US20030068407A1 - Particulate vitamin composition - Google Patents
Particulate vitamin composition Download PDFInfo
- Publication number
- US20030068407A1 US20030068407A1 US10/168,317 US16831702A US2003068407A1 US 20030068407 A1 US20030068407 A1 US 20030068407A1 US 16831702 A US16831702 A US 16831702A US 2003068407 A1 US2003068407 A1 US 2003068407A1
- Authority
- US
- United States
- Prior art keywords
- vitamin
- composition
- oil
- protein
- particles
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 229940088594 vitamin Drugs 0.000 title claims description 121
- 229930003231 vitamin Natural products 0.000 title claims description 121
- 235000013343 vitamin Nutrition 0.000 title claims description 121
- 239000011782 vitamin Substances 0.000 title claims description 121
- 150000003722 vitamin derivatives Chemical class 0.000 title claims description 121
- 239000000203 mixture Substances 0.000 title claims description 68
- 239000002245 particle Substances 0.000 claims description 73
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 40
- 239000003349 gelling agent Substances 0.000 claims description 33
- 239000000839 emulsion Substances 0.000 claims description 30
- 238000000034 method Methods 0.000 claims description 26
- 235000018102 proteins Nutrition 0.000 claims description 23
- 102000004169 proteins and genes Human genes 0.000 claims description 23
- 108090000623 proteins and genes Proteins 0.000 claims description 23
- 235000000346 sugar Nutrition 0.000 claims description 22
- 239000003921 oil Substances 0.000 claims description 19
- 235000010418 carrageenan Nutrition 0.000 claims description 18
- 239000000679 carrageenan Substances 0.000 claims description 18
- 229920001525 carrageenan Polymers 0.000 claims description 18
- 229940113118 carrageenan Drugs 0.000 claims description 18
- 235000019198 oils Nutrition 0.000 claims description 18
- UHVMMEOXYDMDKI-JKYCWFKZSA-L zinc;1-(5-cyanopyridin-2-yl)-3-[(1s,2s)-2-(6-fluoro-2-hydroxy-3-propanoylphenyl)cyclopropyl]urea;diacetate Chemical compound [Zn+2].CC([O-])=O.CC([O-])=O.CCC(=O)C1=CC=C(F)C([C@H]2[C@H](C2)NC(=O)NC=2N=CC(=CC=2)C#N)=C1O UHVMMEOXYDMDKI-JKYCWFKZSA-L 0.000 claims description 18
- FPIPGXGPPPQFEQ-UHFFFAOYSA-N 13-cis retinol Natural products OCC=C(C)C=CC=C(C)C=CC1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-UHFFFAOYSA-N 0.000 claims description 17
- FPIPGXGPPPQFEQ-BOOMUCAASA-N Vitamin A Natural products OC/C=C(/C)\C=C\C=C(\C)/C=C/C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-BOOMUCAASA-N 0.000 claims description 17
- FPIPGXGPPPQFEQ-OVSJKPMPSA-N all-trans-retinol Chemical compound OC\C=C(/C)\C=C\C=C(/C)\C=C\C1=C(C)CCCC1(C)C FPIPGXGPPPQFEQ-OVSJKPMPSA-N 0.000 claims description 17
- 238000002360 preparation method Methods 0.000 claims description 17
- 235000019155 vitamin A Nutrition 0.000 claims description 17
- 239000011719 vitamin A Substances 0.000 claims description 17
- 229940045997 vitamin a Drugs 0.000 claims description 17
- 235000010489 acacia gum Nutrition 0.000 claims description 13
- 239000003963 antioxidant agent Substances 0.000 claims description 12
- 235000006708 antioxidants Nutrition 0.000 claims description 12
- 230000003078 antioxidant effect Effects 0.000 claims description 11
- 239000007900 aqueous suspension Substances 0.000 claims description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 claims description 9
- 229920000084 Gum arabic Polymers 0.000 claims description 9
- 239000000205 acacia gum Substances 0.000 claims description 9
- 239000005018 casein Substances 0.000 claims description 9
- BECPQYXYKAMYBN-UHFFFAOYSA-N casein, tech. Chemical compound NCCCCC(C(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(CC(C)C)N=C(O)C(CCC(O)=O)N=C(O)C(CC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(C(C)O)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=N)N=C(O)C(CCC(O)=O)N=C(O)C(CCC(O)=O)N=C(O)C(COP(O)(O)=O)N=C(O)C(CCC(O)=N)N=C(O)C(N)CC1=CC=CC=C1 BECPQYXYKAMYBN-UHFFFAOYSA-N 0.000 claims description 9
- 235000021240 caseins Nutrition 0.000 claims description 9
- 239000001828 Gelatine Substances 0.000 claims description 7
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 claims description 7
- 229920000159 gelatin Polymers 0.000 claims description 7
- 235000019322 gelatine Nutrition 0.000 claims description 7
- 239000008103 glucose Substances 0.000 claims description 7
- 239000007764 o/w emulsion Substances 0.000 claims description 6
- 229920000936 Agarose Polymers 0.000 claims description 5
- 102000014171 Milk Proteins Human genes 0.000 claims description 5
- 108010011756 Milk Proteins Proteins 0.000 claims description 5
- 229920000881 Modified starch Polymers 0.000 claims description 5
- 239000004368 Modified starch Substances 0.000 claims description 5
- 239000007864 aqueous solution Substances 0.000 claims description 5
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 claims description 5
- 235000010980 cellulose Nutrition 0.000 claims description 5
- 229920002678 cellulose Polymers 0.000 claims description 5
- 239000001913 cellulose Substances 0.000 claims description 5
- 235000021239 milk protein Nutrition 0.000 claims description 5
- 235000019426 modified starch Nutrition 0.000 claims description 5
- 239000000243 solution Substances 0.000 claims description 5
- 239000006188 syrup Substances 0.000 claims description 5
- 235000020357 syrup Nutrition 0.000 claims description 5
- 235000013311 vegetables Nutrition 0.000 claims description 5
- 239000002569 water oil cream Substances 0.000 claims description 5
- GVJHHUAWPYXKBD-UHFFFAOYSA-N (±)-α-Tocopherol Chemical compound OC1=C(C)C(C)=C2OC(CCCC(C)CCCC(C)CCCC(C)C)(C)CCC2=C1C GVJHHUAWPYXKBD-UHFFFAOYSA-N 0.000 claims description 4
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 claims description 4
- FBPFZTCFMRRESA-FSIIMWSLSA-N D-Glucitol Natural products OC[C@H](O)[C@H](O)[C@@H](O)[C@H](O)CO FBPFZTCFMRRESA-FSIIMWSLSA-N 0.000 claims description 4
- FBPFZTCFMRRESA-JGWLITMVSA-N D-glucitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-JGWLITMVSA-N 0.000 claims description 4
- 108010082495 Dietary Plant Proteins Proteins 0.000 claims description 4
- 229920002148 Gellan gum Polymers 0.000 claims description 4
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 claims description 4
- 229920002774 Maltodextrin Polymers 0.000 claims description 4
- 229910019142 PO4 Inorganic materials 0.000 claims description 4
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 claims description 4
- 229930006000 Sucrose Natural products 0.000 claims description 4
- 239000001785 acacia senegal l. willd gum Substances 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 4
- 235000010492 gellan gum Nutrition 0.000 claims description 4
- 239000000216 gellan gum Substances 0.000 claims description 4
- 230000009477 glass transition Effects 0.000 claims description 4
- 239000008101 lactose Substances 0.000 claims description 4
- 235000021317 phosphate Nutrition 0.000 claims description 4
- 239000000600 sorbitol Substances 0.000 claims description 4
- 235000010356 sorbitol Nutrition 0.000 claims description 4
- 229960004793 sucrose Drugs 0.000 claims description 4
- 229920001285 xanthan gum Polymers 0.000 claims description 4
- 229920002907 Guar gum Polymers 0.000 claims description 3
- 229920002472 Starch Polymers 0.000 claims description 3
- 238000001816 cooling Methods 0.000 claims description 3
- 235000011187 glycerol Nutrition 0.000 claims description 3
- 235000010417 guar gum Nutrition 0.000 claims description 3
- 239000000665 guar gum Substances 0.000 claims description 3
- 229960002154 guar gum Drugs 0.000 claims description 3
- 239000010452 phosphate Substances 0.000 claims description 3
- 239000008107 starch Substances 0.000 claims description 3
- 235000019698 starch Nutrition 0.000 claims description 3
- OWEGMIWEEQEYGQ-UHFFFAOYSA-N 100676-05-9 Natural products OC1C(O)C(O)C(CO)OC1OCC1C(O)C(O)C(O)C(OC2C(OC(O)C(O)C2O)CO)O1 OWEGMIWEEQEYGQ-UHFFFAOYSA-N 0.000 claims description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 claims description 2
- 108010028690 Fish Proteins Proteins 0.000 claims description 2
- 239000005715 Fructose Substances 0.000 claims description 2
- 229930091371 Fructose Natural products 0.000 claims description 2
- RFSUNEUAIZKAJO-ARQDHWQXSA-N Fructose Chemical compound OC[C@H]1O[C@](O)(CO)[C@@H](O)[C@@H]1O RFSUNEUAIZKAJO-ARQDHWQXSA-N 0.000 claims description 2
- 108010068370 Glutens Proteins 0.000 claims description 2
- 235000010469 Glycine max Nutrition 0.000 claims description 2
- 244000068988 Glycine max Species 0.000 claims description 2
- GUBGYTABKSRVRQ-PICCSMPSSA-N Maltose Natural products O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@@H]1O[C@@H]1[C@@H](CO)OC(O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-PICCSMPSSA-N 0.000 claims description 2
- 235000021307 Triticum Nutrition 0.000 claims description 2
- 229930003427 Vitamin E Natural products 0.000 claims description 2
- TVXBFESIOXBWNM-UHFFFAOYSA-N Xylitol Natural products OCCC(O)C(O)C(O)CCO TVXBFESIOXBWNM-UHFFFAOYSA-N 0.000 claims description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 claims description 2
- GUBGYTABKSRVRQ-QUYVBRFLSA-N beta-maltose Chemical compound OC[C@H]1O[C@H](O[C@H]2[C@H](O)[C@@H](O)[C@H](O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@@H]1O GUBGYTABKSRVRQ-QUYVBRFLSA-N 0.000 claims description 2
- 150000005323 carbonate salts Chemical class 0.000 claims description 2
- 235000013681 dietary sucrose Nutrition 0.000 claims description 2
- WIGCFUFOHFEKBI-UHFFFAOYSA-N gamma-tocopherol Natural products CC(C)CCCC(C)CCCC(C)CCCC1CCC2C(C)C(O)C(C)C(C)C2O1 WIGCFUFOHFEKBI-UHFFFAOYSA-N 0.000 claims description 2
- -1 malitol Chemical compound 0.000 claims description 2
- HEBKCHPVOIAQTA-UHFFFAOYSA-N meso ribitol Natural products OCC(O)C(O)C(O)CO HEBKCHPVOIAQTA-UHFFFAOYSA-N 0.000 claims description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 claims description 2
- 239000005720 sucrose Substances 0.000 claims description 2
- 235000015112 vegetable and seed oil Nutrition 0.000 claims description 2
- 239000008158 vegetable oil Substances 0.000 claims description 2
- 235000019165 vitamin E Nutrition 0.000 claims description 2
- 229940046009 vitamin E Drugs 0.000 claims description 2
- 239000011709 vitamin E Substances 0.000 claims description 2
- 239000000811 xylitol Substances 0.000 claims description 2
- 235000010447 xylitol Nutrition 0.000 claims description 2
- HEBKCHPVOIAQTA-SCDXWVJYSA-N xylitol Chemical compound OC[C@H](O)[C@@H](O)[C@H](O)CO HEBKCHPVOIAQTA-SCDXWVJYSA-N 0.000 claims description 2
- 229960002675 xylitol Drugs 0.000 claims description 2
- 229960001031 glucose Drugs 0.000 claims 2
- 244000303965 Cyamopsis psoralioides Species 0.000 claims 1
- 241000209140 Triticum Species 0.000 claims 1
- QYSXJUFSXHHAJI-XFEUOLMDSA-N Vitamin D3 Natural products C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C/C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-XFEUOLMDSA-N 0.000 claims 1
- 229960002737 fructose Drugs 0.000 claims 1
- 229960001375 lactose Drugs 0.000 claims 1
- 229960002160 maltose Drugs 0.000 claims 1
- 229940041290 mannose Drugs 0.000 claims 1
- 235000005282 vitamin D3 Nutrition 0.000 claims 1
- QYSXJUFSXHHAJI-YRZJJWOYSA-N vitamin D3 Chemical compound C1(/[C@@H]2CC[C@@H]([C@]2(CCC1)C)[C@H](C)CCCC(C)C)=C\C=C1\C[C@@H](O)CCC1=C QYSXJUFSXHHAJI-YRZJJWOYSA-N 0.000 claims 1
- 239000011647 vitamin D3 Substances 0.000 claims 1
- 229940021056 vitamin d3 Drugs 0.000 claims 1
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 description 18
- AFABGHUZZDYHJO-UHFFFAOYSA-N 2-Methylpentane Chemical compound CCCC(C)C AFABGHUZZDYHJO-UHFFFAOYSA-N 0.000 description 16
- 235000019484 Rapeseed oil Nutrition 0.000 description 10
- 239000008187 granular material Substances 0.000 description 10
- 238000005406 washing Methods 0.000 description 10
- 102000011632 Caseins Human genes 0.000 description 9
- 108010076119 Caseins Proteins 0.000 description 9
- 229910000019 calcium carbonate Inorganic materials 0.000 description 9
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 8
- WCUXLLCKKVVCTQ-UHFFFAOYSA-M Potassium chloride Chemical compound [Cl-].[K+] WCUXLLCKKVVCTQ-UHFFFAOYSA-M 0.000 description 6
- 239000000845 maltitol Substances 0.000 description 6
- VQHSOMBJVWLPSR-WUJBLJFYSA-N maltitol Chemical compound OC[C@H](O)[C@@H](O)[C@@H]([C@H](O)CO)O[C@H]1O[C@H](CO)[C@@H](O)[C@H](O)[C@H]1O VQHSOMBJVWLPSR-WUJBLJFYSA-N 0.000 description 6
- 235000010449 maltitol Nutrition 0.000 description 6
- 229940035436 maltitol Drugs 0.000 description 6
- 235000020183 skimmed milk Nutrition 0.000 description 6
- 239000012876 carrier material Substances 0.000 description 5
- 238000001694 spray drying Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- 229920002245 Dextrose equivalent Polymers 0.000 description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 4
- 238000004945 emulsification Methods 0.000 description 4
- 239000007788 liquid Substances 0.000 description 4
- 244000061456 Solanum tuberosum Species 0.000 description 3
- 235000002595 Solanum tuberosum Nutrition 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 239000001103 potassium chloride Substances 0.000 description 3
- 235000011164 potassium chloride Nutrition 0.000 description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 239000007789 gas Substances 0.000 description 2
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 150000008163 sugars Chemical class 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 102000008192 Lactoglobulins Human genes 0.000 description 1
- 108010060630 Lactoglobulins Proteins 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- BGNXCDMCOKJUMV-UHFFFAOYSA-N Tert-Butylhydroquinone Chemical compound CC(C)(C)C1=CC(O)=CC=C1O BGNXCDMCOKJUMV-UHFFFAOYSA-N 0.000 description 1
- 244000098338 Triticum aestivum Species 0.000 description 1
- ZNOZWUKQPJXOIG-XSBHQQIPSA-L [(2r,3s,4r,5r,6s)-6-[[(1r,3s,4r,5r,8s)-3,4-dihydroxy-2,6-dioxabicyclo[3.2.1]octan-8-yl]oxy]-4-[[(1r,3r,4r,5r,8s)-8-[(2s,3r,4r,5r,6r)-3,4-dihydroxy-6-(hydroxymethyl)-5-sulfonatooxyoxan-2-yl]oxy-4-hydroxy-2,6-dioxabicyclo[3.2.1]octan-3-yl]oxy]-5-hydroxy-2-( Chemical compound O[C@@H]1[C@@H](O)[C@@H](OS([O-])(=O)=O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H]2OC[C@H]1O[C@H](O[C@H]1[C@H]([C@@H](CO)O[C@@H](O[C@@H]3[C@@H]4OC[C@H]3O[C@H](O)[C@@H]4O)[C@@H]1O)OS([O-])(=O)=O)[C@@H]2O ZNOZWUKQPJXOIG-XSBHQQIPSA-L 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- CZBZUDVBLSSABA-UHFFFAOYSA-N butylated hydroxyanisole Chemical compound COC1=CC=C(O)C(C(C)(C)C)=C1.COC1=CC=C(O)C=C1C(C)(C)C CZBZUDVBLSSABA-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000001506 calcium phosphate Substances 0.000 description 1
- 235000011010 calcium phosphates Nutrition 0.000 description 1
- 229940071162 caseinate Drugs 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 150000001875 compounds Chemical class 0.000 description 1
- DECIPOUIJURFOJ-UHFFFAOYSA-N ethoxyquin Chemical compound N1C(C)(C)C=C(C)C2=CC(OCC)=CC=C21 DECIPOUIJURFOJ-UHFFFAOYSA-N 0.000 description 1
- 239000010419 fine particle Substances 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 229960005150 glycerol Drugs 0.000 description 1
- 238000005470 impregnation Methods 0.000 description 1
- GVALZJMUIHGIMD-UHFFFAOYSA-H magnesium phosphate Chemical class [Mg+2].[Mg+2].[Mg+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O GVALZJMUIHGIMD-UHFFFAOYSA-H 0.000 description 1
- 239000004137 magnesium phosphate Substances 0.000 description 1
- 235000010994 magnesium phosphates Nutrition 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 235000013336 milk Nutrition 0.000 description 1
- 239000008267 milk Substances 0.000 description 1
- 210000004080 milk Anatomy 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 150000003013 phosphoric acid derivatives Chemical class 0.000 description 1
- 229920005862 polyol Polymers 0.000 description 1
- 150000003077 polyols Chemical class 0.000 description 1
- 235000008476 powdered milk Nutrition 0.000 description 1
- 235000004252 protein component Nutrition 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 239000012266 salt solution Substances 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229960002920 sorbitol Drugs 0.000 description 1
- 239000012798 spherical particle Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 235000010493 xanthan gum Nutrition 0.000 description 1
- 239000000230 xanthan gum Substances 0.000 description 1
- 229940082509 xanthan gum Drugs 0.000 description 1
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K47/00—Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
- A61K47/30—Macromolecular organic or inorganic compounds, e.g. inorganic polyphosphates
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1658—Proteins, e.g. albumin, gelatin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K20/00—Accessory food factors for animal feeding-stuffs
- A23K20/10—Organic substances
- A23K20/174—Vitamins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23K—FODDER
- A23K40/00—Shaping or working-up of animal feeding-stuffs
- A23K40/10—Shaping or working-up of animal feeding-stuffs by agglomeration; by granulation, e.g. making powders
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/15—Vitamins
- A23L33/155—Vitamins A or D
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/185—Vegetable proteins
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23L—FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES, NOT OTHERWISE PROVIDED FOR; PREPARATION OR TREATMENT THEREOF
- A23L33/00—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof
- A23L33/10—Modifying nutritive qualities of foods; Dietetic products; Preparation or treatment thereof using additives
- A23L33/17—Amino acids, peptides or proteins
- A23L33/19—Dairy proteins
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1629—Organic macromolecular compounds
- A61K9/1652—Polysaccharides, e.g. alginate, cellulose derivatives; Cyclodextrin
-
- A—HUMAN NECESSITIES
- A23—FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
- A23V—INDEXING SCHEME RELATING TO FOODS, FOODSTUFFS OR NON-ALCOHOLIC BEVERAGES AND LACTIC OR PROPIONIC ACID BACTERIA USED IN FOODSTUFFS OR FOOD PREPARATION
- A23V2002/00—Food compositions, function of food ingredients or processes for food or foodstuffs
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1611—Inorganic compounds
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K9/00—Medicinal preparations characterised by special physical form
- A61K9/14—Particulate form, e.g. powders, Processes for size reducing of pure drugs or the resulting products, Pure drug nanoparticles
- A61K9/16—Agglomerates; Granulates; Microbeadlets ; Microspheres; Pellets; Solid products obtained by spray drying, spray freeze drying, spray congealing,(multiple) emulsion solvent evaporation or extraction
- A61K9/1605—Excipients; Inactive ingredients
- A61K9/1617—Organic compounds, e.g. phospholipids, fats
- A61K9/1623—Sugars or sugar alcohols, e.g. lactose; Derivatives thereof; Homeopathic globules
Definitions
- the present invention relates to a particulate vitamin composition and in particular to a particulate vitamin composition comprising a gelling agent of vegetable origin.
- Vitamin compositions are known. Such compositions tend to contain a gelling agent which is necessary due to the method of preparation.
- the gelling agent used in vitamin compositions is gelatine.
- Gelatine is a very successful gelling agent used in compositions, it conserves the stability with regard to light, temperature and oxidation. There is, however, a need to move away from using this gelling agent as it is of animal origin and is unacceptable in many countries.
- the present invention provides a particulate vitamin composition
- a particulate vitamin composition comprising (a) an oil of a vitamin or a vitamin derivative, (b) a gelling agent of vegetable origin, having a glass transition point greater than 20° C., and (c) a protein, except gelatine
- the vitamin composition of the present invention comprising a gelling agent of vegetable origin is as stable as the conventional gelatine-containing vitamin composition.
- the particulate composition of the present invention comprises an oil of a vitamin or a derivative thereof.
- an oil of a vitamin may also include an oil containing one or more vitamin.
- the vitamin is vitamin A, D 3 or vitamin E.
- the vitamin composition comprises vitamin A.
- the vitamin may be present in the particulate composition in an amount of from 1 to 50 weight %, preferably from 20 to 40 weight %.
- the particulate composition of the present invention comprises a gelling agent which is of vegetable origin.
- the gelling agent has a glass transition point greater than 20° C., preferably between 20 and 45° C.
- a gelling agent is defined as a substance that binds the components of the composition together and may do so by integral mixing or by forming a coating or film around the resulting particle.
- Suitable gelling agents include agarose, carrageenan, a carrageenan-carob mixture, native or modified starch, native or modified cellulose, xanthan gum, arabic gum, acacia gum, gellan gum and guar gum.
- the preferred gelling agent is carrageenan, particularly kappa-carrageenan, modified starch and acacia gum.
- the gelling agent may be present in the composition in an amount of from 5 to 30 weight %, preferably from 10 to 20 weight %.
- the particulate composition of the present invention comprises a protein component.
- the protein may be any suitable protein except gelatine.
- the protein is any protein not of mammal tissue.
- Suitable proteins for use in the particulate composition of the present invention include vegetable proteins, for example potato protein; wheat gluten proteins; soya protein; milk proteins, for example lactoglobulin and casein; and fish proteins.
- the preferred protein is vegetable protein and milk protein, especially the milk protein, casein.
- the protein may be present in the particulate composition in an amount of from 2 to 40 weight %, preferably from 5 to 25 weight %.
- the particulate composition of the present invention may further comprise an inorganic carrier material.
- the carrier material is insoluble in aqueous solution and has a pH greater than or equal to pH 7 in water.
- the carrier material is suitably a phosphate or carbonate salt.
- the preferred salts are Group II metal phosphates or carbonates, especially calcium and magnesium phosphates and carbonates. It is preferred that the composition comprise an inorganic carrier material.
- the inorganic carrier material may be present in an amount of from 0 to 60 weight %, preferably from 10 to 30 weight %.
- the particulate composition optionally may further comprise a sugar.
- the sugar is a short chain sugar. Any suitable short chain sugar may be used, for example a reduced sugar or polyol: glycerol, sorbitol, maltitol, xylitol, Additionally sugars such as glucose, lactose, fructose, sucrose, mannose, maltose, saccharose may be used. Where a sugar is present, the preferred sugar is glucose or lactose.
- the composition may comprise a mixture of sugars or maltodextrines in dry form or in syrup form. It is preferred that the sugar mix has a Dextrose Equivalent (DE) of at least 15. The preferred sugar mix is glucose syrup.
- the sugar may be present in an amount of from 0 to 40 weight %, preferably from 10 to 30 weight %.
- the particulate composition may further comprise an antioxidant.
- Suitable antioxidants include 3-tertiary butyl-4-hydroxyanisole (BHA), 3,5-di-tertiary-4-hydroxytoluene (BHT), 6-ethoxy-1,2-dihydroxy-2,2,4-trimethylquinoline (ethoxyquine) and 2-tertiary-butyl-1,4-dihydroxybenzene.
- BHA 3-tertiary butyl-4-hydroxyanisole
- BHT 3,5-di-tertiary-4-hydroxytoluene
- the antioxidant is 3,5-di- tertiary-4-hydroxytoluene (BHT).
- BHT 3,5-di- tertiary-4-hydroxytoluene
- the antioxidant may be present in the composition in an amount of from
- an anti-caking agent in the composition.
- Compounds suitable for use as an anti-caking agent include silica and magnesium stearate.
- the anti-caking agent is silica.
- the coating agent may be present in an amount of from 0 to 3 weight %, preferably from 0.1 to 2 weight %, especially from 2 to 4 weight %.
- the particulate composition may also comprise a finite amount of water.
- the water is present in an amount of less than 6 weight %, preferably less than 4 weight %.
- the particulate composition may be prepared by any suitable method known to the person skilled in the art. Suitable known methods of preparation include spray-drying as disclosed for, example, in European Patent No. 0258682 herein incorporated by reference, and impregnation as disclosed, for example, in European Patent No. 0261616 herein incorporated by reference. Alternatively, the particulate composition may be prepared by using a technique as disclosed in European Patent No 0618001, herein incorporated by reference, which involves the preparation of emulsions and is hereinafter referred to as the “double emulsion method”.
- the preferred method of preparation is the double emulsion method wherein spherical droplets of vitamin are prepared by forming a primary oil-water emulsion dispersing the vitamin oil in water containing the gelling agent.
- the emulsion is combined with an water-immiscible solvent, for example an oil, to create a second emulsion oil-water-oil
- the emulsion is then cooled below the glass transition of the gelling agent to solidify the droplets and to obtain particles.
- a salt solution of potassium chloride may be added in the solvent after cooling.
- the spherical particles may then be separated by any suitable method.
- a process for the preparation of a vitamin composition as herein before defined which comprises (a) a first step of preparing an aqueous solution or suspension of the gelling agent, the protein, optionally the inorganic carrier and the sugar, (b) a second step of adding an oil solution of the vitamin and optionally the antioxidant to create an oil in water emulsion, (c) a third step of adding the oil in water emulsion to a vegetable oil to create an oil-water-oil emulsion, (d) a fourth step of cooling said oil-water-oil emulsion to solidify the particles; and (e) a fifth step of recovering and drying the particles characterised in that the gelling agent is agarose, carrageenan, or a carrageenan-carob mixture.
- the preferred method of preparation is the spray drying method wherein an aqueous suspension of the gelling agent is prepared with the optional components such as the inorganic carrier and sugar.
- the vitamin and optional antioxidant are then added to the aqueous suspension to create an emulsion.
- the resulting emulsion is subjected to high pressure to reduce the droplet size.
- the resulting droplets are then atomised using a suitable device such as a nozzle or rotating wheel.
- the resulting particles are then dried.
- a process for the preparation of a vitamin composition as herein before defined which comprises (a) a first step of preparing an aqueous solution or suspension of a gelling agent, a protein, optionally in the presence of an inorganic carrier and the sugar, (b) a second step of adding an oil solution of a vitamin optionally in the presence of an antioxidant to create an oil in water emulsion, (c) a third step of subjecting the emulsion to high pressure, (d) a fourth step of atomising said emulsion, thereby creating droplets and (e) a fifth step of drying said droplets to produce particles characterised in that the gelling agent is modified or native starch, modified or native cellulose, xantham gum, arabic gum, acacia gum gellan gum or guar gum.
- the resulting particles suitably have a size of from 50 to 800 microns, preferably from 300 to 500 microns
- Examples 1 to 10 illustrate the preparation of a vitamin composition according to the present invention using the double emulsion method of preparation.
- Examples 11 to 14 illustrate the preparation of a vitamin composition according to the present invention using the spray drying method of preparation.
- Step (1) In a first reactor, the gelling agent was dissolved in water and, where appropriate, the inorganic carrier and/or the sugar was mixed with stirring at a speed of 2 to 3 meters per second for at least twenty minutes at a temperature of 75° C. The protein was then added to complete the aqueous suspension. After twenty minutes, the temperature was decreased to 60° C.
- Step (2) In a second reactor, the vitamin was mixed with the antioxidant for ten minutes to provide an oily liquid.
- Step (3) The oily liquid obtained in step (2) was then added with stirring to the aqueous suspension prepared in step (1). Stirring was continued for 10 minutes whilst maintaining a temperature of 60° C. to obtain a first emulsion of oil droplets in water.
- Step (4) The emulsion obtained in step (3) was then added to an a oil to provide an oil/water/oil emulsion.
- Step (5) The temperature of the mixture was then reduced to 20° C. to solidify the particles. The cooled mixture was then filtered and the solid optionally washed twice with potassium chloride. The solid was further washed with n-hexane or iso-hexane to remove excess oil. The resulting particles were then dried in a fluidised bed.
- the particulate composition of the present invention was prepared using the following procedure.
- Step (1) In a first reactor, the gelling agent was dissolved in water at a temperature comprised between 60° C. and 80° C. When it is appropriate, the inorganic carrier and/or the sugar was added. The protein was then added to complete the aqueous suspension. The temperature was decreased to 60° C.
- Step (2) In a second reactor, the vitamin was mixed with the antioxidant for ten minutes to provide an oily liquid.
- Step (3) The oily liquid obtained in step (2) was then added with stirring to the aqueous suspension prepared in step (1) to ensure the formation of a coarse emulsion of oil droplets in water.
- Step (4) The size of the emulsion was then reduced in a high-pressure homogeniser by applying a high-pressure or by recycling the slurry several times at a lower pressure.
- Step (5) The fine emulsion was atomised through a nozzle or through a rotating wheel. The fine particles obtained were rapidly dried in the hot spray chamber.
- the gas used is nitrogen and the temperature of this gas must not exceed 160° C.
- a particulate vitamin composition was prepared according to the double emulsion preparative method described above using the following components: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 casein 1.92 10.00 20 CaCO 3 9.62 50.00 100 Water 80.77 0.00 840 Vitamin A 4.04 21.00 42 BHT 0.96 5.00 10 TOTAL 100 100 1040
- the particle size of the granules obtained ranged from 50 to 800 microns with 30% in the range from 315 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 1.2% water was determined to be 521,700 IU vitamin/g of particles.
- the measured amount of vitamin was 551,000 IU vitamin/g of particles.
- the amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 530,000 IU vitamin/g of particles equating to 96% stability.
- the sample was included in a vitamin aggressive premix and stored for four weeks at 20° C. and 82% relative humidity. 41% of the vitamin remained under these extremes conditions showing that the composition exhibits good stability.
- Example 1 The procedure of Example 1 was repeated increasing the amount of vitamin and without any inorganic carrier. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.00 10.00 20 casein 8.00 40.00 80 water 80.00 0.00 800 Vitamin A 8.00 40.00 80 BHT 2.00 10.00 20 TOTAL 100 100 1000
- the particle size of the granules obtained ranged from 100 to 1000 microns with 30% in the range from 315 to 630 microns.
- the calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 950,000 IU vitamin/g of particles.
- the measured amount of vitamin was 834,000 IU vitamin/g of particles.
- the amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 800,000 IU vitamin/g of particles equating to 96% stability.
- Example 1 The procedure of Example 1 was repeated reducing inorganic carrier and including maltitol. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.62 13.02 28 Maltitol 5.61 20.93 60 (containing 25% of water) Casein 2.24 11.16 24 CaCO 3 5.61 27.91 60 Water 78.50 00.00 840 Vitamin A 4.30 21.40 46 BHT 1.12 5.58 12 TOTAL 100 100 1070
- the particle size of the granules obtained ranged from 50 to 800 microns with 30% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 2.6% water was determined to be 528,300 IU vitamin/g of particles.
- the measured amount of vitamin was 514,170 IU vitamin/g of particles.
- Example 3 The procedure of Example 3 was repeated replacing the maltitol with sorbitol. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 13.40 28 Sorbitol 6.73 23.44 70 (containing 30% of water) Casein 2.50 12.44 26 CaCO 3 4.62 22.97 48 water 77.88 0 810 Vitamin A 4.42 22.01 46 BHT 1.15 5.74 12 TOTAL 100 100 1040
- the particle size of the granules obtained ranged from 50 to 800 microns with approximately 30% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 2.6% water was determined to be 543,270 IU vitamin/g of particles.
- the measured amount of vitamin was 585,360 IU vitamin/g of particles.
- the amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 573,650 IU vitamin/g of particles equating to 98% stability.
- Example 3 The procedure of Example 3 was repeated replacing maltitol with a glucose syrup. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 12.84 28 Glucose syrup 5.77 22.02 60 DE: 58-63 (containing 20% of water) Casein 2.31 11.01 24 CaCO 3 5.77 27.52 60 water 77.88 0 810 Vitamin A 4.42 22.10 46 BHT 1.15 5.50 12 TOTAL 100 100 1040
- the particle size of the granules obtained ranged from 50 to 800 microns with approximately 30% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 508,150 IU vitamin/g of particles.
- the measured amount of vitamin was 515,900 IU vitamin/g of particles.
- the amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 518,990 IU vitamin/g of particles equating to 100% stability.
- Example 3 The procedure of Example 3 was repeated replacing maltitol with maltodextrine. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.31 12 24 maltodextrine 5.19 27 54 DE: 15-18 casein 2.12 11 22 CaCO 3 4.81 25 50 water 80.77 0 840 Vitamin A 3.85 20 40 BHT 0.96 5 10 TOTAL 100 100 1040
- the particle size of the granules obtained ranged from 50 to 800 microns with approximately 20% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 5.5% water was determined to be 479,000 IU vitamin/g of particles.
- the measured amount of vitamin was 489,700 IU vitamin/g of particles.
- the amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 485,800 UI vitamin/g of particles, equating to 100% stability.
- Example 1 The procedure of Example 1 was repeated but using powdered dried skimmed milk which brings the proteins (caseine ans lactoglobuline), the sugar (lactose) and a part of the inorganic carrier (phosphate salts).
- the dried milk was in water at 75° C.
- the carrageenan was added to the milk solution, stirring at a speed of 2 meters per second.
- the remaining preparation was the same as in example 1.
- the particle size of the granules obtained ranged from 50 to 800 microns with approximately 20% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 503,000 IU vitamin/g of particles.
- the measured amount of vitamin was 508,800 IU vitamin/g of particles.
- the amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 508,000 UI vitamin/g of particles, equating to 100% stability.
- Example 7 The procedure of Example 7 was repeated without calcium carbonate. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 Powered dried 11.54 60.00 120 skimmed milk Water 80.77 0.00 840 Vitamin A 4.04 21.00 42 BHT 0.96 5.00 10 TOTAL 100 100 1040
- the particle size of the granules obtained ranged from 50 to 800 microns with approximately 40% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 4.3% water was determined to be 507,800 IU vitamin/g of particles.
- the measured amount of vitamin was 535,400 IU vitamin/g of particles.
- the amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 492,600 UI vitamin/g of particles, equating to 92% stability.
- the particulate composition was incorporated into a aggressive premix and stored at 20° C. and 82% relative humidity for 4 weeks. The amount of vitamin determined after this period was 64%, indicating that the composition was very stable under these under extreme conditions.
- Example 7 The procedure of Example 7 was repeated increasing the amount of vitamin and without calcium carbonate. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.00 10.00 20 Powered dried 8.00 40.00 80 skimmed milk Water 80.00 0.00 800 Vitamin A 8.00 40.00 80 BHT 2.00 10.00 20 TOTAL 100 100 1000
- the particle size of the granules obtained ranged from 100 to 1000 microns with 50% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 950,000 IU vitamin/g of particles.
- the measured amount of vitamin was 850,000 IU vitamin/g of particles.
- the amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 825,000 IU vitamin/g of particles equating to 97% stability.
- Example 1 The procedure of Example 1 was repeated replacing the casein protein with a potato protein. The following amounts were used: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 glycerol 1.44 7.50 15 potato protein 0.67 3.50 7 CaCO 3 9.13 47.50 95 water 80.77 0.00 840 Vitamin A 4.23 22.00 44 BHT 1.06 5.50 11 TOTAL 100 100 1040
- the particle size of the granules obtained ranged from 50 to 800 microns with 25% in the range from 160 to 500 microns.
- the calculated amount vitamin in the particles which comprise in fact 2% water was determined to be 546,500 IU vitamin/g of particles.
- the measured amount of vitamin was 560,650 IU vitamin/g of particles.
- the amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 505,000 IU vitamin/g of particles equating to 90% stability.
- a particulate vitamin composition was prepared according to the spray drying preparative method described above, using the following components: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) Modified starch 8.00 20.00 80 Powdered dried 22.00 55.00 220 skimmed milk water 60.00 0.00 600 Vitamin A 8.00 20.00 80 BHT 2.00 5.00 20 TOTAL 100 100 1000
- the calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 475,000 IU vitamin/g of particles.
- the measured amount of vitamin was 449,600 IU vitamin/g of particles.
- the amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 452,230 IU vitamin/g of particles equating to 100% stability.
- Example 11 The procedure of Example 11 was repeated using acacia gum as the gelling agent: THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) Acacia gum 5.00 20.00 50 Powdered dried 25.00 55.00 250 skimmed milk water 60.00 0.00 600 Vitamin A 8.00 20.00 80 BHT 2.00 5.00 20 TOTAL 100 100 1000
- the calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 475,000 IU vitamin/g of particles.
- the measured amount of vitamin was 454,800 IU vitamin/g of particles.
- the amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 445,200 IU vitamin/g of particles equating to 98% stability.
- the calculated amount vitamin in the particles which comprise in fact 4% water was determined to be 1,008,000 IU vitamin/g of particles.
- the measured amount of vitamin was 1,050,000 IU vitamin/g of particles.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Polymers & Plastics (AREA)
- Food Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Nutrition Science (AREA)
- Mycology (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Veterinary Medicine (AREA)
- Public Health (AREA)
- Pharmacology & Pharmacy (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Zoology (AREA)
- Animal Husbandry (AREA)
- Inorganic Chemistry (AREA)
- Medicinal Preparation (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Fodder In General (AREA)
Abstract
Description
- The present invention relates to a particulate vitamin composition and in particular to a particulate vitamin composition comprising a gelling agent of vegetable origin.
- Vitamin compositions are known. Such compositions tend to contain a gelling agent which is necessary due to the method of preparation.
- In general the gelling agent used in vitamin compositions is gelatine. Gelatine is a very successful gelling agent used in compositions, it conserves the stability with regard to light, temperature and oxidation. There is, however, a need to move away from using this gelling agent as it is of animal origin and is unacceptable in many countries.
- We have developed a vitamin composition which utilises a gelling agent which is not of animal origin and which provides a vitamin composition which is as stable as the gelatine-containing composition over the normal storage period.
- Accordingly, the present invention provides a particulate vitamin composition comprising (a) an oil of a vitamin or a vitamin derivative, (b) a gelling agent of vegetable origin, having a glass transition point greater than 20° C., and (c) a protein, except gelatine
- We have found that the vitamin composition of the present invention comprising a gelling agent of vegetable origin is as stable as the conventional gelatine-containing vitamin composition.
- The particulate composition of the present invention comprises an oil of a vitamin or a derivative thereof. For the purposes of the present invention, an oil of a vitamin may also include an oil containing one or more vitamin. Suitably, the vitamin is vitamin A, D3 or vitamin E. Preferably, the vitamin composition comprises vitamin A.
- The vitamin may be present in the particulate composition in an amount of from 1 to 50 weight %, preferably from 20 to 40 weight %.
- The particulate composition of the present invention comprises a gelling agent which is of vegetable origin. The gelling agent has a glass transition point greater than 20° C., preferably between 20 and 45° C. For the purposes of the present invention, a gelling agent is defined as a substance that binds the components of the composition together and may do so by integral mixing or by forming a coating or film around the resulting particle. Suitable gelling agents include agarose, carrageenan, a carrageenan-carob mixture, native or modified starch, native or modified cellulose, xanthan gum, arabic gum, acacia gum, gellan gum and guar gum. The preferred gelling agent is carrageenan, particularly kappa-carrageenan, modified starch and acacia gum. The gelling agent may be present in the composition in an amount of from 5 to 30 weight %, preferably from 10 to 20 weight %.
- The particulate composition of the present invention comprises a protein component. The protein may be any suitable protein except gelatine. In particular, the protein is any protein not of mammal tissue. Suitable proteins for use in the particulate composition of the present invention include vegetable proteins, for example potato protein; wheat gluten proteins; soya protein; milk proteins, for example lactoglobulin and casein; and fish proteins. The preferred protein is vegetable protein and milk protein, especially the milk protein, casein. The protein may be present in the particulate composition in an amount of from 2 to 40 weight %, preferably from 5 to 25 weight %.
- The particulate composition of the present invention may further comprise an inorganic carrier material. Preferably, the carrier material is insoluble in aqueous solution and has a pH greater than or equal to pH 7 in water. The carrier material is suitably a phosphate or carbonate salt. The preferred salts are Group II metal phosphates or carbonates, especially calcium and magnesium phosphates and carbonates. It is preferred that the composition comprise an inorganic carrier material. The inorganic carrier material may be present in an amount of from 0 to 60 weight %, preferably from 10 to 30 weight %.
- The particulate composition optionally may further comprise a sugar. Suitably, the sugar is a short chain sugar. Any suitable short chain sugar may be used, for example a reduced sugar or polyol: glycerol, sorbitol, maltitol, xylitol, Additionally sugars such as glucose, lactose, fructose, sucrose, mannose, maltose, saccharose may be used. Where a sugar is present, the preferred sugar is glucose or lactose. Alternatively, the composition may comprise a mixture of sugars or maltodextrines in dry form or in syrup form. It is preferred that the sugar mix has a Dextrose Equivalent (DE) of at least 15. The preferred sugar mix is glucose syrup. The sugar may be present in an amount of from 0 to 40 weight %, preferably from 10 to 30 weight %.
- The particulate composition may further comprise an antioxidant. Suitable antioxidants include 3-tertiary butyl-4-hydroxyanisole (BHA), 3,5-di-tertiary-4-hydroxytoluene (BHT), 6-ethoxy-1,2-dihydroxy-2,2,4-trimethylquinoline (ethoxyquine) and 2-tertiary-butyl-1,4-dihydroxybenzene. Preferably, the antioxidant is 3,5-di- tertiary-4-hydroxytoluene (BHT). The antioxidant may be present in the composition in an amount of from 0 to 15 weight %, preferably from 2 to 10 weight %.
- In some cases it may be desirous to include an anti-caking agent in the composition. Compounds suitable for use as an anti-caking agent include silica and magnesium stearate. Preferably, the anti-caking agent is silica. The coating agent may be present in an amount of from 0 to 3 weight %, preferably from 0.1 to 2 weight %, especially from 2 to 4 weight %.
- The particulate composition may also comprise a finite amount of water. Suitably, the water is present in an amount of less than 6 weight %, preferably less than 4 weight %.
- The particulate composition may be prepared by any suitable method known to the person skilled in the art. Suitable known methods of preparation include spray-drying as disclosed for, example, in European Patent No. 0258682 herein incorporated by reference, and impregnation as disclosed, for example, in European Patent No. 0261616 herein incorporated by reference. Alternatively, the particulate composition may be prepared by using a technique as disclosed in European Patent No 0618001, herein incorporated by reference, which involves the preparation of emulsions and is hereinafter referred to as the “double emulsion method”.
- In particular, where the gelling agent is agarose, carrageenan, a carrageenan-carob mixture, the preferred method of preparation is the double emulsion method wherein spherical droplets of vitamin are prepared by forming a primary oil-water emulsion dispersing the vitamin oil in water containing the gelling agent. The emulsion is combined with an water-immiscible solvent, for example an oil, to create a second emulsion oil-water-oil The emulsion is then cooled below the glass transition of the gelling agent to solidify the droplets and to obtain particles. A salt solution of potassium chloride may be added in the solvent after cooling. The spherical particles may then be separated by any suitable method. Thus, according to another aspect of the present invention, there is provided a process for the preparation of a vitamin composition as herein before defined which comprises (a) a first step of preparing an aqueous solution or suspension of the gelling agent, the protein, optionally the inorganic carrier and the sugar, (b) a second step of adding an oil solution of the vitamin and optionally the antioxidant to create an oil in water emulsion, (c) a third step of adding the oil in water emulsion to a vegetable oil to create an oil-water-oil emulsion, (d) a fourth step of cooling said oil-water-oil emulsion to solidify the particles; and (e) a fifth step of recovering and drying the particles characterised in that the gelling agent is agarose, carrageenan, or a carrageenan-carob mixture.
- Where the gelling agent is cellulose, starch or a gum, the preferred method of preparation is the spray drying method wherein an aqueous suspension of the gelling agent is prepared with the optional components such as the inorganic carrier and sugar. The vitamin and optional antioxidant are then added to the aqueous suspension to create an emulsion. The resulting emulsion is subjected to high pressure to reduce the droplet size. The resulting droplets are then atomised using a suitable device such as a nozzle or rotating wheel. The resulting particles are then dried. Thus, according to another aspect of the present invention, there is provided a process for the preparation of a vitamin composition as herein before defined which comprises (a) a first step of preparing an aqueous solution or suspension of a gelling agent, a protein, optionally in the presence of an inorganic carrier and the sugar, (b) a second step of adding an oil solution of a vitamin optionally in the presence of an antioxidant to create an oil in water emulsion, (c) a third step of subjecting the emulsion to high pressure, (d) a fourth step of atomising said emulsion, thereby creating droplets and (e) a fifth step of drying said droplets to produce particles characterised in that the gelling agent is modified or native starch, modified or native cellulose, xantham gum, arabic gum, acacia gum gellan gum or guar gum.
- The resulting particles suitably have a size of from 50 to 800 microns, preferably from 300 to 500 microns
- The present invention will now be described in more detail with reference to the following examples:
- Examples 1 to 10 illustrate the preparation of a vitamin composition according to the present invention using the double emulsion method of preparation. Examples 11 to 14 illustrate the preparation of a vitamin composition according to the present invention using the spray drying method of preparation.
- General Methods of Preparation:
- (1) Double Emulsion Method
- Step (1): In a first reactor, the gelling agent was dissolved in water and, where appropriate, the inorganic carrier and/or the sugar was mixed with stirring at a speed of 2 to 3 meters per second for at least twenty minutes at a temperature of 75° C. The protein was then added to complete the aqueous suspension. After twenty minutes, the temperature was decreased to 60° C.
- Step (2): In a second reactor, the vitamin was mixed with the antioxidant for ten minutes to provide an oily liquid.
- Step (3): The oily liquid obtained in step (2) was then added with stirring to the aqueous suspension prepared in step (1). Stirring was continued for 10 minutes whilst maintaining a temperature of 60° C. to obtain a first emulsion of oil droplets in water.
- Step (4): The emulsion obtained in step (3) was then added to an a oil to provide an oil/water/oil emulsion.
- Step (5): The temperature of the mixture was then reduced to 20° C. to solidify the particles. The cooled mixture was then filtered and the solid optionally washed twice with potassium chloride. The solid was further washed with n-hexane or iso-hexane to remove excess oil. The resulting particles were then dried in a fluidised bed.
- (2) Spray Drying Method
- The particulate composition of the present invention was prepared using the following procedure.
- Step (1): In a first reactor, the gelling agent was dissolved in water at a temperature comprised between 60° C. and 80° C. When it is appropriate, the inorganic carrier and/or the sugar was added. The protein was then added to complete the aqueous suspension. The temperature was decreased to 60° C.
- Step (2): In a second reactor, the vitamin was mixed with the antioxidant for ten minutes to provide an oily liquid.
- Step (3): The oily liquid obtained in step (2) was then added with stirring to the aqueous suspension prepared in step (1) to ensure the formation of a coarse emulsion of oil droplets in water.
- Step (4): The size of the emulsion was then reduced in a high-pressure homogeniser by applying a high-pressure or by recycling the slurry several times at a lower pressure.
- Step (5): The fine emulsion was atomised through a nozzle or through a rotating wheel. The fine particles obtained were rapidly dried in the hot spray chamber. The gas used is nitrogen and the temperature of this gas must not exceed 160° C.
- A particulate vitamin composition was prepared according to the double emulsion preparative method described above using the following components:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 casein 1.92 10.00 20 CaCO3 9.62 50.00 100 Water 80.77 0.00 840 Vitamin A 4.04 21.00 42 BHT 0.96 5.00 10 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.5 liter of rapeseed oil
- 600 ml of n-hexane
- The particle size of the granules obtained ranged from 50 to 800 microns with 30% in the range from 315 to 500 microns. The calculated amount vitamin in the particles which comprise in fact 1.2% water was determined to be 521,700 IU vitamin/g of particles.
- The actual amount of vitamin was determined by standard spectrophotometric means.
- The measured amount of vitamin was 551,000 IU vitamin/g of particles. The amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 530,000 IU vitamin/g of particles equating to 96% stability. The sample was included in a vitamin aggressive premix and stored for four weeks at 20° C. and 82% relative humidity. 41% of the vitamin remained under these extremes conditions showing that the composition exhibits good stability.
- The procedure of Example 1 was repeated increasing the amount of vitamin and without any inorganic carrier. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.00 10.00 20 casein 8.00 40.00 80 water 80.00 0.00 800 Vitamin A 8.00 40.00 80 BHT 2.00 10.00 20 TOTAL 100 100 1000 - The following quantities were used in the washing process:
- 1.5 liter of rapeseed oil 900 ml of n-hexane
- The particle size of the granules obtained ranged from 100 to 1000 microns with 30% in the range from 315 to 630 microns.
- The calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 950,000 IU vitamin/g of particles. The measured amount of vitamin was 834,000 IU vitamin/g of particles. The amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 800,000 IU vitamin/g of particles equating to 96% stability.
- The procedure of Example 1 was repeated reducing inorganic carrier and including maltitol. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.62 13.02 28 Maltitol 5.61 20.93 60 (containing 25% of water) Casein 2.24 11.16 24 CaCO3 5.61 27.91 60 Water 78.50 00.00 840 Vitamin A 4.30 21.40 46 BHT 1.12 5.58 12 TOTAL 100 100 1070 - The following quantities were used in the washing process:
- 1.55 liters of rape seed oil
- 600 ml of n-hexane
- The particle size of the granules obtained ranged from 50 to 800 microns with 30% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 2.6% water was determined to be 528,300 IU vitamin/g of particles. The measured amount of vitamin was 514,170 IU vitamin/g of particles. The amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere, was 515,400 IU vitamin/g of particles equating to 100% stability.
- The procedure of Example 3 was repeated replacing the maltitol with sorbitol. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 13.40 28 Sorbitol 6.73 23.44 70 (containing 30% of water) Casein 2.50 12.44 26 CaCO3 4.62 22.97 48 water 77.88 0 810 Vitamin A 4.42 22.01 46 BHT 1.15 5.74 12 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.51 liters of rape seed oil
- 300 ml of isohexane
- The particle size of the granules obtained ranged from 50 to 800 microns with approximately 30% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 2.6% water was determined to be 543,270 IU vitamin/g of particles. The measured amount of vitamin was 585,360 IU vitamin/g of particles. The amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 573,650 IU vitamin/g of particles equating to 98% stability.
- The procedure of Example 3 was repeated replacing maltitol with a glucose syrup. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 12.84 28 Glucose syrup 5.77 22.02 60 DE: 58-63 (containing 20% of water) Casein 2.31 11.01 24 CaCO3 5.77 27.52 60 water 77.88 0 810 Vitamin A 4.42 22.10 46 BHT 1.15 5.50 12 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.51 liters of rape seed oil
- 600 ml of isohexane
- The particle size of the granules obtained ranged from 50 to 800 microns with approximately 30% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 508,150 IU vitamin/g of particles. The measured amount of vitamin was 515,900 IU vitamin/g of particles. The amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 518,990 IU vitamin/g of particles equating to 100% stability.
- The procedure of Example 3 was repeated replacing maltitol with maltodextrine. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.31 12 24 maltodextrine 5.19 27 54 DE: 15-18 casein 2.12 11 22 CaCO3 4.81 25 50 water 80.77 0 840 Vitamin A 3.85 20 40 BHT 0.96 5 10 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.5 liters of rape seed oil
- 600 ml of isohexane
- The particle size of the granules obtained ranged from 50 to 800 microns with approximately 20% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 5.5% water was determined to be 479,000 IU vitamin/g of particles. The measured amount of vitamin was 489,700 IU vitamin/g of particles. The amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 485,800 UI vitamin/g of particles, equating to 100% stability.
- The procedure of Example 1 was repeated but using powdered dried skimmed milk which brings the proteins (caseine ans lactoglobuline), the sugar (lactose) and a part of the inorganic carrier (phosphate salts). The dried milk was in water at 75° C. The carrageenan was added to the milk solution, stirring at a speed of 2 meters per second. The remaining preparation was the same as in example 1. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 Powered dried 9.62 50.00 100 skimmed milk CaCO3 1.92 10.00 20 Water 80.77 0.00 840 Vitamin A 4.04 21.00 42 BHT 0.96 5.00 10 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.5 liters of rape seed oil
- 600 ml of isohexane
- The particle size of the granules obtained ranged from 50 to 800 microns with approximately 20% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 503,000 IU vitamin/g of particles. The measured amount of vitamin was 508,800 IU vitamin/g of particles. The amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 508,000 UI vitamin/g of particles, equating to 100% stability.
- The procedure of Example 7 was repeated without calcium carbonate. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 Powered dried 11.54 60.00 120 skimmed milk Water 80.77 0.00 840 Vitamin A 4.04 21.00 42 BHT 0.96 5.00 10 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.5 liters of rape seed oil
- 600 ml of isohexane
- The particle size of the granules obtained ranged from 50 to 800 microns with approximately 40% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 4.3% water was determined to be 507,800 IU vitamin/g of particles. The measured amount of vitamin was 535,400 IU vitamin/g of particles. The amount of vitamin, determined after four weeks of storage at 40° C. in a dry atmosphere was 492,600 UI vitamin/g of particles, equating to 92% stability.
- The particulate composition was incorporated into a aggressive premix and stored at 20° C. and 82% relative humidity for 4 weeks. The amount of vitamin determined after this period was 64%, indicating that the composition was very stable under these under extreme conditions.
- The procedure of Example 7 was repeated increasing the amount of vitamin and without calcium carbonate. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.00 10.00 20 Powered dried 8.00 40.00 80 skimmed milk Water 80.00 0.00 800 Vitamin A 8.00 40.00 80 BHT 2.00 10.00 20 TOTAL 100 100 1000 - The following quantities were used in the washing process:
- 1.5 liters of rape seed oil
- 600 ml of isohexane
- The particle size of the granules obtained ranged from 100 to 1000 microns with 50% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 950,000 IU vitamin/g of particles. The measured amount of vitamin was 850,000 IU vitamin/g of particles.
- The amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 825,000 IU vitamin/g of particles equating to 97% stability.
- The procedure of Example 1 was repeated replacing the casein protein with a potato protein. The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) carrageenan 2.69 14.00 28 glycerol 1.44 7.50 15 potato protein 0.67 3.50 7 CaCO3 9.13 47.50 95 water 80.77 0.00 840 Vitamin A 4.23 22.00 44 BHT 1.06 5.50 11 TOTAL 100 100 1040 - The following quantities were used in the washing process:
- 1.5 liters of rape seed oil
- 4 liters of 0.3M potassium chloride
- 600 ml of isohexane
- The particle size of the granules obtained ranged from 50 to 800 microns with 25% in the range from 160 to 500 microns.
- The calculated amount vitamin in the particles which comprise in fact 2% water was determined to be 546,500 IU vitamin/g of particles. The measured amount of vitamin was 560,650 IU vitamin/g of particles. The amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 505,000 IU vitamin/g of particles equating to 90% stability.
- A particulate vitamin composition was prepared according to the spray drying preparative method described above, using the following components:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) Modified starch 8.00 20.00 80 Powdered dried 22.00 55.00 220 skimmed milk water 60.00 0.00 600 Vitamin A 8.00 20.00 80 BHT 2.00 5.00 20 TOTAL 100 100 1000 - The calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 475,000 IU vitamin/g of particles. The measured amount of vitamin was 449,600 IU vitamin/g of particles. The amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 452,230 IU vitamin/g of particles equating to 100% stability.
- The procedure of Example 11 was repeated using acacia gum as the gelling agent:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) Acacia gum 5.00 20.00 50 Powdered dried 25.00 55.00 250 skimmed milk water 60.00 0.00 600 Vitamin A 8.00 20.00 80 BHT 2.00 5.00 20 TOTAL 100 100 1000 - The calculated amount vitamin in the particles which comprise in fact 5% water was determined to be 475,000 IU vitamin/g of particles. The measured amount of vitamin was 454,800 IU vitamin/g of particles. The amount of vitamin was determined after four weeks of storage at 40° C. in a dry atmosphere. The result was 445,200 IU vitamin/g of particles equating to 98% stability.
- The following amounts were used:
THEORETICAL EMULSION DRY CONCEN- CONCEN- WEIGHT COMPONENT TRATION (%) TRATION (%) (grams) Acacia gum 2.7 14.3 20 Sodium 6.8 35.7 50 caseinate water 81 0.00 600 Vitamin A 7.6 40.00 56 BHT 1.9 10.00 14 TOTAL 100 100 740 - The calculated amount vitamin in the particles which comprise in fact 4% water was determined to be 1,008,000 IU vitamin/g of particles. The measured amount of vitamin was 1,050,000 IU vitamin/g of particles.
Claims (14)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/584,586 US7687068B2 (en) | 1999-12-23 | 2006-10-23 | Particulate vitamin composition |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP99125694.2 | 1999-12-23 | ||
EP99125694 | 1999-12-23 | ||
PCT/EP2000/013385 WO2001047560A2 (en) | 1999-12-23 | 2000-12-19 | Particulate vitamin composition |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/584,586 Continuation US7687068B2 (en) | 1999-12-23 | 2006-10-23 | Particulate vitamin composition |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030068407A1 true US20030068407A1 (en) | 2003-04-10 |
Family
ID=8239695
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/168,317 Abandoned US20030068407A1 (en) | 1999-12-23 | 2000-12-19 | Particulate vitamin composition |
US11/584,586 Expired - Fee Related US7687068B2 (en) | 1999-12-23 | 2006-10-23 | Particulate vitamin composition |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/584,586 Expired - Fee Related US7687068B2 (en) | 1999-12-23 | 2006-10-23 | Particulate vitamin composition |
Country Status (13)
Country | Link |
---|---|
US (2) | US20030068407A1 (en) |
EP (1) | EP1244472B1 (en) |
JP (1) | JP2003518509A (en) |
KR (1) | KR100695646B1 (en) |
CN (1) | CN1240438C (en) |
AT (1) | ATE297223T1 (en) |
AU (1) | AU781262B2 (en) |
CA (1) | CA2384885C (en) |
DE (1) | DE60020738T2 (en) |
DK (1) | DK1244472T3 (en) |
ES (1) | ES2242657T3 (en) |
PT (1) | PT1244472E (en) |
WO (1) | WO2001047560A2 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050147659A1 (en) * | 2001-12-19 | 2005-07-07 | Fabio Carli | Pharmaceutical composition comprising an oil/water/oil double microemulsion incorporated into a solid support |
US20080102131A1 (en) * | 2006-10-31 | 2008-05-01 | Kaneka Corporation | Particulate composition comprising bioactive substance and method of producing the same |
US20090004347A1 (en) * | 2005-03-04 | 2009-01-01 | Bengt Herslof | Foodstuff Particulate Lipid Composition |
US20090220576A1 (en) * | 2006-01-25 | 2009-09-03 | Probio Nutraceuticals As | Emulsion |
US20110039002A1 (en) * | 2008-01-18 | 2011-02-17 | Daniel Verkoeijen | Spray-dried emulsion |
EP2210593A3 (en) * | 2009-01-21 | 2011-05-18 | DSM IP Assets B.V. | Tablettable formulations of vitamin A and derivatives thereof |
US9724296B2 (en) | 2008-10-08 | 2017-08-08 | Vitux Group As | Chewable gelled emulsions |
US11510877B2 (en) | 2017-10-10 | 2022-11-29 | Capsugel Belgium Nv | Gelling multiparticulates |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8017152B2 (en) | 2005-05-27 | 2011-09-13 | Stratosphere Pharma Ab | Cores and microcapsules suitable for parenteral administration as well as process for their manufacture |
DE102006055210A1 (en) * | 2006-11-21 | 2008-05-29 | Ionescu, John G., Dr. | Dietary food with increased free radical binding effect |
FR2918903B1 (en) * | 2007-07-19 | 2012-08-10 | Nadege Hodor | "MULTIPLE NATURAL EMULSIONS" |
FR2942585B1 (en) * | 2009-03-02 | 2011-04-29 | Roquette Freres | GRANULATED POWDER CONTAINING PLANT PROTEINS AND FIBERS, PROCESS FOR OBTAINING THEM AND USES THEREOF |
BE1019709A3 (en) * | 2010-12-22 | 2012-10-02 | Calxx Laboratoires S A | ORGANO-MINERAL FOOD PRODUCT AND PROCESS FOR PREPARATION |
FR3005863B1 (en) * | 2013-05-21 | 2015-08-21 | Adisseo France Sas | PROCESS FOR PREPARING AN EMULSION OF AN ACTIVE INGREDIENT AND PARTICLES OBTAINED THEREFROM |
WO2017112763A1 (en) * | 2015-12-22 | 2017-06-29 | Mccormick & Company, Incorporated | High integrity encapsulation product |
CN108777984A (en) * | 2016-03-30 | 2018-11-09 | 理研维他命株式会社 | Particle containing carotenoid |
CN106902100B (en) * | 2017-03-28 | 2019-11-15 | 深圳万和制药有限公司 | VitaminAD pellet and compound amino acid capsule composition comprising it |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5853761A (en) * | 1995-02-13 | 1998-12-29 | Fujisawa Pharmaceutical Co., Ltd. | Stabilizing agent for oleaginous, physiologically active substances |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CA1335748C (en) | 1986-09-25 | 1995-05-30 | Jeffrey Lawrence Finnan | Crosslinked gelatins |
DE3770940D1 (en) * | 1987-04-06 | 1991-07-25 | Hoffmann La Roche | METHOD FOR THE PRODUCTION OF VITAMIN PREPARATIONS. |
JPH02237927A (en) * | 1989-03-10 | 1990-09-20 | Toyo Jozo Co Ltd | Stable active type vitamin d composition and production thereof |
JPH03161448A (en) * | 1989-11-20 | 1991-07-11 | Asahi Chem Ind Co Ltd | Composition containing oil and fat |
JPH04262762A (en) * | 1991-02-18 | 1992-09-18 | Terumo Corp | Food composition, food for preventing hyperphagia and production of food composition |
JPH05111366A (en) * | 1991-10-24 | 1993-05-07 | Ina Shokuhin Kogyo Kk | Nutrient-controlled food |
JPH05186331A (en) * | 1992-01-10 | 1993-07-27 | Asahi Chem Ind Co Ltd | Oral enteric medicine for promoting nutrition |
JPH05252901A (en) * | 1992-03-09 | 1993-10-05 | Yamanouchi Pharmaceut Co Ltd | Food additive for supplementing vitamin d |
FR2703263B1 (en) | 1993-03-31 | 1995-05-19 | Rhone Poulenc Nutrition Animal | Process for the preparation of spherules of active principles. |
JPH09132775A (en) * | 1995-02-13 | 1997-05-20 | Kiteii:Kk | Stabilizing agent for oily physiologically active substance |
JPH08259461A (en) * | 1995-03-24 | 1996-10-08 | Snow Brand Milk Prod Co Ltd | Lipometabolism improver |
US5767107A (en) * | 1996-09-03 | 1998-06-16 | Basf Corporation | Compositions containing gluten and polysaccharides that contain uronic acid residues useful for encapsulating fats, oils and solids |
DE19642359A1 (en) * | 1996-10-14 | 1998-04-16 | Basf Ag | Stable emulsions and dry powder from mixtures of fat-soluble vitamins, their production and use |
JPH10273442A (en) * | 1997-03-31 | 1998-10-13 | Snow Brand Milk Prod Co Ltd | Bone metabolic improvement drug and nutritive composition |
SK139999A3 (en) * | 1997-04-11 | 2000-05-16 | Calgene Llc | A nucleic acids construct, isolated nucleotide sequence, recombinant plant cell, method of biosynthesis of polyunsaturated long chain fatty acids, pharmaceutical, food and cosmetic preparation and use thereof |
JP4027535B2 (en) * | 1998-05-26 | 2007-12-26 | エーザイ・アール・アンド・ディー・マネジメント株式会社 | Powder containing fat-soluble drug |
-
2000
- 2000-12-19 AT AT00988814T patent/ATE297223T1/en active
- 2000-12-19 AU AU25126/01A patent/AU781262B2/en not_active Ceased
- 2000-12-19 CA CA002384885A patent/CA2384885C/en not_active Expired - Lifetime
- 2000-12-19 DK DK00988814T patent/DK1244472T3/en active
- 2000-12-19 JP JP2001548148A patent/JP2003518509A/en active Pending
- 2000-12-19 CN CNB008159637A patent/CN1240438C/en not_active Expired - Fee Related
- 2000-12-19 EP EP00988814A patent/EP1244472B1/en not_active Expired - Lifetime
- 2000-12-19 PT PT00988814T patent/PT1244472E/en unknown
- 2000-12-19 ES ES00988814T patent/ES2242657T3/en not_active Expired - Lifetime
- 2000-12-19 WO PCT/EP2000/013385 patent/WO2001047560A2/en active IP Right Grant
- 2000-12-19 KR KR1020027005647A patent/KR100695646B1/en not_active Expired - Fee Related
- 2000-12-19 US US10/168,317 patent/US20030068407A1/en not_active Abandoned
- 2000-12-19 DE DE60020738T patent/DE60020738T2/en not_active Expired - Lifetime
-
2006
- 2006-10-23 US US11/584,586 patent/US7687068B2/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5853761A (en) * | 1995-02-13 | 1998-12-29 | Fujisawa Pharmaceutical Co., Ltd. | Stabilizing agent for oleaginous, physiologically active substances |
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050147659A1 (en) * | 2001-12-19 | 2005-07-07 | Fabio Carli | Pharmaceutical composition comprising an oil/water/oil double microemulsion incorporated into a solid support |
US20090004347A1 (en) * | 2005-03-04 | 2009-01-01 | Bengt Herslof | Foodstuff Particulate Lipid Composition |
US10383818B2 (en) | 2006-01-25 | 2019-08-20 | Vitux Group As | Emulsion |
US20090220576A1 (en) * | 2006-01-25 | 2009-09-03 | Probio Nutraceuticals As | Emulsion |
US20090238866A1 (en) * | 2006-01-25 | 2009-09-24 | Probio Nutraceuticals As | Chewable capsules |
US9539205B2 (en) | 2006-01-25 | 2017-01-10 | Ayanda Group As | Emulsion |
US11123288B2 (en) | 2006-01-25 | 2021-09-21 | Vitux Group As | Emulsion |
US20080102131A1 (en) * | 2006-10-31 | 2008-05-01 | Kaneka Corporation | Particulate composition comprising bioactive substance and method of producing the same |
US20110039002A1 (en) * | 2008-01-18 | 2011-02-17 | Daniel Verkoeijen | Spray-dried emulsion |
US9724296B2 (en) | 2008-10-08 | 2017-08-08 | Vitux Group As | Chewable gelled emulsions |
US10668013B2 (en) | 2008-10-08 | 2020-06-02 | Vitux Group As | Chewable gelled emulsions |
EP2210593A3 (en) * | 2009-01-21 | 2011-05-18 | DSM IP Assets B.V. | Tablettable formulations of vitamin A and derivatives thereof |
US11510877B2 (en) | 2017-10-10 | 2022-11-29 | Capsugel Belgium Nv | Gelling multiparticulates |
US12036322B2 (en) | 2017-10-10 | 2024-07-16 | Capsugel Belgium Nv | Gelling multiparticulates |
Also Published As
Publication number | Publication date |
---|---|
ATE297223T1 (en) | 2005-06-15 |
PT1244472E (en) | 2005-09-30 |
KR100695646B1 (en) | 2007-03-15 |
CA2384885C (en) | 2008-04-01 |
ES2242657T3 (en) | 2005-11-16 |
WO2001047560A3 (en) | 2002-01-17 |
AU2512601A (en) | 2001-07-09 |
CN1240438C (en) | 2006-02-08 |
CN1391485A (en) | 2003-01-15 |
WO2001047560A2 (en) | 2001-07-05 |
KR20020059668A (en) | 2002-07-13 |
AU781262B2 (en) | 2005-05-12 |
DK1244472T3 (en) | 2005-10-03 |
US20070036868A1 (en) | 2007-02-15 |
JP2003518509A (en) | 2003-06-10 |
EP1244472B1 (en) | 2005-06-08 |
CA2384885A1 (en) | 2001-07-05 |
US7687068B2 (en) | 2010-03-30 |
EP1244472A2 (en) | 2002-10-02 |
DE60020738D1 (en) | 2005-07-14 |
DE60020738T2 (en) | 2006-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7687068B2 (en) | Particulate vitamin composition | |
JP4571736B2 (en) | Stable powdered vitamin and / or carotenoid products and process for producing the same | |
EP0498824B2 (en) | Process of preparing a water dispersible hydrophobic or aerophilic solid | |
EP0565989B1 (en) | Preparations of fat-soluble substances | |
US5356636A (en) | Stable vitamin and/or carotenoid products in powder form, and the preparation thereof | |
US20080275124A1 (en) | Powder of amino acids and method for producing the same | |
EP0982038B1 (en) | Stable powdery vitamin and carotenoide containing compositions and process to prepare them | |
JP3914619B2 (en) | Stable emulsions and dry powders of fat-soluble vitamin mixtures, their production, their use and foodstuffs, pharmaceuticals or animal feeds containing them | |
EP1465637A1 (en) | 25-hydroxy vitamin d3 compositions | |
NO891989L (en) | ABSORBING SILICA, ITS MANUFACTURING AND USE. | |
CN109418541B (en) | Preparation method of hydrophobic fat-soluble vitamin microcapsule | |
JP4109804B2 (en) | Method for producing flavor oil-containing microcapsules | |
EP0658313B1 (en) | Method for preparing high-drug-content mixtures suitable for uniform distribution in feeds | |
EP0841010B1 (en) | Stable compositions dispersible in cold water | |
EP1746155A1 (en) | Method for the production of oily suspensions of water-soluble enzymes | |
JP3325116B2 (en) | Bitterness reducing agent, method for producing the same, method for reducing bitterness, and composition for reducing bitterness | |
WO2001091576A1 (en) | Granular vitamin composition | |
JP2004075600A (en) | Granulated powder containing vitamin e, and method for producing the powder | |
JPH11106333A (en) | Method for producing powder containing fat-soluble vitamin and / or carotenoid | |
JP2003104872A (en) | Method for producing granules containing fat-soluble vitamins | |
JPH1112165A (en) | Method for producing powder containing fat-soluble vitamin and / or carotenoid |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: AVENTIS ANIMAL NUTITION S.A., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHIAVZZA, VERONIQUE;STATIOTIS, ERACLIS;REEL/FRAME:013214/0051 Effective date: 20020521 |
|
AS | Assignment |
Owner name: ADISSEO FRANCE S.A.S., FRANCE Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:AVENTIS ANIMAL NUTRITION S.A.;REEL/FRAME:016087/0103 Effective date: 20020215 |
|
AS | Assignment |
Owner name: J.P. MORGAN EUROPE LIMITED, UNITED KINGDOM Free format text: PLEDGE AGREEMENT;ASSIGNOR:ADISSEO FRANCE SAS;REEL/FRAME:016800/0764 Effective date: 20050607 |
|
AS | Assignment |
Owner name: ADISSEO FRANCE SAS, FRANCE Free format text: RELEASE OF PLEDGE AGREEMENT;ASSIGNOR:J.P. MORGAN EUROPE LIMITED;REEL/FRAME:017422/0795 Effective date: 20060208 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |