+

US20030113962A1 - Non-volatile memory device with improved data retention and method therefor - Google Patents

Non-volatile memory device with improved data retention and method therefor Download PDF

Info

Publication number
US20030113962A1
US20030113962A1 US10/017,427 US1742701A US2003113962A1 US 20030113962 A1 US20030113962 A1 US 20030113962A1 US 1742701 A US1742701 A US 1742701A US 2003113962 A1 US2003113962 A1 US 2003113962A1
Authority
US
United States
Prior art keywords
layer
charge storage
insulating layer
charge
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US10/017,427
Inventor
Gowrishankar Chindalore
Frank Baker
Paul Ingersoll
Alexander Hoefler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Motorola Solutions Inc
Original Assignee
Motorola Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Motorola Inc filed Critical Motorola Inc
Priority to US10/017,427 priority Critical patent/US20030113962A1/en
Assigned to MOTOROLA, INC. reassignment MOTOROLA, INC. ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: BAKER, FRANK K., JR., CHINDALORE, GOWRISHANKAR L., HOEFLER, ALEXANDER B., INGERSOLL, PAUL A.
Priority to PCT/US2002/038584 priority patent/WO2003052834A1/en
Priority to AU2002353025A priority patent/AU2002353025A1/en
Priority to TW091135960A priority patent/TWI261917B/en
Publication of US20030113962A1 publication Critical patent/US20030113962A1/en
Priority to US10/779,004 priority patent/US7432547B2/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28202Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation in a nitrogen-containing ambient, e.g. nitride deposition, growth, oxynitridation, NH3 nitridation, N2O oxidation, thermal nitridation, RTN, plasma nitridation, RPN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/68Floating-gate IGFETs
    • H10D30/6891Floating-gate IGFETs characterised by the shapes, relative sizes or dispositions of the floating gate electrode
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D30/00Field-effect transistors [FET]
    • H10D30/60Insulated-gate field-effect transistors [IGFET]
    • H10D30/69IGFETs having charge trapping gate insulators, e.g. MNOS transistors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/681Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator having a compositional variation, e.g. multilayered
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/60Electrodes characterised by their materials
    • H10D64/66Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes
    • H10D64/68Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator
    • H10D64/693Electrodes having a conductor capacitively coupled to a semiconductor by an insulator, e.g. MIS electrodes characterised by the insulator, e.g. by the gate insulator the insulator comprising nitrogen, e.g. nitrides, oxynitrides or nitrogen-doped materials

Definitions

  • the present invention relates generally to semiconductor devices, and more particularly, to a semiconductor device having a floating gate transistor with improved data retention and method therefor.
  • Non-volatile integrated circuit memory uses a floating gate transistor for charge storage. Charge stored on the floating gate is used to manipulate a threshold voltage of the transistor, and in this manner store data.
  • An array of floating gate transistors is included with high voltage program/erase circuitry to form the non-volatile memory. While modern processing techniques allow the floating gate transistors to be made smaller, the high voltage program/erase circuits still require a relatively large surface area because they must be able to withstand the high program/erase voltages, for example about 10 volts.
  • One way to reduce the high voltages necessary for program and erase operations is to make the tunnel oxide of the floating gate transistor thinner. However, reducing the thickness of the tunnel oxide may create data retention problems because electrons stored on the floating gate can leak through the relatively thinner tunnel oxide more easily.
  • FIG. 1 is a graph illustrating charge storage in a prior art floating gate transistor.
  • FIG. 2 illustrates a cross-section of a floating gate transistor in accordance with an embodiment of the present invention.
  • FIG. 3 is a graph illustrating charge storage in the floating gate transistor of FIG. 2.
  • FIG. 4 is a graph illustrating charge movement during an erase operation of the floating gate transistor of FIG. 2.
  • the present invention provides a floating gate transistor having a tunnel oxide layer, a floating gate, a dielectric layer, and a control gate, where most of the electrons stored on the floating gate reside away from the tunnel oxide and substantially at an interface between the floating gate and the dielectric layer.
  • a thinner tunnel oxide may be used, resulting in a lower program/erase voltage.
  • the use of a lower program/erase voltage allows smaller program/erase circuits, a smaller integrated circuit, and lower manufacturing costs.
  • FIG. 1 is a graph illustrating charge storage in a floating gate transistor in accordance with the prior art.
  • FIG. 1 includes a valence band 10 , Fermi level 12 , and a conduction band 14 plotted with energy on a y-axis versus distance through the transistor on an x-axis.
  • a prior art floating gate transistor memory cell there is typically a p-type substrate, a tunnel oxide, an n-type floating gate, a dielectric layer comprising an ONO structure and an n+type control gate.
  • the graph of FIG. 1 is useful for showing the energy bands in the prior art floating gate transistor.
  • electrons are moved onto the floating gate by one of several techniques, such as for example, Fowler-Nordheim tunneling or hot carrier injection.
  • conduction band 14 When storing charge, electrons tend to reside on the floating gate where conduction band 14 has the lowest energy.
  • the valence band 10 indicates the energy for holes in the device and conduction band 14 indicates the energy for the electrons.
  • the Fermi level 12 shows the electrochemical potential of the holes and electrons in the device. Where the Fermi level 12 is relatively closer to the conduction band 14 , electrons are more likely to reside.
  • the lowest energy is at the interface between the tunnel oxide and the floating gate and the interface between the floating gate and the dielectric layer.
  • Electrons located at the interface between the tunnel oxide and the floating gate can leak through the tunnel oxide causing the programmed threshold of the floating gate to be reduced. This can cause loss of data and failure of the memory.
  • FIG. 2 illustrates a cross-section of a floating gate transistor 30 in accordance with an embodiment of the present invention.
  • Floating gate transistor 30 includes substrate 32 , tunnel oxide 34 , floating gate 36 , dielectric layer 42 , and control gate 50 .
  • Floating gate 36 includes a first layer 38 and a second layer 40 .
  • Substrate 32 is a p-type semiconductor material in the illustrated embodiment.
  • Tunnel oxide 34 is deposited on substrate 32 to a thickness of between 50 and 100 angstroms.
  • Tunnel oxide 34 can be a conventional silicon dioxide (SiO 2 ) layer. In other embodiments tunnel oxide 34 may be any other dielectric that can confine the electrons on the floating gate, such as for example, silicon oxynitride (SiON).
  • Floating gate 36 is formed over tunnel oxide 34 .
  • Floating gate 36 includes a layer 38 and a layer 40 .
  • Layer 38 is formed directly over tunnel oxide 34 .
  • Layer 40 is formed directly over layer 38 .
  • the layers are each constructed of materials that cause more of the stored charge to reside in layer 40 than in layer 38 .
  • layer 38 is formed from lightly doped n-type polysilicon
  • layer 40 is formed from n-type polysilicon and germanium.
  • Layer 38 and layer 40 are each about 500 Angstroms thick, thus making floating gate 36 about 1000 Angstroms thick. Note that in other embodiments, the thickness of each layer may be different.
  • layer 38 can include p-type polysilicon and layer 40 can include n-type polysilicon.
  • layer 38 can be relatively lightly doped and layer 40 can be relatively more heavily doped.
  • the stored charge is electrons.
  • the stored charge may be holes.
  • the stored charge can be ionized impurities, such as locally fixed ionized donor impurities or ionized acceptor impurities. In the case where the stored charge is holes, one skilled in the art would recognize that doping concentrations and conductivity types would be different.
  • Dielectric layer 42 is formed over floating gate 36 .
  • Dielectric layer 42 is an oxide-nitride-oxide (ONO) structure and includes oxide layer 44 , nitride layer 46 and oxide layer 48 .
  • dielectric layer 42 can be any other dielectric that can confine the electrons on the floating gate such as SiON.
  • Control gate 50 is formed from n+type polysilicon on dielectric layer 42 but can be formed from other conventional gate materials.
  • FIG. 3 is a graph illustrating charge storage in floating gate transistor 30 of FIG. 2 in accordance with the present invention.
  • FIG. 3 includes a valence band 20 , Fermi level 22 , and a conduction band 24 plotted with Energy on a y-axis versus Distance through the transistor on an x-axis.
  • the valence band 20 indicates the energy for holes in the device and conduction band 24 indicates the energy for the electrons.
  • the Fermi level 22 shows the electrochemical potential of the holes and electrons in the device. Where the Fermi level 22 is relatively closer to the conduction band 24 , electrons are more likely to reside.
  • a graph of charge versus distance is shown below the floating gate in FIG. 1 to illustrate charge storage at the interface between the floating gate and the dielectric layer where the Fermi level 22 is closer to the conduction band 24 .
  • floating gate 36 is constructed to insure that the conduction band 24 in the floating gate is closer to the Fermi level 22 in the portion of floating gate 36 that is closer to the interface between floating gate 36 and dielectric layer 42 .
  • layer 40 has a lower bandgap than layer 38 .
  • Bandgap is defined as the energy difference between the conduction band 24 and the valence band 20 .
  • Point 26 in FIG. 3 illustrates the junction between layer 38 and layer 40 and the bandgap difference from layer 38 to layer 40 . Moving the conduction band 24 closer to the Fermi level 22 causes electrons to accumulate closer to the interface as shown in FIG. 3.
  • the bandgap difference can be relatively small, for example, 40 millielectron volts. Because Fermi level 22 is closer to conduction band 24 in layer 40 , most of the stored charge will reside in layer 40 as illustrated in FIG. 3.
  • Moving charge storage in the floating gate away from the tunnel oxide reduces the possibility of charge leakage across the tunnel oxide. Also, the tunnel oxide thickness may be reduced, making it possible to use a lower program voltage. In addition, the program/erase circuits can be reduced in size, resulting in a smaller integrated circuit.
  • FIG. 4 is a graph illustrating charge movement and the energy bands during an erase operation of floating gate transistor 30 of FIG. 2.
  • a voltage is applied to control gate 50 of floating gate transistor 30 during an erase operation, the energy of conduction band 54 is increased so that the stored electrons can relatively easily overcome the energy barrier shown at point 58 between layers 38 and 40 and move to the interface with tunnel oxide 34 .
  • the erase operation requires approximately the same voltages required by prior art non-volatile memory cells having a contiguous evenly doped floating gate structure.
  • floating gate 36 can be replaced with an insulating film comprising, for example silicon nitride, as in a semiconductor-oxide-nitride-oxide-semiconductor (SONOS) device.
  • SONOS semiconductor-oxide-nitride-oxide-semiconductor
  • the charge is stored in “traps” in the insulating film.
  • the insulating film may have two layers. One of the two layers corresponds to the bottom layer 38 and the other layer corresponds to top layer 40 of the floating gate embodiment shown in FIG. 3.
  • the “trap” density of the top layer is greater than the “trap” density of bottom layer, so that the top layer stores more charge than the bottom layer.
  • the bottom layer comprises Jet Vapor Deposited silicon nitride (JVD nitride) which is known to have relatively fewer electron trap sites.
  • the top layer comprises Chemical Vapor Deposited silicon nitride (CVD nitride) which is known to have relatively more electron trap sites.
  • CVD nitride Chemical Vapor Deposited silicon nitride

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)

Abstract

A semiconductor device (30) comprises an underlying insulating layer (34), an overlying insulating layer (42) and a charge storage layer (36) between the insulating layers (34, 42). The charge storage layer (36) and the overlying insulating layer (42) form an interface, where at least a majority of charge in the charge storage layer (36) is stored. This can be accomplished by forming a charge storage layer (36) with different materials such as silicon and silicon germanium layers or n-type and p-type material layers, in one embodiment. In another embodiment, the charge storage layer (36) comprises a dopant that is graded. By storing at least a majority of the charge at the interface between the charge storage layer (36) and the overlying insulating layer (42), the leakage of charge through the underlying insulating layer is decreased allowing for a thinner underlying insulating layer (34) to be used.

Description

    FIELD OF THE INVENTION
  • The present invention relates generally to semiconductor devices, and more particularly, to a semiconductor device having a floating gate transistor with improved data retention and method therefor. [0001]
  • BACKGROUND OF THE INVENTION
  • One type of non-volatile integrated circuit memory uses a floating gate transistor for charge storage. Charge stored on the floating gate is used to manipulate a threshold voltage of the transistor, and in this manner store data. An array of floating gate transistors is included with high voltage program/erase circuitry to form the non-volatile memory. While modern processing techniques allow the floating gate transistors to be made smaller, the high voltage program/erase circuits still require a relatively large surface area because they must be able to withstand the high program/erase voltages, for example about 10 volts. One way to reduce the high voltages necessary for program and erase operations is to make the tunnel oxide of the floating gate transistor thinner. However, reducing the thickness of the tunnel oxide may create data retention problems because electrons stored on the floating gate can leak through the relatively thinner tunnel oxide more easily. [0002]
  • Therefore there is a need for a floating gate transistor having good data retention capabilities while also having a thinner tunnel oxide and lower program/erase voltages. [0003]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIG. 1 is a graph illustrating charge storage in a prior art floating gate transistor. [0004]
  • FIG. 2 illustrates a cross-section of a floating gate transistor in accordance with an embodiment of the present invention. [0005]
  • FIG. 3 is a graph illustrating charge storage in the floating gate transistor of FIG. 2. [0006]
  • FIG. 4 is a graph illustrating charge movement during an erase operation of the floating gate transistor of FIG. 2.[0007]
  • DETAILED DESCRIPTION
  • Generally, the present invention provides a floating gate transistor having a tunnel oxide layer, a floating gate, a dielectric layer, and a control gate, where most of the electrons stored on the floating gate reside away from the tunnel oxide and substantially at an interface between the floating gate and the dielectric layer. By moving the electrons away from the tunnel oxide, fewer electrons will leak across the tunnel oxide thus improving data retention. Also, a thinner tunnel oxide may be used, resulting in a lower program/erase voltage. The use of a lower program/erase voltage allows smaller program/erase circuits, a smaller integrated circuit, and lower manufacturing costs. [0008]
  • FIG. 1 is a graph illustrating charge storage in a floating gate transistor in accordance with the prior art. FIG. 1 includes a [0009] valence band 10, Fermi level 12, and a conduction band 14 plotted with energy on a y-axis versus distance through the transistor on an x-axis. In a prior art floating gate transistor memory cell, there is typically a p-type substrate, a tunnel oxide, an n-type floating gate, a dielectric layer comprising an ONO structure and an n+type control gate. The graph of FIG. 1 is useful for showing the energy bands in the prior art floating gate transistor. During programming, electrons are moved onto the floating gate by one of several techniques, such as for example, Fowler-Nordheim tunneling or hot carrier injection. When storing charge, electrons tend to reside on the floating gate where conduction band 14 has the lowest energy. The valence band 10 indicates the energy for holes in the device and conduction band 14 indicates the energy for the electrons. The Fermi level 12 shows the electrochemical potential of the holes and electrons in the device. Where the Fermi level 12 is relatively closer to the conduction band 14, electrons are more likely to reside. In the prior art structure, as can be seen by conduction band 14, the lowest energy is at the interface between the tunnel oxide and the floating gate and the interface between the floating gate and the dielectric layer. More electrons, and therefore higher charge is stored at the edges, or interfaces on the top and bottom of the floating gate. A graph of charge versus distance is shown below the floating gate in FIG. 1 to further illustrate charge storage at the interfaces. Electrons located at the interface between the tunnel oxide and the floating gate can leak through the tunnel oxide causing the programmed threshold of the floating gate to be reduced. This can cause loss of data and failure of the memory.
  • FIG. 2 illustrates a cross-section of a [0010] floating gate transistor 30 in accordance with an embodiment of the present invention. Floating gate transistor 30 includes substrate 32, tunnel oxide 34, floating gate 36, dielectric layer 42, and control gate 50. Floating gate 36 includes a first layer 38 and a second layer 40. Substrate 32 is a p-type semiconductor material in the illustrated embodiment. Tunnel oxide 34 is deposited on substrate 32 to a thickness of between 50 and 100 angstroms. Tunnel oxide 34 can be a conventional silicon dioxide (SiO2) layer. In other embodiments tunnel oxide 34 may be any other dielectric that can confine the electrons on the floating gate, such as for example, silicon oxynitride (SiON).
  • Floating [0011] gate 36 is formed over tunnel oxide 34. Floating gate 36 includes a layer 38 and a layer 40. Layer 38 is formed directly over tunnel oxide 34. Layer 40 is formed directly over layer 38. The layers are each constructed of materials that cause more of the stored charge to reside in layer 40 than in layer 38. In one embodiment, layer 38 is formed from lightly doped n-type polysilicon, and layer 40 is formed from n-type polysilicon and germanium. Layer 38 and layer 40 are each about 500 Angstroms thick, thus making floating gate 36 about 1000 Angstroms thick. Note that in other embodiments, the thickness of each layer may be different. Also, in another embodiment, layer 38 can include p-type polysilicon and layer 40 can include n-type polysilicon. In addition, in another embodiment, layer 38 can be relatively lightly doped and layer 40 can be relatively more heavily doped. Also, in the illustrated embodiment the stored charge is electrons. In another embodiment, the stored charge may be holes. In yet another embodiment, the stored charge can be ionized impurities, such as locally fixed ionized donor impurities or ionized acceptor impurities. In the case where the stored charge is holes, one skilled in the art would recognize that doping concentrations and conductivity types would be different.
  • [0012] Dielectric layer 42 is formed over floating gate 36. Dielectric layer 42 is an oxide-nitride-oxide (ONO) structure and includes oxide layer 44, nitride layer 46 and oxide layer 48. In other embodiments, dielectric layer 42 can be any other dielectric that can confine the electrons on the floating gate such as SiON. Control gate 50 is formed from n+type polysilicon on dielectric layer 42 but can be formed from other conventional gate materials.
  • FIG. 3 is a graph illustrating charge storage in [0013] floating gate transistor 30 of FIG. 2 in accordance with the present invention. FIG. 3 includes a valence band 20, Fermi level 22, and a conduction band 24 plotted with Energy on a y-axis versus Distance through the transistor on an x-axis. The valence band 20 indicates the energy for holes in the device and conduction band 24 indicates the energy for the electrons. The Fermi level 22 shows the electrochemical potential of the holes and electrons in the device. Where the Fermi level 22 is relatively closer to the conduction band 24, electrons are more likely to reside. A graph of charge versus distance is shown below the floating gate in FIG. 1 to illustrate charge storage at the interface between the floating gate and the dielectric layer where the Fermi level 22 is closer to the conduction band 24.
  • Referring now to both FIG. 2 and FIG. 3, floating [0014] gate 36 is constructed to insure that the conduction band 24 in the floating gate is closer to the Fermi level 22 in the portion of floating gate 36 that is closer to the interface between floating gate 36 and dielectric layer 42. Note that layer 40 has a lower bandgap than layer 38. Bandgap is defined as the energy difference between the conduction band 24 and the valence band 20. Point 26 in FIG. 3 illustrates the junction between layer 38 and layer 40 and the bandgap difference from layer 38 to layer 40. Moving the conduction band 24 closer to the Fermi level 22 causes electrons to accumulate closer to the interface as shown in FIG. 3. For purposes of the invention, the bandgap difference can be relatively small, for example, 40 millielectron volts. Because Fermi level 22 is closer to conduction band 24 in layer 40, most of the stored charge will reside in layer 40 as illustrated in FIG. 3.
  • Moving charge storage in the floating gate away from the tunnel oxide reduces the possibility of charge leakage across the tunnel oxide. Also, the tunnel oxide thickness may be reduced, making it possible to use a lower program voltage. In addition, the program/erase circuits can be reduced in size, resulting in a smaller integrated circuit. [0015]
  • FIG. 4 is a graph illustrating charge movement and the energy bands during an erase operation of floating [0016] gate transistor 30 of FIG. 2. When a voltage is applied to control gate 50 of floating gate transistor 30 during an erase operation, the energy of conduction band 54 is increased so that the stored electrons can relatively easily overcome the energy barrier shown at point 58 between layers 38 and 40 and move to the interface with tunnel oxide 34. The erase operation requires approximately the same voltages required by prior art non-volatile memory cells having a contiguous evenly doped floating gate structure.
  • In an alternative embodiment, floating [0017] gate 36 can be replaced with an insulating film comprising, for example silicon nitride, as in a semiconductor-oxide-nitride-oxide-semiconductor (SONOS) device. The charge is stored in “traps” in the insulating film. The insulating film may have two layers. One of the two layers corresponds to the bottom layer 38 and the other layer corresponds to top layer 40 of the floating gate embodiment shown in FIG. 3. The “trap” density of the top layer is greater than the “trap” density of bottom layer, so that the top layer stores more charge than the bottom layer. In one embodiment, the bottom layer comprises Jet Vapor Deposited silicon nitride (JVD nitride) which is known to have relatively fewer electron trap sites. The top layer comprises Chemical Vapor Deposited silicon nitride (CVD nitride) which is known to have relatively more electron trap sites. This structure stores most of the charge away from the interface with tunnel oxide 34, resulting in improved data retention in accordance with the present invention.
  • While the invention has been described in the context of a preferred embodiment, it will be apparent to those skilled in the art that the present invention may be modified in numerous ways and may assume many embodiments other than that specifically set out and described above. Accordingly, it is intended by the appended claims to cover all modifications of the invention which fall within the true scope of the invention. [0018]

Claims (22)

What is claimed is:
1. A semiconductor device comprising:
a semiconductor substrate;
a first insulating layer formed over the semiconductor substrate;
a charge storage layer formed over the first insulating layer comprising:
a plurality of charge,
a second insulating layer formed on the charge storage layer, wherein the second insulating layer and the charge storage layer form a first interface and at least a majority of the plurality of charge is stored substantially at the first interface; and
a conductive layer formed over the second insulating layer.
2. The semiconductor device of claim 1, wherein the charge storage layer comprises two layers.
3. The semiconductor device of claim 2, wherein the charge storage layer further comprises:
a first layer comprising silicon;
a second layer over the first layer, in physical contact with the second insulating layer, and comprising silicon and germanium.
4. The semiconductor device of claim 2, wherein the charge storage layer further comprises:
a first layer comprising a first doped material;
a second layer over the first layer, in physical contact with the second insulating layer, and comprising a second doped material, wherein the second doped material is of opposite conductivity than the first doped material.
5. The semiconductor device of claim 2, wherein the charge storage layer further comprises:
a first layer formed over the first insulating layer comprising jet vapor deposited silicon nitride; and
a second layer formed over the first layer comprising chemical vapor deposited silicon nitride.
6. The semiconductor device of claim 1, wherein the charge storage layer comprises dopants which comprise:
a first concentration in a first portion of the charge storage layer; and
a second concentration in a second portion of the charge storage layer, wherein the second portion of the charge storage layer is in contact with the second insulating layer and the second concentration is greater than the first concentration.
7. The semiconductor device of claim 1, wherein the plurality of charge are electrons.
8. The semiconductor device of claim 1, wherein the charge storage layer is in physical contact with the first insulating layer and forms a second interface, wherein none of the plurality of charge is stored at the second interface.
9. The semiconductor device of claim 1, wherein the semiconductor device is a semiconductor-oxide-nitride-oxide-semiconductor (SONOS) device.
10. The semiconductor device of claim 1, wherein the charge storage layer is a floating gate.
11. A non-volatile memory cell comprising:
a semiconductor substrate;
a tunnel oxide formed over the semiconductor substrate;
a floating gate formed over the tunnel oxide comprising a plurality of charge, a depletion region and an accumulation region, wherein the accumulation region stores a greater concentration of charge than the depletion region;
an insulating layer formed on the floating gate, wherein the insulating layer is in physical contact with the accumulation region; and
a control gate formed over the insulating layer.
12. The non-volatile memory cell of claim 11, wherein the floating gate is a bilayer, wherein a first layer is closest to the tunnel oxide and comprises silicon and a second layer is over the first layer, in physical contact with the insulating layer and comprises silicon and germanium.
13. The non-volatile memory cell of claim 12, wherein the first layer is polysilicon and the second layer is silicon germanium.
14. The non-volatile memory cell of claim 12, wherein the first layer is a material with a higher bandgap than the second material.
15. The non-volatile memory cell of claim 11, wherein the greater concentration of charge is at least a majority of charge.
16. The non-volatile memory cell of claim 15, wherein the depletion region stores substantially no charge.
17. The non-volatile memory cell of claim 11, wherein the depletion region comprises a first dopant concentration and the accumulation region comprises a second dopant concentration, wherein the second dopant concentration is greater than the first dopant concentration.
18. The non-volatile memory cell of claim 11, wherein the insulating layer is an oxide-nitride-oxide stack.
19. A semiconductor device comprising:
a substrate;
a first insulating layer over the substrate;
a second insulating layer over the substrate;
a conductive layer formed over the second insulating layer; and
a charge storage layer between the first insulating layer and the second insulating layer comprising:
a first charge storage layer consisting of silicon; and
a second charge storage layer over the first charge storage layer consisting of silicon and germanium, wherein the second charge storage layer and the second insulating layer form an interface.
20. The semiconductor device of claim 19, wherein the first charge storage layer is polysilicon.
21. The semiconductor device of claim 19, wherein the charge storage layer stores a plurality of charge and a majority of the plurality of charge is stored at the interface.
22. A method of forming a semiconductor device comprising:
providing a semiconductor device;
forming a first insulating layer over the semiconductor device;
forming a charge storage layer over the first insulating layer, wherein the charge storage layer stores a plurality of charge;
forming a second insulating layer on the charge storage layer, wherein the charge storage layer and the second insulating layer form an interface and at least a majority of the charge is stored substantially at the interface; and
forming a conductive layer over the second insulating layer.
US10/017,427 2001-12-14 2001-12-14 Non-volatile memory device with improved data retention and method therefor Abandoned US20030113962A1 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US10/017,427 US20030113962A1 (en) 2001-12-14 2001-12-14 Non-volatile memory device with improved data retention and method therefor
PCT/US2002/038584 WO2003052834A1 (en) 2001-12-14 2002-12-03 Non-volatile memory device with improved data retention and method therefor
AU2002353025A AU2002353025A1 (en) 2001-12-14 2002-12-03 Non-volatile memory device with improved data retention and method therefor
TW091135960A TWI261917B (en) 2001-12-14 2002-12-12 Non-volatile memory device with improved data retention and method therefor
US10/779,004 US7432547B2 (en) 2001-12-14 2004-02-13 Non-volatile memory device with improved data retention and method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/017,427 US20030113962A1 (en) 2001-12-14 2001-12-14 Non-volatile memory device with improved data retention and method therefor

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US10/779,004 Division US7432547B2 (en) 2001-12-14 2004-02-13 Non-volatile memory device with improved data retention and method therefor

Publications (1)

Publication Number Publication Date
US20030113962A1 true US20030113962A1 (en) 2003-06-19

Family

ID=21782523

Family Applications (2)

Application Number Title Priority Date Filing Date
US10/017,427 Abandoned US20030113962A1 (en) 2001-12-14 2001-12-14 Non-volatile memory device with improved data retention and method therefor
US10/779,004 Expired - Fee Related US7432547B2 (en) 2001-12-14 2004-02-13 Non-volatile memory device with improved data retention and method therefor

Family Applications After (1)

Application Number Title Priority Date Filing Date
US10/779,004 Expired - Fee Related US7432547B2 (en) 2001-12-14 2004-02-13 Non-volatile memory device with improved data retention and method therefor

Country Status (4)

Country Link
US (2) US20030113962A1 (en)
AU (1) AU2002353025A1 (en)
TW (1) TWI261917B (en)
WO (1) WO2003052834A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212832A1 (en) * 2006-03-08 2007-09-13 Freescale Semiconductor Inc. Method for making a multibit transistor
US20080316810A1 (en) * 2007-06-25 2008-12-25 Macronix International Co., Ltd. Memory unit
US7910420B1 (en) * 2006-07-13 2011-03-22 National Semiconductor Corporation System and method for improving CMOS compatible non volatile memory retention reliability
US11201214B2 (en) 2019-08-26 2021-12-14 SK Hynix Inc. Semiconductor device and manufacturing method of the semiconductor device

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6927454B2 (en) * 2003-10-07 2005-08-09 International Business Machines Corporation Split poly-SiGe/poly-Si alloy gate stack
US7602006B2 (en) * 2005-04-20 2009-10-13 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor flash device
US7241695B2 (en) * 2005-10-06 2007-07-10 Freescale Semiconductor, Inc. Semiconductor device having nano-pillars and method therefor
US8587036B2 (en) * 2008-12-12 2013-11-19 Ememory Technology Inc. Non-volatile memory and fabricating method thereof
CN101465381A (en) * 2009-01-05 2009-06-24 上海宏力半导体制造有限公司 Memory

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998264A (en) * 1998-03-06 1999-12-07 Wu; Shye-Lin Method of forming high density flash memories with MIM structure
US6191445B1 (en) * 1997-11-05 2001-02-20 Sony Corporation Nonvolatile semiconductor memory device and method of reading a data therefrom

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5521108A (en) 1993-09-15 1996-05-28 Lsi Logic Corporation Process for making a conductive germanium/silicon member with a roughened surface thereon suitable for use in an integrated circuit structure
JP3008812B2 (en) * 1995-03-22 2000-02-14 日本電気株式会社 Nonvolatile semiconductor memory device and method of manufacturing the same
JPH0964209A (en) * 1995-08-25 1997-03-07 Toshiba Corp Semiconductor device and manufacturing method thereof
KR100192546B1 (en) * 1996-04-12 1999-06-15 구본준 Flash memory and its manufacturing method
US6133605A (en) * 1997-03-19 2000-10-17 Citizen Watch Co., Ltd. Semiconductor nonvolatile memory transistor and method of fabricating the same
US5888867A (en) * 1998-02-13 1999-03-30 Advanced Micro Devices, Inc. Non-uniform threshold voltage adjustment in flash eproms through gate work function alteration
US6140676A (en) * 1998-05-20 2000-10-31 Cypress Semiconductor Corporation Semiconductor non-volatile memory device having an improved write speed
US7192829B2 (en) 1998-07-17 2007-03-20 Micron Technology, Inc. Methods of forming floating gate transistors
JP2000200842A (en) * 1998-11-04 2000-07-18 Sony Corp Nonvolatile semiconductor memory device, manufacturing method and writing method
US6153470A (en) * 1999-08-12 2000-11-28 Advanced Micro Devices, Inc. Floating gate engineering to improve tunnel oxide reliability for flash memory devices
US6441464B1 (en) * 1999-09-22 2002-08-27 International Business Machines Corporation Gate oxide stabilization by means of germanium components in gate conductor
KR100395762B1 (en) * 2001-07-31 2003-08-21 삼성전자주식회사 Non-volatile memory device and method of fabricating the same
US6455890B1 (en) * 2001-09-05 2002-09-24 Macronix International Co., Ltd. Structure of fabricating high gate performance for NROM technology
US6693830B1 (en) * 2001-10-22 2004-02-17 Lattice Semiconductor Corp. Single-poly two-transistor EEPROM cell with differentially doped floating gate
US6812515B2 (en) * 2001-11-26 2004-11-02 Hynix Semiconductor, Inc. Polysilicon layers structure and method of forming same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6191445B1 (en) * 1997-11-05 2001-02-20 Sony Corporation Nonvolatile semiconductor memory device and method of reading a data therefrom
US5998264A (en) * 1998-03-06 1999-12-07 Wu; Shye-Lin Method of forming high density flash memories with MIM structure

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070212832A1 (en) * 2006-03-08 2007-09-13 Freescale Semiconductor Inc. Method for making a multibit transistor
US7910420B1 (en) * 2006-07-13 2011-03-22 National Semiconductor Corporation System and method for improving CMOS compatible non volatile memory retention reliability
US20110215419A1 (en) * 2006-07-13 2011-09-08 National Semiconductor Corporation System and method for improving cmos compatible non volatile memory retention reliability
US8198708B2 (en) 2006-07-13 2012-06-12 National Semiconductor Corporation System and method for improving CMOS compatible non volatile memory retention reliability
US20080316810A1 (en) * 2007-06-25 2008-12-25 Macronix International Co., Ltd. Memory unit
US7778076B2 (en) * 2007-06-25 2010-08-17 Macronix International Co., Ltd. Memory unit
US11201214B2 (en) 2019-08-26 2021-12-14 SK Hynix Inc. Semiconductor device and manufacturing method of the semiconductor device

Also Published As

Publication number Publication date
TW200301014A (en) 2003-06-16
WO2003052834A1 (en) 2003-06-26
US7432547B2 (en) 2008-10-07
AU2002353025A1 (en) 2003-06-30
TWI261917B (en) 2006-09-11
US20040159881A1 (en) 2004-08-19

Similar Documents

Publication Publication Date Title
US7332768B2 (en) Non-volatile memory devices
US8466505B2 (en) Multi-level flash memory cell capable of fast programming
US7859046B2 (en) Ballistic direct injection NROM cell on strained silicon structures
KR100942928B1 (en) Charge trapping device having an electric field dispersion layer on the tunneling barrier
US6784484B2 (en) Insulating barrier, NVM bandgap design
US20090101961A1 (en) Memory devices with split gate and blocking layer
US7795088B2 (en) Method for manufacturing memory cell
US7501677B2 (en) SONOS memory with inversion bit-lines
KR20030019917A (en) Memory cell, memory cell device and method for the production thereof
WO2003030264A1 (en) Non volatile memory cell structure using multilevel trapping dielectric
US20090184359A1 (en) Split-gate non-volatile memory devices having nitride tunneling layers
US7432547B2 (en) Non-volatile memory device with improved data retention and method therefor
WO2000059037A1 (en) Avalanche injection eeprom memory cell with p-type control gate
US7164177B2 (en) Multi-level memory cell
US7514744B2 (en) Semiconductor device including carrier accumulation layers
US7586137B2 (en) Non-volatile memory device and method of fabricating the same
WO2001017031A1 (en) Easy shrinkable novel non-volatile semiconductor memory cell utilizing split dielectric floating gate and method for making same
US11444208B2 (en) Non-volatile memory device having low-k dielectric layer on sidewall of control gate electrode
KR100609067B1 (en) Non-volatile memory device and method for fabricating the same
US20060186447A1 (en) Semiconductor memory and method for fabricating the same
EP1748473A2 (en) Non-volatile memory transistor with distributed charge storage sites
EP1903602A2 (en) Non-volatile memory transistor
KR100594385B1 (en) Nonvolatile Memory Devices
EP1748472A1 (en) Non-volatile memory transistor
KR20050080864A (en) Non-volatile memory device and method for fabricating the same

Legal Events

Date Code Title Description
AS Assignment

Owner name: MOTOROLA, INC., ILLINOIS

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHINDALORE, GOWRISHANKAR L.;BAKER, FRANK K., JR.;INGERSOLL, PAUL A.;AND OTHERS;REEL/FRAME:012387/0585

Effective date: 20011214

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载