US20030104749A1 - Sound absorbing material - Google Patents
Sound absorbing material Download PDFInfo
- Publication number
- US20030104749A1 US20030104749A1 US10/203,905 US20390502A US2003104749A1 US 20030104749 A1 US20030104749 A1 US 20030104749A1 US 20390502 A US20390502 A US 20390502A US 2003104749 A1 US2003104749 A1 US 2003104749A1
- Authority
- US
- United States
- Prior art keywords
- sound absorbing
- absorbing material
- recited
- endless filaments
- dtex
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/10—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically
- D04H3/11—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between yarns or filaments made mechanically by fluid jet
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/016—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the fineness
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/14—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic yarns or filaments produced by welding
- D04H3/147—Composite yarns or filaments
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H3/00—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length
- D04H3/08—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating
- D04H3/16—Non-woven fabrics formed wholly or mainly of yarns or like filamentary material of substantial length characterised by the method of strengthening or consolidating with bonds between thermoplastic filaments produced in association with filament formation, e.g. immediately following extrusion
-
- G—PHYSICS
- G10—MUSICAL INSTRUMENTS; ACOUSTICS
- G10K—SOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
- G10K11/00—Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/16—Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
- G10K11/162—Selection of materials
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60R—VEHICLES, VEHICLE FITTINGS, OR VEHICLE PARTS, NOT OTHERWISE PROVIDED FOR
- B60R13/00—Elements for body-finishing, identifying, or decorating; Arrangements or adaptations for advertising purposes
- B60R13/08—Insulating elements, e.g. for sound insulation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/615—Strand or fiber material is blended with another chemically different microfiber in the same layer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/625—Autogenously bonded
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/614—Strand or fiber material specified as having microdimensions [i.e., microfiber]
- Y10T442/626—Microfiber is synthetic polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
Definitions
- the invention relates to a sound absorbing material, made from a microfilament nonwoven fabric having a mass per unit area of 40 to 300 g/m 2 .
- Paneling parts for automobile interiors such as roof linings, which possess sound absorbing properties, are known from the documents European Patent 0 909 680 and U.S. Pat. No. 4,851,283. They are made from a staple fiber nonwoven fabric layer in which preferably polyester fibers are bonded using binding fibers, and are coated with at least one foam material layer.
- insulating and sound absorbing materials that are made from staple fiber nonwoven fabrics, particularly from polyester fibers, and are bonded using mechanical as well as thermal processes, are known from the documents DE 197 26 965 and DE 197 08 188.
- the paneling parts used in the interior of the automobile are supposed to demonstrate attractive optical and sensory properties of the decor.
- the parts are supposed to be capable of recycling, to possess a very high level of resistance to color fading especially under the effects of black-panel temperatures, a low tendency to become dirty, a high level of friction wear resistance, moisture resistance, fire resistance, cleanability, and a very good capacity for deep drawing, and furthermore to take into account the increasing requirements with regard to noise absorption, with the goal of increasing the comfort of automobile passengers.
- the invention has set itself the task of indicating a sound absorbing material, as well as a method for its production, that take into account the stated requirements.
- the task is accomplished by a sound absorbing material that is made from a microfilament nonwoven fabric having a mass per unit area of 40 to 300 g/m 2 , the a nonwoven fabric being made from a melt-spun, drawn multi-component endless filament having a titer of 1.5 to 5 dtex, being directly laid up to form a fibrous web, and the multi-component endless filaments, optionally prebonded being split to micro-endless filaments having a titer of 0.1 to 1.2 dtex, up to at least 80%, and bonded.
- the sound absorbing material demonstrates a high level of specific fiber surface at a comparatively low mass per unit area, as well as high opacity. The fineness of the filaments permits good printability and embossability, and thereby decorative structuring of the material.
- the sound absorbing material is one in which the nonwoven fabric is made from melt-spun, aerodynamically stretched multi-component endless filaments and directly laid up to form a fibrous web, having a titer of 1.5 to 3 dtex, and the multi-component endless filaments are split to micro-endless filaments having a titer of 0.1 to 0.3 dtex, up to a degree of 80% and bonded.
- the sound absorbing material demonstrates an isotropic filament distribution in the web, making further processing relatively independent of the machine running direction and thereby very advantageous for material utilization.
- the sound absorbing material is one in which the multi-component endless filament is a bicomponent endless filament made from two incompatible polymers, particularly a polyester and a polyamide.
- a bicomponent endless filament demonstrates good splittability into micro-endless filaments and results in an advantageous ratio of strength to mass per unit area.
- the sound absorbing material according to the invention is very easy to clean and wipe down, because of the polymers used and their filament structure, and demonstrates a high level of friction wear resistance, i.e. it is easy to take care of.
- the sound absorbing material is one in which the multi-component endless filaments have a cross-section having an orange-like multi-segment structure, also called a “pie” structure, the segments alternately containing one of the two incompatible polymers in each case.
- a “side-by-side” (s/s) arrangement of the incompatible polymers in the multi-component endless filaments is also possible, which arrangement is preferably used for the production of crimped filaments.
- Such segment arrangements of the incompatible polymers in the multi-component endless filament have proven to be very easy to split.
- the sound absorbing material possesses a good deep drawing capacity, or deformability, which is expressed in the average strength values at a high expansion capacity and comparatively low modulus values.
- the sound absorbing material is furthermore one in which at least one of the incompatible polymers forming the multi-component endless filament contains an additive, such as color pigments, permanently acting anti-statics, flame retarding agents and/or additives that influence the hydrophobic properties, in amounts up to 10 percent by weight.
- an additive such as color pigments, permanently acting anti-statics, flame retarding agents and/or additives that influence the hydrophobic properties, in amounts up to 10 percent by weight.
- Static charges can be reduced or prevented with the additives, and the lightfastness under black-panel temperatures can be improved.
- values for lightfastness under black-panel temperatures of ⁇ 6 have been achieved, determined according to DIN EN 20105-A02.
- the method according to the invention for the production of a sound absorbing material, is made up of the steps that multi-component endless filaments are spun from the melt, stretched, and directly laid up to form a web, that prebonding takes place, and that the nonwoven fabric is bonded using high-pressure fluid jets, and, at the same time, split into micro-endless filaments having a titer of 0.1 to 1.2 dtex.
- the sound absorbing material obtained in this way is very uniform with regard to its thickness, it demonstrates an isotropic filament distribution, and it possesses no tendency to delaminate.
- the method for the production of the sound absorbing material is carried out in such a manner that the multi-component endless filaments are bonded and split in that the nonwoven fabric, which has been prebonded, if necessary, is impacted at least once on each side with high-pressure water jets.
- the sound absorbing material demonstrates a good surface and a degree of splitting of the multi-component endless filaments >80%.
- the sound absorbing material according to the invention is subjected to spot calendering in order to increase its friction wear resistance.
- the split and bonded nonwoven fabric is passed through heated rollers, at least one of which has elevations that result in melt-bonding of the filaments to one another at certain points.
- the sound absorbing material according to the invention is suited for the production of car roof linings, door paneling, column paneling, rear window shelves and/or trunk paneling, as well as wheel box paneling, because of its properties, such as good printability, a high level of friction wear resistance, as well as its good lightfastness under black-panel temperatures, its thermoformability in the deep-drawing process, and its sensory properties.
- the sound absorbing material is suitable as a sound absorbing material in the construction of roof linings, in the construction of column, door, and trunk linings, in the construction of dashboards, in the area of the engine compartment and/or floor linings, the material demonstrating good sound absorbing values at a low mass per unit area as compared with known materials.
- the sound absorbing material is suited as a tuft carrier for automobile carpeting, which possesses sound absorbing properties that are at least as good as those of conventional automobile carpeting, with a significantly lower amount of material being required, since heavy-carpet backing coatings can be eliminated.
- a filament sheet having a mass per unit area of 138 g/m 2 is produced from a side-by-side (s/s) polyester-polyamide 6.6 (PES-PA6.6) bicomponent endless filament having a titer of 2.3 dtex and a weight ratio of PES/PA6.6 of 60/40, and is subjected to water-jet needlepunching at pressures up to 230 bar, on both sides.
- the bicomponent endless filaments have a titer of ⁇ 1.2 dtex and a thickness of 0.73 mm after the water-jet needlepunching process, which results in splitting of the starting filaments, at the same time. Values of 391 N in the machine running direction and 372 N in the crosswise direction were determined for the tear strength.
- a filament sheet having a mass per unit area of 115 g/m 2 is produced from a 16 segment (pie) polyester-polyamide 6.6 (PES-PA6.6) bicomponent endless filament having a titer of 2.4 dtex and a weight ratio of PES/PA6.6 of 55/45, and is subjected to water-jet needlepunching at pressures up to 230 bar, on both sides.
- the bicomponent endless filaments have a titer of ⁇ 0.15 dtex after the water-jet needlepunching process, which results in splitting of the starting filaments, at the same time, and a thickness of 0.48 mm after a final smoothing process. Values of 302 N in the machine running direction and 303 N in the crosswise direction were determined for the tear strength.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Mechanical Engineering (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Multimedia (AREA)
- Nonwoven Fabrics (AREA)
- Vehicle Interior And Exterior Ornaments, Soundproofing, And Insulation (AREA)
- Soundproofing, Sound Blocking, And Sound Damping (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE10009281.0 | 2000-02-28 | ||
DE10009281A DE10009281C1 (de) | 2000-02-28 | 2000-02-28 | Schallabsorptionsmaterial |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030104749A1 true US20030104749A1 (en) | 2003-06-05 |
Family
ID=7632658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/203,905 Abandoned US20030104749A1 (en) | 2000-02-28 | 2001-01-24 | Sound absorbing material |
Country Status (9)
Country | Link |
---|---|
US (1) | US20030104749A1 (de) |
EP (1) | EP1261766B1 (de) |
AR (1) | AR027424A1 (de) |
AU (1) | AU2001228484A1 (de) |
CA (1) | CA2401442C (de) |
DE (2) | DE10009281C1 (de) |
ES (1) | ES2282273T3 (de) |
TW (1) | TW552578B (de) |
WO (1) | WO2001064991A2 (de) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040131836A1 (en) * | 2003-01-02 | 2004-07-08 | 3M Innovative Properties Company | Acoustic web |
US20040151870A1 (en) * | 2003-02-04 | 2004-08-05 | Freudenberg Nonwovens Na | Automotive tufted carpet with enhanced acoustical properties |
US20040231915A1 (en) * | 2003-01-02 | 2004-11-25 | 3M Innovative Properties Company | Sound absorptive multilayer composite |
US20040231914A1 (en) * | 2003-01-02 | 2004-11-25 | 3M Innovative Properties Company | Low thickness sound absorptive multilayer composite |
WO2005076865A2 (en) * | 2004-02-04 | 2005-08-25 | Polymer Group, Inc. | Sound absorbing secondary nonwoven carpet back |
US20060065482A1 (en) * | 2004-09-30 | 2006-03-30 | Schmidft Richard J | Acoustic material with liquid repellency |
GB2420351A (en) * | 2004-11-13 | 2006-05-24 | Don & Low Ltd | Microfilamentous polymeric fabric |
WO2018225568A1 (ja) * | 2017-06-08 | 2018-12-13 | クラレクラフレックス株式会社 | 繊維構造体、成形体及び吸音材 |
US11541829B2 (en) | 2020-06-18 | 2023-01-03 | Freudenberg Performance Materials Lp | Acoustical baffle |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2835352B1 (fr) * | 2002-01-28 | 2004-08-27 | Sofitec Sa | Panneau d'etancheite et d'insonorisation en particulier pour vehicule automobile |
DE102007011665A1 (de) * | 2007-03-09 | 2008-09-11 | Btf Produktentwicklungs- Und Vertriebs-Gmbh | Vlies oder Vliesverbund bei Bauanwendungen |
DE202009011197U1 (de) | 2009-07-06 | 2009-10-29 | Eswegee Vliesstoff Gmbh | Schallabsorptionsmaterial |
EP2573243B1 (de) | 2011-09-20 | 2015-02-11 | Firma Carl Freudenberg | Vliesstoff mit einer Elementarfilamente enthaltenden Matrix |
DE102011056933A1 (de) * | 2011-12-22 | 2013-06-27 | Bayerische Motoren Werke Aktiengesellschaft | Interieurbauteil für ein Kraftfahrzeug |
CN105442189A (zh) * | 2015-12-29 | 2016-03-30 | 苏州鑫茂无纺材料有限公司 | 一种高强度无纺布的制备方法 |
CN106758905A (zh) * | 2017-02-24 | 2017-05-31 | 湖州浩森科技股份有限公司 | 一种可移动自动清洁隔音墙装置 |
DE102017103943A1 (de) * | 2017-02-24 | 2018-08-30 | Auria Solutions Uk I Ltd. | Verkleidungsteil für ein Kraftfahrzeug, Verfahren und Vorrichtung zu seiner Herstellung |
DE102017003411A1 (de) * | 2017-04-07 | 2018-10-11 | Carl Freudenberg Kg | Thermisch geprägter Vliesstoff und Verfahren zu seiner Herstellung |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4476186A (en) * | 1982-03-31 | 1984-10-09 | Toray Industries, Inc. | Ultrafine fiber entangled sheet and method of producing the same |
US4851283A (en) * | 1988-12-05 | 1989-07-25 | Monsanto Company | Headliners having improved sound-absorbing characteristics |
US5355565A (en) * | 1993-04-22 | 1994-10-18 | Freudenberg Spunweb S.A. | Process for the production of a non-woven cloth constituted of continuous interconnected filaments and cloth thus obtained |
US5899785A (en) * | 1996-06-17 | 1999-05-04 | Firma Carl Freudenberg | Nonwoven lap formed of very fine continuous filaments |
US5965084A (en) * | 1996-10-29 | 1999-10-12 | Chisso Corporation | Process for producing non-woven fabrics of ultrafine polyolefin fibers |
US5970583A (en) * | 1997-06-17 | 1999-10-26 | Firma Carl Freudenberg | Nonwoven lap formed of very fine continuous filaments |
US6200669B1 (en) * | 1996-11-26 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Entangled nonwoven fabrics and methods for forming the same |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW246699B (de) * | 1992-10-05 | 1995-05-01 | Unitika Ltd | |
DE19726965C1 (de) * | 1997-06-25 | 1999-01-21 | Sandler C H Gmbh | Dämmaterial nach Art eines Masse-Feder-Systems |
-
2000
- 2000-02-28 DE DE10009281A patent/DE10009281C1/de not_active Expired - Lifetime
-
2001
- 2001-01-24 CA CA002401442A patent/CA2401442C/en not_active Expired - Lifetime
- 2001-01-24 ES ES01955102T patent/ES2282273T3/es not_active Expired - Lifetime
- 2001-01-24 AU AU2001228484A patent/AU2001228484A1/en not_active Abandoned
- 2001-01-24 US US10/203,905 patent/US20030104749A1/en not_active Abandoned
- 2001-01-24 DE DE50112331T patent/DE50112331D1/de not_active Expired - Lifetime
- 2001-01-24 EP EP01955102A patent/EP1261766B1/de not_active Expired - Lifetime
- 2001-01-24 WO PCT/EP2001/000727 patent/WO2001064991A2/de active IP Right Grant
- 2001-02-01 TW TW090102002A patent/TW552578B/zh not_active IP Right Cessation
- 2001-02-14 AR ARP010100666A patent/AR027424A1/es not_active Application Discontinuation
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4476186A (en) * | 1982-03-31 | 1984-10-09 | Toray Industries, Inc. | Ultrafine fiber entangled sheet and method of producing the same |
US4851283A (en) * | 1988-12-05 | 1989-07-25 | Monsanto Company | Headliners having improved sound-absorbing characteristics |
US5355565A (en) * | 1993-04-22 | 1994-10-18 | Freudenberg Spunweb S.A. | Process for the production of a non-woven cloth constituted of continuous interconnected filaments and cloth thus obtained |
US5899785A (en) * | 1996-06-17 | 1999-05-04 | Firma Carl Freudenberg | Nonwoven lap formed of very fine continuous filaments |
US5965084A (en) * | 1996-10-29 | 1999-10-12 | Chisso Corporation | Process for producing non-woven fabrics of ultrafine polyolefin fibers |
US6200669B1 (en) * | 1996-11-26 | 2001-03-13 | Kimberly-Clark Worldwide, Inc. | Entangled nonwoven fabrics and methods for forming the same |
US5970583A (en) * | 1997-06-17 | 1999-10-26 | Firma Carl Freudenberg | Nonwoven lap formed of very fine continuous filaments |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060237130A1 (en) * | 2003-01-02 | 2006-10-26 | 3M Innovative Properties Company | Acoustic web |
US20040231915A1 (en) * | 2003-01-02 | 2004-11-25 | 3M Innovative Properties Company | Sound absorptive multilayer composite |
US20040231914A1 (en) * | 2003-01-02 | 2004-11-25 | 3M Innovative Properties Company | Low thickness sound absorptive multilayer composite |
US7591346B2 (en) | 2003-01-02 | 2009-09-22 | 3M Innovative Properties Company | Sound absorptive multilayer composite |
US20080073146A1 (en) * | 2003-01-02 | 2008-03-27 | 3M Innovative Properties Company | Sound absorptive multilayer composite |
US7320739B2 (en) | 2003-01-02 | 2008-01-22 | 3M Innovative Properties Company | Sound absorptive multilayer composite |
US20040131836A1 (en) * | 2003-01-02 | 2004-07-08 | 3M Innovative Properties Company | Acoustic web |
US20040151870A1 (en) * | 2003-02-04 | 2004-08-05 | Freudenberg Nonwovens Na | Automotive tufted carpet with enhanced acoustical properties |
US6808786B2 (en) * | 2003-02-04 | 2004-10-26 | Freudenberg Nonwovens | Automotive tufted carpet with enhanced acoustical properties |
WO2005076865A3 (en) * | 2004-02-04 | 2007-02-01 | Polymer Group Inc | Sound absorbing secondary nonwoven carpet back |
US20050188514A1 (en) * | 2004-02-04 | 2005-09-01 | Polymer Group, Inc. | Sound absorbing secondary nonwoven carpet backing |
WO2005076865A2 (en) * | 2004-02-04 | 2005-08-25 | Polymer Group, Inc. | Sound absorbing secondary nonwoven carpet back |
US20060065482A1 (en) * | 2004-09-30 | 2006-03-30 | Schmidft Richard J | Acoustic material with liquid repellency |
US7500541B2 (en) | 2004-09-30 | 2009-03-10 | Kimberly-Clark Worldwide, Inc. | Acoustic material with liquid repellency |
GB2420351A (en) * | 2004-11-13 | 2006-05-24 | Don & Low Ltd | Microfilamentous polymeric fabric |
WO2018225568A1 (ja) * | 2017-06-08 | 2018-12-13 | クラレクラフレックス株式会社 | 繊維構造体、成形体及び吸音材 |
CN110709552A (zh) * | 2017-06-08 | 2020-01-17 | 可乐丽可乐富丽世股份有限公司 | 纤维结构体、成型体及吸音材料 |
JPWO2018225568A1 (ja) * | 2017-06-08 | 2020-04-16 | クラレクラフレックス株式会社 | 繊維構造体、成形体及び吸音材 |
JP7104695B2 (ja) | 2017-06-08 | 2022-07-21 | クラレクラフレックス株式会社 | 繊維構造体、成形体及び吸音材 |
US11541829B2 (en) | 2020-06-18 | 2023-01-03 | Freudenberg Performance Materials Lp | Acoustical baffle |
Also Published As
Publication number | Publication date |
---|---|
WO2001064991A3 (de) | 2001-12-13 |
AU2001228484A1 (en) | 2001-09-12 |
TW552578B (en) | 2003-09-11 |
DE10009281C1 (de) | 2001-03-22 |
WO2001064991A2 (de) | 2001-09-07 |
CA2401442C (en) | 2009-09-01 |
CA2401442A1 (en) | 2001-09-07 |
ES2282273T3 (es) | 2007-10-16 |
AR027424A1 (es) | 2003-03-26 |
DE50112331D1 (de) | 2007-05-24 |
EP1261766A2 (de) | 2002-12-04 |
EP1261766B1 (de) | 2007-04-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20030104749A1 (en) | Sound absorbing material | |
US20030148096A1 (en) | Composite material | |
CA2850822C (en) | Tufted carpet for automotive applications | |
US6808786B2 (en) | Automotive tufted carpet with enhanced acoustical properties | |
EP2510141B1 (de) | Primäre faservliesteppichrückseite | |
EP2664702B1 (de) | Nadelvliesteppich | |
KR20100015397A (ko) | 자동차 카펫 용도를 위한 터프티드 페트 섬유 | |
KR20090127926A (ko) | 경량의 음향 플로어 카펫 시스템 | |
JP2010539346A (ja) | ニードルパンチ不織ベロア布およびその使用 | |
Mukhopadhyay et al. | Automotive textiles | |
US20190009701A1 (en) | Automotive carpet with solid multilobal fibre | |
US20050233665A1 (en) | Light-protective textile | |
US6720278B2 (en) | Method for producing a spun-bonded nonwoven web with improved abrasion resistance | |
AU2008302790B2 (en) | Needle-punched nonwoven velour, and use thereof | |
US20240026602A1 (en) | Polyester Tufted Carpet And Polyester Nonwoven Carpet With Polyester Roll Coating | |
US11900907B2 (en) | Dual density acoustic insulation | |
US20030176135A1 (en) | Method for producing a spun-bonded nonwoven web with improved abrasion resistance | |
EP1362693A1 (de) | Verfahren zur Herstellung eines Verbundelements für Polsterungen und dadurch erhaltenes Verbundelement | |
KR19990009530A (ko) | 자동차용 부직포와 그의 제조방법 | |
WO2003078715A1 (en) | Method for producing a spun-bonded nonwoven web with improved abrasion resistance |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: CARL FREUDENBERG KG, GERMANY Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EMIRZE, ARARAD;GROTEN, ROBERT;SCHUSTER, MATTHIAS;REEL/FRAME:013433/0501 Effective date: 20020904 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- AFTER EXAMINER'S ANSWER OR BOARD OF APPEALS DECISION |