US20030066988A1 - Malononitrile-derivative anion salts, and their uses as ionic conducting materials - Google Patents
Malononitrile-derivative anion salts, and their uses as ionic conducting materials Download PDFInfo
- Publication number
- US20030066988A1 US20030066988A1 US10/253,970 US25397002A US2003066988A1 US 20030066988 A1 US20030066988 A1 US 20030066988A1 US 25397002 A US25397002 A US 25397002A US 2003066988 A1 US2003066988 A1 US 2003066988A1
- Authority
- US
- United States
- Prior art keywords
- group
- cation
- radicals
- radical
- alkyl
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- MFRSFTUZMVHKGN-UHFFFAOYSA-N C.C.CC1(C)C2CCC1(CS(=O)(=O)[C-](C#N)C#N)C(=O)C2.[C-]#[N+][C-]1([N+]#[C-])SOOC1C12CCC(CC1=O)C2(C)C Chemical compound C.C.CC1(C)C2CCC1(CS(=O)(=O)[C-](C#N)C#N)C(=O)C2.[C-]#[N+][C-]1([N+]#[C-])SOOC1C12CCC(CC1=O)C2(C)C MFRSFTUZMVHKGN-UHFFFAOYSA-N 0.000 description 1
- PUETXVWIFZDDBE-UHFFFAOYSA-N C.COO.Cc1ccc(C=O)cc1.Cc1ccccc1 Chemical compound C.COO.Cc1ccc(C=O)cc1.Cc1ccccc1 PUETXVWIFZDDBE-UHFFFAOYSA-N 0.000 description 1
- KKWKUJVCRLAHNA-UHFFFAOYSA-N C.C[K+].[H]N1C(C)=CC(CC(=O)[C-](C#N)C#N)=C1C Chemical compound C.C[K+].[H]N1C(C)=CC(CC(=O)[C-](C#N)C#N)=C1C KKWKUJVCRLAHNA-UHFFFAOYSA-N 0.000 description 1
- ZZCIPSJMLKDJDV-UHFFFAOYSA-N C.[C-]#[N+]C([N+]#[C-])C(=O)C12CCC(CC1=O)C2(C)C Chemical compound C.[C-]#[N+]C([N+]#[C-])C(=O)C12CCC(CC1=O)C2(C)C ZZCIPSJMLKDJDV-UHFFFAOYSA-N 0.000 description 1
- GFQRPPJCAIFLTG-UHFFFAOYSA-N C1=CCC=C1.C=CC(C)=O.CC(=O)C1CC2C=CC1C2.CC(=O)C1CC2C=CC1C2.ClCCl Chemical compound C1=CCC=C1.C=CC(C)=O.CC(=O)C1CC2C=CC1C2.CC(=O)C1CC2C=CC1C2.ClCCl GFQRPPJCAIFLTG-UHFFFAOYSA-N 0.000 description 1
- UARGYYBEMJPUGR-UHFFFAOYSA-N C1=CNC=N1.[C-]#[N+]C(C#N)C#N Chemical compound C1=CNC=N1.[C-]#[N+]C(C#N)C#N UARGYYBEMJPUGR-UHFFFAOYSA-N 0.000 description 1
- CMBJUFHCGBUQAE-UHFFFAOYSA-N C=CCS(=O)(=O)[C-](C#N)C#N.[K+] Chemical compound C=CCS(=O)(=O)[C-](C#N)C#N.[K+] CMBJUFHCGBUQAE-UHFFFAOYSA-N 0.000 description 1
- XYAWDJXVCDQAAD-UHFFFAOYSA-N C=Cc1ccc(S(=O)(=O)[C-](C#N)C#N)cc1.[Li+] Chemical compound C=Cc1ccc(S(=O)(=O)[C-](C#N)C#N)cc1.[Li+] XYAWDJXVCDQAAD-UHFFFAOYSA-N 0.000 description 1
- YDBWVVXBBPRUSO-ITTKMUPFSA-O CC(=O)C(C)(C)C(CC(=O)c1ccccc1)c1ccccc1.CC(C)=C(C)C.O=C(/C=C/c1ccccc1)c1ccccc1.[H+] Chemical compound CC(=O)C(C)(C)C(CC(=O)c1ccccc1)c1ccccc1.CC(C)=C(C)C.O=C(/C=C/c1ccccc1)c1ccccc1.[H+] YDBWVVXBBPRUSO-ITTKMUPFSA-O 0.000 description 1
- QGUKTOXGYYXJFB-UHFFFAOYSA-N CC(=O)C(C)(C)C(O)c1ccccc1.COC(O[SiH2]C)=C(C)C.O=CC1=CC=CC=C1 Chemical compound CC(=O)C(C)(C)C(O)c1ccccc1.COC(O[SiH2]C)=C(C)C.O=CC1=CC=CC=C1 QGUKTOXGYYXJFB-UHFFFAOYSA-N 0.000 description 1
- RTGOSNYUTXHNHO-UHFFFAOYSA-N CC(C#N)S(C(C#N)C#N)(=O)=O Chemical compound CC(C#N)S(C(C#N)C#N)(=O)=O RTGOSNYUTXHNHO-UHFFFAOYSA-N 0.000 description 1
- FEXPAJSNUASWDX-UHFFFAOYSA-N CC(C)(C(c1ccccc1)O)C(OC)=O Chemical compound CC(C)(C(c1ccccc1)O)C(OC)=O FEXPAJSNUASWDX-UHFFFAOYSA-N 0.000 description 1
- KOBAEHAXAAZSKJ-UHFFFAOYSA-P CC(C)(N=NC(C)(C)C(=N)[NH3+])C(=N)[NH3+].CCCCN(CCCC)SOOC(C#N)C#N Chemical compound CC(C)(N=NC(C)(C)C(=N)[NH3+])C(=N)[NH3+].CCCCN(CCCC)SOOC(C#N)C#N KOBAEHAXAAZSKJ-UHFFFAOYSA-P 0.000 description 1
- GLEVLJDDWXEYCO-UHFFFAOYSA-N CC1=C(C)C2=C(CCC(C)(C(=O)O)O2)C(C)=C1O Chemical compound CC1=C(C)C2=C(CCC(C)(C(=O)O)O2)C(C)=C1O GLEVLJDDWXEYCO-UHFFFAOYSA-N 0.000 description 1
- HDFQQMXMELJQCC-UHFFFAOYSA-N CC1=NN=C(SOOC(C#N)C#N)S1.[LiH] Chemical compound CC1=NN=C(SOOC(C#N)C#N)S1.[LiH] HDFQQMXMELJQCC-UHFFFAOYSA-N 0.000 description 1
- 0 CCC(CC(C)C#N)c1ccc2(cc1)[C-](C#N)(C#N)S2(=O)=O.[Li+] Chemical compound CCC(CC(C)C#N)c1ccc2(cc1)[C-](C#N)(C#N)S2(=O)=O.[Li+] 0.000 description 1
- CAFOSXLDLCIQPH-UHFFFAOYSA-N CCCCC(CC)CN(CC(CC)CCCC)SOOC(C#N)C#N.CCCCN(CCCC)SOOC(C#N)C#N.[LiH].[LiH] Chemical compound CCCCC(CC)CN(CC(CC)CCCC)SOOC(C#N)C#N.CCCCN(CCCC)SOOC(C#N)C#N.[LiH].[LiH] CAFOSXLDLCIQPH-UHFFFAOYSA-N 0.000 description 1
- XCVLHONYEAHGTC-UHFFFAOYSA-N CCCCC(CC)CN(CC(CC)CCCC)SOOC(C#N)C#N.CCCCN(CCCC)SOOC(C#N)C#N.[N-]=[OH+].[N-]=[OH+] Chemical compound CCCCC(CC)CN(CC(CC)CCCC)SOOC(C#N)C#N.CCCCN(CCCC)SOOC(C#N)C#N.[N-]=[OH+].[N-]=[OH+] XCVLHONYEAHGTC-UHFFFAOYSA-N 0.000 description 1
- PUJBDVUJOYQNOV-UHFFFAOYSA-N CCCCC(CC)CN(CC(CC)CCCC)SOOC(C#N)C#N.c1ccc([I+]c2ccccc2)cc1 Chemical compound CCCCC(CC)CN(CC(CC)CCCC)SOOC(C#N)C#N.c1ccc([I+]c2ccccc2)cc1 PUJBDVUJOYQNOV-UHFFFAOYSA-N 0.000 description 1
- LIVMKAMCUSERAR-UHFFFAOYSA-N CCCCCCCCCCCCN=O Chemical compound CCCCCCCCCCCCN=O LIVMKAMCUSERAR-UHFFFAOYSA-N 0.000 description 1
- GKGVXVYRUIDUHY-UHFFFAOYSA-N CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCCCSOOC(C#N)C#N.[LiH] Chemical compound CCCCCCCCCCCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCOCCCCSOOC(C#N)C#N.[LiH] GKGVXVYRUIDUHY-UHFFFAOYSA-N 0.000 description 1
- MZCLDBAYAZOLTI-UHFFFAOYSA-N CCCCCCCCCCCCS(=O)(=O)[C-](C#N)C#N.[K+] Chemical compound CCCCCCCCCCCCS(=O)(=O)[C-](C#N)C#N.[K+] MZCLDBAYAZOLTI-UHFFFAOYSA-N 0.000 description 1
- DVNHSDUDJPDESC-UHFFFAOYSA-N CCCCOc1ccc([I+]c2ccc(S(=O)(=O)[C-](C#N)C#N)cc2)cc1 Chemical compound CCCCOc1ccc([I+]c2ccc(S(=O)(=O)[C-](C#N)C#N)cc2)cc1 DVNHSDUDJPDESC-UHFFFAOYSA-N 0.000 description 1
- JFMNINZYXGWGTJ-UHFFFAOYSA-N CCN1C=CN(C)=C1.N#C[C-](C#N)S(=O)(=O)C(F)(F)F Chemical compound CCN1C=CN(C)=C1.N#C[C-](C#N)S(=O)(=O)C(F)(F)F JFMNINZYXGWGTJ-UHFFFAOYSA-N 0.000 description 1
- AQEZACYGTAELLC-UHFFFAOYSA-N CCO[Si](CCS(=O)(=O)[C-](C#N)C#N)(OCC)OCC.[K+] Chemical compound CCO[Si](CCS(=O)(=O)[C-](C#N)C#N)(OCC)OCC.[K+] AQEZACYGTAELLC-UHFFFAOYSA-N 0.000 description 1
- PFLKSBZFBGQBDJ-UHFFFAOYSA-N COCC(=O)[C-](C#N)C#N.[K+] Chemical compound COCC(=O)[C-](C#N)C#N.[K+] PFLKSBZFBGQBDJ-UHFFFAOYSA-N 0.000 description 1
- RAWWXZDXLVMTTQ-UHFFFAOYSA-N CO[Si](C)(C)O[Si](C)(C)CCS(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.[Li+] Chemical compound CO[Si](C)(C)O[Si](C)(C)CCS(=O)(=O)[N-]S(=O)(=O)C(F)(F)F.[Li+] RAWWXZDXLVMTTQ-UHFFFAOYSA-N 0.000 description 1
- DDAZTJJAPLZYSH-UHFFFAOYSA-N F.N#C[C-](C#N)c1c([N+](=O)[O-])cc([N+](=O)[O-])cc1C(F)(F)F.N#C[C-](C#N)c1ccncc1.[K+].[K+] Chemical compound F.N#C[C-](C#N)c1c([N+](=O)[O-])cc([N+](=O)[O-])cc1C(F)(F)F.N#C[C-](C#N)c1ccncc1.[K+].[K+] DDAZTJJAPLZYSH-UHFFFAOYSA-N 0.000 description 1
- QYCBSVOBKHPZAA-UHFFFAOYSA-N N#C[C-](C#N)S(=O)(=O)CC1CO1.[K+] Chemical compound N#C[C-](C#N)S(=O)(=O)CC1CO1.[K+] QYCBSVOBKHPZAA-UHFFFAOYSA-N 0.000 description 1
- HUMNYLRZRPPJDN-UHFFFAOYSA-N O=Cc1ccccc1 Chemical compound O=Cc1ccccc1 HUMNYLRZRPPJDN-UHFFFAOYSA-N 0.000 description 1
- VHSALIJKMWWMQV-UHFFFAOYSA-N [C-]#[N+]C(C#N)(C#N)[N+]#[C-].[Li+].[LiH] Chemical compound [C-]#[N+]C(C#N)(C#N)[N+]#[C-].[Li+].[LiH] VHSALIJKMWWMQV-UHFFFAOYSA-N 0.000 description 1
- YFMWFIUNSQSKCF-UHFFFAOYSA-N [C-]#[N+]C([C-]=N)C(=O)C(=O)C(C#N)C#N.[K+].[KH] Chemical compound [C-]#[N+]C([C-]=N)C(=O)C(=O)C(C#N)C#N.[K+].[KH] YFMWFIUNSQSKCF-UHFFFAOYSA-N 0.000 description 1
- UFGAKPZKIZEPSF-UHFFFAOYSA-N [C-]#[N+]C([C-]=N)S(=O)(=O)C(C#N)C#N.[LiH].[LiH] Chemical compound [C-]#[N+]C([C-]=N)S(=O)(=O)C(C#N)C#N.[LiH].[LiH] UFGAKPZKIZEPSF-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0222—Sulfur-containing compounds comprising sulfonyl groups
- B01J31/0224—Sulfur-containing compounds comprising sulfonyl groups being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0222—Sulfur-containing compounds comprising sulfonyl groups
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0225—Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0215—Sulfur-containing compounds
- B01J31/0225—Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts
- B01J31/0227—Sulfur-containing compounds comprising sulfonic acid groups or the corresponding salts being perfluorinated, i.e. comprising at least one perfluorinated moiety as substructure in case of polyfunctional compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0239—Quaternary ammonium compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0247—Imides, amides or imidates (R-C=NR(OR))
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0245—Nitrogen containing compounds being derivatives of carboxylic or carbonic acids
- B01J31/0251—Guanidides (R2N-C(=NR)-NR2)
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0235—Nitrogen containing compounds
- B01J31/0252—Nitrogen containing compounds with a metal-nitrogen link, e.g. metal amides, metal guanidides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0255—Phosphorus containing compounds
- B01J31/0267—Phosphines or phosphonium compounds, i.e. phosphorus bonded to at least one carbon atom, including e.g. sp2-hybridised phosphorus compounds such as phosphabenzene, the other atoms bonded to phosphorus being either carbon or hydrogen
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0234—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds
- B01J31/0271—Nitrogen-, phosphorus-, arsenic- or antimony-containing compounds also containing elements or functional groups covered by B01J31/0201 - B01J31/0231
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0278—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre
- B01J31/0281—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing nitrogen as cationic centre the nitrogen being a ring member
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0287—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
- B01J31/0288—Phosphorus
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/0277—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature
- B01J31/0287—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides comprising ionic liquids, as components in catalyst systems or catalysts per se, the ionic liquid compounds being used in the molten state at the respective reaction temperature containing atoms other than nitrogen as cationic centre
- B01J31/0289—Sulfur
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/04—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing carboxylic acids or their salts
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/06—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing polymers
- B01J31/068—Polyalkylene glycols
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/02—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides
- B01J31/12—Catalysts comprising hydrides, coordination complexes or organic compounds containing organic compounds or metal hydrides containing organo-metallic compounds or metal hydrides
- B01J31/123—Organometallic polymers, e.g. comprising C-Si bonds in the main chain or in subunits grafted to the main chain
- B01J31/124—Silicones or siloxanes or comprising such units
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/18—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms
- B01J31/1805—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes containing nitrogen, phosphorus, arsenic or antimony as complexing atoms, e.g. in pyridine ligands, or in resonance therewith, e.g. in isocyanide ligands C=N-R or as complexed central atoms the ligands containing nitrogen
- B01J31/181—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine
- B01J31/1815—Cyclic ligands, including e.g. non-condensed polycyclic ligands, comprising at least one complexing nitrogen atom as ring member, e.g. pyridine with more than one complexing nitrogen atom, e.g. bipyridyl, 2-aminopyridine
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J31/00—Catalysts comprising hydrides, coordination complexes or organic compounds
- B01J31/16—Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
- B01J31/22—Organic complexes
- B01J31/2204—Organic complexes the ligands containing oxygen or sulfur as complexing atoms
- B01J31/2208—Oxygen, e.g. acetylacetonates
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B37/00—Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
- C07B37/02—Addition
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B37/00—Reactions without formation or introduction of functional groups containing hetero atoms, involving either the formation of a carbon-to-carbon bond between two carbon atoms not directly linked already or the disconnection of two directly linked carbon atoms
- C07B37/10—Cyclisation
- C07B37/12—Diels-Alder reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/10—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and halogen atoms, or nitro or nitroso groups, bound to the same acyclic carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/17—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and doubly-bound oxygen atoms bound to the same acyclic carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/01—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms
- C07C255/24—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton
- C07C255/27—Carboxylic acid nitriles having cyano groups bound to acyclic carbon atoms containing cyano groups and singly-bound nitrogen atoms, not being further bound to other hetero atoms, bound to the same saturated acyclic carbon skeleton containing cyano groups, amino groups and doubly-bound oxygen atoms bound to the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/45—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings
- C07C255/46—Carboxylic acid nitriles having cyano groups bound to carbon atoms of rings other than six-membered aromatic rings to carbon atoms of non-condensed rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C255/00—Carboxylic acid nitriles
- C07C255/63—Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton
- C07C255/65—Carboxylic acid nitriles containing cyano groups and nitrogen atoms further bound to other hetero atoms, other than oxygen atoms of nitro or nitroso groups, bound to the same carbon skeleton with the nitrogen atoms further bound to nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C257/00—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines
- C07C257/10—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines
- C07C257/14—Compounds containing carboxyl groups, the doubly-bound oxygen atom of a carboxyl group being replaced by a doubly-bound nitrogen atom, this nitrogen atom not being further bound to an oxygen atom, e.g. imino-ethers, amidines with replacement of the other oxygen atom of the carboxyl group by nitrogen atoms, e.g. amidines having carbon atoms of amidino groups bound to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/03—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/03—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms
- C07C311/04—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton having the nitrogen atoms of the sulfonamide groups bound to hydrogen atoms or to acyclic carbon atoms to acyclic carbon atoms of hydrocarbon radicals substituted by singly-bound oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/01—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms
- C07C311/02—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
- C07C311/09—Sulfonamides having sulfur atoms of sulfonamide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton the carbon skeleton being further substituted by at least two halogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C311/00—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups
- C07C311/48—Amides of sulfonic acids, i.e. compounds having singly-bound oxygen atoms of sulfo groups replaced by nitrogen atoms, not being part of nitro or nitroso groups having nitrogen atoms of sulfonamide groups further bound to another hetero atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/02—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
- C07C317/04—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic saturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/02—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms
- C07C317/08—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to acyclic carbon atoms of an acyclic unsaturated carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/14—Sulfones; Sulfoxides having sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/16—Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton
- C07C317/22—Sulfones; Sulfoxides having sulfone or sulfoxide groups and singly-bound oxygen atoms bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/24—Sulfones; Sulfoxides having sulfone or sulfoxide groups and doubly-bound oxygen atoms bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/26—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton
- C07C317/32—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton
- C07C317/34—Sulfones; Sulfoxides having sulfone or sulfoxide groups and nitrogen atoms, not being part of nitro or nitroso groups, bound to the same carbon skeleton with sulfone or sulfoxide groups bound to carbon atoms of six-membered aromatic rings of the carbon skeleton having sulfone or sulfoxide groups and amino groups bound to carbon atoms of six-membered aromatic rings being part of the same non-condensed ring or of a condensed ring system containing that ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C317/00—Sulfones; Sulfoxides
- C07C317/44—Sulfones; Sulfoxides having sulfone or sulfoxide groups and carboxyl groups bound to the same carbon skeleton
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/45—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by condensation
- C07C45/46—Friedel-Crafts reactions
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C45/00—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds
- C07C45/61—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups
- C07C45/67—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton
- C07C45/68—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms
- C07C45/69—Preparation of compounds having >C = O groups bound only to carbon or hydrogen atoms; Preparation of chelates of such compounds by reactions not involving the formation of >C = O groups by isomerisation; by change of size of the carbon skeleton by increase in the number of carbon atoms by addition to carbon-to-carbon double or triple bonds
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C67/00—Preparation of carboxylic acid esters
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D207/00—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom
- C07D207/02—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D207/44—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members
- C07D207/444—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5
- C07D207/448—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide
- C07D207/452—Heterocyclic compounds containing five-membered rings not condensed with other rings, with one nitrogen atom as the only ring hetero atom with only hydrogen or carbon atoms directly attached to the ring nitrogen atom having three double bonds between ring members or between ring members and non-ring members having two doubly-bound oxygen atoms directly attached in positions 2 and 5 with only hydrogen atoms or radicals containing only hydrogen and carbon atoms directly attached to other ring carbon atoms, e.g. maleimide with hydrocarbon radicals, substituted by hetero atoms, directly attached to the ring nitrogen atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D213/00—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
- C07D213/02—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
- C07D213/04—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
- C07D213/60—Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D213/72—Nitrogen atoms
- C07D213/76—Nitrogen atoms to which a second hetero atom is attached
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D219/00—Heterocyclic compounds containing acridine or hydrogenated acridine ring systems
- C07D219/04—Heterocyclic compounds containing acridine or hydrogenated acridine ring systems with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to carbon atoms of the ring system
- C07D219/08—Nitrogen atoms
- C07D219/10—Nitrogen atoms attached in position 9
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D231/00—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings
- C07D231/02—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings
- C07D231/10—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D231/14—Heterocyclic compounds containing 1,2-diazole or hydrogenated 1,2-diazole rings not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D231/18—One oxygen or sulfur atom
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D233/00—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings
- C07D233/54—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members
- C07D233/66—Heterocyclic compounds containing 1,3-diazole or hydrogenated 1,3-diazole rings, not condensed with other rings having two double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D233/90—Carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D239/00—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings
- C07D239/02—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings
- C07D239/24—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members
- C07D239/28—Heterocyclic compounds containing 1,3-diazine or hydrogenated 1,3-diazine rings not condensed with other rings having three or more double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, directly attached to ring carbon atoms
- C07D239/46—Two or more oxygen, sulphur or nitrogen atoms
- C07D239/60—Three or more oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D241/00—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings
- C07D241/36—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems
- C07D241/38—Heterocyclic compounds containing 1,4-diazine or hydrogenated 1,4-diazine rings condensed with carbocyclic rings or ring systems with only hydrogen or carbon atoms directly attached to the ring nitrogen atoms
- C07D241/40—Benzopyrazines
- C07D241/42—Benzopyrazines with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to carbon atoms of the hetero ring
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/04—1,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
- C07D249/10—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D249/00—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
- C07D249/02—Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
- C07D249/08—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
- C07D249/10—1,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D249/12—Oxygen or sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D251/00—Heterocyclic compounds containing 1,3,5-triazine rings
- C07D251/02—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings
- C07D251/12—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members
- C07D251/26—Heterocyclic compounds containing 1,3,5-triazine rings not condensed with other rings having three double bonds between ring members or between ring members and non-ring members with only hetero atoms directly attached to ring carbon atoms
- C07D251/40—Nitrogen atoms
- C07D251/54—Three nitrogen atoms
- C07D251/70—Other substituted melamines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/64—Benzothiazoles with only hydrocarbon or substituted hydrocarbon radicals attached in position 2
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D277/00—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings
- C07D277/60—Heterocyclic compounds containing 1,3-thiazole or hydrogenated 1,3-thiazole rings condensed with carbocyclic rings or ring systems
- C07D277/62—Benzothiazoles
- C07D277/68—Benzothiazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached in position 2
- C07D277/82—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/01—Five-membered rings
- C07D285/02—Thiadiazoles; Hydrogenated thiadiazoles
- C07D285/04—Thiadiazoles; Hydrogenated thiadiazoles not condensed with other rings
- C07D285/12—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles
- C07D285/125—1,3,4-Thiadiazoles; Hydrogenated 1,3,4-thiadiazoles with oxygen, sulfur or nitrogen atoms, directly attached to ring carbon atoms, the nitrogen atoms not forming part of a nitro radical
- C07D285/135—Nitrogen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/15—Six-membered rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D285/00—Heterocyclic compounds containing rings having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by groups C07D275/00 - C07D283/00
- C07D285/15—Six-membered rings
- C07D285/16—Thiadiazines; Hydrogenated thiadiazines
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D303/00—Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
- C07D303/02—Compounds containing oxirane rings
- C07D303/34—Compounds containing oxirane rings with hydrocarbon radicals, substituted by sulphur, selenium or tellurium atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/38—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with substituted hydrocarbon radicals attached to ring carbon atoms
- C07D307/54—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/02—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings
- C07D307/34—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members
- C07D307/56—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom not condensed with other rings having two or three double bonds between ring members or between ring members and non-ring members with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
- C07D307/64—Sulfur atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/42—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4
- C07D311/44—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4 with one hydrogen atom in position 3
- C07D311/46—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring with oxygen or sulfur atoms in positions 2 and 4 with one hydrogen atom in position 3 unsubstituted in the carbocyclic ring
- C07D311/52—Enol-esters or -ethers, or sulfur analogues thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/04—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring
- C07D311/58—Benzo[b]pyrans, not hydrogenated in the carbocyclic ring other than with oxygen or sulphur atoms in position 2 or 4
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D311/00—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings
- C07D311/02—Heterocyclic compounds containing six-membered rings having one oxygen atom as the only hetero atom, condensed with other rings ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D311/78—Ring systems having three or more relevant rings
- C07D311/80—Dibenzopyrans; Hydrogenated dibenzopyrans
- C07D311/82—Xanthenes
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D319/00—Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
- C07D319/04—1,3-Dioxanes; Hydrogenated 1,3-dioxanes
- C07D319/06—1,3-Dioxanes; Hydrogenated 1,3-dioxanes not condensed with other rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/14—Radicals substituted by singly bound hetero atoms other than halogen
- C07D333/16—Radicals substituted by singly bound hetero atoms other than halogen by oxygen atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D333/00—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
- C07D333/02—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
- C07D333/04—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
- C07D333/06—Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
- C07D333/24—Radicals substituted by carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D405/00—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom
- C07D405/02—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings
- C07D405/06—Heterocyclic compounds containing both one or more hetero rings having oxygen atoms as the only ring hetero atoms, and one or more rings having nitrogen as the only ring hetero atom containing two hetero rings linked by a carbon chain containing only aliphatic carbon atoms
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D409/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms
- C07D409/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings
- C07D409/12—Heterocyclic compounds containing two or more hetero rings, at least one ring having sulfur atoms as the only ring hetero atoms containing two hetero rings linked by a chain containing hetero atoms as chain links
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/02—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings
- C07D417/10—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing two hetero rings linked by a carbon chain containing aromatic rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D417/00—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
- C07D417/14—Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07F—ACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
- C07F17/00—Metallocenes
- C07F17/02—Metallocenes of metals of Groups 8, 9 or 10 of the Periodic Table
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08F—MACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
- C08F4/00—Polymerisation catalysts
- C08F4/04—Azo-compounds
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G65/00—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
- C08G65/02—Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from cyclic ethers by opening of the heterocyclic ring
- C08G65/32—Polymers modified by chemical after-treatment
- C08G65/329—Polymers modified by chemical after-treatment with organic compounds
- C08G65/334—Polymers modified by chemical after-treatment with organic compounds containing sulfur
- C08G65/3344—Polymers modified by chemical after-treatment with organic compounds containing sulfur containing oxygen in addition to sulfur
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/02—Dyestuff salts, e.g. salts of acid dyes with basic dyes
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09B—ORGANIC DYES OR CLOSELY-RELATED COMPOUNDS FOR PRODUCING DYES, e.g. PIGMENTS; MORDANTS; LAKES
- C09B69/00—Dyes not provided for by a single group of this subclass
- C09B69/10—Polymeric dyes; Reaction products of dyes with monomers or with macromolecular compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/122—Ionic conductors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01B—CABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
- H01B1/00—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
- H01B1/06—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
- H01B1/12—Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances organic substances
- H01B1/124—Intrinsically conductive polymers
- H01B1/128—Intrinsically conductive polymers comprising six-membered aromatic rings in the main chain, e.g. polyanilines, polyphenylenes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/02—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof using combined reduction-oxidation reactions, e.g. redox arrangement or solion
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G11/00—Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
- H01G11/54—Electrolytes
- H01G11/58—Liquid electrolytes
- H01G11/62—Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01G—CAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
- H01G9/00—Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
- H01G9/004—Details
- H01G9/022—Electrolytes; Absorbents
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
- H01M10/0525—Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0565—Polymeric materials, e.g. gel-type or solid-type
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0568—Liquid materials characterised by the solutes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/381—Alkaline or alkaline earth metals elements
- H01M4/382—Lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/581—Chalcogenides or intercalation compounds thereof
- H01M4/5815—Sulfides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/62—Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
- H01M4/624—Electric conductive fillers
- H01M4/625—Carbon or graphite
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/166—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solute
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/181—Cells with non-aqueous electrolyte with solid electrolyte with polymeric electrolytes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/18—Cells with non-aqueous electrolyte with solid electrolyte
- H01M6/182—Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte
- H01M6/183—Cells with non-aqueous electrolyte with solid electrolyte with halogenide as solid electrolyte with fluoride as solid electrolyte
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/10—Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
- B01J2231/12—Olefin polymerisation or copolymerisation
- B01J2231/122—Cationic (co)polymerisation, e.g. single-site or Ziegler-Natta type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/10—Polymerisation reactions involving at least dual use catalysts, e.g. for both oligomerisation and polymerisation
- B01J2231/14—Other (co) polymerisation, e.g. of lactides or epoxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/32—Addition reactions to C=C or C-C triple bonds
- B01J2231/324—Cyclisations via conversion of C-C multiple to single or less multiple bonds, e.g. cycloadditions
- B01J2231/326—Diels-Alder or other [4+2] cycloadditions, e.g. hetero-analogues
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/34—Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
- B01J2231/341—1,2-additions, e.g. aldol or Knoevenagel condensations
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/30—Addition reactions at carbon centres, i.e. to either C-C or C-X multiple bonds
- B01J2231/34—Other additions, e.g. Monsanto-type carbonylations, addition to 1,2-C=X or 1,2-C-X triplebonds, additions to 1,4-C=C-C=X or 1,4-C=-C-X triple bonds with X, e.g. O, S, NH/N
- B01J2231/348—1,4-additions, e.g. conjugate additions
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/40—Substitution reactions at carbon centres, e.g. C-C or C-X, i.e. carbon-hetero atom, cross-coupling, C-H activation or ring-opening reactions
- B01J2231/42—Catalytic cross-coupling, i.e. connection of previously not connected C-atoms or C- and X-atoms without rearrangement
- B01J2231/4205—C-C cross-coupling, e.g. metal catalyzed or Friedel-Crafts type
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2231/00—Catalytic reactions performed with catalysts classified in B01J31/00
- B01J2231/50—Redistribution or isomerisation reactions of C-C, C=C or C-C triple bonds
- B01J2231/54—Metathesis reactions, e.g. olefin metathesis
- B01J2231/543—Metathesis reactions, e.g. olefin metathesis alkene metathesis
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/30—Complexes comprising metals of Group III (IIIA or IIIB) as the central metal
- B01J2531/35—Scandium
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01J—CHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
- B01J2531/00—Additional information regarding catalytic systems classified in B01J31/00
- B01J2531/80—Complexes comprising metals of Group VIII as the central metal
- B01J2531/82—Metals of the platinum group
- B01J2531/824—Palladium
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2601/00—Systems containing only non-condensed rings
- C07C2601/06—Systems containing only non-condensed rings with a five-membered ring
- C07C2601/10—Systems containing only non-condensed rings with a five-membered ring the ring being unsaturated
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C2602/00—Systems containing two condensed rings
- C07C2602/36—Systems containing two condensed rings the rings having more than two atoms in common
- C07C2602/42—Systems containing two condensed rings the rings having more than two atoms in common the bicyclo ring system containing seven carbon atoms
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1523—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material
- G02F1/1525—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising inorganic material characterised by a particular ion transporting layer, e.g. electrolyte
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/15—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect
- G02F1/1514—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material
- G02F1/1516—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on an electrochromic effect characterised by the electrochromic material, e.g. by the electrodeposited material comprising organic material
- G02F2001/1518—Ferrocene compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/131—Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/133—Electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/13—Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
- H01M4/134—Electrodes based on metals, Si or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/38—Selection of substances as active materials, active masses, active liquids of elements or alloys
- H01M4/40—Alloys based on alkali metals
- H01M4/405—Alloys based on lithium
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/485—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/50—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
- H01M4/505—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/48—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
- H01M4/52—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
- H01M4/525—Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/58—Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
- H01M4/5825—Oxygenated metallic salts or polyanionic structures, e.g. borates, phosphates, silicates, olivines
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/36—Selection of substances as active materials, active masses, active liquids
- H01M4/60—Selection of substances as active materials, active masses, active liquids of organic compounds
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/02—Electrodes composed of, or comprising, active material
- H01M4/64—Carriers or collectors
- H01M4/66—Selection of materials
- H01M4/661—Metal or alloys, e.g. alloy coatings
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/04—Cells with aqueous electrolyte
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/164—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by the solvent
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M6/00—Primary cells; Manufacture thereof
- H01M6/14—Cells with non-aqueous electrolyte
- H01M6/16—Cells with non-aqueous electrolyte with organic electrolyte
- H01M6/162—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
- H01M6/168—Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/13—Energy storage using capacitors
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S430/00—Radiation imagery chemistry: process, composition, or product thereof
- Y10S430/1053—Imaging affecting physical property or radiation sensitive material, or producing nonplanar or printing surface - process, composition, or product: radiation sensitive composition or product or process of making binder containing
- Y10S430/1055—Radiation sensitive composition or product or process of making
- Y10S430/127—Spectral sensitizer containing
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49002—Electrical device making
- Y10T29/49108—Electric battery cell making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/29—Coated or structually defined flake, particle, cell, strand, strand portion, rod, filament, macroscopic fiber or mass thereof
- Y10T428/2913—Rod, strand, filament or fiber
- Y10T428/2918—Rod, strand, filament or fiber including free carbon or carbide or therewith [not as steel]
Definitions
- the present invention is concerned with ionic compounds derived from malononitrile in which the anionic charge is delocalized, and their uses.
- the —CO 2 ⁇ 1/mM m+ or —SO 3 ⁇ 1/mM m+ groups of this type are not dissociated, and they cause no solubility in solvents except water or certain highly polar protic solvents such as light alcohols, which considerably restrict the scope of their use.
- salts of the compounds [R F SO 2 —N—SO 2 R F ] ⁇ 1/mM m+ in which R F is a perfluorinated group and M m+ is a cation of valence m+ which are soluble and are dissociated in ordinary aprotic media or solvating polymers are known. It is however considered that the existence of two perfluoroalkylsulfonyl groups (in particular the existence of fluorine atoms on the a atom of carbon of each sulfonyl group) which exert an important attracting power on the electrons of the anionic charge, is a necessary condition to obtain properties of solubility and dissociation.
- the present invention consequently aims at supplying a family of ionic compounds having a good solubility and a good dissociation, without requiring complex modifications of the starting molecule.
- the precursors of the molecules of the invention are for the most part industrial products and/or easily accessible.
- the absence, or at least the decrease of the perfluorinated fraction in the compounds of the invention enables to reduce production costs of the compounds and consequently the cost of the resulting applications.
- An object of the present invention is an ionic compound which is a derivative of malononitrile comprising an anionic part which is associated to at least one cationic part M +m in a sufficient number to provide for the electronic neutrality of the whole, characterized in that M is a hydroxonium, a nitrosonium NO + , an ammonium —NH 4 + , a metallic cation having a valency m, an organic cation having a valency m or an organometallic cation having a valency m, and in that the ionic part corresponds to one of the formulae R D —Y—C(C ⁇ N) 2 ⁇ or Z-C(C ⁇ N) 2 ⁇ in which:
- Z represents an electroattractor radical having a Hammett parameter at least equal to that of a phenyl radical, selected from:
- radicals comprising one or more aromatic nuclei possibly containing at least one nitrogen, oxygen, sulfur or phosphorus atom, said nuclei possibly being condensed nuclei and/or said nuclei possibly carrying at least one substituent selected from halogens, —CN, —NO 2 , —SCN, —N 3 , CF 2 ⁇ CF—O—, radicals R F — and R F CH 2 — in which R F is a perfluoroalkyl alkyl having 1 to 12 carbon atoms, fluoroalkyloxy groups, fluoroalkylthioxy groups, alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl radicals, polymer radicals, radicals having at least one cationic ionophorous group and/or at least one anionic ionophor
- one substituent Z may be a monovalent radical, a multivalent radical, or part of a multivalent radical (including a dendrimer) carrying at least one group —C(C ⁇ N) 2 , or a segment of a polymer;
- Y represents a carbonyl group, a thiocarbonyl group, a sulfonyl group, a sulfinyl group or a phosphonyl group and:
- R D is a radical selected from:
- alkyl or alkenyl radicals aryl, arylalkyl, alkylaryl or alkenylaryl radicals, alicyclic or heterocyclic radicals, including polycyclic radicals;
- alkyl or alkenyl radicals comprising at least one functional ether, thioether, amine, imine, amide, carboxyl, carbonyl, isocyanate, isothiocyanate, hydroxy;
- aryl, arylalkyl, arylalkenyl, alkylaryl or alkenylaryl radicals in which the aromatic nuclei and/or at least one substituent of the nucleus comprises heteroatoms such as nitrogen, oxygen, sulfur;
- radicals comprising condensed aromatic cycles which possibly comprise at least one heteroatom selected from nitrogen, oxygen, sulfur;
- radicals (R B ) 2 N— in which the radicals R B which are identical or different are such as defined in a), b), c), d) and e) above, one of the RB may be a halogen atom, or the two radicals RB together form a divalent radical which constitutes a cycle with N;
- one substituent R D may be a monovalent radical, part of a multivalent radical carrying a plurality of —Y—C ⁇ (C ⁇ N) 2 groups or a segment of a polymer;
- the cation is a metallic cation selected from cations of alkali metals, cations of alkali-earth metals, cations of transition metals, cations of trivalent metals, cations of rare earths.
- Na + , Li + , K + , Sm 3+ , La 3+ , Ho 3+ , Sc 3+ , Al 3+ , Y 3+ , Yb 3+ , Lu 3+ , Eu 3 may be mentioned.
- the cation may also be an organometallic cation, such as a metallocenium.
- organometallic cation such as a metallocenium.
- the cations derived from ferrocene, titanocene, zirconocene, from an indenocenium or a metallocenium arene, cations of transition metals complexed with ligands of phosphine type possibly having a chirality, organometallic cations having one or more alkyl or aryl groups covalently fixed to an atom or a group of atoms, may be mentioned.
- organo-metallic cation may be part of a polymer chain.
- the organic cation is an onium cation selected from the group consisting of R 3 O + (oxonium), NR 4 + (ammonium), RC(NHR 2 ) 2 + (amidinium), C(NHR 2 ) 3 + (guanidinium), C 5 R 6 N + (pyridinium), C 3 R 5 N 2 + (imidazolium), C 3 R 7 N 2 + (imidazolinium), C 2 R 4 N 3 + (triazolium), SR 3 + (sulfonium), PR 4 + (phosphonium), IR 2 + (iodonium), (C 6 R 5 ) 3 C + (carbonium) cations.
- the radicals R may all be similar.
- an onium cation may also include radicals R which are different from one another.
- a radical R may be a H or it may be selected from the following radicals:
- alkyl alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl, aryl, arylalkyl, alkylaryl, alkenylaryl radicals, dialkylamino radicals and dialkylazo radicals;
- cyclic or heterocyclic radicals possibly comprising at least one lateral chain comprising heteroatoms such as nitrogen, oxygen, sulfur;
- [0031] groups comprising a plurality of aromatic or heterocyclic nuclei, condensed or non-condensed, possibly containing at least one nitrogen, oxygen, sulfur or phosphorus atom.
- an onium cation carries at least two radicals R which are different from H, these radicals may together form a cycle which is aromatic or non-aromatic, possibly enclosing the center carrying the cationic charge.
- the cationic part of a compound of the invention when it is an onium cation, it may be either in the form of an independent cationic group which is bound to the cationic part only by the ionic bond between the positive charge of the cation and the negative charge of the anionic part.
- the cationic part may be part of a recurring unit of a polymer.
- An onium cation may also be part of the radical Z or the radical R D carried by the anionic center.
- a compound of the invention constitutes a zwitterion.
- the cation of a compound of the invention is an onium cation, it may be selected so as to introduce in the compound substituents enabling to give specific properties to said compound.
- the cation M + may be a cationic heterocycle with aromatic character, including at least one alkylated nitrogen atom in the cycle.
- an imidazolium, a triazolium, a pyridinium, a 4-dimethyl-amino-pyridinium may be mentioned, said cations possibly carrying a substituent on the carbon atoms of the cycle.
- these cations those in which the salts have a melting point lower than 150° C., more particularly lower than 25° C.
- a compound of the invention in which the cation M is a group carrying a diazoic group having —N ⁇ N—, —N ⁇ N + , a sulfonium group, an iodonium group, a phosphonium group or a substituted or non-substituted arene-ferrocenium cation, possibly incorporated in the polymeric network, is interesting inasmuch as it is activatable by a source of actinic energy of suitable wavelength.
- Such compounds include those in which the cation is a diaryliodonium cation, a dialkylaryliodonium cation, a triarylsulfonium cation, a trialkylaryl sulfonium cation, or a substituted or non-substituted phenacyl-dialkyl sulfonium cation.
- the above cations may be part of a polymer chain.
- the cation M of a compound of the invention may be an organic cation incorporating a group 2,2′[azobis(2-2′-imidazolinio-2-yl)propane] 2+ or 2,2′-azobis(2-amidiniopropane) 2+ .
- the compound the invention is then particularly interesting as a free radical initiator, which is thermally activatable and non-volatile, soluble in polar organic solvents and in aprotic solvating monomers and polymers.
- a specific family of compounds of the invention is the one which comprises a group R D Y—.
- the compounds in which Y is —SO 2 — or —CO— are especially preferred.
- R D is selected from alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl or thia-alkenyl having 1 to 24 carbon atoms, or from aryl, arylalkyl, alkylaryl or alkenylaryl radicals having 5 to 24 carbon atoms.
- R D is selected from alkyl or alkenyl radicals having 1 to 12 carbon atoms and possibly comprising at least one heteroatom O, N or S in the main chain or in a lateral chain, and/or possibly carrying a hydroxy group, a carbonyl group, an amine group or a carboxyl group.
- R D is selected from aryl, arylalkyl, alkylaryl or alkenylaryl radicals, in which the aromatic nuclei and/or their substituents comprise heteroatoms such as nitrogen, oxygen, sulfur.
- Substituent R D may be a polymer radical, for example a poly(oxyalkylene) radical.
- a compound of the invention is then in the form of a polymer carrying an ionic group-Y—C(CN) 2 ⁇ , M + .
- R D may be a recurring unit of a polymer, for example an oxyalkylene unit or a styrene unit.
- the compound of the invention is then in the form of a polymer in which at least part of the recurring units carry a lateral group on which an ionic group —Y—C(CN) 2 ⁇ , M + is fixed.
- a poly(oxyalkylene) in which at least certain oxyalkylene units carry a substituent —Y—C(CN) 2 ⁇ , M + or a polystyrene in which at least certain styrene units carry a substituent —Y—C(CN) 2 ⁇ , M + .
- a particular category of compounds according to the invention comprises the compounds in which substituent R D has at least one anionic ionophorous group and/or at least one cationic ionophorous group.
- the anionic group may for example be a carboxylate function (—CO 2 ⁇ ), a sulfonate function (—SO 3 ⁇ ), a sulfonimide function (—SO 2 NSO 2 —) or a sulfonamide function (—SO 2 N—).
- the ionophorous group may for example be an iodonium, sulfonium, oxonium, ammonium, amidinium, guanidinium, pyridinium, imidazolium, imidazolinium, triazolium, phosphonium or carbonium group.
- the cationic ionophorous group may act totally or partially as a cation M.
- R D includes at least one ethylenic unsaturation and/or a condensable group and/or a dissociable group by thermal means, by photochemical means or by ionic dissociation
- the compounds of the invention are reactive compounds which may be subject to polymerizations, cross-linkings or condensations, possibly with other monomers. They may also be used to fix ionophorous groups on the polymers carrying a suitable reactive function.
- a substituent R D may be a mesomorphous group or a chromophore group or a self-doped electronically conductive polymer or a hydrolyzable alkoxysilane.
- a substituent R D may include a group capable of trapping free radicals, for example a hindered phenol or a quinone.
- a substituent R D may also include a dissociating dipole, for example an amide function, a sulfonamide function or a nitrile function.
- a substituent R D may also include a redox couple, a disulfide group, a thioamide group, a ferrocene group, a phenothiazine group, a bis(dialkylaminoaryl) group, a nitroxide group or an aromatic imine group.
- a substituent R D may also include a complexing ligand, or an optically active group.
- Another category of compounds of the invention comprises compounds in which Y is a carbonyl group, R D —CO— representing an amino acid, or an optically or biologically active polypeptide.
- a compound according to the invention comprises a substituent R D which represents a radical having a valency v higher than 2, itself including at least one group —Y—C(CN) 2 ⁇ M + .
- R D represents a radical having a valency v higher than 2, itself including at least one group —Y—C(CN) 2 ⁇ M + .
- the negative charges which are present on the anionic part of the compound of the invention should be compensated by the appropriate number of cations or cationic ionophorous groups M.
- Z is advantageously selected from the group consisting of —OC n F 2n+1 , —OC 2 F 4 H, —SC n F 2n+1 and —SC 2 F 4 H, —OCF ⁇ CF 2 , —SCF ⁇ CF 2 , n being a whole number from 1 to 8.
- Z may also be a radical C n F 2n+1 CH 2 —, n being a whole number from 1 to 8.
- the compounds of the invention may be obtained by a process in which a compound R D —Y-L or Z-L is reacted with a compound [A-C(CN) 2 ] n ⁇ m nM′ m+ ,
- M′ being H or a cation such as defined previously for M
- L represents an electronegative starting group such as a halogen, a N-imidazoyl radical, a N-triazoyl radical, a compound giving an activated ester (for example a succinimidyloxy, a benzotriazoloxy or a O-acylurea), an alkoxide group, a R D —Y—O— group or a R D —Y—S— group, and
- A represents a cation M m+ , a trialkylsilyl group, a trialkyl germanyl group, a trialkylstannyl group or a tertioalkyl group, in which the alkyl substituents have 1 to 6 carbon atoms.
- the base may be selected among alkylamides (for example triethylamine, diisopropylamine, quinuclidine), 1,4-diazobicyclo[2,2,2]octane (DABCO); pyridines (for example pyridine, alkylpyridines, dialkylaminopyridines); imidazoles (for example N-alkylimidazoles, imidazo[1,1-a]pyridine); amidines (for example 1,5-diazabicyclo[4,3,0]non-5-ene (DBN), 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU)); guanidines (for example tetramethyl guanidine, 1,3,4,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine (HPP).
- An alkali metal salt of malononitrile can also be used as a base.
- a compound of the invention may also be obtained by direct coupling between a malononitrile salt and a carboxylic acid by means of a coupling agent.
- a coupling agent When Z ⁇ CO, it is advantageous to use a compound RZX of the type pseudo-halide directly prepared in-situ (X ⁇ RCO 2 , SCO, PTO, BzO . . . ) from RCOOH by action of the condensation agents used in the synthesis of peptides (molecular dehydrating agents). Such agents are described for example in Synthesis p. 453 (1972) and in Ann. Rev. Biochem 39, 841 (1970).
- the compounds of the invention are then prepared from RCOOH to which the molecular dehydration agent is added, and also the compound (1/nM)[(NC) 2 CH] in stoichiometric proportions in a polar solvent.
- the condensation agent is selected from carbodiimides, for example cyclohexyl carbodiimide or diisopropyl carbodiimide; carbonates and oxalates of succinimidyl, phthalimidyl, benzotriazolyl, of nitro-, dinitro- or perhalo-phenols, of trifluoroethyl, of trichloroethyl; the mixture P ⁇ 3 -diethylazodicarboxylate (DEAD) or P ⁇ 3 -dithiodipyridine; carbonyldiimidazole (Im) 2 CO or phenylphosphorodiimidazole ⁇ PO(Im) 2 ; amide acetals, for example dimethylformamide di-
- substituent R D of a compound of the invention may be modified by known reactions.
- a substituent R D which comprises an allyl group maybe converted by reaction with a peroxide to give an expoxidized substituent R D .
- a group —NHR may be converted into a vinylester group by reaction with potassium tert-butoxide and vinylchloroformate. Processes to carry out these modifications and others are available to one skilled in the art.
- the ionic compounds of the present invention comprise at least one ionophorous group on which substituents of highly various natures are fixed.
- the compounds of the invention enable to provide properties of ionic conduction in most organic, liquid or polymer medias having even a low polarity.
- the applications are important in the field of electrochemistry, in particular for storing energy in primary or secondary generators, in supercapacitances, in combustible batteries and in electroluminescent diodes.
- the compatibility of the ionic compounds of the invention with polymers or organic liquids enables to provide noted antistatic properties, even when the amount of ionic compound is extremely low.
- the compounds of the invention which are polymers, as well as polymeric compounds obtained from the compounds of the invention having the property of polymerizing or copolymerizing, have the properties listed above with the advantage of having an unmovable anionic charge. This is why another object of the present invention consists of an ionically conductive material made of an ionic compound of the present invention in solution in a solvent.
- the ionic compound used for preparing an ionically conductive material is selected from compounds in which the cation is ammonium, or a cation derived from a metal, in particular lithium or potassium, zinc, calcium, rare earth metals, or an organic cation, such as a substituted ammonium, an imidazolium, a triazolium, a pyridinium, a 4-dimethylamino-pyridinium, said cations possibly carrying a substituent on the carbon atoms of the cycle.
- the ionically conductive material thus obtained has a high conductivity and solubility in solvents, due to the low interactions between the positive charge and the negative charge.
- the compounds which have an organic cation and a melting point lower than 150° C. in particular compounds of imidazolium, triazolium, pyridinium, 4-dimethylamino-pyridinium have a high intrinsic conductivity, even in the absence of solvents when they are in molten phase.
- the properties of the ionically conductive material may also be modified by the choice of substituent Y or R D .
- an alkyl group, an aryl group, an alkylaryl group or an arylalkyl group for R D enable to provide in the ionically conductive material properties of the type mesogene, in particular alkyl groups containing 6 to 20 carbon atoms, arylalkyl groups, in particular both containing the biphenyl entity which form phases of the liquid crystal type.
- Properties of conduction in phases of the liquid crystal, nematic, cholesteric or discotic type are interesting for applications concerning optical postings or for reducing the mobility of anions in electrolytes, in particular in polymer electrolytes, without affecting the mobility of the cations. This characteristic is important for applications in electrochemical generators, in particular those utilizing lithium cations.
- the substituent R D contains mesomorphous group or a group comprising at least one ethylenic unsaturation and/or a condensable group and/or a group which is dissociable by thermal means, by photochemical means or by ionic dissociation
- the ionically conductive material easily forms polymers or copolymers which are polyclectrolytes, the latter being intrinsically polyelectrolytes when the polymer carries solvating groups, or becomes polyelectrolytes by addition of a polar solvent of the liquid or polymer type, or by mixture with such a solvent.
- These products have a conductivity which is solely due to the cations, which constitutes a property which is very useful in applications of the electrochemical generator type. In low molar fraction in a copolymer, they give rise to stable antistatic properties which are hardly dependent on humidity and cause the fixation of cationic colorants, this property being useful for textile fibers and lasers with coloring materials.
- R D which is a self-doped electronically conductive polymer improves the stability of the ionically conductive material with respect to outside agents.
- the conductivity is stable in time even at high temperatures. In contact with metals, these materials give very low interface resistances and protect in particular ferrous metal or aluminum from corrosion.
- the ionically conductive material may form stable polymers by a simple mechanism of hydrolysis-condensation in the presence of water, thus enabling to treat surfaces of oxides, of silica, of silicates, in particular glass, to induce properties of surface conduction, antistatic properties, or to promote the adhesion of polar polymers.
- the ionically conductive material has the following advantages and properties: it acts as an antioxidant having no volatility and being compatible with polar monomers and polymers, to which it also gives antistatic properties.
- the substituent R D comprises a dissociating dipole such as an amide, a sulfonamide or a nitrile
- the ionically conductive material has an improved conductivity in media of low or medium polarity, in particular in solvating polymers, which enables to minimize, even to prevent the addition of solvents or of volatile plasticizing agents.
- a substituent R D which contains a redox couple such as a disulfide, a thioamide, a ferrocene, a pheno-thiazine, a bis(dialkylaminoaryl) group, a nitroxide, an aromatic imide, enables to induce in the ionically conductive material properties of redox shuttle useful as protective elements and charge equalization of electrochemical generators, in photoelectrochemical systems, in particular in systems of conversion of light into electricity, in systems of modulation of light of the electrochrome type.
- a redox couple such as a disulfide, a thioamide, a ferrocene, a pheno-thiazine, a bis(dialkylaminoaryl) group, a nitroxide, an aromatic imide
- a substituent R D which is a complexing ligand in an ionically conductive material enables to chelate metallic cations, in particular those which have an elevated charge (2, 3 and 4), in the form of soluble complex in organic media, including in aprotic media, and enables the transport of these cations in particular in the form of anionic complex, in solvating polymers.
- the metallic cations of elevated charge are indeed immovable in solvating polymers.
- This type of complexing agents gives with certain cations of transition metals (Fe, Co . . . ) or certain rare earths (Ce, Eu . . . ) redox couples which are particularly stable.
- Ionically conductive materials containing a compound of the invention in which R D is an alkyl or alkenyl substituent which contains at least one heteroatom selected from O, N and S have a complexing and plasticizing capacity, in particular in polar polymers and especially polyethers.
- the heteroatoms N and S are selectively complexing for cations of transition metals Zn and Pb.
- the ionic compound of the invention may give by polycondensation a polymer or a copolymer and the ionically conductive material which contains such a polymer or copolymer have polyelectrolytic properties.
- the ionically conductive material contains a compound of the invention in which R D represents a recurring unit of a polymer chain, the material constitutes a polyelectrolyte.
- a compound of the invention in which the substituent Z is selected from the group consisting of —OC n F 2n+1 , —OC 2 F 4 H, —SC n F 2n+1 and —SC 2 F 4 H, —OCF ⁇ CF 2 , —SCF ⁇ CF 2 , n being a whole number from 1 to 8, is a precursor of stable monomers and polymers, in particular towards oxygen even at elevated temperatures of 80° C. when dealing with polymers.
- An ionically conductive material which contains such a compound is therefore particularly appropriate as an electrolyte of a combustible battery.
- An ionically conductive material of the present invention comprises an ionic compound of the invention in solution in a solvent.
- the solvent may be an aprotic liquid solvent, a polar polymer or one of their mixtures.
- the aprotic liquid solvent is selected for example from linear ethers and cyclic ethers, esters, nitriles, nitro derivatives, amides, sulfones, sulfolanes, alkylsulfamides and partially hydrogenated hydrocarbons.
- the solvents which are particularly preferred are diethylether, dimethoxyethane, glyme, tetrahydrofurane, dioxane, dimethyltetrahydrofurane, methyl or ethyl formate, propylene or ethylene carbonate, alkyl carbonates (such as dimethylcarbonate, diethylcarbonate and methylpropylcarbonate), butyrolactones, acetonitrile, benzonitrile, nitromethane, nitrobenzene, dimethylformamide, diethylformamide, N-methylpyrrolidone, dimethylsulfone, tetramethylene sulfone, tetramethylene sulfone and tetraalkylsulfonamides having 5 to 10 carbon atoms.
- An ionically conductive material of the present invention may simultaneously comprise an aprotic liquid solvent selected from the aprotic liquid solvents mentioned above and a polar polymer solvent comprising units containing at least one heteroatom selected from sulfur, nitrogen, oxygen and fluorine. It may comprise from 2 to 98% liquid solvent.
- a polar polymer polymers which mainly contain units derived from acrylonitrile, vinylidene fluoride, N-vinylpyrrolidone or methylmethacrylate may be mentioned.
- the proportion of aprotic liquid in the solvent may vary from 2% (corresponding to a plasticized solvent) to 98% (corresponding to a gelled solvent).
- An ionically conductive material of the present invention may additionally contain a salt commonly used in the prior art to prepare an ionically conductive material.
- a salt selected from perfluoroalcanesulfonates, bis(perfluoroalkylsulfonyl) imides, bis(perfluoroalkylsulfonyl) methanes and tris(perfluoroalkylsulfonyl) methanes are particularly preferred.
- an ionically conductive material of the invention may additionally contain additives normally used in this type of material, such as mineral or organic charges in the form of a powder or fibers.
- An ionically conductive material of the invention may be used as electrolyte in an electrochemical general.
- the present invention thus has as an object an electrochemical generator comprising a negative electrode and a positive electrode separated by an electrolyte, characterized in that the electrolyte is an ionically conductive material as defined above.
- such a generator comprises a negative electrode consisting of metallic lithium, or an alloy thereof, possibly in the form of a nanometric dispersion in lithium oxide, or a double nitride of lithium and a transition metal, or a low potential oxide having the general formula Li 1+y+x/3 Ti 2 ⁇ x/3 O 4 (0 ⁇ x ⁇ 1,0 ⁇ y ⁇ 1), or carbon and the carbonated products resulting from the pyrolysis of organic materials.
- the generator comprises a positive electrode selected from vanadium oxides VO x (2 ⁇ x ⁇ 2,5), LiV 3 O 8 , Li y Ni 1 ⁇ x Co x O 2 , (0 ⁇ x ⁇ 1; 0 ⁇ y ⁇ 1), manganese spinels Li y Mn 1 ⁇ x M x O 2 (M ⁇ Cr, Al, V, Ni, 0 ⁇ x ⁇ 0,5; 0 ⁇ y ⁇ 2), organic polydisulfides, FeS, FeS 2 , iron sulfate Fe 2 (SO 4 ) 3 , iron and lithium phosphates and phosphosilicates of olivine structure, or substituted products wherein iron is substituted by manganese, used alone or in admixtures.
- the collector of the positive is preferably made of aluminum.
- An ionically conductive material of the present invention may also be used in a supercapacitance.
- Another object of the present invention is consequently to provide a supercapacitance utilizing at least one carbon electrode of high specific surface, or an electrode containing a redox polymer, in which the electrolyte is an ionically conductive material as defined above.
- An ionically conductive material of the present invention may also be used for the p or n doping of an electronically conductive material and this use constitutes another object of the present invention.
- an ionically conductive material of the present invention may be used as an electrolyte in an electrochrome device.
- An electrochrome device in which the electrolyte is an ionically conductive material according to the invention is another object of the present invention.
- the strong dissociation of ionic species of compounds of the invention results in a stabilization of carbocations, in particular those in which there is a conjugation with oxygen and nitrogen and, surprisingly, in a strong activity of the proton form of the compounds of the invention on certain monomers.
- the present invention therefore also has as an object the use of the ionic compounds as photoinitiators which constitute sources of Br ⁇ nsted acids, which are catalysts for the polymerization or cross-linking of monomers or polymers capable of cationic reaction, or as catalysts for the modification of polymers.
- the process of polymerization or cross-linking of monomers or prepolymers capable of cationic reaction is characterized in that there is used a compound of the invention as photoinitiator constituting a source of acid catalyzing the polymerization reaction.
- a compound of the invention as photoinitiator constituting a source of acid catalyzing the polymerization reaction.
- substituent R D or substituent Z is made so as to increase the solubility of said compound in the solvents used for the reaction of monomers or prepolymers, and as a function of the desired properties for the final polymer.
- substituent R D or substituent Z is made so as to increase the solubility of said compound in the solvents used for the reaction of monomers or prepolymers, and as a function of the desired properties for the final polymer.
- non-substituted alkyl radicals gives a solubility in low polar media.
- radicals comprising an oxa group or a sulfone will give a solubility in polar media.
- the radicals including a sulfoxide group, a sulfone group, a phosphine oxide group, a phosphonate group, respectively obtained by the addition of oxygen on the atoms of sulfur or phosphorus, may give to the polymer obtained improved properties with respect to adhesion, shine, resistance to oxidation or to UV.
- the monomers and prepolymers which may be polymerized or cross-linked with the photoinitiators of the present invention are those which may undergo a cationic polymerization.
- the monomers and prepolymers which may be polymerized or cross-linked with the photoinitiators of the present invention are those which may be subject to cationic polymerization.
- monomers which include a cyclic ether function, a cyclic thioether function or cyclic amine function vinyl compounds (more particularly vinyl ethers), oxazolines, lactones and lactames may be mentioned.
- vinyl ethers constitute a very important family of monomers which are capable of cationic polymerization.
- vinyl compounds may include, by way of example, 1,1-dialkylethylenes (for example isobutene), vinyl aromatic monomers (for example styrene, ⁇ -alkylstyrenes, such as ⁇ -methylstyrene, 4-vinylanisole, acenaphthene) N-vinyl compounds (for examples N-vinylpyrolidone or N-vinyl sulfonamides).
- 1,1-dialkylethylenes for example isobutene
- vinyl aromatic monomers for example styrene, ⁇ -alkylstyrenes, such as ⁇ -methylstyrene, 4-vinylanisole, acenaphthene
- N-vinyl compounds for examples N-vinylpyrolidone or N-vinyl sulfonamides.
- prepolymers there may be mentioned compounds in which epoxy groups are carried by an aliphatic chain, an aromatic chain, or a heterocyclic chain, for example glycidic ethers of bisphenol A which are ethoxylated by 3 to 15 ethylene oxide units, siloxanes having lateral groups of the epoxycyclohexene-ethyl type obtained by hydrosilylation of copolymers of dialkyl, alkylaryl or diaryl siloxane with methyl hydrogenosiloxane in the presence of vinylcyclohexene oxide, condensation products of the sol-gel type obtained from triethoxy or trimethoxy silapropylcyclohexene oxide, urethanes incorporating the reaction products of butanediol monovinylether and an alcohol of a functionality higher than or equal to 2 with an aliphatic or aromatic di- or tri-isocyanate.
- glycidic ethers of bisphenol A which are ethoxylated by 3 to 15 ethylene oxide
- the process of polymerization according to the invention consists in mixing at least one monomer or prepolymer capable of cationic polymerization and at least one ionic compound of the invention, and subjecting the mixture obtained to actinic or ⁇ radiation.
- the reaction mixture is subjected to radiation having been formed into a thin layer having a thickness lower than 5 mm, preferably in the form of a thin layer having a thickness lower than or equal to 500 ⁇ m.
- the duration of the reaction depends on the thickness of the sample and the power of the source at the active X wavelength. It is defined by the speed at which it passes in front of the source, which is between 300 m/min and 1 cm/min. Layers of the final material having a thickness greater than 5 mm may be obtained by repeating many times the operation consisting in spreading a layer and treating it with the radiation.
- the quantity of photoinitiator used is between 0.01 and 15% by weight with respect to the weight of the monomer or prepolymer, preferably between 0.1 and 5% by weight.
- An ionic compounds of the present invention may be used as photoinitiator in the absence of solvent, for example when it is intended to polymerize liquid monomers in which the ionic compound used as photoinitiator is soluble or easily dispersible. This type of utilization is particularly interesting, since it enables to overcome the problems associated with solvents (toxicity, flammability).
- An ionic compound of the present invention may also be used as photoinitiator in the form of a homogeneous solution in a solvent which is inert towards polymerization, ready to be used and easily dispersible, in particular in the case where the medium to be polymerized or cross-linked has a high viscosity.
- volatile solvents such as acetone, methyl-ethyl ketone and acetonitrile. These solvents will be used simply to dilute the products to be polymerized or cross-linked (to make them less viscous, especially when dealing with a prepolymer). They will be removed by drying after polymerization or cross-linking. Non-volatile solvents may also be mentioned. A non-volatile solvent also serves to dilute the products that one wishes to polymerize or cross-link, and to dissolve the ionic compound of the invention used as photoinitiator, however, it will remain in the material formed and will thus act as plasticizing agent.
- volatile solvents such as acetone, methyl-ethyl ketone and acetonitrile.
- propylene carbonate, ⁇ -butyrolactone, ether-esters of mono-, di-, tri-ethylene or propylene glycols, ether-alcohols of mono-, di-, tri-ethylene or propylene glycols, plasticizing agents such as esters of phthalic acid or citric acid, may be mentioned.
- solvent or diluent there may be used as solvent or diluent a compound which is reactive towards polymerization, which is a compound of low molecular weight and of low viscosity which will simultaneously act as polymerization monomer and solvent or diluent for more viscous polymers or prepolymers used in combination.
- these monomers having been used as solvent will be part of the macromolecular network finally obtained, their integration being wider when dealing with bi-functional monomers.
- the material obtained after irradiation is now free of products having a low molecular weight and a substantial vapour tension, or capable of contaminating objects with which the polymer is in contact.
- a reactive solvent may be selected from mono and divinyl ethers of mono-, di-, tri-, tetra-ethylene and propylene glycols, N-methylpyrolidone, 2-propenylether of propylene carbonate commercially available for example under the commercial designation PEPC from ISP, New Jersey, United States.
- the irradiation may be selected from ultraviolet radiation, visible radiation, X-rays, ⁇ rays and ⁇ radiation.
- ultraviolet light is used as actinic radiation, it may be advantageous to add to the photoinitiators of the invention photosensitizers intended to provide an efficient photolysis with wavelengths less energetic than those corresponding to the maximum of absorption of the photoinitiator, such as those produced by industrial devices, (l ⁇ 300 nm for mercury vapour lamps in particular).
- Such additives are known, and by way of non-limiting example, there may be mentioned anthracene, diphenyl-9,10-anthracene, perylene, phenothiazine, tetracene, xanthone, thioxanthone, acetophenone, benzophenone, 1,3,5-triaryl-2-pyrazolines and derivatives thereof, in particular derivatives which are substituted on the aromatic nuclei by alkyl, oxa- or aza-alkyl radicals, enabling inter alia to change the absorption wavelength.
- Isopropylthioxantone is an example of preferred photosensitizer when an iodonium salt according to the invention is used as photoinitiator.
- ultraviolet radiation is particularly preferred.
- photoinitiators are in general directly sensitive towards UV rays and photosensitizers are more efficient when the difference of energy ( ⁇ ) is lower.
- the ionic compounds of the invention may also be used in association with free radical initiators produced thermally or by action of actinic radiation. It is also possible to polymerize or cross-link mixtures of monomers or polymers containing functions in which the types of polymerization are different, for example, monomers or prepolymers which polymerize by free radical and monomers or prepolymers which polymerize by cationic polymerization. This possibility is particularly advantageous to produce interpenetrated networks having physical properties which are different from those which would be obtained by a simple mixture of polymers originating from corresponding monomers. Vinyl ethers are not or are very little active by free radical initiation.
- a free radical initiator at least one monomer of the vinyl ether type and at least one monomer comprising non-activated double bonds such as those of the allyl groups, to carry out a separate polymerization of each type of monomer.
- monomers which are lacking in electrons such as esters or amides of furmaric acid, maleic acid, acrylic or methacrylic acid, itaconic acid, acrylonitrile, methacrylonitrile, maleimide and derivatives thereof, form in the presence of vinyl ethers which are enriched in electrons, complexes of transfer of charge giving alternated polymers 1:1 by free radical initiation.
- An initial excess of vinyl monomers with respect to this stoichiometry enables to preserve polymerizable functions by pure cationic initiation.
- the following commercial products Irgacure 184®, Irgacure 651®, Irgacure 261®, Quantacure DMB®, Quantacure ITX® may be mentioned as initiators.
- thermo-dissociable radical initiator a thermo-dissociable radical initiator and a cationic photoinitiator according to the invention enables to provide sequential polymerizations or cross-linking, first under the action of heat, then under the action of actinic radiation.
- Free radical initiators may for example be Irgacure® 651 enabling to initiate free radical polymerizations at wavelength of 365 nm.
- the invention also has as an object the use of ionic compounds of the invention for chemical amplification reactions of photoresists in the field of microlithography.
- a film of a material comprising a polymer and an ionic compound of the invention is subject to irradiation.
- the irradiation causes the formation of the acid by replacement of the cation M with a proton, which catalyzes the decomposition or transformation of the polymer.
- the monomers formed or the polymer which has been converted are removed and what remains is an image of the unexposed parts.
- a compound of the invention which is in the form of a polymer consisting essentially of styrenyl recurring units carrying an ionic substituent —C(CN) 2 ⁇ .
- These compounds enable to obtain after photolysis products which are not volatile, and therefore not odoriferous when dealing with sulfides.
- poly(phthaldehydes) polymers of bisphenol A and a diacid
- polytertiobutoxycarbonyl oxystyrene polytertiobutoxy- ⁇ -methyl styrene
- polyditertiobutylfumarate-co-allyltrimethylsilane polyacrylates of a tertiary alcohol, in
- the ionic compounds of the present invention which have an elevated thermal stability, give numerous advantages with respect to the known salts of the prior art. They have speeds of initiation and propagation which are comparable or higher than those obtained with coordination anions of the type PF 6 —, AsF 6 — and especially SbF 6 —.
- the coefficient of diffusion of the anion —C(CN) 2 ⁇ is higher than that of hexafluorometallate anions or tetrafluoroborate anions or phenylborate anions.
- the pairs of ions have a very high dissociation, which enables the expression of intrinsic catalytic properties of the cation M m+ , in which the active orbits are easily exposed to substrates of the reaction, especially in different media. Most of the important reactions of organic chemistry may thus be carried out under easy conditions, with excellent yields and the possibility of separating the catalyst from the reaction mixture.
- the demonstration of asymmetric induction by the use of an ionic compound according to the invention which carries a chiral group is particularly important in view of its generality and its ease of operation.
- the present invention consequently has as another object the use of compounds of the invention as catalysts in Friedel-Crafts reactions, Diels-Alder reactions, aldolization reactions, additions of Michael, reactions of allylation, reactions of pinacolic coupling, reaction of glycosilation, reaction of openings of the cycle of oxetanes, reactions of metathesis of alkenes, polymerizations of the Ziegler-Natta type, polymerizations of the metathesis type by cycle opening and polymerizations of the metathesis type of acyclic dienes.
- the preferred ionic compounds of the invention for utilization as catalyst for the above reactions are those in which the cation is selected from lithium, magnesium, copper, zinc, tin, trivalent metals, including rare earths, platinoids, and their organometallic couples, in particular metallocenes.
- the compounds of the invention may also be used as solvent to carry out chemical, photochemical, electrochemical, photoelectrochemical reactions.
- the ionic compounds in which the cation is an imidazolium, triazolium, pyridinium or 4-dimethylamino-pyridinium are preferred, said cation possibly carrying a substituent on the carbon atoms of the cycle.
- the compounds used in liquid form those having a melting point lower than 150° C., more particularly lower than 100° C., are particularly preferred.
- the inventors have also found that the ionic charge carried by the group —C(CN) 2 ⁇ have a stabilizing effect on the electronic conductors of the conjugated polymer type, and that the use of the compound in which the substituent Z comprises a long alkyl chain enables to make these polymers soluble in known organic solvents even in doped state. Grafting of these charges on the polymer itself gives polymers with global cationic charge, which are soluble and present, in addition to their stability, anti-corrosion properties towards metal, such as aluminum and ferrous metals.
- the preferred ionic compounds for this application are those in which the substituent Z or R D contains an alkyl chain having 6 to 20 carbon atoms.
- the coloring materials of cationic type are used more and more frequently as sensitizers of photographic films, for storing optical information (optical disks accessible in writing), for lasers.
- the tendency of these conjugated molecules to pile over one another when they are in solid phase limits their utilization, because of the variation of the optical properties with respect to the isolated molecule.
- the use of ionic compounds of the invention for manufacturing cationic coloring materials including counter ions, possibly bound to this same molecule, correspond to functions of the invention enables to reduce phenomenons of aggregation, including in solid polymer matrices and to stabilize these coloring materials.
- the particularly preferred ionic compounds for this application are those in which the negative charge(s) of the anionic group —C(CN) 2 ⁇ are either fixed to the molecule of the coloring material, or they constitute the counter-ion of the positive charges of the coloring material.
- All the compounds of the invention have been prepared from alkali metal salts of malononitrile. Said salts have been obtained from commercial malononitrile previously purified in a sublimation cell at 40° C. under secondary vacuum, the malononitrile being recovered after 48 hours on the cold finger of the cell, in the form of white crystals which are thereafter kept under argon.
- the lithium salt was obtained by dosing an aqueous solution of malononitrile with a titrated solution of lithium hydroxide LiOH, the neutralization point being determined by means of a pH-meter. The aqueous solution was thereafter lyophilized, and the product was dried under secondary vacuum at room temperature during 72 hours. There is obtained a lithium salt which, kept under argon, has a purity determined by a proton and carbon RMN higher than 99%.
- This ionic coloring material is a pH indicator in a non-aqueous medium (yellow-orange-red-violet transition in the pH zone 1-4).
- This compound is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers.
- a primary generator comprising a magnesium anode was made as follows: anode Electrolyte Cathode Mg polymer electrolyte with composite: anionic vehicular mechanism graphite fluoride - carrying Mg ions electrolyte - acetylene black
- the electrolyte is the film of polymer electrolyte containing the complex ⁇ Mg[CH 3 OCH 2 COC(CN) 2 ] 3 ⁇ ⁇ as described above.
- the positive electrode was obtained in the following manner: a composition was prepared containing 42% v/v of an electrolyte identical to the one described above, 8% v/v of acetylene black and 50% v/v of graphite fluoride CF x (x ⁇ 1); this composition was diluted in acetonitrile, then spread on a sheet of polypropylene 8 ⁇ m thick metallized with 200 nm of copper, so as to form a layer about 80 ⁇ m thick.
- the negative electrode was a sheet of magnesium 20 ⁇ m thick.
- the voltage of the battery after assembling by lamination of the elements at 80° C. was 2.5 V and the capacity for a flow of 400 ⁇ A/cm 2 was 7 mAh/cm 2 .
- a sulfonated oligomer of poly (ethylene oxide) PEO was prepared in the following manner: 10 g of PEO of molecular weight 600 were dried by azeotropic distillation with benzene and lyophilization. After adding 50 ml of THF, the terminal groups OH were metallized with potassium-naphthalene. The stoichiometry was determined by colorimetry, the end of the reaction being indicated by a persistence of an intense green color of the anion radical of naphthalene. 4.10 g of propanesultone were then added. After evaporation of the solvent, the ⁇ , ⁇ -disulfonated polymer was obtained in the form of powder, and the residual naphthalene was removed by washing with hexane.
- This material enables to plasticize a large number of polymers containing polar units (ether, amide, nitrile, ester . . . ), while giving them a high ionic conductivity.
- a non-ionic tensio-active material polyoxyethylene-23 lauryl ether C 12 H 25 (OCH 2 CH 2 ) 23 OH (Brij® 35) was sulfonated by a procedure similar to the one of Example 4.
- 12 g of Brij® 35 were dried by azeotropic distillation with benzene and lyophilization. After adding 50 ml of THF, the OH terminal groups were metallized with sodium hydride in the presence of 5 mg of triphenylmethane. The stoichiometry was determined by colorimetry, the end of the reaction being indicated by a persistence of an intense red color of the anion ⁇ 3 C ⁇ . 1.4 g of 1,4-butanesultone were then added. After evaporation of the solvent, the sulfonated oligomer was obtained in the form of powder.
- This material has tensio-active and plasticizing properties.
- This compound is a ligand (L) of dilvalent (A II ) and trivalent (A III ) metals, in particular rare earths.
- the corresponding complexes [A II L] 2 ⁇ M + and [A III L] ⁇ M + are salts which are soluble in polar aprotic media and in polar polymers, in particular polyethers.
- This salt has a reversible redox couple.
- polyethylene oxide it is possible to determine, on an electrode of platinum of a diameter of 125 ⁇ m, a reversible potential ⁇ 3.8 V with respect to a lithium electrode.
- This product has anti-oxidizing properties, in particular for polymers. The same is true with respect to derivatives of other cations, including organic cations such as tetraalkylammonium cations.
- This salt is soluble in particular in acetone, acetonitrile, ethyl acetate, tetrahydrofurane. It may be used as a free radical initiator to initiate polymerization or cross-linking reactions already at 60° C.
- Rhodamine B 479 mg (1 mmole) of Rhodamine B were suspended in 10 ml of pyridine and 104 mg (1 mmole) of the potassium salt of malononitrile, and 206 mg (1 mmole) of dicyclohexylcarbodiimide were added. After 48 hours under stirring, the mixture was filtered to remove dicyclohexylurea and was subjected to evaporation.
- the compound obtained is a zwitterion which has intense coloring properties. It is soluble in polar polymers and enables to provide lasers with coloring materials.
- the acetylmalononitrile group also enables it to be adsorbed on oxides, in particular nano-particulate titanium dioxide, it then acts as a sensitizer towards visible radiation, in particular in applications to photovoltaic cells.
- the lithium salt of dibutylaminosulfonylmalononitrile was obtained from dibutylamine.
- Potassium salts were obtained by treating the lithium salts in the minimum amount of water with potassium fluoride KF. After filtration, evaporation and drying, quantitative amounts of potassium salts were recovered.
- This salt is highly soluble in low polar solvents such as dichlorolmethane or methylene chloride as well as in low polar matrices such as methylpolymethacrylate.
- This salt enables to initiate, under the effect of an actinic radiation (light, ⁇ rays, electron beams), the reaction of cationic cross-linking of monomers rich in electrons (vinyl ethers, propylvinyl ethers, . . . ).
- This salt is a free radical polymerization initiator which is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating monomers and polymers, contrary to 2,2′-azobis(2-methylpropionamidine) hydrochloride.
- the solubility of the initiator used in the polymer matrix therefore enables to obtain an efficient and homogeneous cross-linking.
- this initiator contrary for example to 2,2′-azobisisobutyronitrile, is not volatile and the quantity added may at best be optimized for each type of polymerization.
- This salt may be homo- or copolymerized by means of a polymerization initiated by anionic, cationic or free radical means. It may also be grafted by irradiation on a polymer matrix such as vinylidene polyfluoride.
- the homopolymer obtained by free radical polymerization in deaerated water initiated by cyanovaleric acid at 60° C., is soluble in the usual organic solvents and in aprotic solvating polymers. In polyethylene oxide at a concentration O/Li of 16/1, this salt has a conductivity ⁇ 5.2 ⁇ 10 ⁇ 4 S.cm ⁇ 1 at. 100° C.
- this homopolymer of the lithium salt of 4-styrenesulfonylmalononitrile may be used as a catalyst for Diels-Alder reactions.
- the lithium salt of vinylsulfonylmalononitrile was obtained from 11.01 g (100 mmoles) of ethylenesulfonyl fluoride (commercially available from Fluka, Buchs, Switzerland), with a purity characterized by a proton and carbon RMN higher than 98%.
- This salt may be homo- or copolymerized by means of a free radical initiated polymerization.
- the residual compound was recrystallized in 10 ml of water containing 1.86 g (25 mmoles) of anhydrous potassium KCl. After filtration and drying, the potassium salt of 7,8-octene-3,6-oxa-1-sulfonylmalononitrile was recovered, with a purity characterized by a proton and carbon RMN higher than 98%.
- the lithium salt was obtained in quantitative yield by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtering of the reaction mixture, evaporation of the solvent and drying under vacuum.
- This salt may be homo- or copolymerized through a cation initiated polymerization, by polymerization alternated with an unsaturated monomer initiated by a free radical.
- the homopolymer prepared by polymerization in anhydrous acetonitrile initiated by cationic means with bis(trifluoromethanesulfonyl)imide has a conductivity at a concentration of 0.8 M in a mixture of dimethylcarbonate and ethylene carbonate (2:1) of 6 ⁇ 10 ⁇ 3 S.cm ⁇ 1 at 30° C.
- this homopolymer is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers such as polyethylene oxide.
- This homopolymer consequently constitutes a good ionically conductive material.
- This compound was oxidized into iodosoacetate K[(NC) 2 CSO 2 C 6 H4I(O 2 CCH 3 ) 2 ] with a mixture of acetic acid, acetic anhydride and hydrogen peroxide according to the method of Yamada & al ( Die Makromolecular Chemie, (1972), 152, 153-162). 4.88 g (10 mmoles) of said iodosoacetate were suspended in a mixture of 15 ml of methanesulfonic-acid and 4.51 g (30 mmoles) of butoxybenzene kept at 0° C. during 4 hours.
- This zwitterion enables to initiate under the effect of actinic radiation (light, g rays, electron beams) a cationic cross-linking reaction of electron enriched monomers (vinyl ethers, vinylpropenyl ethers, . . . ).
- This salt is useful as a catalyst for the vinyl polymerization of norbornene.
- norbornene was polymerized at room temperature in nitromethane in the presence of 300 ppm of this salt. After 2 hours, the reaction mixture was reprecipitated in methanol. There is obtained a polynorbornene having an average molecular weight number of 420,000, with a yield of 82%.
- This compound is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in polar polymers.
- This compound has two reversible redox couples.
- polyethylene oxide it was possible to show, on a platinum electrode of 125 ⁇ m diameter, a first redox couple at a potential ⁇ 3.2 V and a second redox couple at a potential ⁇ 3.8 V, these potentials being measured towards a lithium electrode.
- this compound When it is dissolved in a liquid, gel or polymer electrolyte, this compound provides a protection in surcharge in lithium batteries, thus acting as a redox shuttle.
- This compound also enables to provide electrochrome systems with coloring materials.
- an electrochrome glazing was produced by depositing on a glass plate, covered with a conductive layer of ITO (indium and tin oxide), an acetone solution of this compound and of poly (benzodiimide-co-ethylene oxide) of a molecular weight ⁇ 1,100 g/mole, obtained by a process similar to the one described in French Patent Application FR 93/01117. After evaporating the solvent and drying, on a previously deposited polymer, in a glove box, a second glass electrode covered with a conductive layer of ITO was assembled.
- ITO indium and tin oxide
- poly (benzodiimide-co-ethylene oxide) of a molecular weight ⁇ 1,100 g/mole
- the lithium salt was obtained by ionic exchange with lithium chloride in tetrahydrofurane.
- homopolymers or copolymers may be obtained with various alkoxysilanes in a protic medium, possibly in the presence of a catalyst, (acid, base, fluoride, . . . ).
- a copolymer was prepared by polycondensing the potassium salt of 2-(triethoxysilyl)ethylsulfonylmalononitrile with O-[2-(trimethoxysilyl)ethyl]-O′-methylpolyethylene glycol of molecular weight 5,000 (commercially available from Shearwaters Polymers) (5:1) in a water/methanol mixture, by utilizing as catalyst a trace of a perchloric acid. After a few hours, the solution was concentrated.
- a felt of activated carbon, previously degassed, with a specific surface of 1,500 m 2 /g (commercially available from Actitex), was then impregnated with the viscous liquid obtained. After drying, the operation was repeated to improve the impregnation. After one week in a drying oven at 50° C., 2 pastils with a diameter of 2 cm were stamped out. A sheet of cigarette paper (commercially available from Bolloré Technologies) was then impregnated with a viscous liquid which is identical to the one used to impregnate the carbon felt mentioned above. This sheet was placed between the two carbon electrodes previously stamped out. After one week in a drying oven at 50° C.
- This supercapacitance has the following characteristics at 40° C.: a density of energy of 15 Wh/l (or a capacity of 96 F/g of carbon for an electrode), a maximum power of 700 W/kg and good results in cycling (more than 10,000 cycles of charge/discharge between 0 and 2V).
- This type of supercapacitance is particularly interesting for the field of electronics because of the absence of volatile liquids.
- the lithium salt of bis[3-(trimethoxysilyl)propyl]aminosulfonylmalononitrile was synthesized from 12.54 g (40 mmoles) of bis[3-(trimethoxysilyl)propyl]amine [(CH 3 O) 3 Si(CH 2 ) 3 ] 2 NH), (commercially available from Fluka).
- the compound obtained had a purity characterized by a proton and carbon RMN higher than 98%.
- This compound has analogous properties to those of the compounds of Example 25 and may be used for the same applications.
- a polycondensation of this compound was carried out in a water/methanol mixture, by utilizing a drop of concentrated hydrochloric acid as catalyst. After a few hours, the solvents were evaporated and the viscous liquid obtained was poured onto a Teflon® plate. After one week in a drying oven at 50° C., the material obtained was dried under vacuum at during 48 hours, and was crushed under argon until the particle size was of the order of 1 micron. A composite electrolyte was then prepared by mixing this powder with polyethylene oxide of molecular weight 300,000 in acetonitrile.
- This electrolyte After pouring this dispersion in a glass ring and evaporating acetonitrile, there is obtained a film of composite electrolyte of good mechanical quality, with a thickness of 220 ⁇ m.
- This electrolyte has an ionic conductivity higher than 10 ⁇ 5 S.cm ⁇ 1 at 60° C. and a cationic transport number of 0.92.
- PANSSM poly-(acrylonitrile-co-4-styrenesulfonylmalonitrile)
- This polymer enables to prepare gelled polymer electrolytes with fixed anions. It constitutes the matrix enabling to obtain the gel and it has the properties of a polyelectrolyte.
- a gelled electrolyte was prepared (30% by weight of PANSSM, 35% of ethylene carbonate, 35% of propylene carbonate). This gel has good mechanical properties and a conductivity of 7.9 ⁇ 10 ⁇ 4 S.cm ⁇ 1 at 30° C. The cationic transport number of this electrolyte was estimated to be 0.95.
- An electrochemical generator was prepared by utilizing said gelled electrolyte, a composite anode consisting of carbon coke, (80% by volume) mixed with the copolymer (PANSSM) as binder (20% by volume), and a composite cathode consisting of carbon black (6% by volume) LiCoO 2 (75% by volume) and a copolymer (PANSSM) (20% by volume).
- This generator made it possible to do 1,000 cycles of charge/discharge between 3 and 4.2 V by maintaining a capacity higher than 80% of the capacity during the first cycle, when cycling at 25° C. It has very good performances during calls for power due to the utilization of fixed anions. The use of fixed anions has also permitted to improve the evolution of the interface resistance.
- the lithium salts of these three derivatives were prepared in quantitative amounts by ionic exchange between the potassium salt and lithium chloride in anhydrous tetrahydrofurane.
- the salts of 1-dodecanesulfonylmalonitrile had an undeniable interest as additives for laminating lithium and for the extrusion of polymers, in particular the extrusion of polyethylene oxide.
- the lithium salt was obtained in quantitative yield by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtration of the reaction mixture, evaporation of the solvent and drying under vacuum.
- These compounds may be used as an additive for laminating lithium and for the extrusion of polymers, in particular the extrusion of polyethylene oxide. They also have plasticizing and antistatic properties.
- the lithium salt was obtained in quantitative yield by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtration of the reaction mixture, evaporation of the solvent and drying under vacuum.
- These salts may be used in chemical reactions where ethylenic bonds are involved. They may in particular be homo- or copolymerized by a polymerization which is initiated by free radical or by a coordinated polymerization catalyst, such as a zircanocene.
- the lithium salt was obtained by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtration of the reaction mixture, evaporation of the solvent and drying under vacuum.
- These salts may be homo- or copolymerized by a polymerization initiated with anionic or cationic means. More generally, they may undergo chemical reactions in which oxetanes are involved.
- the homopolymer of the potassium salt of 2,3-epoxybutane-1-sulfonylmalononitrile was prepared by a polymerization in tetrahydrofurane initiated by anionic means with potassium tert-butoxide, and the lithium polysalt was obtained by ionic exchange in THF with anhydrous lithium chloride.
- the latter has a conductivity in gelled medium (21% by weight of polyacrylonitrile, 38% of ethylene carbonate, 33% of propylene carbonate, 8% of homopolymer) of 1.2 ⁇ 10 ⁇ 3 S.cm ⁇ 1 at 30° C.
- the cationic transport number in this electrolyte is 0.76.
- this homopolymer is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers.
- the potassium salt was obtained by treating the lithium salt, in a minimum amount of water, with potassium fluoride KF. After filtration, evaporation and drying, the potassium salt was recovered in quantitative yield.
- These salts have a potential of oxidation at a concentration 0.5 M in acetonitrile higher than 4.5 V towards a lithium anode.
- the lithium salt alone or in admixture with the potassium salt, may be used for Li-Ion batteries with liquid or gel electrolytes, and polymer electrolyte lithium batteries.
- a battery was assembled by utilizing an anode consisting of a mixture of carbon coke (80% by volume) and poly(vinylidene fluoride) (PVDF, commercially available from Montedison) as a binder (20% by volume), an electrolyte consisting of a mixture of ethylene carbonate and dimethylcarbonate (2:1), gelled with PVDF, containing the lithium salt of 5-trifluoromethyl-1,3,4-thiadiazole-2-sulfonylmalononitrile at a concentration 1 M and a composite cathode consisting of a mixture of carbon black (6% by volume), Li 2 MnO 4 (75% by volume) and PVDF as binder (20% by volume).
- the battery was subjected to cycling at 25° C. After 1,000 cycles of charge/discharge between 2 and 4.7 V, the battery maintained a capacity representing about 50% of the capacity during the first cycle.
- the acid in ether solution was obtained, by adding 100 ml of hydrochloric acid 1 M at 0° C. (100 mmoles) to a suspension of 9.7 g of the lithium salt of tricyanaomethane (100 mmoles) in 30 ml of ether. After a few minutes under stirring, tricyanaomethane was recovered in the ether phase. After drying the organic phase with magnesium sulfate, 7.15 g of imidazole (105 mmoles) were added. A precipitate was immediately formed which was recovered by filtration and drying. 15.23 g (96% yield) of tricyanomethane imidazolium were recovered, with a purity characterized by a proton and carbon RMN higher than 99%.
- a crushing in a glove box of a molar mixture of 7 imidazoles for two salts of imidazolium has enabled to obtain a liquid in the mortar.
- This molten salt has a high protonic conductivity, higher than 10 ⁇ 3 S.cm ⁇ 1 at 60° C.
- This molten salt may be used to prepare a polymer electrolyte, which is an anhydrous protonic conductor, by adding polyethylene oxide, preferably of high molecular weight or which could later on be cross-linked, to the molten salt without harming the conductivity.
- These polymer electrolytes are particularly interesting for preparing systems of modulating light such as electrochrome glazing including electrochrome systems with coloring material.
- a polymer electrolyte made of the molten salt at 80% by weight and 20% by weight of polyethylene oxide of molecular weight 5 ⁇ 10 6 was used to prepare a membrane which is optically transparent in the visible range and has a good mechanical behaviour. Then, an electrochrome system was prepared in a glove box by utilizing this membrane enclosed between a first electrode consisting of the deposit on a glass plate of a layer of hydrogenated iridium oxide H x IrO 2 and as a sub-conductive layer of tin oxide and a second electrode consisting of a layer of tungsten trioxide WO 3 and a conductive sub-layer of tin oxide.
- the electrochrome has permitted a variation of the optical absorption between 80% (discolored state) and 30%(colored state) and good performances in cycling (more than 20,000 cycles).
- This molten salt has a conductivity of 4.5 ⁇ 10 ⁇ 3 S.cm ⁇ 1 and a freezing point lower than ⁇ 20° C. Its wide range of redox stability makes it a particularly interesting electrolyte for electrochemical generators such as lithium batteries, supercapacitances, systems of light modulation, photovoltaic cells.
- An electrochemical supercapacitance was prepared by utilizing the molten salt of 1-ethyl-3-methyl-1H-imidazolium of trifluoromethane-sulfonylmalononitrile as electrolyte and carbon/aluminum composites as electrodes.
- the electrodes of a thickness of 150 ⁇ m were placed on both sides of a microporous polyethylene having a thickness of 40 ⁇ m and the complete system was sealed in a glove box in a housing of button shaped battery after having been soaked with the molten liquid salt.
- the supercapacity obtained has enabled to produce more than 100,000 cycles of charge/discharge between 0 and 2.5 V for a density of energy higher than 25 Wh/l and a delivered power higher than 1,500 W/l.
- the potassium salt of 2-malononitrile-3,5-dinitrobenzo-trifluoride was prepared from 10.82 g (40 mmoles) of 2-chloro-3,5-dinitrobenzotrifluoride (commercially available from Aldrich), with a purity determined by a fluorine, proton and carbon RMN higher than 99%.
- the potassium salt of (1R)-( ⁇ )-10-camphorsulfonylmalononitrile was obtained from (1R)-( ⁇ )-10-camphorsulfonyl chloride (commercially available from Aldrich) and the potassium salt of (1S)-(+)-camphorsulfonylmalononitrile was obtained from (1S)-(+)-10-camphorsulfonyl (commercially available from Aldrich) with yields higher than 70% and a purity, determined by a proton and carbon RMN higher than 99%.
- Scandium salts were obtained by treating the corresponding potassium salts with a stoichiometric quantity of scandium tetrafluoroborate (BF 4 ) 3 in acetonitrile. After filtration to remove the precipitate of potassium tetrafluoroborate KBF 4 and evaporation of the solvent, scandium salts of the two enantiomers were recovered in quantitative yield.
- the potassium salts were obtained by treating the lithium salts with potassium fluoride KF in water. After filtration, evaporation and drying, the potassium salts were recovered in quantitative yield.
- the scandium salts were obtained by treating the potassium salts with a stoichiometric quantity of scandium tetrafluoroborate Sc(BF 4 ) 3 in acetonitrile. After filtration to eliminate the precipitate of tetrafluoroborate KBF 4 and evaporation of the solvent, the scandium salts of the two enantiomers were recovered in quantitative yield.
- the scandium salt was obtained by treating the potassium salt with a stoichiometric quantity of scandium tetrafluoroborate Sc(BF 4 ) 3 in acetonitrile. After filtration to remove the precipitate of potassium tetrafluoroborate KBF 4 and evaporation of the solvent, the scandium salt of (1S)-(+)-ketopinic-acetylmalononitrile was recovered in quantitative yield.
- the scandium salt of dibutylaminosulfonylmalononitrile was obtained by treating the potassium salt, obtained in Example 14, with a stoichiometric quantity of scandium tetrafluoroborate Sc(BF 4 ) 3 in acetonitrile. After filtration to eliminate the precipitate of potassium tetrafluoroborate KBF 4 and evaporation of the solvent, the scandium salt of dibutylaminosulfonylmalononitrile Sc(DBSM) 3 ) was recovered in quantitative yield.
- This salt was used as catalyst for a reaction of aldol condensation in the following manner: To a solution containing 32.6 mg (0.04 mmoles) of the scandium salt of dibutylaminosulfonylmalononitrile (10% molar) in 1.5 ml of dichloromethane, there is added a mixture of 105 mg (0.6 mmoles) of 1-ene-2-methyl-1-silylacetal-1-methoxypropene (CH 3 ) 2 C ⁇ C(OSiMe 3 )OMe and 42 mg (0.4 mmoles) of benzaldehide in 1 ml of dichloromethane. After 16 hours under stirring at room temperature, water is added and the product was extracted with dichloromethane.
- reaction was continued during 2 hours at ⁇ 20° C., and during 24 hours at room temperature. 8.8 g (50 mmoles) of sodium malononitrile and 5.61 g of DABCO were then added. After 48 hours, the reaction mixture was filtered to remove the precipitate of DABCO hydrochloride, and the solvent was evaporated and the residue was recrystallized in 50 ml of water containing 7.46 (100 mmoles) of potassium chloride KCl.
- the potassium salt of 1-(6-anilino-1-hexane)-2,2,2-trifluoroethanesulfonylmalononitrile was obtained, with a purity characterized by a proton, carbon and fluorine RMN higher than 99%.
- This polymer compound which comprises a doping anion very delocalized in its structure presents properties of electronic conductor (PCE).
- PCE electronic conductor
- This material was tested as the cathode of a battery.
- the battery had the following structure:
- a composite cathode consisting of 40% by volume of the polymer compound obtained in the present example and 60% by volume of polyethylene oxide of molecular weight 3 ⁇ 10 5 ;
- the battery obtained was cycled at a temperature of 60° C. between 3 V and 3.9 V. It was possible to make more than 1,000 cycles of charge/discharge while keeping 80% of the capacity of the first cycle.
- the polymer compound of the present example is a good corrosion inhibitor of ferrous metals and enables to produce deposits on plastic materials treated by Corona effect.
- This compound forms anionic complexes with metals such as aluminum, zinc, magnesium, iron, chromium. These complexes are soluble in aprotic solvents or solvating polymers and are useful as vehicular carriers of complexed metals (Mg, Al) or as stable redox couple (Fe, Cr).
- This salt is soluble in polar solvents, such as propylene carbonate or solvating polymers based on ethylene oxide, and gives conductivities of the order of 10 ⁇ 4 S.cm ⁇ 1 at 90° C. with an excellent stability of the interface with lithium.
- anode consisting of a sheet of metallic lithium having a thickness of 50 ⁇ m
- the assembly was sealed in a housing for button shaped battery which enables to protect the generator from the atmosphere and also to exercise a mechanical stress on the films.
- the battery was then placed in an enclosure under argon mounted in a drying oven at a temperature of 60° C. It was thereafter cycled between 1.8 and 3.3 V at a rate of charge and discharge of C/10 (nominal capacity charged or discharged in 10 hours).
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Inorganic Chemistry (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Polymers & Plastics (AREA)
- Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Dispersion Chemistry (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Secondary Cells (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Plural Heterocyclic Compounds (AREA)
- Nitrogen- Or Sulfur-Containing Heterocyclic Ring Compounds With Rings Of Six Or More Members (AREA)
- Conductive Materials (AREA)
- Battery Electrode And Active Subsutance (AREA)
- Pyrane Compounds (AREA)
- Primary Cells (AREA)
- Epoxy Compounds (AREA)
- Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Pyrrole Compounds (AREA)
- Nitrogen Condensed Heterocyclic Rings (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
- Carbon And Carbon Compounds (AREA)
- Polymerization Catalysts (AREA)
- Heterocyclic Compounds Containing Sulfur Atoms (AREA)
- Pyridine Compounds (AREA)
- Polymerisation Methods In General (AREA)
- Thiazole And Isothizaole Compounds (AREA)
Abstract
The invention is related to ionic compounds, derivatives of malononitrile, in which the anionic load has been displaced. An ionic compound disclosed by the invention includes an anionic portion combined with at least one cationic portion M+m in sufficient number to ensure overall electronic neutrality; the compound is further comprised of M as a hydroxonium, a nitrosonium NO+, an ammonium —NH4+, a metallic cation with the valence m, an organic cation with the valence m, or an organometallic cation with the valence m. The anionic portion corresponds to one of the formulas RD—Y—C(C≡N)2 − or Z-C(C≡N)2 − in which Z is an electroattractive group, RD is an organic radical, and Y is a carbonyl, a thiocarbonyl, a sulfonyl, a sulfinyl, or a phosphonyl. The compounds can be used notably for ionic conducting materials, electronic conducting materials, colorants, and the catalysis of various chemical reactions.
Description
- The present invention is concerned with ionic compounds derived from malononitrile in which the anionic charge is delocalized, and their uses.
- It is known and particularly interesting to introduce ionic groups in organic molecules or polymers having various functions. Coulombic forces correspond, indeed, to the stronger interactions which are available at the molecular level, and the ionic groups modify in a very noted manner the molecules to which they are attached. Coloring materials which are made soluble in water by means of sulfonate or carboxylate functions may be mentioned.
- However, the —CO2 −1/mMm+ or —SO3 −1/mMm+ groups of this type are not dissociated, and they cause no solubility in solvents except water or certain highly polar protic solvents such as light alcohols, which considerably restrict the scope of their use.
- On the other hand, salts of the compounds [RFSO2—N—SO2RF]− 1/mMm+ in which RF is a perfluorinated group and Mm+ is a cation of valence m+ which are soluble and are dissociated in ordinary aprotic media or solvating polymers, are known. It is however considered that the existence of two perfluoroalkylsulfonyl groups (in particular the existence of fluorine atoms on the a atom of carbon of each sulfonyl group) which exert an important attracting power on the electrons of the anionic charge, is a necessary condition to obtain properties of solubility and dissociation. For example, the pKa of the acid H[CF3SO2—N—SO2CF3] is only 1.95, as compared to that of the non-fluorinated acid CH3SO3H (pKa=0.3) and is clearly inferior to that of the perfluorinated acid CF3SO3H (pKa<−9) because of the basic character of the central nitrogen atom.
- Surprisingly, the inventors have found that the compounds containing ionic groups —C(CN)2 − have excellent properties of solubility and dissociation, even when they contain no highly electroattractive perfluorinated groups.
- The present invention consequently aims at supplying a family of ionic compounds having a good solubility and a good dissociation, without requiring complex modifications of the starting molecule. The precursors of the molecules of the invention are for the most part industrial products and/or easily accessible. In addition, it should be noted that the absence, or at least the decrease of the perfluorinated fraction in the compounds of the invention, enables to reduce production costs of the compounds and consequently the cost of the resulting applications.
- An object of the present invention is an ionic compound which is a derivative of malononitrile comprising an anionic part which is associated to at least one cationic part M+m in a sufficient number to provide for the electronic neutrality of the whole, characterized in that M is a hydroxonium, a nitrosonium NO+, an ammonium —NH4 +, a metallic cation having a valency m, an organic cation having a valency m or an organometallic cation having a valency m, and in that the ionic part corresponds to one of the formulae RD—Y—C(C≡N)2 − or Z-C(C≡N)2 − in which:
- Z represents an electroattractor radical having a Hammett parameter at least equal to that of a phenyl radical, selected from:
- j) —CN, —NO2, —SCN, —N3, FSO2—, —CF3, R′FCH2— (R′F being a perfluorinated radical, preferably CF3—), fluoroalkyloxy, fluoroalkylthioxy, fluoroalkenyloxy, fluoroalkenylthioxy radicals;
- jj) radicals comprising one or more aromatic nuclei possibly containing at least one nitrogen, oxygen, sulfur or phosphorus atom, said nuclei possibly being condensed nuclei and/or said nuclei possibly carrying at least one substituent selected from halogens, —CN, —NO2, —SCN, —N3, CF2═CF—O—, radicals RF— and RFCH2— in which RF is a perfluoroalkyl alkyl having 1 to 12 carbon atoms, fluoroalkyloxy groups, fluoroalkylthioxy groups, alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl radicals, polymer radicals, radicals having at least one cationic ionophorous group and/or at least one anionic ionophorous group;
- with the proviso that one substituent Z may be a monovalent radical, a multivalent radical, or part of a multivalent radical (including a dendrimer) carrying at least one group —C(C≡N)2, or a segment of a polymer;
- Y represents a carbonyl group, a thiocarbonyl group, a sulfonyl group, a sulfinyl group or a phosphonyl group and:
- RD is a radical selected from:
- a) alkyl or alkenyl radicals, aryl, arylalkyl, alkylaryl or alkenylaryl radicals, alicyclic or heterocyclic radicals, including polycyclic radicals;
- b) alkyl or alkenyl radicals comprising at least one functional ether, thioether, amine, imine, amide, carboxyl, carbonyl, isocyanate, isothiocyanate, hydroxy;
- c) aryl, arylalkyl, arylalkenyl, alkylaryl or alkenylaryl radicals, in which the aromatic nuclei and/or at least one substituent of the nucleus comprises heteroatoms such as nitrogen, oxygen, sulfur;
- d) radicals comprising condensed aromatic cycles which possibly comprise at least one heteroatom selected from nitrogen, oxygen, sulfur;
- e) halogenated or perhalogenated alkyl, alkenyl, aryl, arylalkyl, alkylaryl radicals, said radicals possibly comprising functional ether, thioether, imine, amine, carboxyl, carbonyl or hydroxy groups;
- f) radicals RCC(R′)(R″)—O— in which RC is an alkyl perfluorinated radical and R′ et R″ are independently from one another a hydrogen atom or a radical such as defined in a), b), c) or d) above [for example CF3CH2O—, (CF3)3CO—, (CF3)2CHO—, CF3CH(C6H5)O—, —CH2(CF2)2CH2—];
- g) radicals (RB)2N—, in which the radicals RB which are identical or different are such as defined in a), b), c), d) and e) above, one of the RB may be a halogen atom, or the two radicals RB together form a divalent radical which constitutes a cycle with N;
- h) polymer radicals;
- i) radicals having one or more cationic ionophorous groups and/or one or more anionic ionophorous groups;
- with the proviso that one substituent RD may be a monovalent radical, part of a multivalent radical carrying a plurality of —Y—C−(C≡N)2 groups or a segment of a polymer;
- with the proviso that when Y is a carbonyl and RD is a perfluoroalkyl radical having 1 to 3 carbon atoms, or when Z is —CN, M is different from an alkali metal.
- According to an embodiment of the invention, the cation is a metallic cation selected from cations of alkali metals, cations of alkali-earth metals, cations of transition metals, cations of trivalent metals, cations of rare earths. By way of example, Na+, Li+, K+, Sm3+, La3+, Ho3+, Sc3+, Al3+, Y3+, Yb3+, Lu3+, Eu3 may be mentioned.
- The cation may also be an organometallic cation, such as a metallocenium. By way of example, the cations derived from ferrocene, titanocene, zirconocene, from an indenocenium or a metallocenium arene, cations of transition metals complexed with ligands of phosphine type possibly having a chirality, organometallic cations having one or more alkyl or aryl groups covalently fixed to an atom or a group of atoms, may be mentioned. Specific examples include methylzinc, phenylmercury, trialkyltin or trialkyllead, chloro[ethylene-bis(indenyl)] zirconium (IV) or tetrakis-(acetonitrile)palladium(II). The organo-metallic cation may be part of a polymer chain.
- In a specific embodiment of the invention, the organic cation is an onium cation selected from the group consisting of R3O+ (oxonium), NR4 + (ammonium), RC(NHR2)2 + (amidinium), C(NHR2)3 + (guanidinium), C5R6N+ (pyridinium), C3R5N2 + (imidazolium), C3R7N2 + (imidazolinium), C2R4N3 + (triazolium), SR3 + (sulfonium), PR4 + (phosphonium), IR2 + (iodonium), (C6R5)3C+ (carbonium) cations. In a given onium cation, the radicals R may all be similar. However, an onium cation may also include radicals R which are different from one another. A radical R may be a H or it may be selected from the following radicals:
- alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl, aryl, arylalkyl, alkylaryl, alkenylaryl radicals, dialkylamino radicals and dialkylazo radicals;
- cyclic or heterocyclic radicals possibly comprising at least one lateral chain comprising heteroatoms such as nitrogen, oxygen, sulfur;
- cyclic or heterocyclic radicals possibly comprising heteroatoms in the aromatic nucleus;
- groups comprising a plurality of aromatic or heterocyclic nuclei, condensed or non-condensed, possibly containing at least one nitrogen, oxygen, sulfur or phosphorus atom.
- When an onium cation carries at least two radicals R which are different from H, these radicals may together form a cycle which is aromatic or non-aromatic, possibly enclosing the center carrying the cationic charge.
- When the cationic part of a compound of the invention is an onium cation, it may be either in the form of an independent cationic group which is bound to the cationic part only by the ionic bond between the positive charge of the cation and the negative charge of the anionic part. In this case, the cationic part may be part of a recurring unit of a polymer.
- An onium cation may also be part of the radical Z or the radical RD carried by the anionic center. In this case, a compound of the invention constitutes a zwitterion. When the cation of a compound of the invention is an onium cation, it may be selected so as to introduce in the compound substituents enabling to give specific properties to said compound. For example, the cation M+ may be a cationic heterocycle with aromatic character, including at least one alkylated nitrogen atom in the cycle. By way of example, an imidazolium, a triazolium, a pyridinium, a 4-dimethyl-amino-pyridinium may be mentioned, said cations possibly carrying a substituent on the carbon atoms of the cycle. Among these cations, those in which the salts have a melting point lower than 150° C., more particularly lower than 25° C.
- A compound of the invention in which the cation M is a group carrying a diazoic group having —N═N—, —N═N+, a sulfonium group, an iodonium group, a phosphonium group or a substituted or non-substituted arene-ferrocenium cation, possibly incorporated in the polymeric network, is interesting inasmuch as it is activatable by a source of actinic energy of suitable wavelength. Specific examples of such compounds include those in which the cation is a diaryliodonium cation, a dialkylaryliodonium cation, a triarylsulfonium cation, a trialkylaryl sulfonium cation, or a substituted or non-substituted phenacyl-dialkyl sulfonium cation. The above cations may be part of a polymer chain.
- The cation M of a compound of the invention may be an organic cation incorporating a group 2,2′[azobis(2-2′-imidazolinio-2-yl)propane]2+ or 2,2′-azobis(2-amidiniopropane)2+. The compound the invention is then particularly interesting as a free radical initiator, which is thermally activatable and non-volatile, soluble in polar organic solvents and in aprotic solvating monomers and polymers.
- A specific family of compounds of the invention is the one which comprises a group RDY—. The compounds in which Y is —SO2— or —CO— are especially preferred.
- The choice of substituent RD enables to adjust the properties of a compound of the invention. In an embodiment, RD is selected from alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl or thia-alkenyl having 1 to 24 carbon atoms, or from aryl, arylalkyl, alkylaryl or alkenylaryl radicals having 5 to 24 carbon atoms.
- According to another embodiment, RD is selected from alkyl or alkenyl radicals having 1 to 12 carbon atoms and possibly comprising at least one heteroatom O, N or S in the main chain or in a lateral chain, and/or possibly carrying a hydroxy group, a carbonyl group, an amine group or a carboxyl group.
- According to another embodiment, RD is selected from aryl, arylalkyl, alkylaryl or alkenylaryl radicals, in which the aromatic nuclei and/or their substituents comprise heteroatoms such as nitrogen, oxygen, sulfur.
- Substituent RD may be a polymer radical, for example a poly(oxyalkylene) radical. A compound of the invention is then in the form of a polymer carrying an ionic group-Y—C(CN)2 −, M+.
- RD may be a recurring unit of a polymer, for example an oxyalkylene unit or a styrene unit. The compound of the invention is then in the form of a polymer in which at least part of the recurring units carry a lateral group on which an ionic group —Y—C(CN)2 −, M+ is fixed. By way of example, there may be mentioned a poly(oxyalkylene) in which at least certain oxyalkylene units carry a substituent —Y—C(CN)2 −, M+ or a polystyrene in which at least certain styrene units carry a substituent —Y—C(CN)2 −, M+.
- A particular category of compounds according to the invention comprises the compounds in which substituent RD has at least one anionic ionophorous group and/or at least one cationic ionophorous group. The anionic group may for example be a carboxylate function (—CO2 −), a sulfonate function (—SO3 −), a sulfonimide function (—SO2NSO2—) or a sulfonamide function (—SO2N—). The ionophorous group may for example be an iodonium, sulfonium, oxonium, ammonium, amidinium, guanidinium, pyridinium, imidazolium, imidazolinium, triazolium, phosphonium or carbonium group. The cationic ionophorous group may act totally or partially as a cation M.
- When RD includes at least one ethylenic unsaturation and/or a condensable group and/or a dissociable group by thermal means, by photochemical means or by ionic dissociation, the compounds of the invention are reactive compounds which may be subject to polymerizations, cross-linkings or condensations, possibly with other monomers. They may also be used to fix ionophorous groups on the polymers carrying a suitable reactive function.
- A substituent RD may be a mesomorphous group or a chromophore group or a self-doped electronically conductive polymer or a hydrolyzable alkoxysilane.
- A substituent RD may include a group capable of trapping free radicals, for example a hindered phenol or a quinone.
- A substituent RD may also include a dissociating dipole, for example an amide function, a sulfonamide function or a nitrile function.
- A substituent RD may also include a redox couple, a disulfide group, a thioamide group, a ferrocene group, a phenothiazine group, a bis(dialkylaminoaryl) group, a nitroxide group or an aromatic imine group.
- A substituent RD may also include a complexing ligand, or an optically active group.
- Another category of compounds of the invention comprises compounds in which Y is a carbonyl group, RD—CO— representing an amino acid, or an optically or biologically active polypeptide.
- According to another variant, a compound according to the invention comprises a substituent RD which represents a radical having a valency v higher than 2, itself including at least one group —Y—C(CN)2 − M+. In this case, the negative charges which are present on the anionic part of the compound of the invention should be compensated by the appropriate number of cations or cationic ionophorous groups M.
- When a compound of the present invention corresponds to the formula Z-C(CN)2 −, M+ in which Z is an electroattractor group which is not bonded to the nitrogen atom carrying the negative charge by means of a group —SOX—, Z is advantageously selected from the group consisting of —OCnF2n+1, —OC2F4H, —SCnF2n+1 and —SC2F4H, —OCF═CF2, —SCF═CF2, n being a whole number from 1 to 8. Z may also be a radical CnF2n+1CH2—, n being a whole number from 1 to 8.
- The compounds of the invention may be obtained by a process in which a compound RD—Y-L or Z-L is reacted with a compound [A-C(CN)2]n− m nM′m+,
- Z and RD being such as defined previously,
- M′ being H or a cation such as defined previously for M,
- L represents an electronegative starting group such as a halogen, a N-imidazoyl radical, a N-triazoyl radical, a compound giving an activated ester (for example a succinimidyloxy, a benzotriazoloxy or a O-acylurea), an alkoxide group, a RD—Y—O— group or a RD—Y—S— group, and
- A represents a cation Mm+, a trialkylsilyl group, a trialkyl germanyl group, a trialkylstannyl group or a tertioalkyl group, in which the alkyl substituents have 1 to 6 carbon atoms.
- By way of example, there should be mentioned the reaction of a flurosulfonyl fluoride with a di-salt of malononitrile according to the following reaction scheme:
- The use of a compound [A-C(CN)2]n− m nM′m+ in which A is a tertioalkyl group is advantageous, since such a group is a proton precursor by formation of the corresponding alkene. The use of the trialkylsilyl group is especially interesting when the starting group is a fluorine, due to the very high stability of the bond F—Si.
- When a compound [A-C(CN)2]n− m nM′m+ in which A is the proton is used, it is advantageous to carry out the reaction in the presence of a tertiary base or a congested base T capable of forming the salt L−(HT+) by combination with the proton, in order to promote the formation of the compound of the invention. The base may be selected among alkylamides (for example triethylamine, diisopropylamine, quinuclidine), 1,4-diazobicyclo[2,2,2]octane (DABCO); pyridines (for example pyridine, alkylpyridines, dialkylaminopyridines); imidazoles (for example N-alkylimidazoles, imidazo[1,1-a]pyridine); amidines (for example 1,5-diazabicyclo[4,3,0]non-5-ene (DBN), 1,8-diazabicyclo[5,4,0]undec-7-ene (DBU)); guanidines (for example tetramethyl guanidine, 1,3,4,7,8-hexahydro-1-methyl-2H-pyrimido[1,2-a]pyrimidine (HPP). An alkali metal salt of malononitrile can also be used as a base.
- By way of example of such a process, the process in which a carbonyl chloride RDCOCl is reacted with malononitrile in the presence of DABCO may be mentioned.
- A compound of the invention may also be obtained by direct coupling between a malononitrile salt and a carboxylic acid by means of a coupling agent. When Z═CO, it is advantageous to use a compound RZX of the type pseudo-halide directly prepared in-situ (X═RCO2, SCO, PTO, BzO . . . ) from RCOOH by action of the condensation agents used in the synthesis of peptides (molecular dehydrating agents). Such agents are described for example in Synthesis p. 453 (1972) and in Ann. Rev. Biochem 39, 841 (1970). The compounds of the invention are then prepared from RCOOH to which the molecular dehydration agent is added, and also the compound (1/nM)[(NC)2CH] in stoichiometric proportions in a polar solvent. Preferably, the condensation agent is selected from carbodiimides, for example cyclohexyl carbodiimide or diisopropyl carbodiimide; carbonates and oxalates of succinimidyl, phthalimidyl, benzotriazolyl, of nitro-, dinitro- or perhalo-phenols, of trifluoroethyl, of trichloroethyl; the mixture Pφ3-diethylazodicarboxylate (DEAD) or Pφ3-dithiodipyridine; carbonyldiimidazole (Im)2CO or phenylphosphorodiimidazole φPO(Im)2; amide acetals, for example dimethylformamide di-neopentyl acetal (CH3)2NCH[OCH2C(CH2)2]2; 2-alcoxy-1-alkoxycarbonyl-1,2-dihydroquinoline; salts of O-benzo triazol-1-yl-N,N,N′,N′-tetramethyluronium or O-benzo triazol-1-yloxytrisdimethylaminophosphonium; aromatic sultones, for example 2,2-(6-nitronaphth[1,8-cd]-1,2-oxathiazoyl) oxide, iosbutyl chloroformate, diphenylphosphochloroiridate, ethylene chlorophosphite, diethylethylene pyrophosphite, bis(2-oxo-3-oxazolidinyl)phosphinyl chloride; 2-ter-butyl-5-methyl isooxazolium salts (Woodward's reagent L).
- The cation of the compound obtained according to either of the processes described above may be replaced by the known processes of cationic exchange, either by precipitation or selective extractions, or by the use of ion exchange resins.
- In addition, the substituent RD of a compound of the invention may be modified by known reactions. For example, a substituent RD which comprises an allyl group maybe converted by reaction with a peroxide to give an expoxidized substituent RD. A group —NHR may be converted into a vinylester group by reaction with potassium tert-butoxide and vinylchloroformate. Processes to carry out these modifications and others are available to one skilled in the art.
- The ionic compounds of the present invention comprise at least one ionophorous group on which substituents of highly various natures are fixed. Bearing in mind the large possible choice for the substituents, the compounds of the invention enable to provide properties of ionic conduction in most organic, liquid or polymer medias having even a low polarity. The applications are important in the field of electrochemistry, in particular for storing energy in primary or secondary generators, in supercapacitances, in combustible batteries and in electroluminescent diodes. The compatibility of the ionic compounds of the invention with polymers or organic liquids enables to provide noted antistatic properties, even when the amount of ionic compound is extremely low. The compounds of the invention which are polymers, as well as polymeric compounds obtained from the compounds of the invention having the property of polymerizing or copolymerizing, have the properties listed above with the advantage of having an unmovable anionic charge. This is why another object of the present invention consists of an ionically conductive material made of an ionic compound of the present invention in solution in a solvent.
- According to an embodiment, the ionic compound used for preparing an ionically conductive material is selected from compounds in which the cation is ammonium, or a cation derived from a metal, in particular lithium or potassium, zinc, calcium, rare earth metals, or an organic cation, such as a substituted ammonium, an imidazolium, a triazolium, a pyridinium, a 4-dimethylamino-pyridinium, said cations possibly carrying a substituent on the carbon atoms of the cycle. The ionically conductive material thus obtained has a high conductivity and solubility in solvents, due to the low interactions between the positive charge and the negative charge. Its range of electrochemical stability is wide, and it is stable in reducing as well as oxidizing media. Moreover, the compounds which have an organic cation and a melting point lower than 150° C., in particular compounds of imidazolium, triazolium, pyridinium, 4-dimethylamino-pyridinium have a high intrinsic conductivity, even in the absence of solvents when they are in molten phase.
- The properties of the ionically conductive material may also be modified by the choice of substituent Y or RD.
- The choice of an alkyl group, an aryl group, an alkylaryl group or an arylalkyl group for RD enable to provide in the ionically conductive material properties of the type mesogene, in particular alkyl groups containing 6 to 20 carbon atoms, arylalkyl groups, in particular both containing the biphenyl entity which form phases of the liquid crystal type. Properties of conduction in phases of the liquid crystal, nematic, cholesteric or discotic type are interesting for applications concerning optical postings or for reducing the mobility of anions in electrolytes, in particular in polymer electrolytes, without affecting the mobility of the cations. This characteristic is important for applications in electrochemical generators, in particular those utilizing lithium cations.
- When the substituent RD contains mesomorphous group or a group comprising at least one ethylenic unsaturation and/or a condensable group and/or a group which is dissociable by thermal means, by photochemical means or by ionic dissociation, the ionically conductive material easily forms polymers or copolymers which are polyclectrolytes, the latter being intrinsically polyelectrolytes when the polymer carries solvating groups, or becomes polyelectrolytes by addition of a polar solvent of the liquid or polymer type, or by mixture with such a solvent. These products have a conductivity which is solely due to the cations, which constitutes a property which is very useful in applications of the electrochemical generator type. In low molar fraction in a copolymer, they give rise to stable antistatic properties which are hardly dependent on humidity and cause the fixation of cationic colorants, this property being useful for textile fibers and lasers with coloring materials.
- The presence of a substituent RD which is a self-doped electronically conductive polymer improves the stability of the ionically conductive material with respect to outside agents. The conductivity is stable in time even at high temperatures. In contact with metals, these materials give very low interface resistances and protect in particular ferrous metal or aluminum from corrosion.
- When the substituent RD is a hydrolyzable alkoxysilane, the ionically conductive material may form stable polymers by a simple mechanism of hydrolysis-condensation in the presence of water, thus enabling to treat surfaces of oxides, of silica, of silicates, in particular glass, to induce properties of surface conduction, antistatic properties, or to promote the adhesion of polar polymers.
- When the substituent RD is a group comprising a free radical trap such as a hindered phenol, or a quinone, the ionically conductive material has the following advantages and properties: it acts as an antioxidant having no volatility and being compatible with polar monomers and polymers, to which it also gives antistatic properties.
- When the substituent RD comprises a dissociating dipole such as an amide, a sulfonamide or a nitrile, the ionically conductive material has an improved conductivity in media of low or medium polarity, in particular in solvating polymers, which enables to minimize, even to prevent the addition of solvents or of volatile plasticizing agents.
- The presence of a substituent RD which contains a redox couple such as a disulfide, a thioamide, a ferrocene, a pheno-thiazine, a bis(dialkylaminoaryl) group, a nitroxide, an aromatic imide, enables to induce in the ionically conductive material properties of redox shuttle useful as protective elements and charge equalization of electrochemical generators, in photoelectrochemical systems, in particular in systems of conversion of light into electricity, in systems of modulation of light of the electrochrome type.
- The presence of a substituent RD which is a complexing ligand in an ionically conductive material enables to chelate metallic cations, in particular those which have an elevated charge (2, 3 and 4), in the form of soluble complex in organic media, including in aprotic media, and enables the transport of these cations in particular in the form of anionic complex, in solvating polymers. The metallic cations of elevated charge are indeed immovable in solvating polymers. This type of complexing agents gives with certain cations of transition metals (Fe, Co . . . ) or certain rare earths (Ce, Eu . . . ) redox couples which are particularly stable.
- Ionically conductive materials containing a compound of the invention in which RD is an alkyl or alkenyl substituent which contains at least one heteroatom selected from O, N and S have a complexing and plasticizing capacity, in particular in polar polymers and especially polyethers. The heteroatoms N and S are selectively complexing for cations of transition metals Zn and Pb.
- When an alkyl or alkenyl substituent RD additionally carries a hydroxy group, a carbonyl group, an amine group, a carboxyl group, the ionic compound of the invention may give by polycondensation a polymer or a copolymer and the ionically conductive material which contains such a polymer or copolymer have polyelectrolytic properties.
- The presence, in a ionically conductive material of the invention, of a compound in which RD is selected from aryl, arylalkyl, alkylaryl or alkenylaryl radicals, in which the lateral chains and/or the aromatic nuclei comprise heteroatoms such as nitrogen, oxygen, sulfur, improves dissociation and increases the possibility of producing complexes depending on the position of the heteroatom (pyridine) or of giving by duplicative oxidation conjugated polymers or copolymers (pyrrol, thiophene).
- When the ionically conductive material contains a compound of the invention in which RD represents a recurring unit of a polymer chain, the material constitutes a polyelectrolyte.
- A compound of the invention in which the substituent Z is selected from the group consisting of —OCnF2n+1, —OC2F4H, —SCnF2n+1 and —SC2F4H, —OCF═CF2, —SCF═CF2, n being a whole number from 1 to 8, is a precursor of stable monomers and polymers, in particular towards oxygen even at elevated temperatures of 80° C. when dealing with polymers. An ionically conductive material which contains such a compound is therefore particularly appropriate as an electrolyte of a combustible battery.
- An ionically conductive material of the present invention comprises an ionic compound of the invention in solution in a solvent.
- The solvent may be an aprotic liquid solvent, a polar polymer or one of their mixtures.
- The aprotic liquid solvent is selected for example from linear ethers and cyclic ethers, esters, nitriles, nitro derivatives, amides, sulfones, sulfolanes, alkylsulfamides and partially hydrogenated hydrocarbons. The solvents which are particularly preferred are diethylether, dimethoxyethane, glyme, tetrahydrofurane, dioxane, dimethyltetrahydrofurane, methyl or ethyl formate, propylene or ethylene carbonate, alkyl carbonates (such as dimethylcarbonate, diethylcarbonate and methylpropylcarbonate), butyrolactones, acetonitrile, benzonitrile, nitromethane, nitrobenzene, dimethylformamide, diethylformamide, N-methylpyrrolidone, dimethylsulfone, tetramethylene sulfone, tetramethylene sulfone and tetraalkylsulfonamides having 5 to 10 carbon atoms.
- An ionically conductive material of the present invention may simultaneously comprise an aprotic liquid solvent selected from the aprotic liquid solvents mentioned above and a polar polymer solvent comprising units containing at least one heteroatom selected from sulfur, nitrogen, oxygen and fluorine. It may comprise from 2 to 98% liquid solvent. By way of example of such a polar polymer, polymers which mainly contain units derived from acrylonitrile, vinylidene fluoride, N-vinylpyrrolidone or methylmethacrylate may be mentioned. The proportion of aprotic liquid in the solvent may vary from 2% (corresponding to a plasticized solvent) to 98% (corresponding to a gelled solvent).
- An ionically conductive material of the present invention may additionally contain a salt commonly used in the prior art to prepare an ionically conductive material. Among the salts which may be used in admixture with an ionic compound of the invention, a salt selected from perfluoroalcanesulfonates, bis(perfluoroalkylsulfonyl) imides, bis(perfluoroalkylsulfonyl) methanes and tris(perfluoroalkylsulfonyl) methanes are particularly preferred.
- Of course, an ionically conductive material of the invention may additionally contain additives normally used in this type of material, such as mineral or organic charges in the form of a powder or fibers.
- An ionically conductive material of the invention may be used as electrolyte in an electrochemical general. The present invention thus has as an object an electrochemical generator comprising a negative electrode and a positive electrode separated by an electrolyte, characterized in that the electrolyte is an ionically conductive material as defined above. According to a particular embodiment, such a generator comprises a negative electrode consisting of metallic lithium, or an alloy thereof, possibly in the form of a nanometric dispersion in lithium oxide, or a double nitride of lithium and a transition metal, or a low potential oxide having the general formula Li1+y+x/3Ti2−x/3O4(0≦x≦1,0≦y≦1), or carbon and the carbonated products resulting from the pyrolysis of organic materials. According to another embodiment, the generator comprises a positive electrode selected from vanadium oxides VOx (2≦x≦2,5), LiV3O8, LiyNi1−xCoxO2, (0≦x≦1; 0≦y≦1), manganese spinels LiyMn1−xMxO2 (M═Cr, Al, V, Ni, 0≦x≦0,5; 0≦y≦2), organic polydisulfides, FeS, FeS2, iron sulfate Fe2(SO4)3, iron and lithium phosphates and phosphosilicates of olivine structure, or substituted products wherein iron is substituted by manganese, used alone or in admixtures. The collector of the positive is preferably made of aluminum.
- An ionically conductive material of the present invention may also be used in a supercapacitance. Another object of the present invention is consequently to provide a supercapacitance utilizing at least one carbon electrode of high specific surface, or an electrode containing a redox polymer, in which the electrolyte is an ionically conductive material as defined above.
- An ionically conductive material of the present invention may also be used for the p or n doping of an electronically conductive material and this use constitutes another object of the present invention.
- In addition, an ionically conductive material of the present invention may be used as an electrolyte in an electrochrome device. An electrochrome device in which the electrolyte is an ionically conductive material according to the invention is another object of the present invention.
- It was observed that the strong dissociation of ionic species of compounds of the invention results in a stabilization of carbocations, in particular those in which there is a conjugation with oxygen and nitrogen and, surprisingly, in a strong activity of the proton form of the compounds of the invention on certain monomers. The present invention therefore also has as an object the use of the ionic compounds as photoinitiators which constitute sources of Brønsted acids, which are catalysts for the polymerization or cross-linking of monomers or polymers capable of cationic reaction, or as catalysts for the modification of polymers.
- The process of polymerization or cross-linking of monomers or prepolymers capable of cationic reaction is characterized in that there is used a compound of the invention as photoinitiator constituting a source of acid catalyzing the polymerization reaction. The compounds according to the invention in which the cation is a group having a bond —N═N+, —N═N—, a sulfonium group, an iodonium group, or an arene-ferrocenium cation which is substituted or non-substituted, possibly incorporated in a polymeric network, are particularly preferred.
- The choice of substituent RD or substituent Z is made so as to increase the solubility of said compound in the solvents used for the reaction of monomers or prepolymers, and as a function of the desired properties for the final polymer. For example, the choice of non-substituted alkyl radicals gives a solubility in low polar media. The choice of radicals comprising an oxa group or a sulfone will give a solubility in polar media. The radicals including a sulfoxide group, a sulfone group, a phosphine oxide group, a phosphonate group, respectively obtained by the addition of oxygen on the atoms of sulfur or phosphorus, may give to the polymer obtained improved properties with respect to adhesion, shine, resistance to oxidation or to UV. The monomers and prepolymers which may be polymerized or cross-linked with the photoinitiators of the present invention are those which may undergo a cationic polymerization.
- The monomers and prepolymers which may be polymerized or cross-linked with the photoinitiators of the present invention are those which may be subject to cationic polymerization.
- Among the monomers, monomers which include a cyclic ether function, a cyclic thioether function or cyclic amine function vinyl compounds (more particularly vinyl ethers), oxazolines, lactones and lactames may be mentioned.
- Among the polymers of the ether or cyclic thioether type, ethylene oxide, propylene oxide, oxetane, epichlorhydrin, tetrahydrofurane, styrene oxide, cyclohexene oxide, vinylcyclohexene oxide, glycidol, butylene oxide; octylene oxide, glycidyl ethers and esters (for example glycidyl methacrylate or acrylate, phenyl glycidyl ether, diglycidylether of bisphenol A or its fluorinated derivatives), cyclic acetals having 4 to 15 carbon atoms (for example dioxolane, 1,3-dioxane, 1,3-dioxepane) and spiro-bicyclo dioxolanes may be mentioned.
- Among vinyl compounds, vinyl ethers constitute a very important family of monomers which are capable of cationic polymerization. By way of example, there may be mentioned ethyl vinyl ether, propyl vinyl ether, isobutyl vinyl ether, octadecyl vinyl ether, ethyleneglycol monovinyl ether, diethyleneglycol divinyl ether, butanediol monovinyl ether, butanediol divinyl ether, hexanediol divinyl ether, ethyleneglycol butyl vinyl ether, triethyleneglycol methyl vinyl ether, cyclohexanedimethanol monovinyl ether, cyclohexanedimethanol divinyl ether, 2-ethylhexyl vinyl ether, poly-THF-divinyl ether having a molecular weight between 150 and 5,000, diethyleneglycol monovinyl ether, trimethylolpropane trivinyl ether, aminopropyl vinyl ether, 2-diethylaminoethyl vinyl ether.
- Other vinyl compounds may include, by way of example, 1,1-dialkylethylenes (for example isobutene), vinyl aromatic monomers (for example styrene, α-alkylstyrenes, such as α-methylstyrene, 4-vinylanisole, acenaphthene) N-vinyl compounds (for examples N-vinylpyrolidone or N-vinyl sulfonamides).
- Among prepolymers, there may be mentioned compounds in which epoxy groups are carried by an aliphatic chain, an aromatic chain, or a heterocyclic chain, for example glycidic ethers of bisphenol A which are ethoxylated by 3 to 15 ethylene oxide units, siloxanes having lateral groups of the epoxycyclohexene-ethyl type obtained by hydrosilylation of copolymers of dialkyl, alkylaryl or diaryl siloxane with methyl hydrogenosiloxane in the presence of vinylcyclohexene oxide, condensation products of the sol-gel type obtained from triethoxy or trimethoxy silapropylcyclohexene oxide, urethanes incorporating the reaction products of butanediol monovinylether and an alcohol of a functionality higher than or equal to 2 with an aliphatic or aromatic di- or tri-isocyanate.
- The process of polymerization according to the invention consists in mixing at least one monomer or prepolymer capable of cationic polymerization and at least one ionic compound of the invention, and subjecting the mixture obtained to actinic or β radiation. Preferably, the reaction mixture is subjected to radiation having been formed into a thin layer having a thickness lower than 5 mm, preferably in the form of a thin layer having a thickness lower than or equal to 500 μm. The duration of the reaction depends on the thickness of the sample and the power of the source at the active X wavelength. It is defined by the speed at which it passes in front of the source, which is between 300 m/min and 1 cm/min. Layers of the final material having a thickness greater than 5 mm may be obtained by repeating many times the operation consisting in spreading a layer and treating it with the radiation.
- Generally, the quantity of photoinitiator used is between 0.01 and 15% by weight with respect to the weight of the monomer or prepolymer, preferably between 0.1 and 5% by weight.
- An ionic compounds of the present invention may be used as photoinitiator in the absence of solvent, for example when it is intended to polymerize liquid monomers in which the ionic compound used as photoinitiator is soluble or easily dispersible. This type of utilization is particularly interesting, since it enables to overcome the problems associated with solvents (toxicity, flammability).
- An ionic compound of the present invention may also be used as photoinitiator in the form of a homogeneous solution in a solvent which is inert towards polymerization, ready to be used and easily dispersible, in particular in the case where the medium to be polymerized or cross-linked has a high viscosity.
- As example of an inert solvent, there may be mentioned volatile solvents, such as acetone, methyl-ethyl ketone and acetonitrile. These solvents will be used simply to dilute the products to be polymerized or cross-linked (to make them less viscous, especially when dealing with a prepolymer). They will be removed by drying after polymerization or cross-linking. Non-volatile solvents may also be mentioned. A non-volatile solvent also serves to dilute the products that one wishes to polymerize or cross-link, and to dissolve the ionic compound of the invention used as photoinitiator, however, it will remain in the material formed and will thus act as plasticizing agent. By way of example, propylene carbonate, γ-butyrolactone, ether-esters of mono-, di-, tri-ethylene or propylene glycols, ether-alcohols of mono-, di-, tri-ethylene or propylene glycols, plasticizing agents such as esters of phthalic acid or citric acid, may be mentioned.
- According to another embodiment of the invention, there may be used as solvent or diluent a compound which is reactive towards polymerization, which is a compound of low molecular weight and of low viscosity which will simultaneously act as polymerization monomer and solvent or diluent for more viscous polymers or prepolymers used in combination. After the reaction, these monomers having been used as solvent will be part of the macromolecular network finally obtained, their integration being wider when dealing with bi-functional monomers. The material obtained after irradiation is now free of products having a low molecular weight and a substantial vapour tension, or capable of contaminating objects with which the polymer is in contact. By way of example, a reactive solvent may be selected from mono and divinyl ethers of mono-, di-, tri-, tetra-ethylene and propylene glycols, N-methylpyrolidone, 2-propenylether of propylene carbonate commercially available for example under the commercial designation PEPC from ISP, New Jersey, United States.
- To irradiate the reaction mixture, the irradiation may be selected from ultraviolet radiation, visible radiation, X-rays, γ rays and β radiation. When ultraviolet light is used as actinic radiation, it may be advantageous to add to the photoinitiators of the invention photosensitizers intended to provide an efficient photolysis with wavelengths less energetic than those corresponding to the maximum of absorption of the photoinitiator, such as those produced by industrial devices, (l≈300 nm for mercury vapour lamps in particular). Such additives are known, and by way of non-limiting example, there may be mentioned anthracene, diphenyl-9,10-anthracene, perylene, phenothiazine, tetracene, xanthone, thioxanthone, acetophenone, benzophenone, 1,3,5-triaryl-2-pyrazolines and derivatives thereof, in particular derivatives which are substituted on the aromatic nuclei by alkyl, oxa- or aza-alkyl radicals, enabling inter alia to change the absorption wavelength. Isopropylthioxantone is an example of preferred photosensitizer when an iodonium salt according to the invention is used as photoinitiator.
- Among the different types of radiation mentioned, ultraviolet radiation is particularly preferred. On the one hand, it is more convenient to use than the other radiations mentioned. On the other hand, photoinitiators are in general directly sensitive towards UV rays and photosensitizers are more efficient when the difference of energy (δλ) is lower.
- The ionic compounds of the invention may also be used in association with free radical initiators produced thermally or by action of actinic radiation. It is also possible to polymerize or cross-link mixtures of monomers or polymers containing functions in which the types of polymerization are different, for example, monomers or prepolymers which polymerize by free radical and monomers or prepolymers which polymerize by cationic polymerization. This possibility is particularly advantageous to produce interpenetrated networks having physical properties which are different from those which would be obtained by a simple mixture of polymers originating from corresponding monomers. Vinyl ethers are not or are very little active by free radical initiation. It is therefore possible, in a reaction mixture containing a photoinitiator according to the invention, a free radical initiator, at least one monomer of the vinyl ether type and at least one monomer comprising non-activated double bonds such as those of the allyl groups, to carry out a separate polymerization of each type of monomer. On the other hand, it is known that monomers which are lacking in electrons, such as esters or amides of furmaric acid, maleic acid, acrylic or methacrylic acid, itaconic acid, acrylonitrile, methacrylonitrile, maleimide and derivatives thereof, form in the presence of vinyl ethers which are enriched in electrons, complexes of transfer of charge giving alternated polymers 1:1 by free radical initiation. An initial excess of vinyl monomers with respect to this stoichiometry enables to preserve polymerizable functions by pure cationic initiation. The start of the activity of a mixture of free radical initiator and cationic initiator according to the invention may be carried simultaneously for the two reactants in the case for example of isolation by actinic radiation of a wavelength for which the photoinitiators of the invention and the selected radical initiators are active, for example at λ=250 nm. By way of example, the following commercial products: Irgacure 184®, Irgacure 651®, Irgacure 261®, Quantacure DMB®, Quantacure ITX® may be mentioned as initiators.
- It may also be advantageous to use the two types of polymerization in a sequential manner, to first form prepolymers which are easy to shape and in which hardening, adhesion, solubility as well as degree of cross-linking may be modified by initiating the activity of the cationic initiator. For example, a mixture of a thermo-dissociable radical initiator and a cationic photoinitiator according to the invention enables to provide sequential polymerizations or cross-linking, first under the action of heat, then under the action of actinic radiation. Similarly, if a free radical initiator and a cationic photoinitiator according to the invention are selected, the first being photosensitive at longer wavelengths than the one initiating the photoinitiator according to the invention, there is obtained a cross-linking in two controllable steps. Free radical initiators may for example be Irgacure® 651 enabling to initiate free radical polymerizations at wavelength of 365 nm.
- The invention also has as an object the use of ionic compounds of the invention for chemical amplification reactions of photoresists in the field of microlithography. During such use, a film of a material comprising a polymer and an ionic compound of the invention is subject to irradiation. The irradiation causes the formation of the acid by replacement of the cation M with a proton, which catalyzes the decomposition or transformation of the polymer. After decomposition or transformation of the polymer on the parts of the film which have been irradiated, the monomers formed or the polymer which has been converted are removed and what remains is an image of the unexposed parts. For this particular application, it is advantageous to use a compound of the invention which is in the form of a polymer consisting essentially of styrenyl recurring units carrying an ionic substituent —C(CN)2 −. These compounds enable to obtain after photolysis products which are not volatile, and therefore not odoriferous when dealing with sulfides. Among the polymers which may thus be modified in the presence of a compound of the invention, there may for example be cited polymers containing ester units or tertiaryalkyl arylether units, for example poly(phthaldehydes), polymers of bisphenol A and a diacid, polytertiobutoxycarbonyl oxystyrene, polytertiobutoxy-α-methyl styrene, polyditertiobutylfumarate-co-allyltrimethylsilane and polyacrylates of a tertiary alcohol, in particular tertiobutyl polyacrylate. Other polymers are described in J.V. Crivello et al, Chemistry of Materials 8, 376-381, (1996).
- The ionic compounds of the present invention, which have an elevated thermal stability, give numerous advantages with respect to the known salts of the prior art. They have speeds of initiation and propagation which are comparable or higher than those obtained with coordination anions of the type PF6—, AsF6— and especially SbF6—. In addition, the coefficient of diffusion of the anion —C(CN)2 − is higher than that of hexafluorometallate anions or tetrafluoroborate anions or phenylborate anions. These properties are explained by the delocalization of the negative charge and the weak repulsion between the partial charges carried by the nitrogen atoms of nitrile groups and removed from one another by 2 Å.
- In the compounds of the present invention, the pairs of ions have a very high dissociation, which enables the expression of intrinsic catalytic properties of the cation Mm+, in which the active orbits are easily exposed to substrates of the reaction, especially in different media. Most of the important reactions of organic chemistry may thus be carried out under easy conditions, with excellent yields and the possibility of separating the catalyst from the reaction mixture. The demonstration of asymmetric induction by the use of an ionic compound according to the invention which carries a chiral group is particularly important in view of its generality and its ease of operation. The present invention consequently has as another object the use of compounds of the invention as catalysts in Friedel-Crafts reactions, Diels-Alder reactions, aldolization reactions, additions of Michael, reactions of allylation, reactions of pinacolic coupling, reaction of glycosilation, reaction of openings of the cycle of oxetanes, reactions of metathesis of alkenes, polymerizations of the Ziegler-Natta type, polymerizations of the metathesis type by cycle opening and polymerizations of the metathesis type of acyclic dienes. The preferred ionic compounds of the invention for utilization as catalyst for the above reactions are those in which the cation is selected from lithium, magnesium, copper, zinc, tin, trivalent metals, including rare earths, platinoids, and their organometallic couples, in particular metallocenes.
- The compounds of the invention may also be used as solvent to carry out chemical, photochemical, electrochemical, photoelectrochemical reactions. For this particular use, the ionic compounds in which the cation is an imidazolium, triazolium, pyridinium or 4-dimethylamino-pyridinium, are preferred, said cation possibly carrying a substituent on the carbon atoms of the cycle. Among the compounds used in liquid form, those having a melting point lower than 150° C., more particularly lower than 100° C., are particularly preferred.
- The inventors have also found that the ionic charge carried by the group —C(CN)2 − have a stabilizing effect on the electronic conductors of the conjugated polymer type, and that the use of the compound in which the substituent Z comprises a long alkyl chain enables to make these polymers soluble in known organic solvents even in doped state. Grafting of these charges on the polymer itself gives polymers with global cationic charge, which are soluble and present, in addition to their stability, anti-corrosion properties towards metal, such as aluminum and ferrous metals. It is an object of the present invention to provide materials with electronic conduction comprising an ionic compound of the present invention in which the cationic part is a polycation consisting of a doped “p” conjugated polymer. The preferred ionic compounds for this application are those in which the substituent Z or RD contains an alkyl chain having 6 to 20 carbon atoms.
- The coloring materials of cationic type (cyanines) are used more and more frequently as sensitizers of photographic films, for storing optical information (optical disks accessible in writing), for lasers. The tendency of these conjugated molecules to pile over one another when they are in solid phase limits their utilization, because of the variation of the optical properties with respect to the isolated molecule. The use of ionic compounds of the invention for manufacturing cationic coloring materials including counter ions, possibly bound to this same molecule, correspond to functions of the invention enables to reduce phenomenons of aggregation, including in solid polymer matrices and to stabilize these coloring materials. It is another object of the present invention to provide a composition of cationic coloring material, characterized in that it contains an ionic compound according to the invention. The particularly preferred ionic compounds for this application are those in which the negative charge(s) of the anionic group —C(CN)2 − are either fixed to the molecule of the coloring material, or they constitute the counter-ion of the positive charges of the coloring material.
-
- The present invention is explained more in detail with the following examples, which describe the preparation and various utilizations of compounds of the invention. The invention is, however, not limited to these examples.
- All the compounds of the invention have been prepared from alkali metal salts of malononitrile. Said salts have been obtained from commercial malononitrile previously purified in a sublimation cell at 40° C. under secondary vacuum, the malononitrile being recovered after 48 hours on the cold finger of the cell, in the form of white crystals which are thereafter kept under argon.
- The lithium salt was obtained by dosing an aqueous solution of malononitrile with a titrated solution of lithium hydroxide LiOH, the neutralization point being determined by means of a pH-meter. The aqueous solution was thereafter lyophilized, and the product was dried under secondary vacuum at room temperature during 72 hours. There is obtained a lithium salt which, kept under argon, has a purity determined by a proton and carbon RMN higher than 99%.
- By the same process, sodium and potassium salts were obtained by replacing lithium hydroxide respectively with sodium hydroxide and potassium hydroxide.
-
- The higher alkyl radical RD of this salt give it noted tensio-active properties, including in solvents and aprotic solvating polymers.
- To 6.61 g (100 mmoles) of malononitrile in solution in 50 ml of THF at −20° C., there is added in portions 795 mg of lithium hydride LiH. After 2 hours at −20° C., there is added 20.14 g (100 mmoles) of 1-(trifluoromethanesulfonyl)imidazole (commercially available from Fluka). The reaction is continued during 4 hours at −20° C., and 48 hours at room temperature. The solvent was then evaporated and the white solid residue was washed with dichloromethane to remove the imidazole formed during the reaction. There is obtained LiCF3SO2C(CN)2.
- Under an atmosphere of argon, there is added 0.66 g (10 mmoles) of malononitrile and 180 mg of lithium anhydride to a solution of 3.02 g (10 mmoles) of nonafluorobutanesulfonyl in 20 ml of anhydrous THF, kept at 0° C. After 4 hours, the reaction mixture was filtered, evaporated, reclaimed in 10 cm3 of water, and poured into a saturated solution of KCl. The precipitate of KC4F9SO2C(CN)2 was purified by crystallization in water, and in a pentanone/dichloroethane mixture. The yield of analytically pure product is 65%. In a similar manner, there is prepared KC6F13SO2C(CN)2 and KC18F17SO2C(CN)2. The lithium salts were thereafter obtained by ion exchange with LiCl or LiBF4 in THF. These products have noted tensio-active properties, they are soluble in solvating polymers while giving conductive complexes and they provide tensio-static properties.
- 324 mg (1 mmole) of 4-dimethylamino)azobenzene-4′-sulfonyl chloride in 5 ml of tetrahydrofurane were added to 104 mg (1 mmole) of the potassium salt of malononitrile in 5 ml of THF and 500 μl of triethylene. After 24 hours under stirring, the precipitate of potassium chloride was removed and, after evaporating the solvent, there is obtained the triethylammonium salt which was suspended in 5 ml of an aqueous solution containing 350 mg of tetrabutylammonium bromide. The mixture was stirred during 24 hours. There is obtained a powder of orange color, which had a purity characterized by proton and carbon RMN higher than 98%, which is soluble in most of the organic solvents, and which corresponds to the following formula:
- This ionic coloring material is a pH indicator in a non-aqueous medium (yellow-orange-red-violet transition in the pH zone 1-4).
- 10.85 g (100 mmoles) of methoxyacetic acid chloride were diluted in 150 ml of acetonitrile and 15 ml of anhydrous pyridine. The mixture was kept under a nitrogen atmosphere and magnetic stirring, and there are added, in portions, 10.41 g (100 mmoles) of the potassium salt of malononitrile. When precipitation of potassium chloride was terminated (about 1 hour), there is added 25 g of anhydrous tripotassium phosphate K3PO4 and the mixture was stirred during 24 hours. The mixture was thereafter evaporated to dryness. The potassium salt of methoxyacetylmalononitrile obtained was purified by recrystallization in butanone/1,2-dichloroethane mixture.
- This compound is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers.
- 176.2 mg of this compound were dissolved in 5 ml of dry acetonitrile, to which there is added 31.7 mg of anhydrous magnesium chloride. The mixture was stirred during 4 hours and the precipitate of potassium chloride was removed by centrifugation. The floating solution contains the potassium salt of an anionic complex of magnesium {Mg[CH3OCH2COC(CN)2]3}−K+.
- To this floating solution, there is added 800 mg of the random copolymer ethylene oxide (80%)-methyl-glycidyl-ether (20%) of molecular weight Mw=2.5×105. By spreading and evaporation of the viscous solution, there is obtained a film of polymer electrolyte containing magnesium in the form of a complex {Mg[CH3OCH2COC(CN)2]3}−.
- A primary generator comprising a magnesium anode was made as follows:
anode Electrolyte Cathode Mg polymer electrolyte with composite: anionic vehicular mechanism graphite fluoride - carrying Mg ions electrolyte - acetylene black - The electrolyte is the film of polymer electrolyte containing the complex {Mg[CH3OCH2COC(CN)2]3}− as described above. The positive electrode was obtained in the following manner: a composition was prepared containing 42% v/v of an electrolyte identical to the one described above, 8% v/v of acetylene black and 50% v/v of graphite fluoride CFx(x≦1); this composition was diluted in acetonitrile, then spread on a sheet of polypropylene 8 μm thick metallized with 200 nm of copper, so as to form a layer about 80 μm thick. The negative electrode was a sheet of magnesium 20 μm thick. The voltage of the battery after assembling by lamination of the elements at 80° C. was 2.5 V and the capacity for a flow of 400 μA/cm2 was 7 mAh/cm2.
- A sulfonated oligomer of poly (ethylene oxide) PEO was prepared in the following manner: 10 g of PEO of molecular weight 600 were dried by azeotropic distillation with benzene and lyophilization. After adding 50 ml of THF, the terminal groups OH were metallized with potassium-naphthalene. The stoichiometry was determined by colorimetry, the end of the reaction being indicated by a persistence of an intense green color of the anion radical of naphthalene. 4.10 g of propanesultone were then added. After evaporation of the solvent, the α,ω-disulfonated polymer was obtained in the form of powder, and the residual naphthalene was removed by washing with hexane.
-
- This material enables to plasticize a large number of polymers containing polar units (ether, amide, nitrile, ester . . . ), while giving them a high ionic conductivity.
- A non-ionic tensio-active material, polyoxyethylene-23 lauryl ether C12H25(OCH2CH2)23OH (Brij® 35), was sulfonated by a procedure similar to the one of Example 4. 12 g of Brij® 35 were dried by azeotropic distillation with benzene and lyophilization. After adding 50 ml of THF, the OH terminal groups were metallized with sodium hydride in the presence of 5 mg of triphenylmethane. The stoichiometry was determined by colorimetry, the end of the reaction being indicated by a persistence of an intense red color of the anion φ3C−. 1.4 g of 1,4-butanesultone were then added. After evaporation of the solvent, the sulfonated oligomer was obtained in the form of powder.
-
- This material has tensio-active and plasticizing properties.
- 380 mg (1 mmole) of ethylenebis(oxyethylene-nitrilo) tetraacetic acid in 10 ml of pyridine were treated with 912 mg of hydroxysuccinimidyl carbonate during 24 hours. 416 mg (4 mmoles) of the potassium salt of malononitrile were added into 15 ml of an equal volume mixture of pyridine and acetonitrile. After 24 hours, the precipitate was separated by filtration and washed with 2 portions of 30 ml of THF. There are obtained crystals of:
- This compound is a ligand (L) of dilvalent (AII) and trivalent (AIII) metals, in particular rare earths. The corresponding complexes [AIIL]2−M+ and [AIIIL]−M+ are salts which are soluble in polar aprotic media and in polar polymers, in particular polyethers. These complexes in which the central metal A is protected from outside electrostatic influences are interesting for constituting lasers. They also permit redox reactions by changing the degree of oxidation of the metal A.
- A solution of 548 mg (2 mmoles) of 1,1′-ferrocene-dicarboxylic acid and 824 mg (4 mmoles) of dicyclohexylcarbodiimide in 5 ml of an equal volume mixture of anhydrous pyridine and methanol was prepared. The mixture was kept under magnetic stirring at room temperature during 75 hours. Then, there is added 288 mg (4 mmoles) of the lithium salt of malononitrile. The mixture was kept under stirring at room temperature during 24 hours. The precipitate of dicyclohexylurea was removed by centrifugation and the solution was evaporated. There is obtained a product 1,1′-ferrocene-diacetylmalononitrile in the form of an hydroscopic dark brown solid, having a purity characterized by a proton and carbon RMN higher than 98%. It is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers.
- This salt has a reversible redox couple. In polyethylene oxide, it is possible to determine, on an electrode of platinum of a diameter of 125 μm, a reversible potential ≈3.8 V with respect to a lithium electrode.
- By dissolution in a liquid, gel or polymer electrolyte, it enables to provide a protection in surcharge in lithium batteries, thus acting as a redox shuttle. It also permits to provide electrical systems with coloring materials.
-
- were suspended in 10 ml of an equal volume mixture of an anhydrous pyridine and methanol with 313 μl (2 mmoles) of 1,3 diisopropylcarbodiimide. After 24 hours, the precipitate of diisopropylurea was filtered and 208 mg (2 mmoles) of the potassium salt of malononitrile were added. The mixture was kept under stirring in a neutral atmosphere (nitrogen) during 24 hours. The volume of the solution was reduced to 2 ml by means of a rotary evaporator. 20 ml of dioxane were added and the mixture was cooled at −10° C. A white precipitate was collected by filtering. The analysis corresponds to C17H17N2O3K.
- This product has anti-oxidizing properties, in particular for polymers. The same is true with respect to derivatives of other cations, including organic cations such as tetraalkylammonium cations.
-
- This salt is soluble in particular in acetone, acetonitrile, ethyl acetate, tetrahydrofurane. It may be used as a free radical initiator to initiate polymerization or cross-linking reactions already at 60° C.
- 479 mg (1 mmole) of Rhodamine B were suspended in 10 ml of pyridine and 104 mg (1 mmole) of the potassium salt of malononitrile, and 206 mg (1 mmole) of dicyclohexylcarbodiimide were added. After 48 hours under stirring, the mixture was filtered to remove dicyclohexylurea and was subjected to evaporation. The compound obtained is a zwitterion which has intense coloring properties. It is soluble in polar polymers and enables to provide lasers with coloring materials. The acetylmalononitrile group also enables it to be adsorbed on oxides, in particular nano-particulate titanium dioxide, it then acts as a sensitizer towards visible radiation, in particular in applications to photovoltaic cells.
- Pyrryl-3 acetic acid (M=122) was prepared according to the method of D. Delabouglise (These Universite de Paris-Nord, February 1991, “Molecular Control of Properties of Polymers”). 488 mg of this compound were dissolved in a mixture of 5 ml of acetonitrile and 1 ml of pyridine, to which there it added 648 mg (40 mmoles) of carbonyldiimidazole. After 24 hours and at the end of CO2 escape, there is added 417 mg (40 mmoles) of the potassium salt of malononitrile. The mixture was stirred during 48 hours at room temperature. The solvent was evaporated and the potassium salt was purified by recrystallization in the mixture butanone-1,2 dichloroethane.
-
- By operating in a glove box under argon, to 24.15 g (100 mmoles) of di-2-ethylhexylamine in 100 ml of THF at −20° C., there is added in portions 32 ml of butyllithium 2 M in cyclohexane (100 mmoles). After 1 hour, there is added 11.85 g (100 mmoles) of chlorosulfonyl fluoride FSO2Cl. The reaction was continued for 4 hours at −20° C., and during 24 hours at room temperature. The temperature was then brought to 0° C. and there is added 10.42 g (100 mmoles) of the potassium salt of malononitrile KHC(CN)2 and 11.22 g (100 mmoles) of DABCO. After 24 hours at 0° C., the reaction mixture was filtered to remove the precipitate of potassium chloride and the hydrochloride of DABCO. After evaporation of the solvent and drying, the lithium salt of di-2-ethylhexylaminosulfonylmalononitrile was recovered, with a purity characterized by a proton and carbon RMN higher than 98%.
-
- Potassium salts were obtained by treating the lithium salts in the minimum amount of water with potassium fluoride KF. After filtration, evaporation and drying, quantitative amounts of potassium salts were recovered.
- These salts are soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers.
- 5.44 g (10 mmoles) of 3,3′-diethyl-thiatricarbocyanine (commercially available from Aldrich, Milwaukee, USA) and 4.08 g (10 mmoles) of the potassium salt of di-2-ethylhexylaminosulfonylmalononitrile prepared according to Example 14 were stirred together during 24 hours in water. By extraction of the aqueous phase with dichloromethane, 3,3′-diethylthiatricarbocyanine of di-2-ethylhexylaminosulfonylmalononitrile was recovered, with a purity characterized by a proton RMN higher than 99%.
- This salt is highly soluble in low polar solvents such as dichlorolmethane or methylene chloride as well as in low polar matrices such as methylpolymethacrylate.
- When it is used as a coloring material, a very distinct decrease of the aggregation of molecules of coloring material is noted, due to the “plasticizing” character of different dialkylamino groups, which constitutes an advantage. As a matter of fact, the phenomenon of aggregation is prejudicial to the good operation of systems utilizing coloring materials, in particular in optical disks for storing information, since it causes a widening of the optical absorption bands.
-
- This salt enables to initiate, under the effect of an actinic radiation (light, γ rays, electron beams), the reaction of cationic cross-linking of monomers rich in electrons (vinyl ethers, propylvinyl ethers, . . . ).
- It is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers such as polyethylene oxide. It is also soluble to the extent of 5% by weight in reactive solvents such as triethyleneglycol divinyl ether, contrary for example to the bis(trifluoromethanesulfonyl)imide diphenyliodonium salt.
- The photoinitiating properties of this salt were tested by irradiating with a UV radiation at 254 nm, a power of 1,900 mW/cm2, a non-woven felt of polyethylene soaked with triethyleneglycol divinyl ether (79% by weight) containing di-2-ethylhexylaminosulfonylmalononitrile diphenyliodonium (1% by weight) of the present example and 7,8-octene-3,6-oxa-1-sulfonylmalononitrile (20% by weight), obtained in Example 21. After a period of a few seconds under irradiation, followed by a period of 10 min enabling the propagation of species produced in the medium (postcure), there is obtained a polyelectrolyte supported by the felt. This type of composite is very interesting for the development of lithium batteries with polymer or gel electrolyte.
-
- This salt is a free radical polymerization initiator which is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating monomers and polymers, contrary to 2,2′-azobis(2-methylpropionamidine) hydrochloride.
- There is prepared a solution in acetonitrile of 1 part of the initiator and 100 parts of a polymer containing ethylenic unsaturations, obtained by polycondensation of polyethylene glycol of molecular weight 1,000 with 3-chloro-2-chloromethyl-1-propene according to the procedure described by Alloin, et al (Solid States Ionics, (1993), 60, 3). The viscous solution obtained was poured onto a polypropylene (PP) film. After evaporating the solvent, the polymer film of a thickness of 110 μm on PP was stored for one week in a glove box under argon to dry the same. Cross-linking was then initiated by bringing the temperature of the film to 60° C. After one night, there is obtained a film having good mechanical properties and a small amount of extractable materials (lower than 1%). The solubility of the initiator used in the polymer matrix therefore enables to obtain an efficient and homogeneous cross-linking. Moreover, this initiator, contrary for example to 2,2′-azobisisobutyronitrile, is not volatile and the quantity added may at best be optimized for each type of polymerization.
- To 4.8 g (10 mmoles) of the potassium salt of di-2-ethylhexylaminosulfonylmalononitrile, obtained in Example 14, in solution in 10 ml of anhydrous nitromethane, there is added in a glove box 1.17 g (10 mmoles) of nitrosonium tetra-fluoroborate NOBF4 (commercially available from Aldrich). After one hour, the reaction mixture was filtered to remove the insoluble potassium tetrafluoroborate, and there is obtained a 1 M solution of the nitrosonium salt of di-2-ethylhexylaminosulfonylmalononitrile in nitromethane.
- By a similar process, there is prepared a 1 M solution in nitromethane of the nitrosonium salt of dibutylaminosulfonylmalononitrile, from the potassium salt of dibutylaminosulfonylmalononitrile. These salts are particularly interesting for doping conjugated polymers (polythiophene, polypyrrole, polyaniline, . . . ) to which they give an appreciable electronic conductivity.
- There are provided two deposits of poly (3-hexylthiophene) (commercially available from Aldrich, Milwaukee, USA) on glass plates from a chloroform solution. After drying, these deposits were respectively doped with the above salts in solution in nitromethane. After doping, each of the films of poly (3-hexylthiophene) thus obtained had an electronic conductivity higher than 1 S. cm−1 and a good stability in humid medium. These deposits were interesting for providing masks in the semi-conductor industry.
-
- This salt may be homo- or copolymerized by means of a polymerization initiated by anionic, cationic or free radical means. It may also be grafted by irradiation on a polymer matrix such as vinylidene polyfluoride.
- The homopolymer, obtained by free radical polymerization in deaerated water initiated by cyanovaleric acid at 60° C., is soluble in the usual organic solvents and in aprotic solvating polymers. In polyethylene oxide at a concentration O/Li of 16/1, this salt has a conductivity ≈5.2×10−4 S.cm−1 at. 100° C.
- Moreover, in a concentrated solution in acetone (≈1 M of lithium cation), this homopolymer of the lithium salt of 4-styrenesulfonylmalononitrile may be used as a catalyst for Diels-Alder reactions.
- According to a process similar to the one described in Example 19, the lithium salt of vinylsulfonylmalononitrile was obtained from 11.01 g (100 mmoles) of ethylenesulfonyl fluoride (commercially available from Fluka, Buchs, Switzerland), with a purity characterized by a proton and carbon RMN higher than 98%.
- This salt may be homo- or copolymerized by means of a free radical initiated polymerization.
- Thus, 6.6 g of a copolymer of ethylene oxide containing allyl double bonds and having a molecular weight Mw=2.5×105 were placed in solution in acetonitrile. 1.52 g of the lithium salt of vinylsulfonylmalononitrile and 50 mg of the free radical initiator prepared according to Example 17 were added. The solution was evaporated in a cupel of PTFE with flat bottom, and the container was placed in an oven under a primary vacuum at 80° C. during 12 hours. A cross-linked elastomer was obtained on which —SO2C(CN)2Li groups are fixed. This material, which constitutes an electrolyte with fixed anions, has a conduction by the lithium ions of 6.7×10−4 S.cm−1 at 60° C., and a cationic transport number of 0.92.
-
- The lithium salt was obtained in quantitative yield by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtering of the reaction mixture, evaporation of the solvent and drying under vacuum.
- This salt may be homo- or copolymerized through a cation initiated polymerization, by polymerization alternated with an unsaturated monomer initiated by a free radical.
- The homopolymer prepared by polymerization in anhydrous acetonitrile initiated by cationic means with bis(trifluoromethanesulfonyl)imide has a conductivity at a concentration of 0.8 M in a mixture of dimethylcarbonate and ethylene carbonate (2:1) of 6×10−3 S.cm−1 at 30° C. Moreover, this homopolymer is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers such as polyethylene oxide. This homopolymer consequently constitutes a good ionically conductive material.
- To a solution in 10 ml of anhydrous tetrahydrofurane at 0° C. of 4.49 g (40 mmoles) of DABCO and 1.32 g (20 mmoles) of malononitrile, there is added 6.05 g (20 mmoles) of 4-iodobenzenesulfonyl chloride IC6H4SO2Cl (commercially available from Aldrich) diluted in 5 ml of anhydrous tetrahydrofurane. After 2 hours at 0° C., the reaction was continued during 24 hours at room temperature. The DABCO hydrochloride formed during the reaction was removed by filtering on a fritted glass of porosity N° 4. After evaporation of acetonitrile from the filtered solution, the product was reclaimed in 15 ml of cold water and there is slowly added 1.49 g (20 mmoles) of anhydrous potassium chloride in solution in 5 ml of water. A precipitate has appeared which was collected by filtration on a fritted glass of porosity N° 4. After drying, the potassium salt of 4-iodobenzenesulfonylmalononitrile was recovered.
-
- This zwitterion enables to initiate under the effect of actinic radiation (light, g rays, electron beams) a cationic cross-linking reaction of electron enriched monomers (vinyl ethers, vinylpropenyl ethers, . . . ).
- It has a good solubility in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating monomers and polymers such as polyethylene oxide. It is also soluble at more than 5% by weight in reactive solvents such as triethyleneglycol divinyl ether.
- The photoinitiating properties of this salt were tested by irradiating with U.V. radiation at 254 nm, a power of 1,900 mW/cm2, a solution of triethyleneglycol divinyl ether containing up to 1% by weight of said iodonium salt. After a few seconds under irradiation, the reactive solvent has solidified, and the reaction was very exothermic.
-
- This salt is useful as a catalyst for the vinyl polymerization of norbornene. Thus, norbornene was polymerized at room temperature in nitromethane in the presence of 300 ppm of this salt. After 2 hours, the reaction mixture was reprecipitated in methanol. There is obtained a polynorbornene having an average molecular weight number of 420,000, with a yield of 82%.
- By operating in a glove box under argon, 1.8 g of phenzaine (10 mmoles) and 139 mg of metallic lithium were introduced in a 30 ml polypropylene (Nalgene®) flask. Then 20 ml of anhydrous tetrahydrofurane and small balls of agate were added. The closed flask was then rotated upon itself, outside the glove box, on the shaft of a motor. Tetrahydrofurane rapidly turned into a dark mauve color which characterizes mono-lithium phenazine. After 24 hours, a suspension of an orange precipitate of 9,10-di-Li-dihydrophenazine was obtained. To 8.61 g (20 mmoles) of this compound, 4.89 g (40 mmoles) of 1,3-propane sultone was then added. After 8 hours of crushing at room temperature, the reaction mixture was filtered to remove the small balls of agate and under argon two drops of dimethylformamide were added to the filtered solution, and slowly 5.08 g (40 mmoles) of oxalyl chloride ClCOCOCl in solution in 15 ml of anhydrous dichloromethane. After 4 hours at room temperature, 4.65 g (40 mmoles) of potassium malononitrile were added. The reaction was continued during 24 hours, and the reaction mixture was filtered to remove the precipitate of potassium chloride. After evaporation of the solvent, the di-lithium salt of 9-10-(propylsulfonylmalononitrile)phenazine was recovered, with a purity characterized by a proton and carbon RMN higher than 98%.
- This compound is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in polar polymers.
- This compound has two reversible redox couples. In polyethylene oxide, it was possible to show, on a platinum electrode of 125 μm diameter, a first redox couple at a potential ≈3.2 V and a second redox couple at a potential ≈3.8 V, these potentials being measured towards a lithium electrode.
- When it is dissolved in a liquid, gel or polymer electrolyte, this compound provides a protection in surcharge in lithium batteries, thus acting as a redox shuttle.
- This compound also enables to provide electrochrome systems with coloring materials. In this manner, an electrochrome glazing was produced by depositing on a glass plate, covered with a conductive layer of ITO (indium and tin oxide), an acetone solution of this compound and of poly (benzodiimide-co-ethylene oxide) of a molecular weight ≈1,100 g/mole, obtained by a process similar to the one described in French Patent Application FR 93/01117. After evaporating the solvent and drying, on a previously deposited polymer, in a glove box, a second glass electrode covered with a conductive layer of ITO was assembled. After having sealed this product to make it impervious, a potential of 1,250 mV was applied on the exterior by means of a potentiostat. The system then became colored with an intense blue. By applying a potential of −500 mV, it was possible to note a relatively fast discoloration of the system (lower than 60 s). Such an electrochrome system is easy to prepare, even for large size systems (larger than m2) which utilize glass as well as a polymer suitably treated as a conductive transparent electrode. Moreover, the energy required to maintain the coloration is relatively weak, lower than 1 W/m2.
- In a Parr chemical reactor, 5.21 g (50 mmoles) of potassium malononitrile and 264 mg of a crown-ether, 18-Crown-6 were placed in solution in 60 ml of anhydrous acetonitrile. After closing the reactor, flushing with argon was carried out during 15 min before isolating the reactor. Then, there are introduced 6.41 g (50 mmoles) of sulfur dioxide SO2 (commercially available from Fluka) and, after 10 min, 9.52 g (50 mmoles) of vinyltriethoxysilane (commercially available from Fluka) in solution in 20 ml of anhydrous acetonitrile. After 6 hours at room temperature, the temperature of the reactor was brought to 40° C. and the reactor was kept at that temperature during 48 hours, and the solvent was evaporated. After drying under vacuum, the product was stored under argon. the potassium salt of 2-(triethoxysilyl)ethylsulfonylmalononitrile [(C2H5O)3Si(CH2)2SO2C(CN)2)]K was recovered in quantitative yield, with a purity characterized by a proton and carbon RMN higher than 99%.
-
- These salts enable to produce organosilicon networks by a mechanism of hydrolysis-polycondensation. They also permit to treat materials based on glass (fibre, glazing, . . . ) in order to modify the state of their surface and in particular to give them antistatic properties.
- In addition, homopolymers or copolymers may be obtained with various alkoxysilanes in a protic medium, possibly in the presence of a catalyst, (acid, base, fluoride, . . . ). A copolymer was prepared by polycondensing the potassium salt of 2-(triethoxysilyl)ethylsulfonylmalononitrile with O-[2-(trimethoxysilyl)ethyl]-O′-methylpolyethylene glycol of molecular weight 5,000 (commercially available from Shearwaters Polymers) (5:1) in a water/methanol mixture, by utilizing as catalyst a trace of a perchloric acid. After a few hours, the solution was concentrated. A felt of activated carbon, previously degassed, with a specific surface of 1,500 m2/g (commercially available from Actitex), was then impregnated with the viscous liquid obtained. After drying, the operation was repeated to improve the impregnation. After one week in a drying oven at 50° C., 2 pastils with a diameter of 2 cm were stamped out. A sheet of cigarette paper (commercially available from Bolloré Technologies) was then impregnated with a viscous liquid which is identical to the one used to impregnate the carbon felt mentioned above. This sheet was placed between the two carbon electrodes previously stamped out. After one week in a drying oven at 50° C. and two days under vacuum at 60° C., there is obtained a “all-solid” electrochemical supercapacitance. This supercapacitance has the following characteristics at 40° C.: a density of energy of 15 Wh/l (or a capacity of 96 F/g of carbon for an electrode), a maximum power of 700 W/kg and good results in cycling (more than 10,000 cycles of charge/discharge between 0 and 2V). This type of supercapacitance is particularly interesting for the field of electronics because of the absence of volatile liquids.
-
- This compound has analogous properties to those of the compounds of Example 25 and may be used for the same applications.
- A polycondensation of this compound was carried out in a water/methanol mixture, by utilizing a drop of concentrated hydrochloric acid as catalyst. After a few hours, the solvents were evaporated and the viscous liquid obtained was poured onto a Teflon® plate. After one week in a drying oven at 50° C., the material obtained was dried under vacuum at during 48 hours, and was crushed under argon until the particle size was of the order of 1 micron. A composite electrolyte was then prepared by mixing this powder with polyethylene oxide of molecular weight 300,000 in acetonitrile. After pouring this dispersion in a glass ring and evaporating acetonitrile, there is obtained a film of composite electrolyte of good mechanical quality, with a thickness of 220 μm. This electrolyte has an ionic conductivity higher than 10−5 S.cm−1 at 60° C. and a cationic transport number of 0.92.
- A solution of 10.81 g (40 mmoles) of the lithium salt of 4-styrenesulfonylmalononitrile prepared as in Example 19, 3.18 g of acrylonitrile (40 mmoles) and 100 mg of 1,1′-azobis(cyclohexanecarbonitrile) in 100 ml of anhydrous tetrahydrofurane was degassed by flushing with dry argon. Under argon, copolymerization of acrylonitrile with the styrene derivatives was carried out by heating the reaction mixture at 60° C. during 48 hours. After cooling, the solution was concentrated, and the polymer was recovered by reprecipitation in ether. After filtration and drying, the lithium salt of poly-(acrylonitrile-co-4-styrenesulfonylmalononitrile)(PANSSM) was obtained.
- This polymer enables to prepare gelled polymer electrolytes with fixed anions. It constitutes the matrix enabling to obtain the gel and it has the properties of a polyelectrolyte.
- A gelled electrolyte was prepared (30% by weight of PANSSM, 35% of ethylene carbonate, 35% of propylene carbonate). This gel has good mechanical properties and a conductivity of 7.9×10−4 S.cm−1 at 30° C. The cationic transport number of this electrolyte was estimated to be 0.95. An electrochemical generator was prepared by utilizing said gelled electrolyte, a composite anode consisting of carbon coke, (80% by volume) mixed with the copolymer (PANSSM) as binder (20% by volume), and a composite cathode consisting of carbon black (6% by volume) LiCoO2 (75% by volume) and a copolymer (PANSSM) (20% by volume). This generator made it possible to do 1,000 cycles of charge/discharge between 3 and 4.2 V by maintaining a capacity higher than 80% of the capacity during the first cycle, when cycling at 25° C. It has very good performances during calls for power due to the utilization of fixed anions. The use of fixed anions has also permitted to improve the evolution of the interface resistance.
-
- By a similar practice, the potassium salts of 1-butanesulfonylmalononitrile and 1-octylsulfonylmalononitrile were obtained respectively from 1-butanesulfonyl chloride and 1-octanesulfonyl chloride.
- The lithium salts of these three derivatives were prepared in quantitative amounts by ionic exchange between the potassium salt and lithium chloride in anhydrous tetrahydrofurane.
- The lithium salt of 1-dodecanesulfonylmalononitrile dissolved in a matrix of polyethylene oxide at a concentration O/Li=16/1 has a cationic transport number≈0.55. The result is that when this compound is used in the electrolyte of a lithium battery with polymer electrolyte, the gradients of concentration which appear during the operation of the battery are substantially decreased. Performances during calls for power are thus improved.
- The salts of 1-dodecanesulfonylmalononitrile had an undeniable interest as additives for laminating lithium and for the extrusion of polymers, in particular the extrusion of polyethylene oxide.
- In 100 ml of water at 0° C., there is added 23.01 g (100 mmoles) of hexafluoropropanesultone (commercially available from Fluorchem). After 2 hours under stirring, the aqueous phase was extracted by means of two fractions of 20 ml of dichloromethane, and the organic phases were combined and dried with magnesium sulfate. After evaporation of dichloromethane and distillation of the collected liquid, there is obtained 16.94 g of 1-fluoro-2,2,2-trifluoroethanesulfonyl fluoride CF3CHFSO2F (yield: 94%; purity, determined by a proton and fluorine RMN, higher than 99%).
- By operating in a glove box under argon, 9.2 g (50 mmoles) of the compound thus prepared were placed in solution in 10 ml of anhydrous tetrahydrofurane. After having brought this solution to −20° C., there is slowly added 50 ml of a 1 M solution (50 mmoles) in tetrahydrofurane of potassium tert-butoxide (CH3)3COK (commercially available from Aldrich). After 15 min, 12.46 g (50 mmoles) of 1-bromododecane were added. The reaction is continued during 2 hours at −20° C., and during 24 hours at room temperature. There is then added 8.8 g (100 mmoles) of sodium malononitrile. After 48 hours, the solvent was evaporated and the residue was recrystallized in 50 ml of water containing 7.46 g (100 mmoles) of potassium chloride KCl. After filtration and drying, the potassium salt of 1-dodecane-2,2,2-trifluoroethanesulfonylmalononitrile was obtained, with a purity characterized by a proton, carbon and fluorine higher than 99%.
- The lithium salt was obtained in quantitative yield by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtration of the reaction mixture, evaporation of the solvent and drying under vacuum.
- These compounds may be used as an additive for laminating lithium and for the extrusion of polymers, in particular the extrusion of polyethylene oxide. They also have plasticizing and antistatic properties.
-
- The lithium salt was obtained in quantitative yield by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtration of the reaction mixture, evaporation of the solvent and drying under vacuum.
- These salts may be used in chemical reactions where ethylenic bonds are involved. They may in particular be homo- or copolymerized by a polymerization which is initiated by free radical or by a coordinated polymerization catalyst, such as a zircanocene.
-
- The lithium salt was obtained by treating the potassium salt in anhydrous tetrahydrofurane with a stoichiometric quantity of anhydrous lithium chloride, filtration of the reaction mixture, evaporation of the solvent and drying under vacuum.
- These salts may be homo- or copolymerized by a polymerization initiated with anionic or cationic means. More generally, they may undergo chemical reactions in which oxetanes are involved.
- The homopolymer of the potassium salt of 2,3-epoxybutane-1-sulfonylmalononitrile was prepared by a polymerization in tetrahydrofurane initiated by anionic means with potassium tert-butoxide, and the lithium polysalt was obtained by ionic exchange in THF with anhydrous lithium chloride. The latter has a conductivity in gelled medium (21% by weight of polyacrylonitrile, 38% of ethylene carbonate, 33% of propylene carbonate, 8% of homopolymer) of 1.2×10−3 S.cm−1 at 30° C. The cationic transport number in this electrolyte is 0.76. Moreover, this homopolymer is soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers.
- 50.74 (300 mmoles) of 2-amino-5-trifluoromethyl-1,3,4-thiadiazole (commercially available from Aldrich) were added under stirring to a mixture of 100 ml of concentrated hydrochloric acid and 30 ml of glacial acetic acid. The reaction mixture was brought to −10° C. and there is slowly added 22.42 g (325 mmoles) of sodium nitrite NaNO2 in 35 ml of water. The diazotation reaction is continued for 1 hour. At the same time, a flow of sulfur dioxide SO2 (commercially available from Fluka) in 300 ml of glacial acetic acid was passed through a fritted member until saturation. Then, there is added 7.5 g of copper(I) chloride CuCl and the addition of sulfur dioxide was continued until the color of the reaction mixture changed from yellow-green to blue-green. After having brought the reaction mixture to a temperature <10° C., during a period of 30 min, the previously prepared diazonium was added. A small amount of ether was added to decrease the quantity of foam which is formed after each addition. After the end of the addition of diazonium, the reaction mixture was poured into 1 liter of a mixture of water-ice (1:1). After melting of the ice, a yellow oil was separated in a decanting ampulla, and the aqueous phase was extracted with two fractions of 100 ml ether. After addition of the ether phase to the collected oil, the solution was washed with a concentrated solution of sodium bicarbonate until neutrality, then with water, and finally it was dried with magnesium sulfate. After evaporation of the solvent, there is recovered after distillation under vacuum 46.99 g of 2-sulfonyl-5-trifluoromethyl-11,3,4-thiadiazole chloride (62% yield) with a purity characterized by a proton and fluorine RMN higher than 98%.
-
- The potassium salt was obtained by treating the lithium salt, in a minimum amount of water, with potassium fluoride KF. After filtration, evaporation and drying, the potassium salt was recovered in quantitative yield.
- These salts are soluble in most of the usual organic solvents (tetrahydrofurane, acetonitrile, dimethylformamide, ethyl acetate, glymes, . . . ) and in aprotic solvating polymers such as polyethylene oxide.
- These salts have a potential of oxidation at a concentration 0.5 M in acetonitrile higher than 4.5 V towards a lithium anode. The lithium salt, alone or in admixture with the potassium salt, may be used for Li-Ion batteries with liquid or gel electrolytes, and polymer electrolyte lithium batteries.
- A battery was assembled by utilizing an anode consisting of a mixture of carbon coke (80% by volume) and poly(vinylidene fluoride) (PVDF, commercially available from Montedison) as a binder (20% by volume), an electrolyte consisting of a mixture of ethylene carbonate and dimethylcarbonate (2:1), gelled with PVDF, containing the lithium salt of 5-trifluoromethyl-1,3,4-thiadiazole-2-sulfonylmalononitrile at a concentration 1 M and a composite cathode consisting of a mixture of carbon black (6% by volume), Li2MnO4 (75% by volume) and PVDF as binder (20% by volume). The battery was subjected to cycling at 25° C. After 1,000 cycles of charge/discharge between 2 and 4.7 V, the battery maintained a capacity representing about 50% of the capacity during the first cycle.
- 13.21 g (200 mmoles) of malononitrile were placed in solution in 150 ml of THF 15-20° C. There was then added, under argon, 44.87 g (400 mmoles) of DABCO and 21.18 g (200 mmoles) of cyanogene bromide BrCN. After 4 hours under stirring at −20° C., and 24 hours at room temperature, the reaction mixture was filtered to remove DABCO hydrochloride. There was then added 8.48 g of anhydrous lithium chloride (200 mmoles). After 24 hours under stirring, the reaction mixture was filtered to remove DABCO hydrochloride. After evaporation of the solvent and drying, 19 g (98% yield) of the lithium salt of tricyanomethane LiC(CN)3 were recovered, with a purity characterized by a proton and carbon RMN higher than 98%.
- The acid in ether solution was obtained, by adding 100 ml of hydrochloric acid 1 M at 0° C. (100 mmoles) to a suspension of 9.7 g of the lithium salt of tricyanaomethane (100 mmoles) in 30 ml of ether. After a few minutes under stirring, tricyanaomethane was recovered in the ether phase. After drying the organic phase with magnesium sulfate, 7.15 g of imidazole (105 mmoles) were added. A precipitate was immediately formed which was recovered by filtration and drying. 15.23 g (96% yield) of tricyanomethane imidazolium were recovered, with a purity characterized by a proton and carbon RMN higher than 99%.
- A crushing in a glove box of a molar mixture of 7 imidazoles for two salts of imidazolium has enabled to obtain a liquid in the mortar. This molten salt has a high protonic conductivity, higher than 10−3 S.cm−1 at 60° C. This molten salt may be used to prepare a polymer electrolyte, which is an anhydrous protonic conductor, by adding polyethylene oxide, preferably of high molecular weight or which could later on be cross-linked, to the molten salt without harming the conductivity. These polymer electrolytes are particularly interesting for preparing systems of modulating light such as electrochrome glazing including electrochrome systems with coloring material.
- A polymer electrolyte made of the molten salt at 80% by weight and 20% by weight of polyethylene oxide of molecular weight 5×106 was used to prepare a membrane which is optically transparent in the visible range and has a good mechanical behaviour. Then, an electrochrome system was prepared in a glove box by utilizing this membrane enclosed between a first electrode consisting of the deposit on a glass plate of a layer of hydrogenated iridium oxide HxIrO2 and as a sub-conductive layer of tin oxide and a second electrode consisting of a layer of tungsten trioxide WO3 and a conductive sub-layer of tin oxide. The electrochrome has permitted a variation of the optical absorption between 80% (discolored state) and 30%(colored state) and good performances in cycling (more than 20,000 cycles).
- To 6.61 g of malononitrile (100 mmoles) in solution in 50 ml of THF at −20° C., there is added, in portions, 795 mg of lithium hydride LiH. After 2 hours at −20° C., there is added 20.14 g (100 mmoles) of 1-(trifluoromethanesulfonyl)imidazole) (commercially available from Fluka). The reaction was continued during 4 hours at −20° C., and during 48 hours at room temperature. The solvent was then evaporated and the residue was reclaimed in 60 ml of water. There is then added 14.66 g (100 mmoles) of 1-ethyl-3-methyl-1H-imidazolium chloride (commercially available from Aldrich) to the aqueous solution. A dense phase which is denser than water was immediately formed. This phase was recovered by extraction with dichloromethane. After evaporation of dichloromethane and drying under vacuum at 40° C. of the liquid obtained, a molten salt of 1-ethyl-3-methyl-1H-imidazolium of trifluoromethanesulfonylmalononitrile was obtained, with a purity characterized by a proton, carbon and fluorine RMN higher than 98%.
- This molten salt has a conductivity of 4.5×10−3 S.cm−1 and a freezing point lower than −20° C. Its wide range of redox stability makes it a particularly interesting electrolyte for electrochemical generators such as lithium batteries, supercapacitances, systems of light modulation, photovoltaic cells.
- An electrochemical supercapacitance was prepared by utilizing the molten salt of 1-ethyl-3-methyl-1H-imidazolium of trifluoromethane-sulfonylmalononitrile as electrolyte and carbon/aluminum composites as electrodes. The electrodes of a thickness of 150 μm were placed on both sides of a microporous polyethylene having a thickness of 40 μm and the complete system was sealed in a glove box in a housing of button shaped battery after having been soaked with the molten liquid salt. The supercapacity obtained has enabled to produce more than 100,000 cycles of charge/discharge between 0 and 2.5 V for a density of energy higher than 25 Wh/l and a delivered power higher than 1,500 W/l.
- In 30 ml of THF, 6.76 g (40 mmoles) of pentafluoropyridine (commercially available from Aldrich) were reacted with 4.17 g (40 mmoles) of potassium malononitrile KHC(CN)2 in the presence of 4.49 g (40 mmoles) of DABCO. After 48 hours under stirring, the solvent was evaporated and the residue was recrystallized in 15 ml of water to which 4 g of potassium chloride has been added. After filtration and drying, there is obtained 5.29 g of the potassium salt of 4-malononitrile-pentafluoropyridine (73% yield), with a purity determined by a carbon RMN higher than 99%.
- According to the same process, the potassium salt of 2-malononitrile-3,5-dinitrobenzo-trifluoride was prepared from 10.82 g (40 mmoles) of 2-chloro-3,5-dinitrobenzotrifluoride (commercially available from Aldrich), with a purity determined by a fluorine, proton and carbon RMN higher than 99%.
- The lithium salts were obtained by ionic exchange with lithium chloride in THF.
-
- These examples illustrate the grafting of the anion of malononitrile on an aromatic nucleus containing substituents which are activated by the presence of electroattractor groups and/or heteroatoms in the aromatic cycle.
- In a three-neck flask provided with a cooler, a mechanical stirrer and a neutral gas inlet (Argon), there is introduced 9.5 g of a copolymer of dimethylsiloxane and (hydrogen)(methyl)-siloxane (HMS 301 25% SiH, Mw 1900, commercially available from Gelest Inc., Tullytown, Pa., USA) in solution in tetrahydrofurane. There is then added 6.04 g of the lithium salt of vinylsulfonylmalononitrile and 70 mg of chloroplatinic acid H2PtCl6. The mixture was heated to reflux during four hours. The polymer was then reprecipitated in ethanol.
-
- By a process similar to the one described in Example 28, the potassium salt of (1R)-(−)-10-camphorsulfonylmalononitrile was obtained from (1R)-(−)-10-camphorsulfonyl chloride (commercially available from Aldrich) and the potassium salt of (1S)-(+)-camphorsulfonylmalononitrile was obtained from (1S)-(+)-10-camphorsulfonyl (commercially available from Aldrich) with yields higher than 70% and a purity, determined by a proton and carbon RMN higher than 99%.
- The corresponding lithium salts were obtained by ionic exchange (metathesis) in tetrahydrofurane with lithium chloride.
-
- These salts are soluble in most of the polar organic solvents (acetonitrile, tetrahydrofurane, DMF, . . . ) and in aprotic solvating polymers.
- The two enantiomers of the lithium salt of (N-methoxybutyl-N-2-butyl-34-methyl)aminosulfonylmalononitrile were obtained by a process, similar to the one described in Example 14, from the two enantiomers of N-methoxybutyl-N-2-butyl-3-methyl-amine (commercially available from Air Products) with a purity higher than 97%.
- The potassium salts were obtained by treating the lithium salts with potassium fluoride KF in water. After filtration, evaporation and drying, the potassium salts were recovered in quantitative yield.
-
- These salts are soluble in most of the polar organic solvents (acetonitrile, tetrahydrofurane, DMF, . . . ) and in aprotic solvating polymers
- 1.82 g (10 mmoles) of (1S)-(+)-ketopinic acid (commercially available from Aldrich) were placed in solution in 10 ml of pyridine and there is added 1.04 g (10 mmoles) of the potassium salt of malononitrile and 2.06 g (10 mmoles) of dicyclohexylcarbodiimide. After 48 hours under stirring, the mixture was filtered to remove dicyclohexylurea. After evaporation of the filtrate, the potassium salt of (1S)-(+)-ketopinic-acetylmalononitrile was obtained, with a purity determined by a proton and carbon RMN higher than 97%.
-
- The scandium salt of dibutylaminosulfonylmalononitrile was obtained by treating the potassium salt, obtained in Example 14, with a stoichiometric quantity of scandium tetrafluoroborate Sc(BF4)3 in acetonitrile. After filtration to eliminate the precipitate of potassium tetrafluoroborate KBF4 and evaporation of the solvent, the scandium salt of dibutylaminosulfonylmalononitrile Sc(DBSM)3) was recovered in quantitative yield.
- This salt was used as catalyst for a reaction of aldol condensation in the following manner: To a solution containing 32.6 mg (0.04 mmoles) of the scandium salt of dibutylaminosulfonylmalononitrile (10% molar) in 1.5 ml of dichloromethane, there is added a mixture of 105 mg (0.6 mmoles) of 1-ene-2-methyl-1-silylacetal-1-methoxypropene (CH3)2C═C(OSiMe3)OMe and 42 mg (0.4 mmoles) of benzaldehide in 1 ml of dichloromethane. After 16 hours under stirring at room temperature, water is added and the product was extracted with dichloromethane. the organic phase was washed with three fractions of 10 ml of water, and dichloromethane was evaporated. The residue was then treated with a tetrahydrofurane/HCl 1 M (10:1) during 0.5 hours at 0° C. After diluting with hexane, a saturated solution of sodium bicarbonate was added, and the product was extracted with dichloromethane. The organic phase was washed with a saturated solution of sodium chloride, and dried with sodium sulfate. After evaporation of the solvents, the raw product was chromatographed on silica gel. Methyl-3-hydroxy-2,2-dimethyl-phenylpropionate was obtained with a yield of 89%.
- The same reaction was carried out with a quantity of catalyst divided into about 10, without any decrease of the yield of the compound methyl-3-hydroxy-2,2-dimethyl-phenylpropionate. This result is due to the good solubility in dichloromethane of the scandium salt of dibutylaminosulfonylmalononitrile.
- The scandium salt of dibutylaminosulfonylmalononitrile, obtained in Example 40, was used at catalyst in a Michael addition in the following manner.
-
- The same reaction was carried out with a quantity of catalysts divided about in 10, without a decrease of the yield of the 1,5-dicarbonylated compound. This result is due to the good solubility in dichloromethane of the scandium salt of dibutylaminosulfonylmalononitrile.
-
- It is thus confirmed that the scandium salt of dibutylaminosulfonylmalononitrile is a very good catalyst for Friedel-Crafts reactions of acylation.
- The scandium salt of (1S)-(+)-ketopinic-acetylmalononitrile (ScKAM), prepared according to Example 39, the scandium salt of (1R)-(−)-10-camphorsulfonylmalononitrile (ScCSM), prepared according to Example 37, and the scandium salt of (N-methoxybutyl-N-2-butyl-3-methyl)aminosulfonyl-malononitrile(ScMBBMASM), prepared according to Example 38, were used as catalysts of a Diels-Alder reaction, enabling a reaction of a methylvinylketone with cyclopentadiene.
- For each of the scandium salts mentioned above, the following operating procedure was followed.
- To a solution of 651 mg (10 mmoles) of freshly distilled cyclopentadiene and 701 mg (10 mmoles) of methylvinylketone in 10 ml of dichloromethane, there is added 200 μmoles of the salt of scandium chiral. After 24 hours at room temperature, the reaction mixture was filtered to remove the catalysis suspension. In all cases, there is obtained a reaction yield, determined by chromatography in aqueous phase higher than 90%. After separation of the different products of the reaction on a chiral column, the enantiomeric excesses were determined by RMN. The results, which show the efficiency of the salts for a chiral catalysis, are given in the following table.
Chiral Catalyst Enantiomeric excess ScKAM 61% ScCSM 78% ScMBBMASM 70% - To 18.11 g (100 mmoles) of 6-bromo-1-hexanol and 11.22 g (100 mmoles) of DABCO in 100 ml of anhydrous THF at −20° C., there is slowly added 19.06 g (100 mmoles) of tosyl chloride. After 24 hours under stirring at −20° C., the reaction mixture was filtered to remove the precipitate of DABCO hydrochloride. After evaporation of the solvent, a quantitative amount of 6-bromo-1-hexanol tosylate CH3FSO2O(CH2)6Br was recovered. This compound was thereafter dissolved in 20 ml of THF with 40 g of aniline FNH2 (200 mmoles) and this solution was heated to reflux overnight. After cooling, 300 ml of water were added and the organic phase was extracted with ether. After washing with water, the ether phase was dried with magnesium sulfate. After evaporation and drying, 23 g of N-(6-bromohexyl)aniline was obtained.
- By operating in a glove box under argon, 9.2 g of 1-fluoro-2,2,2-trifluoroethanesulfonyl CF3CHFSO2F (50 mmoles), prepared according to Example 29, were placed in solution in 10 ml of anhydrous tetrahydrofurane. After bringing the temperature of this solution to −20° C., there is slowly added 50 ml of a 1 M solution in tetrahydrofurane of potassium tert-butoxide (CH3)3COK (commercially available from Aldrich). After 15 min, 12.81 (50 mmoles) of N-(6-bromohexyl)aniline were added. The reaction was continued during 2 hours at −20° C., and during 24 hours at room temperature. 8.8 g (50 mmoles) of sodium malononitrile and 5.61 g of DABCO were then added. After 48 hours, the reaction mixture was filtered to remove the precipitate of DABCO hydrochloride, and the solvent was evaporated and the residue was recrystallized in 50 ml of water containing 7.46 (100 mmoles) of potassium chloride KCl. After filtering and drying, the potassium salt of 1-(6-anilino-1-hexane)-2,2,2-trifluoroethanesulfonylmalononitrile was obtained, with a purity characterized by a proton, carbon and fluorine RMN higher than 99%.
-
- This polymer compound which comprises a doping anion very delocalized in its structure presents properties of electronic conductor (PCE). The low basic character of this anion improves the stability of the polymer. In humid medium, this conductivity determined by a four point measurement is initially of the order of 4 S.cm−1.
- This material was tested as the cathode of a battery. The battery had the following structure:
- a composite cathode consisting of 40% by volume of the polymer compound obtained in the present example and 60% by volume of polyethylene oxide of molecular weight 3×105;
- an electrolyte consisting of a film of polyethylene oxide of molecular weight 5×106 containing the lithium salt of butanesulfonylmalononitrile, obtained in Example 28, at a concentration O/Li=20/1;
- a metallic lithium anode.
- After mounting the assembly in a housing for a button shaped battery, the battery obtained was cycled at a temperature of 60° C. between 3 V and 3.9 V. It was possible to make more than 1,000 cycles of charge/discharge while keeping 80% of the capacity of the first cycle.
- In addition, the polymer compound of the present example is a good corrosion inhibitor of ferrous metals and enables to produce deposits on plastic materials treated by Corona effect.
- To 11.8 g (0.1 mole) of methyl oxalate in 30 ml of THF 20.8 g (0.2 moles) of potassium malononitrile in solution in 80 ml of THF were added. A precipitate was formed in a few minutes. The mixture was kept under stirring in a neutral atmosphere during 2 hours, and it was filtered and washed with two portions of 50 ml ether. The potassium salt of the following anion was obtained, in the form of a beige solid:
- This compound forms anionic complexes with metals such as aluminum, zinc, magnesium, iron, chromium. These complexes are soluble in aprotic solvents or solvating polymers and are useful as vehicular carriers of complexed metals (Mg, Al) or as stable redox couple (Fe, Cr).
- To 1.98 g (10 mmoles) of sulfonyldiimidazole in 10 ml of acetonitrile there is added 1.42 g (20 mmoles) of sodium malononitrile in solution in 20 ml ether. A precipitate is immediately formed. The mixture was kept under stirring in a neutral atmosphere during 2 hours, and it was filtered and washed with the two portions of 20 ml ether. The lithium salt of the following anion was obtained in the form of a white solid:
- This salt is soluble in polar solvents, such as propylene carbonate or solvating polymers based on ethylene oxide, and gives conductivities of the order of 10−4 S.cm−1 at 90° C. with an excellent stability of the interface with lithium.
- The lithium salt of trifluoromethanesulfonylmalononitrile obtained in Example 2 and the lithium polysalt of 2,3-epoxypropane-1-sulfonylmalononitrile obtained in Example 31 was tested in electrochemical generators according to the lithium-polymer technology.
- For each salt, a battery was prepared by superposing the following layers:
- a current collector of stainless steel with a thickness of 2 mm;
- a cathode consisting of a pastil of a film of composite material having a thickness of 72 μm of vanadium dioxide (45% by volume), Shawinigan black (5% by volume) and a polyethylene oxide of molecular weight Mw=3×105 (50% by volume);
- an electrolyte consisting of a pastil of a film of polyethylene oxide of molecular weight Mw=5×106 containing one of the two lithium salts at a concentration O/Li=15/1;
- an anode consisting of a sheet of metallic lithium having a thickness of 50 μm;
- a current collector similar to the above collector.
- The pastils constituting the electrode and the electrolyte were cut out in a glove box and piled in the order indicated above.
- The collectors were thereafter placed on both sides of the battery obtained.
- The assembly was sealed in a housing for button shaped battery which enables to protect the generator from the atmosphere and also to exercise a mechanical stress on the films. The battery was then placed in an enclosure under argon mounted in a drying oven at a temperature of 60° C. It was thereafter cycled between 1.8 and 3.3 V at a rate of charge and discharge of C/10 (nominal capacity charged or discharged in 10 hours).
- The curves of cycling obtained are represented in FIG. 1 (salt of lithium of trifluoromethanesulfonylmalononitrile: Curve A; polysalt of lithium of 2,3-epoxypropane-1-sulfonyl-malononitrile: Curve B) On this figure, the use, U, expressed in % is given in ordinate, and the number of cycles C is given in abscissae.
Claims (77)
1. Ionic compound derived from malononitrile comprising an anionic part associated to at least one cationic part Mm+ in sufficient number to provide electronic neutrality of the assembly, characterized in that M is an hydroxonium, a nitrosonium NO+, an ammonium-NH4 +, a metallic cation having a valency m, an organic cation having a valency m or an organometallic cation having a valency m, and that the anionic part corresponds to one of the formula RD—Y—C(C≡N)2 − or Z-C(C≡N)2 − in which:
Z represents an electroattractor radical having a Hammett parameter at least equal to that of a phenyl radical, selected from:
j) —CN, —NO2, —SCN, —N3, FSO2—, —CF3, R′FCH2— (R°F being a perfluorinated radical, preferably CF3—), fluoroalkyloxy, fluoroalkylthioxy, fluoroalkenyloxy, fluoroalkenylthioxy radicals;
jj) radicals comprising one or more aromatic nuclei possibly containing at least one nitrogen, oxygen, sulfur or phosphorus atom, said nuclei possibly being condensed nuclei and/or said nuclei possibly carrying at least one substituent selected from halogens, —CN, —NO2, —SCN, —N3, CF2═CF—O—, radicals RF— and RFCH2— in which RF is a perfluoroalkyl alkyl having 1 to 12 carbon atoms, fluoroalkyloxy groups, fluoroalkylthioxy groups, alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl radicals, polymer radicals, radicals having at least one cationic ionophorous group and/or at least one anionic ionophorous group;
with the proviso that one substituent Z may be a monovalent radical, a multivalent radical, or part of a multivalent radical (including a dendrimer) carrying at least one group —C(C≡N)2, or a segment of a polymer;
Y represents a carbonyl group, a thiocarbonyl group, a sulfonyl group, a sulfinyl group or a phosphonyl group and:
RD is a radical selected from:
a) alkyl or alkenyl radicals, aryl, arylalkyl, alkylaryl or alkenylaryl radicals, alicyclic or heterocyclic radicals, including polycyclic radicals;
b) alkyl or alkenyl radicals comprising at least one functional ether, thioether, amine, imine, amide, carboxyl, carbonyl, isocyanate, isothiocyanate, hydroxy;
c) aryl, arylalkyl, arylalkenyl, alkylaryl or alkenylaryl radicals, in which the aromatic nuclei and/or at least one substituent of the nucleus comprises heteroatoms such as nitrogen, oxygen, sulfur;
d) radicals comprising condensed aromatic cycles which possibly comprise at least one heteroatom selected from nitrogen, oxygen, sulfur;
e) halogenated or perhalogenated alkyl, alkenyl, aryl, arylalkyl, alkylaryl radicals, said radicals possibly comprising functional ether, thioether, imine, amine, carboxyl, carbonyl or hydroxy groups;
f) radicals RCC(R′)(R″)—O— in which RC is an alkyl perfluorinated radical and R′ et R″ are independently from one another an hydrogen atom or a radical such as defined in a), b), c) or d) above [for example CF3CH2O—, (CF3)3CO—, (CF3)2CHO—, CF3CH(C6H5)O—, —CH2(CF2)2CH2—];
g) radicals (RB)2N—, in which the radicals RB which are identical or different are such as defined in a), b), c), d) and e) above, one of the RB may be a halogen atom, or the two radicals RB together form a divalent radical which constitutes a cycle with N;
h) polymer radicals;
i) radicals having one or more cationic ionophorous groups and/or one or more anionic ionophorous groups;
with the proviso that one substituent RD may be a monovalent radical, part of a multivalent radical carrying a plurality of —Y—C−(C≡N)2 groups or a segment of a polymer;
with the proviso that when Y is a carbonyl and RD is a perfluoroalkyl radical having 1 to 3 carbon atoms, or when Z is —CN, M is different from an alkali metal.
2. Compound according to claim 1 , characterized in that the organic cation is an onium cation selected from the group consisting of R3O+ (oxonium), NR4 + (ammonium), RC(NHR2)2 + (amidinium), C(NHR2)3 + (guanidinium), C5R6N+ (pyridinium), C3R5N2 + (imidazolium), C3R7N2 + (imidazolinium), C2R4N3 + (triazolium), SR3 + (sulfonium), PR4 + (phosphonium), IR2 + (iodonium), (C6R5)3C+ (carbonium) cations, the radicals R independently representing from one another a H or a radical selected from the group consisting of:
alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl, thia-alkenyl, aryl, arylalkyl, alkylaryl, alkenylaryl radicals, dialkylamino radicals and dialkylazo radicals;
cyclic or heterocyclic radicals possibly comprising at least one lateral chain comprising heteroatoms such as nitrogen, oxygen, sulfur;
cyclic or heterocyclic radicals possibly comprising heteroatoms in the aromatic nucleus;
groups comprising a plurality of aromatic or heterocyclic nuclei, condensed or non-condensed, possibly containing at least one nitrogen, oxygen, sulfur or phosphorus atom;
with the proviso that a plurality of radicals R may together form aliphatic or aromatic cycles, possibly enclosing the center carrying the cationic charge.
3. Compound according to claim 2 , characterized in that the onium cation is part of the radical Z or the radical RD.
4. Compound according to claim 2 , characterized in that the onium cation is part of a recurring unit of a polymer.
5. Compound according to claim 2 , characterized in the cation M+ is a cationic heterocycle with aromatic character, including at least one nitrogen atom which is alkylated in the cycle.
6. Compound according to claim 5 , characterized in that the cation is an imidazolium, a triazolium, a pyridinium, a 4-dimethyl-amino-pyridinium, said cations possibly carrying a substituent on the carbon atoms of the cycle.
7. Compound according to claim 2 , characterized in that the cation M is a group having a bond —N═N, —N═N+, a sulfonium group, an iodonium group, or an arene-ferrocenium cation, which is substituted or non-substituted, possibly incorporated in a polymeric network.
8. Compound according to claim 2 , characterized in that the cation is a diaryliodonium, a dialkylaryliodonium cation, a triarylsulfonium cation, a trialkylaryl sulfonium cation, or a substituted or non-substituted phenacyl-dialkyl sulfonium cation.
9. Compound according to claim 2 , characterized in that the aryliodonium cation, or the alkylaryliodonium cation, or the triarylsulfonium cation, or the alkylaryl sulfonium cation, or the phenacyl-dialkyl sulfonium cation are part of a polymer chain.
10. Compound according to claim 2 , characterized in that M is an organic cation incorporating a group 2,2′[azobis(2-2′-imidazolinio-2-yl)propane]2+ or 2,2′-azobis(2-amidiniopropane)2+.
11. Compound according to claim 1 , characterized in that the cation M is a metallic cation selected from the group consisting of cations of alkali metals, cations of alkali-earth metals, cations of transition metals, cations of trivalent metals and cations of rare earths.
12. Compound according to claim 1 , characterized in that the cation is a metallocenium, selected from the group consisting of cations derived from ferrocene, titanocene and zirconocene, indenocenium cations, arene metallocenium cations, cations of transition metals complexed with ligands possibly having a chirality and organometallic cations having one or more alkyl or aryl groups covalently bound to an atom or a group of atoms, said cations possibly being part of a polymer chain.
13. Compounds according to claim 1 , characterized in that the substituent Z is selected from the group consisting of —OCnF2n+1, —OC2F4H, —SCnF2n+1 and —SC2F4H, —OCF═CF2, —SCF═CF2, n being a whole number from 1 to 8.
14. Compound according to claim 1 , characterized in that Z is a radical CnF2n+1CH2—, n being a whole number from 1 to 8.
15. Compound according to claim 1 , characterized in that RD is a radical selected from alkyl, alkenyl, oxa-alkyl, oxa-alkenyl, aza-alkyl, aza-alkenyl, thia-alkyl or thia-alkenyl having 1 to 24 carbon atoms, or from aryl, arylalkyl, alkylaryl or alkenylaryl having 5 to 24 carbon atoms.
16. Compound according to claim 1 , characterized in that RD is a radical selected from alkyl or alkenyl radicals having 1 to 12 carbon atoms and possibly comprising at least one heteroatom O, N or S in the main chain or in a lateral chain, and/or possibly carrying a hydroxy group, a carbonyl group, am amino group, or a carboxyl group.
17. Compound according to claim 1 , characterized in that RD is a radical selected from aryl, arylalkyl, alkylaryl or alkenylaryl, in which the aromatic nuclei and/or their substituents comprise heteroatoms such as nitrogen, oxygen, sulfur.
18. Compound according to claim 1 , characterized in that RD is part of a poly(oxyalkylene) radical or a polystyrene radical.
19. Compound according to claim 1 , characterized in that RD is a radical having an iodonium, sulfonium, oxonium, ammonium, amidinium, guanidinium, pyridinium, imidazolium, triazolium, phosphonium or carbonium, said ionic group behaving totally or partially as cation M+.
20. Compound according to claim 1 , characterized in that RD has one or more anionic ionophorous groups consisting of a carboxylic function (—CO2 −), a sulfonic function (—SO3 −), a sulfonimide function (—SO2NSO2—) or a sulfonamide function(—SO2N—).
21. Compound according to claim 1 , characterized in that RD includes at least one ethylenic unsaturation and/or a condensable group and/or a group which is dissociable by thermal means, by photochemical means or by ionic dissociation.
22. Compound according to claim 1 , characterized in that RD represents a mesomorphous group or a chromophore group or a self-doped electronically conductive polymer or a hydrolysable alkoxysilane.
23. Compound according to claim 1 , characterized in that RD represents a recurring unit or a polymer chain.
24. Compound according to claim 1 , characterized in that RD includes a group capable of trapping free radicals.
25. Compound according to claim 1 , characterized in that RD includes a dissociating dipole.
26. Compound according to claim 1 , characterized in that RD includes a redox couple.
27. Compound according to claim 1 , characterized in that RD includes a complexing ligand.
28. Compound according to claim 1 , characterized in that RD—Y— is optically active.
29. Compound according to claim 1 , characterized in that RD—Y— represents an amino acid, or an optically or biologically active polypeptide.
30. Compound according to claim 1 , characterized in that RD represents a radical having a valency v higher than 2, including at both free ends a group —C(C≡N)2 −.
31. Ionically conductive material comprising an ionic compound in solution in a solvent, characterized in that the ionic compound is a compound according to claim 1 .
32. Ionically conductive material according to claim 31 , characterized in that the cation of the ionic compound is ammonium, or a cation derived from a metal, or an organic cation selected from a substituted ammonium, a imidazolium, a triazolium, a pyridinium, a 4-dimethylamino-pyridinium, said cation possibly carrying a substituent on the carbon atoms of the cycle.
33. Ionically conductive material according to claim 31 , characterized in that the substituent RD of the ionic compound comprises an alkyl group, an aryl group, an alkylaryl group or an arylalkyl group; a mesomorphous group or a group comprising at least one ethylenic unsaturation and/or a condensable group and/or a group which is dissociable by thermal means, by photochemical means or by ionic dissociation; a self-doped electronically conductive polymer; a hydrolyzable alkoxysilane; a free radical trap; a dissociating dipole; a redox couple; a complexing ligand.
34. Ionically conductive material according to claim 31 , characterized in that the substituent RD of the ionic compound is an alkyl or alkenyl which contains at least one heteroatom selected from O, N or S; an alkyl or an alkenyl carrying a hydroxy group, a carbonyl group, an amino group, a carboxyl group, an aryl, an arylalkyl, an alkylaryl or an alkenylaryl in which the lateral chains and/or the aromatic nuclei comprise heteroatoms.
35. Material according to claim 31 , characterized in that the substituent RD is a recurring unit of a polymer.
36. Ionically conductive material according to claim 31 , characterized in that the substituent Z of the ionic compound is selected from the group consisting Of —OCnF2n+1, —OC2F4H, —SCnF2n+1 and —SC2F4H, —OCF═CF2, —SCF═CF2.
37. Ionically conductive material according to claim 31 , characterized in that the solvent is either an aprotic liquid solvent, selected from linear ethers and cyclic ethers, esters, nitriles, nitro derivatives, amides, sulfones, sulfolanes, sulfamides and partially halogenated hydrocarbons, or a polar polymer, or a mixture thereof.
38. Ionically conductive material according to claim 37 , characterized in that the solvent is a solvating polymer, cross-linked or non-cross-linked, which may carry grafted ionic groups.
39. Ionically conductive material according to claim 38 , characterized in that the solvating polymer is selected from polyethers of linear structure, comb or blocks, which may form a network, based on poly(ethylene oxide), copolymers containing the ethylene oxide or propylene oxide or allylglycidylether unit, polyphosphazene, cross-linked networks based on polyethylene glycol cross-linked with isocyanates, networks obtained by polycondensation and carrying groups enabling the incorporation of cross-linkable groups and block copolymers in which some blocks carry functions which have redox properties.
40. Ionically conductive material according to claim 31 , characterized in that the solvent consists essentially of an aprotic liquid solvent and a polar polymer solvent comprising units containing at least one heteroatom selected from sulfur, oxygen, nitrogen and fluorine.
41. Ionically conductive material according to claim 40 , characterized in that the polar polymer mainly contains units derived from acrylonitrile, vinylidene fluoride, N-vinylpyrrolidone or methyl methacrylate.
42. Ionically conductive material according to claim 31 , characterized in that it additionally contains at least one second salt.
43. Ionically conductive material according to claim 31 , characterized in that it additionally contains a mineral or organic charge in the form of powder or fibres.
44. Electrochemical generator comprising a negative electrode and a positive electrode separated by an electrolyte, characterized in that the electrolyte is a material according to one of claims 31 to 43 .
45. Generator according to claim 44 , characterized in that the negative elecrode consists of metallic lithium, or an alloy thereof, possibly in the form of a nanometric dispersion in lithium oxide, or a double nitride of lithium and a transition metal, or an oxide with low potential having the general formula Li1+y+x/3Ti2−x/3O4 (0≦x≦1,0≦y≦1), or carbon and carbonated products derived from pyrolysis of organic materials.
46. Generator according to claim 44 , characterized in that the positive electrode is selected from vanadium oxides VOx (2≦x≦2,5), LiV3O8, LiyNi1−xCoxO2, (0≦x≦1; 0≦y≦1), spinels of manganese LiyMn1−xMxO2 (M═Cr, Al, V, Ni, 0≦x≦0,5; 0≦y≦2), organic polydisulfides, FeS, FeS2, iron sulfate Fe2(SO4)3, phosphates and phosphosilicates of iron and lithium of olivine structure, or products thereof in which the iron is substituted by manganese, used alone or in mixtures.
47. Generator according to claim 44 , characterized in that the cathode collector is made of aluminum.
48. Supercapacitance utilizing at least one carbon electrode of high specific surface, or an electrode containing a redox polymer in which the electrolyte is a material according to one of claims 31 to 43 .
49. Utilization of a material according to one of claims 31 to 43 for doping p or n in an electronically conductive polymer.
50. Electrochrome device in which the electrolyte is a material according to one of claims 31 to 43 .
51. Process of polymerization or cross-linking of monomers or prepolymers capable of cationic reaction, characterized in that a compound according to claim 1 is used is used as photoinitiator constituting a source of acid catalyzing the reaction.
52. Process according to claim 41 , characterized in that the ionic compound is selected from those in which the cation has a bond —N═N+, —N═N—, a sulfonium group, an iodonium group or a substituted or non-substituted arene-ferrocenium, possibly incorporated in a polymeric network.
53. Process according to claim 51 , characterized in that the substituent RD of the ionic compound is a non-substituted alkyl radical, a radical comprising an oxa group or a sulfone, a radical comprising a sulfoxide, sulfone, phosphine oxide or phosphonate group.
54. Process according to claim 51 , characterized in that the monomers are selected from the group consisting of compounds which include a cyclic ether function, a cyclic thioether function or a cyclic amine function, vinyl compounds, vinyl ethers, oxazolines, lactones and lactames.
55. Process according to claim 51 , characterized in that the prepolymer is selected from the group consisting of compounds in which epoxy groups are carried by an aliphatic chain, an aromatic chain, or an heterocyclic chain.
56. Process according to claim 51 , characterized in that it comprises mixing the photoinitiator with at least one monomer or prepolymer capable of cationic polymerization, and subjecting the mixture obtained to actinic radiation, including β radiation.
57. Process according to claim 56 , characterized in that the reaction mixture is subject to radiation after having been formed into a thin layer.
58. Process according to claim 51 , characterized in that the photoinitiator is used in the form of a solution in a solvent which is inert towards the polymerization reaction.
59. Process according to claim 58 , characterized in that the inert solvent is selected from the group consisting of acetone, methyl-ethyl ketone, acetonitrile, propylene carbonate, y butyrolactone, ether-esters of mono-, di-, tri-ethylene or propylene glycols, ether-alcohols of mono-, di-, tri-ethylene or propylene glycols, esters of phthalic or citric acid.
60. Process according to claim 51 , characterized in that the reaction is carried out in the presence of a solvent or a diluent consisting of a compound which is reactive towards polymerization.
61. Process according to claim 60 , characterized in that the reactive compound is selected from the group consisting of mono- and di-vinyl ethers of mono-, di-, tri-, tetra-ethylene or propylene glycols, trivinyl ether trimethylolpropane and divinylether of dimethanolcyclohexane, N-vinylpyrolidone, 2-propenylether of propylene carbonate.
62. Process according to claim 51 , characterized in that a photosensitizer is added to the reaction mixture.
63. Process according to claim 62 , characterized in that the photosensitizer is selected from the group consisting of anthracene, diphenyl-9,10-anthracene, perylene, phenothiazine, tetracene, xanthone, thioxanthone, isopropylthioxanthone, acetophenone, benzophenone, 1,3,5-triaryl-2-pyrazolines and their derivatives, in particular derivatives which are substituted on aromatic nuclei by alkyl, oxa- or aza-alkyl radicals.
64. Process according to claim 51 , characterized in that the reaction mixture additionally contains at least one monomer or prepolymer capable of free radical polymerization and a compound capable of releasing an initiator of free radical polymerization under the effect of actinic radiation or β radiation or the action of heat.
65. Process for modifying solubility properties of a polymer having groups which are sensitive towards acids, characterized in that it consist in subjecting said polymer to actinic radiation or β radiation, in the presence of a compound according to claim 1 .
66. Process according to claim 65 , characterized in that the polymer contains ester units or arylether units derived from tertiary alcohol.
67. Process according to claim 66 , characterized in that the polymer is selected from the group consisting of tertiobutyl polyacrylates, tertiobutyl or tertioamyl polyitaconates, poly(tertiobutoxycarbonyloxystyrene), poly(tertiobutoxy styrene).
68. Process according to claim 65 , characterized in that it is used for chemical amplification of photoresists.
69. Process for the polymerization of vinyl monomers, characterized in that there is used as free radical initiator a compound according to claim 10 .
70. Composition of a cationic coloring material, characterized in that it contains a compound according to claim 1 .
71. Composition of a cationic coloring material according to claim 70 , characterized in that the negative charge(s) of the anionic group RD—Y—C(C≡N)2 − or Z-C(C≡N)2 − are either fixed to the molecule of coloring material, or they constitute a counter-ion of positive charges of the coloring material.
72. Utilization of an ionic compound according to claim 1 as catalyst in Friedel-Crafts reactions, Diels-Alder reactions, aldolization reactions, additions of Michael, reactions of allylation, reactions of pinacolic coupling, reactions of glycosilation, reactions of opening of cycles of exetanes, reactions of metathesis of alcenes, polymerizations of Ziegler-Natta type, polymerizations of metathesis type by cycle opening and polymerizations of metathesis type of acyclic dienes.
73. Utilization according to claim 72 , characterized in that the cation of the ionic compound is selected from lithium, magnesium, copper, zinc, tin, trivalent metals, including rare earths, platinoids, and their organometallic couples.
74. Utilization of a compound according to claim 6 , as a solvent for carrying out chemical photochemical, electrochemical, photoelectrochemical reactions, said compound being used above its melting point.
75. Electronically conductive material, characterized in that it comprises an ionic compound according to claim 1 .
76. Electronically conductive material according to claim 75 , characterized in that the cationic part of the ionic compound is a polycation consisting of a doped “p” conjugated polymer.
77. Electronically conductive material according to claim 75 , characterized in that the substituent Z of the ionic compound comprises an alkyl chain having 6 to 20 carbon atoms.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/253,970 US20030066988A1 (en) | 1996-12-30 | 2002-09-24 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CA2194127 | 1996-12-30 | ||
CA002194127A CA2194127A1 (en) | 1996-12-30 | 1996-12-30 | Delocalized anions for use as electrolytic solutes |
CA2199231 | 1997-03-05 | ||
CA002199231A CA2199231A1 (en) | 1997-03-05 | 1997-03-05 | Novel ionic materials |
US09/101,810 US6333425B1 (en) | 1996-12-30 | 1997-12-30 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US09/638,793 US6576159B1 (en) | 1996-12-30 | 2000-08-09 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US10/253,970 US20030066988A1 (en) | 1996-12-30 | 2002-09-24 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/638,793 Continuation US6576159B1 (en) | 1996-12-30 | 2000-08-09 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030066988A1 true US20030066988A1 (en) | 2003-04-10 |
Family
ID=25678955
Family Applications (16)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/101,811 Expired - Lifetime US6171522B1 (en) | 1996-12-30 | 1997-12-30 | Heterocyclic aromatic anion salts, and their uses as ionic conducting materials |
US09/125,799 Expired - Lifetime US6395367B1 (en) | 1996-12-30 | 1997-12-30 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US09/125,792 Expired - Lifetime US6120696A (en) | 1996-12-30 | 1997-12-30 | Proton conductors in liquid form |
US09/125,797 Expired - Lifetime US6319428B1 (en) | 1996-12-30 | 1997-12-30 | Perfluorinated amide salts and their uses as ionic conducting materials |
US09/125,798 Expired - Lifetime US6228942B1 (en) | 1980-02-29 | 1997-12-30 | Surface modified carbonaceous materials |
US09/101,810 Expired - Lifetime US6333425B1 (en) | 1996-12-30 | 1997-12-30 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US09/609,362 Expired - Lifetime US6365068B1 (en) | 1996-12-30 | 2000-06-30 | Heterocyclic aromatic anion salts, and their uses as ionic conducting materials |
US09/638,793 Expired - Lifetime US6576159B1 (en) | 1996-12-30 | 2000-08-09 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US09/826,941 Expired - Lifetime US6506517B2 (en) | 1996-12-30 | 2001-04-06 | Surface modified carbonaceous materials |
US09/858,439 Abandoned US20020009650A1 (en) | 1996-12-30 | 2001-05-16 | Perfluorinated amide salts and their uses as ionic conducting materials |
US10/107,742 Expired - Lifetime US6835495B2 (en) | 1996-12-30 | 2002-03-27 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US10/253,035 Abandoned US20030052310A1 (en) | 1996-12-30 | 2002-09-24 | Perfluorinated amide salts and their uses as ionic conducting materials |
US10/253,970 Abandoned US20030066988A1 (en) | 1996-12-30 | 2002-09-24 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US10/789,453 Abandoned US20050074668A1 (en) | 1996-12-30 | 2004-02-27 | Perfluorinated amide salts and their uses as ionic conducting materials |
US10/926,283 Expired - Fee Related US7906235B2 (en) | 1996-12-30 | 2004-08-25 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US11/867,898 Abandoned US20240253023A1 (en) | 1996-12-30 | 2007-10-05 | Perfluorinated amide salts and their uses as ionic conducting materials |
Family Applications Before (12)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/101,811 Expired - Lifetime US6171522B1 (en) | 1996-12-30 | 1997-12-30 | Heterocyclic aromatic anion salts, and their uses as ionic conducting materials |
US09/125,799 Expired - Lifetime US6395367B1 (en) | 1996-12-30 | 1997-12-30 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US09/125,792 Expired - Lifetime US6120696A (en) | 1996-12-30 | 1997-12-30 | Proton conductors in liquid form |
US09/125,797 Expired - Lifetime US6319428B1 (en) | 1996-12-30 | 1997-12-30 | Perfluorinated amide salts and their uses as ionic conducting materials |
US09/125,798 Expired - Lifetime US6228942B1 (en) | 1980-02-29 | 1997-12-30 | Surface modified carbonaceous materials |
US09/101,810 Expired - Lifetime US6333425B1 (en) | 1996-12-30 | 1997-12-30 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US09/609,362 Expired - Lifetime US6365068B1 (en) | 1996-12-30 | 2000-06-30 | Heterocyclic aromatic anion salts, and their uses as ionic conducting materials |
US09/638,793 Expired - Lifetime US6576159B1 (en) | 1996-12-30 | 2000-08-09 | Malononitrile-derivative anion salts, and their uses as ionic conducting materials |
US09/826,941 Expired - Lifetime US6506517B2 (en) | 1996-12-30 | 2001-04-06 | Surface modified carbonaceous materials |
US09/858,439 Abandoned US20020009650A1 (en) | 1996-12-30 | 2001-05-16 | Perfluorinated amide salts and their uses as ionic conducting materials |
US10/107,742 Expired - Lifetime US6835495B2 (en) | 1996-12-30 | 2002-03-27 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US10/253,035 Abandoned US20030052310A1 (en) | 1996-12-30 | 2002-09-24 | Perfluorinated amide salts and their uses as ionic conducting materials |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/789,453 Abandoned US20050074668A1 (en) | 1996-12-30 | 2004-02-27 | Perfluorinated amide salts and their uses as ionic conducting materials |
US10/926,283 Expired - Fee Related US7906235B2 (en) | 1996-12-30 | 2004-08-25 | Pentacyclic anion salts or tetrazapentalene derivatives and their uses as ionic conducting materials |
US11/867,898 Abandoned US20240253023A1 (en) | 1996-12-30 | 2007-10-05 | Perfluorinated amide salts and their uses as ionic conducting materials |
Country Status (6)
Country | Link |
---|---|
US (16) | US6171522B1 (en) |
EP (9) | EP0850921B1 (en) |
JP (14) | JP4823401B2 (en) |
CA (9) | CA2683826C (en) |
DE (6) | DE69715361T2 (en) |
WO (6) | WO1998029877A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030127129A1 (en) * | 2001-06-14 | 2003-07-10 | Masaru Yoshikawa | Charge transfer material, and photoelectric conversion device and photoelectric cell using same, and pyridine compound |
US20050211292A1 (en) * | 2003-12-01 | 2005-09-29 | Konarka Technologies, Inc. | Zwitterionic compounds and photovoltaic cells containing same |
US20100269732A1 (en) * | 2007-12-27 | 2010-10-28 | Tokai Carbon Co., Ltd. | Aqueous dispersion of surface-treated carbon black and method of producing the same |
US20110229769A1 (en) * | 2010-03-17 | 2011-09-22 | Sony Corporation | Lithium secondary battery, electrolytic solution for lithium secondary battery, electric power tool, electrical vehicle, and electric power storage system |
US9269987B2 (en) | 2011-11-17 | 2016-02-23 | Erlendur Jónsson | Anions and derived salts with high dissociation in non-protogenic solvents |
US10509315B2 (en) | 2015-12-31 | 2019-12-17 | Rohm And Haas Electronic Materials, Llc | Photoacid generator |
US11550217B2 (en) | 2015-12-31 | 2023-01-10 | Rohm And Haas Electronic Materials Llc | Photoresist composition, coated substrate including the photoresist composition, and method of forming electronic device |
US12062759B2 (en) | 2019-01-17 | 2024-08-13 | Lg Energy Solution, Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery including the same |
Families Citing this family (315)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5962546A (en) † | 1996-03-26 | 1999-10-05 | 3M Innovative Properties Company | Cationically polymerizable compositions capable of being coated by electrostatic assistance |
WO1998029877A1 (en) * | 1996-12-30 | 1998-07-09 | Hydro-Quebec | Proton conductor in liquid form |
DE69841891D1 (en) * | 1997-07-25 | 2010-10-21 | Inst Of Organic Chemistry | Use of ionic compounds with a delocalized anionic charge as catalysts |
JP4657390B2 (en) * | 1997-07-25 | 2011-03-23 | アセップ・インク | Perfluorovinyl ion compounds and their use as components of polymer-type ion conductors, selective membrane components or catalyst components |
CA2215849A1 (en) | 1997-09-11 | 1999-03-11 | Christophe Michot | New solvent and electrolytic composition with high conductivity and wide stability range |
DE69829955T2 (en) | 1997-12-01 | 2006-03-02 | Acep Inc., Montreal | SALTS OF PERFLUORIZED SULPHONES AND THEIR USE AS IONICALLY CONDUCTIVE MATERIALS |
GB9726008D0 (en) * | 1997-12-10 | 1998-02-04 | Secr Defence | Eletrolyte |
ATE231169T1 (en) * | 1998-03-03 | 2003-02-15 | Du Pont | ESSENTIALLY FLUORINATED IONOMERS |
US6063522A (en) * | 1998-03-24 | 2000-05-16 | 3M Innovative Properties Company | Electrolytes containing mixed fluorochemical/hydrocarbon imide and methide salts |
FR2781932B1 (en) * | 1998-07-10 | 2000-09-01 | Giat Ind Sa | SOLID POLYMER ELECTROLYTE AND METHODS OF PREPARING THE SAME |
US6350545B2 (en) * | 1998-08-25 | 2002-02-26 | 3M Innovative Properties Company | Sulfonylimide compounds |
US6294289B1 (en) | 1998-08-25 | 2001-09-25 | 3M Innovative Properties Company | Cyano-substituted methide and amide salts |
DE19858925A1 (en) * | 1998-12-19 | 2000-06-21 | Aventis Res & Tech Gmbh & Co | Improving the safety of lithium batteries for use in electronic devices by using an electrolyte containing a partly-fluorinated amide |
EP1033731B1 (en) * | 1999-03-01 | 2006-07-05 | Fuji Photo Film Co., Ltd. | Photo-electrochemical cell containing an electrolyte comprising a liquid crystal compound |
JP3724252B2 (en) * | 1999-04-19 | 2005-12-07 | ダイソー株式会社 | Crosslinked polymer solid electrolyte and use thereof |
DE60004220T2 (en) * | 1999-05-06 | 2004-05-13 | Cabot Corp., Boston | POLYMERIZED MODIFIED PARTICLES AND METHOD FOR THE PRODUCTION THEREOF |
US6593690B1 (en) * | 1999-09-03 | 2003-07-15 | 3M Innovative Properties Company | Large area organic electronic devices having conducting polymer buffer layers and methods of making same |
EP1087412B1 (en) * | 1999-09-24 | 2008-10-01 | Kabushiki Kaisha Toshiba | Electrolyte composition, photosensitized solar cell using said electrolyte composition, and method of manufacturing photosensitized solar cell |
US6765115B1 (en) * | 1999-11-23 | 2004-07-20 | E.I. Du Pont De Nemours And Company | Method for preparing dimetal sulfonyl amide salts |
CN1391554A (en) * | 1999-11-23 | 2003-01-15 | 纳幕尔杜邦公司 | Method for preparing dimetal sulfonyl amide salts |
DE60041579D1 (en) * | 1999-11-29 | 2009-04-02 | Panasonic Corp | NON-aqueous electrolysis and non-aqueous electrocellular cell |
EP1237858B1 (en) * | 1999-12-02 | 2004-07-14 | E.I. Du Pont De Nemours And Company | Method for preparing imides from sulfonyl fluorides |
US6692658B2 (en) * | 1999-12-17 | 2004-02-17 | Canon Kabushiki Kaisha | Electrolyte and secondary cell |
US6852809B2 (en) * | 1999-12-27 | 2005-02-08 | Sumitomo Chemical Company, Limited | Catalyst component for addition polymerization, catalyst for addition polymerization, and process for producing addition polymer |
WO2001052341A1 (en) * | 2000-01-11 | 2001-07-19 | 3M Innovative Properties Company | Perfluoroalkanesulfonate salts in electrochemical systems |
WO2001053368A1 (en) | 2000-01-19 | 2001-07-26 | E.I. Dupont De Nemours And Company | Process for making graft copolymers |
US6522522B2 (en) * | 2000-02-01 | 2003-02-18 | Cabot Corporation | Capacitors and supercapacitors containing modified carbon products |
DE10004928A1 (en) * | 2000-02-04 | 2001-08-09 | Solvay Fluor & Derivate | Use of perfluorinated two-five carbon carboxylic acid amides as solvent (component) for salt conductors in electrolytes, e.g. for rechargeable batteries |
US20040082464A1 (en) * | 2000-03-31 | 2004-04-29 | Romano Anna Maria | Complex polymerization catalysts for the homopolymerization of ethylene and for the copolymerization of ethylene |
JP4682395B2 (en) * | 2000-04-28 | 2011-05-11 | 日産自動車株式会社 | Non-aqueous battery |
DE10023744A1 (en) * | 2000-05-15 | 2001-12-13 | Bayer Ag | Electrochromic display device with high edge sharpness |
US6647166B2 (en) | 2000-08-17 | 2003-11-11 | The Regents Of The University Of California | Electrochromic materials, devices and process of making |
JP4799776B2 (en) * | 2000-08-22 | 2011-10-26 | 富士フイルム株式会社 | Electrolyte composition and electrochemical cell using the same |
JP2002134113A (en) * | 2000-10-30 | 2002-05-10 | Matsushita Electric Ind Co Ltd | Nonaqueous secondary battery |
US6841303B2 (en) * | 2001-01-17 | 2005-01-11 | Skc Co., Ltd. | High ionic conductivity gel polymer electrolyte for rechargeable polymer batteries |
US7253289B2 (en) * | 2001-01-22 | 2007-08-07 | Covalent Associates, Inc. | One-step process for the preparation of halide-free hydrophobic salts |
BR0208094A (en) * | 2001-03-12 | 2004-03-02 | Univ Belfast | Metallic bis-triflimide compounds and processes for synthesizing metallic bis-triflimide compounds |
JP3969077B2 (en) * | 2001-04-04 | 2007-08-29 | 住友化学株式会社 | POLYMER ELECTROLYTE AND METHOD FOR PRODUCING THE SAME |
US20030054172A1 (en) * | 2001-05-10 | 2003-03-20 | 3M Innovative Properties Company | Polyoxyalkylene ammonium salts and their use as antistatic agents |
JP4752135B2 (en) * | 2001-05-25 | 2011-08-17 | 株式会社Gsユアサ | Lithium battery |
JP4287741B2 (en) * | 2001-06-22 | 2009-07-01 | アグフア−ゲヴエルト,ナームローゼ・フエンノートシヤツプ | Materials having conductive patterns; and materials and methods for forming conductive patterns |
US6746751B2 (en) | 2001-06-22 | 2004-06-08 | Agfa-Gevaert | Material having a conductive pattern and a material and method for making a conductive pattern |
US6545109B2 (en) | 2001-06-29 | 2003-04-08 | 3M Innovative Properties Company | Imide salts as emulsifiers for the polymerization of fluoroolefins |
US20030114560A1 (en) * | 2001-08-02 | 2003-06-19 | Jie Yang | Optically clear and antistatic pressure sensitive adhesives |
JP4036279B2 (en) * | 2001-10-09 | 2008-01-23 | よこはまティーエルオー株式会社 | Proton conductor and fuel cell using the same |
US7241535B2 (en) * | 2001-10-15 | 2007-07-10 | Samsung Sdi Co., Ltd. | Electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same |
JP4004769B2 (en) * | 2001-10-17 | 2007-11-07 | Necトーキン株式会社 | Electrolytic solution and electrochemical cell using the same |
DE10155281A1 (en) * | 2001-11-08 | 2003-06-05 | Solvent Innovation Gmbh | Process for removing polarizable impurities from hydrocarbons and hydrocarbon mixtures by extraction with ionic liquids |
US7303852B2 (en) * | 2001-12-27 | 2007-12-04 | Shin-Etsu Chemical Co., Ltd. | Photoacid generating compounds, chemically amplified positive resist materials, and pattern forming method |
SI1500151T1 (en) * | 2002-01-25 | 2014-08-29 | Engen Group Inc. | Polymer-modified electrode for energy storage devices and electrochemical supercapacitor based on said polymer-modified electrode |
US20030153094A1 (en) * | 2002-02-13 | 2003-08-14 | Board Of Trustees Of Michigan State University | Conductimetric biosensor device, method and system |
US6963435B2 (en) * | 2002-03-27 | 2005-11-08 | Avery Dennison Corporation | Switchable electro-optical laminates |
CN1449069A (en) | 2002-04-02 | 2003-10-15 | 株式会社日本触媒 | Material for electrolyte solution and uses thereof |
US6803152B2 (en) * | 2002-04-19 | 2004-10-12 | Ener1 Battery Company | Nonaqueous electrolytes based on organosilicon ammonium derivatives for high-energy power sources |
EP1363345A3 (en) * | 2002-05-09 | 2005-04-27 | Wilson Greatbatch Technologies, Inc. | Guanidine derivatives as cations for ambient temperature molten salts in electrochemical power sources |
US7709158B1 (en) | 2002-05-09 | 2010-05-04 | Electrochem Solutions, Inc. | Guanidine derivatives as cations for ambient temperature molten sales in electrochemical power sources |
US7042615B2 (en) | 2002-05-17 | 2006-05-09 | The Regents Of The University Of California | Electrochromic devices based on lithium insertion |
US7241334B2 (en) * | 2002-05-23 | 2007-07-10 | Columbian Chemicals Company | Sulfonated carbonaceous materials |
US7390441B2 (en) * | 2002-05-23 | 2008-06-24 | Columbian Chemicals Company | Sulfonated conducting polymer-grafted carbon material for fuel cell applications |
CN100339912C (en) * | 2002-05-23 | 2007-09-26 | 哥伦比亚化学公司 | Conducting polymer-grafted carbon material for fuel cell applications |
JP2005527687A (en) * | 2002-05-23 | 2005-09-15 | コロンビアン ケミカルズ カンパニー | Sulfonated conducting polymer grafted carbonaceous materials for fuel cell applications |
US7459103B2 (en) * | 2002-05-23 | 2008-12-02 | Columbian Chemicals Company | Conducting polymer-grafted carbon material for fuel cell applications |
CN100386691C (en) * | 2002-06-21 | 2008-05-07 | 洛斯阿拉莫斯国家安全股份有限公司 | Electro-optic devices containing ionic liquids, electro-optic automotive mirrors and electrolytes used therein |
JP2004031423A (en) * | 2002-06-21 | 2004-01-29 | Nissan Diesel Motor Co Ltd | Glove box equipment |
US7763186B2 (en) * | 2002-06-21 | 2010-07-27 | Los Alamos National Security, Llc | Preparation and purification of ionic liquids and precursors |
KR100463181B1 (en) * | 2002-07-12 | 2004-12-23 | 삼성에스디아이 주식회사 | An electrolyte for lithium-sulfur batteries and lithium-sulfur batteries comprising the same |
US20040038127A1 (en) * | 2002-08-20 | 2004-02-26 | Schlaikjer Carl Roger | Small cation/delocalizing anion as an ambient temperature molten salt in electrochemical power sources |
JP2004082365A (en) * | 2002-08-23 | 2004-03-18 | Fuji Photo Film Co Ltd | Thermosensitive recording material |
US7317047B2 (en) | 2002-09-24 | 2008-01-08 | E.I. Du Pont De Nemours And Company | Electrically conducting organic polymer/nanoparticle composites and methods for use thereof |
WO2004029128A2 (en) | 2002-09-24 | 2004-04-08 | E.I. Du Pont De Nemours And Company | Water dispersible polythiophenes made with polymeric acid colloids |
CA2499364A1 (en) | 2002-09-24 | 2004-04-08 | E. I. Du Pont De Nemours And Company | Water dispersible polyanilines made with polymeric acid colloids for electronics applications |
JP4464277B2 (en) | 2002-09-24 | 2010-05-19 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | Conductive organic polymer / nanoparticle composite material and method of using the same |
EP1406336A1 (en) * | 2002-10-01 | 2004-04-07 | Xoliox SA | Electrolyte composition having improved aluminium anticorrosive properties |
JP4168031B2 (en) * | 2002-11-22 | 2008-10-22 | 日本カーリット株式会社 | Near-infrared absorbing dye and near-infrared blocking filter |
US8124869B2 (en) * | 2003-01-15 | 2012-02-28 | Nippon Shokubai Co., Ltd. | Dye-sensitized type solar cell |
US20040149472A1 (en) * | 2003-02-03 | 2004-08-05 | Warner Benjamin P. | Radiofrequency attenuator and method |
JP2004265638A (en) * | 2003-02-25 | 2004-09-24 | Ebara Corp | Mixed conductive carbon and electrode |
US7390438B2 (en) | 2003-04-22 | 2008-06-24 | E.I. Du Pont De Nemours And Company | Water dispersible substituted polydioxythiophenes made with fluorinated polymeric sulfonic acid colloids |
US7312100B2 (en) * | 2003-05-27 | 2007-12-25 | The North Carolina State University | In situ patterning of electrolyte for molecular information storage devices |
DE112004001158T5 (en) * | 2003-06-27 | 2007-01-11 | E.I. Du Pont De Nemours And Co., Wilmington | Fluorinated sulfonamide compounds and polymer electrolyte membranes made therefrom for use in electrochemical cells |
EP1646054A4 (en) * | 2003-07-11 | 2010-05-19 | Ube Industries | BASE AND ACID MIXTURE AND ION CONDUCTOR COMPRISING SAID MIXTURE |
US7001936B2 (en) * | 2003-07-16 | 2006-02-21 | Lexmark International, Inc. | Pigmented inkjet ink |
US7585594B2 (en) * | 2003-09-30 | 2009-09-08 | Honeywell International Inc. | Electrolyte with indicator |
US7074491B2 (en) * | 2003-11-04 | 2006-07-11 | Dionex Corporation | Polar silanes for binding to substrates and use of the bound substrates |
US10629947B2 (en) | 2008-08-05 | 2020-04-21 | Sion Power Corporation | Electrochemical cell |
US7358012B2 (en) * | 2004-01-06 | 2008-04-15 | Sion Power Corporation | Electrolytes for lithium sulfur cells |
US10297827B2 (en) | 2004-01-06 | 2019-05-21 | Sion Power Corporation | Electrochemical cell, components thereof, and methods of making and using same |
US8828610B2 (en) * | 2004-01-06 | 2014-09-09 | Sion Power Corporation | Electrolytes for lithium sulfur cells |
TWI302760B (en) * | 2004-01-15 | 2008-11-01 | Lg Chemical Ltd | Electrochemical device comprising aliphatic nitrile compound |
JP4433165B2 (en) * | 2004-02-16 | 2010-03-17 | ソニー株式会社 | Cationic conductor and electrochemical device using the same |
JP4507629B2 (en) * | 2004-02-20 | 2010-07-21 | 東洋インキ製造株式会社 | Resin-grafted carbon black composition |
WO2005083159A2 (en) * | 2004-02-23 | 2005-09-09 | E.I. Dupont De Nemours & Company | Apparatus adapted for membrane mediated electropolishing |
US7351358B2 (en) | 2004-03-17 | 2008-04-01 | E.I. Du Pont De Nemours And Company | Water dispersible polypyrroles made with polymeric acid colloids for electronics applications |
US7785740B2 (en) * | 2004-04-09 | 2010-08-31 | Air Products And Chemicals, Inc. | Overcharge protection for electrochemical cells |
US8147962B2 (en) | 2004-04-13 | 2012-04-03 | E. I. Du Pont De Nemours And Company | Conductive polymer composites |
TW200606970A (en) | 2004-05-10 | 2006-02-16 | Nippon Catalytic Chem Ind | Material for electrolytic solution, ionic material-containing composition and use thereof |
US7960057B2 (en) * | 2004-05-17 | 2011-06-14 | Toyota Motor Engineering & Manufacturing North America, Inc. | Battery with molten salt electrolyte and phosphorus-containing cathode |
US20050287441A1 (en) * | 2004-06-23 | 2005-12-29 | Stefano Passerini | Lithium polymer electrolyte batteries and methods of making |
JP2006008454A (en) * | 2004-06-25 | 2006-01-12 | Fuji Xerox Co Ltd | Carbon particulate structure, manufacturing method therefor, carbon particulate transcript and solution for manufacturing the carbon particulate structure, carbon particulate structure electronic element using the carbon particulate structure, manufacturing method therefor and integrated circuit |
JP4731132B2 (en) * | 2004-06-29 | 2011-07-20 | 株式会社Adeka | Non-aqueous electrolyte and non-aqueous electrolyte secondary battery using the electrolyte |
JP4412598B2 (en) * | 2004-07-20 | 2010-02-10 | 第一工業製薬株式会社 | Ionic polymer gel electrolyte and precursor composition thereof |
AU2004240178A1 (en) * | 2004-08-20 | 2006-03-09 | Commonwealth Scientific And Industrial Research Organisation | Zwitterionic additives for electrochemical devices |
EP1634867A1 (en) * | 2004-08-25 | 2006-03-15 | Lonza AG | Tricyanomethane salts of organic cations |
WO2006025482A1 (en) | 2004-09-03 | 2006-03-09 | Nissan Motor Co., Ltd. | Proton conductor and fuel cell using the same |
KR100663032B1 (en) * | 2004-09-21 | 2006-12-28 | 주식회사 엘지화학 | Electrolyte comprising eutectic mixture and electrochromic device using the same |
US20060068987A1 (en) * | 2004-09-24 | 2006-03-30 | Srinivas Bollepalli | Carbon supported catalyst having reduced water retention |
JP4709518B2 (en) * | 2004-09-29 | 2011-06-22 | 株式会社東芝 | Proton conducting membrane and fuel cell |
CN101090952A (en) * | 2004-12-13 | 2007-12-19 | 特拉斯福特普拉斯公司 | Compositions, redox couples and uses thereof |
FR2879458B1 (en) * | 2004-12-21 | 2007-07-20 | Centre Nat Rech Scient Cnrse | FLUORINATED SULFAMIDES AND SULFINIMIDES |
RU2424907C2 (en) | 2005-01-10 | 2011-07-27 | Эвери Деннисон Копэрейшн | Label (versions) and method of its removal from product |
KR100616666B1 (en) | 2005-01-27 | 2006-08-28 | 삼성전기주식회사 | Method of forming guanidine group on carbon nanotube, Method of attaching carbon nanotube on which guanidine group is formed to a substrate, and carbon nanotube and substrate manufactured accordingly |
WO2006088033A1 (en) * | 2005-02-17 | 2006-08-24 | Kaneka Corporation | Composition for metal surface coating, process for producing electrically conductive polymer, method for metal surface coating, and electrolytic capacitor and process for producing the same |
JP2006257288A (en) * | 2005-03-17 | 2006-09-28 | Kaneka Corp | Composition for coating metal surface, method of manufacturing conductive polymer, coating method for metal surface, electrolytic capacitor and method for manufacturing the same |
JP4856883B2 (en) * | 2005-03-03 | 2012-01-18 | 富士フイルム株式会社 | Functional element, electrochromic element, optical device and photographing unit |
DE102005013790B4 (en) * | 2005-03-24 | 2007-03-29 | Polymaterials Ag | Polymer electrolyte, use of the polymer electrolyte and electrochemical device comprising the polymer electrolyte |
CA2506104A1 (en) * | 2005-05-06 | 2006-11-06 | Michel Gauthier | Surface modified redox compounds and composite electrode obtain from them |
JP4877228B2 (en) * | 2005-05-31 | 2012-02-15 | コニカミノルタホールディングス株式会社 | Electrochromic display element and full-color electrochromic display element |
US7579184B2 (en) * | 2005-06-02 | 2009-08-25 | Board Of Trustees Of Michigan State University | Methods to increase dynamic range and improve quantitative analysis in rapid biosensors |
JP5489458B2 (en) * | 2005-06-28 | 2014-05-14 | イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー | High work function transparent conductor |
CN101595532B (en) | 2005-06-28 | 2013-07-31 | E.I.内穆尔杜邦公司 | Buffer compositions |
US20070043231A1 (en) * | 2005-08-22 | 2007-02-22 | Amer Hammami | Process for preparing sulfonylimides and derivatives thereof |
JP5031755B2 (en) * | 2005-10-27 | 2012-09-26 | エルジー・ケム・リミテッド | Secondary battery using eutectic mixture and manufacturing method thereof |
WO2007055392A1 (en) * | 2005-11-11 | 2007-05-18 | Nippon Shokubai Co., Ltd. | Ionic compound |
WO2007068822A2 (en) * | 2005-12-12 | 2007-06-21 | Phostech Lithium Inc. | Sulphonyl-1,2,4-triazole salts |
US7901660B2 (en) * | 2005-12-29 | 2011-03-08 | The Board Of Trustees Of The University Of Illinois | Quaternary oxides and catalysts containing quaternary oxides |
US7521394B2 (en) * | 2005-12-29 | 2009-04-21 | The Board Of Trustees Of The University Of Illinois | Nanoparticles containing titanium oxide |
US8216680B2 (en) | 2006-02-03 | 2012-07-10 | E I Du Pont De Nemours And Company | Transparent composite conductors having high work function |
JP4682057B2 (en) * | 2006-02-20 | 2011-05-11 | 富士フイルム株式会社 | Photosensitive composition, pattern forming method using the photosensitive composition, and compound used in the photosensitive composition |
US20090045373A1 (en) * | 2006-03-10 | 2009-02-19 | Amer Hammami | Compounds, ionic liquids, molten salts and uses thereof |
EP2008318B1 (en) * | 2006-03-21 | 2013-02-13 | Novaled AG | Method for preparing doped organic semiconductor materials |
US7884209B2 (en) * | 2006-03-30 | 2011-02-08 | Novaled Ag | Use of bora-tetraazapentalenes |
US8268197B2 (en) * | 2006-04-04 | 2012-09-18 | Seeo, Inc. | Solid electrolyte material manufacturable by polymer processing methods |
WO2007142731A2 (en) | 2006-04-04 | 2007-12-13 | The Regents Of The University Of California | High elastic modulus polymer electrolytes |
US7696122B2 (en) * | 2006-07-05 | 2010-04-13 | Cabot Corporation | Electrocatalyst inks for fuel cell applications |
US20080214814A1 (en) * | 2006-07-18 | 2008-09-04 | Zaiwei Li | Stable ionic liquid complexes and methods for determining stability thereof |
WO2008013095A1 (en) | 2006-07-27 | 2008-01-31 | Nichicon Corporation | Ionic compound |
EP1903029A1 (en) * | 2006-08-16 | 2008-03-26 | Lonza Ag | Process for making alcaline- or alcaline-earth metall tricyanomethanides |
EP2056380B1 (en) * | 2006-08-17 | 2018-02-28 | Mitsubishi Chemical Corporation | Negative electrode active material for lithium ion secondary battery, process for producing the same, and negative electrode for lithium ion secondary battery and lithium ion secondary battery both employing the same. |
US7833660B1 (en) | 2006-09-07 | 2010-11-16 | The United States Of America As Represented By The Secretary Of The Army | Fluorohaloborate salts, synthesis and use thereof |
US7820323B1 (en) | 2006-09-07 | 2010-10-26 | The United States Of America As Represented By The Secretary Of The Army | Metal borate synthesis process |
WO2008057926A2 (en) | 2006-11-02 | 2008-05-15 | Avery Dennison Corporation | Emulsion adhesive for washable film |
EP2081082A4 (en) * | 2006-11-08 | 2010-12-08 | Konica Minolta Holdings Inc | Display element |
US7864397B2 (en) * | 2006-12-04 | 2011-01-04 | 3M Innovative Properties Company | Curable electrolyte |
US8043418B2 (en) * | 2006-12-08 | 2011-10-25 | General Electric Company | Gas separator apparatus |
KR100767427B1 (en) * | 2006-12-21 | 2007-10-17 | 제일모직주식회사 | Non-aqueous electrolyte solution for lithium secondary batteries and lithium secondary battery comprising same |
US20080191172A1 (en) | 2006-12-29 | 2008-08-14 | Che-Hsiung Hsu | High work-function and high conductivity compositions of electrically conducting polymers |
JP5110625B2 (en) * | 2007-02-02 | 2012-12-26 | パナソニック株式会社 | Electricity storage device |
EP2122723B1 (en) * | 2007-02-06 | 2017-04-12 | 3M Innovative Properties Company | Electrodes including novel binders and methods of making and using the same |
US7875388B2 (en) | 2007-02-06 | 2011-01-25 | 3M Innovative Properties Company | Electrodes including polyacrylate binders and methods of making and using the same |
US7820347B1 (en) * | 2007-02-06 | 2010-10-26 | The United States Of America As Represented By The Secretary Of The Air Force | Conversion of salt halides to nitrate salts |
US8540899B2 (en) * | 2007-02-07 | 2013-09-24 | Esionic Es, Inc. | Liquid composite compositions using non-volatile liquids and nanoparticles and uses thereof |
CN101657522B (en) * | 2007-04-13 | 2014-05-07 | 3M创新有限公司 | Antistatic optically clear pressure sensitive adhesive |
US8012277B2 (en) * | 2007-04-13 | 2011-09-06 | Alliant Techsystems Inc. | Ionic liquid and a method of synthesizing an ionic liquid |
JP2008266155A (en) * | 2007-04-17 | 2008-11-06 | Asahi Kasei Corp | Method for producing sulfonimide lithium salt |
JP5641929B2 (en) | 2007-04-24 | 2014-12-17 | サン・ケミカル・コーポレーション | Pigments for water-insoluble inks and paints |
US8241526B2 (en) * | 2007-05-18 | 2012-08-14 | E I Du Pont De Nemours And Company | Aqueous dispersions of electrically conducting polymers containing high boiling solvent and additives |
US8287810B2 (en) * | 2007-06-20 | 2012-10-16 | Board Of Trustees Of Michigan State University | Electrically-active ferromagnetic particle conductimetric biosensor test kit |
KR101451802B1 (en) * | 2007-07-31 | 2014-10-16 | 삼성에스디아이 주식회사 | Organic electrolytic solution comprising glycidyl ether compund and lithium battery employing the same |
JP2010536722A (en) * | 2007-08-16 | 2010-12-02 | ロンザ リミテッド | Process for producing and purifying alkali metal and alkaline earth metal tricyanomethanides |
WO2009089018A2 (en) * | 2008-01-08 | 2009-07-16 | Sion Power Corporation | Porous electrodes and associated methods |
JP4936069B2 (en) * | 2007-10-31 | 2012-05-23 | 株式会社デンソー | Motor control device |
US20090122389A1 (en) | 2007-11-14 | 2009-05-14 | E Ink Corporation | Electro-optic assemblies, and adhesives and binders for use therein |
US20090181441A1 (en) * | 2007-11-27 | 2009-07-16 | Board Of Trustees Of Michigan State University | Porous silicon-polymer composites for biosensor applications |
CN101878559A (en) * | 2007-11-30 | 2010-11-03 | 株式会社藤仓 | Electrolytic composition and photoelectric conversion element using the same |
FR2925181B1 (en) | 2007-12-12 | 2010-09-10 | Hydro Quebec | ELECTROCHROME OPTICAL LENS |
EP2240975B1 (en) * | 2008-01-16 | 2016-11-16 | Seeo, Inc | Gel polymer electrolytes for batteries |
KR101013328B1 (en) | 2008-01-18 | 2011-02-09 | 주식회사 엘지화학 | Electrolyte including eutectic mixture and electrochemical device having same |
US8034485B2 (en) | 2008-05-29 | 2011-10-11 | 3M Innovative Properties Company | Metal oxide negative electrodes for lithium-ion electrochemical cells and batteries |
US9782949B2 (en) | 2008-05-30 | 2017-10-10 | Corning Incorporated | Glass laminated articles and layered articles |
JP5471036B2 (en) * | 2008-06-05 | 2014-04-16 | ソニー株式会社 | Magnesium ion-containing non-aqueous electrolyte and electrochemical device using the same |
US7715082B2 (en) * | 2008-06-30 | 2010-05-11 | Soladigm, Inc. | Electrochromic devices based on lithium insertion |
JP2010047751A (en) * | 2008-07-24 | 2010-03-04 | Sumitomo Chemical Co Ltd | Ion exchange polymer |
FR2935382B1 (en) | 2008-08-29 | 2010-10-08 | Centre Nat Rech Scient | SALT OF PENTACYLIC ANION AND ITS USE AS ELECTROLYTE |
JP4444355B2 (en) * | 2008-09-03 | 2010-03-31 | 株式会社東芝 | Fuel cell |
US7951525B2 (en) * | 2008-09-08 | 2011-05-31 | International Business Machines Corporation | Low outgassing photoresist compositions |
US8129448B2 (en) * | 2008-12-18 | 2012-03-06 | Cabot Corporation | Method of preparing polymer modified pigments |
US20100193449A1 (en) * | 2009-02-02 | 2010-08-05 | Jian-Ku Shang | Materials and methods for removing arsenic from water |
EP2406796A2 (en) | 2009-03-12 | 2012-01-18 | E. I. du Pont de Nemours and Company | Electrically conductive polymer compositions for coating applications |
CN107610582B (en) | 2009-03-30 | 2020-07-31 | 艾利丹尼森公司 | Removable adhesive labels containing inherently shrinkable polymeric films |
EP2415042B1 (en) | 2009-03-30 | 2017-03-29 | Avery Dennison Corporation | Removable adhesive label containing polymeric film layer having water affinity |
EP3255111B1 (en) | 2009-03-30 | 2022-10-12 | Avery Dennison Corporation | Removable adhesive label containing high tensile modulus polymeric film layer |
US8432603B2 (en) * | 2009-03-31 | 2013-04-30 | View, Inc. | Electrochromic devices |
FR2944149B1 (en) * | 2009-04-06 | 2011-04-29 | Centre Nat Rech Scient | COMPOSITE ELECTRODE. |
EP2421918B1 (en) | 2009-04-21 | 2020-08-26 | LG Chem, Ltd. | Electrically conductive polymer compositions and films made therefrom |
EP2421919A4 (en) | 2009-04-24 | 2014-01-22 | Du Pont | Electrically conductive polymer compositions and films made therefrom |
JP5645459B2 (en) * | 2009-07-10 | 2014-12-24 | 富士フイルム株式会社 | Actinic ray-sensitive or radiation-sensitive resin composition and pattern forming method using the same |
IN2012DN02063A (en) | 2009-08-28 | 2015-08-21 | Sion Power Corp | |
EP2314572A1 (en) | 2009-10-20 | 2011-04-27 | Philipps-Universität Marburg | Lithium salts of pentafluorphenyl amide anions, production and use of same |
US9951008B2 (en) | 2009-11-03 | 2018-04-24 | University Of Notre Dame Du Lac | Ionic liquids comprising heteraromatic anions |
TW201117245A (en) * | 2009-11-11 | 2011-05-16 | Taiwan Textile Res Inst | Water-based electrolyte for electric double layer capacitor and electric double layer capacitor having the same |
JP5629510B2 (en) * | 2009-11-30 | 2014-11-19 | 大日本印刷株式会社 | Triarylmethane dye |
KR101311933B1 (en) * | 2009-12-29 | 2013-09-27 | 제일모직주식회사 | Conductive polymer, conductive polymer composition, film and opto-electronic device using thereof |
US8730649B2 (en) | 2010-03-12 | 2014-05-20 | Taiwan Textile Research Institute | Aqueous electrolyte solution for electric double-layer capacitor and electric double-layer capacitor having the same |
KR101346977B1 (en) | 2010-06-04 | 2014-01-02 | 주식회사 엘지화학 | An apparatus and method for removing byproducts by hydroformylation reaction |
EP2609647B1 (en) | 2010-08-24 | 2017-03-15 | Sion Power Corporation | Electrolyte materials for use in electrochemical cells |
JP5398801B2 (en) * | 2010-10-29 | 2014-01-29 | 旭化成株式会社 | Polymer electrolyte |
WO2012128964A1 (en) | 2011-03-08 | 2012-09-27 | Trinapco, Inc. | Method of making fluorosulfonylamine |
JP5673258B2 (en) * | 2011-03-17 | 2015-02-18 | 大日本印刷株式会社 | Coloring composition for color filter, color filter using the same, and display device |
US8859297B2 (en) | 2011-05-23 | 2014-10-14 | Board Of Trustees Of Michigan State University | Detection of conductive polymer-labeled analytes |
US8735002B2 (en) | 2011-09-07 | 2014-05-27 | Sion Power Corporation | Lithium sulfur electrochemical cell including insoluble nitrogen-containing compound |
WO2012174393A1 (en) | 2011-06-17 | 2012-12-20 | Sion Power Corporation | Plating technique for electrode |
JP6060478B2 (en) * | 2011-08-03 | 2017-01-18 | 住友化学株式会社 | Compound and production method thereof |
JP5268123B2 (en) * | 2011-08-26 | 2013-08-21 | 株式会社 東北テクノアーチ | Lithium battery |
US10739337B2 (en) | 2011-08-30 | 2020-08-11 | Board Of Trustees Of Michigan State University | Extraction and detection of pathogens using carbohydrate-functionalized biosensors |
JP2013053208A (en) * | 2011-09-02 | 2013-03-21 | Dic Corp | Ink composition for active energy ray-curing inkjet recording, and image forming method |
FR2979630B1 (en) * | 2011-09-05 | 2013-10-04 | Univ Provence Aix Marseille 1 | BLOCK COPOLYMERS HAVING A POLYANIONIC BASED ON ANION MONOMER TYPE TFSILI AS ELECTROLYTE BATTERY. |
US9660294B2 (en) | 2011-09-13 | 2017-05-23 | Wildcat Discovery Technologies, Inc. | Electrolyte materials for batteries and methods for use |
EP2757413A4 (en) * | 2011-09-16 | 2015-05-27 | Nat Inst Of Advanced Ind Scien | GRADING ELECTROCHROMIC REFLECTING ELEMENT IN WHICH A NONAQUEOUS HYDROGENIC ION CONDUCTING ELECTROLYTIC LAYER IS INSERTED, AND GRADING ELEMENT USING THE ELECTROCHROMIC GRADING REFLECTING ELEMENT |
EP2760074B1 (en) * | 2011-09-19 | 2017-11-15 | LG Chem, Ltd. | Cable-type secondary cell |
JP6118805B2 (en) | 2011-10-13 | 2017-04-19 | シオン・パワー・コーポレーション | Electrode structure and manufacturing method thereof |
DE102011055028A1 (en) * | 2011-11-04 | 2013-05-08 | Jacobs University Bremen Ggmbh | Electrolyte additive for lithium-based energy storage |
JP5871209B2 (en) * | 2011-11-15 | 2016-03-01 | 国立大学法人山形大学 | Polymer having bissulfonimide structure, electrode including the same, and battery |
JP2013114934A (en) * | 2011-11-29 | 2013-06-10 | Nippon Synthetic Chem Ind Co Ltd:The | Metal salt, electrode protective film forming agent, secondary battery electrolyte including the salt, and secondary battery |
KR20190075162A (en) * | 2011-11-30 | 2019-06-28 | 솔베이(소시에떼아노님) | Fluorinated derivatives of meldrum's acid, a method for the preparation of the same, and their use as a solvent additive |
EP2791733B1 (en) | 2011-12-12 | 2017-10-25 | View, Inc. | Thin-film devices and fabrication |
TWI447993B (en) * | 2011-12-30 | 2014-08-01 | Ind Tech Res Inst | Anode material and anode electrode plate |
DE102012201942B8 (en) * | 2012-02-09 | 2015-02-26 | Ewe-Forschungszentrum Für Energietechnologie E. V. | Use of an activated carbonaceous material, method of making a carbonaceous electrode, carbonaceous electrode, use thereof, and vanadium redox flow cell |
US9077041B2 (en) | 2012-02-14 | 2015-07-07 | Sion Power Corporation | Electrode structure for electrochemical cell |
DE102012102162A1 (en) * | 2012-03-14 | 2013-09-19 | Westfälische Wilhelms-Universität Münster Körperschaft des öffentlichen Rechts | Ion-conducting polymeric compound for electrochemical cells |
EP2831181B1 (en) * | 2012-03-28 | 2020-01-08 | Cabot Corporation | Oxidized carbon blacks treated with polyetheramines and coating compositions comprising same |
WO2013142994A1 (en) * | 2012-03-30 | 2013-10-03 | Valorisation-Recherche, Limited Partnership | Redox-active ionic liquids |
CA2776178A1 (en) | 2012-04-05 | 2013-10-05 | Hydro-Quebec | Ionic compounds |
JP5660112B2 (en) * | 2012-04-27 | 2015-01-28 | 株式会社豊田自動織機 | Positive electrode for lithium ion secondary battery and lithium ion secondary battery |
WO2014078725A1 (en) | 2012-11-16 | 2014-05-22 | Trinapco, Inc. | Synthesis of tetrabutylammonium bis(fluorosulfonyl)imide and related salts |
JP6268833B2 (en) * | 2012-12-17 | 2018-01-31 | 株式会社豊田中央研究所 | Non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery |
US9577289B2 (en) | 2012-12-17 | 2017-02-21 | Sion Power Corporation | Lithium-ion electrochemical cell, components thereof, and methods of making and using same |
CN105190966B (en) | 2012-12-19 | 2018-06-12 | 锡安能量公司 | Electrode structure and manufacturing method thereof |
EP2936607B1 (en) | 2012-12-20 | 2017-02-22 | Solvay SA | Salts of n-containing heterocyclic anions as components in electrolytes |
CN102993196B (en) * | 2012-12-20 | 2015-01-28 | 北京科技大学 | Triazole derivative, preparation method thereof, nano particles thereof and application of nano particles |
US12261284B2 (en) | 2013-03-15 | 2025-03-25 | Sion Power Corporation | Protective structures for electrodes |
JP6201363B2 (en) * | 2013-03-25 | 2017-09-27 | 三菱ケミカル株式会社 | Non-aqueous electrolyte and non-aqueous electrolyte battery using the same |
WO2015029248A1 (en) * | 2013-09-02 | 2015-03-05 | 株式会社日立製作所 | Negative electrode active material-coating material, negative electrode material using same, negative electrode, lithium ion secondary battery, battery system, monomer, and method for synthesizing monomer |
JP6162084B2 (en) * | 2013-09-06 | 2017-07-12 | 富士フイルム株式会社 | Colored composition, cured film, color filter, method for producing color filter, solid-state imaging device, image display device, polymer, xanthene dye |
WO2015048765A1 (en) | 2013-09-30 | 2015-04-02 | University Of Notre Dame Du Lac | Compounds, complexes, compositions, methods and systems for heating and cooling |
FR3011683A1 (en) * | 2013-10-03 | 2015-04-10 | Arkema France | PENTACYCLIC ANION SALT: COMPOSITION FOR BATTERIES |
FR3012462B1 (en) * | 2013-10-31 | 2016-01-01 | Arkema France | STABLE COMPOSITIONS OF POLY (3,4-ETHYLENEDIOXYTHIOPHENE) AND LIMITED-ACIDITY ANIONIC STABILIZERS |
WO2015069799A1 (en) | 2013-11-05 | 2015-05-14 | University Of Notre Dame Du Lac | Carbon dioxide capture using phase change ionic liquids |
CN106256034B (en) | 2014-05-01 | 2019-04-23 | 锡安能量公司 | Electrode manufacturing method and correlated product |
EP3143184B1 (en) | 2014-05-12 | 2021-07-07 | Johna Leddy | Lanthanide and actinide electrochemistry |
JP2017518625A (en) * | 2014-06-06 | 2017-07-06 | ローベルト ボツシユ ゲゼルシヤフト ミツト ベシユレンクテル ハフツングRobert Bosch Gmbh | Polymer electrolyte for lithium-sulfur battery |
JP6541508B2 (en) * | 2014-08-25 | 2019-07-10 | 住友化学株式会社 | Salt, resin, resist composition and method for producing resist pattern |
CN104600357B (en) * | 2014-12-08 | 2017-05-31 | 上海大学 | Polymer composites solid electrolyte and preparation method thereof |
US10068715B2 (en) | 2014-12-12 | 2018-09-04 | Corning Incorporated | Activated carbon and electric double layer capacitor thereof |
US10826113B2 (en) * | 2015-04-13 | 2020-11-03 | Global Graphene Group, Inc. | Zinc ion-exchanging energy storage device |
JP6658204B2 (en) * | 2015-04-28 | 2020-03-04 | 信越化学工業株式会社 | Photoacid generator, resist composition and pattern forming method |
DE102015210388A1 (en) * | 2015-06-05 | 2016-12-08 | Siemens Aktiengesellschaft | Organic heterocyclic alkali metal salts as n-dopants in organic electronics |
EP3113275B1 (en) * | 2015-06-29 | 2021-06-09 | VARTA Micro Innovation GmbH | Secondary magnesium battery and electrolyte system and electrode for a secondary magnesium battery |
US20180198167A1 (en) * | 2015-07-15 | 2018-07-12 | The Trustees Of Boston University | Ionic liquid electrolytes and electrochemical devices comprising same |
JP2017066377A (en) * | 2015-09-29 | 2017-04-06 | Jsr株式会社 | Colored composition, colored cured film, display element and solid-state image sensor |
GB2544495B (en) | 2015-11-17 | 2018-12-05 | Nexeon Ltd | Surface modified electrochemically active material |
JP2019503032A (en) * | 2015-11-17 | 2019-01-31 | ネグゼオン・リミテッドNexeon Ltd | Functionalized electrochemically active materials and methods of functionalization |
KR102056591B1 (en) * | 2015-12-07 | 2019-12-17 | 주식회사 엘지화학 | Pressure sensitive adhesive composition |
JP6946294B2 (en) * | 2016-07-26 | 2021-10-06 | 東ソー・ファインケム株式会社 | Organic solvent solution of sulfonimide with polymerizable functional groups with reduced halides |
JP6853636B2 (en) * | 2016-09-08 | 2021-03-31 | 三菱マテリアル電子化成株式会社 | Method for Producing Perfluoroalkyl Sulfonamide |
JP6744848B2 (en) * | 2016-09-13 | 2020-08-19 | 信越化学工業株式会社 | Adhesive composition, bioelectrode, and method for producing bioelectrode |
JP6761384B2 (en) * | 2016-09-29 | 2020-09-23 | 信越化学工業株式会社 | Adhesive composition, bioelectrode, and method for manufacturing bioelectrode |
JP6761386B2 (en) * | 2016-09-29 | 2020-09-23 | 信越化学工業株式会社 | Adhesive composition, bioelectrode, method for producing bioelectrode, and salt |
KR102141267B1 (en) * | 2016-11-04 | 2020-08-04 | 주식회사 엘지화학 | Compound including aromatic ring, polymer including the same |
JP6919993B2 (en) | 2017-01-06 | 2021-08-18 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode and method for producing bioelectrode |
JP6966310B2 (en) * | 2017-02-06 | 2021-11-10 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, method for producing bioelectrode, and polymer compound |
JP6892376B2 (en) * | 2017-02-14 | 2021-06-23 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, method for producing bioelectrode, and polymer compound |
JP6661212B2 (en) * | 2017-02-22 | 2020-03-11 | 信越化学工業株式会社 | Conductive polymer composite and substrate |
JP6765988B2 (en) * | 2017-02-22 | 2020-10-07 | 信越化学工業株式会社 | Polymer compounds for conductive polymers and their manufacturing methods |
EP3601233B1 (en) * | 2017-03-27 | 2024-08-14 | Hydro-Québec | Salts for use in electrolyte compositions or as electrode additives |
ES2693587A1 (en) * | 2017-06-09 | 2018-12-12 | Universidad Carlos Iii De Madrid | Salts based on organic anions of sulfonamides and their uses (Machine-translation by Google Translate, not legally binding) |
WO2019009300A1 (en) * | 2017-07-06 | 2019-01-10 | 公立大学法人大阪府立大学 | Method for making biological tissue transparent and reagent for same |
CN110892320B (en) * | 2017-08-08 | 2022-05-10 | 金泰克斯公司 | Electro-optical device with transparent ion exchange membrane |
US10232360B1 (en) | 2017-09-12 | 2019-03-19 | Chevron Phillips Chemical Company, Lp | Use of organic dopants to enhance acetylene hydrogenation catalysts |
US10245583B1 (en) * | 2017-09-12 | 2019-04-02 | Chevron Phillips Chemical Company, Lp | Use of charge-containing molecules linked with covalent bonds to enhance acetylene hydrogenation catalysts |
JP6845191B2 (en) * | 2017-10-19 | 2021-03-17 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for producing bioelectrode |
JP6920000B2 (en) * | 2017-10-26 | 2021-08-18 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for producing bioelectrode |
KR102228070B1 (en) | 2017-11-01 | 2021-03-12 | 주식회사 엘지화학 | Chemically amplified photoresist composition and photoresist film using the same |
JP6850279B2 (en) * | 2017-11-21 | 2021-03-31 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for producing bioelectrode |
CN107706463B (en) * | 2017-11-23 | 2018-11-06 | 林宝领 | A kind of the nitroso grafting carbonic ester electrolyte and preparation method of lithium battery |
CN109851704B (en) * | 2017-11-30 | 2020-06-19 | 比亚迪股份有限公司 | Polymer diaphragm, preparation method and application thereof, and lithium battery |
CN109851703B (en) * | 2017-11-30 | 2020-10-23 | 比亚迪股份有限公司 | Vinylidene fluoride copolymer suitable for adhesive and preparation method and application thereof |
CN109860471B (en) * | 2017-11-30 | 2020-12-25 | 比亚迪股份有限公司 | Polymer diaphragm, preparation method and application thereof, and lithium battery |
CN109935902B (en) * | 2017-12-19 | 2021-10-19 | 成都大超科技有限公司 | Solid electrolyte and its lithium battery cell, lithium battery |
JP6839125B2 (en) | 2018-04-02 | 2021-03-03 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for producing bioelectrode |
JP7080732B2 (en) * | 2018-06-01 | 2022-06-06 | 三菱マテリアル電子化成株式会社 | Fluorine-containing sulfonylimide base-containing silicone compound and a conductive silicone composition containing the same |
US11394056B2 (en) * | 2018-06-08 | 2022-07-19 | Solid State Battery Incorporated | Composite solid polymer electrolytes for energy storage devices |
JP7111653B2 (en) * | 2018-06-25 | 2022-08-02 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for producing bioelectrode |
JP7099990B2 (en) * | 2018-06-26 | 2022-07-12 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for manufacturing bioelectrode |
CN112424685A (en) | 2018-07-20 | 2021-02-26 | 株式会社尼康 | Camera accessory and information sending method |
EP3605700A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
WO2020025502A1 (en) | 2018-07-31 | 2020-02-06 | Solvay Sa | New components for electrolyte compositions |
EP3605699A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
EP3604276A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
WO2020025499A1 (en) | 2018-07-31 | 2020-02-06 | Solvay Sa | New components for electrolyte compositions |
WO2020025501A1 (en) | 2018-07-31 | 2020-02-06 | Solvay Sa | New components for electrolyte compositions |
EP3605698A1 (en) | 2018-07-31 | 2020-02-05 | Solvay Sa | New components for electrolyte compositions |
JP6966396B2 (en) | 2018-08-23 | 2021-11-17 | 信越化学工業株式会社 | Bioelectrode composition, bioelectrode, and method for manufacturing bioelectrode |
KR102650658B1 (en) * | 2018-11-15 | 2024-03-25 | 삼성전자주식회사 | Metallic salt including anion having heterocyclic aromatic structure and manufacturing method thereof, and electrolyte and electrochemincal device including the metallic salt |
CN109776709B (en) * | 2018-12-25 | 2021-09-07 | 广东工业大学 | A kind of poly-p-styrenesulfonyl (trifluoromethylsulfonyl)imide lithium-polyvinylidene carbonate copolymer and application thereof |
JP7237606B2 (en) * | 2019-01-25 | 2023-03-13 | 国立大学法人東京農工大学 | Polymer obtained by polymerizing 4-styrene derivative, binder or coating agent for magnesium secondary battery using the same, and magnesium secondary battery |
EP3705035A1 (en) * | 2019-03-07 | 2020-09-09 | Nederlandse Organisatie voor toegepast- natuurwetenschappelijk Onderzoek TNO | Manufacturing of skin-compatible electrodes |
DE102019208914A1 (en) * | 2019-06-19 | 2020-12-24 | Robert Bosch Gmbh | Salt with anion with unfluorinated dialkylamide sulfonyl and / or sulfoximide group and with perfluoroalkyl sulfonyl group |
CN110305172B (en) * | 2019-06-26 | 2020-09-01 | 武汉大学 | A kind of cobalt phosphonate and its preparation method and its application as a wide temperature range proton conducting material |
CN110368899A (en) * | 2019-07-16 | 2019-10-25 | 邱越 | A kind of absorbent charcoal composite material and its preparation method and application |
CN110721745B (en) * | 2019-09-25 | 2020-09-08 | 中山大学 | Anti-poisoning water-soluble peroxide decomposition catalyst and preparation method and application thereof |
KR102735774B1 (en) * | 2019-12-05 | 2024-11-29 | 주식회사 엘지에너지솔루션 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
WO2021150022A1 (en) * | 2020-01-21 | 2021-07-29 | 하이드로메이트 코팅스, 인크. | Substrate surface-modified with vinyl amino non-aromatic cyclic compound and method for surface-modifying same |
US12077646B2 (en) | 2020-01-21 | 2024-09-03 | Quantum MicroMaterials, Inc. | Coating substrate by polymerization of amine compound and apparatus having polymer coated substrate |
US20210240047A1 (en) * | 2020-02-05 | 2021-08-05 | Gentex Corporation | Electrochromic compounds |
CN111477962B (en) * | 2020-05-29 | 2021-07-20 | 珠海市赛纬电子材料股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery containing non-aqueous electrolyte |
CN111883836A (en) * | 2020-07-24 | 2020-11-03 | 香河昆仑化学制品有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery |
CN111883834B (en) * | 2020-07-24 | 2022-12-13 | 香河昆仑新能源材料股份有限公司 | Non-aqueous lithium ion battery electrolyte additive, electrolyte containing non-aqueous lithium ion battery electrolyte additive and lithium ion battery |
CN111934015B (en) * | 2020-08-28 | 2022-08-19 | 珠海市赛纬电子材料股份有限公司 | Non-aqueous electrolyte of lithium ion battery and lithium ion battery containing non-aqueous electrolyte |
CN117280504A (en) | 2021-05-12 | 2023-12-22 | 利特罗尼克电池技术有限公司 | Alkali metal galvanic cell with geminal dinitrile additive |
CN117337506A (en) * | 2021-05-17 | 2024-01-02 | 中央硝子株式会社 | Non-aqueous electrolyte solution and non-aqueous electrolyte secondary battery using the same |
KR20230071246A (en) * | 2021-11-16 | 2023-05-23 | 주식회사 엘지에너지솔루션 | Novle additives for nonaqueous electrolyte and lithium secondary battery containing the same |
CN115286587B (en) * | 2022-07-06 | 2024-02-23 | 珠海中科先进技术研究院有限公司 | Highly delocalized alkali metal compound and preparation method and application thereof |
WO2024115088A1 (en) | 2022-11-29 | 2024-06-06 | Litronik Batterietechnologie Gmbh | Primary alkali metal cells with cyano-cycloalkanes additives |
WO2025057907A1 (en) * | 2023-09-12 | 2025-03-20 | 住友化学株式会社 | Electrolyte composition and battery |
WO2025057818A1 (en) * | 2023-09-12 | 2025-03-20 | 住友化学株式会社 | Electrolyte composition and battery |
Family Cites Families (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3054800A (en) * | 1949-09-17 | 1962-09-18 | Harry P Burchfield | 3, 5-dinitro-1, 2, 4-triazoles and process for preparing same |
US2959475A (en) * | 1957-02-19 | 1960-11-08 | Du Pont | Method for the control of weeds |
CH694566A4 (en) * | 1966-05-13 | 1970-03-13 | Electronic display unit is for incorporation in aviation instruments and uses liquid crystal display | |
NL174644C (en) * | 1970-04-13 | 1984-07-16 | Minnesota Mining & Mfg | METHOD FOR PREPARING A HERBICIDE COMPOUND; ALSO METHOD FOR PREPARING A PREPARATION WITH HERBICIDE ACTION. |
FR2097745A5 (en) * | 1970-04-13 | 1972-03-03 | Minnesota Mining & Mfg | Fluoroalkyl sulphonamido-diaryl-(thio)-ethers and derivs - herbicides antiinflamma |
BE791595A (en) | 1971-11-18 | 1973-05-17 | Omf California Inc | ELECTROLYTE FOR ACCUMULATOR |
JPS5148516B2 (en) * | 1973-02-07 | 1976-12-21 | ||
DD118433A1 (en) * | 1975-03-17 | 1976-03-05 | ||
US4226873A (en) * | 1977-02-23 | 1980-10-07 | Gulf Oil Corporation | 5-Substituted-3-fluorosulfonyl-4H-1,2,4-triazoles and use as insecticides and miticides |
JPS53117094A (en) * | 1977-03-23 | 1978-10-13 | Mitsubishi Gas Chem Co Inc | Preparation of composition and high polymer |
US4105525A (en) * | 1978-01-23 | 1978-08-08 | Orion Research Incorporated | Internal standard electrolyte for ammonia sensor |
EP0010396A1 (en) * | 1978-10-24 | 1980-04-30 | Fbc Limited | Fungicidal and herbicidal compositions, certain cyanomethane and cyanoethene derivatives being active agents thereof, the preparation of these derivatives and methods for combating fungi and weeds |
FR2527602A1 (en) * | 1982-06-01 | 1983-12-02 | Anvar | BIS PERHALOGENOACYL- OR SULFONYL- IMIDURES OF ALKALI METALS, THEIR SOLID SOLUTIONS WITH PLASTIC MATERIALS AND THEIR APPLICATION TO THE CONSTITUTION OF CONDUCTIVE ELEMENTS FOR ELECTROCHEMICAL GENERATORS |
DE3230923A1 (en) * | 1982-08-20 | 1984-02-23 | Basf Ag, 6700 Ludwigshafen | THIADIAZINONE, METHOD FOR THE PRODUCTION THEREOF AND FUNGICIDES CONTAINING THEM |
JPS6020950A (en) * | 1983-07-13 | 1985-02-02 | Nippon Zeon Co Ltd | Rigid vinyl chloride resin composition |
US5232940A (en) * | 1985-12-20 | 1993-08-03 | Hatton Leslie R | Derivatives of N-phenylpyrazoles |
US4664757A (en) * | 1985-12-27 | 1987-05-12 | Uop Inc. | Method and apparatus for gas detection using proton-conducting polymers |
US4664761A (en) * | 1985-12-27 | 1987-05-12 | Uop Inc. | Electrochemical method and apparatus using proton-conducting polymers |
JPH0654686B2 (en) * | 1986-01-14 | 1994-07-20 | 三洋電機株式会社 | Secondary battery |
JPS62219908A (en) * | 1986-03-20 | 1987-09-28 | 日本ケミコン株式会社 | Electrolyte for electrolytic capacitor |
US4714569A (en) * | 1986-07-22 | 1987-12-22 | Toska Co., Ltd. | Process for preparing conductive coating composition |
FR2606217B1 (en) * | 1986-10-30 | 1990-12-14 | Elf Aquitaine | NOVEL ION CONDUCTIVE MATERIAL CONSISTING OF A SALT SOLUTION IN A LIQUID ELECTROLYTE |
FR2606216A1 (en) | 1986-10-30 | 1988-05-06 | Elf Aquitaine | ION CONDUCTION MATERIAL |
US4910113A (en) * | 1986-11-10 | 1990-03-20 | Nippon Shokubai Kagaku Kogyo Kabushiki Kaisha | Colored microfine globular particles, method for production thereof and uses thereof |
US4966954A (en) * | 1987-03-04 | 1990-10-30 | Rensselaer Polytechnic Institute | Production and processing of thermally stable polyenaminonitriles and polyaminoquinolines therefrom |
US4882244A (en) * | 1987-04-02 | 1989-11-21 | The University Of Michigan-Ann Arbor | Battery containing a metal anode and an electrolyte providing high rates of metal electrolysis at near ambient temperatures |
US4835074A (en) * | 1987-09-25 | 1989-05-30 | The Electrosynthesis Company, Inc. | Modified carbons and electrochemical cells containing the same |
JPH01152165A (en) * | 1987-12-09 | 1989-06-14 | Nippon Shokubai Kagaku Kogyo Co Ltd | Production of surface-treated carbon black |
JP2724377B2 (en) * | 1988-05-12 | 1998-03-09 | 汪芳 白井 | Ion conductive composition |
FR2645533B1 (en) | 1989-04-06 | 1991-07-12 | Centre Nat Rech Scient | PROCESS FOR THE SYNTHESIS OF SULFONYLIMIDURES |
NL9001075A (en) * | 1990-05-04 | 1991-12-02 | Duphar Int Res | |
IT1246357B (en) * | 1990-07-12 | 1994-11-17 | Ausimont Spa | PROCESS FOR THE PREPARATION OF PERFLUOROALCOXYSULPHONIC COMPOUNDS |
US5273840A (en) * | 1990-08-01 | 1993-12-28 | Covalent Associates Incorporated | Methide salts, formulations, electrolytes and batteries formed therefrom |
US5281261A (en) * | 1990-08-31 | 1994-01-25 | Xerox Corporation | Ink compositions containing modified pigment particles |
FR2673769B1 (en) * | 1991-03-07 | 1993-06-18 | Centre Nat Rech Scient | POLYMERIC MATERIALS WITH ION CONDUCTION. |
EP0532408A1 (en) * | 1991-09-13 | 1993-03-17 | Saint-Gobain Vitrage International | Proton-conducting polymer and its use as electrolyte in electrochemical devices |
FR2683524A1 (en) * | 1991-11-08 | 1993-05-14 | Centre Nat Rech Scient | DERIVATIVES OF BIS (PERFLUOROSULFONYL) METHANES, THEIR METHOD OF PREPARATION, AND THEIR USES. |
FR2687671B1 (en) * | 1992-02-21 | 1994-05-20 | Centre Nal Recherc Scientifique | MONOMERS DERIVED FROM PERHALOGENATED SULTONS AND POLYMERS OBTAINED FROM SUCH MONOMERS. |
JP2845389B2 (en) * | 1992-03-10 | 1999-01-13 | 大日精化工業株式会社 | Colored composition for thermal transfer recording |
DE4217366A1 (en) | 1992-05-26 | 1993-12-02 | Bayer Ag | Imides and their salts and their use |
US5354784A (en) * | 1992-08-10 | 1994-10-11 | Arakawa Kagaku Kogyo Kabushiki Kaisha | Cyclopentadienyliron complex salt, process for preparing the same and photopolymerizable composition containing the same |
US5518841A (en) * | 1993-02-12 | 1996-05-21 | Matsushita Electric Industrial Co., Ltd. | Composite cathode |
US5538812A (en) * | 1994-02-04 | 1996-07-23 | Moltech Corporation | Electrolyte materials containing highly dissociated metal ion salts |
CA2163336C (en) * | 1994-03-21 | 2006-05-09 | Christophe Michot | Ionic conducting material having good anticorrosive properties |
JP3499916B2 (en) | 1994-05-30 | 2004-02-23 | 三洋電機株式会社 | Polymer solid electrolyte battery and manufacturing method thereof |
FR2723098B1 (en) * | 1994-07-28 | 1996-10-04 | Centre Nat Rech Scient | MACROMOLECULAR MATERIAL COMPRISING IONIC SUBSTITUTES AND ITS USE IN ELECTROCHEMICAL SYSTEMS |
JP3117369B2 (en) * | 1994-09-12 | 2000-12-11 | セントラル硝子株式会社 | Method for producing sulfonimide |
US5525436A (en) * | 1994-11-01 | 1996-06-11 | Case Western Reserve University | Proton conducting polymers used as membranes |
US5609990A (en) | 1995-02-08 | 1997-03-11 | Imation Corp. | Optical recording disk having a sealcoat layer |
EP0813740B1 (en) | 1995-02-08 | 1998-08-26 | Imation Corp (a Delaware Corporation) | Reduced solvent antistatic hard coat |
US5514493A (en) * | 1995-03-06 | 1996-05-07 | Minnesota Mining And Manufacturing Company | Perfluoroalkylsulfonates, sulfonimides, and sulfonyl methides, and electrolytes containing them |
US5874616A (en) | 1995-03-06 | 1999-02-23 | Minnesota Mining And Manufacturing Company | Preparation of bis (fluoroalkylenesulfonyl) imides and (fluoroalkysulfony) (fluorosulfonyl) imides |
US5748439A (en) * | 1995-06-06 | 1998-05-05 | Telectronics Pacing Systems, Inc. | Capacitors having high strength electrolytic capacitor separators |
JPH0912920A (en) * | 1995-06-28 | 1997-01-14 | Nippon Oil Co Ltd | Production of carbon material |
US5831108A (en) * | 1995-08-03 | 1998-11-03 | California Institute Of Technology | High metathesis activity ruthenium and osmium metal carbene complexes |
US5691081A (en) | 1995-09-21 | 1997-11-25 | Minnesota Mining And Manufacturing Company | Battery containing bis(perfluoroalkylsulfonyl)imide and cyclic perfluoroalkylene disulfonylimide salts |
US5795496A (en) * | 1995-11-22 | 1998-08-18 | California Institute Of Technology | Polymer material for electrolytic membranes in fuel cells |
FR2742437B1 (en) * | 1995-12-14 | 1998-01-09 | Electricite De France | BIS (PHENYLSULFONYL) IMIDIDES, THEIR PREPARATION METHOD AND ION CONDUCTIVE MATERIALS COMPRISING THE SAME |
US5962546A (en) | 1996-03-26 | 1999-10-05 | 3M Innovative Properties Company | Cationically polymerizable compositions capable of being coated by electrostatic assistance |
US5817376A (en) | 1996-03-26 | 1998-10-06 | Minnesota Mining And Manufacturing Company | Free-radically polymerizable compositions capable of being coated by electrostatic assistance |
EP0889936B1 (en) | 1996-03-26 | 2001-12-12 | Minnesota Mining And Manufacturing Company | Cationically polymerizable compositions capable of being applied by electrostatic assistance |
US5688613A (en) * | 1996-04-08 | 1997-11-18 | Motorola, Inc. | Electrochemical cell having a polymer electrolyte |
DE19632285A1 (en) * | 1996-08-09 | 1998-02-19 | Hoechst Ag | Proton conductor with a temperature resistance in a wide range and good proton conductivities |
WO1998029877A1 (en) * | 1996-12-30 | 1998-07-09 | Hydro-Quebec | Proton conductor in liquid form |
US6063522A (en) | 1998-03-24 | 2000-05-16 | 3M Innovative Properties Company | Electrolytes containing mixed fluorochemical/hydrocarbon imide and methide salts |
US5874606A (en) | 1998-03-31 | 1999-02-23 | Occidental Chemical Corporation | Process for making o-arylbenzonitriles |
US6294289B1 (en) * | 1998-08-25 | 2001-09-25 | 3M Innovative Properties Company | Cyano-substituted methide and amide salts |
US6350545B2 (en) | 1998-08-25 | 2002-02-26 | 3M Innovative Properties Company | Sulfonylimide compounds |
-
1997
- 1997-12-30 WO PCT/CA1997/001012 patent/WO1998029877A1/en active IP Right Grant
- 1997-12-30 US US09/101,811 patent/US6171522B1/en not_active Expired - Lifetime
- 1997-12-30 JP JP52951898A patent/JP4823401B2/en not_active Expired - Lifetime
- 1997-12-30 US US09/125,799 patent/US6395367B1/en not_active Expired - Lifetime
- 1997-12-30 CA CA2683826A patent/CA2683826C/en not_active Expired - Lifetime
- 1997-12-30 US US09/125,792 patent/US6120696A/en not_active Expired - Lifetime
- 1997-12-30 JP JP52951398A patent/JP4070244B2/en not_active Expired - Lifetime
- 1997-12-30 JP JP52951498A patent/JP4124487B2/en not_active Expired - Lifetime
- 1997-12-30 US US09/125,797 patent/US6319428B1/en not_active Expired - Lifetime
- 1997-12-30 DE DE69715361T patent/DE69715361T2/en not_active Expired - Lifetime
- 1997-12-30 CA CA2805188A patent/CA2805188C/en not_active Expired - Lifetime
- 1997-12-30 EP EP19970403189 patent/EP0850921B1/en not_active Expired - Lifetime
- 1997-12-30 EP EP19970403187 patent/EP0850920B1/en not_active Expired - Lifetime
- 1997-12-30 EP EP03292436.7A patent/EP1391952A3/en not_active Withdrawn
- 1997-12-30 EP EP19970403190 patent/EP0850932B1/en not_active Expired - Lifetime
- 1997-12-30 DE DE69739501T patent/DE69739501D1/en not_active Expired - Lifetime
- 1997-12-30 CA CA2248246A patent/CA2248246C/en not_active Expired - Lifetime
- 1997-12-30 EP EP19970403188 patent/EP0850933A1/en not_active Withdrawn
- 1997-12-30 US US09/125,798 patent/US6228942B1/en not_active Expired - Lifetime
- 1997-12-30 EP EP20090166055 patent/EP2380882B1/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001009 patent/WO1998029399A1/en active Application Filing
- 1997-12-30 DE DE69721748T patent/DE69721748T2/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001010 patent/WO1998029389A1/en active Application Filing
- 1997-12-30 DE DE69705301T patent/DE69705301T2/en not_active Expired - Lifetime
- 1997-12-30 CA CA2704986A patent/CA2704986C/en not_active Expired - Lifetime
- 1997-12-30 EP EP97951051A patent/EP0889863B1/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001008 patent/WO1998029358A2/en active IP Right Grant
- 1997-12-30 CA CA2248303A patent/CA2248303C/en not_active Expired - Lifetime
- 1997-12-30 CA CA002244979A patent/CA2244979C/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001011 patent/WO1998029396A1/en active Application Filing
- 1997-12-30 CA CA2248242A patent/CA2248242C/en not_active Expired - Lifetime
- 1997-12-30 CA CA2248244A patent/CA2248244C/en not_active Expired - Lifetime
- 1997-12-30 DE DE1997636994 patent/DE69736994T2/en not_active Expired - Lifetime
- 1997-12-30 JP JP52951598A patent/JP2000508677A/en active Pending
- 1997-12-30 JP JP52951698A patent/JP4683675B2/en not_active Expired - Lifetime
- 1997-12-30 JP JP52951798A patent/JP4361137B2/en not_active Expired - Lifetime
- 1997-12-30 EP EP97951052A patent/EP0890176B1/en not_active Expired - Lifetime
- 1997-12-30 EP EP20010129670 patent/EP1201650B1/en not_active Expired - Lifetime
- 1997-12-30 CA CA002248304A patent/CA2248304C/en not_active Expired - Lifetime
- 1997-12-30 US US09/101,810 patent/US6333425B1/en not_active Expired - Lifetime
- 1997-12-30 WO PCT/CA1997/001013 patent/WO1998029388A1/en active Application Filing
- 1997-12-30 DE DE69715799T patent/DE69715799T2/en not_active Expired - Lifetime
-
2000
- 2000-06-30 US US09/609,362 patent/US6365068B1/en not_active Expired - Lifetime
- 2000-08-09 US US09/638,793 patent/US6576159B1/en not_active Expired - Lifetime
-
2001
- 2001-04-06 US US09/826,941 patent/US6506517B2/en not_active Expired - Lifetime
- 2001-05-16 US US09/858,439 patent/US20020009650A1/en not_active Abandoned
-
2002
- 2002-03-27 US US10/107,742 patent/US6835495B2/en not_active Expired - Lifetime
- 2002-09-24 US US10/253,035 patent/US20030052310A1/en not_active Abandoned
- 2002-09-24 US US10/253,970 patent/US20030066988A1/en not_active Abandoned
-
2004
- 2004-02-27 US US10/789,453 patent/US20050074668A1/en not_active Abandoned
- 2004-08-25 US US10/926,283 patent/US7906235B2/en not_active Expired - Fee Related
-
2007
- 2007-07-25 JP JP2007193021A patent/JP2008007781A/en active Pending
- 2007-10-05 US US11/867,898 patent/US20240253023A1/en not_active Abandoned
-
2008
- 2008-05-30 JP JP2008143090A patent/JP2009004374A/en active Pending
-
2009
- 2009-01-21 JP JP2009010733A patent/JP4927108B2/en not_active Expired - Lifetime
- 2009-05-18 JP JP2009120239A patent/JP5629061B2/en not_active Expired - Lifetime
-
2010
- 2010-01-15 JP JP2010006864A patent/JP5209649B2/en not_active Expired - Lifetime
-
2013
- 2013-02-22 JP JP2013033109A patent/JP2013173740A/en active Pending
-
2014
- 2014-01-08 JP JP2014001687A patent/JP2014169271A/en not_active Withdrawn
-
2015
- 2015-12-01 JP JP2015234934A patent/JP2016104739A/en active Pending
Cited By (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20030127129A1 (en) * | 2001-06-14 | 2003-07-10 | Masaru Yoshikawa | Charge transfer material, and photoelectric conversion device and photoelectric cell using same, and pyridine compound |
US6911595B2 (en) * | 2001-06-14 | 2005-06-28 | Fuji Photo Film Co., Ltd. | Charge transfer material, and photoelectric conversion device and photoelectric cell using same, and pyridine compound |
US20050211292A1 (en) * | 2003-12-01 | 2005-09-29 | Konarka Technologies, Inc. | Zwitterionic compounds and photovoltaic cells containing same |
US7220914B2 (en) | 2003-12-01 | 2007-05-22 | Konarka Technologies, Inc. | Zwitterionic compounds and photovoltaic cells containing same |
US20100269732A1 (en) * | 2007-12-27 | 2010-10-28 | Tokai Carbon Co., Ltd. | Aqueous dispersion of surface-treated carbon black and method of producing the same |
US20110229769A1 (en) * | 2010-03-17 | 2011-09-22 | Sony Corporation | Lithium secondary battery, electrolytic solution for lithium secondary battery, electric power tool, electrical vehicle, and electric power storage system |
US9269987B2 (en) | 2011-11-17 | 2016-02-23 | Erlendur Jónsson | Anions and derived salts with high dissociation in non-protogenic solvents |
US10509315B2 (en) | 2015-12-31 | 2019-12-17 | Rohm And Haas Electronic Materials, Llc | Photoacid generator |
US11550217B2 (en) | 2015-12-31 | 2023-01-10 | Rohm And Haas Electronic Materials Llc | Photoresist composition, coated substrate including the photoresist composition, and method of forming electronic device |
US11960206B2 (en) | 2015-12-31 | 2024-04-16 | Rohm and Hass Electronic Materials LLC | Photoresist composition, coated substrate including the photoresist composition, and method of forming electronic device |
US12062759B2 (en) | 2019-01-17 | 2024-08-13 | Lg Energy Solution, Ltd. | Electrolyte for lithium secondary battery and lithium secondary battery including the same |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6576159B1 (en) | Malononitrile-derivative anion salts, and their uses as ionic conducting materials | |
US6620546B1 (en) | Materials for use as electrolytic solutes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |