US20030070462A1 - Controlled released fertilizers based on self-assembled molecule coatings - Google Patents
Controlled released fertilizers based on self-assembled molecule coatings Download PDFInfo
- Publication number
- US20030070462A1 US20030070462A1 US10/292,601 US29260102A US2003070462A1 US 20030070462 A1 US20030070462 A1 US 20030070462A1 US 29260102 A US29260102 A US 29260102A US 2003070462 A1 US2003070462 A1 US 2003070462A1
- Authority
- US
- United States
- Prior art keywords
- controlled release
- release fertilizer
- coating
- group
- nutrient
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000003337 fertilizer Substances 0.000 title claims abstract description 73
- 238000000576 coating method Methods 0.000 title claims description 62
- 238000013270 controlled release Methods 0.000 claims abstract description 55
- 239000002245 particle Substances 0.000 claims abstract description 40
- 238000000034 method Methods 0.000 claims abstract description 33
- 230000002209 hydrophobic effect Effects 0.000 claims abstract description 17
- 238000002360 preparation method Methods 0.000 claims abstract 2
- 235000015097 nutrients Nutrition 0.000 claims description 53
- 239000011248 coating agent Substances 0.000 claims description 36
- -1 ester alcohols Chemical class 0.000 claims description 29
- 230000008569 process Effects 0.000 claims description 23
- 150000001875 compounds Chemical class 0.000 claims description 17
- 239000012948 isocyanate Substances 0.000 claims description 16
- 239000003054 catalyst Substances 0.000 claims description 13
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 claims description 12
- 239000004202 carbamide Substances 0.000 claims description 12
- 239000003431 cross linking reagent Substances 0.000 claims description 12
- 239000000203 mixture Substances 0.000 claims description 12
- 229920000768 polyamine Polymers 0.000 claims description 11
- 239000010410 layer Substances 0.000 claims description 10
- 150000002513 isocyanates Chemical class 0.000 claims description 9
- 239000011247 coating layer Substances 0.000 claims description 7
- 239000003999 initiator Substances 0.000 claims description 7
- 239000003921 oil Substances 0.000 claims description 7
- 235000019198 oils Nutrition 0.000 claims description 7
- 229920005862 polyol Polymers 0.000 claims description 7
- 150000003077 polyols Chemical class 0.000 claims description 7
- 238000004132 cross linking Methods 0.000 claims description 6
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 6
- 239000000194 fatty acid Substances 0.000 claims description 6
- 229930195729 fatty acid Natural products 0.000 claims description 6
- 150000004665 fatty acids Chemical class 0.000 claims description 6
- 239000003549 soybean oil Substances 0.000 claims description 6
- 235000012424 soybean oil Nutrition 0.000 claims description 6
- 229910052717 sulfur Inorganic materials 0.000 claims description 6
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 5
- 150000001412 amines Chemical class 0.000 claims description 5
- 235000011187 glycerol Nutrition 0.000 claims description 5
- 150000002443 hydroxylamines Chemical class 0.000 claims description 5
- 238000004519 manufacturing process Methods 0.000 claims description 5
- 239000011785 micronutrient Substances 0.000 claims description 5
- 235000013369 micronutrients Nutrition 0.000 claims description 5
- 239000011593 sulfur Substances 0.000 claims description 5
- 239000002383 tung oil Substances 0.000 claims description 5
- VILCJCGEZXAXTO-UHFFFAOYSA-N 2,2,2-tetramine Chemical compound NCCNCCNCCN VILCJCGEZXAXTO-UHFFFAOYSA-N 0.000 claims description 4
- HZAXFHJVJLSVMW-UHFFFAOYSA-N 2-Aminoethan-1-ol Chemical compound NCCO HZAXFHJVJLSVMW-UHFFFAOYSA-N 0.000 claims description 4
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 claims description 4
- 150000002314 glycerols Chemical class 0.000 claims description 4
- 229920000058 polyacrylate Polymers 0.000 claims description 4
- 229910052700 potassium Inorganic materials 0.000 claims description 4
- 239000004593 Epoxy Substances 0.000 claims description 3
- HCHKCACWOHOZIP-UHFFFAOYSA-N Zinc Chemical compound [Zn] HCHKCACWOHOZIP-UHFFFAOYSA-N 0.000 claims description 3
- 150000001298 alcohols Chemical class 0.000 claims description 3
- 125000003368 amide group Chemical group 0.000 claims description 3
- 159000000007 calcium salts Chemical class 0.000 claims description 3
- 150000001868 cobalt Chemical class 0.000 claims description 3
- 239000000944 linseed oil Substances 0.000 claims description 3
- 235000021388 linseed oil Nutrition 0.000 claims description 3
- WPBNNNQJVZRUHP-UHFFFAOYSA-L manganese(2+);methyl n-[[2-(methoxycarbonylcarbamothioylamino)phenyl]carbamothioyl]carbamate;n-[2-(sulfidocarbothioylamino)ethyl]carbamodithioate Chemical compound [Mn+2].[S-]C(=S)NCCNC([S-])=S.COC(=O)NC(=S)NC1=CC=CC=C1NC(=S)NC(=O)OC WPBNNNQJVZRUHP-UHFFFAOYSA-L 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229920001289 polyvinyl ether Polymers 0.000 claims description 3
- 239000011701 zinc Substances 0.000 claims description 3
- 229910052725 zinc Inorganic materials 0.000 claims description 3
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 2
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 claims description 2
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 claims description 2
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 2
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 claims description 2
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 claims description 2
- 235000019486 Sunflower oil Nutrition 0.000 claims description 2
- 125000000217 alkyl group Chemical group 0.000 claims description 2
- 239000011575 calcium Substances 0.000 claims description 2
- 229910052791 calcium Inorganic materials 0.000 claims description 2
- 239000004359 castor oil Substances 0.000 claims description 2
- 235000019438 castor oil Nutrition 0.000 claims description 2
- ZEMPKEQAKRGZGQ-XOQCFJPHSA-N glycerol triricinoleate Natural products CCCCCC[C@@H](O)CC=CCCCCCCCC(=O)OC[C@@H](COC(=O)CCCCCCCC=CC[C@@H](O)CCCCCC)OC(=O)CCCCCCCC=CC[C@H](O)CCCCCC ZEMPKEQAKRGZGQ-XOQCFJPHSA-N 0.000 claims description 2
- 229910052742 iron Inorganic materials 0.000 claims description 2
- 239000011777 magnesium Substances 0.000 claims description 2
- 229910052749 magnesium Inorganic materials 0.000 claims description 2
- 229910052750 molybdenum Inorganic materials 0.000 claims description 2
- 239000011733 molybdenum Substances 0.000 claims description 2
- LSHROXHEILXKHM-UHFFFAOYSA-N n'-[2-[2-[2-(2-aminoethylamino)ethylamino]ethylamino]ethyl]ethane-1,2-diamine Chemical compound NCCNCCNCCNCCNCCN LSHROXHEILXKHM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052698 phosphorus Inorganic materials 0.000 claims description 2
- 239000011591 potassium Substances 0.000 claims description 2
- 239000002600 sunflower oil Substances 0.000 claims description 2
- 239000003784 tall oil Substances 0.000 claims description 2
- FAGUFWYHJQFNRV-UHFFFAOYSA-N tetraethylenepentamine Chemical compound NCCNCCNCCNCCN FAGUFWYHJQFNRV-UHFFFAOYSA-N 0.000 claims description 2
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 claims 4
- 239000002103 nanocoating Substances 0.000 claims 3
- 150000007524 organic acids Chemical class 0.000 claims 3
- PAWQVTBBRAZDMG-UHFFFAOYSA-N 2-(3-bromo-2-fluorophenyl)acetic acid Chemical compound OC(=O)CC1=CC=CC(Br)=C1F PAWQVTBBRAZDMG-UHFFFAOYSA-N 0.000 claims 2
- KWYUFKZDYYNOTN-UHFFFAOYSA-M Potassium hydroxide Chemical compound [OH-].[K+] KWYUFKZDYYNOTN-UHFFFAOYSA-M 0.000 claims 2
- LFVGISIMTYGQHF-UHFFFAOYSA-N ammonium dihydrogen phosphate Chemical compound [NH4+].OP(O)([O-])=O LFVGISIMTYGQHF-UHFFFAOYSA-N 0.000 claims 2
- 229910000387 ammonium dihydrogen phosphate Inorganic materials 0.000 claims 2
- BFNBIHQBYMNNAN-UHFFFAOYSA-N ammonium sulfate Chemical compound N.N.OS(O)(=O)=O BFNBIHQBYMNNAN-UHFFFAOYSA-N 0.000 claims 2
- 229910052921 ammonium sulfate Inorganic materials 0.000 claims 2
- 235000011130 ammonium sulphate Nutrition 0.000 claims 2
- 125000000751 azo group Chemical group [*]N=N[*] 0.000 claims 2
- 150000002696 manganese Chemical class 0.000 claims 2
- 239000006012 monoammonium phosphate Substances 0.000 claims 2
- 235000019837 monoammonium phosphate Nutrition 0.000 claims 2
- 235000005985 organic acids Nutrition 0.000 claims 2
- 229940072033 potash Drugs 0.000 claims 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Substances [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 claims 2
- 235000015320 potassium carbonate Nutrition 0.000 claims 2
- 239000001103 potassium chloride Substances 0.000 claims 2
- 235000011164 potassium chloride Nutrition 0.000 claims 2
- OTYBMLCTZGSZBG-UHFFFAOYSA-L potassium sulfate Chemical compound [K+].[K+].[O-]S([O-])(=O)=O OTYBMLCTZGSZBG-UHFFFAOYSA-L 0.000 claims 2
- 229910052939 potassium sulfate Inorganic materials 0.000 claims 2
- 235000011151 potassium sulphates Nutrition 0.000 claims 2
- 238000005507 spraying Methods 0.000 claims 2
- 150000003751 zinc Chemical class 0.000 claims 2
- 150000003754 zirconium Chemical class 0.000 claims 2
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 claims 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims 1
- WUGQZFFCHPXWKQ-UHFFFAOYSA-N Propanolamine Chemical compound NCCCO WUGQZFFCHPXWKQ-UHFFFAOYSA-N 0.000 claims 1
- 125000003118 aryl group Chemical group 0.000 claims 1
- 229910052796 boron Inorganic materials 0.000 claims 1
- 239000008199 coating composition Substances 0.000 claims 1
- 229910052802 copper Inorganic materials 0.000 claims 1
- 239000010949 copper Substances 0.000 claims 1
- ZBCBWPMODOFKDW-UHFFFAOYSA-N diethanolamine Chemical compound OCCNCCO ZBCBWPMODOFKDW-UHFFFAOYSA-N 0.000 claims 1
- BHEPBYXIRTUNPN-UHFFFAOYSA-N hydridophosphorus(.) (triplet) Chemical compound [PH] BHEPBYXIRTUNPN-UHFFFAOYSA-N 0.000 claims 1
- 150000005846 sugar alcohols Polymers 0.000 claims 1
- 230000004888 barrier function Effects 0.000 abstract description 4
- 125000000524 functional group Chemical group 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 13
- 235000013877 carbamide Nutrition 0.000 description 11
- 239000000047 product Substances 0.000 description 11
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerol Natural products OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 8
- 238000006243 chemical reaction Methods 0.000 description 8
- 239000008187 granular material Substances 0.000 description 7
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 6
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 5
- UPMLOUAZCHDJJD-UHFFFAOYSA-N 4,4'-Diphenylmethane Diisocyanate Chemical compound C1=CC(N=C=O)=CC=C1CC1=CC=C(N=C=O)C=C1 UPMLOUAZCHDJJD-UHFFFAOYSA-N 0.000 description 5
- 150000001408 amides Chemical class 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 150000002148 esters Chemical class 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 238000001338 self-assembly Methods 0.000 description 4
- OZAIFHULBGXAKX-VAWYXSNFSA-N AIBN Substances N#CC(C)(C)\N=N\C(C)(C)C#N OZAIFHULBGXAKX-VAWYXSNFSA-N 0.000 description 3
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 3
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 239000002274 desiccant Substances 0.000 description 3
- 238000005538 encapsulation Methods 0.000 description 3
- 229910052739 hydrogen Inorganic materials 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- RAXXELZNTBOGNW-UHFFFAOYSA-N imidazole Natural products C1=CNC=N1 RAXXELZNTBOGNW-UHFFFAOYSA-N 0.000 description 3
- 230000003993 interaction Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003786 synthesis reaction Methods 0.000 description 3
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 2
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 241000196324 Embryophyta Species 0.000 description 2
- 239000004721 Polyphenylene oxide Substances 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000008367 deionised water Substances 0.000 description 2
- 229910021641 deionized water Inorganic materials 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 2
- 150000002193 fatty amides Chemical class 0.000 description 2
- 230000010006 flight Effects 0.000 description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 description 2
- 230000005660 hydrophilic surface Effects 0.000 description 2
- 239000011630 iodine Substances 0.000 description 2
- 229910052740 iodine Inorganic materials 0.000 description 2
- 150000002978 peroxides Chemical class 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 229920000728 polyester Polymers 0.000 description 2
- 229920000570 polyether Polymers 0.000 description 2
- 239000005056 polyisocyanate Substances 0.000 description 2
- 229920001228 polyisocyanate Polymers 0.000 description 2
- 229920001451 polypropylene glycol Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 238000000682 scanning probe acoustic microscopy Methods 0.000 description 2
- 239000013545 self-assembled monolayer Substances 0.000 description 2
- 239000007858 starting material Substances 0.000 description 2
- DVKJHBMWWAPEIU-UHFFFAOYSA-N toluene 2,4-diisocyanate Chemical compound CC1=CC=C(N=C=O)C=C1N=C=O DVKJHBMWWAPEIU-UHFFFAOYSA-N 0.000 description 2
- 125000005270 trialkylamine group Chemical group 0.000 description 2
- 238000005292 vacuum distillation Methods 0.000 description 2
- 229920002554 vinyl polymer Polymers 0.000 description 2
- ZQCJNHAYAATHRF-WPOADVJFSA-N (9z,11e,13e)-octadeca-9,11,13-trienamide Chemical compound CCCC\C=C\C=C\C=C/CCCCCCCC(N)=O ZQCJNHAYAATHRF-WPOADVJFSA-N 0.000 description 1
- 229940008841 1,6-hexamethylene diisocyanate Drugs 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- HHOSMYBYIHNXNO-UHFFFAOYSA-N 2,2,5-trimethylhexane Chemical compound CC(C)CCC(C)(C)C HHOSMYBYIHNXNO-UHFFFAOYSA-N 0.000 description 1
- 239000004342 Benzoyl peroxide Substances 0.000 description 1
- OMPJBNCRMGITSC-UHFFFAOYSA-N Benzoylperoxide Chemical compound C=1C=CC=CC=1C(=O)OOC(=O)C1=CC=CC=C1 OMPJBNCRMGITSC-UHFFFAOYSA-N 0.000 description 1
- 239000004971 Cross linker Substances 0.000 description 1
- 229920002943 EPDM rubber Polymers 0.000 description 1
- LVGKNOAMLMIIKO-UHFFFAOYSA-N Elaidinsaeure-aethylester Natural products CCCCCCCCC=CCCCCCCCC(=O)OCC LVGKNOAMLMIIKO-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- PWHULOQIROXLJO-UHFFFAOYSA-N Manganese Chemical compound [Mn] PWHULOQIROXLJO-UHFFFAOYSA-N 0.000 description 1
- 229920002292 Nylon 6 Polymers 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- QCWXUUIWCKQGHC-UHFFFAOYSA-N Zirconium Chemical compound [Zr] QCWXUUIWCKQGHC-UHFFFAOYSA-N 0.000 description 1
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 description 1
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 150000001336 alkenes Chemical group 0.000 description 1
- 229920000180 alkyd Polymers 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- 235000019400 benzoyl peroxide Nutrition 0.000 description 1
- FZQBLSFKFKIKJI-UHFFFAOYSA-N boron copper Chemical compound [B].[Cu] FZQBLSFKFKIKJI-UHFFFAOYSA-N 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 238000001311 chemical methods and process Methods 0.000 description 1
- 239000004927 clay Substances 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- KORSJDCBLAPZEQ-UHFFFAOYSA-N dicyclohexylmethane-4,4'-diisocyanate Chemical compound C1CC(N=C=O)CCC1CC1CCC(N=C=O)CC1 KORSJDCBLAPZEQ-UHFFFAOYSA-N 0.000 description 1
- 239000000539 dimer Substances 0.000 description 1
- AZXVZUBIFYQWJK-KWRJMZDGSA-N ethyl (z,12r)-12-hydroxyoctadec-9-enoate Chemical compound CCCCCC[C@@H](O)C\C=C/CCCCCCCC(=O)OCC AZXVZUBIFYQWJK-KWRJMZDGSA-N 0.000 description 1
- FMMOOAYVCKXGMF-MURFETPASA-N ethyl linoleate Chemical compound CCCCC\C=C/C\C=C/CCCCCCCC(=O)OCC FMMOOAYVCKXGMF-MURFETPASA-N 0.000 description 1
- 229940031016 ethyl linoleate Drugs 0.000 description 1
- JYYFMIOPGOFNPK-AGRJPVHOSA-N ethyl linolenate Chemical compound CCOC(=O)CCCCCCC\C=C/C\C=C/C\C=C/CC JYYFMIOPGOFNPK-AGRJPVHOSA-N 0.000 description 1
- 229940090028 ethyl linolenate Drugs 0.000 description 1
- JYYFMIOPGOFNPK-UHFFFAOYSA-N ethyl linolenate Natural products CCOC(=O)CCCCCCCC=CCC=CCC=CCC JYYFMIOPGOFNPK-UHFFFAOYSA-N 0.000 description 1
- LVGKNOAMLMIIKO-QXMHVHEDSA-N ethyl oleate Chemical compound CCCCCCCC\C=C/CCCCCCCC(=O)OCC LVGKNOAMLMIIKO-QXMHVHEDSA-N 0.000 description 1
- 229940093471 ethyl oleate Drugs 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- XPXMKIXDFWLRAA-UHFFFAOYSA-N hydrazinide Chemical group [NH-]N XPXMKIXDFWLRAA-UHFFFAOYSA-N 0.000 description 1
- 229910003471 inorganic composite material Inorganic materials 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 230000001788 irregular Effects 0.000 description 1
- NIMLQBUJDJZYEJ-UHFFFAOYSA-N isophorone diisocyanate Chemical compound CC1(C)CC(N=C=O)CC(C)(CN=C=O)C1 NIMLQBUJDJZYEJ-UHFFFAOYSA-N 0.000 description 1
- FMMOOAYVCKXGMF-UHFFFAOYSA-N linoleic acid ethyl ester Natural products CCCCCC=CCC=CCCCCCCCC(=O)OCC FMMOOAYVCKXGMF-UHFFFAOYSA-N 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 239000011572 manganese Substances 0.000 description 1
- 150000002734 metacrylic acid derivatives Chemical class 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000002524 organometallic group Chemical group 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035515 penetration Effects 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920005906 polyester polyol Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920002689 polyvinyl acetate Polymers 0.000 description 1
- 239000011118 polyvinyl acetate Substances 0.000 description 1
- 238000007348 radical reaction Methods 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 239000000565 sealant Substances 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 241000894007 species Species 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 150000003440 styrenes Chemical class 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000012974 tin catalyst Substances 0.000 description 1
- 150000003606 tin compounds Chemical class 0.000 description 1
- 239000013638 trimer Substances 0.000 description 1
- 150000004670 unsaturated fatty acids Chemical class 0.000 description 1
- 235000021122 unsaturated fatty acids Nutrition 0.000 description 1
- 150000003672 ureas Chemical class 0.000 description 1
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G18/00—Polymeric products of isocyanates or isothiocyanates
- C08G18/06—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
- C08G18/28—Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
- C08G18/40—High-molecular-weight compounds
- C08G18/60—Polyamides or polyester-amides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B82—NANOTECHNOLOGY
- B82Y—SPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
- B82Y30/00—Nanotechnology for materials or surface science, e.g. nanocomposites
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05B—PHOSPHATIC FERTILISERS
- C05B7/00—Fertilisers based essentially on alkali or ammonium orthophosphates
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G5/00—Fertilisers characterised by their form
- C05G5/30—Layered or coated, e.g. dust-preventing coatings
-
- C—CHEMISTRY; METALLURGY
- C05—FERTILISERS; MANUFACTURE THEREOF
- C05G—MIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
- C05G5/00—Fertilisers characterised by their form
- C05G5/30—Layered or coated, e.g. dust-preventing coatings
- C05G5/37—Layered or coated, e.g. dust-preventing coatings layered or coated with a polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/70—Nanostructure
- Y10S977/773—Nanoparticle, i.e. structure having three dimensions of 100 nm or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S977/00—Nanotechnology
- Y10S977/902—Specified use of nanostructure
Definitions
- the present invention relates to controlled release plant nutrients and crop protection compositions and particularly, to fertilizers showing a release in a certain period of time, and to a method for producing controlled release compositions.
- Encapsulations and coats of plant nutrients are the major methods for providing controlled release nutrients. Water-soluble nutrients encapsulated in water insoluble coatings are released at controlled rates. Sulfur coated fertilizers are widely used for controlled release purposes as disclosed in U.S. Pat. No. 3,342,577.
- Polymer encapsulation is another popular method to make controlled release fertilizers (CRF). Examples of these polymer encapsulation methods are found in U.S. Pat. No. 4,657,576 (use of a dicyclopentadiene based resin to encapsulate water-soluble fertilizers); U.S. Pat. No. 6,039,781; U.S. Pat. Nos. 4,711,659, 4,804,403, and 4,969,947 (urethane based coatings of fertilizers); U.S. Pat. Nos. 5,851,251 and 6,001,147 (urea and urethane based fertilizer coatings); and U.S. Pat. No.
- one object of the present invention is to provide controlled release fertilizers coated with organic or organic/inorganic composite materials.
- Another object of this invention is to provide controlled release fertilizer products that have high resistance to attrition during handling and applications.
- Another object of the invention is to provide a method to produce such controlled release fertilizer products economically and practically.
- a method for coating fertilizers to provide controlled release properties comprising forming a self assembly of amphiphilic molecules having a hydrophilic portion and a hydrophobic portion, wherein the hydrophilic portion is proximal relative to the fertilizer and the hydrophobic portion is distal to the fertilizer, the self assembly forming a multilayer that provides a hydrophobic barrier to block water vapor and water from contacting the fertilizer.
- FIG. 1 is a graphical representation of amphiphilic molecules of the present invention self-assembling on the hydrophilic surface.
- FIG. 2 is a graphical representation of crosslinking of the self-assembled amphiphilic molecules of the present invention.
- FIG. 3 shows an example of the synthesis of a preferred embodiment of amphiphilic molecule of the present invention.
- FIG. 4 is a graph of controlled release data obtained in an embodiment of the present invention.
- FIG. 5 is a graph of controlled release data obtained in a further embodiment of the present invention.
- FIG. 6 is a graph of controlled release data obtained in a still further embodiment of the present invention.
- the present invention relates to a controlled release fertilizer and method for its production, wherein the CRF comprises a nutrient core and a coating prepared from amphiphilic molecules having a hydrophilic portion and a hydrophobic portion.
- amphiphilic molecules are designed so that the hydrophilic portion of the molecules can strongly interact with the nutrient core to increase the adhesion of the coating to the nutrient particles.
- the molecules are also preferably multifunctional so that they can be connected to form networks on the fertilizer surfaces. After sufficient energy is provided, the molecules can self-assemble to form multi-layers.
- the hydrophilic portion of the molecules interacts with the fertilizer surfaces or themselves by hydrogen bonding or hydrophilic affinity. Additionally the molecules have large hydrophobic portions so that the coatings formed will be hydrophobic barriers to block the water vapor and water away from contacting the fertilizer.
- the amphiphilic molecules used to prepare the coatings of the present invention can be any amphiphilic molecule capable of interacting with the surface of a nutrient fertilizer core, while simultaneously providing a barrier layer to water penetration into that nutrient core.
- the amphiphilic molecules are prepared from long carbon chain molecules having from 5 to 30 carbons, more preferably from 8 to 22 carbons, having functionality on at least one end that can interact with the nutrient core, or can be converted into a functional group that will interact with the nutrient core.
- one or more carbons in the backbone can be optionally replaced with one or more different heteroatoms, preferably O, S or N.
- these amphiphilic molecules are conveniently and inexpensively made from fatty acids.
- the fatty acids and their derivatives are readily converted using conventional organic chemistry techniques and reactions, to provide reactive group amido-amines as hydrophilic parts, while the saturated or unsaturated long chains serve as hydrophobic parts.
- the amino groups can be connected with polyisocyanates or other crosslinking agents, while the conjugated or unconjugated double bonds can be reacted under radical conditions to form interconnected networks.
- the coating materials can contain one or more additional reactive components that can react with either the amphiphilic molecules or with added crosslinking agents, or both.
- additional reactive components include, but are not limited to, polyols, polyamines, styrenes, acrylates and methacrylates.
- the compositions also can contain one or more catalysts, which can be radical initiators, such as azo compounds, or peroxides; one or more inorganic drying agents, such as manganese or cobalt salts.
- Trialkylamines and organic tin compounds can also be used to accelerate the urethane reactions. The reactions can be run neat (without solvent) or in the presence of solvent.
- the amphiphilic molecules are present in the coating materials in an amount sufficient to provide a self assembly around the nutrient particle.
- the amphiphilic molecules are present in an amount of from 5 to 100 wt % of the coating materials (exclusive of catalysts), more preferably from 20 to 100 wt %.
- the one or more additional reactive components are present in an amount of from 0 wt % to 80 wt % of the coating materials (exclusive of catalysts), more preferably from 0 to 60 wt %.
- the catalysts are used in amounts sufficient to provide reasonable rates of reaction, preferably from 0 to 10 wt % for the radical initiator catalysts, and from 0 to 10 wt % for urethane reaction accelerators. Drying agents can also be present in amounts from 0 to 20 wt % if desired.
- the nutrient particles can be coated using a coating drum, a fluidized bed, or other vessels, in which the nutrient fertilizer particles can be mobilized to tumble or roll to provide all of the surface of the particles with a chance to be exposed to the coating materials.
- the coating processes are carried out at temperatures from 40 to 100° C., preferably 50 to 90° C., more preferably from 60 to 80° C.
- the coating process is performed for a period of time sufficient to adequately coat substantially all of the particle surface, preferably from 1 to 30 min, more preferably from 5 to 20 min.
- the term “substantially all of the particle surface” indicates that the coating covers a sufficient portion of the surface to provide the desired controlled release rate.
- the portion covered is at least 90% of the surface area, more preferably at least 95%, most preferably complete coverage. Also included in such coatings are embodiments wherein the coating has gaps in coverage of the surface that are small relative to the size of the amphiphilic molecules (or “holes” in the coating).
- the CRFs can further contain additional coating layers either before the application of the amphiphilic molecule coating or after application of the amphiphilic molecule layer.
- the CRF's can be a single-layer coated or multi-layer coated fertilizer, or also can be a fertilizer coated with a combination of self-assembling molecules (SAM) based material with other kinds of coatings.
- SAM self-assembling molecules
- a series of amphiphilic molecules can be included in the present invention.
- the molecules preferably have size from 0.5 to 3 nm long. This will permit the molecules to move and rearrange if enough energy is provided.
- At one end of the molecules there are reactive, hydrophilic groups, which can interact with surface of nutrients via hydrogen bonding or static electric interactions.
- the reactive functions can be connected with a cross linker.
- At the other end of the molecules there are hydrophobic portions, which can interact with the hydrophobic parts of other molecules. This part also includes some reactive functions, so that, additional networks can be formed if desired, such as by crosslinking through radical reactions of double bonds.
- FIG. 1 demonstrates how the amphiphilic molecules self-assemble on the hydrophilic surface by hydrophilic portion interacting with hydrophilic portion and hydrophobic portion interacting with hydrophobic portion.
- FIG. 2 shows how the molecules can be cross-linked in the preferred two stage curing process.
- Fatty acids and their derivatives are preferred inexpensive sources of starting materials used to make the self-assembling amphiphilic molecules used in the present coatings.
- Glycerol esters are among the cheapest derivatives available and are thus more preferred.
- the glycerol esters most preferred are those made from soybean oil, tung oil, linseed oil, castor oil, tall oil, sunflower oil and other natural oils.
- esters are also good materials to start with, including, but not limited to, ethyl linoleate, ethyl linolenate, ethyl pinolenate, ethyl eleostearate, ethyl ricinoleate, and ethyl oleate.
- these oils, esters or acids are reacted with amines to form functional amides or with a multifunctional alcohol to form a functional ester.
- Suitable amines include, but are not limited to, polyamines and hydroxyl-amines.
- Suitable multifunctional alcohols include, but are not limited to pentaerythyritol, glycerols and other polyols, such as polymeric polyols.
- the molecules produced have hydrophilic terminal groups that are amido, amino, and/or hydroxyl groups.
- suitable amines include but are not limited to, ethyleneamines, including ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentaamine, pentaethylenehexaamine; hydroxylamines, including ethanolamine, diethnolamine, propanolamime, dipropanolamine; and other polyamines and hydroxylamines.
- the acids and derivatives thereof and the various amines can be used singly or can be used in combinations of two or more thereof.
- the only limitation to using more than one type of amphiphilic molecule is that any combination of amphiphilic molecules must still be able to form the self assembly coating, even with the two or more different amphiphilic molecules in close proximity and interaction with one another. Otherwise there are no limitations as to the number of different species that can be combined into a single coating.
- the process of making the self-assembling amphiphilic molecules is preferably an amidation reaction.
- This reaction is preferably carried out in a reaction vessel at temperatures from 70 to 200° C. with or without a catalyst, such as a trialkylamine.
- a catalyst for example, iodine
- This invention includes both non-conjugated and conjugated unsaturated fatty amides.
- the starting material is a glycerol ester
- the by-product glycerol can be removed by vacuum distillation.
- the present invention includes both distillated and non-distillated processes.
- an imidazole intermediates is produced in order to obtain the terminal amino amide.
- This process is illustrated in the production of N,N-bisaminoethyl ⁇ -eleostearamide from ethyl ⁇ -eleostearate as shown in FIG. 3.
- This preferred embodiment of the present process and its product provides significantly improved properties of SAMs.
- the present invention is not limited to amides in which the amino groups are terminal amino groups, but also includes amides having amino groups at other locations within the molecule.
- the present invention is not limited specifically to amides, but can include other reactive functional groups, such as esters, that provide hydrogen bonding or hydrophilic interaction with the surface of the nutrient particles.
- the controlled release fertilizer products include a nutrient core.
- the nutrient core can be any conventional fertilizer nutrient, including, but not limited to, one or more primary nutrients, one or more secondary nutrients and/or one or more micro nutrients.
- Suitable primary nutrients include, but are not limited to, N, P, K or combination products thereof.
- Suitable secondary nutrients include but are not limited to, calcium, magnesium and sulfur.
- Suitable micro nutrients include, but are not limited to, boron copper, iron, manganese, molybdenum and zinc.
- the nutrients can be in any coatable form, preferably in the form of granules or prills or other solid forms of particles.
- the surfaces of the nutrients are spherical and smooth, but due to the coating methods used and the nature of the self assembling molecules, rough, irregular particle materials can also be used if desired. Uniform particle size of the products is most preferred.
- a particularly preferred nutrient particle is the granular urea product sold by Mississippi Chemical Corporation.
- the SAM coating materials are sprayed or ejected onto the preheated urea granules at an elevated temperature, preferably from 60-80° C. in order to coat the surface of the granules and allow the amphiphilic component self-assemble on the granular surfaces.
- the SAM can be directly sprayed on the nutrient alone.
- the SAM component also can be mixed with other materials, such as polyols, polyamines, polyether polyols, polyester polyols, polyester polyamines, and polyether polyamines.
- drying oils such as tung oil, linseed oil, and soybean oil, and alkyl resins.
- drying oils such as tung oil, linseed oil, and soybean oil, and alkyl resins.
- Di- or tri-isocyanates are preferably used as cross-linking agents to connect the hydroxyl groups or amino groups to form urethane or urea linkages.
- the isocyanates used here include, but are not limited to, aromatic isocyanates, such as, toluene diisocyanate (TDI), bis(4-isocyanatophenyl) methane (MDI), and aliphatic isocyanates, such as, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,5-trimethylhexane diisocyante (TMHDI), bis(4-isocyanatocyclohexyl) methane (H 12 MDI), etc.
- aromatic isocyanates such as, toluene diisocyanate (TDI), bis(4-isocyanatophenyl) methane (MDI)
- aliphatic isocyanates such as, 1,6-he
- the isocyanates also include their dimers, trimers, and other derivatives such as polymeric isocyanates and isocyanic prepolymers. These isocyanates can be applied alone, or as mixtures of two or more different isocyanates, or in combination with other additives such as organic tin catalyst and triamines. This component can be applied neat or in a solvent.
- the cross-linking agents are not limited to the polyisocyanates. They also can be polyvinylethers, polyacrylates, epoxy compounds, and other materials that can react with amino or hydroxyl groups.
- Catalysts for crosslinking the olefin groups present in the hydrophobic portion of the amphiphilic molecules can be applied individually or mixed with one or more other components.
- the catalysts include, but are not limited to, peroxide and azo radical initiators, for example, benzoyl peroxide and azobisisobutyronitrile, and inorganic and organometallic drying agents such as, manganese, cobalt, zinc, zirconium and calcium salts and mixture thereof. Clay and other minerals may also be used to keep the particles free flowing, if needed.
- the particles are preferably kept at 60 to 90° C. for 5 to 20 minutes, more preferably at 60 to 80° C. for 5 to 10 minutes, in order to cure the coatings on the particles and form a good film coverage.
- the release rate can be adjusted to any length desired, by continuing to apply layers of coating. From a practical standpoint, however, the release rate is preferably adjusted to be from about 1 to about 10 months, using from 1 to 100 layers, preferably from about 2 to about 5 months using from about 2 to about 50 layers.
- the SAM based coatings can be applied alone or can be combined with other coatings such as alkyd resins; drying oils and modified oils; vinyl resins, for example, poly(vinyl acetate), poly(vinyl acetal); acrylic polymers, for example, poly(methyl acrylate); polyesters, for example, poly(alkylene terephthalate); epoxy resins, for example, poly(propylene oxide); polyamides, for example polycaprolactam; and polycarbonates, for example, poly(alkylene carbonate); polyethylene and its copolymers.
- vinyl resins for example, poly(vinyl acetate), poly(vinyl acetal); acrylic polymers, for example, poly(methyl acrylate); polyesters, for example, poly(alkylene terephthalate); epoxy resins, for example, poly(propylene oxide); polyamides, for example polycaprolactam; and polycarbonates, for example, poly(alkylene carbonate); polyethylene and its copolymers.
- the controlled release fertilizer of the present invention can comprise the SAM coated nutrient particles alone or can optionally contain other coated or non-coated fertilizers. Any conventional fertilizer can be used as the additional coated or non-coated fertilizer, including but not limited to ureas, phophorous fertilizers, potassium fertilizers, secondary nutrients and micronutrients.
- Examples 3-7 show the production of CRFs from SAMs and other optional components.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Life Sciences & Earth Sciences (AREA)
- Pest Control & Pesticides (AREA)
- Nanotechnology (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Composite Materials (AREA)
- Materials Engineering (AREA)
- Crystallography & Structural Chemistry (AREA)
- Physics & Mathematics (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Fertilizers (AREA)
Abstract
Controlled release fertilizers are provided and methods for their preparation, wherein the controlled release fertilizers are obtained through self-assembling molecules on the surfaces of the fertilizer particles, and then, preferably, linking these molecules into a network with another component. The designed molecules have a hydrophilic portion, which can interact with fertilizers, and a hydrophobic portion that make the molecule self-assemble and setup a moisture barrier. The molecules also preferably have at least two functional groups in order to form a network.
Description
- The present invention relates to controlled release plant nutrients and crop protection compositions and particularly, to fertilizers showing a release in a certain period of time, and to a method for producing controlled release compositions.
- Encapsulations and coats of plant nutrients are the major methods for providing controlled release nutrients. Water-soluble nutrients encapsulated in water insoluble coatings are released at controlled rates. Sulfur coated fertilizers are widely used for controlled release purposes as disclosed in U.S. Pat. No. 3,342,577.
- Polymer encapsulation is another popular method to make controlled release fertilizers (CRF). Examples of these polymer encapsulation methods are found in U.S. Pat. No. 4,657,576 (use of a dicyclopentadiene based resin to encapsulate water-soluble fertilizers); U.S. Pat. No. 6,039,781; U.S. Pat. Nos. 4,711,659, 4,804,403, and 4,969,947 (urethane based coatings of fertilizers); U.S. Pat. Nos. 5,851,251 and 6,001,147 (urea and urethane based fertilizer coatings); and U.S. Pat. No. 5,803,946 and European patent 1,043,295 A2 (interpenetrating polymer coating process that includes urethane with other resins). In order to overcome the shortcomings of sulfur coatings, processes using additional layers of polymer coatings are disclosed in U.S. Pat. Nos. 5,219,465 and 5,466,274. The use of a wax as a sealant for sulfur coated urea is disclosed in U.S. Pat. No. 5,478,375. A polymeric coating process based on sulfonated ethylene-propylene-diene terpolymers is disclosed in U.S. Pat. No. 5,429,654. An epoxy resin based coating is disclosed in U.S. Pat. No. 5,698,002.
- While the above noted efforts provide promise, there is still a need in the industry for inexpensive and high quality CRFs to expand the application of these fertilizers.
- Accordingly, one object of the present invention is to provide controlled release fertilizers coated with organic or organic/inorganic composite materials.
- Another object of this invention is to provide controlled release fertilizer products that have high resistance to attrition during handling and applications.
- Another object of the invention is to provide a method to produce such controlled release fertilizer products economically and practically.
- These and other objects have been satisfied by the discovery of a method for coating fertilizers to provide controlled release properties comprising forming a self assembly of amphiphilic molecules having a hydrophilic portion and a hydrophobic portion, wherein the hydrophilic portion is proximal relative to the fertilizer and the hydrophobic portion is distal to the fertilizer, the self assembly forming a multilayer that provides a hydrophobic barrier to block water vapor and water from contacting the fertilizer.
- A more complete appreciation of the invention and many of the attendant advantages thereof will be readily obtained as the same becomes better understood by reference to the following detailed description when considered in connection with the accompanying drawings, wherein:
- FIG. 1 is a graphical representation of amphiphilic molecules of the present invention self-assembling on the hydrophilic surface.
- FIG. 2 is a graphical representation of crosslinking of the self-assembled amphiphilic molecules of the present invention.
- FIG. 3 shows an example of the synthesis of a preferred embodiment of amphiphilic molecule of the present invention.
- FIG. 4 is a graph of controlled release data obtained in an embodiment of the present invention.
- FIG. 5 is a graph of controlled release data obtained in a further embodiment of the present invention.
- FIG. 6 is a graph of controlled release data obtained in a still further embodiment of the present invention.
- The present invention relates to a controlled release fertilizer and method for its production, wherein the CRF comprises a nutrient core and a coating prepared from amphiphilic molecules having a hydrophilic portion and a hydrophobic portion. These amphiphilic molecules are designed so that the hydrophilic portion of the molecules can strongly interact with the nutrient core to increase the adhesion of the coating to the nutrient particles. The molecules are also preferably multifunctional so that they can be connected to form networks on the fertilizer surfaces. After sufficient energy is provided, the molecules can self-assemble to form multi-layers. The hydrophilic portion of the molecules interacts with the fertilizer surfaces or themselves by hydrogen bonding or hydrophilic affinity. Additionally the molecules have large hydrophobic portions so that the coatings formed will be hydrophobic barriers to block the water vapor and water away from contacting the fertilizer.
- The amphiphilic molecules used to prepare the coatings of the present invention can be any amphiphilic molecule capable of interacting with the surface of a nutrient fertilizer core, while simultaneously providing a barrier layer to water penetration into that nutrient core. Preferably, the amphiphilic molecules are prepared from long carbon chain molecules having from 5 to 30 carbons, more preferably from 8 to 22 carbons, having functionality on at least one end that can interact with the nutrient core, or can be converted into a functional group that will interact with the nutrient core. In these long chain carbon based amphiphilic molecules, one or more carbons in the backbone can be optionally replaced with one or more different heteroatoms, preferably O, S or N. More preferably these amphiphilic molecules are conveniently and inexpensively made from fatty acids. The fatty acids and their derivatives are readily converted using conventional organic chemistry techniques and reactions, to provide reactive group amido-amines as hydrophilic parts, while the saturated or unsaturated long chains serve as hydrophobic parts. In the resulting amphiphilic molecule-derived self assembled layer, the amino groups can be connected with polyisocyanates or other crosslinking agents, while the conjugated or unconjugated double bonds can be reacted under radical conditions to form interconnected networks.
- Optionally, the coating materials can contain one or more additional reactive components that can react with either the amphiphilic molecules or with added crosslinking agents, or both. Suitable additional reactive components include, but are not limited to, polyols, polyamines, styrenes, acrylates and methacrylates. The compositions also can contain one or more catalysts, which can be radical initiators, such as azo compounds, or peroxides; one or more inorganic drying agents, such as manganese or cobalt salts. Trialkylamines and organic tin compounds can also be used to accelerate the urethane reactions. The reactions can be run neat (without solvent) or in the presence of solvent.
- The amphiphilic molecules are present in the coating materials in an amount sufficient to provide a self assembly around the nutrient particle. Preferably, the amphiphilic molecules are present in an amount of from 5 to 100 wt % of the coating materials (exclusive of catalysts), more preferably from 20 to 100 wt %. The one or more additional reactive components are present in an amount of from 0 wt % to 80 wt % of the coating materials (exclusive of catalysts), more preferably from 0 to 60 wt %. The catalysts are used in amounts sufficient to provide reasonable rates of reaction, preferably from 0 to 10 wt % for the radical initiator catalysts, and from 0 to 10 wt % for urethane reaction accelerators. Drying agents can also be present in amounts from 0 to 20 wt % if desired.
- The nutrient particles can be coated using a coating drum, a fluidized bed, or other vessels, in which the nutrient fertilizer particles can be mobilized to tumble or roll to provide all of the surface of the particles with a chance to be exposed to the coating materials. The coating processes are carried out at temperatures from 40 to 100° C., preferably 50 to 90° C., more preferably from 60 to 80° C. The coating process is performed for a period of time sufficient to adequately coat substantially all of the particle surface, preferably from 1 to 30 min, more preferably from 5 to 20 min. Within the context of the present invention, the term “substantially all of the particle surface” indicates that the coating covers a sufficient portion of the surface to provide the desired controlled release rate. Preferably the portion covered is at least 90% of the surface area, more preferably at least 95%, most preferably complete coverage. Also included in such coatings are embodiments wherein the coating has gaps in coverage of the surface that are small relative to the size of the amphiphilic molecules (or “holes” in the coating).
- In addition to the coating made from the present amphiphilic molecules, the CRFs can further contain additional coating layers either before the application of the amphiphilic molecule coating or after application of the amphiphilic molecule layer. Accordingly, the CRF's can be a single-layer coated or multi-layer coated fertilizer, or also can be a fertilizer coated with a combination of self-assembling molecules (SAM) based material with other kinds of coatings.
- A series of amphiphilic molecules can be included in the present invention. The molecules preferably have size from 0.5 to 3 nm long. This will permit the molecules to move and rearrange if enough energy is provided. At one end of the molecules, there are reactive, hydrophilic groups, which can interact with surface of nutrients via hydrogen bonding or static electric interactions. At the same time, if desired, the reactive functions can be connected with a cross linker. At the other end of the molecules, there are hydrophobic portions, which can interact with the hydrophobic parts of other molecules. This part also includes some reactive functions, so that, additional networks can be formed if desired, such as by crosslinking through radical reactions of double bonds. FIG. 1 demonstrates how the amphiphilic molecules self-assemble on the hydrophilic surface by hydrophilic portion interacting with hydrophilic portion and hydrophobic portion interacting with hydrophobic portion. FIG. 2 shows how the molecules can be cross-linked in the preferred two stage curing process.
- Fatty acids and their derivatives, preferably unsaturated fatty acids and derivatives thereof, are preferred inexpensive sources of starting materials used to make the self-assembling amphiphilic molecules used in the present coatings. Glycerol esters are among the cheapest derivatives available and are thus more preferred. The glycerol esters most preferred are those made from soybean oil, tung oil, linseed oil, castor oil, tall oil, sunflower oil and other natural oils. Other esters are also good materials to start with, including, but not limited to, ethyl linoleate, ethyl linolenate, ethyl pinolenate, ethyl eleostearate, ethyl ricinoleate, and ethyl oleate. In a preferred embodiment, these oils, esters or acids are reacted with amines to form functional amides or with a multifunctional alcohol to form a functional ester. Suitable amines include, but are not limited to, polyamines and hydroxyl-amines. Suitable multifunctional alcohols include, but are not limited to pentaerythyritol, glycerols and other polyols, such as polymeric polyols. Thus, the molecules produced have hydrophilic terminal groups that are amido, amino, and/or hydroxyl groups. More preferred embodiments of suitable amines include but are not limited to, ethyleneamines, including ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentaamine, pentaethylenehexaamine; hydroxylamines, including ethanolamine, diethnolamine, propanolamime, dipropanolamine; and other polyamines and hydroxylamines. The acids and derivatives thereof and the various amines can be used singly or can be used in combinations of two or more thereof. The only limitation to using more than one type of amphiphilic molecule is that any combination of amphiphilic molecules must still be able to form the self assembly coating, even with the two or more different amphiphilic molecules in close proximity and interaction with one another. Otherwise there are no limitations as to the number of different species that can be combined into a single coating.
- The process of making the self-assembling amphiphilic molecules (SAM) is preferably an amidation reaction. This reaction is preferably carried out in a reaction vessel at temperatures from 70 to 200° C. with or without a catalyst, such as a trialkylamine. For non-conjugated fatty acids, a catalyst, for example, iodine, is added to convert them to conjugated unsaturated fatty amides and to increase their reactivities. This invention includes both non-conjugated and conjugated unsaturated fatty amides. When the starting material is a glycerol ester, the by-product glycerol can be removed by vacuum distillation. However, the present invention includes both distillated and non-distillated processes. For reaction with a polyamine, an imidazole intermediates is produced in order to obtain the terminal amino amide. This process is illustrated in the production of N,N-bisaminoethyl α-eleostearamide from ethyl α-eleostearate as shown in FIG. 3. This preferred embodiment of the present process and its product provides significantly improved properties of SAMs. However, the present invention is not limited to amides in which the amino groups are terminal amino groups, but also includes amides having amino groups at other locations within the molecule. Additionally, the present invention is not limited specifically to amides, but can include other reactive functional groups, such as esters, that provide hydrogen bonding or hydrophilic interaction with the surface of the nutrient particles.
- According to the present invention, the controlled release fertilizer products include a nutrient core. The nutrient core can be any conventional fertilizer nutrient, including, but not limited to, one or more primary nutrients, one or more secondary nutrients and/or one or more micro nutrients. Suitable primary nutrients include, but are not limited to, N, P, K or combination products thereof. Suitable secondary nutrients include but are not limited to, calcium, magnesium and sulfur. Suitable micro nutrients include, but are not limited to, boron copper, iron, manganese, molybdenum and zinc. The nutrients can be in any coatable form, preferably in the form of granules or prills or other solid forms of particles. It is preferred that the surfaces of the nutrients are spherical and smooth, but due to the coating methods used and the nature of the self assembling molecules, rough, irregular particle materials can also be used if desired. Uniform particle size of the products is most preferred. A particularly preferred nutrient particle is the granular urea product sold by Mississippi Chemical Corporation.
- In a preferred method for obtaining the present controlled release fertilizer product, the SAM coating materials are sprayed or ejected onto the preheated urea granules at an elevated temperature, preferably from 60-80° C. in order to coat the surface of the granules and allow the amphiphilic component self-assemble on the granular surfaces. The SAM can be directly sprayed on the nutrient alone. However, as desired and as described above, the SAM component also can be mixed with other materials, such as polyols, polyamines, polyether polyols, polyester polyols, polyester polyamines, and polyether polyamines. It also can be mixed with drying oils, such as tung oil, linseed oil, and soybean oil, and alkyl resins. After allowing the nutrient particles to roll for 1-20 minutes, the SAM will spread over the particle surface. The length of time needed for rolling the particles is merely the amount of time sufficient to allow the SAM to spread over substantially the entire particle surface. Preferably, the rolling time is from about 5 to 20 min, more preferably about 8-15 min.
- Di- or tri-isocyanates are preferably used as cross-linking agents to connect the hydroxyl groups or amino groups to form urethane or urea linkages. The isocyanates used here include, but are not limited to, aromatic isocyanates, such as, toluene diisocyanate (TDI), bis(4-isocyanatophenyl) methane (MDI), and aliphatic isocyanates, such as, 1,6-hexamethylene diisocyanate (HDI), isophorone diisocyanate (IPDI), 2,2,5-trimethylhexane diisocyante (TMHDI), bis(4-isocyanatocyclohexyl) methane (H12MDI), etc. The isocyanates also include their dimers, trimers, and other derivatives such as polymeric isocyanates and isocyanic prepolymers. These isocyanates can be applied alone, or as mixtures of two or more different isocyanates, or in combination with other additives such as organic tin catalyst and triamines. This component can be applied neat or in a solvent. The cross-linking agents are not limited to the polyisocyanates. They also can be polyvinylethers, polyacrylates, epoxy compounds, and other materials that can react with amino or hydroxyl groups.
- Catalysts for crosslinking the olefin groups present in the hydrophobic portion of the amphiphilic molecules can be applied individually or mixed with one or more other components. The catalysts include, but are not limited to, peroxide and azo radical initiators, for example, benzoyl peroxide and azobisisobutyronitrile, and inorganic and organometallic drying agents such as, manganese, cobalt, zinc, zirconium and calcium salts and mixture thereof. Clay and other minerals may also be used to keep the particles free flowing, if needed.
- The particles are preferably kept at 60 to 90° C. for 5 to 20 minutes, more preferably at 60 to 80° C. for 5 to 10 minutes, in order to cure the coatings on the particles and form a good film coverage.
- Multiple layers of coating on the nutrient particles may be applied to control the degree of release rate. The release rate can be adjusted to any length desired, by continuing to apply layers of coating. From a practical standpoint, however, the release rate is preferably adjusted to be from about 1 to about 10 months, using from 1 to 100 layers, preferably from about 2 to about 5 months using from about 2 to about 50 layers. The SAM based coatings can be applied alone or can be combined with other coatings such as alkyd resins; drying oils and modified oils; vinyl resins, for example, poly(vinyl acetate), poly(vinyl acetal); acrylic polymers, for example, poly(methyl acrylate); polyesters, for example, poly(alkylene terephthalate); epoxy resins, for example, poly(propylene oxide); polyamides, for example polycaprolactam; and polycarbonates, for example, poly(alkylene carbonate); polyethylene and its copolymers.
- The controlled release fertilizer of the present invention can comprise the SAM coated nutrient particles alone or can optionally contain other coated or non-coated fertilizers. Any conventional fertilizer can be used as the additional coated or non-coated fertilizer, including but not limited to ureas, phophorous fertilizers, potassium fertilizers, secondary nutrients and micronutrients.
- Having generally described this invention, a further understanding can be obtained by reference to certain specific examples which are provided herein for purposes of illustration only and are not intended to be limiting unless otherwise specified.
- Synthesis of the Self-assembling Molecules for Coatings from Soybean Oil
- Into a 1 liter three neck flask with a mechanic stirring system, 250 ml of soybean oil was charged. Then, 55 ml of triethylenetetraamine (TETA) was added, followed by addition of 0.25 g of iodine. The system was purged with argon for one hour. After the temperature in the flask reached 130° C., it was continuously stirred for 20 hours at temperature. FTIR showed that most of the esters were converted into amides. A vacuum distillation process was carried out at 200° C. at a pressure of 20 torr over three hours to remove glycerol and water. After cooling to 50° C., 8 ml of deionized water was added into the system. The system was then stirred for 24 hours at 90° C. A light yellowish, grease-like material was obtained.
- Synthesis of the Self-assembling Molecules for Coatings from Tung Oil
- The process was the same as in example 1, but the soybean oil was replaced with tung oil and no iodine was added. The material obtained was deep yellow.
- Examples 3-7 show the production of CRFs from SAMs and other optional components.
- Five hundred grams of granular urea was added into a 5 gallon rotary drum with flights, and heated to 75° C. for 10 minutes. Approximately 7 g of SAM component made in Example 1 was sprayed onto the tumbling particles. After the urea granules were rolled for about 20 minutes, 3 g of MDI and 0.1 g of AIBN in 20 ml of methyl acetate were sprayed onto the urea granules. After the mass was heated up to 75° C. again, the same amount of SAM was sprayed onto the mass. Then, 3 g of MDI and 0.1 g of AIBN in methyl acetate was sprayed once again. The tumbling particles were kept for an additional 20 minutes at 75° C. before cooling down.
- The controlled release properties of the coated fertilizers was tested by placing 14 g of the product in a wire mesh holder, then, placing it into a jar with 300 ml of deionized water at 23° C. The jar with the product was agitated with an orbital shaker. Adequate water was taken out for elementary analysis to determine the amount of nutrient released from the product. The release pattern obtained for Example 3 is shown in FIG. 4.
- Five hundred grams of granular urea was added into a 5 gallon rotary drum with flights, and heated to 75° C for 10 minutes. On to the tumbling particles, a melted mixture of 10 g of SAM component made from Example 1 and 1 g of polypropylene glycol was sprayed. After the urea granules were rolled for about 20 minutes, 5.6 g of MDI and 0.15 g of AIBN in 20 ml of methyl acetate were sprayed onto the granules. After the mass was heated up to 75° C. again, the same coating process was repeated for two times. The release pattern obtained, measured using the same procedure described in Example 3, is shown in FIG. 5.
- The same coating process was implemented as in Example 3, but the SAM component was replaced with the SAM from Example 2.
- The same coating process was implemented as in Example 4, but the SAM component was replaced with the SAM from Example 2. The release pattern obtained, measured using the same procedure desribed in Example 3, is shown in FIG. 6.
- Obviously, additional modifications and variations of the present invention are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention may be practiced otherwise than as specifically described herein.
Claims (45)
1. A controlled release fertilizer comprising:
a nutrient particle having coated thereon a coating comprising molecules of an amphiphilic compound, wherein the amphiphilic compound has a hydrophilic portion and a hydrophobic portion, wherein a plurality of said amphiphilic compound molecules self-assemble to form said coating such that said hydrophilic portion is proximal relative to said nutrient particle and said hydrophobic portion is distal relative to said nutrient particle.
2. The controlled release fertilizer of claim 1 , wherein said amphiphilic compound is a compound obtained from reacting unsaturated organic acids and their derivatives with an amine containing compound selected from the group consisting of hydroxylamines, and polyamines or a compound selected from the group consisting of multifunctional alcohols.
3. The controlled release fertilizer of claim 1 , wherein said coating further comprises one or more crosslinking agents to provide crosslinking between at least a portion of said amphiphilic compounds.
4. The controlled release fertilizer of claim 3 , further comprising one or more catalysts or initiators or both.
5. The controlled release fertilizer of claim 1 , wherein said amphiphilic compound is from 0.5 nm to 30 nm in size.
6. The controlled release fertilizer of claim 1 , wherein said amphiphilic compound is a member selected from the group consisting of amido polyalcohols, amido polyamines and ester alcohols.
7. The controlled release fertilizer of claim 2 , wherein said unsaturated organic acid and derivatives thereof are selected from the group consisting of aromatic and alkyl acids and derivatives thereof.
8. The controlled release fertilizer of claim 7 , wherein said unsaturated organic acids and derivatives thereof are a member selected from the group consisting of fatty acids and derivatives thereof.
9. The controlled release fertilizer of claim 8 , wherein said fatty acids and derivatives thereof are a member selected from the group consisting of natural oils.
10. The controlled release fertilizer of claim 9 , wherein said natural oil is a member selected from the group consisting of castor oil, linseed oil, soybean oil, sunflower oil, tall oil, and tung oil.
11. The controlled release fertilizer of claim 2 , wherein said hydroxylamines are selected from the group consisting of ethanolamine, diethanolamine, propanolamine, and dipropanolamine.
12. The controlled release fertilizer of claim 2 , wherein said polyamines are selected from the group consisting of ethylenediamine, diethylenetriamine, triethylenetetraamine, tetraethylenepentaamine, and pentaethylenehexaamine.
13. The controlled release fertilizer of claim 2 , wherein said multifunctional alcohols are selected from the group consisting of pentaerythyritol, glycerols and polymeric polyols.
14. The controlled release fertilizer of claim 3 , wherein said one or more crosslinking agents are a member selected form the group consisting of isocyanate crosslinking agents, polyvinylethers, polyacrylates, and epoxy compounds.
15. The controlled release fertilizer of claim 14 , wherein said isocyanate crosslinking agents are a member selected from the group consisting of aromatic isocyanates and aliphatic isocyanates.
16. The controlled release fertilizer of claim 4 , wherein said catalysts, initiators or both are a member selected from the group consisting of peroxide compounds, azo compounds, manganese salts, cobalt salts, zinc salts, zirconium salts, calcium salts and mixtures thereof.
17. The controlled release fertilizer of claim 1 , wherein the nutrient particle is a member selected from the group consisting of primary nutrients, secondary nutrients and micronutrients.
18. The controlled release fertilizer of claim 17 , wherein said primary nutrients are one or more members selected from the group consisting of N, P, K and their combination products.
19. The controlled release fertilizer of claim 17 , wherein said secondary nutrients are one or more members selected from the group consisting of calcium, magnesium and sulfur.
20. The controlled release fertilizer of claim 17 , wherein said micro nutrients are one or more members selected from the group consisting of boron, copper, iron, manganese, molybdenum and zinc.
21. The controlled release fertilizer of claim 1 , wherein said coating further comprises one or more polyols or polyamines in combination with said amphiphilic compound.
22. The controlled release fertilizer of claim 1 , wherein said coating is present in an average amount of from 0.5 wt % to 25 wt % based on total coated nutrient particle.
23. The controlled release fertilizer of claim 1 , wherein said nutrient particles are a member selected from the group consisting of urea, ammonium nitrate, diammonium phasphate, monoammonium phosphate, potash, potassium chloride, ammonium sulfate, and potassium sulfate.
24. The controlled release fertilizer of claim 1 , wherein said controlled release fertilizer is a mixture of two or more different coated nutrient particles.
25. The controlled release fertilizer of claim 1 , further comprising a plurality of coatings, wherein each coating layer may be the same as or different from the other coating layers, wherein said controlled release fertilizer has a controlled release rate of from 2 to 10 months.
26. The controlled release fertilizer of claim 25 , wherein said plurality of coatings is a number of layers from 2 to 100.
27. The controlled release fertilizer of claim 1 , further comprising a non-coated nutrient composition.
28. The controlled release fertilizer of claim 27 , wherein said nutrient particles are a member selected from the group consisting of urea, ammonium nitrate, diammonium phasphate, monoammonium phosphate, potash, potassium chloride, ammonium sulfate, and potassium sulfate.
29. The controlled release fertilizer of claim 27 , wherein the non-coated nutrient composition is a member selected from the group consisting of phosphorous fertilizers and potassium fertilizers.
30. A process for preparation of a controlled release fertilizer, comprising:
coating a nutrient particle with a coating comprising molecules of an amphiphilic compound, wherein the amphiphilic compound has a hydrophilic portion and a hydrophobic portion, wherein a plurality of said amphiphilic compound molecules self-assemble to form said coating such that said hydrophilic portion is proximal relative to said nutrient particle and said hydrophobic portion is distal relative to said nutrient particle.
31. The process of claim 30 , wherein said coating is performed by spraying or ejecting the coating onto said nutrient particle.
32. The process of claim 31 , wherein said nutrient particle is being subjected to tumbling during said spraying or ejecting.
33. The process of claim 30 , wherein said coating step is performed a plurality of times to apply a plurality of coating layers.
34. The process of claim 33 , wherein said plurality of coating layers are coating layers of identical composition.
35. The process of claim 33 , wherein said plurality of coating layers comprise two or more different coating compositions.
36. The process of claim 30 , wherein said coating is performed at a temperature of from 60 to 80° C.
37. The process of claim 36 , wherein said coating is performed for a time of from 5 to 20 min.
38. The process of claim 30 , further comprising crosslinking said coating by curing said coating in the presence of one or more crosslinking agents.
39. The process of claim 38 , wherein said crosslinking is performed in the presence of one or more catalysts or initiators or both.
40. The process of claim 38 , wherein said one or more crosslinking agents are a member selected from the group consisting of isocyanate crosslinking agents, polyvinylethers, polyacrylates, and epoxy compounds.
41. The process of claim 40 , wherein said isocyanate crosslinking agents are a member selected from the group consisting of aromatic isocyanates and aliphatic isocyanates.
42. The process of claim 39 , wherein said catalysts, initiators or both are a member selected from the group consisting of peroxide compounds, azo compounds, manganese salts, cobalt salts, zinc salts, zirconium salts, calcium salts and mixtures thereof.
43. A controlled release fertilizer comprising:
a nutrient particle coated by a means for forming a self-assembling molecular coating.
44. A process for production of a controlled release fertilizer, comprising:
a step of coating a nutrient particle with a self-assembling molecular coating.
45. The process of claim 44 , further comprising a step of curing said self-assembling molecular coating.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/292,601 US20030070462A1 (en) | 2001-04-09 | 2002-11-13 | Controlled released fertilizers based on self-assembled molecule coatings |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/827,901 US6540808B2 (en) | 2001-04-09 | 2001-04-09 | Controlled release fertilizers based on self-assembled molecule coatings |
US10/292,601 US20030070462A1 (en) | 2001-04-09 | 2002-11-13 | Controlled released fertilizers based on self-assembled molecule coatings |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/827,901 Division US6540808B2 (en) | 2001-04-09 | 2001-04-09 | Controlled release fertilizers based on self-assembled molecule coatings |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030070462A1 true US20030070462A1 (en) | 2003-04-17 |
Family
ID=25250451
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/827,901 Expired - Fee Related US6540808B2 (en) | 2001-04-09 | 2001-04-09 | Controlled release fertilizers based on self-assembled molecule coatings |
US10/292,601 Abandoned US20030070462A1 (en) | 2001-04-09 | 2002-11-13 | Controlled released fertilizers based on self-assembled molecule coatings |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/827,901 Expired - Fee Related US6540808B2 (en) | 2001-04-09 | 2001-04-09 | Controlled release fertilizers based on self-assembled molecule coatings |
Country Status (2)
Country | Link |
---|---|
US (2) | US6540808B2 (en) |
WO (1) | WO2002081410A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9321699B2 (en) * | 2012-11-21 | 2016-04-26 | The Mosaic Company | Granular fertilizers having improved dust control |
Families Citing this family (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003074447A2 (en) * | 2001-12-07 | 2003-09-12 | Speciality Fertilizer Products, Llc | Anti-explosive fertilizer coatings |
EP1863900A1 (en) * | 2005-03-15 | 2007-12-12 | Tom Harper | Phytoplankton-based nutraceuticals and method of obtaining the same |
WO2010046777A2 (en) * | 2008-10-21 | 2010-04-29 | Canadian Pacific Algae Inc. | Method for the efficient and continuous growth and harvesting of nutrient-rich phytoplankton and methods of using the same |
UA107670C2 (en) * | 2009-08-07 | 2015-02-10 | Dow Agrosciences Llc | Meso-sized capsules useful for the delivery of agricultural chemicals |
EP2301366A1 (en) * | 2009-09-28 | 2011-03-30 | Stamicarbon B.V. | Fertilizer coating |
UA111167C2 (en) | 2010-08-05 | 2016-04-11 | ДАУ АГРОСАЙЄНСІЗ ЕлЕлСі | PESTICIDIC COMPOSITIONS OF MECHANIZED PARTICLES WITH STRENGTH |
US9090516B2 (en) | 2012-08-16 | 2015-07-28 | Helena Holding Company | Solvent free N-alkyl thiosphoric triamide formulations for use in the stabilization of nitrogen fertilizer |
WO2014036278A1 (en) * | 2012-08-31 | 2014-03-06 | Helena Holding Company | Stabilized n-alkyl thiosphoric triamide solvent systems for use in nitrogen fertilizer |
WO2014182513A1 (en) * | 2013-05-07 | 2014-11-13 | Agrium Advanced Technologies (U.S.) Inc. | Fertilizer granules having polymeric coating with organic carbonate |
WO2015075676A1 (en) * | 2013-11-21 | 2015-05-28 | Ballance Agri-Nutrients Limited | Fertiliser composition |
CN104177178B (en) * | 2014-08-15 | 2017-03-22 | 苏州丰倍生物科技有限公司 | Anti-blocking agent produced from soybean oil deodorizing distillate as well as production method and application of anti-blocking agent |
KR101949453B1 (en) | 2015-12-30 | 2019-02-18 | 주식회사 삼양바이오팜 | Selective synthesis method for cationic lipid |
CN106198440A (en) * | 2016-07-13 | 2016-12-07 | 中国农业大学 | A kind of dynamic characterization method that Controlled Release Fertilizer nutrient discharges through film |
Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3259482A (en) * | 1965-10-14 | 1966-07-05 | Archer Daniels Midland Co | Slow release fertilizer with a plurality of epoxy/polyester resin coatings |
US3876432A (en) * | 1972-09-11 | 1975-04-08 | Sun Chemical Corp | Fatty ester modified epoxy resin photopolymerizable compositions |
US3989609A (en) * | 1973-09-24 | 1976-11-02 | Dennison Manufacturing Company | Radiation curable resistant coatings and their preparation |
US4072770A (en) * | 1976-05-11 | 1978-02-07 | Scm Corporation | U.V. curable poly(ester-urethane) polyacrylate polymers and wet look coatings therefrom |
US4154896A (en) * | 1978-02-17 | 1979-05-15 | Westinghouse Electric Corp. | Photosensitive solventless oil free low viscosity coating composition |
US4218294A (en) * | 1973-09-24 | 1980-08-19 | Design Cote Corp. | Radiation curable coating composition |
US4220569A (en) * | 1973-03-22 | 1980-09-02 | Union Carbide Corporation | Acrylated epoxidized soybean oil urethane compositions and method |
US4969947A (en) * | 1988-04-12 | 1990-11-13 | Melamine Chemicals, Inc. | One-step method of coating nutrient particles |
US5310785A (en) * | 1991-06-26 | 1994-05-10 | Central Glass Company, Limited | Coating composition and method of coating granular fertilizer with same |
US5312889A (en) * | 1989-08-09 | 1994-05-17 | Battelle-Institut E.V. | Hydroxyfatty-acid-based monomers for producing plastics |
US5478375A (en) * | 1993-10-04 | 1995-12-26 | Lesco Inc. | Sealants for fertilizer compositions containing natural waxes |
US6176891B1 (en) * | 1997-03-26 | 2001-01-23 | Central Glass Company, Limited | Coated granular fertilizer and method for producing same |
US6287359B1 (en) * | 1996-02-02 | 2001-09-11 | K+S Aktiengesellschaft | Granule mixtures composed of coated and non-coated fertilizer granules |
US6322979B1 (en) * | 1994-09-26 | 2001-11-27 | President And Fellows Of Harvard College | Molecular recognition at surfaces derivatized with self-assembled monolayers |
US6358296B1 (en) * | 2000-07-11 | 2002-03-19 | Bayer Corporation | Slow-release polyurethane encapsulated fertilizer using oleo polyols |
US6364925B1 (en) * | 1999-12-10 | 2002-04-02 | Bayer Corporation | Polyurethane encapsulated fertilizer having improved slow-release properties |
US6727314B2 (en) * | 2001-12-13 | 2004-04-27 | Basf Ag | Crosslinking systems for acrylic latex films |
-
2001
- 2001-04-09 US US09/827,901 patent/US6540808B2/en not_active Expired - Fee Related
-
2002
- 2002-04-03 WO PCT/US2002/008233 patent/WO2002081410A1/en not_active Application Discontinuation
- 2002-11-13 US US10/292,601 patent/US20030070462A1/en not_active Abandoned
Patent Citations (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3259482A (en) * | 1965-10-14 | 1966-07-05 | Archer Daniels Midland Co | Slow release fertilizer with a plurality of epoxy/polyester resin coatings |
US3876432A (en) * | 1972-09-11 | 1975-04-08 | Sun Chemical Corp | Fatty ester modified epoxy resin photopolymerizable compositions |
US4220569A (en) * | 1973-03-22 | 1980-09-02 | Union Carbide Corporation | Acrylated epoxidized soybean oil urethane compositions and method |
US3989609A (en) * | 1973-09-24 | 1976-11-02 | Dennison Manufacturing Company | Radiation curable resistant coatings and their preparation |
US4218294A (en) * | 1973-09-24 | 1980-08-19 | Design Cote Corp. | Radiation curable coating composition |
US4072770A (en) * | 1976-05-11 | 1978-02-07 | Scm Corporation | U.V. curable poly(ester-urethane) polyacrylate polymers and wet look coatings therefrom |
US4154896A (en) * | 1978-02-17 | 1979-05-15 | Westinghouse Electric Corp. | Photosensitive solventless oil free low viscosity coating composition |
US4969947A (en) * | 1988-04-12 | 1990-11-13 | Melamine Chemicals, Inc. | One-step method of coating nutrient particles |
US5312889A (en) * | 1989-08-09 | 1994-05-17 | Battelle-Institut E.V. | Hydroxyfatty-acid-based monomers for producing plastics |
US5310785A (en) * | 1991-06-26 | 1994-05-10 | Central Glass Company, Limited | Coating composition and method of coating granular fertilizer with same |
US5478375A (en) * | 1993-10-04 | 1995-12-26 | Lesco Inc. | Sealants for fertilizer compositions containing natural waxes |
US6322979B1 (en) * | 1994-09-26 | 2001-11-27 | President And Fellows Of Harvard College | Molecular recognition at surfaces derivatized with self-assembled monolayers |
US6287359B1 (en) * | 1996-02-02 | 2001-09-11 | K+S Aktiengesellschaft | Granule mixtures composed of coated and non-coated fertilizer granules |
US6176891B1 (en) * | 1997-03-26 | 2001-01-23 | Central Glass Company, Limited | Coated granular fertilizer and method for producing same |
US6364925B1 (en) * | 1999-12-10 | 2002-04-02 | Bayer Corporation | Polyurethane encapsulated fertilizer having improved slow-release properties |
US6358296B1 (en) * | 2000-07-11 | 2002-03-19 | Bayer Corporation | Slow-release polyurethane encapsulated fertilizer using oleo polyols |
US6727314B2 (en) * | 2001-12-13 | 2004-04-27 | Basf Ag | Crosslinking systems for acrylic latex films |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9321699B2 (en) * | 2012-11-21 | 2016-04-26 | The Mosaic Company | Granular fertilizers having improved dust control |
Also Published As
Publication number | Publication date |
---|---|
US20020144528A1 (en) | 2002-10-10 |
WO2002081410A1 (en) | 2002-10-17 |
US6540808B2 (en) | 2003-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6540808B2 (en) | Controlled release fertilizers based on self-assembled molecule coatings | |
CA2312570C (en) | Improved polymer-sulphur-polymer coated fertilizers | |
US4711659A (en) | Attrition resistant controlled release fertilizers | |
JP2532264B2 (en) | Abrasion resistant controlled release fertilizer composition and method of making same | |
US8178161B2 (en) | Process and apparatus for producing a coated product | |
CA2618592C (en) | Controlled release fertilizer employing epoxidized fatty acid triglyceride oil as a coating additive | |
CN102143927B (en) | Controlled release fertilizer composition | |
CN103314036B (en) | The release and release control fertilizer prepared by crosslinked glyceride mixture | |
CN113105604B (en) | Bio-based polymer coating material, coating controlled-release fertilizer thereof and preparation method thereof | |
AU2010304367B2 (en) | Method for producing coated water-soluble particles | |
JP5810544B2 (en) | Coated granule and method for producing the coated granule | |
JP3496798B2 (en) | Coated granular fertilizer and method for producing the same | |
JP2010120785A (en) | Coated granular fertilizer and method for producing the same | |
AU2018359484B2 (en) | Coated agrochemical composition | |
CN1958533B (en) | Polymer emulsion composite capsule type slow-release fertilizer | |
JP2006327841A (en) | Granular coated fertilizer | |
JPS6395189A (en) | Slow release coated fertilizer | |
CN120004676A (en) | A metal complex functional high bio-based polyurethane controlled release membrane material and its application | |
MXPA00006838A (en) | Polymer-sulfur-polymer coated fertilizers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: MA, ZHONGXIN, MISSISSIPPI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:MISSISSIPPI CHEMICAL CORPORATION;REEL/FRAME:016427/0465 Effective date: 20050214 |