US20030096100A1 - Molecular level coating of metal oxide particles Molecular level coating of metal oxide particles - Google Patents
Molecular level coating of metal oxide particles Molecular level coating of metal oxide particles Download PDFInfo
- Publication number
- US20030096100A1 US20030096100A1 US10/028,296 US2829601A US2003096100A1 US 20030096100 A1 US20030096100 A1 US 20030096100A1 US 2829601 A US2829601 A US 2829601A US 2003096100 A1 US2003096100 A1 US 2003096100A1
- Authority
- US
- United States
- Prior art keywords
- weight
- metal oxide
- matter
- composition
- polymer
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 0 C*c1ccc2c(c1)C(=O)N([Ar]C)C2=O Chemical compound C*c1ccc2c(c1)C(=O)N([Ar]C)C2=O 0.000 description 2
- UCWZLDYPAFILAQ-UHFFFAOYSA-N CC(=O)c1ccc2c(c1)C(=O)N(C)C2=O.CC(=O)c1cccc(C(=O)c2ccc3c(c2)C(=O)N(C)C3=O)c1.CN1C(=O)c2ccc(C(C)(C(F)(F)F)C(F)(F)F)cc2C1=O.COc1ccc2c(c1)C(=O)N(C)C2=O Chemical compound CC(=O)c1ccc2c(c1)C(=O)N(C)C2=O.CC(=O)c1cccc(C(=O)c2ccc3c(c2)C(=O)N(C)C3=O)c1.CN1C(=O)c2ccc(C(C)(C(F)(F)F)C(F)(F)F)cc2C1=O.COc1ccc2c(c1)C(=O)N(C)C2=O UCWZLDYPAFILAQ-UHFFFAOYSA-N 0.000 description 2
- CMGPWDQXIZQBIV-UHFFFAOYSA-N CC.CC.CC.CC.CC.CC.CC.Cc1ccccc1.c1ccc(Cc2ccccc2)cc1.c1ccc(Oc2cccc(Oc3ccccc3)c2)cc1.c1ccc(Oc2ccccc2)cc1 Chemical compound CC.CC.CC.CC.CC.CC.CC.Cc1ccccc1.c1ccc(Cc2ccccc2)cc1.c1ccc(Oc2cccc(Oc3ccccc3)c2)cc1.c1ccc(Oc2ccccc2)cc1 CMGPWDQXIZQBIV-UHFFFAOYSA-N 0.000 description 2
Classifications
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D11/00—Inks
- C09D11/02—Printing inks
- C09D11/03—Printing inks characterised by features other than the chemical nature of the binder
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/02—Cosmetics or similar toiletry preparations characterised by special physical form
- A61K8/11—Encapsulated compositions
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/25—Silicon; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/28—Zirconium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/19—Cosmetics or similar toiletry preparations characterised by the composition containing inorganic ingredients
- A61K8/29—Titanium; Compounds thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/30—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds
- A61K8/33—Cosmetics or similar toiletry preparations characterised by the composition containing organic compounds containing oxygen
- A61K8/34—Alcohols
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/72—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
- A61K8/84—Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds obtained by reactions otherwise than those involving only carbon-carbon unsaturated bonds
- A61K8/88—Polyamides
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K8/00—Cosmetics or similar toiletry preparations
- A61K8/18—Cosmetics or similar toiletry preparations characterised by the composition
- A61K8/92—Oils, fats or waxes; Derivatives thereof, e.g. hydrogenation products thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q19/00—Preparations for care of the skin
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F1/00—General methods for the manufacture of artificial filaments or the like
- D01F1/02—Addition of substances to the spinning solution or to the melt
- D01F1/10—Other agents for modifying properties
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F6/00—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
- D01F6/58—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products
- D01F6/74—Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolycondensation products from polycondensates of cyclic compounds, e.g. polyimides, polybenzimidazoles
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/69—Water-insoluble compounds, e.g. fillers, pigments modified, e.g. by association with other compositions prior to incorporation in the pulp or paper
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61Q—SPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
- A61Q17/00—Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/18—Oxygen-containing compounds, e.g. metal carbonyls
- C08K3/20—Oxides; Hydroxides
- C08K3/22—Oxides; Hydroxides of metals
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/10—Encapsulated ingredients
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08L—COMPOSITIONS OF MACROMOLECULAR COMPOUNDS
- C08L79/00—Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
- C08L79/04—Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
- C08L79/08—Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/20—Macromolecular organic compounds
- D21H17/33—Synthetic macromolecular compounds
- D21H17/46—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
- D21H17/54—Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen
- D21H17/55—Polyamides; Polyaminoamides; Polyester-amides
-
- D—TEXTILES; PAPER
- D21—PAPER-MAKING; PRODUCTION OF CELLULOSE
- D21H—PULP COMPOSITIONS; PREPARATION THEREOF NOT COVERED BY SUBCLASSES D21C OR D21D; IMPREGNATING OR COATING OF PAPER; TREATMENT OF FINISHED PAPER NOT COVERED BY CLASS B31 OR SUBCLASS D21G; PAPER NOT OTHERWISE PROVIDED FOR
- D21H17/00—Non-fibrous material added to the pulp, characterised by its constitution; Paper-impregnating material characterised by its constitution
- D21H17/63—Inorganic compounds
- D21H17/67—Water-insoluble compounds, e.g. fillers, pigments
- D21H17/675—Oxides, hydroxides or carbonates
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
Definitions
- This invention relates generally to the preparation of coatings, molding powders, fibers, films and matrix resins for composites.
- the invention relates specifically to the molecular level coating of metal oxide particles with polyimides and the product(s) obtained thereby.
- High performance polyimides have found extensive use in the aerospace industry as adhesives, and more recently as matrix resins for composites, molding powders and films.
- Organic-inorganic blends may also be produced by utilizing the sol-gel process. With this method, the inorganic phase is formed in-situ by hydrolysis and polycondensation of the alkylated metal aldoxides.
- Alkylated metal oxides are organic low molecular weight compounds soluble in organic solvents which precipitate as metal oxides upon condensation.
- Sol-gel ceramers in the past have involved the formation of transparent or translucent thin films where the organic and inorganic phases are co-mingled and then cured, as described by Iyoku et al, (The Preparation of New Poly(phenylsilsesquioxane)-Polyimide Hydrid Films by the Sol-Gel Process and Their Properties”, High Performance Polymers , Volume 6, 1994), where they indicate the formation of small particles of silicone dispersed in a film.
- Microcapsules can have many different structures, but typically involve a core region surrounded by a shell.
- the geometry may be spherical or irregular, and contain a continuous core or small particles of core material surrounded by the shell.
- MCP Macro Coated Particle
- MLC Molecular Level Coating
- MLC metal oxide-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polystyrene-containing polysulfin-styrene-styrene-styrene-styrene-containing polystyrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styrene-styren
- Titanium oxide a commonly used whitener in pigments and coatings, is subject to weathering with long term exposure to sunlight. Exposure to ultraviolet light results in excitation of the electrons in the titanium compound which may return to the ground state by transferring free radicals to the surrounding materials. Absorption of these free radicals by the surrounding organic material leads to discoloration and degradation. In accordance with the present invention, degradation of titanium oxide is slowed by encapsulating the titanium oxide particles in a polymer that is nonreactive to free radical bombardment.
- a further object of the present invention is to provide a metal oxide encapsulated with a polyimide that has synergistic property characteristics.
- Another object of the present invention is to provide encapsulated titanium oxide particles to decrease the degradation and improve the weathering and colorfast property characteristics of the particles.
- An additional object of the present invention is a process of encapsulation of metal oxide particles with a surrounding insulation of a polyimide to thereby insulate the metal oxide from free radical transfer and provide better weathering and good resistant color fast properties to the metal oxide.
- a further object of the present invention is to provide an encapsulated titanium oxide for use in a protective unguent for human skin.
- An additional object of the present invention is to provide coated metal oxide particles that hinder the loss of free radicals when exposed to ultraviolet light.
- Another object of the present invention is a process of preparing molecular level coatings of metal oxide particles for use as ultraviolet and weather protectives in unguents for human skin, paper fillers, printing inks, fiber reinforced composites and textiles.
- Another object of the present invention is a polymer encapsulated metal oxide matrix resin for manufacturing fiber reinforced composites wherein the metal oxide particles increase the modulus of the polymer in the composite.
- Ar is a member selected from the group consisting of:
- catenation is meta, meta; meta, para; or para, para;
- R is a member selected from the group consisting of:
- n is an integer in the range of 10 to 10,000.
- Polymer encapsulated metal oxide particles were prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in refluxing organic solvent. The resultant polymer-metal oxide is an intimately mixed commingled blend, possessing properties of both the polymer and preceramic metal oxide.
- FIG. 1 is a schematic representation of a polymer coating of macro metal oxide particles
- FIG. 2 is a schematic representation of a polymer coating of a molecular level metal oxide particle
- FIG. 3 is a bar graph showing the improved flexural modulus of the polymer coated molecular level metal oxide particles over the unmodified polymer
- FIG. 4 is a bar graph showing the improved flexural strength of the polymer coated molecular level metal oxide particles over that of the unmodified polymer
- FIG. 5 is a bar graph showing the flexural strength of a composite specimen formed of metal oxide-polyimide prepared according to the present invention employed as a carbon fiber coating and molded into a composite panel;
- FIG. 6 is a bar graph showing the flexural modulus of the composite specimen formed of metal oxide-polyimide prepared according to the present invention employed as a carbon fiber coating and molded into a composite panel.
- FIG. 1 is a schematic representation of a macro coated particle, designated generally by reference numeral 10 is shown.
- Coated particle 10 consists of a multimolecular metal oxide particle 12 having a polymer coating 14 thereon. These coated particles are in the micron size range and are developed by Macro Coated Particle Technology (MCP).
- MCP Macro Coated Particle Technology
- FIG. 2 is a schematic representation of a molecular metal oxide coated particle, generally designated by reference numeral 20.
- Coated particle 20 consists of a single molecule of a metal oxide 22 having a polymer coating 24 thereon. This coated particle is in the angstrom size range and is developed by Molecular Level Coating Technology (MLC). The present invention is confined to Molecular Level Coating Technology (MLC) and the products produced thereby.
- MLC Molecular Level Coating Technology
- encapsulated particles offer properties of the metal oxide and polymer which are not related simply to a rule of mixtures but appear to be synergistic in character. Encapsulation results in insulation of the surrounding medium from free radical transfer resulting in materials with better weathering and good resistant color fast systems.
- the insulative coating serves as protection from the environment.
- the metal oxide such as TiO 2
- a cosmetic base to afford a resulting material having enhanced stability to ultraviolet light, to serve as a protective unguent for human skin.
- the photosensitive TiO 2 is isolated from the cosmetic binder thereby decreasing binder decomposition as a result of free radical transfer. This insulating effect also serves to protect the skin from negative physiological effects due to free radical attack that often results in adverse chemical reactions.
- the insulative properties of the coated metal oxide particles are effective.
- the supporting medium of the coating and its surrounding environment is protected by these insulative properties from free radical transfer as a result of ultraviolet exposure to thereby decrease chalking.
- the encapsulated metal oxide serves as a whitener to the paper, while decreasing the yellowing normally caused by environmental exposure.
- coated metal oxide particles of the present invention are also useful as an additive to printing inks.
- the high performance polymer provides lubrication to the pigments, resulting in a less chalky medium with decreased friction, while the metal oxide provides the desired pigmentation.
- the metal oxide particles of the present invention when employing the polymer coated metal oxide particles of the present invention as a matrix resin for fiber reinforced composites, the metal oxide particles increase the flexural modulus of the polymer in the composite.
- the metal oxide serves as a whitener and the insulative properties of the high performance polymer serves to protect the fiber from weathering.
- the polyamide acid form of LARCTM IA in N-methyl pyrrolidinone (NMP) and available from Imitech Corporation was imidized by introducing it directly into a mixture of refluxing o-zylene and alkyl titanate, (both available from Aldrich Chemical Company).
- NMP N-methyl pyrrolidinone
- the water formed from ring closure during imidization facilitated the formation of the metal oxide. This results in the formation of the metal oxide as a discrete particle thinly coated with the polymer.
- the fine powder was recovered and dried under vacuum 12 hours at 200° C. All of the systems formed fine powders which dispersed well in lacquers, oil based coatings, and epoxy.
- N-Methyl pyrrolidinone gamma-butyrolactone, N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, and others, may be utilized as the solvent in this process.
- polyimides employed in the specific examples herein were from the soluble polyamide acid forms, soluble polyimides may also be used, in particular, LARCTM IA and LARCTM 6F.
- Example IV The same as in Examples I except, in lieu of NMP, the solvent employed is 1,3-dimethyl-2-imidazolidinone.
- LARCTM IA 230 g of 30 weight percent in NMP at 3% stoichiometric offset endcapped with phthalic anhydride was diluted with 1300 g of distilled NMP.
- the resin mixture was added dropwise via an addition funnel into the refluxing o-xylene over a 2 hour period.
- the system was allowed to heat at approximately 140° C. with stirring for 48 hours.
- the light brown slurry was centrifuged and the solvent decanted off.
- the recovered off-white powder was washed in o-xylene, collected on medium porosity sintered glass, and dried 12 hours at 200° C. under vacuum.
- the yield was 63.7 g, 5% weight loss by thermogravimetric analysis at 324° C.
- Example V The same as Example V except, in lieu of NMP, the solvent employed is gamma-butyrolactone.
- Example V The same as Example V except, in lieu of NMP, the solvent employed is 1,3-dimethyl-2-imidazolidinone.
- a skin unguent was prepared by mixing one part, by weight, of the powder prepared in Example I to 1 to 10 parts, by weight, of mineral oil.
- a skin unguent was prepared by mixing one part, by weight, of the powder prepared in Example I, with 1 to 10 parts by weight, of glycerin.
- a skin unguent was prepared by mixing one part, by weight, of the powder prepared in Example I, with an emulsion comprising 0.5 to 4 parts, by weight, of glycerin; 0.5 to 4 parts, by weight, of mineral oil; and 0.25 to 1 part, by weight, of water.
- the lacquer employed in the Example above was “SO SURE” lacquer, obtained from LHB Industries, Berkley, Mo.; the epoxy resin was “bis phenol A diglycidyl ether” with polymercapton hardener, and acquired from the Devcon Corporation; and the rubber cement was “Carter's Rubber Cement” (Carter's Ink Division) and acquired from Demmison Manufacturing Company.
- Example II A 5 g aliquot of the powder prepared in Example II was added to 50 g of printing ink (“Numbering Ink”, acquired from Bates Manufacturing Company). The filled ink was used to print on paper and exhibited stability to UV light. Ratios, other than the 1:10 polymer to ink, employed in this specific example would be expected to also be operative to provide a UV light stable ink.
- LARCTM IA 1455 g, 30 weight percent
- NMP distilled NMP
- An alkyl silicate, tetraethylorthosilicate (TEOS, 436 ml) and distilled water (436 ml) was added slowly to the resin mixture.
- the solution was stirred for 5 hours, then added dropwise via an addition funnel into the resin kettle of refluxing o-xylene over a 2 hour period.
- the system was allowed to heat at approximately 140° C., with stirring, for 16 hours. During the duration of heating, 780 ml of aqueous material was collected in the moisture trap.
- TABLE V Alkyl Alkyl Molar Ratio of LARC TM IA Silicate Zirconate Metal Oxide to Moles Moles Moles H 2 O Moles Polymer 0.92 5.4 48 6:1 0.26 0.78 6.9 3:1 5.3 ⁇ 10 ⁇ 2 0.11 2:1 5.3 ⁇ 10 ⁇ 2 1.5 ⁇ 10 ⁇ 2 6.9 ⁇ 10 ⁇ 2 0.14 1.5:1 5.3 ⁇ 10 ⁇ 2 7.8 ⁇ 10 ⁇ 2 3.8 ⁇ 10 ⁇ 2 0.69 2:1
- Example XV The powder obtained from Example XV was passed through a Brabender melt extruder heated to 315° C. at a volume rate of 0.0105 cm 3 sec ⁇ 1 . Melt extrusion yielded polymer fiber or ribbon.
- Fiber reinforced composite panel [0072] Fiber reinforced composite panel
- a powder coated towpreg was prepared by coating carbon fibers with the modified polymer prepared in Example XV. The powder coated towpreg was then wound around a frame, stacked in a mold and consolidated under 300 psi one hour at 350° C. The composite specimen was slowly cooled to room temperature prior to removal from the mold. Test panels yielded panels with the strength properties plotted in FIG. 5 and modulus properties as plotted in FIG. 6 .
- a 10 g sample of 10 weight percent solution of polymer in NMP was combined with 1 g of alkyl silicate (TEOS) and 9 g of zirconium butoxide and allowed to stir until homogeneous.
- the resin mixture was added dropwise via an addition funnel into the refluxing o-xylene.
- the system was allowed to heat at approximately 140° C. with stirring overnight, the solids collected and dried under vacuum 12 hours at 200° C.
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- Birds (AREA)
- Epidemiology (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Materials Engineering (AREA)
- Textile Engineering (AREA)
- Wood Science & Technology (AREA)
- Medicinal Chemistry (AREA)
- Dermatology (AREA)
- Polymers & Plastics (AREA)
- Manufacturing & Machinery (AREA)
- Emergency Medicine (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pigments, Carbon Blacks, Or Wood Stains (AREA)
- Paints Or Removers (AREA)
- Cosmetics (AREA)
- Processes Of Treating Macromolecular Substances (AREA)
- Inks, Pencil-Leads, Or Crayons (AREA)
- Paper (AREA)
Abstract
Polymer encapsulated metal oxide particles are prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in a refluxing organic solvent. The resulting polymer-metal oxide is an intimately mixed commingled blend, possessing synergistic properties of both the polymer and preceramic metal oxide. The encapsulated metal oxide particles have multiple uses including, being useful in the production of skin lubricating creams, weather resistant paints, as a filler for paper, making ultraviolet light stable filled printing ink, being extruded into fibers or ribbons, and coatings for fibers used in the production of composite structural panels.
Description
- This application is a divisional patent application of co-pending, commonly owned patent application Ser. No. 09/495,575, filed Feb. 1, 2000, which is a divisional patent application of commonly owned patent application Ser. No. 08/742,068, filed Oct. 31, 1996, now U.S. Pat. No. 6,114,156.
- [0002] The invention described herein was made by an employee of the United States Government and a National Research Council Associate and may be used by or for the Government for governmental purposes without the payment of any royalties thereon or therefor.
- This invention relates generally to the preparation of coatings, molding powders, fibers, films and matrix resins for composites. The invention relates specifically to the molecular level coating of metal oxide particles with polyimides and the product(s) obtained thereby.
- The development of advanced high performance polymers for aerospace applications has been, and remains, a particularly active area of research. High performance polyimides have found extensive use in the aerospace industry as adhesives, and more recently as matrix resins for composites, molding powders and films.
- Improvements in high performance systems are motivated by the search for advanced materials with improved or unique properties. Previous research into polyimide modifications have involved the simplest and most inexpensive methods involving manipulation of the chemical composition of mainly linear polyimides. An alternative method of modification is by incorporation of a second component of differing chemical structure or composition.
- Modifications utilizing the morphology of multiphase systems with phases of differing chemical structure allows for a remarkable balance of diverse properties. This is especially true when at least one phase is on the molecular scale, allowing for a balance of diverse properties. The production of organic-inorganic hybrid materials may take place through several different methods. One route is by direct mixing of low melt glasses with engineering thermoplastics, Beall and Quinn (Phosphate glass-polymer emulsions”,Ceramic Transactions, Volume 33, 1993). Organic-inorganic blends have also been formed by intercalation of polymers in the melt between mica sheets; Giannelis (“A New Strategy For Synthesizing Polymer-Ceramic Nanocomposites”, Journal of the Minerals, Metals and Materials Society, Volume 44. Number 3. 1992). These processes have resulted in a class of materials called ceramers that possess properties of both inorganic glasses and organic polymers.
- Organic-inorganic blends may also be produced by utilizing the sol-gel process. With this method, the inorganic phase is formed in-situ by hydrolysis and polycondensation of the alkylated metal aldoxides. Alkylated metal oxides are organic low molecular weight compounds soluble in organic solvents which precipitate as metal oxides upon condensation. Sol-gel ceramers in the past have involved the formation of transparent or translucent thin films where the organic and inorganic phases are co-mingled and then cured, as described by Iyoku et al, (The Preparation of New Poly(phenylsilsesquioxane)-Polyimide Hydrid Films by the Sol-Gel Process and Their Properties”,High Performance Polymers, Volume 6, 1994), where they indicate the formation of small particles of silicone dispersed in a film.
- In another case where inorganic-organic composites are formed, the functionality of the poly(dimethylsiloxane) chains of the polymer results in strong interactions between the two components, where the polymer constitutes the continuous phase, while the ceramic material serves as reinforcing particles. When the polymer is present in lower concentrations, it becomes dispersed in the continuous ceramic phase. Mark et al, (“Inorganic-Organic Composites Including Some Examples Involving Polyamides and Polyimides”,Macromolecular Symposium, Volume 98, 1995), even cites cases where a bicontinuous system is formed.
- Another method of generating organic-inorganic blended materials is by encapsulation. This technology is being used extensively in many industries and for a wide variety of materials. Microcapsules can have many different structures, but typically involve a core region surrounded by a shell. The geometry may be spherical or irregular, and contain a continuous core or small particles of core material surrounded by the shell. As a result of agglomeration, traditional methods of encapsulating metal oxide particles result in a multi-molecular/multi-nuclear core region surrounded by a coating. Macro Coated Particle (MCP) technology results in organic-inorganic particles in the ten to hundreds of micron range (FIG. 1). Molecular Level Coating (MLC) technology, as employed in the present invention (FIG. 2), utilizes microencapsulation technology in conjunction with sol-gel processing. The in-situ generation of the inorganic phase with MLC results in a polymer coated, molecular level, metal oxide particle in the angstrom size range.
- Preparation of a ceramer by MLC results in the formation of the metal oxide as a discrete particle thinly coated with a polymer. MLC of a preceramic and a high performance polymer facilitates the design of systems that combine the thermal stability, high stiffness (modulus) or light reflective properties of a glass with the toughness and processability of a polymer. MLC further offers the advantage of metal oxide particles with less abrasive properties than uncoated metal oxides.
- Titanium oxide, a commonly used whitener in pigments and coatings, is subject to weathering with long term exposure to sunlight. Exposure to ultraviolet light results in excitation of the electrons in the titanium compound which may return to the ground state by transferring free radicals to the surrounding materials. Absorption of these free radicals by the surrounding organic material leads to discoloration and degradation. In accordance with the present invention, degradation of titanium oxide is slowed by encapsulating the titanium oxide particles in a polymer that is nonreactive to free radical bombardment.
- It an object of the present invention to provide a molecular level coated metal oxide particle that has less abrasive properties than uncoated metal oxide particles.
- A further object of the present invention is to provide a metal oxide encapsulated with a polyimide that has synergistic property characteristics.
- Another object of the present invention is to provide encapsulated titanium oxide particles to decrease the degradation and improve the weathering and colorfast property characteristics of the particles.
- An additional object of the present invention is a process of encapsulation of metal oxide particles with a surrounding insulation of a polyimide to thereby insulate the metal oxide from free radical transfer and provide better weathering and good resistant color fast properties to the metal oxide.
- A further object of the present invention is to provide an encapsulated titanium oxide for use in a protective unguent for human skin.
- An additional object of the present invention is to provide coated metal oxide particles that hinder the loss of free radicals when exposed to ultraviolet light.
- Another object of the present invention is a process of preparing molecular level coatings of metal oxide particles for use as ultraviolet and weather protectives in unguents for human skin, paper fillers, printing inks, fiber reinforced composites and textiles.
- Another object of the present invention is a polymer encapsulated metal oxide matrix resin for manufacturing fiber reinforced composites wherein the metal oxide particles increase the modulus of the polymer in the composite.
-
-
- wherein the catenation is meta, meta; meta, para; or para, para;
-
- and, wherein n is an integer in the range of 10 to 10,000.
- Polymer encapsulated metal oxide particles were prepared by combining a polyamide acid in a polar aprotic solvent with a metal alkoxide solution. The polymer was imidized and the metal oxide formed simultaneously in refluxing organic solvent. The resultant polymer-metal oxide is an intimately mixed commingled blend, possessing properties of both the polymer and preceramic metal oxide.
- Polymers suitable for practice of the present invention are disclosed in the following U. S. Patents (incorporated herein by reference), U.S. Pat. No. 4,094,482 (LARC™ TPI); U.S. Pat. No.4,603,061 (LARC™ 6F); U.S. Pat. No.4,937,317 (LARC™ ITPI); and U.S. Pat. No. 5,147,966 (LARC™ IA), and are commercially available from NASA licensees of these patents.
- A more complete appreciation of the invention and many of the attendant advantages thereof will be more readily apparent as the same becomes better understood in connection with the following drawings and specific examples wherein:
- FIG. 1is a schematic representation of a polymer coating of macro metal oxide particles;
- FIG. 2is a schematic representation of a polymer coating of a molecular level metal oxide particle;
- FIG. 3 is a bar graph showing the improved flexural modulus of the polymer coated molecular level metal oxide particles over the unmodified polymer;
- FIG. 4 is a bar graph showing the improved flexural strength of the polymer coated molecular level metal oxide particles over that of the unmodified polymer;
- FIG. 5 is a bar graph showing the flexural strength of a composite specimen formed of metal oxide-polyimide prepared according to the present invention employed as a carbon fiber coating and molded into a composite panel; and,
- FIG. 6 is a bar graph showing the flexural modulus of the composite specimen formed of metal oxide-polyimide prepared according to the present invention employed as a carbon fiber coating and molded into a composite panel.
- Referring to the drawings, FIG. 1is a schematic representation of a macro coated particle, designated generally by reference numeral 10 is shown. Coated particle10 consists of a multimolecular metal oxide particle 12 having a polymer coating 14 thereon. These coated particles are in the micron size range and are developed by Macro Coated Particle Technology (MCP).
- FIG. 2is a schematic representation of a molecular metal oxide coated particle, generally designated by reference numeral 20. Coated particle 20 consists of a single molecule of a metal oxide 22 having a polymer coating 24 thereon. This coated particle is in the angstrom size range and is developed by Molecular Level Coating Technology (MLC). The present invention is confined to Molecular Level Coating Technology (MLC) and the products produced thereby.
- These encapsulated particles offer properties of the metal oxide and polymer which are not related simply to a rule of mixtures but appear to be synergistic in character. Encapsulation results in insulation of the surrounding medium from free radical transfer resulting in materials with better weathering and good resistant color fast systems.
- The insulative coating serves as protection from the environment. Thus, in one application of the present invention, the metal oxide, such as TiO2, is mixed with a cosmetic base to afford a resulting material having enhanced stability to ultraviolet light, to serve as a protective unguent for human skin. The photosensitive TiO2 is isolated from the cosmetic binder thereby decreasing binder decomposition as a result of free radical transfer. This insulating effect also serves to protect the skin from negative physiological effects due to free radical attack that often results in adverse chemical reactions.
- When employing the coated metal oxide particles of the present invention as a filler for paints and coatings, the insulative properties of the coated metal oxide particles are effective. The supporting medium of the coating and its surrounding environment, is protected by these insulative properties from free radical transfer as a result of ultraviolet exposure to thereby decrease chalking.
- When employing the coated metal oxide particles of the present invention as a filler for papers, the encapsulated metal oxide serves as a whitener to the paper, while decreasing the yellowing normally caused by environmental exposure.
- The coated metal oxide particles of the present invention are also useful as an additive to printing inks. In this environment, the high performance polymer provides lubrication to the pigments, resulting in a less chalky medium with decreased friction, while the metal oxide provides the desired pigmentation.
- As will be further described hereinafter, when employing the polymer coated metal oxide particles of the present invention as a matrix resin for fiber reinforced composites, the metal oxide particles increase the flexural modulus of the polymer in the composite.
- When employing the polymer coated metal oxide particles of the present invention as a filler for textiles, the metal oxide serves as a whitener and the insulative properties of the high performance polymer serves to protect the fiber from weathering.
- In preparing the polyimide-titanium oxide blend, the polyamide acid form of LARC™ IA in N-methyl pyrrolidinone (NMP) and available from Imitech Corporation, was imidized by introducing it directly into a mixture of refluxing o-zylene and alkyl titanate, (both available from Aldrich Chemical Company). The water formed from ring closure during imidization facilitated the formation of the metal oxide. This results in the formation of the metal oxide as a discrete particle thinly coated with the polymer. The fine powder was recovered and dried under vacuum 12 hours at 200° C. All of the systems formed fine powders which dispersed well in lacquers, oil based coatings, and epoxy. In lieu of N-Methyl pyrrolidinone, gamma-butyrolactone, N,N-dimethylacetamide, 1,3-dimethyl-2-imidazolidinone, and others, may be utilized as the solvent in this process. Although the polyimides employed in the specific examples herein were from the soluble polyamide acid forms, soluble polyimides may also be used, in particular, LARC™ IA and LARC™ 6F.
- Reaction sequence for the synthesis of a polymer-metal oxide encapsulated molecular level particle:
- Into a resin kettle equipped with a mechanical stirrer, nitrogen inlet, moisture trap and reflux condenser was added 300 ml of o-xylene. The resin kettle was wrapped in glass wool and the solvent heated to reflux.
- A 10 g sample of 10 weight percent solution of polymer in NMP was combined with 10 g of metal alkoxide and 10 g of water and allowed to stir until homogeneous. The resin mixture was added dropwise via an addition funnel into the refluxing o-xylene. The system was allowed to heat at approximately 140° C., with stirring overnight, the solids collected and dried under vacuum 12 hours at 200° C. Yield 11 grams of fine off-white powder. Examples of polymer oxides formed are summarized in Table I.
TABLE I Polymer Titanium Oxide Zirconium Oxide Silica Oxide LARC ™ IA Off-white Light orange Light brown powder powder powder LARC ™ TPI Off-white Light orange Light brown powder powder powder LARC ™ I-TPI Off-white Light orange Light brown powder powder powder LARC ™ 6-F White powder Light pink Off-white powder powder - The same as in Example I except gamma-butyrolactone was employed as the solvent in lieu of NMP.
- The same as in Example I except, in lieu of NMP, the solvent employed is N,N-dimethylacetamide.
- Synthesis of a polymer-titanium oxide blend:
- Into a 10 liter resin kettle equipped with a mechanical stirrer, nitrogen inlet, moisture trap and reflux condenser was placed 5,000 ml of o-xylene. The resin kettle was wrapped in glass wool and heated to reflux.
- 1330 ml of tetrakis(2-ethylhexyl)orthotitanate (alkyl titanate) was added to the hot o-xylene and allowed to heat 30 minutes at approximately 140° C.
- LARC™ IA, 230 g of 30 weight percent in NMP at 3% stoichiometric offset endcapped with phthalic anhydride was diluted with 1300 g of distilled NMP. The resin mixture was added dropwise via an addition funnel into the refluxing o-xylene over a 2 hour period. The system was allowed to heat at approximately 140° C. with stirring for 48 hours. The light brown slurry was centrifuged and the solvent decanted off. The recovered off-white powder was washed in o-xylene, collected on medium porosity sintered glass, and dried 12 hours at 200° C. under vacuum. The yield was 63.7 g, 5% weight loss by thermogravimetric analysis at 324° C.
- The same as Example V except, in lieu of NMP, the solvent employed is gamma-butyrolactone.
- The same as Example V except, in lieu of NMP, the solvent employed is N,N-dimethylacetamide.
- The same as Example V except, in lieu of NMP, the solvent employed is 1,3-dimethyl-2-imidazolidinone.
- The molar ratios of metal oxide to polymer formed in Examples V to VIII are summarized in TABLE II below:
TABLE II Molar Ratio Alkyl Titanate of Metal LARC ™ IA Moles Moles H2O Moles Oxide to Polymer 3.2 × 10−2 8.6 × 10−2 2.68 2.7:1 9.5 × 10−2 .51 5.4:1 0.15 2.3 15:1 - Preparation of a skin unguent:
- A skin unguent was prepared by mixing one part, by weight, of the powder prepared in Example I to 1 to 10 parts, by weight, of mineral oil.
- A skin unguent was prepared by mixing one part, by weight, of the powder prepared in Example I, with 1 to 10 parts by weight, of glycerin.
- A skin unguent was prepared by mixing one part, by weight, of the powder prepared in Example I, with an emulsion comprising 0.5 to 4 parts, by weight, of glycerin; 0.5 to 4 parts, by weight, of mineral oil; and 0.25 to 1 part, by weight, of water.
- In each of Examples IX, X and XI, a resulting unguent having a color indicative of that of the polymer powder employed, was obtained that, when spread on the skin, left a protective coating.
- The ratios of the ingredients in the skin unguent produced by Examples IX, X and XI are summarized in TABLE III below:
TABLE III MLC Powder (mg) Mineral Oil (mg) Glycerin (mg) Water (mg) 250 250 250 1250 250 2500 250 250 250 1250 250 2500 250 125 125 10 250 250 250 25 250 500 500 100 250 1000 1000 250 - Preparation of filled paints and coatings: A 50 mg aliquot of the sample prepared in Example I was combined with 100 mg of binder. The binder was allowed to dry 24 hours and a light tan coating resulted. Table IV summarizes the binders employed in the preparation of the paints and coatings.
TABLE IV Binder (100 mg) mg of encapsulated TiO2 Result Tung Oil 50 Light Tan Coating/Paint Clear Vinyl Lacquer 50 Light Tan Coating/Paint Epoxy Resin 50 Light Tan Cured Epoxy Rubber Cement 50 Light Tan Film Flexible - The lacquer employed in the Example above was “SO SURE” lacquer, obtained from LHB Industries, Berkley, Mo.; the epoxy resin was “bis phenol A diglycidyl ether” with polymercapton hardener, and acquired from the Devcon Corporation; and the rubber cement was “Carter's Rubber Cement” (Carter's Ink Division) and acquired from Demmison Manufacturing Company.
- Preparation of a filled paper:
- 8 g of cellulose pulp was slurried with 1 g of the powder prepared in Example II. The water was extracted and the filled pulp was collected over a suction apparatus at approximately 15 psi and allowed to dry at ambient temperature.
- A 5 g aliquot of the powder prepared in Example II was added to 50 g of printing ink (“Numbering Ink”, acquired from Bates Manufacturing Company). The filled ink was used to print on paper and exhibited stability to UV light. Ratios, other than the 1:10 polymer to ink, employed in this specific example would be expected to also be operative to provide a UV light stable ink.
- Reaction sequence for preparation of a polymer-silica oxide blend:
- Into a 20 liter resin kettle equipped with a mechanical stirrer, nitrogen inlet, moisture trap and reflux condenser, was placed 12,000 ml of o-xylene. The resin kettle was wrapped in glass wool and heated to reflux.
- LARC™ IA (1455 g, 30 weight percent) in NMP, at 3% stoichiometric offset and endcapped with phthalic anhydride, was diluted to 15% solids with distilled NMP. An alkyl silicate, tetraethylorthosilicate (TEOS, 436 ml) and distilled water (436 ml) was added slowly to the resin mixture. The solution was stirred for 5 hours, then added dropwise via an addition funnel into the resin kettle of refluxing o-xylene over a 2 hour period. The system was allowed to heat at approximately 140° C., with stirring, for 16 hours. During the duration of heating, 780 ml of aqueous material was collected in the moisture trap. The light brown slurry was centrifuged and the solvent decanted off. The remaining light brown powder was collected over medium porosity sintered glass and dried 12 hours at 200° C. under vacuum. Test specimens yielded improved mechanical properties over the unmodified polymer and are presented in FIGS. 3 and 4. Examples of molar ratios of metal oxide to polymer are summarized in TABLE V below:
TABLE V Alkyl Alkyl Molar Ratio of LARC ™ IA Silicate Zirconate Metal Oxide to Moles Moles Moles H2O Moles Polymer 0.92 5.4 48 6:1 0.26 0.78 6.9 3:1 5.3 × 10−2 0.11 2:1 5.3 × 10−2 1.5 × 10−2 6.9 × 10−2 0.14 1.5:1 5.3 × 10−2 7.8 × 10−2 3.8 × 10−2 0.69 2:1 - The powder obtained from Example XV was passed through a Brabender melt extruder heated to 315° C. at a volume rate of 0.0105 cm3 sec−1. Melt extrusion yielded polymer fiber or ribbon.
- Fiber reinforced composite panel:
- A powder coated towpreg was prepared by coating carbon fibers with the modified polymer prepared in Example XV. The powder coated towpreg was then wound around a frame, stacked in a mold and consolidated under 300 psi one hour at 350° C. The composite specimen was slowly cooled to room temperature prior to removal from the mold. Test panels yielded panels with the strength properties plotted in FIG. 5 and modulus properties as plotted in FIG. 6 .
- Reaction sequence for the synthesis of a polymer-metal oxide/metal oxide encapsulated particle:
- Into a resin kettle equipped with a mechanical stirrer, nitrogen inlet, moisture trap and reflux condenser was placed 300 ml of o-xylene. The resin kettle was wrapped in glass wool and the solvent heated to reflux.
- A 10 g sample of 10 weight percent solution of polymer in NMP was combined with 1 g of alkyl silicate (TEOS) and 9 g of zirconium butoxide and allowed to stir until homogeneous. The resin mixture was added dropwise via an addition funnel into the refluxing o-xylene. The system was allowed to heat at approximately 140° C. with stirring overnight, the solids collected and dried under vacuum 12 hours at 200° C.
- Synthesis of a polymer-metal oxide/metal oxide encapsulated particle: Into a resin kettle equipped with a mechanical stirrer, nitrogen inlet, moisture trap and reflux condenser, was placed 300 ml of o-xylene. The resin kettle was wrapped in glass wool and the solvent heated to reflux.
- A 10 g sample of 10 weight percent solution of polymer in NMP was combined with 9 g of alkyl silicate (TEOS) and 1 g of zirconium butoxide and allowed to stir until homogeneous. The resin mixture was added dropwise via an addition funnel into the refluxing o-xylene. The system was allowed to heat with stirring overnight, the solids collected and dried under vacuum 12 hours at 200° C.
- The foregoing specific examples are given to illustrate the principal of the invention and, as such, are to be considered as exemplary and not exhaustive. There are numerous modifications and variations of the present invention that will be readily apparent to those skilled in the art in the light of the above teachings.
- For example, where specific quantities and ratios are employed it is to be understood that the invention is not so limited and that these specifics are to illustrate specific examples and reactions, and are not to serve as limitations on the invention. Other quantities and ratios that may be apparent to those skilled in the art, and within the scope of the appended claims, are intended to be included herein.
- It is therefore to be understood that, within the scope of the appended claims, the invention may be practiced other than as specifically described herein.
Claims (13)
1. A composition of matter consisting of a powder formed of multiple individual molecules of a metal oxide and a coating of a polymer provided on each of said molecules.
2. The composition of matter of claim 1 wherein said metal oxide is selected from the group of metal oxides consisting of titanium oxide, zirconium oxide and silica oxide.
3. The composition of matter article of claim 1 wherein said polymer is a polyimide.
4. A paint consisting of a nominal one-part quantity, by weight, of the composition of matter of claim 1 admixed with a nominal two part quantity, by weight, of a binder material, said binder material being selected from the group of binder materials consisting of tung oil and clear vinyl lacquer.
5. The paint of claim 4 wherein said individual molecules of metal oxide consist of titanium oxide molecules.
6. A coating material consisting of one-part quantity, by weight, of the composition of matter of claim 1 admixed with a two part quantity, by weight, of a liquid binder material, said liquid binder material being selected from the group of liquid binder materials consisting of epoxy resin and rubber cement.
7. A skin unguent consisting of a one part quantity, by weight, of the composition of matter of claim 1 mixed into a 1 to 10 part quantity, by weight, of mineral oil.
8. A skin unguent consisting of a one part quantity, by weight, of the composition of matter of claim 1 mixed into a 1 to 10 part quantity, by weight, of glycerin.
9. A skin unguent consisting of a one part quantity, by weight, of the composition of matter of claim 1 mixed into an emulsion consisting of glycerin, mineral oil and water.
10. The skin unguent claim 9 wherein said emulsion consists of 0.5 to 4 parts, by weight, of mineral oil, 0.5 to 4 parts, by weight of glycerin, and 0.04 to 1 part, by weight, of water.
11. A filled paper consisting of one part quantity, by weight, of the composition of matter of claim 1 mixed with eight parts, by weight, of cellulose pulp.
12. An ultraviolet light stable filled printing ink consisting of a one part aliquot, by weight, of the composition of matter of claim 1 admixed with ten parts, by weight, of a printing ink.
13. The composition of matter of claim 3 wherein the polyimide has repeating units of:
wherein Ar is an organic moiety selected from the group of organic moieties consisting of:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/028,296 US20030096100A1 (en) | 1996-10-31 | 2001-12-20 | Molecular level coating of metal oxide particles Molecular level coating of metal oxide particles |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/742,068 US6114156A (en) | 1996-10-31 | 1996-10-31 | Molecular level coating for metal oxide particles |
US09/495,575 US6368662B1 (en) | 1996-10-31 | 2000-02-01 | Molecular level coating of metal oxide particles |
US10/028,296 US20030096100A1 (en) | 1996-10-31 | 2001-12-20 | Molecular level coating of metal oxide particles Molecular level coating of metal oxide particles |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/495,575 Division US6368662B1 (en) | 1996-10-31 | 2000-02-01 | Molecular level coating of metal oxide particles |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030096100A1 true US20030096100A1 (en) | 2003-05-22 |
Family
ID=24983369
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/742,068 Expired - Fee Related US6114156A (en) | 1996-10-31 | 1996-10-31 | Molecular level coating for metal oxide particles |
US09/495,575 Expired - Fee Related US6368662B1 (en) | 1996-10-31 | 2000-02-01 | Molecular level coating of metal oxide particles |
US10/028,296 Abandoned US20030096100A1 (en) | 1996-10-31 | 2001-12-20 | Molecular level coating of metal oxide particles Molecular level coating of metal oxide particles |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/742,068 Expired - Fee Related US6114156A (en) | 1996-10-31 | 1996-10-31 | Molecular level coating for metal oxide particles |
US09/495,575 Expired - Fee Related US6368662B1 (en) | 1996-10-31 | 2000-02-01 | Molecular level coating of metal oxide particles |
Country Status (6)
Country | Link |
---|---|
US (3) | US6114156A (en) |
EP (1) | EP0958325A1 (en) |
JP (1) | JP2001503458A (en) |
AU (1) | AU3814397A (en) |
CA (1) | CA2270518A1 (en) |
WO (1) | WO1998018867A1 (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TWI276604B (en) * | 2001-12-27 | 2007-03-21 | Tokuyama Corp | Silica composite oxide particles and method of producing the same |
US20050164002A1 (en) * | 2002-05-09 | 2005-07-28 | Krizan Timothy D. | Polymeric particles |
US7837742B2 (en) * | 2003-05-19 | 2010-11-23 | The Procter & Gamble Company | Cosmetic compositions comprising a polymer and a colorant |
FR2858766B1 (en) * | 2003-08-11 | 2005-11-11 | Oreal | COSMETIC COMPOSITION COMPRISING STABILIZED METALLIC PARTICLES, POSSIBLY COATED |
KR100572400B1 (en) * | 2004-05-11 | 2006-04-24 | 재단법인서울대학교산학협력재단 | Plastic molded article using semiconductor nanoparticle encapsulated vinyl polymer particles and manufacturing method thereof |
US7270851B2 (en) | 2004-11-04 | 2007-09-18 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Method for nanoencapsulation of aerogels and nanoencapsulated aerogels produced by such method |
CN102307654B (en) * | 2009-02-09 | 2015-01-21 | 切卢科技公司 | Polymer shells |
US9017468B2 (en) | 2012-04-25 | 2015-04-28 | Hewlett-Packard Development Company, L.P. | Colorant dispersion for an ink |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4065345A (en) * | 1974-12-16 | 1977-12-27 | The United States Of America As Represented By The United States National Aeronautics And Space Administration | Polyimide adhesives |
JPS6399234A (en) * | 1986-06-02 | 1988-04-30 | Toray Ind Inc | Polyimide coating agent composition |
JPS63172741A (en) * | 1987-01-09 | 1988-07-16 | Asahi Glass Co Ltd | Aromatic polyimide film and its production |
JPS63193935A (en) * | 1987-02-06 | 1988-08-11 | Asahi Glass Co Ltd | Polyimide polymer molded article |
JPH0749523B2 (en) * | 1987-02-13 | 1995-05-31 | 旭硝子株式会社 | Aromatic polyimide polymer molding |
JPH0651803B2 (en) * | 1987-03-10 | 1994-07-06 | 旭硝子株式会社 | Polyimide polymer molding |
US4937317A (en) * | 1988-11-02 | 1990-06-26 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Processable polyimide adhesive and matrix composite resin |
JPH02220308A (en) * | 1989-02-20 | 1990-09-03 | Sumitomo Electric Ind Ltd | Paint composition and insulated wire |
JPH0578573A (en) * | 1991-05-01 | 1993-03-30 | Yoshio Imai | Production of polyimide composition |
JPH05294609A (en) * | 1992-04-17 | 1993-11-09 | Yoshio Imai | Polyimide-silica composite film and silica film formed therefrom |
JP2580535B2 (en) * | 1994-05-09 | 1997-02-12 | 東京工業大学長 | Method for producing polyimide-silica composite |
US5536846A (en) * | 1994-05-27 | 1996-07-16 | General Electric Company | Process for preparing bis(ether anhydrides) using alkylamine derived bisimides having low melting temperatures |
JPH07331070A (en) * | 1994-06-07 | 1995-12-19 | Toyobo Co Ltd | Heat-resistant resin composition |
KR960010779A (en) * | 1994-09-14 | 1996-04-20 | 이용택 | Polyimide / Silica Composite and Method of Making the Film |
US6235270B1 (en) * | 1997-04-18 | 2001-05-22 | Showa Denko K.K. | Cosmetics, silica-coated metal oxide powder and production method therefor |
-
1996
- 1996-10-31 US US08/742,068 patent/US6114156A/en not_active Expired - Fee Related
-
1997
- 1997-07-25 CA CA002270518A patent/CA2270518A1/en not_active Abandoned
- 1997-07-25 EP EP97935125A patent/EP0958325A1/en not_active Withdrawn
- 1997-07-25 JP JP52043598A patent/JP2001503458A/en active Pending
- 1997-07-25 WO PCT/US1997/013125 patent/WO1998018867A1/en not_active Application Discontinuation
- 1997-07-25 AU AU38143/97A patent/AU3814397A/en not_active Abandoned
-
2000
- 2000-02-01 US US09/495,575 patent/US6368662B1/en not_active Expired - Fee Related
-
2001
- 2001-12-20 US US10/028,296 patent/US20030096100A1/en not_active Abandoned
Also Published As
Publication number | Publication date |
---|---|
AU3814397A (en) | 1998-05-22 |
EP0958325A1 (en) | 1999-11-24 |
US6368662B1 (en) | 2002-04-09 |
CA2270518A1 (en) | 1998-05-07 |
US6114156A (en) | 2000-09-05 |
JP2001503458A (en) | 2001-03-13 |
WO1998018867A1 (en) | 1998-05-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Wang et al. | Polyimide-silica hybrid materials modified by incorporation of an organically substituted alkoxysilane | |
Takeichi et al. | Polybenzoxazine/clay hybrid nanocomposites: influence of preparation method on the curing behavior and properties of polybenzoxazines | |
Hasegawa et al. | Preparation and mechanical properties of polypropylene–clay hybrids based on modified polypropylene and organophilic clay | |
Nandi et al. | Molecular level ceramic/polymer composites. 2. Synthesis of polymer-trapped silica and titania nanoclusters | |
US7442727B2 (en) | Pyrogenically prepared, surface modified aluminum oxide | |
US8932632B2 (en) | Adhesives and sealants nanotechnology | |
US3660134A (en) | Inorganic materials surface reacted with organo titanium compounds | |
US6368662B1 (en) | Molecular level coating of metal oxide particles | |
EP0963414A1 (en) | Organic-inorganic hybrid materials | |
Zulfiqar et al. | Thermal and mechanical properties of SEBS-g-MA based inorganic composite materials | |
KR100966193B1 (en) | Nanocomposite containing POS and its manufacturing method | |
BR0008834B1 (en) | metal conductor coating composition, coating process involving use thereof, use of said composition as well as coated electrical conductor. | |
US20150318073A1 (en) | Talc composition | |
Behniafar et al. | Effect of amine-functionalized silica nanoparticles on thermal and mechanical behaviors of DGEBA/IPD epoxy networks | |
DE2002420C3 (en) | Use of aqueous solutions of aminoalkylsilane aldehyde reaction products as adhesion promoters between silicatic material surfaces and organic resins | |
JPH10501839A (en) | Compounds, their preparation and use | |
Amerio et al. | Preparation and Characterization of Hyperbranched Polymer/Silica Hybrid Nanocoatings by Dual‐Curing Process | |
Mauritz et al. | Poly [(ether ether sulfone)-co-(ether sulfone)]/Silicon Oxide Microcomposites Produced via the Sol-Gel Reaction for Tetraethylorthosilicate | |
CN1295095A (en) | Composite nanometer polybenzoxazine-clay material and its preparation | |
CN109972397A (en) | The preparation and application of fabricated in situ nano-oxide enhancing carbon fiber sizing agent and basalt fibre size | |
WO2024128772A1 (en) | Environmentally friendly organic-inorganic hybrid composite flame retardant, and flame-retardant and semi-non-combustible insulation material for construction comprising same | |
Nagendiran et al. | Inorganic/organic hybrid nanocomposites involving OMMT clay and cyanate ester—siloxane-modified epoxy resin: thermal, dielectric and morphological properties | |
CN117925097A (en) | Environmentally friendly aggregation-induced emission flame-retardant coating and preparation method thereof | |
KR100864429B1 (en) | Highly branched organic agent, preparation method thereof, and organic clay using the same | |
KR100613269B1 (en) | Polymer molded body containing aluminosiloxane compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |