) benzyl substituted with one to three substituents each selected independently from the group consisting of nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, alkyl of 1 to 4 carbon atoms, alkoxy of 1 to 10 carbon atoms, or halo;
(v) naphthyl; or
(vi) benzyloxy;
Y is —COX, —C≡N, —OR8, alkyl of 1 to 5 carbon atoms, or aryl;
X is —NH2,—OH, —NHR, —R9, —OR9, or alkyl of 1 to 5 carbon atoms;
R8 is hydrogen or lower alkyl;
R9 is alkyl or benzyl; and,
n has a value of 0, 1, 2, or 3.
2. A compound according to claim 1 wherein Y is —C≡N or —CO(CH2)mCH3 in which m has a value of 0, 1, 2, or 3; and
3. A compound of the formula:
in which:
one of R1 and R2 is R3—X— and the other is hydrogen, nitro, cyano, trifluoromethyl, carbethoxy, carbomethoxy, carbopropoxy, acetyl, carbamoyl, acetoxy, carboxy, hydroxy, amino, lower alkyl, lower alkoxy, halo, or R3—X—;
R3 is monocycloalkyl of up to 10 carbon atoms, polycycloalkyl of up to 10 carbon atoms, or benzocyclic alkyl of up to 10 carbon atoms;
X is —CH2— or —O—;
R5 is the vicinally divalent residue of pyrrolidine, wherein the two bonds of the divalent residue are on vicinal ring carbon atoms;
R6 is —CO—, —CH2—, or —CH2CO—;
Y is —COX, —C≡—N, —OR8, alkyl of 1 to 5 carbon atoms, or aryl;
X is —NH2,—OH, —NHR, —R9, —OR9, or alkyl of 1 to 5 carbon atoms;
R8 is hydrogen or lower alkyl;
R9 is alkyl or benzyl; and,
n has a value of 0, 1, 2, or3.
4. A compound according to claim 3 wherein one of R1 and R2 is R3—O— and the other is lower alkyl, lower alkoxy, or R3—O—;
R3 is cyclic or bicyclic alkyl of up to 10 carbon atoms;
R5 is the vicinally divalent residue of pyrrolidine, wherein the two bonds of the divalent residue are on vicinal ring carbon atom;
R6 is —CO— or —CH2—;
Y is —COX;
X is —NH2,—OH, —NHR, —R9, or —OR9;
R9 is alkyl or benzyl; and
n has a value of 1 or 2.
5. A compound according to claim 4 wherein one of R1 and R2 is R3—O— and the other is methoxy or ethoxy;
R3 is cyclopentyl or cyclohexyl;
R5 is —CO— or —CH2—;
Y is —COX;
X is —NH2,—OH, or —OR9;
R9 is methyl or ethyl; and
n has a value of 1.
6. A compound according to claim 3 wherein one of R1 and R2 is R3—O— and the other is lower alkyl, lower alkoxy, or R3—O—;
R3 is cyclic or bicyclic alkyl of up to 10 carbon atoms;
R5 is the vicinally divalent residue of pyrrolidine;
R6 is —CO— or —CH2—;
Y is —COX;
X is —NH2,—OH, —NHR, —R9, or —OR9;
R9 is alkyl or benzyl; and
n has a value of 1 or 2.
7. A compound according to claim 4 wherein one of R1 and R2 is R3—O— and the other is methoxy or ethoxy;
R3 is cyclopentyl or cyclohexyl;
R6 is —CO— or —CH2—;
Y is —COX;
X is —NH2,—OH, or —OR9;
R9 is methyl or ethyl; and
n has a value of 1.
8. The method of inhibiting phosphodiesterase in a mammal which comprises administering thereto an effective amount of a compound of claim 3 .
9. The method of inhibiting TNFα in a mammal which comprises administering thereto an effective amount of a compound of claim 3 .
10. A pharmaceutical composition comprising an amount of a compound according to claim 3 effective upon single or multiple dosage sufficient to inhibit phosphodiesterase or TNFα.
11. The method of inhibiting phosphodiesterase in a mammal which comprises administering thereto an effective amount of a compound of claim 1 .
12. The method of inhibiting TNFα in a mammal which comprises administering thereto an effective amount of a compound of claim 1 .
13. A pharmaceutical composition comprising an amount of a compound according to claim 1 effective upon single or multiple dosage sufficient to inhibit phosphodiesterase or TNFα.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/316,673 US20030114516A1 (en) | 1995-08-29 | 2002-12-11 | Novel immunotherapeutic agents |
US11/002,488 US20050096355A1 (en) | 1995-08-29 | 2004-12-03 | Novel immunotherapeutic agents |
US11/210,693 US7081464B2 (en) | 1995-08-29 | 2005-08-25 | Topical compositions of cyclic amides as immunotherapeutic agents |
US11/493,435 US20060264477A1 (en) | 1995-08-29 | 2006-07-25 | Methods of using cyclic amides |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/520,710 US5728845A (en) | 1995-08-29 | 1995-08-29 | Immunotherapeutic nitriles |
US08/578,738 US5728844A (en) | 1995-08-29 | 1995-12-26 | Immunotherapeutic agents |
US09/007,135 US5968945A (en) | 1995-08-29 | 1998-01-14 | Immunotherapeutic agents |
US36698599A | 1999-08-04 | 1999-08-04 | |
US09/909,506 US6518281B2 (en) | 1995-08-29 | 2001-07-20 | Immunotherapeutic agents |
US10/316,673 US20030114516A1 (en) | 1995-08-29 | 2002-12-11 | Novel immunotherapeutic agents |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/909,506 Continuation US6518281B2 (en) | 1995-08-29 | 2001-07-20 | Immunotherapeutic agents |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/002,488 Continuation US20050096355A1 (en) | 1995-08-29 | 2004-12-03 | Novel immunotherapeutic agents |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030114516A1 true US20030114516A1 (en) | 2003-06-19 |
Family
ID=27485668
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/909,506 Expired - Fee Related US6518281B2 (en) | 1995-08-29 | 2001-07-20 | Immunotherapeutic agents |
US10/316,673 Abandoned US20030114516A1 (en) | 1995-08-29 | 2002-12-11 | Novel immunotherapeutic agents |
US11/002,488 Abandoned US20050096355A1 (en) | 1995-08-29 | 2004-12-03 | Novel immunotherapeutic agents |
US11/210,693 Expired - Fee Related US7081464B2 (en) | 1995-08-29 | 2005-08-25 | Topical compositions of cyclic amides as immunotherapeutic agents |
US11/493,435 Abandoned US20060264477A1 (en) | 1995-08-29 | 2006-07-25 | Methods of using cyclic amides |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/909,506 Expired - Fee Related US6518281B2 (en) | 1995-08-29 | 2001-07-20 | Immunotherapeutic agents |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/002,488 Abandoned US20050096355A1 (en) | 1995-08-29 | 2004-12-03 | Novel immunotherapeutic agents |
US11/210,693 Expired - Fee Related US7081464B2 (en) | 1995-08-29 | 2005-08-25 | Topical compositions of cyclic amides as immunotherapeutic agents |
US11/493,435 Abandoned US20060264477A1 (en) | 1995-08-29 | 2006-07-25 | Methods of using cyclic amides |
Country Status (1)
Country | Link |
---|---|
US (5) | US6518281B2 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050142104A1 (en) * | 2003-11-06 | 2005-06-30 | Zeldis Jerome B. | Methods of using and compositions comprising PDE4 modulators for the treatment and management of asbestos-related diseases and disorders |
US20060147416A1 (en) * | 2002-10-15 | 2006-07-06 | Celgene Corporation | Method of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myelodysplastic syndromes |
US20060165649A1 (en) * | 2002-11-06 | 2006-07-27 | Zeldis Jerome B | Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myeloproliferative diseases |
US20080213213A1 (en) * | 2004-04-14 | 2008-09-04 | Zeldis Jerome B | Method For the Treatment of Myelodysplastic Syndromes Using (+)-2-[1-(3-Ethoxy-4-Methoxyphenyl)-2-Methylsulfonylethyl]-4-Acetylaminoisoindoline-1,3-Dione |
US20110038832A1 (en) * | 2002-10-31 | 2011-02-17 | Celgene Corporation | Method for treatment of macular degeneration using (+)-2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione |
Families Citing this family (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6518281B2 (en) * | 1995-08-29 | 2003-02-11 | Celgene Corporation | Immunotherapeutic agents |
ATE236872T1 (en) * | 1996-08-12 | 2003-04-15 | Celgene Corp | IMMUNOTHERAPEUTIC AGENTS AND THEIR USE IN REDUCING CYTOKININ LEVELS |
US20100129363A1 (en) * | 2002-05-17 | 2010-05-27 | Zeldis Jerome B | Methods and compositions using pde4 inhibitors for the treatment and management of cancers |
USRE48890E1 (en) | 2002-05-17 | 2022-01-11 | Celgene Corporation | Methods for treating multiple myeloma with 3-(4-amino-1-oxo-1,3-dihydroisoindol-2-yl)-piperidine-2,6-dione after stem cell transplantation |
EP1556033A4 (en) * | 2002-05-17 | 2006-05-31 | Celgene Corp | Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases |
US20040087558A1 (en) * | 2002-10-24 | 2004-05-06 | Zeldis Jerome B. | Methods of using and compositions comprising selective cytokine inhibitory drugs for treatment, modification and management of pain |
AU2003290652B2 (en) | 2002-11-06 | 2008-06-19 | Celgene Corporation | Methods and compositions using selective cytokine inhibitory drugs for treatment and management of cancers and other diseases |
JP2006510617A (en) * | 2002-11-18 | 2006-03-30 | セルジーン・コーポレーション | Method of using (+)-3- (3,4-dimethoxy-phenyl) -3- (1-oxo-1,3-dihydro-isoindol-2-yl) -propionamide and compositions containing it |
NZ540546A (en) * | 2002-11-18 | 2008-03-28 | Celgene Corp | Methods of using and compositions comprising (-)-3-(3,4-dimethoxy-phenyl)-3-(1-oxo-1,3-dihydro-isoindol-2-yl)-propionamide |
JP5269281B2 (en) | 2002-12-30 | 2013-08-21 | セルジーン コーポレイション | Fluoroalkoxy-substituted 1,3-dihydroisoindolyl compounds and their use as pharmaceuticals |
US20040175382A1 (en) * | 2003-03-06 | 2004-09-09 | Schafer Peter H. | Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of disorders of the central nervous system |
US20050187278A1 (en) * | 2003-08-28 | 2005-08-25 | Pharmacia Corporation | Treatment or prevention of vascular disorders with Cox-2 inhibitors in combination with cyclic AMP-specific phosphodiesterase inhibitors |
US20050239867A1 (en) * | 2004-04-23 | 2005-10-27 | Zeldis Jerome B | Methods of using and compositions comprising PDE4 modulators for the treatment and management of pulmonary hypertension |
US20070190070A1 (en) * | 2004-09-03 | 2007-08-16 | Zeldis Jerome B | Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of disorders of the central nervous system |
ZA200704251B (en) * | 2004-10-28 | 2008-11-26 | Celgene Corp | Methods and compositions using PDE4 modulators for treatment and management of central nervous injury |
US20080138295A1 (en) * | 2005-09-12 | 2008-06-12 | Celgene Coporation | Bechet's disease using cyclopropyl-N-carboxamide |
EP2818164A1 (en) | 2009-02-10 | 2014-12-31 | Celgene Corporation | Methods of using and compositions comprising PDE4-modulators for treatment, prevention and management of tuberculosis |
EP2555769B1 (en) | 2010-04-07 | 2022-01-12 | Amgen (Europe) GmbH | Methods for treating respiratory viral infection |
ES2692152T3 (en) | 2010-06-15 | 2018-11-30 | Celgene Corporation | Biomarkers for the treatment of psoriasis |
WO2015175956A1 (en) | 2014-05-16 | 2015-11-19 | Celgene Corporation | Compositions and methods for the treatment of atherosclerotic cardiovascular diseases with pde4 modulators |
US10682336B2 (en) | 2015-10-21 | 2020-06-16 | Amgen Inc. | PDE4 modulators for treating and preventing immune reconstitution inflammatory syndrome (IRIS) |
Family Cites Families (24)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5629327A (en) * | 1993-03-01 | 1997-05-13 | Childrens Hospital Medical Center Corp. | Methods and compositions for inhibition of angiogenesis |
US6114355A (en) * | 1993-03-01 | 2000-09-05 | D'amato; Robert | Methods and compositions for inhibition of angiogenesis |
US6228879B1 (en) * | 1997-10-16 | 2001-05-08 | The Children's Medical Center | Methods and compositions for inhibition of angiogenesis |
US6518281B2 (en) * | 1995-08-29 | 2003-02-11 | Celgene Corporation | Immunotherapeutic agents |
US5728845A (en) * | 1995-08-29 | 1998-03-17 | Celgene Corporation | Immunotherapeutic nitriles |
US5728844A (en) * | 1995-08-29 | 1998-03-17 | Celgene Corporation | Immunotherapeutic agents |
US6281230B1 (en) * | 1996-07-24 | 2001-08-28 | Celgene Corporation | Isoindolines, method of use, and pharmaceutical compositions |
HU228769B1 (en) | 1996-07-24 | 2013-05-28 | Celgene Corp | Substituted 2(2,6-dioxopiperidin-3-yl)phthalimides and -1-oxoisoindolines and their use for production of pharmaceutical compositions for mammals to reduce the level of tnf-alpha |
US5798368A (en) * | 1996-08-22 | 1998-08-25 | Celgene Corporation | Tetrasubstituted 2-(2,6-dioxopiperidin-3-yl)-1-oxoisoindolines and method of reducing TNFα levels |
ES2313154T3 (en) | 1996-11-05 | 2009-03-01 | The Children's Medical Center Corporation | COMPOSITIONS THAT INCLUDE TALODYMINE AND DEXAMETASONE FOR CANCER TREATMENT. |
NZ502379A (en) * | 1997-07-31 | 2002-10-25 | Celgene Corp | Substituted alkanohydroxamic acids and use in pharmaceuticals for reducing TNF-alpha levels |
US5874448A (en) * | 1997-11-18 | 1999-02-23 | Celgene Corporation | Substituted 2-(2,6 dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing TNFα levels |
US5955476A (en) * | 1997-11-18 | 1999-09-21 | Celgene Corporation | Substituted 2-(2,6-dioxo-3-fluoropiperidin-3-yl)-isoindolines and method of reducing inflammatory cytokine levels |
EP1064277B1 (en) * | 1998-03-16 | 2005-06-15 | Celgene Corporation | 2-(2,6-dioxopiperidin-3-yl)isoindoline derivatives, their preparation and their use as inhibitors of inflammatory cytokines |
US6673828B1 (en) * | 1998-05-11 | 2004-01-06 | Children's Medical Center Corporation | Analogs of 2-Phthalimidinoglutaric acid |
US6020358A (en) * | 1998-10-30 | 2000-02-01 | Celgene Corporation | Substituted phenethylsulfones and method of reducing TNFα levels |
US6458510B1 (en) * | 1999-02-02 | 2002-10-01 | Agfa-Gevaert | Method for making positive working printing plates |
NZ513953A (en) * | 1999-03-18 | 2001-09-28 | Celgene Corp | Substituted 1-oxo- and 1,3-dioxoisoindolines and their use in pharmaceutical compositions for reducing inflammatory cytokine levels |
US6667316B1 (en) * | 1999-11-12 | 2003-12-23 | Celgene Corporation | Pharmaceutically active isoindoline derivatives |
US6699899B1 (en) * | 1999-12-21 | 2004-03-02 | Celgene Corporation | Substituted acylhydroxamic acids and method of reducing TNFα levels |
US6458810B1 (en) * | 2000-11-14 | 2002-10-01 | George Muller | Pharmaceutically active isoindoline derivatives |
DE60130799T2 (en) | 2000-11-30 | 2008-07-17 | Children's Medical Center Corp., Boston | SYNTHESIS OF 4-AMINOTHALIDOMIDE ENANTIOMERS |
ES2172474B1 (en) | 2001-03-01 | 2004-01-16 | Fundacion Universitaria San Pa | GLUTARIMIDE DERIVATIVES AS THERAPEUTIC AGENTS. |
ATE428419T1 (en) | 2001-08-06 | 2009-05-15 | Childrens Medical Center | ANTIANGIOGENESIS EFFECT OF NITROGEN-SUBSTITUTED THALIDOMIDE ANALOGS |
-
2001
- 2001-07-20 US US09/909,506 patent/US6518281B2/en not_active Expired - Fee Related
-
2002
- 2002-12-11 US US10/316,673 patent/US20030114516A1/en not_active Abandoned
-
2004
- 2004-12-03 US US11/002,488 patent/US20050096355A1/en not_active Abandoned
-
2005
- 2005-08-25 US US11/210,693 patent/US7081464B2/en not_active Expired - Fee Related
-
2006
- 2006-07-25 US US11/493,435 patent/US20060264477A1/en not_active Abandoned
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060147416A1 (en) * | 2002-10-15 | 2006-07-06 | Celgene Corporation | Method of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myelodysplastic syndromes |
US7842691B2 (en) | 2002-10-15 | 2010-11-30 | Celgene Corporation | Method for the treatment of myelodysplastic syndromes using cyclopropanecarboxylic acid {2-[1-(3-ethoxy-4-methoxy-phenyl)-2-methanesulfonyl-ethyl]-3-OXO-2,3-dihydro-1 H-isoindol-4-yl}-amide |
US20110038832A1 (en) * | 2002-10-31 | 2011-02-17 | Celgene Corporation | Method for treatment of macular degeneration using (+)-2-[1-(3-ethoxy-4-methoxyphenyl)-2-methylsulfonylethyl]-4-acetylaminoisoindoline-1,3-dione |
US20060165649A1 (en) * | 2002-11-06 | 2006-07-27 | Zeldis Jerome B | Methods of using and compositions comprising selective cytokine inhibitory drugs for the treatment and management of myeloproliferative diseases |
US20050142104A1 (en) * | 2003-11-06 | 2005-06-30 | Zeldis Jerome B. | Methods of using and compositions comprising PDE4 modulators for the treatment and management of asbestos-related diseases and disorders |
US20080213213A1 (en) * | 2004-04-14 | 2008-09-04 | Zeldis Jerome B | Method For the Treatment of Myelodysplastic Syndromes Using (+)-2-[1-(3-Ethoxy-4-Methoxyphenyl)-2-Methylsulfonylethyl]-4-Acetylaminoisoindoline-1,3-Dione |
Also Published As
Publication number | Publication date |
---|---|
US6518281B2 (en) | 2003-02-11 |
US7081464B2 (en) | 2006-07-25 |
US20050096355A1 (en) | 2005-05-05 |
US20060003979A1 (en) | 2006-01-05 |
US20020002188A1 (en) | 2002-01-03 |
US20060264477A1 (en) | 2006-11-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6180644B1 (en) | Immunotherapeutic agents | |
US20060264477A1 (en) | Methods of using cyclic amides | |
US5728844A (en) | Immunotherapeutic agents | |
RU2176242C2 (en) | SUCCINIMIDE AND MALEIMIDE INHIBITORS OF CYTOKINS, PHARMACEUTICAL COMPOSITION BASED ON THEREOF AND METHODS OF INHIBITION OF TUMOR NECROSIS α-FACTOR | |
US6284780B1 (en) | Immunotherapeutic aryl amides | |
US6200987B1 (en) | Cyclic amides | |
RU2177471C2 (en) | Immunotherapeutic imides/amides as inhibitors of phosphodi-esterase-iv (pde-iv) and tumor necrosis factor (tnf) | |
US6844359B2 (en) | Substituted imides | |
WO1996020926A9 (en) | Substituted imides as tnf inhibitors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |