US20030102858A1 - Method and apparatus for determining properties of an electrophoretic display - Google Patents
Method and apparatus for determining properties of an electrophoretic display Download PDFInfo
- Publication number
- US20030102858A1 US20030102858A1 US10/277,527 US27752702A US2003102858A1 US 20030102858 A1 US20030102858 A1 US 20030102858A1 US 27752702 A US27752702 A US 27752702A US 2003102858 A1 US2003102858 A1 US 2003102858A1
- Authority
- US
- United States
- Prior art keywords
- electrophoretic display
- electrical characteristic
- measuring
- electrical
- encapsulated electrophoretic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title claims abstract description 48
- 230000004044 response Effects 0.000 claims abstract description 36
- 239000002775 capsule Substances 0.000 claims description 50
- 239000002245 particle Substances 0.000 claims description 49
- 238000005259 measurement Methods 0.000 claims description 48
- 238000001514 detection method Methods 0.000 claims description 28
- 239000012530 fluid Substances 0.000 claims description 25
- 239000011230 binding agent Substances 0.000 claims description 22
- 230000007613 environmental effect Effects 0.000 claims description 20
- 230000008859 change Effects 0.000 claims description 13
- 229940039231 contrast media Drugs 0.000 claims description 12
- 239000002872 contrast media Substances 0.000 claims description 12
- 239000012769 display material Substances 0.000 abstract description 6
- 239000000976 ink Substances 0.000 description 28
- 239000000084 colloidal system Substances 0.000 description 23
- 239000003094 microcapsule Substances 0.000 description 17
- 239000000463 material Substances 0.000 description 15
- 230000003287 optical effect Effects 0.000 description 13
- 239000004020 conductor Substances 0.000 description 11
- 230000008569 process Effects 0.000 description 10
- 238000000576 coating method Methods 0.000 description 9
- 239000011248 coating agent Substances 0.000 description 7
- 238000007639 printing Methods 0.000 description 7
- 239000000049 pigment Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 230000008901 benefit Effects 0.000 description 4
- 239000003990 capacitor Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 3
- 239000004973 liquid crystal related substance Substances 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N titanium dioxide Inorganic materials O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 229920000159 gelatin Polymers 0.000 description 2
- 239000008273 gelatin Substances 0.000 description 2
- 235000019322 gelatine Nutrition 0.000 description 2
- 235000011852 gelatine desserts Nutrition 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 238000009685 knife-over-roll coating Methods 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 2
- 229920000767 polyaniline Polymers 0.000 description 2
- 229920000123 polythiophene Polymers 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 230000001052 transient effect Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 239000004215 Carbon black (E152) Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000011149 active material Substances 0.000 description 1
- 238000007754 air knife coating Methods 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000001246 colloidal dispersion Methods 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000007607 die coating method Methods 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005489 elastic deformation Effects 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000000839 emulsion Substances 0.000 description 1
- 238000007765 extrusion coating Methods 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 229930195733 hydrocarbon Natural products 0.000 description 1
- 150000002430 hydrocarbons Chemical class 0.000 description 1
- 238000007641 inkjet printing Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 238000004020 luminiscence type Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000005499 meniscus Effects 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002790 naphthalenes Chemical class 0.000 description 1
- SLIUAWYAILUBJU-UHFFFAOYSA-N pentacene Chemical compound C1=CC=CC2=CC3=CC4=CC5=CC=CC=C5C=C4C=C3C=C21 SLIUAWYAILUBJU-UHFFFAOYSA-N 0.000 description 1
- 230000002085 persistent effect Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- IEQIEDJGQAUEQZ-UHFFFAOYSA-N phthalocyanine Chemical compound N1C(N=C2C3=CC=CC=C3C(N=C3C4=CC=CC=C4C(=N4)N3)=N2)=C(C=CC=C2)C2=C1N=C1C2=CC=CC=C2C4=N1 IEQIEDJGQAUEQZ-UHFFFAOYSA-N 0.000 description 1
- -1 polyphenylenevinylene Polymers 0.000 description 1
- 229920000128 polypyrrole Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 238000007763 reverse roll coating Methods 0.000 description 1
- 238000007650 screen-printing Methods 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000010421 standard material Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000007651 thermal printing Methods 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J3/00—Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed
- B41J3/407—Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material
- B41J3/4076—Typewriters or selective printing or marking mechanisms characterised by the purpose for which they are constructed for marking on special material printing on rewritable, bistable "electronic paper" by a focused electric or magnetic field
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B26/00—Optical devices or arrangements for the control of light using movable or deformable optical elements
- G02B26/02—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light
- G02B26/026—Optical devices or arrangements for the control of light using movable or deformable optical elements for controlling the intensity of light based on the rotation of particles under the influence of an external field, e.g. gyricons, twisting ball displays
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/166—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect
- G02F1/167—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field characterised by the electro-optical or magneto-optical effect by electrophoresis
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/165—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on translational movement of particles in a fluid under the influence of an applied field
- G02F1/1685—Operation of cells; Circuit arrangements affecting the entire cell
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K19/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic element specially adapted for rectifying, amplifying, oscillating or switching, covered by group H10K10/00
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G2320/00—Control of display operating conditions
- G09G2320/02—Improving the quality of display appearance
- G09G2320/029—Improving the quality of display appearance by monitoring one or more pixels in the display panel, e.g. by monitoring a fixed reference pixel
-
- G—PHYSICS
- G09—EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
- G09G—ARRANGEMENTS OR CIRCUITS FOR CONTROL OF INDICATING DEVICES USING STATIC MEANS TO PRESENT VARIABLE INFORMATION
- G09G3/00—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes
- G09G3/20—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters
- G09G3/34—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source
- G09G3/3433—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices
- G09G3/344—Control arrangements or circuits, of interest only in connection with visual indicators other than cathode-ray tubes for presentation of an assembly of a number of characters, e.g. a page, by composing the assembly by combination of individual elements arranged in a matrix no fixed position being assigned to or needed to be assigned to the individual characters or partial characters by control of light from an independent source using light modulating elements actuated by an electric field and being other than liquid crystal devices and electrochromic devices based on particles moving in a fluid or in a gas, e.g. electrophoretic devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K10/00—Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
- H10K10/40—Organic transistors
- H10K10/46—Field-effect transistors, e.g. organic thin-film transistors [OTFT]
- H10K10/462—Insulated gate field-effect transistors [IGFETs]
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/30—Coordination compounds
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K85/00—Organic materials used in the body or electrodes of devices covered by this subclass
- H10K85/60—Organic compounds having low molecular weight
Definitions
- This present invention relates to electronic displays and, in particular, to methods and apparatus for determining properties of electrophoretic displays.
- Electrophoretic display media generally characterized by the movement of particles through an applied electric field, are highly reflective, can be made bistable, can be scaled to a large area, and consume very little power. Encapsulated electrophoretic displays also enable the display to be printed. These properties allow encapsulated electrophoretic display media to be used in many applications for which traditional electronic displays are not suitable, such as flexible displays.
- One particular application for displaying screens are input devices, such as touch screens or keypads, or writing tablets.
- input devices such as touch screens or keypads, or writing tablets.
- the electrical properties of encapsulated electrophoretic display media may vary in response to environmental factors, such as temperature and humidity.
- environmental factors such as temperature and humidity.
- Use of external display sensors may increase cost of the display and complicate the manufacturing process.
- external sensors may not accurately measure the parameters inside the display.
- An encapsulated electrophoretic display can be constructed so that the optical state of the display is stable for some length of time.
- the display has two states, which are stable in this manner, the display is said to be bistable. If more than two states of the display are stable, then the display can be said to be multistable.
- bistable will be used to indicate a display in which any optical state remains fixed once the addressing voltage is removed.
- the definition of a bistable state depends on the application for the display.
- a slowly-decaying optical state can be effectively bistable if the optical state is substantially unchanged over the required viewing time. For example, in a display that is updated every few minutes, a display image that is stable for hours or days is effectively bistable for that application.
- bistable also indicates a display with an optical state sufficiently long-lived as to be effectively bistable for the application in mind.
- encapsulated electrophoretic displays in which the image decays quickly once the addressing voltage to the display is removed (i.e., the display is not bistable or multistable).
- an encapsulated electrophoretic display that is not bistable. Whether or not an encapsulated electrophoretic display is bistable, and its degree of bistability, can be controlled through appropriate chemical modification of the electrophoretic particles, the suspending fluid, the capsule, and binder materials.
- An encapsulated electrophoretic display may take many forms.
- the display may comprise capsules dispersed in a binder.
- the capsules may be of any size or shape.
- the capsules may, for example, be spherical and may have diameters in the millimeter range or the micron range, but is preferably from ten to a few hundred microns.
- the capsules may be formed by an encapsulation technique, as described below.
- Particles may be encapsulated in the capsules.
- the particles may be two or more different types of particles.
- the particles may be colored, luminescent, light-absorbing or transparent, for example.
- the particles may include neat pigments, dyed (laked) pigments or pigment/polymer composites, for example.
- the display may further comprise a suspending fluid in which the particles are dispersed.
- an encapsulated electrophoretic display requires the proper interaction of several different types of materials and processes, such as a polymeric binder and, optionally, a capsule membrane. These materials must be chemically compatible with the electrophoretic particles and fluid, as well as with each other. The capsule materials may engage in useful surface interactions with the electrophoretic particles, or may act as a chemical or physical boundary between the fluid and the binder.
- the encapsulation step of the process is not necessary, and the electrophoretic fluid may be directly dispersed or emulsified into the binder (or a precursor to the binder materials) and an effective “polymer-dispersed electrophoretic display” constructed.
- the binder or a precursor to the binder materials
- an effective “polymer-dispersed electrophoretic display” constructed.
- voids created in the binder may be referred to as capsules or microcapsules even though no capsule membrane is present.
- the binder dispersed electrophoretic display may be of the emulsion or phase separation type.
- printing is intended to include all forms of printing and coating, including: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques.
- premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating
- roll coating such as knife over roll coating, forward and reverse roll coating
- gravure coating dip coating
- spray coating meniscus coating
- spin coating spin coating
- brush coating air knife coating
- silk screen printing processes electrostatic printing processes
- thermal printing processes thermal printing processes
- the primary optical effect in a microencapsulated electrophoretic display device is the controlled positioning of one or more types of colloidal particles within a microcapsule.
- colloidal particles are suspended in a colored fluid within the microcapsule.
- Application of an electrical signal will drive the particles to one side of the microcapsule or the other. If the colloidal particles are near the side of the microcapsule nearer the viewer, the viewer will see the color of the colloid. If the colloidal particles are nearer the opposite side of the microcapsule from the viewer, the viewer will see the colored fluid.
- the contrast between the colors of the fluid and the colloid, based on the colloid position provides the means for a display device.
- the position of the colloid can be controlled by application of electrical signals to electrodes built into the display. Additionally, it is possible to control the position of the colloid using an externally provided voltage signal (electrostatic writing).
- the display can be devised to work primarily by application of a field to electrodes, by electrostatic writing, or with both.
- the present invention provides novel methods and apparatus for sensing the position of the colloid, that is, for sensing the state of electrophoretic displays electrically.
- the invention is also directed to novel methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
- the present invention relates to a method for determining properties of encapsulated electrophoretic display media, that includes providing encapsulated electrophoretic display media that has a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
- the method further includes providing two electrodes adjacent to said plurality of capsules; applying a first electrical signal to one of the electrodes, applying a second electrical signal to the other electrode; and measuring an electrical characteristic of the encapsulated electrophoretic display media that is generated in response to the applied first and second electrical signals.
- the present invention relates to a method for determining properties of encapsulated electrophoretic display media that includes providing encapsulated electrophoretic display media that has a plurality of pixels, each pixel includes at least one capsule dispersed in a binder phase.
- the capsules contain an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
- the method further includes providing an electrode that is common and adjacent to each pixel of the plurality of pixels and providing at least one measurement pixel of the plurality of pixels that has a measurement electrode adjacent thereto.
- the method further includes applying a first electrical signal to the common electrode, applying a second electrical signal to the measurement electrode; and measuring an electrical characteristic of the measuring pixel that is generated in response to the applied electrical signals.
- the present invention relates to an apparatus for determining properties of encapsulated electrophoretic display media.
- the encapsulated electrophoretic display media includes a plurality of capsules dispersed in a binder phase and two electrodes adjacent to the plurality of capsules. At least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
- the apparatus includes a signal generator for applying electrical signals to the two electrodes; and a detection circuit for measuring an electrical characteristic of the encapsulated electrophoretic display media generated in response to the applied electrical signals.
- the invention in yet another aspect, relates to an electrophoretic display that includes encapsulated electrophoretic display media having a plurality of pixels. Each pixel includes at least one capsule dispersed in a binder phase. Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
- the electrophoretic display of the invention capable of determining properties of individual pixels, includes a first electrode that is common and adjacent to each of the plurality of pixels and at least one measurement pixel of the plurality of pixels, having a measurement electrode adjacent thereto.
- the display also includes a signal generator for applying electrical signals to these electrodes; and a detection circuit for measuring a first electrical characteristic of the measurement pixel that is generated in response to the applied electrical signals.
- the invention features an input device that includes an encapsulated electrophoretic display media having a plurality of pixels.
- Each pixel includes a pixel electrode adjacent thereto and at least one capsule dispersed in a binder phase.
- Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid.
- the input device further includes a first electrode that is common and adjacent to each pixel of the plurality of pixels, a signal generator for applying electrical signals to the common electrode and each of the pixel electrodes, and a detection circuit for measuring an electrical characteristic of each of the plurality of pixels that is generated in response to the applied electrical signals.
- the input device also includes a discriminator circuit for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels; and a response generator for identifying the pixel with a change in the electrical characteristic and generating a response to the change.
- FIG. 1A is a diagrammatic side view of an electrophoretic display element with optical particles near the sensing electrodes.
- FIG. 1B is a diagrammatic side view of an electrophoretic display element with optical particles distant from the sensing electrodes.
- FIG. 2 is a flow chart showing the steps to be taken to sense the state of an electrophoretic display element.
- FIG. 3 shows a circuit diagram of an embodiment of the invention
- FIG. 4A shows a circuit diagram of the embodiment of FIG. 3 in a measurement mode.
- FIG. 4B is a graph showing exponential change of the voltage applied to the common electrode over the period of time in the embodiment of FIG. 3.
- FIG. 5 shows a circuit diagram of an another embodiment of the invention
- FIG. 6 shows a circuit diagram of yet another embodiment of the invention
- FIG. 7 is a diagrammatic view of an input device according to the invention.
- FIG. 8 is a flow chart of the operation of the input device according to the embodiment of FIG. 7
- An electronic ink is an optoelectronically active material which comprises at least two phases: an electrophoretic contrast media phase and a coating/binding phase.
- the electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium.
- the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases.
- the coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase.
- the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate.
- An electronic ink is capable of being printed by several different processes, depending on the mechanical properties of the specific ink employed. For example, the fragility or viscosity of a particular ink may result in a different process selection. A very viscous ink would not be well-suited to deposition by an inkjet printing process, while a fragile ink might not be used in a knife over roll coating process.
- the optical quality of an electronic ink is quite distinct from other electronic display materials.
- the most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks).
- the light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image.
- electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks.
- Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
- Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current.
- the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity.
- the ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays.
- ITO indium tin oxide
- the use of costly vacuum-sputtered indium tin oxide (ITO) conductors a standard material in liquid crystal devices, is not required.
- the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability.
- the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals).
- conductive materials which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application.
- These conductive coatings include semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide.
- Organic conductors polymeric conductors and molecular organic conductors also may be used.
- Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly3,4-ethylenedioxythiophene (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives.
- Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene.
- Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
- electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays.
- electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays.
- Zelec ECP electroconductive powders from DuPont Chemical Co. of Wilmington, Del.
- FIGS. 1A and 1B a highly diagrammatic view of an electrophoretic display element is shown.
- An electronic ink typically comprises many such elements in a binder phase.
- capsule 40 is provided and contains electrophoretic particles 50 suspended in a dispersing fluid 55 .
- Dispersing fluid 55 may be clear or dyed.
- the particles 50 typically possess optical properties of interest, such as color, luminescence, or reflectance. In some embodiments, multiple species of particles 50 may be provided in the same capsule.
- Electrodes 10 , 20 , 30 are used to translate the particles 50 within the capsule 40 , thus changing the appearance of the capsule 40 to a viewer 5 .
- Electrodes 10 , 20 may be used to apply a field 60 to the capsule 40 in order to sense its state.
- the position of the particles 50 within the capsule 40 may be electrically determined by applying an electrical signal to electrodes 10 , 20 and measuring the electrical properties of the capsule 40 in response to the applied electrical signal.
- a display element to be measured is provided (step 202 ).
- the display element is already attached to measurement device, i.e., the display includes circuitry for sensing the state of individual display elements.
- the state of a display is measured by a separate device or devices.
- An electrical signal is applied to the provided display element (step 204 ). Typically this is done via electrodes 10 , 20 , 30 adjacent the element. These can be the same electrodes used to translate the electrophoretic particles within the capsule or they can be a separate set of electrodes adjacent the capsule.
- the electrical signal applied to the capsule may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
- the signal applied to the capsule is AC, DC, or hybrid AC/DC
- the signal is typically selected to minimize disturbance of the particles within the capsule.
- an AC signal may be selected having a frequency less than 100 KHz, preferably less than 70 KHz, most preferably less than 10 KHz.
- the selected AC signal has a frequency greater than 1Hz.
- voltages of such signals are selected to be less than I volt, preferably less than 500 millivolts, and most preferably less than 100 millivolts.
- the applied signal has an amplitude greater than 1 millivolt.
- An internal or external signal source may be used to generate the electrical signal.
- a preselected signal can be stored digitally in ROM or PROM that is electrically coupled to a digital-to-analog convertor and a driver that drives the signal to the electrodes.
- the display may be provided with an input jack, such as a BNA or similar jack, that allows a signal to be driven to the electrodes from an external signal generator.
- the applied electrical signal will evoke a different electrical response from the display element depending on whether the particles 50 intersect the field 60 of the electrical signal applied to the electrodes or not.
- the electrical response of the display element is measured (step 206 ).
- the electrical response measured can be capacitave, resistive, or some combination of two such as an RC time constant.
- the measurement circuit used can be a voltmeter, ammeter, ohmmeter, capacitance bridge, or some other circuit capable of measuring the desired electrical characteristic, such as a circuit capable of measuring frequency, time constant, or charge.
- the state of the display element is deduced from the measured electrical response (step 208 ). For example, if the particles 50 have a much higher impedance than the dispersing fluid 55 , then a voltage applied to the capsule 40 will be more attenuated if the particles 50 are nearer the electrodes than if they are not.
- the circuit which performs this function is a comparator. A measured electrical characteristic is compared to a predetermined threshold to determine if the particles 50 are near the electrodes or not.
- AC current is passed through the display element at a particular frequency to determine a frequency response for the element.
- the discriminator circuit may be analog or digital.
- the discriminator circuit includes a processor that analyzes the measured electrical response of the display element.
- both the discriminator circuit and the signal generator are controlled by a processor.
- a microencapsulated electrophoretic display comprising rutile titania dispersed in a low dielectric constant hydrocarbon fluid was provided.
- Two electrodes were positioned adjacent each other on the same substrate, adjacent also to a microcapsule, and on the back side of the display from the viewer.
- An AC electrical signal was placed across the electrodes, and the current passed between the electrodes measured.
- the frequency of the AC signal was set so that the capacitive characteristics of the microcapsules were measured. Typically, electrical frequencies in the range of 10 Hz to 10 KHz are useful in this regard.
- the dielectric constant near the electrodes depended on whether the colloid was on the same side of the microcapsule as the electrodes, or on the opposite sides.
- the spacing of the electrodes small compared to the microcapsule diameter.
- a high dielectric constant indicated that the colloidal particles were near the electrodes, and the display is dark.
- a low dielectric constant indicated that the colloidal particles were away from the electrodes and at the front of the microcapsule, and that the display is light.
- Low amplitude voltages were used to make the measurement.
- the applied voltage is less than the operating voltage of the display.
- AC voltages in the range of 1 mV to 1 V, and particularly in the range of 10 mV to 100 mV, are useful.
- a microencapsulated electrophoretic display was constructed with sensing electrodes on opposing sides of the display. These electrodes could be separate structures, or could be the same electrodes used to address the display.
- the colloidal dispersion was constructed so that the colloid contains a net negative charge. A negative charge is placed on the front electrode, sufficient to address some or all of the pixel. If the colloid is near the front of the microcapsule, the colloid will be repelled from the front surface and attracted to the back. The movement of the colloid gives a characteristic current signal, which rises, peaks, and then diminishes as the colloid transits the cell. This peak has a characteristic time constant and amplitude, depending on the display characteristics. For example, in a display which requires 90 V to address and a cell gap of 100 microns, the colloid transits in the range of 100 ms to 2 seconds, depending on the formulation.
- the discriminator circuit looks for the presence of absence of a peak with a constant in this range. If the colloid transits the cell, then the particles were near the front. If no peak is seen, the colloid was already near the back.
- the detection circuit can be constructed to measure the total charged or current passed by the cell. The charge or current will be higher if the colloidal particles transit the cell, and be lower if they do not transit the cell.
- the invention is directed to methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
- Encapsulated electrophoretic display media is generally composed of polymeric materials, whose electrical properties, such as resistivity and capacitance, vary in response to environmental factors, such as temperature and humidity. In order to achieve a repeatable optical state in the display, it may be desirable to compensate the drive waveform in response to changes in electrical properties of the polymeric materials that comprise encapsulated electrophoretic display media. By enabling a waveform compensation scheme or increasing its effectiveness, the display quality and period of operation could be enhanced.
- the correction of the drive waveform for humidity using the resistivity measurement is essentially empirical.
- Many encapsulated electrophoretic media because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed.
- the resistivity of the encapsulated electrophoretic medium varies with its temperature. In a well-sealed medium, the water content of the display material is essentially unaffected by ambient humidity and the temperature dependence predominates.
- the temperature is measured by a thermocouple or similar device embedded in the medium because measuring the internal temperature of the display is relatively simple using readily available industry-standard components, while the resistivity measurement is used to adjust the drive waveform for humidity, because measuring the humidity inside a display directly is complicated.
- an encapsulated electrophoretic display 300 includes an encapsulated electrophoretic display media 310 having two electrodes, a common electrode 320 and a backplane electrode 330 .
- the resistivity of the encapsulated electrophoretic display media 310 is determined using the common electrode 320 of the electrophoretic display 300 as a sensor. In this embodiment, the resistivity is averaged over the entire area of the encapsulated electrophoretic display media 310 .
- the common electrode 320 is connected to a detection circuit and a capacitor 340 having a known capacitance C.
- the detection circuit is a high-impedance voltage measurement circuit 350 .
- Other circuits for detecting other electrical properties such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used.
- the common electrode 320 and the encapsulated electrophoretic display media 310 are driven to a voltage V 1 by a signal generator 305 .
- the electrical signal applied to the encapsulated electrophoretic display media 310 through the common electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
- the common electrode 320 is disconnected from the signal generator by a switch 312 and is connected to an auxiliary circuit, for example, an analog switch 315 .
- the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to a voltage V 2 .
- the potential difference (V 2 ⁇ V 1 ) is measured by the high-impedance voltage measurement circuit 350 .
- the capacitor 340 had a voltage V 1 .
- the voltage waveform V that appears at the common electrode 320 over a period of time would follow an exponential 410 with time constant RC, where R is the equivalent resistivity of all microcapsules of the encapsulated electrophoretic display media 310 , and C is a known capacitance of the capacitor 340 .
- the corresponding formula that reflects a relationship between V and V 2 ⁇ V 1 as a function of time t is:
- V ( V 2 ⁇ V 1 )(1 ⁇ e ( ⁇ t/RC) ) (1)
- the common electrode 320 is connected to a detection circuit and a resistor 345 having a known resistance R 2 .
- the detection circuit is a high-impedance voltage measurement circuit 350 .
- the common electrode 320 in the measurement mode, is driven to the voltage V 1 through the resistor 345 , while the encapsulated electrophoretic display media 310 and the back electrode 330 are driven to the voltage V 2 .
- the formula that reflects a relationship between the voltage waveform V that appears at the common electrode 320 and the equivalent resistivity of all microcapsules of the encapsulated electrophoretic display media 310 is:
- V ( V 2 ⁇ V 1 )* R 2 /( R+R 2 ) (2)
- the equivalent resistivity R of the encapsulated electrophoretic display media 310 may be deduced using formula (2).
- the amount of time necessary to take the measurement in this embodiment of the invention is relatively short, e.g. on the order of milliseconds, which could minimize the effect of undesirable transient voltages applied to the encapsulated electrophoretic display media 310 .
- the resistivity of the encapsulated electrophoretic display media 310 is determined using one or more of individual encapsulated electrophoretic display media elements 312 as sensors.
- the resistivity of different parts of the electrophoretic display media 310 can be measured.
- the resistivity of the entire electrophoretic display media 310 may be approximated by calculating an average between the measurements taken from individual encapsulated electrophoretic display media elements 312 .
- each sensor 312 is one of the active electrophoretic display pixels, which-is connected to the measurement circuit 350 when the electrophoretic display 300 is not in an update state.
- designated individual encapsulated electrophoretic display media elements that lie outside the active pixel area could be used for the resistivity measurement, if transient currents or the size of an active pixel make use of the active pixel as a sensor undesirable.
- the sensing individual encapsulated electrophoretic display media element 312 is connected to a detection circuit and a capacitor 340 having a known capacitance C.
- the detection circuit is a high-impedance voltage measurement circuit 350 .
- Other circuits for detecting other electrical properties such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used.
- the common electrode 320 and the encapsulated electrophoretic display media 310 are driven to a voltage V 3 by a signal generator 305 .
- the electrical signal applied to the encapsulated electrophoretic display media 310 through the common electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
- the sensor 312 is driven to a voltage V 4 .
- the potential difference (V 4 ⁇ V 3 ) at the sensor 312 is measured by the high-impedance voltage measurement circuit 350 .
- the formula that reflects a relationship between the sensor voltage and V 4 ⁇ V 3 as a function of time t is
- V ( V 4 ⁇ V 3 )(1 ⁇ e ( ⁇ t/RC) ) (3)
- the resistivity R of the sensor element 312 may be deduced using formula (3).
- the sensing element 312 is connected to a detection circuit and a resistor 345 having a known resistance R 2 .
- the detection circuit is a high-impedance voltage measurement circuit 350 .
- the sensing element 312 in the measurement mode, is driven to the voltage V 4 through the resistor 345 , while the encapsulated electrophoretic display media 310 and the common electrode 320 are driven to the voltage V 3 .
- the formula that reflects a relationship between the voltage waveform V that appears at the sensing element 312 and its resistivity is:
- V ( V 4 ⁇ V 3 ) R 2 /( R+R 2 ) (4)
- each sensing element 312 of the encapsulated electrophoretic display media 310 may be deduced using formula (4).
- the resistivity of the encapsulated electrophoretic display media After the resistivity of the encapsulated electrophoretic display media has been measured, its ambient humidity can then be deduced based on the resisitivity value.
- many encapsulated electrophoretic media because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed.
- the correlation between the resistivity of the display and the ambient humidity therein is essentially empirical.
- Other environmental factors of the encapsulated electrophoretic display media can be determined based on the resistivity value as well. Because the internal temperature of the display usually tracks the external temperature rather rapidly, with a lag time of a few minutes, in one embodiment of the invention, the ambient temperature is measured using an external sensor 395 , as shown in FIG. 3. In another embodiment, the internal temperature is measured using a thermocouple embedded in a display. Other environmental factors of the encapsulated electrophoretic display media, can be determined using an external sensors as well.
- the encapsulated electrophoretic display 300 whose parameters can be determined using the encapsulated electrophoretic display media itself as a sensor is used as part of an input device 900 , for example, a touch-screen display or a keypad.
- the input device 900 includes an encapsulated electrophoretic display media 310 and a common electrode 320 .
- the common electrode 320 is formed from a conductive material capable of elastic deformation, such as indium tin oxide. Conductive polymers, such as polythiophene or polyaniline, can also be used.
- the encapsulated electrophoretic display media 310 includes a plurality of pixels 905 , each of which includes at least one individual encapsulated electrophoretic display media element 312 . Each pixel has a pixel electrode 910 adjacent thereto.
- the input device 900 also includes a signal generator 920 for applying electrical signals to the common electrode 320 and each of pixel electrodes 910 .
- the electrical signal applied to the encapsulated electrophoretic display media 310 by the common electrode 320 and each of pixel electrodes 910 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two.
- a detection circuit 930 such as one described above in connection with the embodiments illustrated in FIG. 6, is provided for periodically measuring an electrical characteristic of each of said plurality of pixels, generated in response to the applied electrical signal.
- the input device 900 also includes a discriminator circuit 940 for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels.
- the circuit which performs this function is a comparator. A measured electrical characteristic is compared to a previously measured value of this characteristic to detect a variation.
- the input device 900 also includes a response generator 950 in electrical communication with the discriminator circuit that is capable of identifying the pixel, whose electrical characteristic has changed since the previous measurement, and generating a response to this change.
- the discriminator circuit may be analog or digital.
- the discriminator circuit includes a processor that analyzes the measured electrical response of the display element.
- the detection circuit, discriminator circuit, the response generator, and the signal generator are controlled by a processor.
- the detection circuit 930 periodically measures the electrical properties of each of the pixels of encapsulated electrophoretic display media 310 .
- a user depresses a part of the common electrode 320 of the encapsulated electrophoretic display 300 (STEP 1020 )
- certain electrical properties of the encapsulated electrophoretic display media 310 in the area adjacent to the depression in the common electrode 320 such as, for example, voltage, resistivity, or capacitance, change (STEP 1030 ).
- the detection circuit 930 takes new measurements of the electrical properties (STEP 1040 ).
- the discriminating circuit 940 compares the new measurements with previously obtained measurements and detects a change in electrical properties of the pixels adjacent to the depression in the common electrode 320 (STEP 1050 ).
- the response generator 950 identifies one or more pixels whose electrical properties have changed and generates a response (STEP 1060 ). For example, the response generator may generate an output signal to be used by devices receiving input from the input device 900 .
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Molecular Biology (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Electrochromic Elements, Electrophoresis, Or Variable Reflection Or Absorption Elements (AREA)
Abstract
A method for sensing the state of an electrophoretic display includes the steps of applying an electrical signal to a display element, measuring an electrical response for the display element, and deducing the state of the display element from the measured electrical response. Also, the parameters of the display materials are determined using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
Description
- This application is a continuation-in-part of and claims priority to U.S. Ser. No. 09/349,808 filed Jul. 8, 1999, which claims priority to U.S. Serial No. 60/092,046 filed Jul. 8, 1998. The contents of both applications are incorporated herein by reference.
- This present invention relates to electronic displays and, in particular, to methods and apparatus for determining properties of electrophoretic displays.
- Electrophoretic display media, generally characterized by the movement of particles through an applied electric field, are highly reflective, can be made bistable, can be scaled to a large area, and consume very little power. Encapsulated electrophoretic displays also enable the display to be printed. These properties allow encapsulated electrophoretic display media to be used in many applications for which traditional electronic displays are not suitable, such as flexible displays.
- One particular application for displaying screens are input devices, such as touch screens or keypads, or writing tablets. In many cases, it is desirable to sense the state of the display in order to digitize the input. For example, measuring and analyzing certain properties of the display may enable detection of the location of the input. A responsive event or action may then be generated.
- Also, the electrical properties of encapsulated electrophoretic display media may vary in response to environmental factors, such as temperature and humidity. In some circumstances, in order to achieve a repeatable optical state in the display, it may be desirable to compensate the drive waveform in response to changes in electrical properties of the polymeric materials that comprise encapsulated electrophoretic display media. Thus, it is desirable to measure the display parameters that affect waveform compensation scheme. Use of external display sensors, however, may increase cost of the display and complicate the manufacturing process. In addition, external sensors may not accurately measure the parameters inside the display.
- An encapsulated electrophoretic display can be constructed so that the optical state of the display is stable for some length of time. When the display has two states, which are stable in this manner, the display is said to be bistable. If more than two states of the display are stable, then the display can be said to be multistable. For the purpose of this invention, the term bistable will be used to indicate a display in which any optical state remains fixed once the addressing voltage is removed. The definition of a bistable state depends on the application for the display. A slowly-decaying optical state can be effectively bistable if the optical state is substantially unchanged over the required viewing time. For example, in a display that is updated every few minutes, a display image that is stable for hours or days is effectively bistable for that application. In this invention, the term bistable also indicates a display with an optical state sufficiently long-lived as to be effectively bistable for the application in mind. Alternatively, it is possible to construct encapsulated electrophoretic displays in which the image decays quickly once the addressing voltage to the display is removed (i.e., the display is not bistable or multistable). As will be described, in some applications it is advantageous to use an encapsulated electrophoretic display that is not bistable. Whether or not an encapsulated electrophoretic display is bistable, and its degree of bistability, can be controlled through appropriate chemical modification of the electrophoretic particles, the suspending fluid, the capsule, and binder materials.
- An encapsulated electrophoretic display may take many forms. The display may comprise capsules dispersed in a binder. The capsules may be of any size or shape. The capsules may, for example, be spherical and may have diameters in the millimeter range or the micron range, but is preferably from ten to a few hundred microns. The capsules may be formed by an encapsulation technique, as described below. Particles may be encapsulated in the capsules. The particles may be two or more different types of particles. The particles may be colored, luminescent, light-absorbing or transparent, for example. The particles may include neat pigments, dyed (laked) pigments or pigment/polymer composites, for example. The display may further comprise a suspending fluid in which the particles are dispersed.
- The successful construction of an encapsulated electrophoretic display requires the proper interaction of several different types of materials and processes, such as a polymeric binder and, optionally, a capsule membrane. These materials must be chemically compatible with the electrophoretic particles and fluid, as well as with each other. The capsule materials may engage in useful surface interactions with the electrophoretic particles, or may act as a chemical or physical boundary between the fluid and the binder.
- In some cases, the encapsulation step of the process is not necessary, and the electrophoretic fluid may be directly dispersed or emulsified into the binder (or a precursor to the binder materials) and an effective “polymer-dispersed electrophoretic display” constructed. In such displays, voids created in the binder may be referred to as capsules or microcapsules even though no capsule membrane is present. The binder dispersed electrophoretic display may be of the emulsion or phase separation type.
- Throughout the specification, reference will be made to printing or printed. As used throughout the specification, printing is intended to include all forms of printing and coating, including: premetered coatings such as patch die coating, slot or extrusion coating, slide or cascade coating, and curtain coating; roll coating such as knife over roll coating, forward and reverse roll coating; gravure coating; dip coating; spray coating; meniscus coating; spin coating; brush coating; air knife coating; silk screen printing processes; electrostatic printing processes; thermal printing processes; and other similar techniques. A “printed element” refers to an element formed using any one of the above techniques.
- The primary optical effect in a microencapsulated electrophoretic display device is the controlled positioning of one or more types of colloidal particles within a microcapsule. In one embodiment, colloidal particles are suspended in a colored fluid within the microcapsule. Application of an electrical signal will drive the particles to one side of the microcapsule or the other. If the colloidal particles are near the side of the microcapsule nearer the viewer, the viewer will see the color of the colloid. If the colloidal particles are nearer the opposite side of the microcapsule from the viewer, the viewer will see the colored fluid. The contrast between the colors of the fluid and the colloid, based on the colloid position, provides the means for a display device.
- The position of the colloid can be controlled by application of electrical signals to electrodes built into the display. Additionally, it is possible to control the position of the colloid using an externally provided voltage signal (electrostatic writing). The display can be devised to work primarily by application of a field to electrodes, by electrostatic writing, or with both.
- The present invention provides novel methods and apparatus for sensing the position of the colloid, that is, for sensing the state of electrophoretic displays electrically. The invention is also directed to novel methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
- In one aspect, the present invention relates to a method for determining properties of encapsulated electrophoretic display media, that includes providing encapsulated electrophoretic display media that has a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The method further includes providing two electrodes adjacent to said plurality of capsules; applying a first electrical signal to one of the electrodes, applying a second electrical signal to the other electrode; and measuring an electrical characteristic of the encapsulated electrophoretic display media that is generated in response to the applied first and second electrical signals.
- In another aspect, the present invention relates to a method for determining properties of encapsulated electrophoretic display media that includes providing encapsulated electrophoretic display media that has a plurality of pixels, each pixel includes at least one capsule dispersed in a binder phase. The capsules contain an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The method further includes providing an electrode that is common and adjacent to each pixel of the plurality of pixels and providing at least one measurement pixel of the plurality of pixels that has a measurement electrode adjacent thereto. The method further includes applying a first electrical signal to the common electrode, applying a second electrical signal to the measurement electrode; and measuring an electrical characteristic of the measuring pixel that is generated in response to the applied electrical signals.
- In still another aspect, the present invention relates to an apparatus for determining properties of encapsulated electrophoretic display media. The encapsulated electrophoretic display media includes a plurality of capsules dispersed in a binder phase and two electrodes adjacent to the plurality of capsules. At least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The apparatus includes a signal generator for applying electrical signals to the two electrodes; and a detection circuit for measuring an electrical characteristic of the encapsulated electrophoretic display media generated in response to the applied electrical signals.
- In yet another aspect, the invention relates to an electrophoretic display that includes encapsulated electrophoretic display media having a plurality of pixels. Each pixel includes at least one capsule dispersed in a binder phase. Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The electrophoretic display of the invention, capable of determining properties of individual pixels, includes a first electrode that is common and adjacent to each of the plurality of pixels and at least one measurement pixel of the plurality of pixels, having a measurement electrode adjacent thereto. The display also includes a signal generator for applying electrical signals to these electrodes; and a detection circuit for measuring a first electrical characteristic of the measurement pixel that is generated in response to the applied electrical signals.
- In still another aspect, the invention features an input device that includes an encapsulated electrophoretic display media having a plurality of pixels. Each pixel includes a pixel electrode adjacent thereto and at least one capsule dispersed in a binder phase. Each capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid. The input device further includes a first electrode that is common and adjacent to each pixel of the plurality of pixels, a signal generator for applying electrical signals to the common electrode and each of the pixel electrodes, and a detection circuit for measuring an electrical characteristic of each of the plurality of pixels that is generated in response to the applied electrical signals. The input device also includes a discriminator circuit for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels; and a response generator for identifying the pixel with a change in the electrical characteristic and generating a response to the change.
- The invention is pointed out with particularity in the appended claims. The advantages of the invention described above, together with further advantages, may be better understood by referring to the following description taken in conjunction with the accompanying drawings. In the drawings, like reference characters generally refer to the same parts throughout the different views. Also, the drawings are not necessarily to scale, emphasis instead generally being placed upon illustrating the principles of the invention.
- FIG. 1A is a diagrammatic side view of an electrophoretic display element with optical particles near the sensing electrodes.
- FIG. 1B is a diagrammatic side view of an electrophoretic display element with optical particles distant from the sensing electrodes.
- FIG. 2 is a flow chart showing the steps to be taken to sense the state of an electrophoretic display element.
- FIG. 3 shows a circuit diagram of an embodiment of the invention
- FIG. 4A shows a circuit diagram of the embodiment of FIG. 3 in a measurement mode.
- FIG. 4B is a graph showing exponential change of the voltage applied to the common electrode over the period of time in the embodiment of FIG. 3.
- FIG. 5 shows a circuit diagram of an another embodiment of the invention
- FIG. 6 shows a circuit diagram of yet another embodiment of the invention
- FIG. 7 is a diagrammatic view of an input device according to the invention.
- FIG. 8 is a flow chart of the operation of the input device according to the embodiment of FIG. 7
- An electronic ink is an optoelectronically active material which comprises at least two phases: an electrophoretic contrast media phase and a coating/binding phase. The electrophoretic phase comprises, in some embodiments, a single species of electrophoretic particles dispersed in a clear or dyed medium, or more than one species of electrophoretic particles having distinct physical and electrical characteristics dispersed in a clear or dyed medium. In some embodiments the electrophoretic phase is encapsulated, that is, there is a capsule wall phase between the two phases. The coating/binding phase includes, in one embodiment, a polymer matrix that surrounds the electrophoretic phase. In this embodiment, the polymer in the polymeric binder is capable of being dried, crosslinked, or otherwise cured as in traditional inks, and therefore a printing process can be used to deposit the electronic ink onto a substrate. An electronic ink is capable of being printed by several different processes, depending on the mechanical properties of the specific ink employed. For example, the fragility or viscosity of a particular ink may result in a different process selection. A very viscous ink would not be well-suited to deposition by an inkjet printing process, while a fragile ink might not be used in a knife over roll coating process.
- The optical quality of an electronic ink is quite distinct from other electronic display materials. The most notable difference is that the electronic ink provides a high degree of both reflectance and contrast because it is pigment based (as are ordinary printing inks). The light scattered from the electronic ink comes from a very thin layer of pigment close to the top of the viewing surface. In this respect it resembles an ordinary, printed image. Also, electronic ink is easily viewed from a wide range of viewing angles in the same manner as a printed page, and such ink approximates a Lambertian contrast curve more closely than any other electronic display material. Since electronic ink can be printed, it can be included on the same surface with any other printed material, including traditional inks. Electronic ink can be made optically stable in all display configurations, that is, the ink can be set to a persistent optical state. Fabrication of a display by printing an electronic ink is particularly useful in low power applications because of this stability.
- Electronic ink displays are novel in that they can be addressed by DC voltages and draw very little current. As such, the conductive leads and electrodes used to deliver the voltage to electronic ink displays can be of relatively high resistivity. The ability to use resistive conductors substantially widens the number and type of materials that can be used as conductors in electronic ink displays. In particular, the use of costly vacuum-sputtered indium tin oxide (ITO) conductors, a standard material in liquid crystal devices, is not required. Aside from cost savings, the replacement of ITO with other materials can provide benefits in appearance, processing capabilities (printed conductors), flexibility, and durability. Additionally, the printed electrodes are in contact only with a solid binder, not with a fluid layer (like liquid crystals). This means that some conductive materials, which would otherwise dissolve or be degraded by contact with liquid crystals, can be used in an electronic ink application. These include opaque metallic inks for the rear electrode (e.g., silver and graphite inks), as well as conductive transparent inks for either substrate. These conductive coatings include semiconducting colloids, examples of which are indium tin oxide and antimony-doped tin oxide. Organic conductors (polymeric conductors and molecular organic conductors) also may be used. Polymers include, but are not limited to, polyaniline and derivatives, polythiophene and derivatives, poly3,4-ethylenedioxythiophene (PEDOT) and derivatives, polypyrrole and derivatives, and polyphenylenevinylene (PPV) and derivatives. Organic molecular conductors include, but are not limited to, derivatives of naphthalene, phthalocyanine, and pentacene. Polymer layers can be made thinner and more transparent than with traditional displays because conductivity requirements are not as stringent.
- As an example, there is a class of materials called electroconductive powders which are also useful as coatable transparent conductors in electronic ink displays. One example is Zelec ECP electroconductive powders from DuPont Chemical Co. of Wilmington, Del.
- Referring now to FIGS. 1A and 1B, a highly diagrammatic view of an electrophoretic display element is shown. An electronic ink typically comprises many such elements in a binder phase. In brief overview,
capsule 40 is provided and containselectrophoretic particles 50 suspended in a dispersingfluid 55. Dispersingfluid 55 may be clear or dyed. Theparticles 50 typically possess optical properties of interest, such as color, luminescence, or reflectance. In some embodiments, multiple species ofparticles 50 may be provided in the same capsule.Electrodes particles 50 within thecapsule 40, thus changing the appearance of thecapsule 40 to a viewer 5.Electrodes field 60 to thecapsule 40 in order to sense its state. - The position of the
particles 50 within thecapsule 40 may be electrically determined by applying an electrical signal toelectrodes capsule 40 in response to the applied electrical signal. - In greater detail, the steps to be taken in sensing the state of an electrophoretic display are shown in FIG. 2. A display element to be measured is provided (step202). In some embodiments, the display element is already attached to measurement device, i.e., the display includes circuitry for sensing the state of individual display elements. In other embodiments, the state of a display is measured by a separate device or devices.
- An electrical signal is applied to the provided display element (step204). Typically this is done via
electrodes - Whether the signal applied to the capsule is AC, DC, or hybrid AC/DC, the signal is typically selected to minimize disturbance of the particles within the capsule. For example, an AC signal may be selected having a frequency less than 100 KHz, preferably less than 70 KHz, most preferably less than 10 KHz. In certain preferred embodiments, the selected AC signal has a frequency greater than 1Hz. Further, voltages of such signals are selected to be less than I volt, preferably less than 500 millivolts, and most preferably less than 100 millivolts. In some preferred embodiments, the applied signal has an amplitude greater than 1 millivolt.
- An internal or external signal source may be used to generate the electrical signal. For example, a preselected signal can be stored digitally in ROM or PROM that is electrically coupled to a digital-to-analog convertor and a driver that drives the signal to the electrodes. Alternatively, the display may be provided with an input jack, such as a BNA or similar jack, that allows a signal to be driven to the electrodes from an external signal generator.
- If the electrical characteristic of
particles 50 and dispersingfluid 55 differ, then the applied electrical signal will evoke a different electrical response from the display element depending on whether theparticles 50 intersect thefield 60 of the electrical signal applied to the electrodes or not. - The electrical response of the display element is measured (step206). The electrical response measured can be capacitave, resistive, or some combination of two such as an RC time constant. The measurement circuit used can be a voltmeter, ammeter, ohmmeter, capacitance bridge, or some other circuit capable of measuring the desired electrical characteristic, such as a circuit capable of measuring frequency, time constant, or charge.
- The state of the display element is deduced from the measured electrical response (step208). For example, if the
particles 50 have a much higher impedance than the dispersingfluid 55, then a voltage applied to thecapsule 40 will be more attenuated if theparticles 50 are nearer the electrodes than if they are not. In its simplest form, the circuit which performs this function (the “discriminator circuit”) is a comparator. A measured electrical characteristic is compared to a predetermined threshold to determine if theparticles 50 are near the electrodes or not. In another embodiment, AC current is passed through the display element at a particular frequency to determine a frequency response for the element. - The discriminator circuit may be analog or digital. In one embodiment, the discriminator circuit includes a processor that analyzes the measured electrical response of the display element. In a further embodiment, both the discriminator circuit and the signal generator are controlled by a processor.
- A microencapsulated electrophoretic display comprising rutile titania dispersed in a low dielectric constant hydrocarbon fluid was provided. Two electrodes were positioned adjacent each other on the same substrate, adjacent also to a microcapsule, and on the back side of the display from the viewer. An AC electrical signal was placed across the electrodes, and the current passed between the electrodes measured. The frequency of the AC signal was set so that the capacitive characteristics of the microcapsules were measured. Typically, electrical frequencies in the range of 10 Hz to 10 KHz are useful in this regard. The dielectric constant near the electrodes depended on whether the colloid was on the same side of the microcapsule as the electrodes, or on the opposite sides. It is advantageous to have the spacing of the electrodes small compared to the microcapsule diameter. A high dielectric constant indicated that the colloidal particles were near the electrodes, and the display is dark. A low dielectric constant indicated that the colloidal particles were away from the electrodes and at the front of the microcapsule, and that the display is light. Low amplitude voltages were used to make the measurement. Preferably, the applied voltage is less than the operating voltage of the display. Typically, AC voltages in the range of 1 mV to 1 V, and particularly in the range of 10 mV to 100 mV, are useful.
- A microencapsulated electrophoretic display was constructed with sensing electrodes on opposing sides of the display. These electrodes could be separate structures, or could be the same electrodes used to address the display. The colloidal dispersion was constructed so that the colloid contains a net negative charge. A negative charge is placed on the front electrode, sufficient to address some or all of the pixel. If the colloid is near the front of the microcapsule, the colloid will be repelled from the front surface and attracted to the back. The movement of the colloid gives a characteristic current signal, which rises, peaks, and then diminishes as the colloid transits the cell. This peak has a characteristic time constant and amplitude, depending on the display characteristics. For example, in a display which requires 90 V to address and a cell gap of 100 microns, the colloid transits in the range of 100 ms to 2 seconds, depending on the formulation.
- Alternatively, if the colloid was already near the back, then application of this voltage will cause no change in the colloid position, and the electrical signal will be indicative of only background ions transiting the cell.
- In this case, the discriminator circuit looks for the presence of absence of a peak with a constant in this range. If the colloid transits the cell, then the particles were near the front. If no peak is seen, the colloid was already near the back.
- Alternatively, the detection circuit can be constructed to measure the total charged or current passed by the cell. The charge or current will be higher if the colloidal particles transit the cell, and be lower if they do not transit the cell.
- The case of example 2, except the electrodes were adjacent as single side of the display, and spaced close together relative to the microcapsule size. Application of a voltage in the range of 1 V to 100 V causes some of the colloid to move from one electrode to the other if the colloid is near the surface of microcapsule adjacent the electrodes. If the colloid is on the other side of the microcapsule, no such transit will be seen. The discriminator circuit looks for the presence or absence of a current representing the colloidal particles, and thus determine if the colloid is on the face nearer or further from the electrodes. This method has the advantage of not disturbing the relative position of the colloid in the front or back of the display.
- While the examples described here are listed using encapsulated electrophoretic displays, there are other particle-based display media which should also work as well, including encapsulated suspended particles and rotating ball displays.
- In another embodiment, the invention is directed to methods and apparatus for determining the parameters of the display materials using the encapsulated electrophoretic display media as a sensor, either alone or in conjunction with other sensors.
- Encapsulated electrophoretic display media is generally composed of polymeric materials, whose electrical properties, such as resistivity and capacitance, vary in response to environmental factors, such as temperature and humidity. In order to achieve a repeatable optical state in the display, it may be desirable to compensate the drive waveform in response to changes in electrical properties of the polymeric materials that comprise encapsulated electrophoretic display media. By enabling a waveform compensation scheme or increasing its effectiveness, the display quality and period of operation could be enhanced.
- The correction of the drive waveform for humidity using the resistivity measurement is essentially empirical. Many encapsulated electrophoretic media, because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed. Also, as with most other materials, the resistivity of the encapsulated electrophoretic medium varies with its temperature. In a well-sealed medium, the water content of the display material is essentially unaffected by ambient humidity and the temperature dependence predominates. In one embodiment, the temperature is measured by a thermocouple or similar device embedded in the medium because measuring the internal temperature of the display is relatively simple using readily available industry-standard components, while the resistivity measurement is used to adjust the drive waveform for humidity, because measuring the humidity inside a display directly is complicated.
- Referring to FIG. 3, an encapsulated
electrophoretic display 300 includes an encapsulatedelectrophoretic display media 310 having two electrodes, acommon electrode 320 and abackplane electrode 330. In one embodiment, the resistivity of the encapsulatedelectrophoretic display media 310 is determined using thecommon electrode 320 of theelectrophoretic display 300 as a sensor. In this embodiment, the resistivity is averaged over the entire area of the encapsulatedelectrophoretic display media 310. - Referring to FIG. 3, the
common electrode 320 is connected to a detection circuit and acapacitor 340 having a known capacitance C. In the embodiment shown in FIG. 3, the detection circuit is a high-impedancevoltage measurement circuit 350. Other circuits for detecting other electrical properties, such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used. - Referring still to FIG. 3, the
common electrode 320 and the encapsulatedelectrophoretic display media 310 are driven to a voltage V1 by asignal generator 305. The electrical signal applied to the encapsulatedelectrophoretic display media 310 through thecommon electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two. Then, thecommon electrode 320 is disconnected from the signal generator by aswitch 312 and is connected to an auxiliary circuit, for example, ananalog switch 315. Then, the encapsulatedelectrophoretic display media 310 and theback electrode 330 are driven to a voltage V2. The potential difference (V2−V1) is measured by the high-impedancevoltage measurement circuit 350. - Referring to FIGS. 3 and 4A-4B, before the voltage V2 was applied, the
capacitor 340 had a voltage V1. In the measurement mode, after the encapsulatedelectrophoretic display media 310 and theback electrode 330 are driven to the voltage V2, the voltage waveform V that appears at thecommon electrode 320 over a period of time would follow an exponential 410 with time constant RC, where R is the equivalent resistivity of all microcapsules of the encapsulatedelectrophoretic display media 310, and C is a known capacitance of thecapacitor 340. The corresponding formula that reflects a relationship between V and V2−V1 as a function of time t is: - V=(V 2−V 1)(1−e (−t/RC)) (1)
- where t is the lapsed time that the circuit voltage is changing, and e is the base of natural logarithms, which is a constant that equals about 2.7183. Thus, the equivalent resistivity R of the encapsulated
electrophoretic display media 310 may be deduced using formula (1). - Referring to FIG. 5, in another embodiment, the
common electrode 320 is connected to a detection circuit and aresistor 345 having a known resistance R2. In one embodiment, the detection circuit is a high-impedancevoltage measurement circuit 350. In this embodiment, in the measurement mode, thecommon electrode 320 is driven to the voltage V1 through theresistor 345, while the encapsulatedelectrophoretic display media 310 and theback electrode 330 are driven to the voltage V2. The formula that reflects a relationship between the voltage waveform V that appears at thecommon electrode 320 and the equivalent resistivity of all microcapsules of the encapsulatedelectrophoretic display media 310 is: - V=(V 2−V 1)*R 2/(R+R 2) (2)
- Thus, the equivalent resistivity R of the encapsulated
electrophoretic display media 310 may be deduced using formula (2). The amount of time necessary to take the measurement in this embodiment of the invention is relatively short, e.g. on the order of milliseconds, which could minimize the effect of undesirable transient voltages applied to the encapsulatedelectrophoretic display media 310. - Referring to FIG. 6, in another embodiment, the resistivity of the encapsulated
electrophoretic display media 310 is determined using one or more of individual encapsulated electrophoreticdisplay media elements 312 as sensors. In this embodiment, the resistivity of different parts of theelectrophoretic display media 310 can be measured. Also, the resistivity of the entireelectrophoretic display media 310 may be approximated by calculating an average between the measurements taken from individual encapsulated electrophoreticdisplay media elements 312. In one version of this embodiment, eachsensor 312 is one of the active electrophoretic display pixels, which-is connected to themeasurement circuit 350 when theelectrophoretic display 300 is not in an update state. Alternatively, in another version of this embodiment, designated individual encapsulated electrophoretic display media elements that lie outside the active pixel area could be used for the resistivity measurement, if transient currents or the size of an active pixel make use of the active pixel as a sensor undesirable. - Referring still to FIG. 6, the sensing individual encapsulated electrophoretic
display media element 312 is connected to a detection circuit and acapacitor 340 having a known capacitance C. In one embodiment, the detection circuit is a high-impedancevoltage measurement circuit 350. Other circuits for detecting other electrical properties, such as a capacitance bridge or circuits capable of measuring time constants, frequency, or electrical charge can also be used. - The
common electrode 320 and the encapsulatedelectrophoretic display media 310 are driven to a voltage V3 by asignal generator 305. The electrical signal applied to the encapsulatedelectrophoretic display media 310 through thecommon electrode 320 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two. Then, thesensor 312 is driven to a voltage V4. The potential difference (V4−V3) at thesensor 312 is measured by the high-impedancevoltage measurement circuit 350. As discussed above with respect to the embodiment of FIG. 3, the formula that reflects a relationship between the sensor voltage and V4−V3 as a function of time t is - V=(V 4−V 3)(1−e (−t/RC)) (3)
- where t is the lapsed time that the circuit voltage is changing, and e is the base of natural logarithms, which is a constant that equals about 2.7183. Thus, the resistivity R of the
sensor element 312 may be deduced using formula (3). - Referring to FIG. 7, in another embodiment, the
sensing element 312 is connected to a detection circuit and aresistor 345 having a known resistance R2. In one embodiment, the detection circuit is a high-impedancevoltage measurement circuit 350. In this embodiment, in the measurement mode, thesensing element 312 is driven to the voltage V4 through theresistor 345, while the encapsulatedelectrophoretic display media 310 and thecommon electrode 320 are driven to the voltage V3. As discussed above, the formula that reflects a relationship between the voltage waveform V that appears at thesensing element 312 and its resistivity is: - V=(V 4−V 3)R 2/(R+R 2) (4)
- Thus, the resistivity R of each
sensing element 312 of the encapsulatedelectrophoretic display media 310 may be deduced using formula (4). - After the resistivity of the encapsulated electrophoretic display media has been measured, its ambient humidity can then be deduced based on the resisitivity value. As mentioned above, many encapsulated electrophoretic media, because they use hydrophilic wall materials such as gelatin, are sensitive to ambient humidity, depending on how well the medium is sealed. The correlation between the resistivity of the display and the ambient humidity therein is essentially empirical.
- Other environmental factors of the encapsulated electrophoretic display media, such as, for example, an ambient temperature, can be determined based on the resistivity value as well. Because the internal temperature of the display usually tracks the external temperature rather rapidly, with a lag time of a few minutes, in one embodiment of the invention, the ambient temperature is measured using an
external sensor 395, as shown in FIG. 3. In another embodiment, the internal temperature is measured using a thermocouple embedded in a display. Other environmental factors of the encapsulated electrophoretic display media, can be determined using an external sensors as well. - Referring to FIG. 8, in one embodiment, the encapsulated
electrophoretic display 300, whose parameters can be determined using the encapsulated electrophoretic display media itself as a sensor is used as part of aninput device 900, for example, a touch-screen display or a keypad. Theinput device 900 includes an encapsulatedelectrophoretic display media 310 and acommon electrode 320. Thecommon electrode 320 is formed from a conductive material capable of elastic deformation, such as indium tin oxide. Conductive polymers, such as polythiophene or polyaniline, can also be used. The encapsulatedelectrophoretic display media 310 includes a plurality ofpixels 905, each of which includes at least one individual encapsulated electrophoreticdisplay media element 312. Each pixel has apixel electrode 910 adjacent thereto. - Referring still to FIG. 8, the
input device 900 also includes asignal generator 920 for applying electrical signals to thecommon electrode 320 and each ofpixel electrodes 910. The electrical signal applied to the encapsulatedelectrophoretic display media 310 by thecommon electrode 320 and each ofpixel electrodes 910 may be either an alternating-current (AC) field, a direct-current (DC) field, or some combination of the two. Adetection circuit 930, such as one described above in connection with the embodiments illustrated in FIG. 6, is provided for periodically measuring an electrical characteristic of each of said plurality of pixels, generated in response to the applied electrical signal. - Referring still to FIG. 8, the
input device 900 also includes adiscriminator circuit 940 for detecting a change in the electrical characteristic of at least one pixel of the plurality of pixels. In its simplest form, the circuit which performs this function (the “discriminator circuit”) is a comparator. A measured electrical characteristic is compared to a previously measured value of this characteristic to detect a variation. Theinput device 900 also includes aresponse generator 950 in electrical communication with the discriminator circuit that is capable of identifying the pixel, whose electrical characteristic has changed since the previous measurement, and generating a response to this change. The discriminator circuit may be analog or digital. In one embodiment, the discriminator circuit includes a processor that analyzes the measured electrical response of the display element. In a further embodiment, the detection circuit, discriminator circuit, the response generator, and the signal generator are controlled by a processor. - Referring to FIG. 9, in operation, the
detection circuit 930 periodically measures the electrical properties of each of the pixels of encapsulatedelectrophoretic display media 310. When a user depresses a part of thecommon electrode 320 of the encapsulated electrophoretic display 300 (STEP 1020), certain electrical properties of the encapsulatedelectrophoretic display media 310 in the area adjacent to the depression in thecommon electrode 320, such as, for example, voltage, resistivity, or capacitance, change (STEP 1030). Thedetection circuit 930 takes new measurements of the electrical properties (STEP 1040). Thediscriminating circuit 940 compares the new measurements with previously obtained measurements and detects a change in electrical properties of the pixels adjacent to the depression in the common electrode 320 (STEP 1050). Theresponse generator 950 identifies one or more pixels whose electrical properties have changed and generates a response (STEP 1060). For example, the response generator may generate an output signal to be used by devices receiving input from theinput device 900. - While the invention has been particularly shown and described with reference to specific preferred embodiments, it should be understood by those skilled in the art that various changes in form and detail may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.
Claims (47)
1. A method for determining properties of encapsulated electrophoretic display media, comprising the steps of:
(a) providing encapsulated electrophoretic display media comprising a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid;
(b) providing a first electrode and a second electrode, said first and second electrodes adjacent to said plurality of capsules;
(c) applying a first electrical signal to said first electrode;
(d) applying a second electrical signal to said second electrode; and
(e) measuring a first electrical characteristic of said encapsulated electrophoretic display media, said first electrical characteristic generated in response to said applied first and second electrical signals.
2. The method of claim 1 , wherein step (e) comprises measuring a first electrical characteristic represented by a time constant.
3. The method of claim 1 , wherein step (e) comprises measuring a first electrical characteristic represented by a current.
4. The method of claim 1 , wherein step (e) comprises measuring a first electrical characteristic represented by voltage.
5. The method of claim 1 , wherein step (e) comprises measuring a first electrical characteristic represented by capacitance.
6. The method of claim 1 further comprising deducing a second electrical characteristic of said encapsulated electrophoretic display media based on said measured first electrical characteristic.
7. The method of claim 6 wherein said second electrical characteristic is resistivity of said encapsulated electrophoretic display media.
8. The method of claim 7 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
9. The method of claim 8 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
10. The method of claim 9 wherein one of said first and second environmental factors is temperature and the other is humidity.
11. A method for determining properties of encapsulated electrophoretic display media, comprising the steps of:
(a) providing encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid;
(b) providing a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(c) providing at least one measurement pixel of said plurality of pixels, said at least one measurement pixel having a measurement electrode adjacent thereto;
(d) applying a first electrical signal to said first electrode;
(e) applying a second electrical signal to said measurement electrode; and
(f) measuring a first electrical characteristic of said at least one measuring pixel, said first electrical characteristic generated in response to said applied first and second electrical signals.
12. The method of claim 11 , wherein step (f) comprises measuring a first electrical characteristic represented by a time constant.
13. The method of claim 11 , wherein step (f) comprises measuring a first electrical characteristic represented by a current.
14. The method of claim 11 , wherein step (f) comprises measuring a first electrical characteristic represented by voltage.
15. The method of claim 11 , wherein step (f) comprises measuring a first electrical characteristic represented by capacitance.
16. The method of claim 11 further comprising calculating an aggregate first electrical characteristic of said encapsulated electrophoretic display media using measured first electrical characteristics of each of said at least one measurement pixel.
17. The method of claim 11 further comprising deducing a second electrical characteristic of said at least one measurement pixel based on said measured first electrical characteristic.
18. The method of claim 17 , wherein said second electrical characteristic is resistivity of said at least one measurement pixel.
19. The method of claim 17 further comprising calculating an aggregate second electrical characteristic of said encapsulated electrophoretic display media using deduced second electrical characteristics of each of said at least one measurement pixel.
20. The method of claim 17 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
21. The method of claim 20 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
22. The method of claim 21 wherein on of said first and second environmental factors is temperature, and the other is humidity.
23. A method for detecting a change in an electrical characteristic of encapsulated electrophoretic display media, comprising the steps of:
(a) providing encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid;
(b) providing a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(c) providing at least one measurement pixel of said plurality of pixels, said at least one measurement pixel having a measurement electrode adjacent thereto;
(d) applying a first electrical signal to said first electrode;
(e) applying a second electrical signal to said measurement electrode;
(f) measuring a first electrical characteristic of said at least one measuring pixel, thereby obtaining a first value of said electrical characteristic; said first electrical characteristic generated in response to said applied first and second electrical signals;
(g) repeating steps (d)-(f), thereby obtaining a second value of said electrical characteristic; and
(h) comparing said first and second values of said electrical characteristic thereby detecting a change therein.
24. An apparatus for determining properties of encapsulated electrophoretic display media, said encapsulated electrophoretic display media comprising a plurality of capsules dispersed in a binder phase, wherein at least one of said plurality of capsules contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid, and two electrodes adjacent to said plurality of capsules; said apparatus comprising:
(a) a signal generator for applying electrical signals to said two electrodes; and
(b) a detection circuit for measuring a first electrical characteristic of said encapsulated electrophoretic display media generated in response to said electrical signals.
25. The apparatus of claim 24 , further comprising a processor for deducing a second electrical characteristic of said encapsulated electrophoretic display media based on said measured first electrical characteristic.
26. The apparatus of claim 25 wherein said second electrical characteristic is resistivity of said encapsulated electrophoretic display media.
27. The apparatus of claim 26 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
28. The apparatus of claim 27 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
29. The apparatus of claim 28 wherein one of said first and second environmental factors is temperature, and other is humidity.
30. The apparatus of claim 24 wherein said detection circuit comprises a capacitance bridge.
31. The apparatus of claim 24 wherein said detection circuit comprises a circuit capable of measuring time constants.
32. The apparatus of claim 24 wherein said detection circuit comprises a circuit capable of measuring frequency.
33. The apparatus of claim 24 wherein said detection circuit comprises a circuit capable of measuring voltage.
34. An electrophoretic display comprising encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid, and capable of determining properties of individual pixels, said electrophoretic display comprising:
(a) a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(b) at least one measurement pixel of said plurality of pixels, said at least one measurement pixel having a measurement electrode adjacent thereto;
(c) a signal generator for applying electrical signals to said first electrode and said measurement electrode; and
(d) a detection circuit for measuring a first electrical characteristic of said at least one measurement pixel, said first electrical characteristic generated in response to said applied electrical signals.
35. The electrophoretic display of claim 34 further comprising a processor for deducing a second electrical characteristic of said at least one measurement pixel based on said measured first electrical characteristic.
36. The electrophoretic display of claim 35 wherein said second electrical characteristic comprises resistivity of said at least one measurement pixel.
37. The electrophoretic display of claim 36 further comprising measuring a first environmental factor of said encapsulated electrophoretic display media using an external sensor.
38. The electrophoretic display of claim 37 further comprising determining a second environmental factor of said encapsulated electrophoretic display media based on said resistivity and said measured first environmental factor.
39. The electrophoretic display of claim 38 wherein one of said first and second environmental factors is temperature, and the other is humidity.
40. The electrophoretic display of claim 34 wherein said detection circuit comprises a capacitance bridge.
41. The electrophoretic display of claim 34 wherein said detection circuit comprises a circuit capable of measuring time constants.
42. The electrophoretic display of claim 34 wherein said detection circuit comprises a circuit capable of measuring frequency.
43. The electrophoretic display of claim 34 wherein said detection circuit comprises a circuit capable of measuring voltage.
44. An input device, comprising
(a) encapsulated electrophoretic display media, said encapsulated electrophoretic display media comprising a plurality of pixels, each pixel comprising at least one capsule dispersed in a binder phase, wherein said at least one capsule contains an electrophoretic contrast media phase that includes at least one particle and a suspending fluid, each pixel having a pixel electrode adjacent thereto;
(b) a first electrode, said first electrode common and adjacent to each of said plurality of pixels;
(c) a signal generator for applying electrical signals to said first electrode and each of said pixel electrodes;
(d) a detection circuit for measuring a first electrical characteristic of each of said plurality of pixels, said first electrical characteristic generated in response to said applied electrical signals;
(e) a discriminator circuit for detecting a change in said first electrical characteristic of at least one pixel of said plurality of pixels; and
(f) a response generator for generating a response to said change and identifying said at least one pixel.
45. The input device of claim 44 wherein said first electrical characteristic is a voltage or capacitance.
46. The input device of claim 44 , further comprising a processor for deducing a second electrical characteristic of said at least one pixel based on said measured first electrical characteristic.
47. The input device of claim 46 wherein said second electrical characteristic is resistivity.
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/277,527 US20030102858A1 (en) | 1998-07-08 | 2002-10-22 | Method and apparatus for determining properties of an electrophoretic display |
US10/649,370 US6995550B2 (en) | 1998-07-08 | 2003-08-27 | Method and apparatus for determining properties of an electrophoretic display |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9204698P | 1998-07-08 | 1998-07-08 | |
US09/349,808 US6512354B2 (en) | 1998-07-08 | 1999-07-08 | Method and apparatus for sensing the state of an electrophoretic display |
US10/277,527 US20030102858A1 (en) | 1998-07-08 | 2002-10-22 | Method and apparatus for determining properties of an electrophoretic display |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/349,808 Continuation-In-Part US6512354B2 (en) | 1998-07-08 | 1999-07-08 | Method and apparatus for sensing the state of an electrophoretic display |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/649,370 Continuation US6995550B2 (en) | 1998-07-08 | 2003-08-27 | Method and apparatus for determining properties of an electrophoretic display |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030102858A1 true US20030102858A1 (en) | 2003-06-05 |
Family
ID=26784816
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/277,527 Abandoned US20030102858A1 (en) | 1998-07-08 | 2002-10-22 | Method and apparatus for determining properties of an electrophoretic display |
US10/649,370 Expired - Fee Related US6995550B2 (en) | 1998-07-08 | 2003-08-27 | Method and apparatus for determining properties of an electrophoretic display |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/649,370 Expired - Fee Related US6995550B2 (en) | 1998-07-08 | 2003-08-27 | Method and apparatus for determining properties of an electrophoretic display |
Country Status (1)
Country | Link |
---|---|
US (2) | US20030102858A1 (en) |
Cited By (234)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020131147A1 (en) * | 1998-08-27 | 2002-09-19 | Paolini Richard J. | Electrophoretic medium and process for the production thereof |
US20030214695A1 (en) * | 2002-03-18 | 2003-11-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20040014265A1 (en) * | 2002-04-24 | 2004-01-22 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US20040105036A1 (en) * | 2002-08-06 | 2004-06-03 | E Ink Corporation | Protection of electro-optic displays against thermal effects |
US20040196215A1 (en) * | 2002-12-16 | 2004-10-07 | E Ink Corporation | Backplanes for electro-optic displays |
US20040226820A1 (en) * | 2003-03-25 | 2004-11-18 | E Ink Corporation | Processes for the production of electrophoretic displays |
US20040233509A1 (en) * | 2002-12-23 | 2004-11-25 | E Ink Corporation | Flexible electro-optic displays |
US20040252360A1 (en) * | 2001-07-09 | 2004-12-16 | E Ink Corporation | Electro-optic display and lamination adhesive for use therein |
US20040257635A1 (en) * | 2003-01-31 | 2004-12-23 | E Ink Corporation | Construction of electrophoretic displays |
US20050007653A1 (en) * | 2003-03-27 | 2005-01-13 | E Ink Corporation | Electro-optic assemblies, and materials for use therein |
US20050012980A1 (en) * | 2003-05-02 | 2005-01-20 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US20050062714A1 (en) * | 2003-09-19 | 2005-03-24 | E Ink Corporation | Methods for reducing edge effects in electro-optic displays |
US20050078099A1 (en) * | 2002-04-24 | 2005-04-14 | E Ink Corporation | Electro-optic displays, and components for use therein |
US20050105162A1 (en) * | 2001-03-19 | 2005-05-19 | Paolini Richard J.Jr. | Electrophoretic medium and process for the production thereof |
US20050122565A1 (en) * | 2003-11-05 | 2005-06-09 | E Ink Corporation | Electro-optic displays, and materials for use therein |
WO2005054933A2 (en) | 2003-11-26 | 2005-06-16 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US20050152022A1 (en) * | 2003-12-31 | 2005-07-14 | E Ink Corporation | Electro-optic displays, and method for driving same |
US20050151709A1 (en) * | 2003-10-08 | 2005-07-14 | E Ink Corporation | Electro-wetting displays |
US20050168801A1 (en) * | 2004-01-16 | 2005-08-04 | E Ink Corporation | Process for sealing electro-optic displays |
US20050213191A1 (en) * | 2004-03-23 | 2005-09-29 | E Ink Corporation | Light modulators |
US6958848B2 (en) | 2002-05-23 | 2005-10-25 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US20050270261A1 (en) * | 1999-04-30 | 2005-12-08 | Danner Guy M | Methods for driving electro-optic displays, and apparatus for use therein |
US6982178B2 (en) | 2002-06-10 | 2006-01-03 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20060023296A1 (en) * | 2004-07-27 | 2006-02-02 | E Ink Corporation | Electro-optic displays |
US7002728B2 (en) | 1997-08-28 | 2006-02-21 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US7012600B2 (en) | 1999-04-30 | 2006-03-14 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7034783B2 (en) | 2003-08-19 | 2006-04-25 | E Ink Corporation | Method for controlling electro-optic display |
US20060176267A1 (en) * | 2003-07-24 | 2006-08-10 | E Ink Corporation | Improvements in electro-optic displays |
US7110164B2 (en) | 2002-06-10 | 2006-09-19 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US20060209388A1 (en) * | 2005-01-26 | 2006-09-21 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US7116318B2 (en) | 2002-04-24 | 2006-10-03 | E Ink Corporation | Backplanes for display applications, and components for use therein |
US7119759B2 (en) | 1999-05-03 | 2006-10-10 | E Ink Corporation | Machine-readable displays |
US7119772B2 (en) | 1999-04-30 | 2006-10-10 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20070013683A1 (en) * | 2003-10-03 | 2007-01-18 | Koninkijkle Phillips Electronics N.V. | Electrophoretic display unit |
US20070091417A1 (en) * | 2005-10-25 | 2007-04-26 | E Ink Corporation | Electrophoretic media and displays with improved binder |
US7230750B2 (en) | 2001-05-15 | 2007-06-12 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
US7247379B2 (en) | 1997-08-28 | 2007-07-24 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US7259744B2 (en) | 1995-07-20 | 2007-08-21 | E Ink Corporation | Dielectrophoretic displays |
WO2007104003A2 (en) | 2006-03-08 | 2007-09-13 | E Ink Corporation | Methods for production of electro-optic displays |
US7312916B2 (en) | 2002-08-07 | 2007-12-25 | E Ink Corporation | Electrophoretic media containing specularly reflective particles |
CN100381996C (en) * | 2004-11-09 | 2008-04-16 | 夏普株式会社 | An apparatus for measuring capacitance and sensor array |
US20080129667A1 (en) * | 2004-03-31 | 2008-06-05 | E Ink Corporation | Methods for driving electro-optic displays |
US7388572B2 (en) | 2004-02-27 | 2008-06-17 | E Ink Corporation | Backplanes for electro-optic displays |
US20080169821A1 (en) * | 2006-04-07 | 2008-07-17 | Wanheng Wang | Inspection methods for defects in electrophoretic display and related devices |
US7411719B2 (en) | 1995-07-20 | 2008-08-12 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US20080254272A1 (en) * | 2007-01-22 | 2008-10-16 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7453445B2 (en) | 2004-08-13 | 2008-11-18 | E Ink Corproation | Methods for driving electro-optic displays |
US7477444B2 (en) | 2006-09-22 | 2009-01-13 | E Ink Corporation & Air Products And Chemical, Inc. | Electro-optic display and materials for use therein |
US7492339B2 (en) | 2004-03-26 | 2009-02-17 | E Ink Corporation | Methods for driving bistable electro-optic displays |
US7492497B2 (en) | 2006-08-02 | 2009-02-17 | E Ink Corporation | Multi-layer light modulator |
US7528822B2 (en) | 2001-11-20 | 2009-05-05 | E Ink Corporation | Methods for driving electro-optic displays |
US7535624B2 (en) | 2001-07-09 | 2009-05-19 | E Ink Corporation | Electro-optic display and materials for use therein |
US7551346B2 (en) | 2003-11-05 | 2009-06-23 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7554712B2 (en) | 2005-06-23 | 2009-06-30 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US7561324B2 (en) | 2002-09-03 | 2009-07-14 | E Ink Corporation | Electro-optic displays |
US20090201034A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US20090204350A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomms Technologies, Inc, | Methods for measurement and characterization of interferometric modulators |
US20090201242A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Sensing to determine pixel state in a passively addressed display array |
US20090201282A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc | Methods of tuning interferometric modulator displays |
US20090213107A1 (en) * | 2008-02-11 | 2009-08-27 | Qualcomm Mems Technologies, Inc, | Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same |
US7583427B2 (en) | 2002-06-10 | 2009-09-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7583251B2 (en) | 1995-07-20 | 2009-09-01 | E Ink Corporation | Dielectrophoretic displays |
US7649674B2 (en) | 2002-06-10 | 2010-01-19 | E Ink Corporation | Electro-optic display with edge seal |
US7649666B2 (en) | 2006-12-07 | 2010-01-19 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7667886B2 (en) | 2007-01-22 | 2010-02-23 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7672040B2 (en) | 2003-11-05 | 2010-03-02 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7679814B2 (en) | 2001-04-02 | 2010-03-16 | E Ink Corporation | Materials for use in electrophoretic displays |
US7826129B2 (en) | 2007-03-06 | 2010-11-02 | E Ink Corporation | Materials for use in electrophoretic displays |
US7839564B2 (en) | 2002-09-03 | 2010-11-23 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7843624B2 (en) | 2006-03-08 | 2010-11-30 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7843621B2 (en) | 2002-06-10 | 2010-11-30 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US7848006B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US7893435B2 (en) | 2000-04-18 | 2011-02-22 | E Ink Corporation | Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough |
US7903319B2 (en) | 2006-07-11 | 2011-03-08 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US7910175B2 (en) | 2003-03-25 | 2011-03-22 | E Ink Corporation | Processes for the production of electrophoretic displays |
US7952557B2 (en) | 2001-11-20 | 2011-05-31 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US7952790B2 (en) | 2006-03-22 | 2011-05-31 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US7986450B2 (en) | 2006-09-22 | 2011-07-26 | E Ink Corporation | Electro-optic display and materials for use therein |
US7999787B2 (en) | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US8009348B2 (en) | 1999-05-03 | 2011-08-30 | E Ink Corporation | Machine-readable displays |
US8018640B2 (en) | 2006-07-13 | 2011-09-13 | E Ink Corporation | Particles for use in electrophoretic displays |
US8027800B2 (en) | 2008-06-24 | 2011-09-27 | Qualcomm Mems Technologies, Inc. | Apparatus and method for testing a panel of interferometric modulators |
US8034209B2 (en) | 2007-06-29 | 2011-10-11 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8040594B2 (en) | 1997-08-28 | 2011-10-18 | E Ink Corporation | Multi-color electrophoretic displays |
US8049947B2 (en) | 2002-06-10 | 2011-11-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8054526B2 (en) | 2008-03-21 | 2011-11-08 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
US8098418B2 (en) | 2009-03-03 | 2012-01-17 | E. Ink Corporation | Electro-optic displays, and color filters for use therein |
US8115729B2 (en) | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
US8125501B2 (en) | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US8129655B2 (en) | 2002-09-03 | 2012-03-06 | E Ink Corporation | Electrophoretic medium with gaseous suspending fluid |
US8139050B2 (en) | 1995-07-20 | 2012-03-20 | E Ink Corporation | Addressing schemes for electronic displays |
US20120087389A1 (en) * | 2010-10-07 | 2012-04-12 | Raytheon Company | System and Method for Detecting the Temperature of an Electrophoretic Display Device |
US8174490B2 (en) | 2003-06-30 | 2012-05-08 | E Ink Corporation | Methods for driving electrophoretic displays |
US8177942B2 (en) | 2003-11-05 | 2012-05-15 | E Ink Corporation | Electro-optic displays, and materials for use therein |
EP2487540A1 (en) | 2006-09-18 | 2012-08-15 | E-Ink Corporation | Color electro-optic displays |
US8270064B2 (en) | 2009-02-09 | 2012-09-18 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US8314784B2 (en) | 2008-04-11 | 2012-11-20 | E Ink Corporation | Methods for driving electro-optic displays |
US8319759B2 (en) | 2003-10-08 | 2012-11-27 | E Ink Corporation | Electrowetting displays |
US8363299B2 (en) | 2002-06-10 | 2013-01-29 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
EP2555182A1 (en) | 2007-02-02 | 2013-02-06 | E Ink Corporation | Electrophoretic displays having transparent electrode and conductor connected thereto |
US8390918B2 (en) | 2001-04-02 | 2013-03-05 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US8390301B2 (en) | 2006-03-08 | 2013-03-05 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8446664B2 (en) | 2010-04-02 | 2013-05-21 | E Ink Corporation | Electrophoretic media, and materials for use therein |
WO2013074167A1 (en) | 2011-11-18 | 2013-05-23 | Avon Products, Inc. | Use of electrophoretic microcapsules in a cosmetic composition |
US8553012B2 (en) | 2001-03-13 | 2013-10-08 | E Ink Corporation | Apparatus for displaying drawings |
US8558783B2 (en) | 2001-11-20 | 2013-10-15 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US8593396B2 (en) | 2001-11-20 | 2013-11-26 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US8610988B2 (en) | 2006-03-09 | 2013-12-17 | E Ink Corporation | Electro-optic display with edge seal |
US8654436B1 (en) | 2009-10-30 | 2014-02-18 | E Ink Corporation | Particles for use in electrophoretic displays |
EP2711770A2 (en) | 2005-10-18 | 2014-03-26 | E Ink Corporation | Components for electro-optic displays |
WO2014078616A1 (en) | 2012-11-16 | 2014-05-22 | E Ink Corporation | Active matrix display with dual driving modes |
WO2014134504A1 (en) | 2013-03-01 | 2014-09-04 | E Ink Corporation | Methods for driving electro-optic displays |
US8902153B2 (en) | 2007-08-03 | 2014-12-02 | E Ink Corporation | Electro-optic displays, and processes for their production |
US8928562B2 (en) | 2003-11-25 | 2015-01-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2015017503A1 (en) | 2013-07-30 | 2015-02-05 | E Ink Corporation | Methods for driving electro-optic displays |
WO2015017624A1 (en) | 2013-07-31 | 2015-02-05 | E Ink Corporation | Methods for driving electro-optic displays |
US9005494B2 (en) | 2004-01-20 | 2015-04-14 | E Ink Corporation | Preparation of capsules |
US9170467B2 (en) | 2005-10-18 | 2015-10-27 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
EP2947647A2 (en) | 2003-06-30 | 2015-11-25 | E Ink Corporation | Methods for driving electro-optic displays |
US9199441B2 (en) | 2007-06-28 | 2015-12-01 | E Ink Corporation | Processes for the production of electro-optic displays, and color filters for use therein |
US9230492B2 (en) | 2003-03-31 | 2016-01-05 | E Ink Corporation | Methods for driving electro-optic displays |
US9293511B2 (en) | 1998-07-08 | 2016-03-22 | E Ink Corporation | Methods for achieving improved color in microencapsulated electrophoretic devices |
US9412314B2 (en) | 2001-11-20 | 2016-08-09 | E Ink Corporation | Methods for driving electro-optic displays |
US9470950B2 (en) | 2002-06-10 | 2016-10-18 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
WO2016191673A1 (en) | 2015-05-27 | 2016-12-01 | E Ink Corporation | Methods and circuitry for driving display devices |
US9513743B2 (en) | 2012-06-01 | 2016-12-06 | E Ink Corporation | Methods for driving electro-optic displays |
US9530363B2 (en) | 2001-11-20 | 2016-12-27 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US9529240B2 (en) | 2014-01-17 | 2016-12-27 | E Ink Corporation | Controlled polymeric material conductivity for use in a two-phase electrode layer |
WO2017049020A1 (en) | 2015-09-16 | 2017-03-23 | E Ink Corporation | Apparatus and methods for driving displays |
US9620066B2 (en) | 2010-02-02 | 2017-04-11 | E Ink Corporation | Method for driving electro-optic displays |
WO2017062345A1 (en) | 2015-10-06 | 2017-04-13 | E Ink Corporation | Improved low-temperature electrophoretic media |
US9664978B2 (en) | 2002-10-16 | 2017-05-30 | E Ink Corporation | Electrophoretic displays |
US9672766B2 (en) | 2003-03-31 | 2017-06-06 | E Ink Corporation | Methods for driving electro-optic displays |
US9697778B2 (en) | 2013-05-14 | 2017-07-04 | E Ink Corporation | Reverse driving pulses in electrophoretic displays |
US9721495B2 (en) | 2013-02-27 | 2017-08-01 | E Ink Corporation | Methods for driving electro-optic displays |
WO2017139323A1 (en) | 2016-02-08 | 2017-08-17 | E Ink Corporation | Methods and apparatus for operating an electro-optic display in white mode |
US9752034B2 (en) | 2015-11-11 | 2017-09-05 | E Ink Corporation | Functionalized quinacridone pigments |
EP3220383A1 (en) | 2012-02-01 | 2017-09-20 | E Ink Corporation | Methods for driving electro-optic displays |
US20170292933A1 (en) * | 2015-07-31 | 2017-10-12 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US9921451B2 (en) | 2014-09-10 | 2018-03-20 | E Ink Corporation | Colored electrophoretic displays |
US9928810B2 (en) | 2015-01-30 | 2018-03-27 | E Ink Corporation | Font control for electro-optic displays and related apparatus and methods |
US9966018B2 (en) | 2002-06-13 | 2018-05-08 | E Ink Corporation | Methods for driving electro-optic displays |
US9964831B2 (en) | 2007-11-14 | 2018-05-08 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
US10040954B2 (en) | 2015-05-28 | 2018-08-07 | E Ink California, Llc | Electrophoretic medium comprising a mixture of charge control agents |
US10048564B2 (en) | 2003-11-05 | 2018-08-14 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US10062337B2 (en) | 2015-10-12 | 2018-08-28 | E Ink California, Llc | Electrophoretic display device |
WO2018160912A1 (en) | 2017-03-03 | 2018-09-07 | E Ink Corporation | Electro-optic displays and driving methods |
WO2018164942A1 (en) | 2017-03-06 | 2018-09-13 | E Ink Corporation | Method for rendering color images |
US10115354B2 (en) | 2009-09-15 | 2018-10-30 | E Ink California, Llc | Display controller system |
US10163406B2 (en) | 2015-02-04 | 2018-12-25 | E Ink Corporation | Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods |
US10175550B2 (en) | 2014-11-07 | 2019-01-08 | E Ink Corporation | Applications of electro-optic displays |
US10197883B2 (en) | 2015-01-05 | 2019-02-05 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20190043397A1 (en) * | 2015-07-31 | 2019-02-07 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US10270939B2 (en) | 2016-05-24 | 2019-04-23 | E Ink Corporation | Method for rendering color images |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US10282033B2 (en) | 2012-06-01 | 2019-05-07 | E Ink Corporation | Methods for updating electro-optic displays when drawing or writing on the display |
US10319313B2 (en) | 2007-05-21 | 2019-06-11 | E Ink Corporation | Methods for driving video electro-optic displays |
WO2019126623A1 (en) | 2017-12-22 | 2019-06-27 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10353266B2 (en) | 2014-09-26 | 2019-07-16 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays |
WO2019144097A1 (en) | 2018-01-22 | 2019-07-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10380931B2 (en) | 2013-10-07 | 2019-08-13 | E Ink California, Llc | Driving methods for color display device |
US10388233B2 (en) | 2015-08-31 | 2019-08-20 | E Ink Corporation | Devices and techniques for electronically erasing a drawing device |
US10444592B2 (en) | 2017-03-09 | 2019-10-15 | E Ink Corporation | Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays |
US10475396B2 (en) | 2015-02-04 | 2019-11-12 | E Ink Corporation | Electro-optic displays with reduced remnant voltage, and related apparatus and methods |
US10527899B2 (en) | 2016-05-31 | 2020-01-07 | E Ink Corporation | Backplanes for electro-optic displays |
WO2020018508A1 (en) | 2018-07-17 | 2020-01-23 | E Ink California, Llc | Electro-optic displays and driving methods |
WO2020033787A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
WO2020033175A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US10573222B2 (en) | 2015-01-05 | 2020-02-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
WO2020060960A1 (en) | 2018-09-17 | 2020-03-26 | E Ink Corporation | Backplanes with hexagonal and triangular electrodes |
US10657869B2 (en) | 2014-09-10 | 2020-05-19 | E Ink Corporation | Methods for driving color electrophoretic displays |
US10726760B2 (en) | 2013-10-07 | 2020-07-28 | E Ink California, Llc | Driving methods to produce a mixed color state for an electrophoretic display |
US10726798B2 (en) | 2003-03-31 | 2020-07-28 | E Ink Corporation | Methods for operating electro-optic displays |
US10795233B2 (en) | 2015-11-18 | 2020-10-06 | E Ink Corporation | Electro-optic displays |
US10796623B2 (en) | 2015-04-27 | 2020-10-06 | E Ink Corporation | Methods and apparatuses for driving display systems |
US10803813B2 (en) | 2015-09-16 | 2020-10-13 | E Ink Corporation | Apparatus and methods for driving displays |
US10832622B2 (en) | 2017-04-04 | 2020-11-10 | E Ink Corporation | Methods for driving electro-optic displays |
WO2020231733A1 (en) | 2019-05-10 | 2020-11-19 | E Ink Corporation | Colored electrophoretic displays |
US10882042B2 (en) | 2017-10-18 | 2021-01-05 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
EP3563146A4 (en) * | 2016-12-28 | 2021-05-05 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US11004409B2 (en) | 2013-10-07 | 2021-05-11 | E Ink California, Llc | Driving methods for color display device |
US11030936B2 (en) | 2012-02-01 | 2021-06-08 | E Ink Corporation | Methods and apparatus for operating an electro-optic display in white mode |
US11062663B2 (en) | 2018-11-30 | 2021-07-13 | E Ink California, Llc | Electro-optic displays and driving methods |
US11087644B2 (en) | 2015-08-19 | 2021-08-10 | E Ink Corporation | Displays intended for use in architectural applications |
US11205108B2 (en) * | 2015-07-31 | 2021-12-21 | Chromera, Inc. | Symbol verification for an intelligent label device |
US11250794B2 (en) | 2004-07-27 | 2022-02-15 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US11257445B2 (en) | 2019-11-18 | 2022-02-22 | E Ink Corporation | Methods for driving electro-optic displays |
US11289036B2 (en) | 2019-11-14 | 2022-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11314098B2 (en) | 2018-08-10 | 2022-04-26 | E Ink California, Llc | Switchable light-collimating layer with reflector |
WO2022094443A1 (en) | 2020-11-02 | 2022-05-05 | E Ink Corporation | Method and apparatus for rendering color images |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US11410585B2 (en) * | 2015-12-04 | 2022-08-09 | Chromera, Inc. | Optically determining messages on a display |
US11423852B2 (en) | 2017-09-12 | 2022-08-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
US11450262B2 (en) | 2020-10-01 | 2022-09-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11511096B2 (en) | 2018-10-15 | 2022-11-29 | E Ink Corporation | Digital microfluidic delivery device |
US11520202B2 (en) | 2020-06-11 | 2022-12-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11568786B2 (en) | 2020-05-31 | 2023-01-31 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11620959B2 (en) | 2020-11-02 | 2023-04-04 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11657774B2 (en) | 2015-09-16 | 2023-05-23 | E Ink Corporation | Apparatus and methods for driving displays |
US11686989B2 (en) | 2020-09-15 | 2023-06-27 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
WO2023122142A1 (en) | 2021-12-22 | 2023-06-29 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023129533A1 (en) | 2021-12-27 | 2023-07-06 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
WO2023129692A1 (en) | 2021-12-30 | 2023-07-06 | E Ink California, Llc | Methods for driving electro-optic displays |
WO2023132958A1 (en) | 2022-01-04 | 2023-07-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
US11721295B2 (en) | 2017-09-12 | 2023-08-08 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11733580B2 (en) | 2010-05-21 | 2023-08-22 | E Ink Corporation | Method for driving two layer variable transmission display |
WO2023164078A1 (en) | 2022-02-25 | 2023-08-31 | E Ink Corporation | Electro-optic displays with edge seal components and methods of making the same |
US11756494B2 (en) | 2020-11-02 | 2023-09-12 | E Ink Corporation | Driving sequences to remove prior state information from color electrophoretic displays |
US11776496B2 (en) | 2020-09-15 | 2023-10-03 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
WO2023211867A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Color displays configured to convert rgb image data for display on advanced color electronic paper |
WO2023211699A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Electro-optic display stacks with segmented electrodes and methods of making the same |
US11830448B2 (en) | 2021-11-04 | 2023-11-28 | E Ink Corporation | Methods for driving electro-optic displays |
US11846863B2 (en) | 2020-09-15 | 2023-12-19 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11869451B2 (en) | 2021-11-05 | 2024-01-09 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
WO2024044119A1 (en) | 2022-08-25 | 2024-02-29 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
US11922893B2 (en) | 2021-12-22 | 2024-03-05 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
US11935495B2 (en) | 2021-08-18 | 2024-03-19 | E Ink Corporation | Methods for driving electro-optic displays |
WO2024091547A1 (en) | 2022-10-25 | 2024-05-02 | E Ink Corporation | Methods for driving electro-optic displays |
US12027129B2 (en) | 2020-08-31 | 2024-07-02 | E Ink Corporation | Electro-optic displays and driving methods |
WO2024158855A1 (en) | 2023-01-27 | 2024-08-02 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
WO2024182264A1 (en) | 2023-02-28 | 2024-09-06 | E Ink Corporation | Drive scheme for improved color gamut in color electrophoretic displays |
WO2024206187A1 (en) | 2023-03-24 | 2024-10-03 | E Ink Corporation | Methods for driving electro-optic displays |
US12125449B2 (en) | 2021-02-09 | 2024-10-22 | E Ink Corporation | Continuous waveform driving in multi-color electrophoretic displays |
WO2024253934A1 (en) | 2023-06-05 | 2024-12-12 | E Ink Corporation | Color electrophoretic medium having four pigment particle system addressable by waveforms having four voltage levels |
US12181767B2 (en) | 2020-09-15 | 2024-12-31 | E Ink Corporation | Five-particle electrophoretic medium with improved black optical state |
WO2025006476A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Multi-particle electrophoretic display having low-flash image updates |
WO2025006130A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Electrophoretic device with ambient light sensor and adaptive whiteness restoring and color balancing frontlight |
WO2025006440A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Time-shifted waveforms for multi-particle electrophoretic displays providing low-flash image updates |
US12190730B2 (en) | 2022-02-28 | 2025-01-07 | E Ink Corporation | Parking space management system |
WO2025034396A1 (en) | 2023-08-08 | 2025-02-13 | E Ink Corporation | Backplanes for segmented electro-optic displays and methods of manufacturing same |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20090009852A1 (en) * | 2001-05-15 | 2009-01-08 | E Ink Corporation | Electrophoretic particles and processes for the production thereof |
US20110199671A1 (en) * | 2002-06-13 | 2011-08-18 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US20050219224A1 (en) * | 2004-03-31 | 2005-10-06 | Frank Liebenow | Electronic ink digitizer |
US20050253777A1 (en) * | 2004-05-12 | 2005-11-17 | E Ink Corporation | Tiled displays and methods for driving same |
US8643595B2 (en) * | 2004-10-25 | 2014-02-04 | Sipix Imaging, Inc. | Electrophoretic display driving approaches |
US20080024429A1 (en) * | 2006-07-25 | 2008-01-31 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US8274472B1 (en) | 2007-03-12 | 2012-09-25 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US8243013B1 (en) | 2007-05-03 | 2012-08-14 | Sipix Imaging, Inc. | Driving bistable displays |
US20080303780A1 (en) | 2007-06-07 | 2008-12-11 | Sipix Imaging, Inc. | Driving methods and circuit for bi-stable displays |
US9224342B2 (en) * | 2007-10-12 | 2015-12-29 | E Ink California, Llc | Approach to adjust driving waveforms for a display device |
US8373649B2 (en) * | 2008-04-11 | 2013-02-12 | Seiko Epson Corporation | Time-overlapping partial-panel updating of a bistable electro-optic display |
US8462102B2 (en) * | 2008-04-25 | 2013-06-11 | Sipix Imaging, Inc. | Driving methods for bistable displays |
US8558855B2 (en) * | 2008-10-24 | 2013-10-15 | Sipix Imaging, Inc. | Driving methods for electrophoretic displays |
US9019318B2 (en) * | 2008-10-24 | 2015-04-28 | E Ink California, Llc | Driving methods for electrophoretic displays employing grey level waveforms |
TW201022653A (en) * | 2008-12-10 | 2010-06-16 | Ind Tech Res Inst | Inspection method and system for display |
CN101762921B (en) * | 2008-12-23 | 2012-01-18 | 财团法人工业技术研究院 | Display detection method and system thereof |
US20100194733A1 (en) * | 2009-01-30 | 2010-08-05 | Craig Lin | Multiple voltage level driving for electrophoretic displays |
US9251736B2 (en) | 2009-01-30 | 2016-02-02 | E Ink California, Llc | Multiple voltage level driving for electrophoretic displays |
US20100194789A1 (en) * | 2009-01-30 | 2010-08-05 | Craig Lin | Partial image update for electrophoretic displays |
US9460666B2 (en) * | 2009-05-11 | 2016-10-04 | E Ink California, Llc | Driving methods and waveforms for electrophoretic displays |
US8576164B2 (en) | 2009-10-26 | 2013-11-05 | Sipix Imaging, Inc. | Spatially combined waveforms for electrophoretic displays |
US11049463B2 (en) * | 2010-01-15 | 2021-06-29 | E Ink California, Llc | Driving methods with variable frame time |
US8558786B2 (en) * | 2010-01-20 | 2013-10-15 | Sipix Imaging, Inc. | Driving methods for electrophoretic displays |
US9224338B2 (en) * | 2010-03-08 | 2015-12-29 | E Ink California, Llc | Driving methods for electrophoretic displays |
US8860658B2 (en) * | 2010-05-17 | 2014-10-14 | Creator Technology B.V. | Electrophoretic display unit and method for driving an electrophoretic display panel |
US9013394B2 (en) | 2010-06-04 | 2015-04-21 | E Ink California, Llc | Driving method for electrophoretic displays |
US10831317B2 (en) * | 2010-08-20 | 2020-11-10 | Neodrón Limited | Electronic ink touch sensitive display |
TWI598672B (en) | 2010-11-11 | 2017-09-11 | 希畢克斯幻像有限公司 | Driving method for electrophoretic displays |
US9244559B2 (en) | 2012-12-14 | 2016-01-26 | Atmel Corporation | Integrated pixel display and touch sensor |
GB2523110A (en) * | 2014-02-12 | 2015-08-19 | Intelligent Energy Ltd | Fuel source, fuel cell system and associated method |
EP4260312A4 (en) | 2020-12-08 | 2024-09-11 | E Ink Corporation | METHODS FOR DRIVING ELECTRO-OPTIC DISPLAY DEVICES |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3585381A (en) * | 1969-04-14 | 1971-06-15 | Ncr Co | Encapsulated cholesteric liquid crystal display device |
JPS4917079B1 (en) * | 1970-12-21 | 1974-04-26 | ||
GB1458045A (en) * | 1973-08-15 | 1976-12-08 | Secr Defence | Display systems |
US4218302A (en) * | 1979-08-02 | 1980-08-19 | U.S. Philips Corporation | Electrophoretic display devices |
US4789858A (en) * | 1984-06-12 | 1988-12-06 | Taliq Corporation | Multifunction switch incorporating NCAP liquid crystal |
US5194852A (en) * | 1986-12-01 | 1993-03-16 | More Edward S | Electro-optic slate for direct entry and display and/or storage of hand-entered textual and graphic information |
US5154617A (en) * | 1989-05-09 | 1992-10-13 | Prince Corporation | Modular vehicle electronic system |
US5174882A (en) * | 1991-11-25 | 1992-12-29 | Copytele, Inc. | Electrode structure for an electrophoretic display apparatus |
CA2169169A1 (en) * | 1993-09-09 | 1995-03-16 | Christopher A. Laspina | Electrophoretic display panel with selective character addressability |
JPH0916116A (en) | 1995-06-26 | 1997-01-17 | Nok Corp | Electrophoretic display device |
US6118426A (en) * | 1995-07-20 | 2000-09-12 | E Ink Corporation | Transducers and indicators having printed displays |
US6262706B1 (en) * | 1995-07-20 | 2001-07-17 | E Ink Corporation | Retroreflective electrophoretic displays and materials for making the same |
US6120588A (en) * | 1996-07-19 | 2000-09-19 | E Ink Corporation | Electronically addressable microencapsulated ink and display thereof |
US6515649B1 (en) * | 1995-07-20 | 2003-02-04 | E Ink Corporation | Suspended particle displays and materials for making the same |
US6120839A (en) * | 1995-07-20 | 2000-09-19 | E Ink Corporation | Electro-osmotic displays and materials for making the same |
US6017584A (en) * | 1995-07-20 | 2000-01-25 | E Ink Corporation | Multi-color electrophoretic displays and materials for making the same |
JP3991367B2 (en) | 1995-12-28 | 2007-10-17 | セイコーエプソン株式会社 | Electrophoresis device |
US6538801B2 (en) * | 1996-07-19 | 2003-03-25 | E Ink Corporation | Electrophoretic displays using nanoparticles |
US5930026A (en) * | 1996-10-25 | 1999-07-27 | Massachusetts Institute Of Technology | Nonemissive displays and piezoelectric power supplies therefor |
US5961804A (en) * | 1997-03-18 | 1999-10-05 | Massachusetts Institute Of Technology | Microencapsulated electrophoretic display |
US5866284A (en) * | 1997-05-28 | 1999-02-02 | Hewlett-Packard Company | Print method and apparatus for re-writable medium |
US6300932B1 (en) * | 1997-08-28 | 2001-10-09 | E Ink Corporation | Electrophoretic displays with luminescent particles and materials for making the same |
US6067185A (en) * | 1997-08-28 | 2000-05-23 | E Ink Corporation | Process for creating an encapsulated electrophoretic display |
US6445489B1 (en) * | 1998-03-18 | 2002-09-03 | E Ink Corporation | Electrophoretic displays and systems for addressing such displays |
US6518949B2 (en) * | 1998-04-10 | 2003-02-11 | E Ink Corporation | Electronic displays using organic-based field effect transistors |
AU3987299A (en) * | 1998-05-12 | 1999-11-29 | E-Ink Corporation | Microencapsulated electrophoretic electrostatically-addressed media for drawing device applications |
US6512354B2 (en) * | 1998-07-08 | 2003-01-28 | E Ink Corporation | Method and apparatus for sensing the state of an electrophoretic display |
AU6293499A (en) * | 1998-10-07 | 2000-04-26 | E-Ink Corporation | Capsules for electrophoretic displays and methods for making the same |
US6051957A (en) * | 1998-10-21 | 2000-04-18 | Duracell Inc. | Battery pack having a state of charge indicator |
US6504524B1 (en) * | 2000-03-08 | 2003-01-07 | E Ink Corporation | Addressing methods for displays having zero time-average field |
US6531997B1 (en) * | 1999-04-30 | 2003-03-11 | E Ink Corporation | Methods for addressing electrophoretic displays |
US6392786B1 (en) * | 1999-07-01 | 2002-05-21 | E Ink Corporation | Electrophoretic medium provided with spacers |
US6608399B2 (en) * | 2000-10-17 | 2003-08-19 | Lear Corporation | Vehicle universal docking station and electronic feature modules |
JP4211312B2 (en) * | 2001-08-20 | 2009-01-21 | セイコーエプソン株式会社 | Electrophoresis device, electrophoretic device driving method, electrophoretic device driving circuit, and electronic apparatus |
-
2002
- 2002-10-22 US US10/277,527 patent/US20030102858A1/en not_active Abandoned
-
2003
- 2003-08-27 US US10/649,370 patent/US6995550B2/en not_active Expired - Fee Related
Cited By (483)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8139050B2 (en) | 1995-07-20 | 2012-03-20 | E Ink Corporation | Addressing schemes for electronic displays |
US7848006B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US7259744B2 (en) | 1995-07-20 | 2007-08-21 | E Ink Corporation | Dielectrophoretic displays |
US8305341B2 (en) | 1995-07-20 | 2012-11-06 | E Ink Corporation | Dielectrophoretic displays |
US7583251B2 (en) | 1995-07-20 | 2009-09-01 | E Ink Corporation | Dielectrophoretic displays |
US7411719B2 (en) | 1995-07-20 | 2008-08-12 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7848007B2 (en) | 1995-07-20 | 2010-12-07 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US7999787B2 (en) | 1995-07-20 | 2011-08-16 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US8040594B2 (en) | 1997-08-28 | 2011-10-18 | E Ink Corporation | Multi-color electrophoretic displays |
US7247379B2 (en) | 1997-08-28 | 2007-07-24 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US7002728B2 (en) | 1997-08-28 | 2006-02-21 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US9268191B2 (en) | 1997-08-28 | 2016-02-23 | E Ink Corporation | Multi-color electrophoretic displays |
US8441714B2 (en) | 1997-08-28 | 2013-05-14 | E Ink Corporation | Multi-color electrophoretic displays |
US9293511B2 (en) | 1998-07-08 | 2016-03-22 | E Ink Corporation | Methods for achieving improved color in microencapsulated electrophoretic devices |
US6866760B2 (en) | 1998-08-27 | 2005-03-15 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US20020131147A1 (en) * | 1998-08-27 | 2002-09-19 | Paolini Richard J. | Electrophoretic medium and process for the production thereof |
US10909936B2 (en) | 1999-04-30 | 2021-02-02 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20060139310A1 (en) * | 1999-04-30 | 2006-06-29 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7312794B2 (en) | 1999-04-30 | 2007-12-25 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US7688297B2 (en) | 1999-04-30 | 2010-03-30 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7733335B2 (en) | 1999-04-30 | 2010-06-08 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7012600B2 (en) | 1999-04-30 | 2006-03-14 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7733311B2 (en) | 1999-04-30 | 2010-06-08 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US10319314B2 (en) | 1999-04-30 | 2019-06-11 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US20060139311A1 (en) * | 1999-04-30 | 2006-06-29 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US7119772B2 (en) | 1999-04-30 | 2006-10-10 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US20050270261A1 (en) * | 1999-04-30 | 2005-12-08 | Danner Guy M | Methods for driving electro-optic displays, and apparatus for use therein |
US7193625B2 (en) | 1999-04-30 | 2007-03-20 | E Ink Corporation | Methods for driving electro-optic displays, and apparatus for use therein |
US8558785B2 (en) | 1999-04-30 | 2013-10-15 | E Ink Corporation | Methods for driving bistable electro-optic displays, and apparatus for use therein |
US8009348B2 (en) | 1999-05-03 | 2011-08-30 | E Ink Corporation | Machine-readable displays |
US8115729B2 (en) | 1999-05-03 | 2012-02-14 | E Ink Corporation | Electrophoretic display element with filler particles |
US7119759B2 (en) | 1999-05-03 | 2006-10-10 | E Ink Corporation | Machine-readable displays |
US7893435B2 (en) | 2000-04-18 | 2011-02-22 | E Ink Corporation | Flexible electronic circuits and displays including a backplane comprising a patterned metal foil having a plurality of apertures extending therethrough |
US8553012B2 (en) | 2001-03-13 | 2013-10-08 | E Ink Corporation | Apparatus for displaying drawings |
US7079305B2 (en) | 2001-03-19 | 2006-07-18 | E Ink Corporation | Electrophoretic medium and process for the production thereof |
US20050105162A1 (en) * | 2001-03-19 | 2005-05-19 | Paolini Richard J.Jr. | Electrophoretic medium and process for the production thereof |
US8390918B2 (en) | 2001-04-02 | 2013-03-05 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US7679814B2 (en) | 2001-04-02 | 2010-03-16 | E Ink Corporation | Materials for use in electrophoretic displays |
US7230750B2 (en) | 2001-05-15 | 2007-06-12 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
US7375875B2 (en) | 2001-05-15 | 2008-05-20 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
US7532388B2 (en) | 2001-05-15 | 2009-05-12 | E Ink Corporation | Electrophoretic media and processes for the production thereof |
US20040252360A1 (en) * | 2001-07-09 | 2004-12-16 | E Ink Corporation | Electro-optic display and lamination adhesive for use therein |
US7535624B2 (en) | 2001-07-09 | 2009-05-19 | E Ink Corporation | Electro-optic display and materials for use therein |
US7843626B2 (en) | 2001-07-09 | 2010-11-30 | E Ink Corporation | Electro-optic display and materials for use therein |
US7110163B2 (en) | 2001-07-09 | 2006-09-19 | E Ink Corporation | Electro-optic display and lamination adhesive for use therein |
US8125501B2 (en) | 2001-11-20 | 2012-02-28 | E Ink Corporation | Voltage modulated driver circuits for electro-optic displays |
US9881564B2 (en) | 2001-11-20 | 2018-01-30 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9564088B2 (en) | 2001-11-20 | 2017-02-07 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9530363B2 (en) | 2001-11-20 | 2016-12-27 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US7952557B2 (en) | 2001-11-20 | 2011-05-31 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US8558783B2 (en) | 2001-11-20 | 2013-10-15 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9269311B2 (en) | 2001-11-20 | 2016-02-23 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US9412314B2 (en) | 2001-11-20 | 2016-08-09 | E Ink Corporation | Methods for driving electro-optic displays |
US9886886B2 (en) | 2001-11-20 | 2018-02-06 | E Ink Corporation | Methods for driving electro-optic displays |
US7528822B2 (en) | 2001-11-20 | 2009-05-05 | E Ink Corporation | Methods for driving electro-optic displays |
US8593396B2 (en) | 2001-11-20 | 2013-11-26 | E Ink Corporation | Methods and apparatus for driving electro-optic displays |
US7787169B2 (en) | 2002-03-18 | 2010-08-31 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US6950220B2 (en) | 2002-03-18 | 2005-09-27 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20050152018A1 (en) * | 2002-03-18 | 2005-07-14 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US20030214695A1 (en) * | 2002-03-18 | 2003-11-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US7223672B2 (en) | 2002-04-24 | 2007-05-29 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US8389381B2 (en) | 2002-04-24 | 2013-03-05 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US9419024B2 (en) | 2002-04-24 | 2016-08-16 | E Ink Corporation | Methods for forming patterned semiconductors |
US20070069247A1 (en) * | 2002-04-24 | 2007-03-29 | E Ink Corporation | Electro-optic displays, and components for use therein |
US20110194045A1 (en) * | 2002-04-24 | 2011-08-11 | E Ink Corporation | Electro-optic displays, and components for use therein |
US7190008B2 (en) | 2002-04-24 | 2007-03-13 | E Ink Corporation | Electro-optic displays, and components for use therein |
US9632389B2 (en) | 2002-04-24 | 2017-04-25 | E Ink Corporation | Backplane for electro-optic display |
US7785988B2 (en) | 2002-04-24 | 2010-08-31 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US8969886B2 (en) | 2002-04-24 | 2015-03-03 | E Ink Corporation | Electro-optic displays having backplanes comprising ring diodes |
US8373211B2 (en) | 2002-04-24 | 2013-02-12 | E Ink Corporation | Field effect transistor |
US20060223282A1 (en) * | 2002-04-24 | 2006-10-05 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US7442587B2 (en) | 2002-04-24 | 2008-10-28 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US7116318B2 (en) | 2002-04-24 | 2006-10-03 | E Ink Corporation | Backplanes for display applications, and components for use therein |
US20040014265A1 (en) * | 2002-04-24 | 2004-01-22 | E Ink Corporation | Processes for forming backplanes for electro-optic displays |
US20050078099A1 (en) * | 2002-04-24 | 2005-04-14 | E Ink Corporation | Electro-optic displays, and components for use therein |
US7605799B2 (en) | 2002-04-24 | 2009-10-20 | E Ink Corporation | Backplanes for display applications, and components for use therein |
US7598173B2 (en) | 2002-04-24 | 2009-10-06 | E Ink Corporation | Electro-optic displays, and components for use therein |
US20060198014A1 (en) * | 2002-05-23 | 2006-09-07 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US7061663B2 (en) | 2002-05-23 | 2006-06-13 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US20060007528A1 (en) * | 2002-05-23 | 2006-01-12 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US6958848B2 (en) | 2002-05-23 | 2005-10-25 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US7202991B2 (en) | 2002-05-23 | 2007-04-10 | E Ink Corporation | Capsules, materials for use therein and electrophoretic media and displays containing such capsules |
US8482835B2 (en) | 2002-06-10 | 2013-07-09 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8891155B2 (en) | 2002-06-10 | 2014-11-18 | E Ink Corporation | Electro-optic display with edge seal |
US7443571B2 (en) | 2002-06-10 | 2008-10-28 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8786929B2 (en) | 2002-06-10 | 2014-07-22 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9733540B2 (en) | 2002-06-10 | 2017-08-15 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20080299859A1 (en) * | 2002-06-10 | 2008-12-04 | E Ink Corporation | Sub-assemblies and processes for the production of electro-optic displays |
US7843621B2 (en) | 2002-06-10 | 2010-11-30 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US20090034057A1 (en) * | 2002-06-10 | 2009-02-05 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20070207560A1 (en) * | 2002-06-10 | 2007-09-06 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7236292B2 (en) | 2002-06-10 | 2007-06-26 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7513813B2 (en) | 2002-06-10 | 2009-04-07 | E Ink Corporation | Sub-assemblies and processes for the production of electro-optic displays |
US8363299B2 (en) | 2002-06-10 | 2013-01-29 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US8830560B2 (en) | 2002-06-10 | 2014-09-09 | E Ink Corporation | Electro-optic display with edge seal |
US20110075248A1 (en) * | 2002-06-10 | 2011-03-31 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8068272B2 (en) | 2002-06-10 | 2011-11-29 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7791782B2 (en) | 2002-06-10 | 2010-09-07 | E Ink Corporation | Electro-optics displays, and processes for the production thereof |
US9921422B2 (en) | 2002-06-10 | 2018-03-20 | E Ink Corporation | Electro-optic display with edge seal |
US20090168067A1 (en) * | 2002-06-10 | 2009-07-02 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20100149630A1 (en) * | 2002-06-10 | 2010-06-17 | E Ink Corporation | Components and methods for use in electro-optic displays |
US11294255B2 (en) | 2002-06-10 | 2022-04-05 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8027081B2 (en) | 2002-06-10 | 2011-09-27 | E Ink Corporation | Electro-optic display with edge seal |
US20100142030A1 (en) * | 2002-06-10 | 2010-06-10 | E Ink Corporation | Components and methods for use in electro-optic displays |
US6982178B2 (en) | 2002-06-10 | 2006-01-03 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9778536B2 (en) | 2002-06-10 | 2017-10-03 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7729039B2 (en) | 2002-06-10 | 2010-06-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9470950B2 (en) | 2002-06-10 | 2016-10-18 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US7110164B2 (en) | 2002-06-10 | 2006-09-19 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US7583427B2 (en) | 2002-06-10 | 2009-09-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US8854721B2 (en) | 2002-06-10 | 2014-10-07 | E Ink Corporation | Components and testing methods for use in the production of electro-optic displays |
US9612502B2 (en) | 2002-06-10 | 2017-04-04 | E Ink Corporation | Electro-optic display with edge seal |
US8049947B2 (en) | 2002-06-10 | 2011-11-01 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9563099B2 (en) | 2002-06-10 | 2017-02-07 | E Ink Corporation | Components and methods for use in electro-optic displays |
US20080054879A1 (en) * | 2002-06-10 | 2008-03-06 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9182646B2 (en) | 2002-06-10 | 2015-11-10 | E Ink Corporation | Electro-optic displays, and processes for the production thereof |
US7649674B2 (en) | 2002-06-10 | 2010-01-19 | E Ink Corporation | Electro-optic display with edge seal |
US8077381B2 (en) | 2002-06-10 | 2011-12-13 | E Ink Corporation | Components and methods for use in electro-optic displays |
US9966018B2 (en) | 2002-06-13 | 2018-05-08 | E Ink Corporation | Methods for driving electro-optic displays |
US20040105036A1 (en) * | 2002-08-06 | 2004-06-03 | E Ink Corporation | Protection of electro-optic displays against thermal effects |
US7312916B2 (en) | 2002-08-07 | 2007-12-25 | E Ink Corporation | Electrophoretic media containing specularly reflective particles |
US8129655B2 (en) | 2002-09-03 | 2012-03-06 | E Ink Corporation | Electrophoretic medium with gaseous suspending fluid |
US11520179B2 (en) | 2002-09-03 | 2022-12-06 | E Ink Corporation | Method of forming an electrophoretic display having a color filter array |
US20090225398A1 (en) * | 2002-09-03 | 2009-09-10 | E Ink Corporation | Electro-optic displays |
EP3056941A2 (en) | 2002-09-03 | 2016-08-17 | E Ink Corporation | Electro-phoretic displays |
US10444590B2 (en) | 2002-09-03 | 2019-10-15 | E Ink Corporation | Electro-optic displays |
US7839564B2 (en) | 2002-09-03 | 2010-11-23 | E Ink Corporation | Components and methods for use in electro-optic displays |
US10599005B2 (en) | 2002-09-03 | 2020-03-24 | E Ink Corporation | Electro-optic displays |
US9075280B2 (en) | 2002-09-03 | 2015-07-07 | E Ink Corporation | Components and methods for use in electro-optic displays |
US7561324B2 (en) | 2002-09-03 | 2009-07-14 | E Ink Corporation | Electro-optic displays |
US10331005B2 (en) | 2002-10-16 | 2019-06-25 | E Ink Corporation | Electrophoretic displays |
US9664978B2 (en) | 2002-10-16 | 2017-05-30 | E Ink Corporation | Electrophoretic displays |
US8077141B2 (en) | 2002-12-16 | 2011-12-13 | E Ink Corporation | Backplanes for electro-optic displays |
US7365733B2 (en) | 2002-12-16 | 2008-04-29 | E Ink Corporation | Backplanes for electro-optic displays |
US20080165122A1 (en) * | 2002-12-16 | 2008-07-10 | E Ink Corporation | Backplanes for electro-optic displays |
US20040196215A1 (en) * | 2002-12-16 | 2004-10-07 | E Ink Corporation | Backplanes for electro-optic displays |
US20040233509A1 (en) * | 2002-12-23 | 2004-11-25 | E Ink Corporation | Flexible electro-optic displays |
US6922276B2 (en) | 2002-12-23 | 2005-07-26 | E Ink Corporation | Flexible electro-optic displays |
US20040257635A1 (en) * | 2003-01-31 | 2004-12-23 | E Ink Corporation | Construction of electrophoretic displays |
US6987603B2 (en) | 2003-01-31 | 2006-01-17 | E Ink Corporation | Construction of electrophoretic displays |
US7339715B2 (en) | 2003-03-25 | 2008-03-04 | E Ink Corporation | Processes for the production of electrophoretic displays |
US20040226820A1 (en) * | 2003-03-25 | 2004-11-18 | E Ink Corporation | Processes for the production of electrophoretic displays |
US7910175B2 (en) | 2003-03-25 | 2011-03-22 | E Ink Corporation | Processes for the production of electrophoretic displays |
EP2273307A1 (en) | 2003-03-27 | 2011-01-12 | E Ink Corporation | Electro-optic displays |
US20050124751A1 (en) * | 2003-03-27 | 2005-06-09 | Klingenberg Eric H. | Electro-optic assemblies and materials for use therein |
US20050007653A1 (en) * | 2003-03-27 | 2005-01-13 | E Ink Corporation | Electro-optic assemblies, and materials for use therein |
US7012735B2 (en) | 2003-03-27 | 2006-03-14 | E Ink Corporaiton | Electro-optic assemblies, and materials for use therein |
US10726798B2 (en) | 2003-03-31 | 2020-07-28 | E Ink Corporation | Methods for operating electro-optic displays |
US9672766B2 (en) | 2003-03-31 | 2017-06-06 | E Ink Corporation | Methods for driving electro-optic displays |
US9230492B2 (en) | 2003-03-31 | 2016-01-05 | E Ink Corporation | Methods for driving electro-optic displays |
US9620067B2 (en) | 2003-03-31 | 2017-04-11 | E Ink Corporation | Methods for driving electro-optic displays |
US20050012980A1 (en) * | 2003-05-02 | 2005-01-20 | E Ink Corporation | Electrophoretic displays with controlled amounts of pigment |
US9152003B2 (en) | 2003-05-12 | 2015-10-06 | E Ink Corporation | Electro-optic display with edge seal |
EP2947647A2 (en) | 2003-06-30 | 2015-11-25 | E Ink Corporation | Methods for driving electro-optic displays |
US8174490B2 (en) | 2003-06-30 | 2012-05-08 | E Ink Corporation | Methods for driving electrophoretic displays |
US7636191B2 (en) | 2003-07-24 | 2009-12-22 | E Ink Corporation | Electro-optic display |
US7957053B2 (en) | 2003-07-24 | 2011-06-07 | E Ink Corporation | Electro-optic displays |
US20060176267A1 (en) * | 2003-07-24 | 2006-08-10 | E Ink Corporation | Improvements in electro-optic displays |
US7034783B2 (en) | 2003-08-19 | 2006-04-25 | E Ink Corporation | Method for controlling electro-optic display |
EP2698784A1 (en) | 2003-08-19 | 2014-02-19 | E Ink Corporation | Methods for controlling electro-optic displays |
US7545358B2 (en) | 2003-08-19 | 2009-06-09 | E Ink Corporation | Methods for controlling electro-optic displays |
US7602374B2 (en) | 2003-09-19 | 2009-10-13 | E Ink Corporation | Methods for reducing edge effects in electro-optic displays |
US20050062714A1 (en) * | 2003-09-19 | 2005-03-24 | E Ink Corporation | Methods for reducing edge effects in electro-optic displays |
US20070013683A1 (en) * | 2003-10-03 | 2007-01-18 | Koninkijkle Phillips Electronics N.V. | Electrophoretic display unit |
US8300006B2 (en) * | 2003-10-03 | 2012-10-30 | E Ink Corporation | Electrophoretic display unit |
US8319759B2 (en) | 2003-10-08 | 2012-11-27 | E Ink Corporation | Electrowetting displays |
US20050151709A1 (en) * | 2003-10-08 | 2005-07-14 | E Ink Corporation | Electro-wetting displays |
US7420549B2 (en) | 2003-10-08 | 2008-09-02 | E Ink Corporation | Electro-wetting displays |
US8994705B2 (en) | 2003-10-08 | 2015-03-31 | E Ink Corporation | Electrowetting displays |
US10048564B2 (en) | 2003-11-05 | 2018-08-14 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7551346B2 (en) | 2003-11-05 | 2009-06-23 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20070097489A1 (en) * | 2003-11-05 | 2007-05-03 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US20050122565A1 (en) * | 2003-11-05 | 2005-06-09 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7173752B2 (en) | 2003-11-05 | 2007-02-06 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US9152004B2 (en) | 2003-11-05 | 2015-10-06 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7672040B2 (en) | 2003-11-05 | 2010-03-02 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US10324354B2 (en) | 2003-11-05 | 2019-06-18 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US7349148B2 (en) | 2003-11-05 | 2008-03-25 | E Ink Corporation | Electro-optic displays, and materials for use therein |
EP2487674A2 (en) | 2003-11-05 | 2012-08-15 | E-Ink Corporation | Electro-optic displays |
US10048563B2 (en) | 2003-11-05 | 2018-08-14 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US8177942B2 (en) | 2003-11-05 | 2012-05-15 | E Ink Corporation | Electro-optic displays, and materials for use therein |
US8928562B2 (en) | 2003-11-25 | 2015-01-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US9542895B2 (en) | 2003-11-25 | 2017-01-10 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2005054933A2 (en) | 2003-11-26 | 2005-06-16 | E Ink Corporation | Electro-optic displays with reduced remnant voltage |
US9740076B2 (en) | 2003-12-05 | 2017-08-22 | E Ink Corporation | Multi-color electrophoretic displays |
US9829764B2 (en) | 2003-12-05 | 2017-11-28 | E Ink Corporation | Multi-color electrophoretic displays |
US20050152022A1 (en) * | 2003-12-31 | 2005-07-14 | E Ink Corporation | Electro-optic displays, and method for driving same |
US7206119B2 (en) | 2003-12-31 | 2007-04-17 | E Ink Corporation | Electro-optic displays, and method for driving same |
US20050168801A1 (en) * | 2004-01-16 | 2005-08-04 | E Ink Corporation | Process for sealing electro-optic displays |
US7075703B2 (en) | 2004-01-16 | 2006-07-11 | E Ink Corporation | Process for sealing electro-optic displays |
US9005494B2 (en) | 2004-01-20 | 2015-04-14 | E Ink Corporation | Preparation of capsules |
US7388572B2 (en) | 2004-02-27 | 2008-06-17 | E Ink Corporation | Backplanes for electro-optic displays |
US20050213191A1 (en) * | 2004-03-23 | 2005-09-29 | E Ink Corporation | Light modulators |
US7327511B2 (en) | 2004-03-23 | 2008-02-05 | E Ink Corporation | Light modulators |
EP3067744A2 (en) | 2004-03-23 | 2016-09-14 | E Ink Corporation | Light modulators |
US7492339B2 (en) | 2004-03-26 | 2009-02-17 | E Ink Corporation | Methods for driving bistable electro-optic displays |
US20080129667A1 (en) * | 2004-03-31 | 2008-06-05 | E Ink Corporation | Methods for driving electro-optic displays |
US8289250B2 (en) | 2004-03-31 | 2012-10-16 | E Ink Corporation | Methods for driving electro-optic displays |
US11250794B2 (en) | 2004-07-27 | 2022-02-15 | E Ink Corporation | Methods for driving electrophoretic displays using dielectrophoretic forces |
US20060023296A1 (en) * | 2004-07-27 | 2006-02-02 | E Ink Corporation | Electro-optic displays |
US7304787B2 (en) | 2004-07-27 | 2007-12-04 | E Ink Corporation | Electro-optic displays |
US7116466B2 (en) | 2004-07-27 | 2006-10-03 | E Ink Corporation | Electro-optic displays |
US7453445B2 (en) | 2004-08-13 | 2008-11-18 | E Ink Corproation | Methods for driving electro-optic displays |
CN100381996C (en) * | 2004-11-09 | 2008-04-16 | 夏普株式会社 | An apparatus for measuring capacitance and sensor array |
US7230751B2 (en) | 2005-01-26 | 2007-06-12 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US20060209388A1 (en) * | 2005-01-26 | 2006-09-21 | E Ink Corporation | Electrophoretic displays using gaseous fluids |
US20090231661A1 (en) * | 2005-06-23 | 2009-09-17 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US8208193B2 (en) | 2005-06-23 | 2012-06-26 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US7554712B2 (en) | 2005-06-23 | 2009-06-30 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US8830553B2 (en) | 2005-06-23 | 2014-09-09 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US20110069370A1 (en) * | 2005-06-23 | 2011-03-24 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US7898717B2 (en) | 2005-06-23 | 2011-03-01 | E Ink Corporation | Edge seals for, and processes for assembly of, electro-optic displays |
US9170467B2 (en) | 2005-10-18 | 2015-10-27 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
EP2711770A2 (en) | 2005-10-18 | 2014-03-26 | E Ink Corporation | Components for electro-optic displays |
US9726959B2 (en) | 2005-10-18 | 2017-08-08 | E Ink Corporation | Color electro-optic displays, and processes for the production thereof |
US20070091417A1 (en) * | 2005-10-25 | 2007-04-26 | E Ink Corporation | Electrophoretic media and displays with improved binder |
EP2437114A1 (en) | 2006-03-08 | 2012-04-04 | E-Ink Corporation | Methods for production of electro-optic displays |
US7843624B2 (en) | 2006-03-08 | 2010-11-30 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
WO2007104003A2 (en) | 2006-03-08 | 2007-09-13 | E Ink Corporation | Methods for production of electro-optic displays |
US8390301B2 (en) | 2006-03-08 | 2013-03-05 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US7733554B2 (en) | 2006-03-08 | 2010-06-08 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
EP2309304A2 (en) | 2006-03-08 | 2011-04-13 | E-Ink Corporation | Methods for production of electro-optic displays |
US8610988B2 (en) | 2006-03-09 | 2013-12-17 | E Ink Corporation | Electro-optic display with edge seal |
US7952790B2 (en) | 2006-03-22 | 2011-05-31 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US10444591B2 (en) | 2006-03-22 | 2019-10-15 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US8830559B2 (en) | 2006-03-22 | 2014-09-09 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US9910337B2 (en) | 2006-03-22 | 2018-03-06 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US9164207B2 (en) | 2006-03-22 | 2015-10-20 | E Ink Corporation | Electro-optic media produced using ink jet printing |
US20080169821A1 (en) * | 2006-04-07 | 2008-07-17 | Wanheng Wang | Inspection methods for defects in electrophoretic display and related devices |
US7982479B2 (en) * | 2006-04-07 | 2011-07-19 | Sipix Imaging, Inc. | Inspection methods for defects in electrophoretic display and related devices |
US7903319B2 (en) | 2006-07-11 | 2011-03-08 | E Ink Corporation | Electrophoretic medium and display with improved image stability |
US8018640B2 (en) | 2006-07-13 | 2011-09-13 | E Ink Corporation | Particles for use in electrophoretic displays |
US8199395B2 (en) | 2006-07-13 | 2012-06-12 | E Ink Corporation | Particles for use in electrophoretic displays |
US7492497B2 (en) | 2006-08-02 | 2009-02-17 | E Ink Corporation | Multi-layer light modulator |
EP2487540A1 (en) | 2006-09-18 | 2012-08-15 | E-Ink Corporation | Color electro-optic displays |
EP2309322A1 (en) | 2006-09-22 | 2011-04-13 | E-Ink Corporation | Electro-optic display and materials for use therein |
US7477444B2 (en) | 2006-09-22 | 2009-01-13 | E Ink Corporation & Air Products And Chemical, Inc. | Electro-optic display and materials for use therein |
US7986450B2 (en) | 2006-09-22 | 2011-07-26 | E Ink Corporation | Electro-optic display and materials for use therein |
US7649666B2 (en) | 2006-12-07 | 2010-01-19 | E Ink Corporation | Components and methods for use in electro-optic displays |
EP2546693A2 (en) | 2006-12-19 | 2013-01-16 | E Ink Corporation | Electro-optic display with edge seal |
US7667886B2 (en) | 2007-01-22 | 2010-02-23 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US8009344B2 (en) | 2007-01-22 | 2011-08-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US7688497B2 (en) | 2007-01-22 | 2010-03-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US20080254272A1 (en) * | 2007-01-22 | 2008-10-16 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
US8498042B2 (en) | 2007-01-22 | 2013-07-30 | E Ink Corporation | Multi-layer sheet for use in electro-optic displays |
EP2555182A1 (en) | 2007-02-02 | 2013-02-06 | E Ink Corporation | Electrophoretic displays having transparent electrode and conductor connected thereto |
US7826129B2 (en) | 2007-03-06 | 2010-11-02 | E Ink Corporation | Materials for use in electrophoretic displays |
US9310661B2 (en) | 2007-03-06 | 2016-04-12 | E Ink Corporation | Materials for use in electrophoretic displays |
US9841653B2 (en) | 2007-03-06 | 2017-12-12 | E Ink Corporation | Materials for use in electrophoretic displays |
US10319313B2 (en) | 2007-05-21 | 2019-06-11 | E Ink Corporation | Methods for driving video electro-optic displays |
US9199441B2 (en) | 2007-06-28 | 2015-12-01 | E Ink Corporation | Processes for the production of electro-optic displays, and color filters for use therein |
US10527880B2 (en) | 2007-06-28 | 2020-01-07 | E Ink Corporation | Process for the production of electro-optic displays, and color filters for use therein |
US9554495B2 (en) | 2007-06-29 | 2017-01-24 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8728266B2 (en) | 2007-06-29 | 2014-05-20 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8034209B2 (en) | 2007-06-29 | 2011-10-11 | E Ink Corporation | Electro-optic displays, and materials and methods for production thereof |
US8902153B2 (en) | 2007-08-03 | 2014-12-02 | E Ink Corporation | Electro-optic displays, and processes for their production |
US10036930B2 (en) | 2007-11-14 | 2018-07-31 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
EP3505585A1 (en) | 2007-11-14 | 2019-07-03 | E Ink Corporation | Adhesives and binders for use in electro-optic assemblies |
US9964831B2 (en) | 2007-11-14 | 2018-05-08 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
US20090201008A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US20100039409A1 (en) * | 2008-02-11 | 2010-02-18 | Qualcomm Mems Technologies, Inc. | Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same |
US20090201033A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technolgies, Inc. | Methods for measurement and characterization of interferometric modulators |
US8395371B2 (en) | 2008-02-11 | 2013-03-12 | Qualcomm Mems Technologies, Inc. | Methods for characterizing the behavior of microelectromechanical system devices |
US8115471B2 (en) | 2008-02-11 | 2012-02-14 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US8386201B2 (en) * | 2008-02-11 | 2013-02-26 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US20090201034A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US20090201282A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc | Methods of tuning interferometric modulator displays |
US20090213107A1 (en) * | 2008-02-11 | 2009-08-27 | Qualcomm Mems Technologies, Inc, | Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same |
US20090201242A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Sensing to determine pixel state in a passively addressed display array |
US8274299B2 (en) | 2008-02-11 | 2012-09-25 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US20090204350A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomms Technologies, Inc, | Methods for measurement and characterization of interferometric modulators |
US8466858B2 (en) | 2008-02-11 | 2013-06-18 | Qualcomm Mems Technologies, Inc. | Sensing to determine pixel state in a passively addressed display array |
US20090201009A1 (en) * | 2008-02-11 | 2009-08-13 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US8258800B2 (en) | 2008-02-11 | 2012-09-04 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US20090251157A1 (en) * | 2008-02-11 | 2009-10-08 | Qualcomm Mems Technologies, Inc. | Methods for measurement and characterization of interferometric modulators |
US8169426B2 (en) | 2008-02-11 | 2012-05-01 | Qualcomm Mems Technologies, Inc. | Method and apparatus for sensing, measurement or characterization of display elements integrated with the display drive scheme, and system and applications using the same |
US8054526B2 (en) | 2008-03-21 | 2011-11-08 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
US8314784B2 (en) | 2008-04-11 | 2012-11-20 | E Ink Corporation | Methods for driving electro-optic displays |
US8027800B2 (en) | 2008-06-24 | 2011-09-27 | Qualcomm Mems Technologies, Inc. | Apparatus and method for testing a panel of interferometric modulators |
US8270064B2 (en) | 2009-02-09 | 2012-09-18 | E Ink Corporation | Electrophoretic particles, and processes for the production thereof |
US8098418B2 (en) | 2009-03-03 | 2012-01-17 | E. Ink Corporation | Electro-optic displays, and color filters for use therein |
US8441716B2 (en) | 2009-03-03 | 2013-05-14 | E Ink Corporation | Electro-optic displays, and color filters for use therein |
US10115354B2 (en) | 2009-09-15 | 2018-10-30 | E Ink California, Llc | Display controller system |
US8654436B1 (en) | 2009-10-30 | 2014-02-18 | E Ink Corporation | Particles for use in electrophoretic displays |
US9620066B2 (en) | 2010-02-02 | 2017-04-11 | E Ink Corporation | Method for driving electro-optic displays |
US9881565B2 (en) | 2010-02-02 | 2018-01-30 | E Ink Corporation | Method for driving electro-optic displays |
US8446664B2 (en) | 2010-04-02 | 2013-05-21 | E Ink Corporation | Electrophoretic media, and materials for use therein |
US12158684B2 (en) | 2010-05-21 | 2024-12-03 | E Ink Corporation | Method for driving two layer variable transmission display |
US11733580B2 (en) | 2010-05-21 | 2023-08-22 | E Ink Corporation | Method for driving two layer variable transmission display |
US8668384B2 (en) * | 2010-10-07 | 2014-03-11 | Raytheon Company | System and method for detecting the temperature of an electrophoretic display device |
US20120087389A1 (en) * | 2010-10-07 | 2012-04-12 | Raytheon Company | System and Method for Detecting the Temperature of an Electrophoretic Display Device |
WO2013074167A1 (en) | 2011-11-18 | 2013-05-23 | Avon Products, Inc. | Use of electrophoretic microcapsules in a cosmetic composition |
EP3783597A1 (en) | 2012-02-01 | 2021-02-24 | E Ink Corporation | Methods for driving electro-optic displays |
EP3220383A1 (en) | 2012-02-01 | 2017-09-20 | E Ink Corporation | Methods for driving electro-optic displays |
US10672350B2 (en) | 2012-02-01 | 2020-06-02 | E Ink Corporation | Methods for driving electro-optic displays |
US11657773B2 (en) | 2012-02-01 | 2023-05-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11145261B2 (en) | 2012-02-01 | 2021-10-12 | E Ink Corporation | Methods for driving electro-optic displays |
US11030936B2 (en) | 2012-02-01 | 2021-06-08 | E Ink Corporation | Methods and apparatus for operating an electro-optic display in white mode |
US11462183B2 (en) | 2012-02-01 | 2022-10-04 | E Ink Corporation | Methods for driving electro-optic displays |
US9996195B2 (en) | 2012-06-01 | 2018-06-12 | E Ink Corporation | Line segment update method for electro-optic displays |
US9513743B2 (en) | 2012-06-01 | 2016-12-06 | E Ink Corporation | Methods for driving electro-optic displays |
US10282033B2 (en) | 2012-06-01 | 2019-05-07 | E Ink Corporation | Methods for updating electro-optic displays when drawing or writing on the display |
US10037735B2 (en) | 2012-11-16 | 2018-07-31 | E Ink Corporation | Active matrix display with dual driving modes |
WO2014078616A1 (en) | 2012-11-16 | 2014-05-22 | E Ink Corporation | Active matrix display with dual driving modes |
US9721495B2 (en) | 2013-02-27 | 2017-08-01 | E Ink Corporation | Methods for driving electro-optic displays |
US11545065B2 (en) | 2013-02-27 | 2023-01-03 | E Ink Corporation | Methods for driving electro-optic displays |
US11145235B2 (en) | 2013-02-27 | 2021-10-12 | E Ink Corporation | Methods for driving electro-optic displays |
US11854456B2 (en) | 2013-02-27 | 2023-12-26 | E Ink Corporation | Electro-optic displays and methods for driving the same |
US11250761B2 (en) | 2013-03-01 | 2022-02-15 | E Ink Corporation | Methods for driving electro-optic displays |
WO2014134504A1 (en) | 2013-03-01 | 2014-09-04 | E Ink Corporation | Methods for driving electro-optic displays |
US9495918B2 (en) | 2013-03-01 | 2016-11-15 | E Ink Corporation | Methods for driving electro-optic displays |
US10380954B2 (en) | 2013-03-01 | 2019-08-13 | E Ink Corporation | Methods for driving electro-optic displays |
US10242630B2 (en) | 2013-05-14 | 2019-03-26 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
US11195481B2 (en) | 2013-05-14 | 2021-12-07 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
US10475399B2 (en) | 2013-05-14 | 2019-11-12 | E Ink Corporation | Color electrophoretic displays using same polarity reversing address pulse |
US9697778B2 (en) | 2013-05-14 | 2017-07-04 | E Ink Corporation | Reverse driving pulses in electrophoretic displays |
US12243498B2 (en) | 2013-05-14 | 2025-03-04 | E Ink Corporation | Colored electrophoretic displays using same polarity reversing address pulse |
WO2015017503A1 (en) | 2013-07-30 | 2015-02-05 | E Ink Corporation | Methods for driving electro-optic displays |
US9620048B2 (en) | 2013-07-30 | 2017-04-11 | E Ink Corporation | Methods for driving electro-optic displays |
US12249290B2 (en) | 2013-07-31 | 2025-03-11 | E Ink Corporation | Display controller for bistable electro-optic display |
EP4156165A2 (en) | 2013-07-31 | 2023-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11195480B2 (en) | 2013-07-31 | 2021-12-07 | E Ink Corporation | Partial update driving methods for bistable electro-optic displays and display controllers using the same |
EP4156164A1 (en) | 2013-07-31 | 2023-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
WO2015017624A1 (en) | 2013-07-31 | 2015-02-05 | E Ink Corporation | Methods for driving electro-optic displays |
US11217145B2 (en) | 2013-10-07 | 2022-01-04 | E Ink California, Llc | Driving methods to produce a mixed color state for an electrophoretic display |
US10380931B2 (en) | 2013-10-07 | 2019-08-13 | E Ink California, Llc | Driving methods for color display device |
US11004409B2 (en) | 2013-10-07 | 2021-05-11 | E Ink California, Llc | Driving methods for color display device |
US10726760B2 (en) | 2013-10-07 | 2020-07-28 | E Ink California, Llc | Driving methods to produce a mixed color state for an electrophoretic display |
US9529240B2 (en) | 2014-01-17 | 2016-12-27 | E Ink Corporation | Controlled polymeric material conductivity for use in a two-phase electrode layer |
US10795221B2 (en) | 2014-01-17 | 2020-10-06 | E Ink Corporation | Methods for making two-phase light-transmissive electrode layer with controlled conductivity |
US10151955B2 (en) | 2014-01-17 | 2018-12-11 | E Ink Corporation | Controlled polymeric material conductivity for use in a two-phase electrode layer |
US10678111B2 (en) | 2014-09-10 | 2020-06-09 | E Ink Corporation | Colored electrophoretic displays |
US10509293B2 (en) | 2014-09-10 | 2019-12-17 | E Ink Corporation | Colored electrophoretic displays |
US12019348B2 (en) | 2014-09-10 | 2024-06-25 | E Ink Corporation | Color electrophoretic display with segmented top plane electrode to create distinct switching areas |
EP3633662A1 (en) | 2014-09-10 | 2020-04-08 | E Ink Corporation | Colored electrophoretic displays |
US9921451B2 (en) | 2014-09-10 | 2018-03-20 | E Ink Corporation | Colored electrophoretic displays |
US10657869B2 (en) | 2014-09-10 | 2020-05-19 | E Ink Corporation | Methods for driving color electrophoretic displays |
US11468855B2 (en) | 2014-09-10 | 2022-10-11 | E Ink Corporation | Colored electrophoretic displays |
US12080251B2 (en) | 2014-09-10 | 2024-09-03 | E Ink Corporation | Colored electrophoretic displays |
US11402718B2 (en) | 2014-09-26 | 2022-08-02 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays |
US10353266B2 (en) | 2014-09-26 | 2019-07-16 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays |
US12181766B2 (en) | 2014-09-26 | 2024-12-31 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays color sets for low resolution dithering in reflective color displays |
US11846861B2 (en) | 2014-09-26 | 2023-12-19 | E Ink Corporation | Color sets for low resolution dithering in reflective color displays color sets for low resolution dithering in reflective color displays |
US10175550B2 (en) | 2014-11-07 | 2019-01-08 | E Ink Corporation | Applications of electro-optic displays |
US10976634B2 (en) | 2014-11-07 | 2021-04-13 | E Ink Corporation | Applications of electro-optic displays |
US10901285B2 (en) | 2015-01-05 | 2021-01-26 | E Ink Corporation | Methods for driving electro-optic displays |
US10197883B2 (en) | 2015-01-05 | 2019-02-05 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10551713B2 (en) | 2015-01-05 | 2020-02-04 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US10573222B2 (en) | 2015-01-05 | 2020-02-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US9928810B2 (en) | 2015-01-30 | 2018-03-27 | E Ink Corporation | Font control for electro-optic displays and related apparatus and methods |
US10475396B2 (en) | 2015-02-04 | 2019-11-12 | E Ink Corporation | Electro-optic displays with reduced remnant voltage, and related apparatus and methods |
US10163406B2 (en) | 2015-02-04 | 2018-12-25 | E Ink Corporation | Electro-optic displays displaying in dark mode and light mode, and related apparatus and methods |
US10796623B2 (en) | 2015-04-27 | 2020-10-06 | E Ink Corporation | Methods and apparatuses for driving display systems |
WO2016191673A1 (en) | 2015-05-27 | 2016-12-01 | E Ink Corporation | Methods and circuitry for driving display devices |
US11398197B2 (en) | 2015-05-27 | 2022-07-26 | E Ink Corporation | Methods and circuitry for driving display devices |
US10997930B2 (en) | 2015-05-27 | 2021-05-04 | E Ink Corporation | Methods and circuitry for driving display devices |
US10233339B2 (en) | 2015-05-28 | 2019-03-19 | E Ink California, Llc | Electrophoretic medium comprising a mixture of charge control agents |
US10040954B2 (en) | 2015-05-28 | 2018-08-07 | E Ink California, Llc | Electrophoretic medium comprising a mixture of charge control agents |
US11205108B2 (en) * | 2015-07-31 | 2021-12-21 | Chromera, Inc. | Symbol verification for an intelligent label device |
US20190043397A1 (en) * | 2015-07-31 | 2019-02-07 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US10467935B2 (en) * | 2015-07-31 | 2019-11-05 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US20170292933A1 (en) * | 2015-07-31 | 2017-10-12 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US10168298B2 (en) * | 2015-07-31 | 2019-01-01 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US11087644B2 (en) | 2015-08-19 | 2021-08-10 | E Ink Corporation | Displays intended for use in architectural applications |
US10388233B2 (en) | 2015-08-31 | 2019-08-20 | E Ink Corporation | Devices and techniques for electronically erasing a drawing device |
US11450286B2 (en) | 2015-09-16 | 2022-09-20 | E Ink Corporation | Apparatus and methods for driving displays |
US10803813B2 (en) | 2015-09-16 | 2020-10-13 | E Ink Corporation | Apparatus and methods for driving displays |
US11657774B2 (en) | 2015-09-16 | 2023-05-23 | E Ink Corporation | Apparatus and methods for driving displays |
WO2017049020A1 (en) | 2015-09-16 | 2017-03-23 | E Ink Corporation | Apparatus and methods for driving displays |
US12084595B2 (en) | 2015-10-06 | 2024-09-10 | E Ink Corporation | Electrophoretic media including charge control agents comprising quartenary amines and unsaturated polymeric tails |
WO2017062345A1 (en) | 2015-10-06 | 2017-04-13 | E Ink Corporation | Improved low-temperature electrophoretic media |
US11098206B2 (en) | 2015-10-06 | 2021-08-24 | E Ink Corporation | Electrophoretic media including charge control agents comprising quartenary amines and unsaturated polymeric tails |
US10062337B2 (en) | 2015-10-12 | 2018-08-28 | E Ink California, Llc | Electrophoretic display device |
US11084935B2 (en) | 2015-11-11 | 2021-08-10 | E Ink Corporation | Method of making functionalized quinacridone pigments |
US10662334B2 (en) | 2015-11-11 | 2020-05-26 | E Ink Corporation | Method of making functionalized quinacridone pigments |
US9752034B2 (en) | 2015-11-11 | 2017-09-05 | E Ink Corporation | Functionalized quinacridone pigments |
US10196523B2 (en) | 2015-11-11 | 2019-02-05 | E Ink Corporation | Functionalized quinacridone pigments |
US10795233B2 (en) | 2015-11-18 | 2020-10-06 | E Ink Corporation | Electro-optic displays |
US11410585B2 (en) * | 2015-12-04 | 2022-08-09 | Chromera, Inc. | Optically determining messages on a display |
WO2017139323A1 (en) | 2016-02-08 | 2017-08-17 | E Ink Corporation | Methods and apparatus for operating an electro-optic display in white mode |
US11030965B2 (en) | 2016-03-09 | 2021-06-08 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10593272B2 (en) | 2016-03-09 | 2020-03-17 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10276109B2 (en) | 2016-03-09 | 2019-04-30 | E Ink Corporation | Method for driving electro-optic displays |
US11404012B2 (en) | 2016-03-09 | 2022-08-02 | E Ink Corporation | Drivers providing DC-balanced refresh sequences for color electrophoretic displays |
US10554854B2 (en) | 2016-05-24 | 2020-02-04 | E Ink Corporation | Method for rendering color images |
US10771652B2 (en) | 2016-05-24 | 2020-09-08 | E Ink Corporation | Method for rendering color images |
US11265443B2 (en) | 2016-05-24 | 2022-03-01 | E Ink Corporation | System for rendering color images |
US10270939B2 (en) | 2016-05-24 | 2019-04-23 | E Ink Corporation | Method for rendering color images |
US10527899B2 (en) | 2016-05-31 | 2020-01-07 | E Ink Corporation | Backplanes for electro-optic displays |
EP3563146A4 (en) * | 2016-12-28 | 2021-05-05 | Chromera, Inc. | Electrically determining messages on an electrophoretic display |
US10852568B2 (en) | 2017-03-03 | 2020-12-01 | E Ink Corporation | Electro-optic displays and driving methods |
WO2018160912A1 (en) | 2017-03-03 | 2018-09-07 | E Ink Corporation | Electro-optic displays and driving methods |
WO2018164942A1 (en) | 2017-03-06 | 2018-09-13 | E Ink Corporation | Method for rendering color images |
US11527216B2 (en) | 2017-03-06 | 2022-12-13 | E Ink Corporation | Method for rendering color images |
US10467984B2 (en) | 2017-03-06 | 2019-11-05 | E Ink Corporation | Method for rendering color images |
US12100369B2 (en) | 2017-03-06 | 2024-09-24 | E Ink Corporation | Method for rendering color images |
US11094288B2 (en) | 2017-03-06 | 2021-08-17 | E Ink Corporation | Method and apparatus for rendering color images |
US10444592B2 (en) | 2017-03-09 | 2019-10-15 | E Ink Corporation | Methods and systems for transforming RGB image data to a reduced color set for electro-optic displays |
US11398196B2 (en) | 2017-04-04 | 2022-07-26 | E Ink Corporation | Methods for driving electro-optic displays |
US10832622B2 (en) | 2017-04-04 | 2020-11-10 | E Ink Corporation | Methods for driving electro-optic displays |
US10573257B2 (en) | 2017-05-30 | 2020-02-25 | E Ink Corporation | Electro-optic displays |
US11404013B2 (en) | 2017-05-30 | 2022-08-02 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US10825405B2 (en) | 2017-05-30 | 2020-11-03 | E Ink Corporatior | Electro-optic displays |
US11107425B2 (en) * | 2017-05-30 | 2021-08-31 | E Ink Corporation | Electro-optic displays with resistors for discharging remnant charges |
US11935496B2 (en) | 2017-09-12 | 2024-03-19 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11721295B2 (en) | 2017-09-12 | 2023-08-08 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11423852B2 (en) | 2017-09-12 | 2022-08-23 | E Ink Corporation | Methods for driving electro-optic displays |
US11568827B2 (en) | 2017-09-12 | 2023-01-31 | E Ink Corporation | Methods for driving electro-optic displays to minimize edge ghosting |
US10882042B2 (en) | 2017-10-18 | 2021-01-05 | E Ink Corporation | Digital microfluidic devices including dual substrates with thin-film transistors and capacitive sensing |
US12130530B2 (en) | 2017-12-19 | 2024-10-29 | E Ink Corporation | Applications of electro-optic displays |
US11422427B2 (en) | 2017-12-19 | 2022-08-23 | E Ink Corporation | Applications of electro-optic displays |
WO2019126623A1 (en) | 2017-12-22 | 2019-06-27 | E Ink Corporation | Electro-optic displays, and methods for driving same |
WO2019144097A1 (en) | 2018-01-22 | 2019-07-25 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11789330B2 (en) | 2018-07-17 | 2023-10-17 | E Ink California, Llc | Electro-optic displays and driving methods |
US12253784B2 (en) | 2018-07-17 | 2025-03-18 | E Ink Corporation | Electro-optic displays and driving methods |
WO2020018508A1 (en) | 2018-07-17 | 2020-01-23 | E Ink California, Llc | Electro-optic displays and driving methods |
WO2020033787A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
US11719953B2 (en) | 2018-08-10 | 2023-08-08 | E Ink California, Llc | Switchable light-collimating layer with reflector |
US11397366B2 (en) | 2018-08-10 | 2022-07-26 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
WO2020033175A1 (en) | 2018-08-10 | 2020-02-13 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11656526B2 (en) | 2018-08-10 | 2023-05-23 | E Ink California, Llc | Switchable light-collimating layer including bistable electrophoretic fluid |
US11314098B2 (en) | 2018-08-10 | 2022-04-26 | E Ink California, Llc | Switchable light-collimating layer with reflector |
US11435606B2 (en) | 2018-08-10 | 2022-09-06 | E Ink California, Llc | Driving waveforms for switchable light-collimating layer including bistable electrophoretic fluid |
US11353759B2 (en) | 2018-09-17 | 2022-06-07 | Nuclera Nucleics Ltd. | Backplanes with hexagonal and triangular electrodes |
WO2020060960A1 (en) | 2018-09-17 | 2020-03-26 | E Ink Corporation | Backplanes with hexagonal and triangular electrodes |
US12186514B2 (en) | 2018-10-15 | 2025-01-07 | E Ink Corporation | Digital microfluidic delivery device |
US11511096B2 (en) | 2018-10-15 | 2022-11-29 | E Ink Corporation | Digital microfluidic delivery device |
US11380274B2 (en) | 2018-11-30 | 2022-07-05 | E Ink California, Llc | Electro-optic displays and driving methods |
US11735127B2 (en) | 2018-11-30 | 2023-08-22 | E Ink California, Llc | Electro-optic displays and driving methods |
US11062663B2 (en) | 2018-11-30 | 2021-07-13 | E Ink California, Llc | Electro-optic displays and driving methods |
WO2020231733A1 (en) | 2019-05-10 | 2020-11-19 | E Ink Corporation | Colored electrophoretic displays |
US11460722B2 (en) | 2019-05-10 | 2022-10-04 | E Ink Corporation | Colored electrophoretic displays |
US11289036B2 (en) | 2019-11-14 | 2022-03-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11257445B2 (en) | 2019-11-18 | 2022-02-22 | E Ink Corporation | Methods for driving electro-optic displays |
US11568786B2 (en) | 2020-05-31 | 2023-01-31 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11520202B2 (en) | 2020-06-11 | 2022-12-06 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US12027129B2 (en) | 2020-08-31 | 2024-07-02 | E Ink Corporation | Electro-optic displays and driving methods |
US12181767B2 (en) | 2020-09-15 | 2024-12-31 | E Ink Corporation | Five-particle electrophoretic medium with improved black optical state |
US12197099B2 (en) | 2020-09-15 | 2025-01-14 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11837184B2 (en) | 2020-09-15 | 2023-12-05 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US11846863B2 (en) | 2020-09-15 | 2023-12-19 | E Ink Corporation | Coordinated top electrode—drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11776496B2 (en) | 2020-09-15 | 2023-10-03 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US11686989B2 (en) | 2020-09-15 | 2023-06-27 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
US11948523B1 (en) | 2020-09-15 | 2024-04-02 | E Ink Corporation | Driving voltages for advanced color electrophoretic displays and displays with improved driving voltages |
US12044945B2 (en) | 2020-09-15 | 2024-07-23 | E Ink Corporation | Four particle electrophoretic medium providing fast, high-contrast optical state switching |
US11450262B2 (en) | 2020-10-01 | 2022-09-20 | E Ink Corporation | Electro-optic displays, and methods for driving same |
US11756494B2 (en) | 2020-11-02 | 2023-09-12 | E Ink Corporation | Driving sequences to remove prior state information from color electrophoretic displays |
US12087244B2 (en) | 2020-11-02 | 2024-09-10 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11721296B2 (en) | 2020-11-02 | 2023-08-08 | E Ink Corporation | Method and apparatus for rendering color images |
WO2022094443A1 (en) | 2020-11-02 | 2022-05-05 | E Ink Corporation | Method and apparatus for rendering color images |
US11798506B2 (en) | 2020-11-02 | 2023-10-24 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US11620959B2 (en) | 2020-11-02 | 2023-04-04 | E Ink Corporation | Enhanced push-pull (EPP) waveforms for achieving primary color sets in multi-color electrophoretic displays |
US12131713B2 (en) | 2021-02-09 | 2024-10-29 | E Ink Corporation | Continuous waveform driving in multi-color electrophoretic displays |
US12125449B2 (en) | 2021-02-09 | 2024-10-22 | E Ink Corporation | Continuous waveform driving in multi-color electrophoretic displays |
US11935495B2 (en) | 2021-08-18 | 2024-03-19 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023043714A1 (en) | 2021-09-14 | 2023-03-23 | E Ink Corporation | Coordinated top electrode - drive electrode voltages for switching optical state of electrophoretic displays using positive and negative voltages of different magnitudes |
US11830448B2 (en) | 2021-11-04 | 2023-11-28 | E Ink Corporation | Methods for driving electro-optic displays |
US12249291B2 (en) | 2021-11-05 | 2025-03-11 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
US11869451B2 (en) | 2021-11-05 | 2024-01-09 | E Ink Corporation | Multi-primary display mask-based dithering with low blooming sensitivity |
WO2023122142A1 (en) | 2021-12-22 | 2023-06-29 | E Ink Corporation | Methods for driving electro-optic displays |
US11922893B2 (en) | 2021-12-22 | 2024-03-05 | E Ink Corporation | High voltage driving using top plane switching with zero voltage frames between driving frames |
WO2023129533A1 (en) | 2021-12-27 | 2023-07-06 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
US12249262B2 (en) | 2021-12-27 | 2025-03-11 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
US11854448B2 (en) | 2021-12-27 | 2023-12-26 | E Ink Corporation | Methods for measuring electrical properties of electro-optic displays |
US12085829B2 (en) | 2021-12-30 | 2024-09-10 | E Ink Corporation | Methods for driving electro-optic displays |
WO2023129692A1 (en) | 2021-12-30 | 2023-07-06 | E Ink California, Llc | Methods for driving electro-optic displays |
WO2023132958A1 (en) | 2022-01-04 | 2023-07-13 | E Ink Corporation | Electrophoretic media comprising electrophoretic particles and a combination of charge control agents |
WO2023164078A1 (en) | 2022-02-25 | 2023-08-31 | E Ink Corporation | Electro-optic displays with edge seal components and methods of making the same |
US12190730B2 (en) | 2022-02-28 | 2025-01-07 | E Ink Corporation | Parking space management system |
WO2023211867A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Color displays configured to convert rgb image data for display on advanced color electronic paper |
WO2023211699A1 (en) | 2022-04-27 | 2023-11-02 | E Ink Corporation | Electro-optic display stacks with segmented electrodes and methods of making the same |
US11984088B2 (en) | 2022-04-27 | 2024-05-14 | E Ink Corporation | Color displays configured to convert RGB image data for display on advanced color electronic paper |
WO2024044119A1 (en) | 2022-08-25 | 2024-02-29 | E Ink Corporation | Transitional driving modes for impulse balancing when switching between global color mode and direct update mode for electrophoretic displays |
WO2024091547A1 (en) | 2022-10-25 | 2024-05-02 | E Ink Corporation | Methods for driving electro-optic displays |
WO2024158855A1 (en) | 2023-01-27 | 2024-08-02 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
US12190836B2 (en) | 2023-01-27 | 2025-01-07 | E Ink Corporation | Multi-element pixel electrode circuits for electro-optic displays and methods for driving the same |
WO2024182264A1 (en) | 2023-02-28 | 2024-09-06 | E Ink Corporation | Drive scheme for improved color gamut in color electrophoretic displays |
WO2024206187A1 (en) | 2023-03-24 | 2024-10-03 | E Ink Corporation | Methods for driving electro-optic displays |
WO2024253934A1 (en) | 2023-06-05 | 2024-12-12 | E Ink Corporation | Color electrophoretic medium having four pigment particle system addressable by waveforms having four voltage levels |
WO2025006440A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Time-shifted waveforms for multi-particle electrophoretic displays providing low-flash image updates |
WO2025006130A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Electrophoretic device with ambient light sensor and adaptive whiteness restoring and color balancing frontlight |
WO2025006476A1 (en) | 2023-06-27 | 2025-01-02 | E Ink Corporation | Multi-particle electrophoretic display having low-flash image updates |
WO2025034396A1 (en) | 2023-08-08 | 2025-02-13 | E Ink Corporation | Backplanes for segmented electro-optic displays and methods of manufacturing same |
Also Published As
Publication number | Publication date |
---|---|
US20050099672A1 (en) | 2005-05-12 |
US6995550B2 (en) | 2006-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6995550B2 (en) | Method and apparatus for determining properties of an electrophoretic display | |
US6512354B2 (en) | Method and apparatus for sensing the state of an electrophoretic display | |
US6504524B1 (en) | Addressing methods for displays having zero time-average field | |
US6710540B1 (en) | Electrostatically-addressable electrophoretic display | |
US6531997B1 (en) | Methods for addressing electrophoretic displays | |
US6738050B2 (en) | Microencapsulated electrophoretic electrostatically addressed media for drawing device applications | |
US6177921B1 (en) | Printable electrode structures for displays | |
US6664944B1 (en) | Rear electrode structures for electrophoretic displays | |
US8089453B2 (en) | Stylus-based addressing structures for displays | |
US6232950B1 (en) | Rear electrode structures for displays | |
US7304634B2 (en) | Rear electrode structures for electrophoretic displays | |
US7352353B2 (en) | Electrostatically addressable electrophoretic display | |
US7956841B2 (en) | Stylus-based addressing structures for displays | |
US7167155B1 (en) | Color electrophoretic displays | |
EP1010035B1 (en) | Novel addressing schemes for electrophoretic displays | |
EP1507165A1 (en) | Novel addressing schemes for electrophoretic displays | |
CA2300827A1 (en) | Novel addressing schemes for electrophoretic displays |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: E INK CORPORATION, MASSACHUSETTS Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:JACOBSON, JOSEPH M.;DRZAIC, PAUL;O'NEIL, STEVEN J.;AND OTHERS;REEL/FRAME:013738/0280;SIGNING DATES FROM 20020219 TO 20030122 |
|
STCB | Information on status: application discontinuation |
Free format text: EXPRESSLY ABANDONED -- DURING PUBLICATION PROCESS |