US20030099843A1 - Low-permittivity porous siliceous film, semiconductor devices having such films, and coating composition for forming the film - Google Patents
Low-permittivity porous siliceous film, semiconductor devices having such films, and coating composition for forming the film Download PDFInfo
- Publication number
- US20030099843A1 US20030099843A1 US10/009,735 US973501A US2003099843A1 US 20030099843 A1 US20030099843 A1 US 20030099843A1 US 973501 A US973501 A US 973501A US 2003099843 A1 US2003099843 A1 US 2003099843A1
- Authority
- US
- United States
- Prior art keywords
- coating
- polysilazane
- silica coating
- porous silica
- dielectric constant
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004065 semiconductor Substances 0.000 title claims abstract description 16
- 239000008199 coating composition Substances 0.000 title abstract description 13
- 238000000576 coating method Methods 0.000 claims abstract description 194
- 239000011248 coating agent Substances 0.000 claims abstract description 190
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims abstract description 170
- 229920001709 polysilazane Polymers 0.000 claims abstract description 94
- 239000000377 silicon dioxide Substances 0.000 claims abstract description 85
- 229910052782 aluminium Inorganic materials 0.000 claims abstract description 48
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims abstract description 36
- 150000002148 esters Chemical class 0.000 claims abstract description 27
- 229920000058 polyacrylate Polymers 0.000 claims abstract description 27
- 229920000193 polymethacrylate Polymers 0.000 claims abstract description 27
- 239000011229 interlayer Substances 0.000 claims abstract description 11
- 150000002430 hydrocarbons Chemical group 0.000 claims description 24
- 238000010304 firing Methods 0.000 claims description 16
- 229910007991 Si-N Inorganic materials 0.000 claims description 8
- 229910006294 Si—N Inorganic materials 0.000 claims description 8
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 5
- 125000003277 amino group Chemical group 0.000 claims description 4
- 239000000203 mixture Substances 0.000 claims description 4
- 125000003808 silyl group Chemical group [H][Si]([H])([H])[*] 0.000 claims description 3
- 125000004429 atom Chemical group 0.000 claims description 2
- 239000011148 porous material Substances 0.000 claims description 2
- 239000003960 organic solvent Substances 0.000 abstract description 17
- 239000000243 solution Substances 0.000 description 60
- 230000009102 absorption Effects 0.000 description 39
- 238000010521 absorption reaction Methods 0.000 description 39
- 229910052710 silicon Inorganic materials 0.000 description 33
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 32
- 239000010703 silicon Substances 0.000 description 32
- 238000000034 method Methods 0.000 description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 20
- -1 aluminum compound Chemical class 0.000 description 19
- 238000005336 cracking Methods 0.000 description 17
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 15
- 239000008096 xylene Substances 0.000 description 15
- 239000012298 atmosphere Substances 0.000 description 12
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 10
- 229910018557 Si O Inorganic materials 0.000 description 10
- 229910052739 hydrogen Inorganic materials 0.000 description 10
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Inorganic materials [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 10
- 238000003756 stirring Methods 0.000 description 10
- 238000001914 filtration Methods 0.000 description 9
- 239000012299 nitrogen atmosphere Substances 0.000 description 9
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- DURPTKYDGMDSBL-UHFFFAOYSA-N 1-butoxybutane Chemical compound CCCCOCCCC DURPTKYDGMDSBL-UHFFFAOYSA-N 0.000 description 7
- 125000004432 carbon atom Chemical group C* 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 7
- 239000011521 glass Substances 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000011259 mixed solution Substances 0.000 description 7
- 239000000758 substrate Substances 0.000 description 7
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 239000007789 gas Substances 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 6
- 230000002940 repellent Effects 0.000 description 6
- 239000005871 repellent Substances 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000008569 process Effects 0.000 description 5
- 238000004528 spin coating Methods 0.000 description 5
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 4
- 239000004215 Carbon black (E152) Substances 0.000 description 4
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 4
- 125000000217 alkyl group Chemical group 0.000 description 4
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 4
- 125000000753 cycloalkyl group Chemical group 0.000 description 4
- XYIBRDXRRQCHLP-UHFFFAOYSA-N ethyl acetoacetate Chemical compound CCOC(=O)CC(C)=O XYIBRDXRRQCHLP-UHFFFAOYSA-N 0.000 description 4
- 229940093858 ethyl acetoacetate Drugs 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 4
- XMGQYMWWDOXHJM-UHFFFAOYSA-N limonene Chemical compound CC(=C)C1CCC(C)=CC1 XMGQYMWWDOXHJM-UHFFFAOYSA-N 0.000 description 4
- 238000002156 mixing Methods 0.000 description 4
- 229910052757 nitrogen Inorganic materials 0.000 description 4
- 125000000962 organic group Chemical group 0.000 description 4
- 230000009467 reduction Effects 0.000 description 4
- 239000002904 solvent Substances 0.000 description 4
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 3
- 0 C.C.[2*][Si]([2*])(C)N([3*])C Chemical compound C.C.[2*][Si]([2*])(C)N([3*])C 0.000 description 3
- 229920000297 Rayon Polymers 0.000 description 3
- 229910008051 Si-OH Inorganic materials 0.000 description 3
- 229910006358 Si—OH Inorganic materials 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 229910052736 halogen Inorganic materials 0.000 description 3
- 150000002367 halogens Chemical class 0.000 description 3
- FFUAGWLWBBFQJT-UHFFFAOYSA-N hexamethyldisilazane Chemical compound C[Si](C)(C)N[Si](C)(C)C FFUAGWLWBBFQJT-UHFFFAOYSA-N 0.000 description 3
- 229910010272 inorganic material Inorganic materials 0.000 description 3
- 239000011147 inorganic material Substances 0.000 description 3
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 3
- 239000004926 polymethyl methacrylate Substances 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- FYGHSUNMUKGBRK-UHFFFAOYSA-N 1,2,3-trimethylbenzene Chemical compound CC1=CC=CC(C)=C1C FYGHSUNMUKGBRK-UHFFFAOYSA-N 0.000 description 2
- KVNYFPKFSJIPBJ-UHFFFAOYSA-N 1,2-diethylbenzene Chemical compound CCC1=CC=CC=C1CC KVNYFPKFSJIPBJ-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- YNQLUTRBYVCPMQ-UHFFFAOYSA-N Ethylbenzene Chemical compound CCC1=CC=CC=C1 YNQLUTRBYVCPMQ-UHFFFAOYSA-N 0.000 description 2
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 2
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 2
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 2
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 125000003342 alkenyl group Chemical group 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 2
- SMZOGRDCAXLAAR-UHFFFAOYSA-N aluminium isopropoxide Chemical compound [Al+3].CC(C)[O-].CC(C)[O-].CC(C)[O-] SMZOGRDCAXLAAR-UHFFFAOYSA-N 0.000 description 2
- 229910021529 ammonia Inorganic materials 0.000 description 2
- 125000003710 aryl alkyl group Chemical group 0.000 description 2
- 125000003118 aryl group Chemical group 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000000919 ceramic Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000000460 chlorine Substances 0.000 description 2
- 229910052801 chlorine Inorganic materials 0.000 description 2
- 238000004040 coloring Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 125000000392 cycloalkenyl group Chemical group 0.000 description 2
- HGCIXCUEYOPUTN-UHFFFAOYSA-N cyclohexene Chemical compound C1CCC=CC1 HGCIXCUEYOPUTN-UHFFFAOYSA-N 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 239000003989 dielectric material Substances 0.000 description 2
- 229910001873 dinitrogen Inorganic materials 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- IIEWJVIFRVWJOD-UHFFFAOYSA-N ethylcyclohexane Chemical compound CCC1CCCCC1 IIEWJVIFRVWJOD-UHFFFAOYSA-N 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 150000004820 halides Chemical class 0.000 description 2
- 239000001307 helium Substances 0.000 description 2
- 229910052734 helium Inorganic materials 0.000 description 2
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 2
- 239000001257 hydrogen Substances 0.000 description 2
- 230000001771 impaired effect Effects 0.000 description 2
- 239000004973 liquid crystal related substance Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 238000001179 sorption measurement Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 238000001771 vacuum deposition Methods 0.000 description 2
- VIDOPANCAUPXNH-UHFFFAOYSA-N 1,2,3-triethylbenzene Chemical compound CCC1=CC=CC(CC)=C1CC VIDOPANCAUPXNH-UHFFFAOYSA-N 0.000 description 1
- 125000000094 2-phenylethyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])([H])* 0.000 description 1
- XBIUWALDKXACEA-UHFFFAOYSA-N 3-[bis(2,4-dioxopentan-3-yl)alumanyl]pentane-2,4-dione Chemical compound CC(=O)C(C(C)=O)[Al](C(C(C)=O)C(C)=O)C(C(C)=O)C(C)=O XBIUWALDKXACEA-UHFFFAOYSA-N 0.000 description 1
- RZVAJINKPMORJF-UHFFFAOYSA-N Acetaminophen Chemical compound CC(=O)NC1=CC=C(O)C=C1 RZVAJINKPMORJF-UHFFFAOYSA-N 0.000 description 1
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 229910001369 Brass Inorganic materials 0.000 description 1
- FSDMWTINGBRJSL-UHFFFAOYSA-N C[Al](C)C Chemical compound C[Al](C)C FSDMWTINGBRJSL-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 1
- SNRUBQQJIBEYMU-UHFFFAOYSA-N Dodecane Natural products CCCCCCCCCCCC SNRUBQQJIBEYMU-UHFFFAOYSA-N 0.000 description 1
- NTIZESTWPVYFNL-UHFFFAOYSA-N Methyl isobutyl ketone Chemical compound CC(C)CC(C)=O NTIZESTWPVYFNL-UHFFFAOYSA-N 0.000 description 1
- UIHCLUNTQKBZGK-UHFFFAOYSA-N Methyl isobutyl ketone Natural products CCC(C)C(C)=O UIHCLUNTQKBZGK-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- 229910008072 Si-N-Si Inorganic materials 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- 229910003818 SiH2Cl2 Inorganic materials 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- NRTOMJZYCJJWKI-UHFFFAOYSA-N Titanium nitride Chemical compound [Ti]#N NRTOMJZYCJJWKI-UHFFFAOYSA-N 0.000 description 1
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- 125000003158 alcohol group Chemical group 0.000 description 1
- 125000003545 alkoxy group Chemical group 0.000 description 1
- 125000004453 alkoxycarbonyl group Chemical group 0.000 description 1
- AZDRQVAHHNSJOQ-UHFFFAOYSA-N alumane Chemical class [AlH3] AZDRQVAHHNSJOQ-UHFFFAOYSA-N 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 230000000844 anti-bacterial effect Effects 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 239000010951 brass Substances 0.000 description 1
- 230000005587 bubbling Effects 0.000 description 1
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000005524 ceramic coating Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 125000000596 cyclohexenyl group Chemical group C1(=CCCCC1)* 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- MROCJMGDEKINLD-UHFFFAOYSA-N dichlorosilane Chemical compound Cl[SiH2]Cl MROCJMGDEKINLD-UHFFFAOYSA-N 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- POLCUAVZOMRGSN-UHFFFAOYSA-N dipropyl ether Chemical compound CCCOCCC POLCUAVZOMRGSN-UHFFFAOYSA-N 0.000 description 1
- 125000005066 dodecenyl group Chemical group C(=CCCCCCCCCCC)* 0.000 description 1
- 125000003438 dodecyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 239000012776 electronic material Substances 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000010408 film Substances 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000012767 functional filler Substances 0.000 description 1
- 239000012456 homogeneous solution Substances 0.000 description 1
- 229920001519 homopolymer Polymers 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 229910052742 iron Inorganic materials 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 229940087305 limonene Drugs 0.000 description 1
- 235000001510 limonene Nutrition 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 125000004923 naphthylmethyl group Chemical group C1(=CC=CC2=CC=CC=C12)C* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 150000004767 nitrides Chemical class 0.000 description 1
- 125000002347 octyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- BPUBBGLMJRNUCC-UHFFFAOYSA-N oxygen(2-);tantalum(5+) Chemical compound [O-2].[O-2].[O-2].[O-2].[O-2].[Ta+5].[Ta+5] BPUBBGLMJRNUCC-UHFFFAOYSA-N 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 125000001147 pentyl group Chemical group C(CCCC)* 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 229920001485 poly(butyl acrylate) polymer Polymers 0.000 description 1
- 229920001490 poly(butyl methacrylate) polymer Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920000205 poly(isobutyl methacrylate) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 239000000047 product Substances 0.000 description 1
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 239000005297 pyrex Substances 0.000 description 1
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 description 1
- 229910010271 silicon carbide Inorganic materials 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 125000004079 stearyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 1
- 238000000859 sublimation Methods 0.000 description 1
- 230000008022 sublimation Effects 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229910001936 tantalum oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 125000000026 trimethylsilyl group Chemical group [H]C([H])([H])[Si]([*])(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 239000010937 tungsten Substances 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- 229910052725 zinc Inorganic materials 0.000 description 1
- 239000011701 zinc Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B33/00—Silicon; Compounds thereof
- C01B33/113—Silicon oxides; Hydrates thereof
- C01B33/12—Silica; Hydrates thereof, e.g. lepidoic silicic acid
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/314—Inorganic layers
- H01L21/316—Inorganic layers composed of oxides or glassy oxides or oxide based glass
- H01L21/31695—Deposition of porous oxides or porous glassy oxides or oxide based porous glass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D183/00—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers
- C09D183/16—Coating compositions based on macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon, with or without sulfur, nitrogen, oxygen, or carbon only; Coating compositions based on derivatives of such polymers in which all the silicon atoms are connected by linkages other than oxygen atoms
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02164—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material being a silicon oxide, e.g. SiO2
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02205—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
- H01L21/02208—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si
- H01L21/02219—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen
- H01L21/02222—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition the precursor containing a compound comprising Si the compound comprising silicon and nitrogen the compound being a silazane
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02296—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
- H01L21/02318—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
- H01L21/02337—Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment by exposure to a gas or vapour
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/312—Organic layers, e.g. photoresist
- H01L21/3121—Layers comprising organo-silicon compounds
- H01L21/3125—Layers comprising organo-silicon compounds layers comprising silazane compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02112—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
- H01L21/02123—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon
- H01L21/02126—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing silicon the material containing Si, O, and at least one of H, N, C, F, or other non-metal elements, e.g. SiOC, SiOC:H or SiONC
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02109—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
- H01L21/02203—Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being porous
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02104—Forming layers
- H01L21/02107—Forming insulating materials on a substrate
- H01L21/02225—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
- H01L21/0226—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
- H01L21/02282—Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
Definitions
- the present invention relates to a porous silica coating with a low dielectric constant, a semiconductor device comprising the porous silica coating, and a coating composition which becomes the porous silica coating.
- silica coatings are converted into silica coatings by firing in atmospheric air. These silica coatings are used as interlayer dielectrics for semiconductors because of excellent electrical insulating properties. Among these silica coatings, a completely inorganic silica coating has already been employed as an excellent interlayer dielectric for a semiconductor because it has high heat resistance and can be used in a non-etch back process. In this case, the physical properties of the silica coating are similar to those of silicon dioxide (SiO 2 ) and its dielectric constant is within a range from 3.0 to 4.7.
- an object of the present invention to provide a silica coating which makes it possible to drastically reduce the dielectric constant (especially to less than 2.5) and to substantially maintain the reduced dielectric constant under an ambient atmosphere without being subjected to a water repellent treatment.
- Another object of the present invention is to provide a semiconductor device comprising the silica coating with such a low dielectric constant as an interlayer dielectric, and a coating composition which becomes the silica coating.
- a porous silica coating having a dielectric constant of less than 2.5 which is obtained by firing a coating of a composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester.
- a semiconductor device comprising the porous silica coating as an interlayer dielectric.
- a coating composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester in an organic solvent.
- the porous silica coating of the present invention is obtained by firing a coating of a composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester.
- the aluminum-containing polysilazane is obtained by mixing a polysilazane with an aluminum compound.
- the polysilazane as a material for forming the silica coating has in its molecular chain a silazane structure represented by the following general formula (1):
- R 1 , R 2 and R 3 each independently represents a hydrogen atom, a hydrocarbon group, a hydrocarbon group-containing silyl group, a hydrocarbon group-containing amino group, or a hydrocarbonoxy group. At least one of R 1 and R 2 represents a hydrogen atom.
- the hydrocarbon group may be combined with a substituent, and examples of the substituent include halogen such as chlorine, bromine and fluorine, an alkoxy group, an alkoxycarbonyl group, and an amino group.
- the hydrocarbon group includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and the aliphatic hydrocarbon group includes a chain hydrocarbon group and a cyclic hydrocarbon group.
- the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, and an arylalkyl group.
- the number of carbon atoms in these hydrocarbon atoms is not limited, but is usually 20 or less, and preferably 10 or less. In the present invention, preferred is an alkyl group having 1 to 8 carbon atoms, and particularly 1 to 4 carbon atoms.
- a preferable hydrocarbon group is an alkyl group having 1 to 20 carbon atoms, and particularly 1 to 6 carbon atoms.
- the number of hydrocarbon atoms to be combined with Si is within a range from 1 to 3.
- the number of carbon atoms in the hydrocarbon group is within a range from 1 to 3.
- the polysilazane having a silazane structure represented by the general formula (1) in a molecular chain may be a polysilazane having a chain, cyclic or crosslinked structure, or a mixture thereof.
- the number-average molecular weight is within a range from 100 to 100,000, and preferably from 300 to 10,000.
- Such a polysilazane includes conventional perhydropolysilazane, organopolysilazane, and a modified compound thereof.
- modified polysilazane examples include a platinum- or palladium-containing polysilazane, an alcohol residue-containing polysilazane, an HMDS (hexamethyldisilazane) residue-containing polysilazane, an amine-containing polysilazane, and an organic acid-containing polysilazane.
- the aluminum to be incorporated into the polysilazane may be an aluminum compound in the form capable of being dissolved in an organic solvent.
- a soluble aluminum compound includes an alkoxide, a chelete compound, an organoaluminum, and a halide.
- alkoxide of aluminum examples include those represented by the following general formula (2):
- R 4 , R 5 and R 6 represent a hydrocarbon group.
- the hydrocarbon group includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group.
- the aliphatic hydrocarbon group includes a chain hydrocarbon group and a cyclic hydrocarbon group.
- Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, and a cycloalkenyl group.
- the number of carbon atoms is not specifically limited, but is usually 20 or less, and preferably 8 or less.
- the aliphatic hydrocarbon group examples include methyl, ethyl, propyl, butyl, pentyl, octyl, dodecyl, octadecyl, dodecenyl, cyclohexyl, and cyclohexenyl.
- the aromatic hydrocarbon group includes an aryl group and an arylalkyl group. Specific examples of the aromatic hydrocarbon group include phenyl, tolyl, xylyl, naphthyl, benzyl, phenethyl, and naphthylmethyl.
- Examples of the chelete compound of aluminum include aluminum acetylacetonate and aluminum ethylacetonate.
- organoaluminum examples include those represented by the following general formula (3):
- R 4 , R 5 and R 6 represent a hydrocarbon group.
- the hydrocarbon group includes those described in connection with the general formula (2).
- halide of aluminum examples include those represented by the following general formula (4):
- X represents a halogen.
- the halogen includes chlorine, bromine, iodine, and fluorine.
- organic solvent-soluble aluminum compounds can be used alone or in combination.
- the amount of the aluminum compound to be added to the polysilazane varies depending on the kind, but is within a range from 0.001 to 10% by weight as aluminum, preferably from 0.01 to 10% by weight, and more preferably from 0.1 to 1% by weight, on the basis of the polysilazane.
- the amount of the aluminum compound is larger than the range described above, the density and homogeneity of the resulting silica coating are lowered. Therefore, it is not preferred.
- the amount is smaller than the range, the effect of the added aluminum compound becomes insufficient.
- a polysilazane and an aluminum compound are mixed with stirring in an organic solvent.
- they are mixed with stirring under the conditions of a temperature within a range from 0 to 200° C., preferably from 0 to 100° C., and a pressure within a range from normal pressure to 10 kg/cm 2 G, preferably normal pressure.
- the concentration of the polysilazane in the organic solvent is within a range from 0.1 to 80% by weight, and preferably from 5 to 50% by weight.
- an inert organic solvent free from active hydrogen is used.
- the organic solvent include an aromatic hydrocarbon solvent such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, or triethylbenzene; an alicyclic hydrocarbon solvent such as cyclohexane, cyclohexene, decahydronaphthalene, ethylcyclohexane, methylcyclohexane, p-menthine, or dipentene (limonene); an ether solvent such as dipropyl ether or dibutyl ether; and a ketone solvent such as methyl isobutyl ketone.
- An aluminum-containing polysilazane in which an aluminum compound is mixed or added, is formed by mixing the polysilazane and the aluminum compound with stirring in the organic solvent.
- the resulting aluminum-containing polysilazane does not have an aluminopolysilazane structure wherein aluminum and silicon are firmly combined.
- the coating composition of the present invention is obtained by adding a polyacrylate or polymethacrylate ester to an organic solvent solution containing the aluminum-containing polysilazane thus obtained.
- the polyacrylate or polymethacrylate ester which is useful in the present invention, is a homopolymer or copolymer of a polyacrylate or polymethacrylate ester, and specific examples thereof include polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyisobutyl methacrylate, and block copolymers and other copolymers thereof.
- the polyacrylate or polymethacrylate ester in the present invention those having a number-average molecular weight within a range from 1,000 to 800,000 are used.
- the number-average molecular weight is smaller than 1,000, a porous coating is not formed because the polyacrylate or polymethacrylate ester is sublimated at low temperature.
- the number-average molecular weight exceeds 800,000, the pore size increases to cause voids, thus reducing the coating strength. Therefore, both cases are not preferred.
- the number-average molecular weight of the-polyacrylate or polymethacrylate ester in the present invention is preferably within a range from 10,000 to 600,00, and particularly preferred results are obtained when the number-average molecular weight is within a range from 50,000 to 300,000.
- the amount of the polyacrylate or polymethacrylate ester in the present invention is controlled within a range from 5 to 150% by weight based on the polysilazane used.
- the amount of the polyacrylate or polymethacrylate ester is smaller than 5% by weight, the coating is insufficiently made porous.
- the amount is larger than 150% by weight, defects such as voids and cracks occur, thereby to reduce the coating strength. Therefore, it is not preferred.
- the amount of the polyacrylate or polymethacrylate ester in the present invention is preferably within a range from 10 to 120% by weight, and particularly preferred results are obtained when the amount is within a range from 20 to 100% by weight.
- the polyacrylate or polymethacrylate ester is generally added to an aluminum-containing polysilazane solution in the form of a solution prepared by dissolving the polyester in an organic solvent.
- the same organic solvent as that used in preparation of the aluminum-containing polysilazane solution may be used as the organic solvent.
- an inert organic solvent free from active hydrogen described above is used as the organic solvent in which the polyacrylate or polymethacrylate ester is dissolved.
- the concentration of the polyacrylate or polymethacrylate ester can be controlled within a range from 5 to 80% by weight, and preferably from 10 to 40% by weight.
- a homogeneous solution can be obtained by physically stirring after the addition of the polyacrylate or polymethacrylate ester.
- the polyacrylate or polymethacrylate ester itself can also be added and dissolved in the aluminum-containing polysilazane solution.
- the coating composition of the present invention can be prepared by combining the polysilazane with the polyacrylate or polymethacrylate ester and mixing the aluminum compound therewith, or combining the polyacrylate or polymethacrylate ester with the aluminum compound and mixing the polysilazane therewith.
- the resulting organic solvent solution containing the aluminum-containing polysilazane and the polyacrylate or polymethacrylate ester can be coated on the surface of a substrate by using it as a coating composition with or without controlling the concentration of the polysilazane.
- Examples of the method of coating the coating composition containing the aluminum-containing polysilazane and the polyacrylate or polymethacrylate ester to the surface of the substrate include conventionally known methods, for example, spin coating method, dipping method, spraying method, and transferring method.
- the aluminum-containing polysilazane coating formed on the surface of the substrate is fired in various atmospheres.
- the atmosphere includes, for example, an atmosphere which scarcely contains water vapor, such as dry air, dry nitrogen, or dry helium, or an atmosphere containing water vapor, such as atmospheric air, moistened atmospheric air, or moistened nitrogen.
- the firing temperature is within a range from 50 to 600° C., and preferably from 300 to 500° C., and the firing time is within a range from one minute to one hour.
- a silica coating having a low dielectric constant and a good coating quality is advantageously prepared by forming a polysilazane coating on the surface of a substrate, preliminary heating the coating in a water vapor-containing atmosphere and firing the coating with heating in a dry atmosphere.
- the water vapor content in the water vapor-containing atmosphere, is 0.1 volume % or more, and preferably 1 volume % or more.
- the upper limit value is the dew point. Examples of such an atmosphere include atmospheric air, moistened atmospheric air, and moistened nitrogen gas.
- the water vapor content is 0.5 volume % or less, and preferably 0.05 volume % or less.
- dry atmosphere examples include dry air, nitrogen gas, argon gas, and helium gas.
- the preliminary heating temperature is within a range from 50 to 400° C., and preferably from 100 to 350° C.
- the firing temperature is within a range from 100 to 500° C., and preferably from 300 to 500° C.
- Si—H, Si—R (R: hydrocarbon group) and Si—N bonds in the polysilazane are oxidized and converted into Si—O bonds to form a silica coating.
- a Si—OH bond is not substantially formed.
- Si—H, Si—R and Si—N bonds are oxidized nearly simultaneously, although it varies depending on the conditions of firing. This fact is confirmed from the fact that absorptions based on Si—H, Si—R and Si—N disappear nearly simultaneously when the IR spectrum of the resulting silica coating is measured.
- the present invention allows the Si—O bond formed by selectively oxidizing the Si—N bond, and the unoxidized Si—H and Si—R bonds, to exist in the formed silica coating, thereby making it possible to obtain a silica coating with a low density.
- the dielectric constant of the silica coating is reduced with the reduction of the coating density, while adsorption of water as a high dielectric substance occurs when the coating density is reduced. Therefore, there arises a problem that the dielectric constant increases when the silica coating is left to stand in an atmospheric air.
- the silica coating containing Si—H and Si—R bonds of the present invention adsorption of water can be prevented regardless of low density because these bonds have water repellency.
- the silica coating of the present invention has a large merit that the dielectric constant of the coating scarcely increases even if the silica coating is left to stand in an atmospheric air containing water vapor.
- the silica coating of the present invention also has a merit that it is less likely to cause cracking because the internal stress of the coating is small due to low density.
- micropores having a diameter of 0.5 to 30 nm are formed in the silica coating by sublimation of the polyacrylate of polymethacrylate ester in the coating.
- the existence of the micropores further reduces the density of the silica coating, and thus the dielectric constant of the silica coating is further reduced. This is because the compatibility between the aluminum-containing polysilazane and the polyacrylate of polymethacrylate ester is very good.
- the use of the polyacrylate of polymethacrylate ester prevents the Si—OH bond from forming in the polysilazane during the firing of the coating.
- the silica coating maintains the water repellency and the dielectric constant reduced due to the micropores scarcely increases even when left to stand in an atmospheric air containing water vapor.
- a porous silica coating capable of stably maintaining a very low dielectric constant of less than 2.5, preferably 2.0 or less, occasionally about 1.6, in cooperation with the reduction in density and impartation of water repellency due to the bond component (SiH, SiR) of the silica coating as well as reduction in density of the whole coating due to micropores. Therefore, since a water repellent treatment required to prevent moisture absorption in a conventional porous silica coating is not required, it becomes advantageous in view of the manufacturing cost and an inorganic material's merit is not impaired by introduction of an organic group.
- the density is within a range from 0.5 to 1.4 g/cm 3 , and preferably from 0.7 to 1.1 g/cm 3
- the cracking limitation in coating thickness is 1.0 ⁇ m or more, and preferably 10 ⁇ m or more and, furthermore, the internal stress is 2.0 ⁇ 10 4 N/cm 2 or less, and preferably 1.0 ⁇ 10 4 N/cm 2 or less.
- the content of Si, which exists in the form of a Si—H or Si—R bond (R: hydrocarbon group), in the silica coating is within a range from 10 to 100 atomic %, and preferably from 25 to 75 atomic %, based on the number of Si atoms contained in the silica porous coating.
- the content of Si, which exists in the form of a Si—N bond, is 5 atomic % or less.
- the thickness of the silica coating obtained after firing varies depending on the purposes of the substrate surface, but is usually within a range from 0.01 to 5 ⁇ m, and preferably from 0.1 to 2 ⁇ m. When using as an interlayer dielectric, the thickness is within a range from 0.1 to 2 ⁇ m.
- the present invention when using perhydropolysilazane having no hydrocarbon group as the polysilazane, it is made possible to obtain an inorganic coating with a low dielectric constant, which is composed only of elements of Si, O and H and has a Si—H bond but substantially has neither an N—H bond nor a Si—OH bond. Since this coating is superior in resistance to plasma, a so-called etch-back process of removing a coating layer on the metal wiring in a process of manufacturing a semiconductor can be omitted by applying this coating in the manufacture of the semiconductor. Therefore, the process of manufacturing the semiconductor can be markedly simplified.
- the porous silica coating of the present invention has a low density and has a merit that a cracking limitation in coating thickness, namely, a maximum coating thickness where a coating can be formed without causing cracking of the coating is 5 ⁇ m or more.
- a cracking limitation in coating thickness is within a range from about 0.5 to 1.5 ⁇ m. Therefore, the silica coating of the present invention exhibits a large technical effect as compared with a conventional silica coating.
- the method of forming the silica coating of the present invention can be carried out very easily because the aluminum-containing polysilazane, as a precursor thereof, can be converted into a silica coating at a firing temperature lower than 450° C. even in a dry atmospheric air by a catalytic action of aluminum.
- the present invention is advantageously applied as a method of forming an insulating coating to an aluminum wiring whose heat-resistant upper limit temperature is 450° C.
- the content of the Si—N bond can be substantially reduced to 0% by a catalytic action of aluminum, the coating has very high stability and is not deteriorated even when left to stand in atmospheric air.
- the silica coating of the present invention can be advantageously used as an interlayer dielectric in a semiconductor device.
- the silica coating is formed on the plane including a metal wiring, or a metal wiring with a ceramic coating.
- the semiconductor device including the silica coating of the present invention is not only superior in insulating properties, but also in electric characteristics because of small dielectric constant.
- a silica coating can be formed on the solid surface of various materials such as metal, ceramics or lumber by using the coating composition of the present invention.
- a metal substrate silicon, stainless steel (SUS), tungsten, iron, copper, zinc, brass, or aluminum
- a ceramics substrate metal oxide such as silica, alumina, magnesium oxide, titanium oxide, zinc oxide and tantalum oxide, metal nitride such as silicon nitride, boron nitride and titanium nitride, or silicon carbide
- the method of evaluating physical properties of the silica coating is as follows.
- the resulting polysilazane coating (about 3 mm ⁇ 3 mm in size) was removed by rubbing, with a rod applicator, four corners of the glass plate to form portions for taking electric signals.
- the polysilazane coating was converted into a silica coating in accordance with the method of the Examples or Comparative Examples.
- the resulting silica coating was covered with a mask of SUS and an Al coating was formed by a vacuum deposition method (18 patterns in the form of square of 2 mm ⁇ 2 mm, 2 ⁇ m in thickness).
- a capacitance was measured by an impedance analyzer 4192 ALF manufactured by YHP Inc. (100 kHz).
- the thickness of the coating was measured by a profilometer (Dektak IIA manufactured by Sloan Inc.).
- the dielectric constant was calculated by the following equation.
- Dielectric constant (Capacitance [ pF ]) ⁇ (Coating thickness [ ⁇ m ])/35.4
- the dielectric constant was determined by calculating an average of 18 measured values.
- Coating density [ g/cm 3 ] (Coating weight [ g ]) ⁇ (Coating thickness [ ⁇ m ])/0.008.
- the resulting polysilazane coating was converted into a silica coating in accordance with the method of the Examples or Comparative Examples.
- Samples having coating different thicknesses within a range from about 0.5 to 3 ⁇ were made by controlling the polysilazane concentration of the polysilazane solution or the rotational speed of a spin coater.
- the fired thin coating was observed by a microscope (magnification: ⁇ 120) and it was examined whether or not cracking occurred. A maximum coating thickness where no cracking occurs was taken as a cracking limitation in coating thickness.
- a four-necked flask having an internal volume of 2 L was equipped with a gas bubbling tube, a mechanical scaler and a Dewar condenser. After replacing the atmosphere of a reaction vessel by dry nitrogen, 1500 ml of dry pyridine was charged in the four-necked flask and then ice-cooled. 100 g of dichlorosilane was added to produce an adduct as a white solid (SiH 2 Cl 2 2C 5 H 5 N). The reaction mixture was ice-cooled and 70 g of ammonia was bubbled into the reaction mixture while stirring. Subsequently, dry nitrogen was bubbled into the aqueous layer for 30 minutes to remove excess ammonia.
- the number-average molecular weight of the resulting perhydropolysilazane was measured by GPC (developing solution: CDCl 3 ). As a result, it was 800 calibrated with polystyrene standards.
- An IR (infrared absorption) spectrum showed absorptions based on N—H at a wave number of approximately 3350 and 1200 cm ⁇ 1 , an absorption based on Si—H at 2170 cm ⁇ 1 , and an absorption based on Si—N—Si at 1020 to 820 cm
- the coating had a dielectric constant of 4.2, a density of 1.8 g/cm 3 , an internal stress of 1.2 ⁇ 10 4 N/cm 2 , and a cracking limitation in coating thickness of 2.2 ⁇ m.
- the resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 4.8.
- the silicon plate coated with polysilazane was heated on a hot plate at 100° C., then at 200° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for one hour. Absorptions based on Si—O at a wave number of 1070 and 450 cm ⁇ 1 and absorptions based on Si—H at a wave number of 2250 and 880 cm ⁇ 1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm ⁇ 1 nearly disappeared.
- the resulting coating was evaluated.
- the coating had a dielectric constant of 3.0, a density of 2.9 g/cm 3 , an internal stress of 1.2 ⁇ 10 4 N/cm 2 , and a cracking limitation in coating thickness of 1.4 ⁇ m.
- the resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 3.2.
- the filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (1500 rpm, 20 seconds), and then dried at room temperature (10 minutes).
- the silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) each for 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for one hour.
- the mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 ⁇ m manufactured by Advantech Co., Ltd.
- the filtered solution was coated on a silicon wafer of 4 inch in diameter and 0.5 mm in thickness using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes).
- the silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes.
- the mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 ⁇ m manufactured by Advantech Co., Ltd.
- the filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes).
- the silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes.
- the mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 ⁇ m manufactured by Advantech Co., Ltd.
- the filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes).
- the silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes.
- the mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 ⁇ m manufactured by Advantech Co., Ltd.
- the filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes).
- the silicon plate coated with polysilazane was heated on a hot plate at 150° C., 220° C., then at 300° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes.
- the mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 ⁇ m manufactured by Advantech Co., Ltd.
- the filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes).
- the silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes.
- the heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes.
- the porous silica coating of the present invention has a low density and a low dielectric constant of less than 2.5, in addition to the chemical resistance, gas/ion barrier properties, wear resistance, heat resistance and flattening properties which are inherent in a silica coating derived from a polysilazane.
- This porous silica coating scarcely adsorbs water vapor even when left to stand in an atmospheric air because it contains a hydrophobic Si—H bond and, therefore, the dielectric constant is less likely to increase.
- the porous silica coating of the present invention has a feature that it has small coating stress and high coating thickness limitation. Accordingly, the porous silica coating of the present invention is suited for use as an interlayer dielectric in semiconductors.
- the porous silica coating of the present invention is preferably used as the interlayer dielectric in semiconductors, and is also advantageously used as an insulating coating in the electrical and electronic fields, such as under coating (insulating flattened coating) of liquid crystal glass and gas barrier coating of film liquid crystal.
- the method of forming a porous silica coating of the present invention can be applied as, for example, a hard coating onto the surface of a solid such as metal, glass, plastic or lumber, heat-resistant coating, acid-resistant coating, stainproof coating, and water repellent coating. It can also be applied as gas barrier coating onto a plastic film, UV cut coating onto a glass, plastic or lumber, and a coloring coating.
- the coating composition can be applied as UV cut coating, coloring coating and antibacterial coating because various functional fillers can be added.
- the porous silica coating of the present invention is advantageous in view of the manufacturing cost because it is not required to be subjected to a water repellent treatment for prevention of moisture absorption and, moreover, an inorganic material's merit is not impaired by the introduction of the organic group.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Wood Science & Technology (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- Formation Of Insulating Films (AREA)
- Paints Or Removers (AREA)
- Silicon Compounds (AREA)
Abstract
A porous silica coating having a dielectric constant of less than 2.5, a semiconductor device comprising the porous silica coating formed therein, and a coating composition for forming the porous silica coating.
The coating composition is composed of an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester in an organic solvent. The coating composition is coated and then fired, thereby to obtain a porous silica coating.
The porous silica coating can be used as an interlayer dielectric by forming on a semiconductor device.
Description
- The present invention relates to a porous silica coating with a low dielectric constant, a semiconductor device comprising the porous silica coating, and a coating composition which becomes the porous silica coating.
- Polysilazane coatings are converted into silica coatings by firing in atmospheric air. These silica coatings are used as interlayer dielectrics for semiconductors because of excellent electrical insulating properties. Among these silica coatings, a completely inorganic silica coating has already been employed as an excellent interlayer dielectric for a semiconductor because it has high heat resistance and can be used in a non-etch back process. In this case, the physical properties of the silica coating are similar to those of silicon dioxide (SiO2) and its dielectric constant is within a range from 3.0 to 4.7.
- With the increase of the speed and integration density of integrated circuits, a further reduction in dielectric constant is required of electronic materials such as interlayer dielectrics. However, the dielectric constant of a conventional silica coating is too high for such a requirement. It is known to make the silica coating porous so as to reduce the dielectric constant, however, the silica coating generally has moisture absorption properties and the dielectric constant increases with the elapse of time, under an ambient atmosphere. It has been proposed that a porous coating is subjected to a water repellent treatment thereby to add an organic group such as a trimethylsilyl group to the surface in order to prevent an increase in dielectric constant with the elapse of time due to moisture absorption. However, such an additional water repellent treatment causes the problem that the manufacturing cost increases and introduction of the organic group impairs an inorganic material's ability to make it possible to be used in a non-etch back process.
- Thus, an object of the present invention to provide a silica coating which makes it possible to drastically reduce the dielectric constant (especially to less than 2.5) and to substantially maintain the reduced dielectric constant under an ambient atmosphere without being subjected to a water repellent treatment. Another object of the present invention is to provide a semiconductor device comprising the silica coating with such a low dielectric constant as an interlayer dielectric, and a coating composition which becomes the silica coating.
- In order to achieve the objects described above, the present inventors have intensively studied and thus completed the present invention.
- According to the present invention, there is provided a porous silica coating having a dielectric constant of less than 2.5, which is obtained by firing a coating of a composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester.
- According to the present invention, there is also provided a semiconductor device comprising the porous silica coating as an interlayer dielectric.
- According to the present invention, there is also provided a coating composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester in an organic solvent.
- The porous silica coating of the present invention is obtained by firing a coating of a composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester. The aluminum-containing polysilazane is obtained by mixing a polysilazane with an aluminum compound.
-
- In the above formula, R1, R2 and R3 each independently represents a hydrogen atom, a hydrocarbon group, a hydrocarbon group-containing silyl group, a hydrocarbon group-containing amino group, or a hydrocarbonoxy group. At least one of R1 and R2 represents a hydrogen atom. The hydrocarbon group may be combined with a substituent, and examples of the substituent include halogen such as chlorine, bromine and fluorine, an alkoxy group, an alkoxycarbonyl group, and an amino group.
- The hydrocarbon group includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group, and the aliphatic hydrocarbon group includes a chain hydrocarbon group and a cyclic hydrocarbon group. Examples of the hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, a cycloalkenyl group, an aryl group, and an arylalkyl group. The number of carbon atoms in these hydrocarbon atoms is not limited, but is usually 20 or less, and preferably 10 or less. In the present invention, preferred is an alkyl group having 1 to 8 carbon atoms, and particularly 1 to 4 carbon atoms. In the hydrocarbon group-containing silyl group, a preferable hydrocarbon group is an alkyl group having 1 to 20 carbon atoms, and particularly 1 to 6 carbon atoms. The number of hydrocarbon atoms to be combined with Si is within a range from 1 to 3. In the hydrocarbon-containing amino group and hydrocarbonoxy group, the number of carbon atoms in the hydrocarbon group is within a range from 1 to 3.
- The polysilazane having a silazane structure represented by the general formula (1) in a molecular chain may be a polysilazane having a chain, cyclic or crosslinked structure, or a mixture thereof. The number-average molecular weight is within a range from 100 to 100,000, and preferably from 300 to 10,000. Such a polysilazane includes conventional perhydropolysilazane, organopolysilazane, and a modified compound thereof.
- Examples of the modified polysilazane include a platinum- or palladium-containing polysilazane, an alcohol residue-containing polysilazane, an HMDS (hexamethyldisilazane) residue-containing polysilazane, an amine-containing polysilazane, and an organic acid-containing polysilazane.
- For example, these modified polysilazanes are described in Japanese Unexamined Patent Publication Nos. 9-31333, 8-176512, 8-176511, and 5-345826.
- The aluminum to be incorporated into the polysilazane may be an aluminum compound in the form capable of being dissolved in an organic solvent. Such a soluble aluminum compound includes an alkoxide, a chelete compound, an organoaluminum, and a halide.
-
- In the above formula, R4, R5 and R6 represent a hydrocarbon group. The hydrocarbon group includes an aliphatic hydrocarbon group and an aromatic hydrocarbon group. The aliphatic hydrocarbon group includes a chain hydrocarbon group and a cyclic hydrocarbon group. Examples of the aliphatic hydrocarbon group include an alkyl group, an alkenyl group, a cycloalkyl group, and a cycloalkenyl group. The number of carbon atoms is not specifically limited, but is usually 20 or less, and preferably 8 or less. Specific examples of the aliphatic hydrocarbon group include methyl, ethyl, propyl, butyl, pentyl, octyl, dodecyl, octadecyl, dodecenyl, cyclohexyl, and cyclohexenyl. The aromatic hydrocarbon group includes an aryl group and an arylalkyl group. Specific examples of the aromatic hydrocarbon group include phenyl, tolyl, xylyl, naphthyl, benzyl, phenethyl, and naphthylmethyl.
- Examples of the chelete compound of aluminum include aluminum acetylacetonate and aluminum ethylacetonate.
-
- In the above formula, R4, R5 and R6 represent a hydrocarbon group. The hydrocarbon group includes those described in connection with the general formula (2).
- Examples of the halide of aluminum include those represented by the following general formula (4):
- AlX3 (4)
- wherein X represents a halogen. The halogen includes chlorine, bromine, iodine, and fluorine.
- The organic solvent-soluble aluminum compounds can be used alone or in combination.
- The amount of the aluminum compound to be added to the polysilazane varies depending on the kind, but is within a range from 0.001 to 10% by weight as aluminum, preferably from 0.01 to 10% by weight, and more preferably from 0.1 to 1% by weight, on the basis of the polysilazane. When the amount of the aluminum compound is larger than the range described above, the density and homogeneity of the resulting silica coating are lowered. Therefore, it is not preferred. On the other hand, when the amount is smaller than the range, the effect of the added aluminum compound becomes insufficient.
- To obtain the aluminum-containing polysilazane, a polysilazane and an aluminum compound are mixed with stirring in an organic solvent. In this case, they are mixed with stirring under the conditions of a temperature within a range from 0 to 200° C., preferably from 0 to 100° C., and a pressure within a range from normal pressure to 10 kg/cm2G, preferably normal pressure. The concentration of the polysilazane in the organic solvent is within a range from 0.1 to 80% by weight, and preferably from 5 to 50% by weight.
- As the organic solvent in which the polysilazane and aluminum compound are dissolved, an inert organic solvent free from active hydrogen is used. Examples of the organic solvent include an aromatic hydrocarbon solvent such as benzene, toluene, xylene, ethylbenzene, diethylbenzene, trimethylbenzene, or triethylbenzene; an alicyclic hydrocarbon solvent such as cyclohexane, cyclohexene, decahydronaphthalene, ethylcyclohexane, methylcyclohexane, p-menthine, or dipentene (limonene); an ether solvent such as dipropyl ether or dibutyl ether; and a ketone solvent such as methyl isobutyl ketone.
- An aluminum-containing polysilazane, in which an aluminum compound is mixed or added, is formed by mixing the polysilazane and the aluminum compound with stirring in the organic solvent. Usually, the resulting aluminum-containing polysilazane does not have an aluminopolysilazane structure wherein aluminum and silicon are firmly combined.
- The coating composition of the present invention is obtained by adding a polyacrylate or polymethacrylate ester to an organic solvent solution containing the aluminum-containing polysilazane thus obtained.
- The polyacrylate or polymethacrylate ester, which is useful in the present invention, is a homopolymer or copolymer of a polyacrylate or polymethacrylate ester, and specific examples thereof include polymethyl acrylate, polyethyl acrylate, polybutyl acrylate, polymethyl methacrylate, polyethyl methacrylate, polybutyl methacrylate, polyisobutyl methacrylate, and block copolymers and other copolymers thereof.
- As the polyacrylate or polymethacrylate ester in the present invention, those having a number-average molecular weight within a range from 1,000 to 800,000 are used. When the number-average molecular weight is smaller than 1,000, a porous coating is not formed because the polyacrylate or polymethacrylate ester is sublimated at low temperature. When the number-average molecular weight exceeds 800,000, the pore size increases to cause voids, thus reducing the coating strength. Therefore, both cases are not preferred. The number-average molecular weight of the-polyacrylate or polymethacrylate ester in the present invention is preferably within a range from 10,000 to 600,00, and particularly preferred results are obtained when the number-average molecular weight is within a range from 50,000 to 300,000.
- The amount of the polyacrylate or polymethacrylate ester in the present invention is controlled within a range from 5 to 150% by weight based on the polysilazane used. When the amount of the polyacrylate or polymethacrylate ester is smaller than 5% by weight, the coating is insufficiently made porous. On the other hand, when the amount is larger than 150% by weight, defects such as voids and cracks occur, thereby to reduce the coating strength. Therefore, it is not preferred. The amount of the polyacrylate or polymethacrylate ester in the present invention is preferably within a range from 10 to 120% by weight, and particularly preferred results are obtained when the amount is within a range from 20 to 100% by weight.
- The polyacrylate or polymethacrylate ester is generally added to an aluminum-containing polysilazane solution in the form of a solution prepared by dissolving the polyester in an organic solvent. In this case, the same organic solvent as that used in preparation of the aluminum-containing polysilazane solution may be used as the organic solvent. As the organic solvent in which the polyacrylate or polymethacrylate ester is dissolved, an inert organic solvent free from active hydrogen described above is used. When using the polyacrylate or polymethacrylate ester after dissolving in the organic solvent, the concentration of the polyacrylate or polymethacrylate ester can be controlled within a range from 5 to 80% by weight, and preferably from 10 to 40% by weight. A homogeneous solution can be obtained by physically stirring after the addition of the polyacrylate or polymethacrylate ester.
- The polyacrylate or polymethacrylate ester itself can also be added and dissolved in the aluminum-containing polysilazane solution. The coating composition of the present invention can be prepared by combining the polysilazane with the polyacrylate or polymethacrylate ester and mixing the aluminum compound therewith, or combining the polyacrylate or polymethacrylate ester with the aluminum compound and mixing the polysilazane therewith.
- The resulting organic solvent solution containing the aluminum-containing polysilazane and the polyacrylate or polymethacrylate ester can be coated on the surface of a substrate by using it as a coating composition with or without controlling the concentration of the polysilazane.
- Examples of the method of coating the coating composition containing the aluminum-containing polysilazane and the polyacrylate or polymethacrylate ester to the surface of the substrate include conventionally known methods, for example, spin coating method, dipping method, spraying method, and transferring method.
- The aluminum-containing polysilazane coating formed on the surface of the substrate is fired in various atmospheres. The atmosphere includes, for example, an atmosphere which scarcely contains water vapor, such as dry air, dry nitrogen, or dry helium, or an atmosphere containing water vapor, such as atmospheric air, moistened atmospheric air, or moistened nitrogen. The firing temperature is within a range from 50 to 600° C., and preferably from 300 to 500° C., and the firing time is within a range from one minute to one hour.
- According to the present invention, a silica coating having a low dielectric constant and a good coating quality is advantageously prepared by forming a polysilazane coating on the surface of a substrate, preliminary heating the coating in a water vapor-containing atmosphere and firing the coating with heating in a dry atmosphere. In this case, in the water vapor-containing atmosphere, the water vapor content is 0.1 volume % or more, and preferably 1 volume % or more. The upper limit value is the dew point. Examples of such an atmosphere include atmospheric air, moistened atmospheric air, and moistened nitrogen gas. In the dry atmosphere, the water vapor content is 0.5 volume % or less, and preferably 0.05 volume % or less. Examples of the dry atmosphere include dry air, nitrogen gas, argon gas, and helium gas. The preliminary heating temperature is within a range from 50 to 400° C., and preferably from 100 to 350° C. The firing temperature is within a range from 100 to 500° C., and preferably from 300 to 500° C.
- In the firing of the aluminum-containing polysilazane coating, Si—H, Si—R (R: hydrocarbon group) and Si—N bonds in the polysilazane are oxidized and converted into Si—O bonds to form a silica coating. In this case, a Si—OH bond is not substantially formed. Generally, in the firing of the polysilazane coating with heating, Si—H, Si—R and Si—N bonds are oxidized nearly simultaneously, although it varies depending on the conditions of firing. This fact is confirmed from the fact that absorptions based on Si—H, Si—R and Si—N disappear nearly simultaneously when the IR spectrum of the resulting silica coating is measured. According to the present inventors study, it was confirmed that, in case of the firing of the aluminum-containing polysilazane coating used in the present invention with heating, the oxidation of the Si—N bond, namely, the reaction of substituting N with O preferentially proceeds as compared with the oxidation of the Si—H and Si—R bonds by a catalytic action of aluminum.
- Therefore, the present invention allows the Si—O bond formed by selectively oxidizing the Si—N bond, and the unoxidized Si—H and Si—R bonds, to exist in the formed silica coating, thereby making it possible to obtain a silica coating with a low density. Generally, the dielectric constant of the silica coating is reduced with the reduction of the coating density, while adsorption of water as a high dielectric substance occurs when the coating density is reduced. Therefore, there arises a problem that the dielectric constant increases when the silica coating is left to stand in an atmospheric air. In the case of the silica coating containing Si—H and Si—R bonds of the present invention, adsorption of water can be prevented regardless of low density because these bonds have water repellency. Therefore, the silica coating of the present invention has a large merit that the dielectric constant of the coating scarcely increases even if the silica coating is left to stand in an atmospheric air containing water vapor. The silica coating of the present invention also has a merit that it is less likely to cause cracking because the internal stress of the coating is small due to low density.
- In the firing of the coating, micropores having a diameter of 0.5 to 30 nm are formed in the silica coating by sublimation of the polyacrylate of polymethacrylate ester in the coating. The existence of the micropores further reduces the density of the silica coating, and thus the dielectric constant of the silica coating is further reduced. This is because the compatibility between the aluminum-containing polysilazane and the polyacrylate of polymethacrylate ester is very good. The use of the polyacrylate of polymethacrylate ester prevents the Si—OH bond from forming in the polysilazane during the firing of the coating. Therefore, the silica coating maintains the water repellency and the dielectric constant reduced due to the micropores scarcely increases even when left to stand in an atmospheric air containing water vapor. As described above, according to the present invention, it is made possible to obtain a porous silica coating capable of stably maintaining a very low dielectric constant of less than 2.5, preferably 2.0 or less, occasionally about 1.6, in cooperation with the reduction in density and impartation of water repellency due to the bond component (SiH, SiR) of the silica coating as well as reduction in density of the whole coating due to micropores. Therefore, since a water repellent treatment required to prevent moisture absorption in a conventional porous silica coating is not required, it becomes advantageous in view of the manufacturing cost and an inorganic material's merit is not impaired by introduction of an organic group.
- Referring to other properties of the silica coating of the present invention, the density is within a range from 0.5 to 1.4 g/cm3, and preferably from 0.7 to 1.1 g/cm3, and the cracking limitation in coating thickness is 1.0 μm or more, and preferably 10 μm or more and, furthermore, the internal stress is 2.0×104 N/cm2 or less, and preferably 1.0×104 N/cm2 or less. The content of Si, which exists in the form of a Si—H or Si—R bond (R: hydrocarbon group), in the silica coating is within a range from 10 to 100 atomic %, and preferably from 25 to 75 atomic %, based on the number of Si atoms contained in the silica porous coating. The content of Si, which exists in the form of a Si—N bond, is 5 atomic % or less.
- The thickness of the silica coating obtained after firing varies depending on the purposes of the substrate surface, but is usually within a range from 0.01 to 5 μm, and preferably from 0.1 to 2 μm. When using as an interlayer dielectric, the thickness is within a range from 0.1 to 2 μm.
- In the present invention, when using perhydropolysilazane having no hydrocarbon group as the polysilazane, it is made possible to obtain an inorganic coating with a low dielectric constant, which is composed only of elements of Si, O and H and has a Si—H bond but substantially has neither an N—H bond nor a Si—OH bond. Since this coating is superior in resistance to plasma, a so-called etch-back process of removing a coating layer on the metal wiring in a process of manufacturing a semiconductor can be omitted by applying this coating in the manufacture of the semiconductor. Therefore, the process of manufacturing the semiconductor can be markedly simplified.
- As described above, the porous silica coating of the present invention has a low density and has a merit that a cracking limitation in coating thickness, namely, a maximum coating thickness where a coating can be formed without causing cracking of the coating is 5 μm or more. In case of a conventional silica coating, the cracking limitation in coating thickness is within a range from about 0.5 to 1.5 μm. Therefore, the silica coating of the present invention exhibits a large technical effect as compared with a conventional silica coating.
- The method of forming the silica coating of the present invention can be carried out very easily because the aluminum-containing polysilazane, as a precursor thereof, can be converted into a silica coating at a firing temperature lower than 450° C. even in a dry atmospheric air by a catalytic action of aluminum.
- Therefore, the present invention is advantageously applied as a method of forming an insulating coating to an aluminum wiring whose heat-resistant upper limit temperature is 450° C. According to the present invention, since the content of the Si—N bond can be substantially reduced to 0% by a catalytic action of aluminum, the coating has very high stability and is not deteriorated even when left to stand in atmospheric air.
- The silica coating of the present invention can be advantageously used as an interlayer dielectric in a semiconductor device. In this case, the silica coating is formed on the plane including a metal wiring, or a metal wiring with a ceramic coating. The semiconductor device including the silica coating of the present invention is not only superior in insulating properties, but also in electric characteristics because of small dielectric constant.
- A silica coating can be formed on the solid surface of various materials such as metal, ceramics or lumber by using the coating composition of the present invention. According to the present invention, there are provided a metal substrate (silicon, stainless steel (SUS), tungsten, iron, copper, zinc, brass, or aluminum) with a silica coating formed thereon, and a ceramics substrate (metal oxide such as silica, alumina, magnesium oxide, titanium oxide, zinc oxide and tantalum oxide, metal nitride such as silicon nitride, boron nitride and titanium nitride, or silicon carbide) with a silica coating formed thereon.
- The following Examples further illustrate the present invention in detail.
- The method of evaluating physical properties of the silica coating is as follows.
- (Dielectric Constant)
- A Pyrex glass plate (thickness: 1 mm, size: 50 mm×50 mm) manufactured by Dow Corning Inc. was sufficiently washed, in order, with a neutral detergent, an aqueous diluted NaOH solution and an aqueous diluted H2SO4 solution, and then dried. An Al coating (0.2 A) was formed on the whole surface of the glass plate by a vacuum deposition method. After coating the glass plate with a polysilazane solution by a spin coating method, the resulting polysilazane coating (about 3 mm×3 mm in size) was removed by rubbing, with a rod applicator, four corners of the glass plate to form portions for taking electric signals. Subsequently, the polysilazane coating was converted into a silica coating in accordance with the method of the Examples or Comparative Examples. The resulting silica coating was covered with a mask of SUS and an Al coating was formed by a vacuum deposition method (18 patterns in the form of square of 2 mm×2 mm, 2 μm in thickness). A capacitance was measured by an impedance analyzer 4192 ALF manufactured by YHP Inc. (100 kHz). The thickness of the coating was measured by a profilometer (Dektak IIA manufactured by Sloan Inc.). The dielectric constant was calculated by the following equation.
- Dielectric constant=(Capacitance [pF])×(Coating thickness [μm])/35.4
- The dielectric constant was determined by calculating an average of 18 measured values.
- (Coating Density)
- The weight of a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, was measured by an electric balance. After coating the silicon wafer with a polysilazane solution by a spin coating method, the resulting polysilazane coating was converted into a silica coating in accordance with the method of the Examples or Comparative Examples and the weight of the coated silicon wafer was measured again by the electric balance. A difference in weight was taken as the weight of the coating. In the same manner as in case of the evaluation of the dielectric constant, the thickness of the coating was measured by a profilometer (Dektak IIA manufactured by Sloan Inc.). The coating density was calculated by the following equation.
- Coating density [g/cm 3]=(Coating weight [g])×(Coating thickness [μm])/0.008.
- (Internal Stress)
- Data of warp of a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, were input in a laser thin film internal stress measurement system Model FLX-2320 manufactured by Tencor Corporation. After coating the silicon wafer with a polysilazane solution by a spin coating method, the resulting polysilazane coating was converted into a silica coating in accordance with the method of the Examples or Comparative Examples and cooled to room temperature (23° C.). Then, the internal stress was measured by the laser thin film internal stress measurement system Model FLX-2320 manufactured by Tencor Corporation. In the same manner as in case of the evaluation of the dielectric constant, the thickness of the coating was measured by a profilometer (Dektak IIA manufactured by Sloan Inc.).
- (Cracking Limitation in Coating Thickness)
- After coating a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, with a polysilazane solution by a spin coating method, the resulting polysilazane coating was converted into a silica coating in accordance with the method of the Examples or Comparative Examples. Samples having coating different thicknesses within a range from about 0.5 to 3μ were made by controlling the polysilazane concentration of the polysilazane solution or the rotational speed of a spin coater. The fired thin coating was observed by a microscope (magnification: ×120) and it was examined whether or not cracking occurred. A maximum coating thickness where no cracking occurs was taken as a cracking limitation in coating thickness.
- A four-necked flask having an internal volume of 2 L was equipped with a gas bubbling tube, a mechanical scaler and a Dewar condenser. After replacing the atmosphere of a reaction vessel by dry nitrogen, 1500 ml of dry pyridine was charged in the four-necked flask and then ice-cooled. 100 g of dichlorosilane was added to produce an adduct as a white solid (SiH2Cl2 2C5H5N). The reaction mixture was ice-cooled and 70 g of ammonia was bubbled into the reaction mixture while stirring. Subsequently, dry nitrogen was bubbled into the aqueous layer for 30 minutes to remove excess ammonia.
- The resulting product was removed by filtering through a Buchner funnel under reduced pressure in a dry nitrogen atmosphere to obtain 1200 ml of a filtrate. Pyridine was distilled off by an evaporator to obtain 40 g of perhydropolysilazane.
- The number-average molecular weight of the resulting perhydropolysilazane was measured by GPC (developing solution: CDCl3). As a result, it was 800 calibrated with polystyrene standards. An IR (infrared absorption) spectrum showed absorptions based on N—H at a wave number of approximately 3350 and 1200 cm−1, an absorption based on Si—H at 2170 cm−1, and an absorption based on Si—N—Si at 1020 to 820 cm
- 20 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 80 g of xylene to prepare a polysilazane solution. Subsequently, the polysilazane solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered polysilazane solution was coated on a silicon wafer of 4 inch in diameter and 0.5 mm in thickness using a spin coater (1500 rpm, 20 seconds), and then dried at room temperature (10 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 100° C., then at 200° C. in an atmospheric air (25° C., relative humidity: 40%) each for 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for one hour. Absorptions based on Si—O at a wave number of 1020 and 450 cm−1 was observed. Absorptions of unconverted polysilazane, namely, absorptions based on N—H at a wave number of 3380 and 1200 cm−1 and absorptions based on Si—H at a wave number of 2210 and 860 cm−1 were observed. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 4.2, a density of 1.8 g/cm3, an internal stress of 1.2×104 N/cm2, and a cracking limitation in coating thickness of 2.2 μm. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 4.8.
- 25 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 55 g of xylene to prepare a polysilazane solution. Subsequently, 0.1 g of tri(isopropoxy)aluminum was mixed with 20 g of xylene and sufficiently dissolved. The resulting solution was mixed with the polysilazane solution. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (1500 rpm, 20 seconds), and then dried at room temperature (10 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 100° C., then at 200° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for one hour. Absorptions based on Si—O at a wave number of 1070 and 450 cm−1 and absorptions based on Si—H at a wave number of 2250 and 880 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 nearly disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 3.0, a density of 2.9 g/cm3, an internal stress of 1.2×104 N/cm2, and a cracking limitation in coating thickness of 1.4 μm. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 3.2.
- 25 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 55 g of xylene to prepare a polysilazane solution. Subsequently, 0.1 g of tri(ethylacetoacetate)aluminum was mixed with 20 g of xylene and sufficiently dissolved. The resulting solution was mixed with the polysilazane solution. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (1500 rpm, 20 seconds), and then dried at room temperature (10 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) each for 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for one hour. Absorptions based on Si—O at a wave number of 1065 and 460 cm−1 and absorptions based on Si—H at a wave number of 2250 and 830 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 nearly disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 2.3, a density of 1.7 g/cm3, an internal stress of 1.2×104 N/cm2, and a cracking limitation in coating thickness of 1.3 μm. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 2.5.
- 30 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 120 g of xylene to prepare a polysilazane solution. Subsequently, 3 g of tri(acetylacetonato)aluminum was mixed with 97 g of xylene and sufficiently dissolved. 1 g of the solution from the resulting solution was mixed with the polysilazane solution. A solution prepared by sufficiently dissolving 15 g of polymethyl methacrylate having a molecular weight of about 95,000 in 60 g of xylene was mixed with the polysilazane solution, followed by stirring sufficiently. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer of 4 inch in diameter and 0.5 mm in thickness using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes. Absorptions based on Si—O at a wave number of 1060 and 450 cm−1 and absorptions based on Si—H at a wave number of 2250 and 880 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 and absorption based on polymethyl methacrylate disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 1.9, a density of 0.8 g/cm3, an internal stress of 2.6×103 N/cm2, and a cracking limitation in coating thickness of 5 μm or more. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 2.0.
- 30 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 120 g of dibutyl ether to prepare a polysilazane solution. Subsequently, 3 g of aluminumtris(ethyl acetoacetate) was mixed with 97 g of dibutyl ether and sufficiently dissolved. 2 g of the solution from the resulting solution was mixed with the polysilazane solution. A solution prepared by sufficiently dissolving 15 g of poly(isobutyl) methacrylate having a molecular weight of about 180,000 in 60 g of dibutyl ether was mixed with the polysilazane solution, followed by stirring sufficiently. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes. Absorptions based on Si—O at a wave number of 1070 and 455 cm−1 and absorptions based on Si—H at a wave number of 2300 and 850 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 and absorption based on poly(isobutyl) methacrylate disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 2.0, a density of 1.0 g/cm3, an internal stress of 3.1×103 N/cm2, and a cracking limitation in coating thickness of 5 μm or more. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 2.1.
- 20 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 80 g of xylene to prepare a polysilazane solution. Subsequently, 2 g of tri(ethylacetoacetate)aluminum was mixed with 98 g of xylene and sufficiently dissolved. 1 g of the solution from the resulting solution was mixed with the polysilazane solution. A solution prepared by sufficiently dissolving 20 g of BR80 manufactured by Mitsubishi Rayon Co., Ltd. in 80 g of xylene was mixed with the polysilazane solution, followed by stirring sufficiently. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes. Absorptions based on Si—O at a wave number of 1075 and 470 cm−1 and absorptions based on Si—H at a wave number of 2250 and 840 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 and absorption based on BR80 disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 1.6, a density of 0.8 g/cm3, an internal stress of 1.8×103 N/cm2, and a cracking limitation in coating thickness of 5 μm or more. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 1.6.
- 20 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 80 g of dibutyl ether to prepare a polysilazane solution. Subsequently, 2 g of aluminumtris(ethylacetoacetate) was mixed with 98 g of dibutyl ether and sufficiently dissolved. 2 g of the solution from the resulting solution was mixed with the polysilazane solution. A solution prepared by sufficiently dissolving 10 g of BR1122 manufactured by Mitsubishi Rayon Co., Ltd. in 40 g of dibutyl ether was mixed with the polysilazane solution, followed by stirring sufficiently. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 150° C., 220° C., then at 300° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes. Absorptions based on Si—O at a wave number of 1068 and 435 cm−1 and absorptions based on Si—H at a wave number of 2300 and 830 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 and absorption based on BR1122 disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 1.9, a density of 0.9 g/cm3, an internal stress of 2.8×103 N/cm2, and a cracking limitation in coating thickness of 5 μm or more. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 2.0.
- 40 g of perhydropolysilazane synthesized in Reference Example 1 was dissolved in 160 g of xylene to prepare a polysilazane solution. Subsequently, 2 g of tri(isopropoxy)aluminum was mixed with 98 g of xylene and sufficiently dissolved. 6 g of the solution from the resulting solution was mixed with the polysilazane solution. A solution prepared by sufficiently dissolving 10 g of BR80 manufactured by Mitsubishi Rayon Co., Ltd. in 40 g of xylene was mixed with the polysilazane solution, followed by stirring sufficiently. The mixed solution was filtered through a PTFE syringe filter having a filtration accuracy of 0.2 μm manufactured by Advantech Co., Ltd. The filtered solution was coated on a silicon wafer, 4 inch in diameter and 0.5 mm in thickness, using a spin coater (2000 rpm, 20 seconds), and then dried at room temperature (5 minutes). The silicon plate coated with polysilazane was heated on a hot plate at 150° C., then at 220° C. in an atmospheric air (25° C., relative humidity: 40%) for each 3 minutes. The heated silicon plate was fired in a dry nitrogen atmosphere at 400° C. for 30 minutes. Absorptions based on Si—O at a wave number of 1070 and 450 cm−1 and absorptions based on Si—H at a wave number of 2250 and 880 cm−1 were mainly observed, while absorptions based on N—H at a wave number of 3350 and 1200 cm−1 and absorption based on BR80 disappeared. The resulting coating was evaluated. As a result, the coating had a dielectric constant of 1.8, a density of 1.0 g/cm3, an internal stress of 2.7×103 N/cm2, and a cracking limitation in coating thickness of 5 μm or more. The resulting coating was left to stand in an atmospheric air under the conditions of a temperature of 23° C. and a relative humidity of 50% for a week and the dielectric constant was measured again. As a result, it was 2.0.
- The porous silica coating of the present invention has a low density and a low dielectric constant of less than 2.5, in addition to the chemical resistance, gas/ion barrier properties, wear resistance, heat resistance and flattening properties which are inherent in a silica coating derived from a polysilazane. This porous silica coating scarcely adsorbs water vapor even when left to stand in an atmospheric air because it contains a hydrophobic Si—H bond and, therefore, the dielectric constant is less likely to increase. Moreover, the porous silica coating of the present invention has a feature that it has small coating stress and high coating thickness limitation. Accordingly, the porous silica coating of the present invention is suited for use as an interlayer dielectric in semiconductors.
- The porous silica coating of the present invention is preferably used as the interlayer dielectric in semiconductors, and is also advantageously used as an insulating coating in the electrical and electronic fields, such as under coating (insulating flattened coating) of liquid crystal glass and gas barrier coating of film liquid crystal.
- The method of forming a porous silica coating of the present invention can be applied as, for example, a hard coating onto the surface of a solid such as metal, glass, plastic or lumber, heat-resistant coating, acid-resistant coating, stainproof coating, and water repellent coating. It can also be applied as gas barrier coating onto a plastic film, UV cut coating onto a glass, plastic or lumber, and a coloring coating.
- The coating composition can be applied as UV cut coating, coloring coating and antibacterial coating because various functional fillers can be added.
- The porous silica coating of the present invention is advantageous in view of the manufacturing cost because it is not required to be subjected to a water repellent treatment for prevention of moisture absorption and, moreover, an inorganic material's merit is not impaired by the introduction of the organic group.
Claims (10)
1. A porous silica coating having a dielectric constant of less than 2.5, which is obtained by firing a coating of a composition comprising an aluminum-containing polysilazane and a polyacrylate or polymethacrylate ester.
2. The porous silica coating according to claim 1 , which maintains a dielectric constant of less than 2.5 even after being left to stand in an atmospheric air at a temperature of 23° C. and a relative humidity of 50% for a week.
3. The porous silica coating according to claim 1 or 2, wherein the dielectric constant is 2.1 or less.
4. The porous silica coating according to claim 1 , which has a pore diameter within a range from 0.5 to 30 nm.
5. The porous silica coating according to claim 1 , wherein the polysilazane in the aluminum-containing polysilazane has a silazane structure represented by the following general formula:
wherein R1, R2 and R3 each independently represents a hydrogen atom, a hydrocarbon group, a hydrocarbon group-containing silyl group, a hydrocarbon group-containing amino group, or a hydrocarbonoxy group, provided that at least one of R1 and R2 represents a hydrogen atom.
6. The porous silica coating according to claim 5 , wherein the content of Si, which exists in the form of a Si—R1 or Si—R2 bond, is within a range from 10 to 100 atomic % based on the number of Si atoms contained in the silica porous coating.
7. The porous silica coating according to claim 6 , wherein all of R1, R2 and R3 are hydrogen atoms.
8. The porous silica coating according to claim 6 or 7, which is substantially free from a Si—N bond.
9. A semiconductor device comprising the porous silica coating of claim 1 as an interlayer dielectric.
10. (deleted)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/370,588 US6746714B2 (en) | 1999-07-13 | 2003-02-24 | Porous silica coating with low dielectric constant, semiconductor device and coating composition |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP19928299A JP4408994B2 (en) | 1999-07-13 | 1999-07-13 | Low dielectric constant porous siliceous film, semiconductor device and coating composition |
JP11-199282 | 1999-07-13 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2000/004021 A-371-Of-International WO2001004049A1 (en) | 1999-07-13 | 2000-06-20 | Low-permittivity porous siliceous film, semiconductor devices having such films, and coating composition for forming the film |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/370,588 Division US6746714B2 (en) | 1999-07-13 | 2003-02-24 | Porous silica coating with low dielectric constant, semiconductor device and coating composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030099843A1 true US20030099843A1 (en) | 2003-05-29 |
Family
ID=16405213
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/009,735 Abandoned US20030099843A1 (en) | 1999-07-13 | 2001-01-19 | Low-permittivity porous siliceous film, semiconductor devices having such films, and coating composition for forming the film |
US10/370,588 Expired - Lifetime US6746714B2 (en) | 1999-07-13 | 2003-02-24 | Porous silica coating with low dielectric constant, semiconductor device and coating composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/370,588 Expired - Lifetime US6746714B2 (en) | 1999-07-13 | 2003-02-24 | Porous silica coating with low dielectric constant, semiconductor device and coating composition |
Country Status (8)
Country | Link |
---|---|
US (2) | US20030099843A1 (en) |
EP (1) | EP1232998B1 (en) |
JP (1) | JP4408994B2 (en) |
KR (1) | KR100727277B1 (en) |
CN (1) | CN1196649C (en) |
DE (1) | DE60014694T2 (en) |
TW (1) | TW593139B (en) |
WO (1) | WO2001004049A1 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070117892A1 (en) * | 2003-05-01 | 2007-05-24 | Tomoko Aoki | Coating composition, porous silica-based film, method for producing porous silica-based film and semiconductor device |
US20090286086A1 (en) * | 2005-09-08 | 2009-11-19 | Andreas Dierdorf | Coatings Containing Polysilazanes for Metal and Polymer Surfaces |
US20110135847A1 (en) * | 2007-06-15 | 2011-06-09 | Phillps Mark L F | Low k dielectric |
US20120017985A1 (en) * | 2009-03-19 | 2012-01-26 | Clariant Finance (Bvi) Limited | Solar Cells With An Encapsulating Layer Based On Polysilazane |
US9234119B2 (en) | 2009-03-19 | 2016-01-12 | Az Electronic Materials (Luxembourg) S.A.R.L. | Solar cells with a barrier layer based on polysilazane |
US20160149159A1 (en) * | 2013-07-08 | 2016-05-26 | Konica Minolta, Inc. | Gas barrier film and electronic device |
US9589789B2 (en) | 2012-10-31 | 2017-03-07 | Sba Materials, Inc. | Compositions of low-K dielectric sols containing nonmetallic catalysts |
US10811552B2 (en) * | 2014-06-16 | 2020-10-20 | Korea Institute Of Science And Technology | Solar cell having wavelength converting layer and manufacturing method thereof |
US20210095138A1 (en) * | 2019-09-27 | 2021-04-01 | B&B Blending, Llc | Use of a fluorescent optical brightener or phosphorescent indicator within ceramic coatings for visual detection and identification |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4722269B2 (en) * | 2000-08-29 | 2011-07-13 | Azエレクトロニックマテリアルズ株式会社 | Low dielectric constant porous siliceous film, semiconductor device and coating composition, and method for producing low dielectric constant porous siliceous film |
JP4282493B2 (en) | 2004-01-15 | 2009-06-24 | 株式会社東芝 | Film forming method and substrate processing apparatus |
JP2006054353A (en) * | 2004-08-13 | 2006-02-23 | Az Electronic Materials Kk | Siliceous film with little flat band shift and its production method |
DE102006008308A1 (en) * | 2006-02-23 | 2007-08-30 | Clariant International Limited | Coating preventing scale formation and corrosion on metal surfaces contains a linear and/or cyclic polysilazane, a solvent and a catalyst |
JP2007242995A (en) * | 2006-03-10 | 2007-09-20 | Matsushita Electric Ind Co Ltd | Laminated ceramic electronic component and its manufacturing method |
JP2007273494A (en) * | 2006-03-30 | 2007-10-18 | Fujitsu Ltd | Insulating film forming composition and method for manufacturing semiconductor device |
CN100444288C (en) * | 2006-07-21 | 2008-12-17 | 暨南大学 | Nanoporous polymethylsiloxane low dielectric constant material and its preparation method and application |
CN101641781B (en) * | 2007-02-21 | 2012-04-04 | 富士通半导体股份有限公司 | Semiconductor device and process for producing the same |
JP5405437B2 (en) * | 2010-11-05 | 2014-02-05 | AzエレクトロニックマテリアルズIp株式会社 | Method for forming isolation structure |
JP5987514B2 (en) * | 2012-07-13 | 2016-09-07 | Dic株式会社 | Two-phase co-continuous silica structure and method for producing the same |
JP6929021B2 (en) * | 2016-04-25 | 2021-09-01 | Sppテクノロジーズ株式会社 | Method for manufacturing silicon oxide film |
CN107022269B (en) * | 2017-04-10 | 2020-04-07 | 北京易净星科技有限公司 | Self-cleaning superhard polysilazane hydrophobic coating and preparation and use methods thereof |
CN113999584A (en) * | 2021-11-15 | 2022-02-01 | 长春中科应化特种材料有限公司 | Preparation method of anti-loosening marking paste containing polysilazane bolt |
Family Cites Families (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5032551A (en) * | 1988-03-05 | 1991-07-16 | Toa Nenryo Kogyo Kabushiki Kaisha | Silicon nitride based ceramic fibers, process of preparing same and composite material containing same |
FR2694934B1 (en) * | 1992-08-24 | 1994-11-10 | Oreal | Composition for the treatment of acne containing a salicylic acid derivative and salicylic acid derivatives. |
JP3414488B2 (en) * | 1994-04-28 | 2003-06-09 | 東燃ゼネラル石油株式会社 | Method for producing transparent organic / inorganic hybrid membrane |
JPH09183949A (en) | 1995-12-28 | 1997-07-15 | Tonen Corp | Article coated with hard coat film and method for coating hard coat film |
JPH10218690A (en) * | 1997-02-06 | 1998-08-18 | Kyocera Corp | Method for producing siliceous porous membrane |
JPH11105186A (en) * | 1997-09-30 | 1999-04-20 | Tonen Corp | Low dielectric constant siliceous film |
JP3939408B2 (en) * | 1997-09-30 | 2007-07-04 | Azエレクトロニックマテリアルズ株式会社 | Low dielectric constant siliceous film |
JPH11105187A (en) * | 1997-09-30 | 1999-04-20 | Tonen Corp | Method for forming high-purity siliceous film and high-purity siliceous film |
US6042994A (en) | 1998-01-20 | 2000-03-28 | Alliedsignal Inc. | Nanoporous silica dielectric films modified by electron beam exposure and having low dielectric constant and low water content |
US6395651B1 (en) | 1998-07-07 | 2002-05-28 | Alliedsignal | Simplified process for producing nanoporous silica |
US6090724A (en) | 1998-12-15 | 2000-07-18 | Lsi Logic Corporation | Method for composing a thermally conductive thin film having a low dielectric property |
US6329017B1 (en) * | 1998-12-23 | 2001-12-11 | Battelle Memorial Institute | Mesoporous silica film from a solution containing a surfactant and methods of making same |
US6413882B1 (en) * | 1999-04-14 | 2002-07-02 | Alliedsignal Inc. | Low dielectric foam dielectric formed from polymer decomposition |
US6204202B1 (en) | 1999-04-14 | 2001-03-20 | Alliedsignal, Inc. | Low dielectric constant porous films |
-
1999
- 1999-07-13 JP JP19928299A patent/JP4408994B2/en not_active Expired - Fee Related
-
2000
- 2000-06-20 EP EP00937325A patent/EP1232998B1/en not_active Expired - Lifetime
- 2000-06-20 CN CNB008102120A patent/CN1196649C/en not_active Expired - Fee Related
- 2000-06-20 TW TW089112096A patent/TW593139B/en not_active IP Right Cessation
- 2000-06-20 WO PCT/JP2000/004021 patent/WO2001004049A1/en active IP Right Grant
- 2000-06-20 DE DE60014694T patent/DE60014694T2/en not_active Expired - Lifetime
- 2000-06-20 KR KR1020027000406A patent/KR100727277B1/en not_active Expired - Fee Related
-
2001
- 2001-01-19 US US10/009,735 patent/US20030099843A1/en not_active Abandoned
-
2003
- 2003-02-24 US US10/370,588 patent/US6746714B2/en not_active Expired - Lifetime
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070117892A1 (en) * | 2003-05-01 | 2007-05-24 | Tomoko Aoki | Coating composition, porous silica-based film, method for producing porous silica-based film and semiconductor device |
US20090286086A1 (en) * | 2005-09-08 | 2009-11-19 | Andreas Dierdorf | Coatings Containing Polysilazanes for Metal and Polymer Surfaces |
US8309228B2 (en) * | 2005-09-08 | 2012-11-13 | Az Electronic Materials (Luxembourg) S.A.R.L. | Coatings containing polysilazanes for metal and polymer surfaces |
TWI415912B (en) * | 2005-09-08 | 2013-11-21 | Az Electronic Materials Luxembourg Sarl | Polysilazane coatings for metal and polymer surfaces |
US20110135847A1 (en) * | 2007-06-15 | 2011-06-09 | Phillps Mark L F | Low k dielectric |
US20120017985A1 (en) * | 2009-03-19 | 2012-01-26 | Clariant Finance (Bvi) Limited | Solar Cells With An Encapsulating Layer Based On Polysilazane |
US9234119B2 (en) | 2009-03-19 | 2016-01-12 | Az Electronic Materials (Luxembourg) S.A.R.L. | Solar cells with a barrier layer based on polysilazane |
US9589789B2 (en) | 2012-10-31 | 2017-03-07 | Sba Materials, Inc. | Compositions of low-K dielectric sols containing nonmetallic catalysts |
US20160149159A1 (en) * | 2013-07-08 | 2016-05-26 | Konica Minolta, Inc. | Gas barrier film and electronic device |
US10811552B2 (en) * | 2014-06-16 | 2020-10-20 | Korea Institute Of Science And Technology | Solar cell having wavelength converting layer and manufacturing method thereof |
US20210095138A1 (en) * | 2019-09-27 | 2021-04-01 | B&B Blending, Llc | Use of a fluorescent optical brightener or phosphorescent indicator within ceramic coatings for visual detection and identification |
Also Published As
Publication number | Publication date |
---|---|
KR20020025191A (en) | 2002-04-03 |
DE60014694T2 (en) | 2005-10-27 |
WO2001004049A1 (en) | 2001-01-18 |
JP2001026415A (en) | 2001-01-30 |
CN1196649C (en) | 2005-04-13 |
EP1232998A1 (en) | 2002-08-21 |
TW593139B (en) | 2004-06-21 |
KR100727277B1 (en) | 2007-06-13 |
DE60014694D1 (en) | 2004-11-11 |
CN1360559A (en) | 2002-07-24 |
JP4408994B2 (en) | 2010-02-03 |
US20030152783A1 (en) | 2003-08-14 |
EP1232998A4 (en) | 2002-10-16 |
US6746714B2 (en) | 2004-06-08 |
EP1232998B1 (en) | 2004-10-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6746714B2 (en) | Porous silica coating with low dielectric constant, semiconductor device and coating composition | |
EP1321974B1 (en) | Porous siliceous film having low permittivity, semiconductor devices and coating composition | |
US6318124B1 (en) | Nanoporous silica treated with siloxane polymers for ULSI applications | |
US6410149B1 (en) | Silane-based nanoporous silica thin films and precursors for making same | |
EP0447611B1 (en) | Planarizing silsesquioxane copolymer coating | |
US20050173803A1 (en) | Interlayer adhesion promoter for low k materials | |
KR20030094099A (en) | Electronic device manufacture | |
JP2004312041A (en) | Low dielectric constant material and processing method by CVD | |
WO2004026765A1 (en) | Method for modifying porous film, modified porous film and use of same | |
JP2005522877A (en) | A novel porogen for porous silica dielectrics for integrated circuits | |
CN1836017B (en) | Coating composition and low dielectric siliceous material produced by using same | |
JP3939408B2 (en) | Low dielectric constant siliceous film | |
JP2006503165A (en) | Organosiloxane | |
JPH11105187A (en) | Method for forming high-purity siliceous film and high-purity siliceous film | |
JP2006188547A (en) | Coating composition and low dielectric porous siliceous material produced using the same |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TONENGENERAL SEKIYU K.K., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:AOKI, TOMOKO;SHIMIZU, YASUO;REEL/FRAME:012617/0987 Effective date: 20011129 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: CLARIANT INTERNATIONAL, LTD., SWITZERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TONENGENERAL SEKIYU K.K.;REEL/FRAME:014609/0431 Effective date: 20030709 |