US20030100601A1 - Method for reducing postprandial oxidative stress using cocoa procyanidins - Google Patents
Method for reducing postprandial oxidative stress using cocoa procyanidins Download PDFInfo
- Publication number
- US20030100601A1 US20030100601A1 US10/305,802 US30580202A US2003100601A1 US 20030100601 A1 US20030100601 A1 US 20030100601A1 US 30580202 A US30580202 A US 30580202A US 2003100601 A1 US2003100601 A1 US 2003100601A1
- Authority
- US
- United States
- Prior art keywords
- chocolate
- cocoa
- procyanidins
- beans
- polyphenols
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 235000009470 Theobroma cacao Nutrition 0.000 title claims abstract description 151
- CWEZAWNPTYBADX-UHFFFAOYSA-N Procyanidin Natural products OC1C(OC2C(O)C(Oc3c2c(O)cc(O)c3C4C(O)C(Oc5cc(O)cc(O)c45)c6ccc(O)c(O)c6)c7ccc(O)c(O)c7)c8c(O)cc(O)cc8OC1c9ccc(O)c(O)c9 CWEZAWNPTYBADX-UHFFFAOYSA-N 0.000 title claims abstract description 76
- 229920002414 procyanidin Polymers 0.000 title claims abstract description 76
- 238000000034 method Methods 0.000 title claims abstract description 55
- 230000036542 oxidative stress Effects 0.000 title claims abstract description 15
- 230000000291 postprandial effect Effects 0.000 title claims abstract description 9
- 244000240602 cacao Species 0.000 title abstract 2
- PFTAWBLQPZVEMU-UKRRQHHQSA-N (-)-epicatechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-UKRRQHHQSA-N 0.000 claims abstract description 6
- 230000007170 pathology Effects 0.000 claims abstract description 6
- PFTAWBLQPZVEMU-ZFWWWQNUSA-N (+)-epicatechin Natural products C1([C@@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-ZFWWWQNUSA-N 0.000 claims abstract description 4
- LPTRNLNOHUVQMS-UHFFFAOYSA-N epicatechin Natural products Cc1cc(O)cc2OC(C(O)Cc12)c1ccc(O)c(O)c1 LPTRNLNOHUVQMS-UHFFFAOYSA-N 0.000 claims abstract description 4
- 235000012734 epicatechin Nutrition 0.000 claims abstract description 4
- 244000299461 Theobroma cacao Species 0.000 claims description 228
- 235000019219 chocolate Nutrition 0.000 claims description 77
- 235000010627 Phaseolus vulgaris Nutrition 0.000 claims description 55
- 244000046052 Phaseolus vulgaris Species 0.000 claims description 55
- 150000008442 polyphenolic compounds Chemical class 0.000 claims description 40
- 235000013824 polyphenols Nutrition 0.000 claims description 40
- 235000013305 food Nutrition 0.000 claims description 25
- 235000019221 dark chocolate Nutrition 0.000 claims description 20
- 239000000203 mixture Substances 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 14
- 239000000178 monomer Substances 0.000 claims description 13
- 239000004615 ingredient Substances 0.000 claims description 12
- IAIWVQXQOWNYOU-BAQGIRSFSA-N [(z)-(5-nitrofuran-2-yl)methylideneamino]urea Chemical compound NC(=O)N\N=C/C1=CC=C([N+]([O-])=O)O1 IAIWVQXQOWNYOU-BAQGIRSFSA-N 0.000 claims description 8
- 235000009508 confectionery Nutrition 0.000 claims description 7
- 235000013361 beverage Nutrition 0.000 claims description 5
- PFTAWBLQPZVEMU-DZGCQCFKSA-N (+)-catechin Chemical compound C1([C@H]2OC3=CC(O)=CC(O)=C3C[C@@H]2O)=CC=C(O)C(O)=C1 PFTAWBLQPZVEMU-DZGCQCFKSA-N 0.000 claims description 4
- 235000015872 dietary supplement Nutrition 0.000 claims description 4
- 239000000539 dimer Substances 0.000 claims description 4
- 235000019222 white chocolate Nutrition 0.000 claims description 4
- 235000019220 whole milk chocolate Nutrition 0.000 claims description 4
- 208000029078 coronary artery disease Diseases 0.000 claims description 3
- 239000002904 solvent Substances 0.000 claims description 3
- 206010028980 Neoplasm Diseases 0.000 claims description 2
- 235000015155 buttermilk Nutrition 0.000 claims description 2
- 201000011510 cancer Diseases 0.000 claims description 2
- ADRVNXBAWSRFAJ-UHFFFAOYSA-N catechin Natural products OC1Cc2cc(O)cc(O)c2OC1c3ccc(O)c(O)c3 ADRVNXBAWSRFAJ-UHFFFAOYSA-N 0.000 claims description 2
- 235000005487 catechin Nutrition 0.000 claims description 2
- 229950001002 cianidanol Drugs 0.000 claims description 2
- 239000011248 coating agent Substances 0.000 claims description 2
- 238000000576 coating method Methods 0.000 claims description 2
- 229940119429 cocoa extract Drugs 0.000 claims description 2
- 235000013365 dairy product Nutrition 0.000 claims description 2
- 208000015122 neurodegenerative disease Diseases 0.000 claims description 2
- 235000015097 nutrients Nutrition 0.000 claims description 2
- 235000020183 skimmed milk Nutrition 0.000 claims description 2
- 241000124008 Mammalia Species 0.000 claims 2
- 241000208365 Celastraceae Species 0.000 claims 1
- 235000000336 Solanum dulcamara Nutrition 0.000 claims 1
- 239000003085 diluting agent Substances 0.000 claims 1
- 239000000546 pharmaceutical excipient Substances 0.000 claims 1
- 235000018823 dietary intake Nutrition 0.000 abstract description 5
- 239000000047 product Substances 0.000 description 41
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 27
- 229940118019 malondialdehyde Drugs 0.000 description 27
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 24
- 238000012360 testing method Methods 0.000 description 19
- XFZJEEAOWLFHDH-UHFFFAOYSA-N (2R,2'R,3R,3'R,4R)-3,3',4',5,7-Pentahydroxyflavan(48)-3,3',4',5,7-pentahydroxyflavan Natural products C=12OC(C=3C=C(O)C(O)=CC=3)C(O)CC2=C(O)C=C(O)C=1C(C1=C(O)C=C(O)C=C1O1)C(O)C1C1=CC=C(O)C(O)=C1 XFZJEEAOWLFHDH-UHFFFAOYSA-N 0.000 description 15
- 102000007330 LDL Lipoproteins Human genes 0.000 description 15
- 108010007622 LDL Lipoproteins Proteins 0.000 description 15
- MOJZMWJRUKIQGL-FWCKPOPSSA-N Procyanidin C2 Natural products O[C@@H]1[C@@H](c2cc(O)c(O)cc2)Oc2c([C@H]3[C@H](O)[C@@H](c4cc(O)c(O)cc4)Oc4c3c(O)cc(O)c4)c(O)cc(O)c2[C@@H]1c1c(O)cc(O)c2c1O[C@@H]([C@H](O)C2)c1cc(O)c(O)cc1 MOJZMWJRUKIQGL-FWCKPOPSSA-N 0.000 description 15
- 238000004458 analytical method Methods 0.000 description 15
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 15
- HGVVOUNEGQIPMS-UHFFFAOYSA-N procyanidin Chemical compound O1C2=CC(O)=CC(O)=C2C(O)C(O)C1(C=1C=C(O)C(O)=CC=1)OC1CC2=C(O)C=C(O)C=C2OC1C1=CC=C(O)C(O)=C1 HGVVOUNEGQIPMS-UHFFFAOYSA-N 0.000 description 15
- -1 lipid peroxides Chemical class 0.000 description 14
- 210000002381 plasma Anatomy 0.000 description 14
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 12
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 12
- 235000012791 bagels Nutrition 0.000 description 12
- 235000014571 nuts Nutrition 0.000 description 12
- 230000037406 food intake Effects 0.000 description 11
- 238000004128 high performance liquid chromatography Methods 0.000 description 11
- RVBUGGBMJDPOST-UHFFFAOYSA-N 2-thiobarbituric acid Chemical compound O=C1CC(=O)NC(=S)N1 RVBUGGBMJDPOST-UHFFFAOYSA-N 0.000 description 9
- 235000019197 fats Nutrition 0.000 description 9
- 150000002632 lipids Chemical class 0.000 description 9
- 239000000843 powder Substances 0.000 description 7
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 7
- 201000001320 Atherosclerosis Diseases 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- ODKSFYDXXFIFQN-BYPYZUCNSA-N L-arginine Chemical compound OC(=O)[C@@H](N)CCCN=C(N)N ODKSFYDXXFIFQN-BYPYZUCNSA-N 0.000 description 6
- 229930064664 L-arginine Natural products 0.000 description 6
- 235000014852 L-arginine Nutrition 0.000 description 6
- 210000004369 blood Anatomy 0.000 description 6
- 239000008280 blood Substances 0.000 description 6
- 235000005911 diet Nutrition 0.000 description 6
- 239000000284 extract Substances 0.000 description 6
- 238000000855 fermentation Methods 0.000 description 6
- 230000004151 fermentation Effects 0.000 description 6
- 238000005502 peroxidation Methods 0.000 description 6
- LRHPLDYGYMQRHN-UHFFFAOYSA-N N-Butanol Chemical compound CCCCO LRHPLDYGYMQRHN-UHFFFAOYSA-N 0.000 description 5
- 239000003963 antioxidant agent Substances 0.000 description 5
- 235000006708 antioxidants Nutrition 0.000 description 5
- 238000011088 calibration curve Methods 0.000 description 5
- 229940110456 cocoa butter Drugs 0.000 description 5
- 235000019868 cocoa butter Nutrition 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- 230000003647 oxidation Effects 0.000 description 5
- 238000007254 oxidation reaction Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- 244000105624 Arachis hypogaea Species 0.000 description 4
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 230000015572 biosynthetic process Effects 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- 230000037213 diet Effects 0.000 description 4
- 230000003617 peroxidasic effect Effects 0.000 description 4
- 235000020777 polyunsaturated fatty acids Nutrition 0.000 description 4
- 235000000346 sugar Nutrition 0.000 description 4
- YAPQBXQYLJRXSA-UHFFFAOYSA-N theobromine Chemical compound CN1C(=O)NC(=O)C2=C1N=CN2C YAPQBXQYLJRXSA-UHFFFAOYSA-N 0.000 description 4
- 244000144725 Amygdalus communis Species 0.000 description 3
- 235000010777 Arachis hypogaea Nutrition 0.000 description 3
- 241000196324 Embryophyta Species 0.000 description 3
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 3
- 241000199361 Villosa perpurpurea Species 0.000 description 3
- 238000003556 assay Methods 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 239000003814 drug Substances 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 235000013861 fat-free Nutrition 0.000 description 3
- 230000003859 lipid peroxidation Effects 0.000 description 3
- 230000036961 partial effect Effects 0.000 description 3
- 235000020232 peanut Nutrition 0.000 description 3
- 238000012545 processing Methods 0.000 description 3
- 238000011002 quantification Methods 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 239000013589 supplement Substances 0.000 description 3
- 231100000331 toxic Toxicity 0.000 description 3
- 230000002588 toxic effect Effects 0.000 description 3
- 229930013783 (-)-epicatechin Natural products 0.000 description 2
- 235000007355 (-)-epicatechin Nutrition 0.000 description 2
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 description 2
- IIZPXYDJLKNOIY-JXPKJXOSSA-N 1-palmitoyl-2-arachidonoyl-sn-glycero-3-phosphocholine Chemical compound CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCC\C=C/C\C=C/C\C=C/C\C=C/CCCCC IIZPXYDJLKNOIY-JXPKJXOSSA-N 0.000 description 2
- 208000024827 Alzheimer disease Diseases 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 2
- 235000011437 Amygdalus communis Nutrition 0.000 description 2
- 235000017060 Arachis glabrata Nutrition 0.000 description 2
- 235000018262 Arachis monticola Nutrition 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 235000011299 Brassica oleracea var botrytis Nutrition 0.000 description 2
- 240000003259 Brassica oleracea var. botrytis Species 0.000 description 2
- 239000004322 Butylated hydroxytoluene Substances 0.000 description 2
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 2
- 208000024172 Cardiovascular disease Diseases 0.000 description 2
- 235000007466 Corylus avellana Nutrition 0.000 description 2
- 235000010469 Glycine max Nutrition 0.000 description 2
- 244000068988 Glycine max Species 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- 240000007594 Oryza sativa Species 0.000 description 2
- 235000007164 Oryza sativa Nutrition 0.000 description 2
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 2
- 235000020224 almond Nutrition 0.000 description 2
- 239000000908 ammonium hydroxide Substances 0.000 description 2
- 230000000489 anti-atherogenic effect Effects 0.000 description 2
- 230000003078 antioxidant effect Effects 0.000 description 2
- 230000000923 atherogenic effect Effects 0.000 description 2
- 230000003139 buffering effect Effects 0.000 description 2
- 229940095259 butylated hydroxytoluene Drugs 0.000 description 2
- 235000010354 butylated hydroxytoluene Nutrition 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- HVYWMOMLDIMFJA-DPAQBDIFSA-N cholesterol Chemical compound C1C=C2C[C@@H](O)CC[C@]2(C)[C@@H]2[C@@H]1[C@@H]1CC[C@H]([C@H](C)CCCC(C)C)[C@@]1(C)CC2 HVYWMOMLDIMFJA-DPAQBDIFSA-N 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 229920002770 condensed tannin Polymers 0.000 description 2
- 230000000378 dietary effect Effects 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000005284 excitation Effects 0.000 description 2
- 238000000605 extraction Methods 0.000 description 2
- 239000000796 flavoring agent Substances 0.000 description 2
- 235000019634 flavors Nutrition 0.000 description 2
- 235000013312 flour Nutrition 0.000 description 2
- 238000001917 fluorescence detection Methods 0.000 description 2
- 235000006486 human diet Nutrition 0.000 description 2
- 229910052500 inorganic mineral Inorganic materials 0.000 description 2
- 150000002500 ions Chemical class 0.000 description 2
- 239000000787 lecithin Substances 0.000 description 2
- 229940067606 lecithin Drugs 0.000 description 2
- 235000010445 lecithin Nutrition 0.000 description 2
- 238000004949 mass spectrometry Methods 0.000 description 2
- 235000013372 meat Nutrition 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- 238000003801 milling Methods 0.000 description 2
- 239000011707 mineral Substances 0.000 description 2
- 235000010755 mineral Nutrition 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000004305 normal phase HPLC Methods 0.000 description 2
- 230000035764 nutrition Effects 0.000 description 2
- 235000016709 nutrition Nutrition 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 229940097156 peroxyl Drugs 0.000 description 2
- 235000017807 phytochemicals Nutrition 0.000 description 2
- 229930000223 plant secondary metabolite Natural products 0.000 description 2
- 230000036470 plasma concentration Effects 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- 235000009566 rice Nutrition 0.000 description 2
- 238000002098 selective ion monitoring Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000011550 stock solution Substances 0.000 description 2
- 229960004559 theobromine Drugs 0.000 description 2
- 238000000825 ultraviolet detection Methods 0.000 description 2
- 235000013343 vitamin Nutrition 0.000 description 2
- 229930003231 vitamin Natural products 0.000 description 2
- 239000011782 vitamin Substances 0.000 description 2
- 229940088594 vitamin Drugs 0.000 description 2
- NBAHDDCWKUBMMN-UHFFFAOYSA-N *.B.OC1=CC2=C(C(O)=C1)C(C1=C(O)C3=C(OC(C4=CC(O)=C(O)C=C4)C(O)C3)C(C3C4=C(C=C(O)C=C4O)OC(C4=CC(O)=C(O)C=C4)C3O)=C1O)C(O)C(C1=CC(O)=C(O)C=C1)O2 Chemical compound *.B.OC1=CC2=C(C(O)=C1)C(C1=C(O)C3=C(OC(C4=CC(O)=C(O)C=C4)C(O)C3)C(C3C4=C(C=C(O)C=C4O)OC(C4=CC(O)=C(O)C=C4)C3O)=C1O)C(O)C(C1=CC(O)=C(O)C=C1)O2 NBAHDDCWKUBMMN-UHFFFAOYSA-N 0.000 description 1
- MOJZMWJRUKIQGL-UHFFFAOYSA-N *.OC1=CC2=C(C(O)=C1)C(C1=C(O)C=C(O)C3=C1OC(C1=CC(O)=C(O)C=C1)C(O)C3C1=C(O)C=C(O)C3=C1OC(C1=CC(O)=C(O)C=C1)C(O)C3)C(O)C(C1=CC(O)=C(O)C=C1)O2 Chemical compound *.OC1=CC2=C(C(O)=C1)C(C1=C(O)C=C(O)C3=C1OC(C1=CC(O)=C(O)C=C1)C(O)C3C1=C(O)C=C(O)C3=C1OC(C1=CC(O)=C(O)C=C1)C(O)C3)C(O)C(C1=CC(O)=C(O)C=C1)O2 MOJZMWJRUKIQGL-UHFFFAOYSA-N 0.000 description 1
- 244000291564 Allium cepa Species 0.000 description 1
- 235000002732 Allium cepa var. cepa Nutrition 0.000 description 1
- 240000002234 Allium sativum Species 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- 102000004506 Blood Proteins Human genes 0.000 description 1
- 108010017384 Blood Proteins Proteins 0.000 description 1
- 240000007124 Brassica oleracea Species 0.000 description 1
- 235000003899 Brassica oleracea var acephala Nutrition 0.000 description 1
- 235000011301 Brassica oleracea var capitata Nutrition 0.000 description 1
- 235000017647 Brassica oleracea var italica Nutrition 0.000 description 1
- 235000001169 Brassica oleracea var oleracea Nutrition 0.000 description 1
- 235000008534 Capsicum annuum var annuum Nutrition 0.000 description 1
- 240000008384 Capsicum annuum var. annuum Species 0.000 description 1
- 206010051290 Central nervous system lesion Diseases 0.000 description 1
- 241000723382 Corylus Species 0.000 description 1
- 240000007582 Corylus avellana Species 0.000 description 1
- 229940123457 Free radical scavenger Drugs 0.000 description 1
- 208000031226 Hyperlipidaemia Diseases 0.000 description 1
- 241000758791 Juglandaceae Species 0.000 description 1
- 240000007049 Juglans regia Species 0.000 description 1
- 235000009496 Juglans regia Nutrition 0.000 description 1
- 244000070406 Malus silvestris Species 0.000 description 1
- 235000005135 Micromeria juliana Nutrition 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 235000019502 Orange oil Nutrition 0.000 description 1
- 240000002114 Satureja hortensis Species 0.000 description 1
- 235000007315 Satureja hortensis Nutrition 0.000 description 1
- 238000000944 Soxhlet extraction Methods 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 235000005764 Theobroma cacao ssp. cacao Nutrition 0.000 description 1
- 235000005767 Theobroma cacao ssp. sphaerocarpum Nutrition 0.000 description 1
- 208000007536 Thrombosis Diseases 0.000 description 1
- 235000009499 Vanilla fragrans Nutrition 0.000 description 1
- 244000263375 Vanilla tahitensis Species 0.000 description 1
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 1
- 229930003427 Vitamin E Natural products 0.000 description 1
- 235000009754 Vitis X bourquina Nutrition 0.000 description 1
- 235000012333 Vitis X labruscana Nutrition 0.000 description 1
- 240000006365 Vitis vinifera Species 0.000 description 1
- 235000014787 Vitis vinifera Nutrition 0.000 description 1
- PQLVXDKIJBQVDF-UHFFFAOYSA-N acetic acid;hydrate Chemical compound O.CC(O)=O PQLVXDKIJBQVDF-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 150000001299 aldehydes Chemical class 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 235000021016 apples Nutrition 0.000 description 1
- 239000006286 aqueous extract Substances 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009697 arginine Nutrition 0.000 description 1
- 230000036523 atherogenesis Effects 0.000 description 1
- 229940090047 auto-injector Drugs 0.000 description 1
- 244000309464 bull Species 0.000 description 1
- 235000001046 cacaotero Nutrition 0.000 description 1
- 235000014633 carbohydrates Nutrition 0.000 description 1
- 150000001720 carbohydrates Chemical class 0.000 description 1
- 235000014171 carbonated beverage Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 230000030833 cell death Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000007795 chemical reaction product Substances 0.000 description 1
- 235000016019 chocolate confectionery Nutrition 0.000 description 1
- 235000012000 cholesterol Nutrition 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 235000008504 concentrate Nutrition 0.000 description 1
- 235000013409 condiments Nutrition 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 235000014510 cooky Nutrition 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 210000002889 endothelial cell Anatomy 0.000 description 1
- 201000005577 familial hyperlipidemia Diseases 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 238000005558 fluorometry Methods 0.000 description 1
- 235000012041 food component Nutrition 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 235000011846 forastero Nutrition 0.000 description 1
- 244000237494 forastero Species 0.000 description 1
- 238000004108 freeze drying Methods 0.000 description 1
- 235000012055 fruits and vegetables Nutrition 0.000 description 1
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 description 1
- 235000004611 garlic Nutrition 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005227 gel permeation chromatography Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 239000011491 glass wool Substances 0.000 description 1
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 1
- 230000000260 hypercholesteremic effect Effects 0.000 description 1
- 238000000338 in vitro Methods 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 235000015263 low fat diet Nutrition 0.000 description 1
- 235000004213 low-fat Nutrition 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000002207 metabolite Substances 0.000 description 1
- XELZGAJCZANUQH-UHFFFAOYSA-N methyl 1-acetylthieno[3,2-c]pyrazole-5-carboxylate Chemical compound CC(=O)N1N=CC2=C1C=C(C(=O)OC)S2 XELZGAJCZANUQH-UHFFFAOYSA-N 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 235000021243 milk fat Nutrition 0.000 description 1
- 208000010125 myocardial infarction Diseases 0.000 description 1
- 230000003448 neutrophilic effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000015145 nougat Nutrition 0.000 description 1
- 239000010502 orange oil Substances 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000008506 pathogenesis Effects 0.000 description 1
- 230000001575 pathological effect Effects 0.000 description 1
- 235000021400 peanut butter Nutrition 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 238000005191 phase separation Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 235000011962 puddings Nutrition 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 239000002516 radical scavenger Substances 0.000 description 1
- 150000003254 radicals Chemical class 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 239000013557 residual solvent Substances 0.000 description 1
- 235000015067 sauces Nutrition 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 150000008163 sugars Chemical class 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 235000020357 syrup Nutrition 0.000 description 1
- 239000006188 syrup Substances 0.000 description 1
- 235000013616 tea Nutrition 0.000 description 1
- 230000000451 tissue damage Effects 0.000 description 1
- 231100000827 tissue damage Toxicity 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 description 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 description 1
- 235000012141 vanillin Nutrition 0.000 description 1
- 230000004855 vascular circulation Effects 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 235000019165 vitamin E Nutrition 0.000 description 1
- 229940046009 vitamin E Drugs 0.000 description 1
- 239000011709 vitamin E Substances 0.000 description 1
- 150000003722 vitamin derivatives Chemical class 0.000 description 1
- 235000020234 walnut Nutrition 0.000 description 1
- 235000013618 yogurt Nutrition 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G1/00—Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
- A23G1/30—Cocoa products, e.g. chocolate; Substitutes therefor
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23G—COCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
- A23G1/00—Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
- A23G1/30—Cocoa products, e.g. chocolate; Substitutes therefor
- A23G1/32—Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds
- A23G1/42—Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins
- A23G1/426—Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds containing microorganisms or enzymes; containing paramedical or dietetical agents, e.g. vitamins containing vitamins or antibiotics
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K31/00—Medicinal preparations containing organic active ingredients
- A61K31/33—Heterocyclic compounds
- A61K31/335—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin
- A61K31/35—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom
- A61K31/352—Heterocyclic compounds having oxygen as the only ring hetero atom, e.g. fungichromin having six-membered rings with one oxygen as the only ring hetero atom condensed with carbocyclic rings, e.g. methantheline
- A61K31/353—3,4-Dihydrobenzopyrans, e.g. chroman, catechin
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S426/00—Food or edible material: processes, compositions, and products
- Y10S426/804—Low calorie, low sodium or hypoallergic
Definitions
- This invention relates to a method for reducing postprandial oxidative stress.
- Oxidative stress has been implicated in a variety of diseases and pathological conditions, including endothelial cell cytotoxicity, coronary heart diseases (such as thrombosis and hyperlipemia) and cancer. (Addis et al. 1995). Recent studies have shown that elevated lipid peroxidation levels (oxidative stress) may play a role in the pathogenesis of Alzheimer's disease which includes a group of neurodegenerative disorders with diverse etiologies, but the same hallmark brain lesions. Practico D. et al., Increased F 2- isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 1998 Dec; 12 (15): 1777-1783.
- Antioxidants limit oxidative modification of LDL and consequently lower plasma concentrations of LDL, thereby acting as anti-atherogenic compounds (Sarkkinen et al. 1993).
- the oxidation of LDL has been reported as a model for testing the ability of polyphenols to act as antioxidants by breaking the peroxidative cascade described above (Rice-Evans, C., Plant polyphenols: free radical scavengers or chain-breaking antioxidants? Biochem. Soc. Symp. 61, 103-116 (1995)).
- Studies have reported that polyphenols can break the chain of the peroxidative process by intercepting free radicals before they reenter the cycle (Rice-Evans 1995).
- This invention is directed to a method for reducing postprandial oxidative stress and associated pathologies by the dietary intake of cocoa polyphenols, including cocoa procyanidins.
- Cocoa procyanidins include monomers and dimers of catechin and epicatechin.
- Cocoa procyanidins can be obtained from several Theobroma cacao genotypes by the procedures discussed hereinafter. Cocoa procyanidins can also be obtained by synthetic methods described in PCT/US98/21392 (published as WO 99/19319 on Apr. 22, 1999) which is incorporated herein by reference. The oligomers synthesized using these methods may be linear, having the structure:
- X is an integer from zero to sixteen or branched, having the structure:
- a and B are independently integers from one to fifteen.
- Measuring the formation of lipid oxidative products is one way to assay oxidative stress. Cocoa procyanidins reduce LDL peroxidation which consequently reduces the formation of lipid oxidation products which can be assayed as described herein.
- One such lipid oxidation product is malondialdehyde (MDA) which may be potentially toxic to the cell. Cocoa procyanidins can be found in foods common in the human diet, including chocolate. Epicatechin is a cocoa procyanidin abundant in chocolate.
- FIG. 1 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of 1 ⁇ 2 bagel and a dark chocolate product which was made with enhanced levels of cocoa polyphenols and following ingestion of 1 ⁇ 2 bagel and a control chocolate containing lower levels cocoa polyphenols, including cocoa procyanidins (CPs).
- MDA malondialdehyde
- FIG. 2 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of 1 ⁇ 2 bagel alone and following ingestion of 1 ⁇ 2 bagel with increasing quantities of semisweet chocolate which is typically high in cocoa polyphenols, including cocoa procyanidins (CPs).
- MDA malondialdehyde
- MDA is a low molecular weight end-product that forms via decomposition of the products formed by lipid peroxidation.
- the MDA found in the plasma can be quantified using the Yagi et al. methods because at low pH and elevated temperature, MDA reacts with TBA to generate a fluorescent red adduct of MDA and TBA (1:2 ratio).
- the fluorescent intensity of the MDA:TBA adduct which can be accurately quantified, parallels the concentration of the adduct.
- the amount of lipid peroxide produced can be fluorometrically measured using the TBA reaction, using an MDA standard.
- Substances other than the lipid peroxides can react with TBA and thereby distort results. These water-soluble substances are eliminated from the plasma sample by isolating the lipids using precipitation along with the serum protein using a phosphotungstic acid-sulfuric acid system.
- the dark chocolate test product contained 147 mg total cocoa procyanidins (40.6 mg monomer) per 36.9 gram test product.
- the dark chocolate control product contained only 3.3. mg cocoa procyanidins (1.8 mg monomers) per 36.9 gram control product.
- the semisweet products contained 185 mg total cocoa procyanidins (45.3 mg monomers) per a 35 gram bag of semisweet chocolate bits.
- a single bag serving was consumed as the single dosage size.
- a two bag serving (70 grams) of semisweet chocolate bits product contained 370 mg total cocoa procyanidins and a three bag serving (105 grams) of semisweet chocolate bits product contained 555 mg total cocoa procyanidins.
- the chocolate liquor used to make the test products and the control product was a blend of cocoa beans, some of which were underfermented.
- the beans were prepared by the methods described in PCT/US97/15893 (published as WO 98/09533 on Mar. 12, 1998), which is herein incorporated by reference.
- Standard of Identity rules governed the different levels of chocolate liquor and sugar which were used to prepare semisweet versus dark chocolate.
- the semisweet chocolate had higher levels of chocolate liquor and sugar.
- the semisweet chocolate and the dark chocolate test products were used to demonstrate that even though the cocoa procyanidins were delivered using two different forms of test products, similar effects were exhibited by each.
- the chocolate liquor and/or cocoa solids can be prepared by roasting the cocoa beans to an internal bean temperature of 95° C. to 160° C., winnowing the cocoa nibs from the roasted cocoa beans, milling the roasted cocoa nibs into the chocolate liquor and optionally recovering cocoa butter and partially defatted cocoa solids from the chocolate liquor.
- the cocoa solids can be further defatted using conventional methods.
- partially defatted cocoa beans having a high cocoa polyphenol content i.e., a high cocoa procyanidin content
- a high cocoa polyphenol content i.e., a high cocoa procyanidin content
- the method consists essentially of the steps of: (a) heating the cocoa beans to an internal bean temperature just sufficient to reduce the moisture content to about 3% by weight and loosen the cocoa shell, typically using a infra red heating apparatus for about 3 to 4 minutes; (b) winnowing the cocoa nibs from the cocoa shells; (c) screw pressing the cocoa nibs; and (d) recovering the cocoa butter and partially defatted cocoa solids which contain cocoa polyphenols including cocoa procyanidins.
- the cocoa beans are cleaned prior to the heating step, e.g., in an air fluidized bed density separator.
- the cocoa beans are heated to an internal bean temperature of about 100° C.
- the winnowing can be carried out in an air fluidized bed density separator.
- the above process of heating the cocoa beans to reduce the moisture content and loosen the cocoa shell is disclosed in U.S. patent application Ser. NO. 08/709,406 (now allowed, issue fee paid) which is herein incorporated by reference.
- the internal bean temperature (IBT) can be measured by filling an insulated container such as a thermos bottle with beans (approximately 80-100 beans). In order to maintain the temperature of the beans during transfer from the heating apparatus to the thermos, the insulated container is then appropriately sealed in order to maintain the temperature of the sample therein. A thermometer is inserted into the bean filled insulated container and the temperature of the thermometer is equilibrated with respect to the beans in the thermos. The temperature reading is the IBT temperature of the beans. IBT can also be considered the equilibrium mass temperature of the beans.
- the cocoa beans can be divided into four categories based on their color: predominately brown (fully fermented), purple/brown, purple, and slaty (unfermented).
- the cocoa solids are prepared from underfermented cocoa beans, i e., slaty cocoa beans, purple cocoa beans, mixtures of slaty and purple cocoa beans, mixtures of purple and brown cocoa beans, or mixture of slaty, purple, and brown cocoa beans. More preferably, the cocoa beans are slaty and/or purple cocoa beans have a higher cocoa polyphenol content than fermented beans.
- the cocoa polyphenol content of cocoa ingredients is higher when the cocoa beans or blends thereof having a fermentation factor of 275 or less.
- these cocoa beans are used for processing into cocoa ingredients.
- the “fermentation factor” is determined using a grading system for characterizing the fermentation of the cocoa beans. For example, slaty beans are designated 1, purple beans as 2, purple/brown beans as 3, and brown beans as 4. The percentage of beans falling within each category is multiplied by the weighted number.
- the “fermentation factor” for a sample of 100% brown beans would be 100 ⁇ 4 or 400, whereas for a 100% sample of purple beans it would be 100 ⁇ 2 or 200.
- a sample of 50% slaty beans and 50% purple beans would have a fermentation factor of 150 [(50 ⁇ 1)+(50 ⁇ 20)].
- high cocoa polyphenol food products may be prepared using conventional chocolate liquors or these high cocoa polyphenol chocolate liquors and/or conventional chocolate cocoa solids or high cocoa polyphenol cocoa solids by protecting the milk and/or sweetener with a pretreatment ingredient selected from the group consisting of an antioxidant, an emulsifier, a fat, a flavorant and mixtures thereof, before adding the cocoa ingredient.
- a pretreatment ingredient selected from the group consisting of an antioxidant, an emulsifier, a fat, a flavorant and mixtures thereof, before adding the cocoa ingredient.
- Preferred pretreatment ingredients are a mixture of cocoa butter and lecithin.
- Examples of high cocoa polyphenol food products include pet food, dry cocoa mixes, puddings, syrups, cookies, savory sauces, rice mixes and/or rice cakes, beverages, including cocoa beverages and carbonated beverages.
- the high cocoa polyphenol foods are chocolate confectioneries, for example, dark chocolate, semisweet chocolate, sweet chocolate, milk chocolate, buttermilk chocolate, skim milk chocolate, mixed dairy milk chocolate and reduced fat chocolate.
- Cocoa polyphenols may be added to white chocolate and white chocolate coating to create products with high levels of cocoa polyphenols.
- These confectioneries may be either Standard of Identity chocolates or non-Standard of Identity chocolates.
- Preferable non-chocolate food products include nut-based products such as peanut butter, peanut brittle and the like.
- low-fat food products prepared with defatted or partially defatted nut meats.
- Cocoa procyanidins are also used in dietary supplements and pharmaceuticals.
- food products comprising at least one cocoa polyphenol and L-arginine.
- the procyanidin and L-arginine may be provided, respectively, by cocoa and/or nut procyanidins and an L-arginine containing component, such as a nut meat.
- the L-arginine may be derived from any available arginine source, e.g., Arachis hypogaea (peanuts), Juglans regia (walnuts), Prunus amygdalus (almonds), Corylus avellana (hazelnuts), Glycine max (soy bean) and the like.
- the nut may be nut pieces, a nut skin, a nut paste, and/or a nut flour present in amounts which provide the desired amount of L-arginine, which will vary depending upon the nut source.
- the L-arginine-containing ingredient may also be a seed, a seed paste, and/or a seed flour.
- the cocoa polyphenols, including cocoa procyanidins may be synthetic or natural. The procyanidins may from a source other than cocoa beans.
- the food product may contain polyphenols, such as procyanidins, from a source other than cocoa, e.g., the polyphenols found in the skins of nuts such as those described above.
- Peanut skins contain about 17% procyanidins
- almond skins contain up to 30% procyanidins.
- the nut skins are used in the food product, e.g., the nougat of a chocolate candy.
- Polyphenols from fruits and vegetables may also be suitable for use herein. It is known that the skins of fruits such as apples and oranges, as well as grape seeds, are high in polyphenols.
- food is a material consisting of protein, carbohydrate and/or fat, which is used in the body of an organism to sustain growth, repair vital processes, and to furnish energy. Foods may also contain supplementary substances, such as, minerals, vitamins, and condiments (Merriam-Webster Collegiate Dictionary, 10 th Edition, 1993).
- “food supplement” is a product (other than tobacco) that is intended to supplement the diet that bears or contains one or more of the following dietary ingredients: a vitamin, a mineral, an herb or other botanical, an amino acid, a dietary substance for use by man to supplement the diet by increasing the total daily intake, or a concentrate, metabolite, constituent, extract or combination of these ingredients.
- a vitamin, a mineral, an herb or other botanical an amino acid
- a dietary substance for use by man to supplement the diet by increasing the total daily intake or a concentrate, metabolite, constituent, extract or combination of these ingredients.
- supply means that nutrients have been added in amounts greater than 50% above the U.S. Recommended Daily Allowance (“Understanding Normal and Clinical Nutrition, 3 rd Edition, Editors Whitney, Cataldo and Rolfes at page 525).
- cocoa procyanidins in these products are part of a larger family of cocoa polyphenols which are present in cocoa beans.
- Suitable cocoa procyanidin-containing ingredients include roasted cocoa nibs or fractions thereof, chocolate liquor, partially defatted cocoa solids, nonfat cocoa solids, cocoa powder milled from the cocoa solids, and mixtures thereof.
- the ingredients are prepared from underfermented beans since these beans contain higher amounts of cocoa polyphenols including the cocoa procyanidins.
- Cocoa procyanidins can be obtained from several Theobroma cacao genotypes which represent the three recognized horticultural races of cocoa, namely, Trinitario, Forastero and Criollo. See Engels, J. M.
- An extract containing cocoa polyphenols, including cocoa procyanidins can be prepared by solvent extracting the partially defatted cocoa solids prepared from the underfermented cocoa beans or cocoa nibs having a fermentation factor of 275 or less, as described herein.
- the analytical method described below was used to separate and quantify, by degree of polymerization, the procyanidin composition of the seeds from Theobroma cacao and of chocolate.
- the analytical method described below is based upon work reported in Hammerstone, J. F., Lazarus, S. A., Mitchell, A. E., Rucker R., Schmitz H. H., Identification of Procyanidins in Cocoa ( Theobroma cacao ) and Chocolate Using High - Perforrnance Liquid Chromatography/Mass Spectrometry, J. Ag. Food Chem.; 1999; 47 (10) 490-496.
- the fresh seeds (from Brazilian cocoa beans) were ground in a high-speed laboratory mill with liquid nitrogen until the particle size was reduced to approximately 90 microns. Lipids were removed from 220 grams (g) of the ground seeds by extracting three times with 1000 milliliters (mL) of hexane. The lipid free solids were air dried to yield approximately 100 g of fat-free material. A fraction containing procyanidins was obtained by extracting with 1000 mL of 70% by volume acetone in water. The suspension was centrifuged for 10 minutes at 1500 g. The acetone layer was decanted through a funnel with glass wool.
- aqueous acetone was then re-extracted with hexane ( ⁇ 75 mL) to remove residual lipids.
- the hexane layer was discarded and the aqueous acetone was rotary evaporated under partial vacuum at 40° C. to a final volume of 200 mL.
- the aqueous extract was freeze dried to yield approximately 19 g of acetone extract material.
- acetone extract obtained above was suspended in 10 mL of 70% aqueous methanol and centrifuged at 1500 g. The supernatant was semi-purified on a Sephadex LH-20 column (70 ⁇ 3 centimeters) which had previously been equilibrated with methanol at a flow rate of 3.5 mL/min. Two and a half hours after sample loading, fractions were collected every 20 minutes and analyzed by HPLC for theobromine and caffeine See Clapperton, J., Hammerstone, J. F., Romanczyk, L.
- the cocoa extract from above (0.7 g) was dissolved in (7 mL) mixture of acetone/water/acetic acid in a ratio by volume of 70:29.5:0.5, respectively.
- a linear gradient (shown in the table below) was used to separate procyanidin fractions using a 5 um Supelcosil LC column (Silica, 100 Angstroms ( ⁇ ); 50 ⁇ 2 cm) (Supelco, Inc., Bellefonte, Pa.) which was monitored by UV at a wavelength of 280 nanometers (nm).
- HPLC normal-phase high-performance chromatograph
- MS mass spectometry
- API-ES atmospheric pressure ionization electrospray
- Separations were effected by a series of linear gradients of B into A with a constant 4% of (C) at a flow rate of 1 mL/min as follows: elution starting with 14% of (B) into (A); 14-28.4% of (B) into (A), 0-30 min; 28.4-50% of (B) into (A), 30-60 min; 50-86% of (B) into (A), 60-65 min; and 65-70 min isocratic.
- HPLC/MS analyses of purified fractions were performed using an HP 1100 series HPLC as described above and interfaced to an HP series 1100 mass selective detector (model G1946A) equipped with an API-ES ionization chamber.
- the buffering reagent was added via a tee in the eluant stream of the HPLC just prior to the mass spectrometer and delivered with an HP 1100 series HPLC pump, bypassing the degasser.
- Conditions for analysis in the negative ion mode included 0.75 M ammonium hydroxide as a buffering reagent at a flow rate of 0.04 mL/min, a capillary voltage of 3 kV, a fragmentor at 75 V, a nebulizing pressure of 25 psig, and a drying gas temperature at 350° C. Data were collected on an HP ChemStation using both scan mode and selected ion monitoring (SIM). Spectra were scanned over a mass range of m/z 100-3000 at 1.96 seconds per cycle. The ammonium hydroxide was used to adjust the eluant pH to near neutrality via an additional auxiliary pump just prior to entering the MS.
- This treatment counteracted the suppression of negative ionization of the ( ⁇ )-epicatechin standard due to the elevated concentration of acid in the mobile phase.
- the purity for each fraction was determined by peak area, using UV detection at a wavelength of 280 nm in combination with a comparison of the ion abundance ratio between each oligomeric class.
- a composite standard was made using commercially available ( ⁇ )-epicatechin for the monomer. Dimers through decamers were obtained in a purified state by the methods described above. Standard Stock solutions using these compounds were analyzed using the normal-phase HPLC method described above with fluorescence detection at excitation and emission wavelengths of 276 nm and 316 nm, respectively. Peaks were grouped and their areas summed to include contributions from all isomers within any one class of oligomers and calibration curves generated using a quadratic fit. Monomers and smaller oligomers had almost linear plots which is consistent with prior usage of linear regression to generate monomer-based and dimer-based calibration curves.
- the percentage of fat for the samples was determined using a standardized method by the Association of Official Analytical Chemists (AOAC Official Method 920.177). The quantity of total procyanidin levels in the original sample (with fat) was then calculated. Calibration was performed prior to each sample run to protect against column-to-column variations.
- Phytochemicals are components in plants and foods derived from plants including many fruits, coffee, some teas, green peppers, garlic, onions, yogurt, bran, and cruciferous vegetables such as broccoli, cabbage, and cauliflower, etc.
- the control subjects consumed a control bar which contained a low level of cocoa procyanidins, i.e., only 3.3. mg cocoa procyanidins (1.8 mg monomer) per 36.9 gram control product.
- the dark chocolate test product contained 147 mg total cocoa procyanidins (40.6 mg monomer) per 36.9 gram test product. Blood samples were drawn at 2 hours, after which another bagel was consumed. At 6 hours, another blood sample was drawn. FIG.
- FIG. 1 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of 1 ⁇ 2 bagel with the dark chocolate test product or 1 ⁇ 2 bagel with the control chocolate product having the low cocoa procyanidins.
- MDA malondialdehyde
- the control chocolate product which some of the subjects ingested was prepared from jet black cocoa powder that is approximately ten to twelve percent fat that is completely alkalized.
- the powder was reconstituted in cocoa butter to give the proper percentage fat in the dark chocolate test bar (taking into account the 9.87% fat in the powder itself).
- the control bar was formulated with 49.335% sugar, 19.75% jet black cocoa powder, 27.344% cocoa butter, 2.61% anhydrous milk fat, 0.06% vanillin, 0.75% lecithin, 0.15% prova vanilla, and 0.001% orange oil.
- the level of monomer was calculated to be 1.8 mg per bar based upon the 3.3 mg per bar level of cocoa procyanidins and the known levels of fat.
- the control subjects consumed 1 ⁇ 2 bagel alone and no chocolate.
- the test group consumed 1 ⁇ 2 bagel with one of three different chocolates, each with a different level of cocoa procyanidins per bag.
- the first chocolate test product was a 35 gram semisweet chocolate product containing 185 mg total cocoa procyanidins (45.3 mg monomer) per 35 grams.
- the second chocolate test product was a 70 gram semisweet chocolate product containing 370 mg total cocoa procyanidins.
- the third chocolate test product was a 105 gram semisweet chocolate product containing 555 mg total cocoa procyanidins. Blood samples were drawn at 2 hours, after which another bagel was consumed. After 6 hours, another blood sample was drawn. FIG.
- FIG. 2 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of 1 ⁇ 2 bagel alone and following ingestion of 1 ⁇ 2 bagel with increasing quantities of semisweet chocolate product, i.e., 35, 70 and 105 grams, containing increasing quantities of total cocoa procyanidins, i.e., 185, 370 and 555 mg.
- MDA malondialdehyde
- TBARS thiobarbituric reactive substances
- a plasma sample 100 L was mixed with 4% butylated hydroxytoluene (BHT) and then frozen overnight. The sample was then thawed at room temperature and a 100 L sample was mixed with 200 L sodium dodecyl sulfate (SDS). The following reagents were then added in sequence: 800 L 0.1 N hydrochloric acid (HCl), 100 L 10% 1,4-benzenedicarboxylic acid (PTA), and 400 L 0.7% thiobarbituric acid (TBA). The sample mixture was incubated in 95 C water bath for 30 minutes. After cooling on ice, 1 ml of 1-butanol was added.
- HCl hydrochloric acid
- PTA 1,4-benzenedicarboxylic acid
- TSA thiobarbituric acid
- the sample was then centrifuged for 10 minutes at 1800 g (3000 rpm) at 4 C.
- a 200 L aliquot of the butanol phase was assayed for extracted MDA by fluorometry. This quantity was used for each of the 96 wells of the plate which was read with excitation at 515 nm, slit 5 nm and emission at 555 nm, slit 5 nm.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Engineering & Computer Science (AREA)
- Public Health (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Veterinary Medicine (AREA)
- Microbiology (AREA)
- Nutrition Science (AREA)
- Inorganic Chemistry (AREA)
- Epidemiology (AREA)
- Pharmacology & Pharmacy (AREA)
- Medicinal Chemistry (AREA)
- Coloring Foods And Improving Nutritive Qualities (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
Abstract
A method for reducing postprandial oxidative stress and associated pathologies by the dietary intake of cocoa procyanidins, such as epicatechin is disclosed.
Description
- This invention relates to a method for reducing postprandial oxidative stress.
- Studies have linked certain dietary factors with atherosclerosis, a forerunner of coronary heart disease (Addis, P. B., Carr, T. P., Hassel, C. A., Hwang, Z. Z., Warner, G. J., Atherogenic and anti-atherogenic factors in the human diet.Biochem. Soc. Symp. 61, 259-271 (1995)). For example, a diet high in polyunsaturated fatty acids (PUFAS) may render low-density lipoprotein (LDL) more susceptible to peroxidation (Addis et al. 1995). The peroxidation of LDL can cause tissue damage leading to atherosclerosis (Sarkkinen, E. S., Uusitupa, M. I. J., Nyyssönen, K., Parviainen, M., Penttila, I., Salonen, J. T., Effects of two low-fat diets, high and low in polyunsaturated fatty acids, on plasma lipid peroxides and serum vitamin E levels in free-living hypercholesterolaemic men. European Journal of Clinical Nutrition (1993) 47: 623-630). The peroxidation of LDL is a result of the neutrophilic production of a superoxide anion radical or other reactive species (Steinberg, D., Parthasapathy, S., Carew, T. E., Khoo, J. C., Witztum, J. L. (1989) Beyond cholesterol. Modifications of low-density lipoprotein that increases its atherogenicity. New England Journal of Medicine 320: 915-924). The reactive species produced interact with PUFAS to form lipid peroxyl radicals, which subsequently produce lipid hydroperoxides and additional lipid peroxyl radicals (Steinberg et al. 1989). This initiates a peroxidative cascade which may eventually modify an essential part of the lipid's membrane, causing changes in membrane permeability and even cell death (Steinberg et al. 1989). Peroxidative degradation of LDL also leads to the formation of lipid oxidation products such as malondialdehyde (MDA) and other aldehydes which may be potentially toxic to the cell (Steinberg et al. 1989).
- Oxidative stress has been implicated in a variety of diseases and pathological conditions, including endothelial cell cytotoxicity, coronary heart diseases (such as thrombosis and hyperlipemia) and cancer. (Addis et al. 1995). Recent studies have shown that elevated lipid peroxidation levels (oxidative stress) may play a role in the pathogenesis of Alzheimer's disease which includes a group of neurodegenerative disorders with diverse etiologies, but the same hallmark brain lesions. Practico D. et al.,Increased F2-isoprostanes in Alzheimer's disease: evidence for enhanced lipid peroxidation in vivo. FASEB J. 1998 Dec; 12 (15): 1777-1783.
- Clinical studies have established that elevated plasma concentrations of LDL are associated with atherosclerosis, a most prevalent cardiovascular disease and the principle cause of heart attack, stroke and vascular circulation problems (Sarkkinen et al. 1993). It is believed that a reduction of atherogenic lipid peroxides (which are transported in the LDL fraction of blood serum) can reduce the risk of atherogenesis (Mazur, A., Bayle, D., Lab, C., Rock, E., Rayssiguier, Y., Inhibiting effect of procyanidin-rich extracts on LDL oxidation in vitro.Atherosclerosis 145 (1999) 421-422). Antioxidants limit oxidative modification of LDL and consequently lower plasma concentrations of LDL, thereby acting as anti-atherogenic compounds (Sarkkinen et al. 1993). The oxidation of LDL has been reported as a model for testing the ability of polyphenols to act as antioxidants by breaking the peroxidative cascade described above (Rice-Evans, C., Plant polyphenols: free radical scavengers or chain-breaking antioxidants? Biochem. Soc. Symp. 61, 103-116 (1995)). Studies have reported that polyphenols can break the chain of the peroxidative process by intercepting free radicals before they reenter the cycle (Rice-Evans 1995).
- This invention is directed to a method for reducing postprandial oxidative stress and associated pathologies by the dietary intake of cocoa polyphenols, including cocoa procyanidins. Cocoa procyanidins include monomers and dimers of catechin and epicatechin.
-
-
- where A and B are independently integers from one to fifteen.
- It has been found that the dietary intake of an effective amount of cocoa procyanidins counteracts postprandial oxidative stress which has been linked to associated pathologies as described herein. Postprandial oxidative stress occurs following the ingestion of food products and has been linked with hyperlipidemia and increased risk of cardiovascular disease. Ursini F. et al.,Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic. Biol. Med 1998 Jul. 15; 25 (2): 250-252. Consequently, the dietary intake of an effective amount of cocoa procyanidins counteracts these pathologies associated with postprandial oxidative stress.
- Measuring the formation of lipid oxidative products is one way to assay oxidative stress. Cocoa procyanidins reduce LDL peroxidation which consequently reduces the formation of lipid oxidation products which can be assayed as described herein. One such lipid oxidation product is malondialdehyde (MDA) which may be potentially toxic to the cell. Cocoa procyanidins can be found in foods common in the human diet, including chocolate. Epicatechin is a cocoa procyanidin abundant in chocolate.
- FIG. 1 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of ½ bagel and a dark chocolate product which was made with enhanced levels of cocoa polyphenols and following ingestion of ½ bagel and a control chocolate containing lower levels cocoa polyphenols, including cocoa procyanidins (CPs).
- FIG. 2 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of ½ bagel alone and following ingestion of ½ bagel with increasing quantities of semisweet chocolate which is typically high in cocoa polyphenols, including cocoa procyanidins (CPs).
- It has been found that the dietary intake of cocoa procyanidins counteracts oxidative stress as measured by reduction of LDL peroxidation. Consequently, there was reduction in the formation of LDL peroxidation products, such as malondialdehyde (MDA), which may be potentially toxic to the cell. Plasma lipid peroxides were measured photometrically using a thiobarbituric acid (TBA) reaction based on methods described in Yagi, K.,Assay for blood plasma or serum, Methods in Enzymology 105: 328-331 (1984) Academic Press, Inc., Orlando, Fla. (Ed. L. Packer). MDA is a low molecular weight end-product that forms via decomposition of the products formed by lipid peroxidation. The MDA found in the plasma can be quantified using the Yagi et al. methods because at low pH and elevated temperature, MDA reacts with TBA to generate a fluorescent red adduct of MDA and TBA (1:2 ratio). The fluorescent intensity of the MDA:TBA adduct, which can be accurately quantified, parallels the concentration of the adduct. Hence, the amount of lipid peroxide produced can be fluorometrically measured using the TBA reaction, using an MDA standard. Substances other than the lipid peroxides can react with TBA and thereby distort results. These water-soluble substances are eliminated from the plasma sample by isolating the lipids using precipitation along with the serum protein using a phosphotungstic acid-sulfuric acid system.
- As shown below, levels of MDA decreased at 2 and at 6 hours following ingestion of semisweet chocolate high in cocoa polyphenols. Similarly, MDA levels decreased at 2 and at 6 hours following ingestion of dark chocolate high in cocoa polyphenols. The decreases were more pronounced when the intake of chocolate was increased. MDA levels also decreased (albeit not as much) when tested at 6 hours following ingestion of a dark chocolate which contained less of the cocoa polyphenols (that is, lower amounts of cocoa polyphenols than contained in the test chocolates). All of the chocolates used in the experiments described herein were made using the methods discussed hereinafter. All test products contained enriched levels of cocoa procyanidins.
- For example, the dark chocolate test product contained 147 mg total cocoa procyanidins (40.6 mg monomer) per 36.9 gram test product. The dark chocolate control product contained only 3.3. mg cocoa procyanidins (1.8 mg monomers) per 36.9 gram control product. The semisweet products contained 185 mg total cocoa procyanidins (45.3 mg monomers) per a 35 gram bag of semisweet chocolate bits. A single bag serving was consumed as the single dosage size. A two bag serving (70 grams) of semisweet chocolate bits product contained 370 mg total cocoa procyanidins and a three bag serving (105 grams) of semisweet chocolate bits product contained 555 mg total cocoa procyanidins.
- The quantities of cocoa procyanidin monomers and oligomers in the test products were measured by the analytical methods discussed hereinafter. Procyanidin levels were determined by analyzing levels of chocolate liquor or jet black cocoa powder and calculating the percentage of powder in the final product. The low levels of procyanidins in the control dark chocolate product precluded direct analysis.
- The chocolate liquor used to make the test products and the control product was a blend of cocoa beans, some of which were underfermented. The beans were prepared by the methods described in PCT/US97/15893 (published as WO 98/09533 on Mar. 12, 1998), which is herein incorporated by reference. Standard of Identity rules governed the different levels of chocolate liquor and sugar which were used to prepare semisweet versus dark chocolate. The semisweet chocolate had higher levels of chocolate liquor and sugar. The semisweet chocolate and the dark chocolate test products were used to demonstrate that even though the cocoa procyanidins were delivered using two different forms of test products, similar effects were exhibited by each.
- Methods for preparing cocoa mass are described in U.S. Pat. No. 5,554,645 (issued Sep. 10, 1996) which is herein incorporated by reference. Harvested cocoa pods were opened and the beans with pulp were removed for freeze-drying. The pulp was manually removed from the freeze-dried mass and the beans were subjected to the following manipulations. The freeze-dried cocoa beans were first manually dehulled and ground to a fine powdery mass with a TEKMAR Mill. The resultant mass was then defatted overnight by Soxhlet extraction using redistilled hexane as the solvent Residual solvent was removed from the defatted mass by vacuum at ambient temperature.
- The chocolate liquor and/or cocoa solids can be prepared by roasting the cocoa beans to an internal bean temperature of 95° C. to 160° C., winnowing the cocoa nibs from the roasted cocoa beans, milling the roasted cocoa nibs into the chocolate liquor and optionally recovering cocoa butter and partially defatted cocoa solids from the chocolate liquor. The cocoa solids can be further defatted using conventional methods.
- Alternatively, partially defatted cocoa beans having a high cocoa polyphenol content, i.e., a high cocoa procyanidin content, can be obtained by processing without a bean or nib roasting step and without milling the beans to chocolate liquor. Even higher levels can be achieved if underfermented cocoa beans are used in this process. This method conserves the cocoa polyphenols because it omits the traditional roasting step. The method consists essentially of the steps of: (a) heating the cocoa beans to an internal bean temperature just sufficient to reduce the moisture content to about 3% by weight and loosen the cocoa shell, typically using a infra red heating apparatus for about 3 to 4 minutes; (b) winnowing the cocoa nibs from the cocoa shells; (c) screw pressing the cocoa nibs; and (d) recovering the cocoa butter and partially defatted cocoa solids which contain cocoa polyphenols including cocoa procyanidins. Optionally, the cocoa beans are cleaned prior to the heating step, e.g., in an air fluidized bed density separator. Preferably, the cocoa beans are heated to an internal bean temperature of about 100° C. to about 110° C., more preferably less than about 105° C. The winnowing can be carried out in an air fluidized bed density separator. The above process of heating the cocoa beans to reduce the moisture content and loosen the cocoa shell is disclosed in U.S. patent application Ser. NO. 08/709,406 (now allowed, issue fee paid) which is herein incorporated by reference.
- The internal bean temperature (IBT) can be measured by filling an insulated container such as a thermos bottle with beans (approximately 80-100 beans). In order to maintain the temperature of the beans during transfer from the heating apparatus to the thermos, the insulated container is then appropriately sealed in order to maintain the temperature of the sample therein. A thermometer is inserted into the bean filled insulated container and the temperature of the thermometer is equilibrated with respect to the beans in the thermos. The temperature reading is the IBT temperature of the beans. IBT can also be considered the equilibrium mass temperature of the beans.
- The cocoa beans can be divided into four categories based on their color: predominately brown (fully fermented), purple/brown, purple, and slaty (unfermented). Preferably, the cocoa solids are prepared from underfermented cocoa beans, i e., slaty cocoa beans, purple cocoa beans, mixtures of slaty and purple cocoa beans, mixtures of purple and brown cocoa beans, or mixture of slaty, purple, and brown cocoa beans. More preferably, the cocoa beans are slaty and/or purple cocoa beans have a higher cocoa polyphenol content than fermented beans.
- The cocoa polyphenol content of cocoa ingredients, for example, the roasted cocoa nibs, chocolate liquor and partially defatted or nonfat cocoa solids, is higher when the cocoa beans or blends thereof having a fermentation factor of 275 or less. Preferably, these cocoa beans are used for processing into cocoa ingredients. The “fermentation factor” is determined using a grading system for characterizing the fermentation of the cocoa beans. For example, slaty beans are designated 1, purple beans as 2, purple/brown beans as 3, and brown beans as 4. The percentage of beans falling within each category is multiplied by the weighted number. Thus, the “fermentation factor” for a sample of 100% brown beans would be 100×4 or 400, whereas for a 100% sample of purple beans it would be 100×2 or 200. A sample of 50% slaty beans and 50% purple beans would have a fermentation factor of 150 [(50×1)+(50×20)].
- Conventional processing techniques do not provide food products, especially confectioneries which adequately retain the cocoa polyphenol concentrations. However, high cocoa polyphenol food products may be prepared using conventional chocolate liquors or these high cocoa polyphenol chocolate liquors and/or conventional chocolate cocoa solids or high cocoa polyphenol cocoa solids by protecting the milk and/or sweetener with a pretreatment ingredient selected from the group consisting of an antioxidant, an emulsifier, a fat, a flavorant and mixtures thereof, before adding the cocoa ingredient. Preferred pretreatment ingredients are a mixture of cocoa butter and lecithin.
- Examples of high cocoa polyphenol food products include pet food, dry cocoa mixes, puddings, syrups, cookies, savory sauces, rice mixes and/or rice cakes, beverages, including cocoa beverages and carbonated beverages. Preferably, the high cocoa polyphenol foods are chocolate confectioneries, for example, dark chocolate, semisweet chocolate, sweet chocolate, milk chocolate, buttermilk chocolate, skim milk chocolate, mixed dairy milk chocolate and reduced fat chocolate. Cocoa polyphenols may be added to white chocolate and white chocolate coating to create products with high levels of cocoa polyphenols. These confectioneries may be either Standard of Identity chocolates or non-Standard of Identity chocolates. Preferable non-chocolate food products include nut-based products such as peanut butter, peanut brittle and the like. Also included are low-fat food products prepared with defatted or partially defatted nut meats. Cocoa procyanidins are also used in dietary supplements and pharmaceuticals. Also included are food products comprising at least one cocoa polyphenol and L-arginine. The procyanidin and L-arginine may be provided, respectively, by cocoa and/or nut procyanidins and an L-arginine containing component, such as a nut meat. The L-arginine may be derived from any available arginine source, e.g.,Arachis hypogaea (peanuts), Juglans regia (walnuts), Prunus amygdalus (almonds), Corylus avellana (hazelnuts), Glycine max (soy bean) and the like. The nut may be nut pieces, a nut skin, a nut paste, and/or a nut flour present in amounts which provide the desired amount of L-arginine, which will vary depending upon the nut source. The L-arginine-containing ingredient may also be a seed, a seed paste, and/or a seed flour. The cocoa polyphenols, including cocoa procyanidins, may be synthetic or natural. The procyanidins may from a source other than cocoa beans.
- The food product may contain polyphenols, such as procyanidins, from a source other than cocoa, e.g., the polyphenols found in the skins of nuts such as those described above. Peanut skins contain about 17% procyanidins, and almond skins contain up to 30% procyanidins. In a preferred embodiment, the nut skins are used in the food product, e.g., the nougat of a chocolate candy. Polyphenols from fruits and vegetables may also be suitable for use herein. It is known that the skins of fruits such as apples and oranges, as well as grape seeds, are high in polyphenols.
- As used herein “food” is a material consisting of protein, carbohydrate and/or fat, which is used in the body of an organism to sustain growth, repair vital processes, and to furnish energy. Foods may also contain supplementary substances, such as, minerals, vitamins, and condiments (Merriam-Webster Collegiate Dictionary, 10th Edition, 1993).
- As used herein “food supplement” is a product (other than tobacco) that is intended to supplement the diet that bears or contains one or more of the following dietary ingredients: a vitamin, a mineral, an herb or other botanical, an amino acid, a dietary substance for use by man to supplement the diet by increasing the total daily intake, or a concentrate, metabolite, constituent, extract or combination of these ingredients. (Merriam-Webster Collegiate Dictionary, 10th Edition, 1993) When the term is used on food labels, “supplement” means that nutrients have been added in amounts greater than 50% above the U.S. Recommended Daily Allowance (“Understanding Normal and Clinical Nutrition, 3rd Edition, Editors Whitney, Cataldo and Rolfes at page 525).
- As used herein “pharmaceutical” is a medicinal drug. (Merriam-Webster Collegiate Dictionary, 10th Edition, 1993).
- The cocoa procyanidins in these products are part of a larger family of cocoa polyphenols which are present in cocoa beans. Suitable cocoa procyanidin-containing ingredients include roasted cocoa nibs or fractions thereof, chocolate liquor, partially defatted cocoa solids, nonfat cocoa solids, cocoa powder milled from the cocoa solids, and mixtures thereof. Preferably, the ingredients are prepared from underfermented beans since these beans contain higher amounts of cocoa polyphenols including the cocoa procyanidins. Cocoa procyanidins can be obtained from severalTheobroma cacao genotypes which represent the three recognized horticultural races of cocoa, namely, Trinitario, Forastero and Criollo. See Engels, J. M. M., Genetic Resources of Cacao: A catalogue of the CATIE collection, Tech. Bull. 7, Turrialba, Costa Rica (1981). An extract containing cocoa polyphenols, including cocoa procyanidins, can be prepared by solvent extracting the partially defatted cocoa solids prepared from the underfermented cocoa beans or cocoa nibs having a fermentation factor of 275 or less, as described herein.
- Analytical Methods for the Quantification of Cocoa Procyanidins
- The analytical method described below was used to separate and quantify, by degree of polymerization, the procyanidin composition of the seeds fromTheobroma cacao and of chocolate. The analytical method described below is based upon work reported in Hammerstone, J. F., Lazarus, S. A., Mitchell, A. E., Rucker R., Schmitz H. H., Identification of Procyanidins in Cocoa (Theobroma cacao) and Chocolate Using High-Perforrnance Liquid Chromatography/Mass Spectrometry, J. Ag. Food Chem.; 1999; 47 (10) 490-496. The utility of the analytical method described below was applied in a qualitative study of a broad range of food and beverage samples reported to contain various types of proanthocyanidins, as reported in Lazarus, S. A., Adamson, G. E., Hammerstone, J. F., Schmitz, H. H., High-performance Liquid Chromatography/Mass Spectrometry Analysis of Proanthocyanidins in Foods and Beverages, J. Ag. Food Chem.; 1999; 47 (9); 3693-3701. The analysis in Lazarus et al. (1999) reported analysis using fluorescence detection because of higher selectivity and sensitivity.
- Composite standard stock solutions and calibration curves were generated for each procyanidin oligomer through decamer using the analytical method described below, as reported in Adamson, G. E., Lazarus, S. A., Mitchell, A. E., Prior R. L., Cao, G., Jacobs, P. H., Kremers B. G., Hammerstone, J. F., Rucker R., Ritter K. A., Schmitz H. H.,HPLC Method for the Quantification of Procyanidins in Cocoa and Chocolate Samples and Correlation to Total Antioxidant Capacity, J. Ag. Food Chem.; 1999; 47 (10) 4184-4188. Samples were then compared with the composite standard to accurately determine the levels of procyanidins.
- Extraction
- The fresh seeds (from Brazilian cocoa beans) were ground in a high-speed laboratory mill with liquid nitrogen until the particle size was reduced to approximately 90 microns. Lipids were removed from 220 grams (g) of the ground seeds by extracting three times with 1000 milliliters (mL) of hexane. The lipid free solids were air dried to yield approximately 100 g of fat-free material. A fraction containing procyanidins was obtained by extracting with 1000 mL of 70% by volume acetone in water. The suspension was centrifuged for 10 minutes at 1500 g. The acetone layer was decanted through a funnel with glass wool. The aqueous acetone was then re-extracted with hexane (˜75 mL) to remove residual lipids. The hexane layer was discarded and the aqueous acetone was rotary evaporated under partial vacuum at 40° C. to a final volume of 200 mL. The aqueous extract was freeze dried to yield approximately 19 g of acetone extract material.
- Gel Chromatography
- Approximately 2 g of acetone extract (obtained above) was suspended in 10 mL of 70% aqueous methanol and centrifuged at 1500 g. The supernatant was semi-purified on a Sephadex LH-20 column (70×3 centimeters) which had previously been equilibrated with methanol at a flow rate of 3.5 mL/min. Two and a half hours after sample loading, fractions were collected every 20 minutes and analyzed by HPLC for theobromine and caffeine See Clapperton, J., Hammerstone, J. F., Romanczyk, L. J., Yow, S., Lim, D., Lockwood, R.,Polyphenols and Cocoa Flavour, Proceedings, 16th International Conference of Groupe Polyphenols, Lisbon, Portugal, Groupe Polyphenols: Norbonne, France, 1992; Tome II, pp. 112-115. Once the theobromine and caffeine were eluted off the column (˜3.5 hours), the remaining eluate was collected for an additional 4.5 hours and rotary evaporated under partial vacuum at 40° C. to remove the organic solvent. Then the extract was suspended in water and freeze dried.
- Purification of Procyanidin Oligomers by Preparative Normal-Phase HPLC
- The cocoa extract from above (0.7 g) was dissolved in (7 mL) mixture of acetone/water/acetic acid in a ratio by volume of 70:29.5:0.5, respectively. A linear gradient (shown in the table below) was used to separate procyanidin fractions using a 5 um Supelcosil LC column (Silica, 100 Angstroms (Å); 50×2 cm) (Supelco, Inc., Bellefonte, Pa.) which was monitored by UV at a wavelength of 280 nanometers (nm).
methylene chloride/ methanol/ time acetic acid/water acetic acid/water flow rate (minutes) (96:2.2 v/v) (%) (96:2.2 v/v) (%) (mL/min) 0 92.5 7.5 10 10 92.5 7.5 40 30 91.5 8.5 40 145 78.0 22.0 40 150 14.0 86.0 40 155 14.0 86.0 50 180 0 100 50 - Fractions were collected at the valleys between the peaks corresponding to oligomers. Fractions with equal retention times from several preparative separations were combined, rotary evaporated under partial vacuum and freeze dried.
- Analysis of Purified Fractions by HPLC/MS
- To determine purity of the individual oligomeric fractions, an analysis was performed using a normal-phase high-performance chromatograph (HPLC) method interfaced with online mass spectometry (MS) analysis using an atmospheric pressure ionization electrospray (API-ES) chamber as described by Lazarus et al. (1999), supra. Chromatographic analyses were performed on an HP 1100 series (Hewlett-Packard, Palo Alto, Calif.) equipped with an auto-injector, quaternary HPLC pump, column heater, diode array detector, and HP ChemStation for data collection and manipulation. Normal-phase separations of the procyanidin oligomers were performed on a Phenomenex (Torrance, Calif.) Luna silica column (25×4.6 mm) at 37° C. UV detection was recorded at a wavelength of 280 nm. The ternary mobile phase consisted of (A) dichloromethane, (B) methanol, and (C) acetic acid and water (1:1 v/v). Separations were effected by a series of linear gradients of B into A with a constant 4% of (C) at a flow rate of 1 mL/min as follows: elution starting with 14% of (B) into (A); 14-28.4% of (B) into (A), 0-30 min; 28.4-50% of (B) into (A), 30-60 min; 50-86% of (B) into (A), 60-65 min; and 65-70 min isocratic.
- HPLC/MS analyses of purified fractions were performed using an HP 1100 series HPLC as described above and interfaced to an HP series 1100 mass selective detector (model G1946A) equipped with an API-ES ionization chamber. The buffering reagent was added via a tee in the eluant stream of the HPLC just prior to the mass spectrometer and delivered with an HP 1100 series HPLC pump, bypassing the degasser. Conditions for analysis in the negative ion mode included 0.75 M ammonium hydroxide as a buffering reagent at a flow rate of 0.04 mL/min, a capillary voltage of 3 kV, a fragmentor at 75 V, a nebulizing pressure of 25 psig, and a drying gas temperature at 350° C. Data were collected on an HP ChemStation using both scan mode and selected ion monitoring (SIM). Spectra were scanned over a mass range of m/z 100-3000 at 1.96 seconds per cycle. The ammonium hydroxide was used to adjust the eluant pH to near neutrality via an additional auxiliary pump just prior to entering the MS. This treatment counteracted the suppression of negative ionization of the (−)-epicatechin standard due to the elevated concentration of acid in the mobile phase. The purity for each fraction was determined by peak area, using UV detection at a wavelength of 280 nm in combination with a comparison of the ion abundance ratio between each oligomeric class.
- Quantification of Procyanidins in Cocoa and Chocolate
- A composite standard was made using commercially available (−)-epicatechin for the monomer. Dimers through decamers were obtained in a purified state by the methods described above. Standard Stock solutions using these compounds were analyzed using the normal-phase HPLC method described above with fluorescence detection at excitation and emission wavelengths of 276 nm and 316 nm, respectively. Peaks were grouped and their areas summed to include contributions from all isomers within any one class of oligomers and calibration curves generated using a quadratic fit. Monomers and smaller oligomers had almost linear plots which is consistent with prior usage of linear regression to generate monomer-based and dimer-based calibration curves.
- These calibration curves were then used to calculate procyanidin levels in samples prepared as follows: First, the cocoa or chocolate sample (about 8 grams) was de-fatted using three hexane extractions (45 mL each). Next, one gram of de-fatted material was extracted with 5 mL of the acetone/water/acetic acid mixture (70:29.5:0.5 v/v). The quantity of procyanidins in the de-fatted material was then determined by comparing the HPLC data from the samples with the calibration curves obtained as described above (which used the purified oligomers). The percentage of fat for the samples (using a one gram sample size for chocolate or one-half gram sample size for liquors) was determined using a standardized method by the Association of Official Analytical Chemists (AOAC Official Method 920.177). The quantity of total procyanidin levels in the original sample (with fat) was then calculated. Calibration was performed prior to each sample run to protect against column-to-column variations.
- Human volunteers were instructed to fast overnight and to maintain low phytochemical intake the evening before the study. Phytochemicals are components in plants and foods derived from plants including many fruits, coffee, some teas, green peppers, garlic, onions, yogurt, bran, and cruciferous vegetables such as broccoli, cabbage, and cauliflower, etc.
- Blood was drawn from the subjects prior to consumption of any food. The subjects ingested either semisweet or dark chocolate. The two different chocolates were used to demonstrate that the cocoa polyphenols could be delivered in different forms and still exhibit the same effects. The chocolates have different levels of chocolate liquor and sugars as defined by the Standard of Identity rules for semisweet chocolate and dark chocolate The chocolate liquor used to make these products was a blend of beans, some of which were underfermented. After the initial blood was drawn, the subjects were divided into two groups. One group was tested with the semisweet chocolate and the other group was tested with the dark chocolate. Both chocolates had enhanced levels of cocoa procyanidins. The conserved levels were obtained by the process described herein.
- For the dark chocolate experiment, the control subjects consumed a control bar which contained a low level of cocoa procyanidins, i.e., only 3.3. mg cocoa procyanidins (1.8 mg monomer) per 36.9 gram control product. The dark chocolate test product contained 147 mg total cocoa procyanidins (40.6 mg monomer) per 36.9 gram test product. Blood samples were drawn at 2 hours, after which another bagel was consumed. At 6 hours, another blood sample was drawn. FIG. 1 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of ½ bagel with the dark chocolate test product or ½ bagel with the control chocolate product having the low cocoa procyanidins. As demonstrated by the data in FIG. 1, the higher the level of cocoa procyanidins ingested, the lower the levels of MDA in the plasma.
- The control chocolate product which some of the subjects ingested was prepared from jet black cocoa powder that is approximately ten to twelve percent fat that is completely alkalized. The powder was reconstituted in cocoa butter to give the proper percentage fat in the dark chocolate test bar (taking into account the 9.87% fat in the powder itself). The control bar was formulated with 49.335% sugar, 19.75% jet black cocoa powder, 27.344% cocoa butter, 2.61% anhydrous milk fat, 0.06% vanillin, 0.75% lecithin, 0.15% prova vanilla, and 0.001% orange oil. The level of monomer was calculated to be 1.8 mg per bar based upon the 3.3 mg per bar level of cocoa procyanidins and the known levels of fat.
- For the semisweet experiment, the control subjects consumed ½ bagel alone and no chocolate. The test group consumed ½ bagel with one of three different chocolates, each with a different level of cocoa procyanidins per bag. The first chocolate test product was a 35 gram semisweet chocolate product containing 185 mg total cocoa procyanidins (45.3 mg monomer) per 35 grams. The second chocolate test product was a 70 gram semisweet chocolate product containing 370 mg total cocoa procyanidins. The third chocolate test product was a 105 gram semisweet chocolate product containing 555 mg total cocoa procyanidins. Blood samples were drawn at 2 hours, after which another bagel was consumed. After 6 hours, another blood sample was drawn. FIG. 2 shows the nanomoles (nmol) of malondialdehyde (MDA) in plasma at 2 and at 6 hours following ingestion of ½ bagel alone and following ingestion of ½ bagel with increasing quantities of semisweet chocolate product, i.e., 35, 70 and 105 grams, containing increasing quantities of total cocoa procyanidins, i.e., 185, 370 and 555 mg. As demonstrated by the data in FIG. 2, the higher the level of cocoa procyanidins ingested, the lower the levels of MDA in the plasma.
- For the analysis of the thiobarbituric reactive substances (TBARS), a plasma sample (100 L) was mixed with 4% butylated hydroxytoluene (BHT) and then frozen overnight. The sample was then thawed at room temperature and a 100 L sample was mixed with 200 L sodium dodecyl sulfate (SDS). The following reagents were then added in sequence: 800 L 0.1 N hydrochloric acid (HCl), 100 L 10% 1,4-benzenedicarboxylic acid (PTA), and 400 L 0.7% thiobarbituric acid (TBA). The sample mixture was incubated in 95 C water bath for 30 minutes. After cooling on ice, 1 ml of 1-butanol was added. The sample was then centrifuged for 10 minutes at 1800 g (3000 rpm) at 4 C. A 200 L aliquot of the butanol phase was assayed for extracted MDA by fluorometry. This quantity was used for each of the 96 wells of the plate which was read with excitation at 515 nm, slit 5 nm and emission at 555 nm, slit 5 nm.
- The effect of the cocoa procyanidin levels on the oxidative stress, as measured by the TBARS assay, was apparent at 2 hours and at 6 hours as shown by the change in total nanomoles of MDA per milliliters of plasma. Whether the cocoa procyanidins were present in the dark chocolate test product or in the semisweet chocolate test products made no difference. In addition, the effect was more pronounced as the amounts of total cocoa procyanidins consumed increased.
Claims (26)
1. A method of reducing postprandial oxidative stress in a mammal, which method comprises consuming an effective amount of cocoa polyphenols.
2. The method of claim 1 , wherein the cocoa polyphenols are cocoa procyanidins.
3. The method of claim 2 , wherein the cocoa procyanidins are monomers and/or oligomers of catechin and epicatechin.
4. The method of claim 3 , wherein the oligomers are dimers through octadecamers.
5. The method of claim 1 , wherein the cocoa procyanidins are present in a food, a dietary supplement, or a pharmaceutical.
6. The method of claim 5 , wherein the food is a beverage.
7. The method of claim 5 , wherein the food is a confectionery.
8. The method of claim 5 , wherein the dietary supplement further comprises a nutrient or a carrier.
9. The method of claim 5 , wherein the pharmaceutical further comprises a carrier, a diluent, or an excipient.
10. The method of claim 7 , wherein the confectionery is a chocolate.
11. The method of claim 10 , wherein the chocolate is prepared using cocoa ingredients high in cocoa procyanidins.
12. The method of claim 11 , wherein the cocoa ingredients are selected from the group consisting of chocolate liquor, cocoa solids, roasted cocoa nibs or nib fractions, or a solvent-derived cocoa extract.
13. The method of claim 10 , wherein the chocolate is a dark chocolate.
14. The method of claim 13 , wherein the dark chocolate is a bittersweet, semisweet, or sweet dark chocolate.
15. The method of claim 14 , wherein the chocolate is a Standard of Identity chocolate.
16. The method of claim 14 , wherein the chocolate is a non-Standard of Identity chocolate.
17. The method of claim 10 , wherein the chocolate is a milk chocolate, buttermilk chocolate, skim milk chocolate or mixed dairy milk chocolate.
18. The method of claim 10 , wherein the chocolate is a reduced-fat chocolate.
19. The method of claim 17 , wherein the chocolate is a Standard of Identity chocolate.
20. The method of claim 17 , wherein the chocolate is a non-Standard of Identity chocolate.
21. The method of claim 10 , wherein the chocolate is a white chocolate or a white chocolate coating.
22. The method of claim 11 , wherein the cocoa ingredients are prepared from underfermented beans or mixtures of fermented beans and underfermented and/or unfermented beans.
23. A method of reducing the risk of pathologies associated with oxidative stress in a mammal, which method comprises consuming an amount of cocoa polyphenols effective to reduce oxidative stress.
25. The method of claim 24, wherein the associated pathologies are selected from the group comprising coronary heart diseases, neurodegenerative disorders and cancer.
26. The method of claim 2 , wherein the cocoa procyanidins comprise monomeric and/or oligomeric fractions.
27. The method of claim 26 , wherein the cocoa procyanidins are pooled fractions.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/305,802 US20030100601A1 (en) | 1999-11-17 | 2002-11-27 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/441,644 US6207702B1 (en) | 1999-11-17 | 1999-11-17 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
US09/808,556 US20010053792A1 (en) | 1999-11-17 | 2001-03-14 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
US10/305,802 US20030100601A1 (en) | 1999-11-17 | 2002-11-27 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/808,556 Continuation US20010053792A1 (en) | 1999-11-17 | 2001-03-14 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030100601A1 true US20030100601A1 (en) | 2003-05-29 |
Family
ID=23753716
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/441,644 Expired - Lifetime US6207702B1 (en) | 1999-11-17 | 1999-11-17 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
US09/808,556 Abandoned US20010053792A1 (en) | 1999-11-17 | 2001-03-14 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
US10/305,802 Abandoned US20030100601A1 (en) | 1999-11-17 | 2002-11-27 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/441,644 Expired - Lifetime US6207702B1 (en) | 1999-11-17 | 1999-11-17 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
US09/808,556 Abandoned US20010053792A1 (en) | 1999-11-17 | 2001-03-14 | Method for reducing postprandial oxidative stress using cocoa procyanidins |
Country Status (1)
Country | Link |
---|---|
US (3) | US6207702B1 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005008606A (en) * | 2003-06-23 | 2005-01-13 | Morinaga & Co Ltd | Cerebral age retarder |
US20070207188A1 (en) * | 2006-02-16 | 2007-09-06 | Miller Debra L | Cocoa products and methods of treating cardiovascular conditions with sugar-free cocoa |
US20080255204A1 (en) * | 2005-02-26 | 2008-10-16 | Bayer Cropscience Ag | Agrochemical Formulation for Improving the Action and Plant Compatibility of Crop Protection Agents |
US11077165B2 (en) * | 2004-11-09 | 2021-08-03 | Hills Pet Nutrition, Inc. | Use of antioxidants for gene modulation |
Families Citing this family (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6558713B2 (en) * | 1996-09-06 | 2003-05-06 | Mars, Incorporated | Health of a mammal by administering a composition containing at least one cocoa polyphenol ingredient |
US7968140B2 (en) * | 1997-09-08 | 2011-06-28 | Mars, Incorporated | Chocolates and chocolate liquor having an enhanced polyphenol content |
US8507018B2 (en) * | 1998-03-12 | 2013-08-13 | Mars, Incorporated | Products containing polyphenol(s) and L-arginine and methods of use thereof |
AU769472B2 (en) * | 1998-12-02 | 2004-01-29 | Florida Institute Of Technology | Methods and compositions for determining lipid peroxidation levels in oxidant stress syndromes and diseases |
ATE439051T1 (en) * | 2000-04-14 | 2009-08-15 | Mars Inc | COMPOSITIONS AND METHODS FOR IMPROVING VASCULAR HEALTH |
US6627232B1 (en) * | 2000-06-09 | 2003-09-30 | Mars Incorporated | Method for extracting cocoa procyanidins |
FR2810242B1 (en) * | 2000-06-16 | 2003-01-17 | Nuxe Lab | COSMETIC AND / OR DERMATOLOGICAL COMPOSITION BASED ON COCOA EXTRACTS |
US7514107B2 (en) | 2002-03-21 | 2009-04-07 | Mars, Incorporated | Treatment of diseases involving defective gap junctional communication |
US8435576B2 (en) * | 2005-01-28 | 2013-05-07 | Barry Callebaut Ag | Use of cocoa polyphenols for treating a prostate hyperplasia, a specific cocoa extract and applications |
US9114114B2 (en) * | 2007-06-21 | 2015-08-25 | Mars, Inc. | Edible products having a high cocoa polyphenol content and improved flavor and the milled cocoa extracts used therein |
EP2090178A1 (en) * | 2008-02-13 | 2009-08-19 | Bühler AG | Pet food product and method for its manufacture |
WO2017208058A1 (en) * | 2016-06-03 | 2017-12-07 | Casaluker S.A. | High polyphenols cocoa powder based products, uses and methods for the manufacture thereof |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6015913A (en) * | 1996-09-06 | 2000-01-18 | Mars, Incorporated | Method for producing fat and/or solids from cocoa beans |
-
1999
- 1999-11-17 US US09/441,644 patent/US6207702B1/en not_active Expired - Lifetime
-
2001
- 2001-03-14 US US09/808,556 patent/US20010053792A1/en not_active Abandoned
-
2002
- 2002-11-27 US US10/305,802 patent/US20030100601A1/en not_active Abandoned
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005008606A (en) * | 2003-06-23 | 2005-01-13 | Morinaga & Co Ltd | Cerebral age retarder |
US11077165B2 (en) * | 2004-11-09 | 2021-08-03 | Hills Pet Nutrition, Inc. | Use of antioxidants for gene modulation |
US20080255204A1 (en) * | 2005-02-26 | 2008-10-16 | Bayer Cropscience Ag | Agrochemical Formulation for Improving the Action and Plant Compatibility of Crop Protection Agents |
US20070207188A1 (en) * | 2006-02-16 | 2007-09-06 | Miller Debra L | Cocoa products and methods of treating cardiovascular conditions with sugar-free cocoa |
Also Published As
Publication number | Publication date |
---|---|
US20010053792A1 (en) | 2001-12-20 |
US6207702B1 (en) | 2001-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6805883B2 (en) | Food products containing polyphenol(s) and L-arginine to stimulate nitric oxide | |
US8715749B2 (en) | Products containing polyphenol(s) and L-arginine | |
RU2269268C2 (en) | Polyphenol(s) and l-arginine-containing products as stimulators for nitrogen oxide production | |
US6207702B1 (en) | Method for reducing postprandial oxidative stress using cocoa procyanidins | |
Niemenak et al. | Comparative study of different cocoa (Theobroma cacao L.) clones in terms of their phenolics and anthocyanins contents | |
US10155017B2 (en) | Edible products having a high cocoa polyphenol content and improved flavor and the milled cocoa extracts used therein | |
US7514107B2 (en) | Treatment of diseases involving defective gap junctional communication | |
Oracz et al. | Changes in the flavan-3-ols, anthocyanins, and flavanols composition of cocoa beans of different Theobroma cacao L. groups affected by roasting conditions | |
RU2466736C2 (en) | High-polyphenol extract of herbal raw material | |
Pedan et al. | Determination of oligomeric proanthocyanidins and their antioxidant capacity from different chocolate manufacturing stages using the NP-HPLC-online-DPPH methodology | |
Alasalvar et al. | Nuts: Nutrients, natural antioxidants, fat-soluble bioactives, and phenolics | |
Akoa et al. | Identification of methylxanthines and phenolic compounds by UPLC-DAD-ESI-MS OTOF and antioxidant capacities of beans and dark chocolate bars from three Trinitario× Forastero cocoa (Theobroma cacao L.) hybrids | |
WO2001035973A1 (en) | Method for reducing postprandial oxidative stress using cocoa procyanidins | |
AU2004200273B2 (en) | Products Containing Polyphenol(s) and L-Arginine to stimulate nitric oxide production | |
MXPA00008861A (en) | Products containing polyphenol(s) and l-arginine to stimulate nitric oxide production | |
Kaspar | Identification and quantification of flavanols and methylxanthines in chocolates with different percentages of chocolate liquor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |