US20030064499A1 - Hepatitis C virus protease - Google Patents
Hepatitis C virus protease Download PDFInfo
- Publication number
- US20030064499A1 US20030064499A1 US09/884,455 US88445501A US2003064499A1 US 20030064499 A1 US20030064499 A1 US 20030064499A1 US 88445501 A US88445501 A US 88445501A US 2003064499 A1 US2003064499 A1 US 2003064499A1
- Authority
- US
- United States
- Prior art keywords
- gly
- thr
- ala
- val
- leu
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000004365 Protease Substances 0.000 title claims abstract description 123
- 241000711549 Hepacivirus C Species 0.000 title claims abstract description 121
- 108091005804 Peptidases Proteins 0.000 title claims abstract description 119
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 title claims abstract 17
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 55
- 102000004196 processed proteins & peptides Human genes 0.000 claims abstract description 45
- 229920001184 polypeptide Polymers 0.000 claims abstract description 43
- 239000013598 vector Substances 0.000 claims description 60
- 150000001413 amino acids Chemical group 0.000 claims description 45
- 238000000034 method Methods 0.000 claims description 39
- 108091033319 polynucleotide Proteins 0.000 claims description 33
- 102000040430 polynucleotide Human genes 0.000 claims description 33
- 239000002157 polynucleotide Substances 0.000 claims description 33
- 230000004927 fusion Effects 0.000 claims description 26
- 108020001507 fusion proteins Proteins 0.000 claims description 26
- 240000004808 Saccharomyces cerevisiae Species 0.000 claims description 25
- 102000037865 fusion proteins Human genes 0.000 claims description 25
- 239000000203 mixture Substances 0.000 claims description 24
- 230000000694 effects Effects 0.000 claims description 22
- 239000013604 expression vector Substances 0.000 claims description 17
- 108010050848 glycylleucine Proteins 0.000 claims description 17
- 108010053725 prolylvaline Proteins 0.000 claims description 15
- 108010012715 Superoxide dismutase Proteins 0.000 claims description 13
- 108090000848 Ubiquitin Proteins 0.000 claims description 13
- 102000019197 Superoxide Dismutase Human genes 0.000 claims description 12
- 102000044159 Ubiquitin Human genes 0.000 claims description 12
- 108010047495 alanylglycine Proteins 0.000 claims description 12
- IASNWHAGGYTEKX-IUCAKERBSA-N Arg-Arg-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)NCC(O)=O IASNWHAGGYTEKX-IUCAKERBSA-N 0.000 claims description 11
- VDIARPPNADFEAV-WEDXCCLWSA-N Leu-Thr-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O VDIARPPNADFEAV-WEDXCCLWSA-N 0.000 claims description 10
- BUANFPRKJKJSRR-ACZMJKKPSA-N Ala-Ala-Gln Chemical compound C[C@H]([NH3+])C(=O)N[C@@H](C)C(=O)N[C@H](C([O-])=O)CCC(N)=O BUANFPRKJKJSRR-ACZMJKKPSA-N 0.000 claims description 9
- SQKPKIJVWHAWNF-DCAQKATOSA-N Arg-Asp-Lys Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CCCCN)C(O)=O SQKPKIJVWHAWNF-DCAQKATOSA-N 0.000 claims description 9
- DYVMTEWCGAVKSE-HJGDQZAQSA-N Gln-Thr-Arg Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CCC(=O)N)N)O DYVMTEWCGAVKSE-HJGDQZAQSA-N 0.000 claims description 9
- LEGMTEAZGRRIMY-ZKWXMUAHSA-N Gly-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)CN LEGMTEAZGRRIMY-ZKWXMUAHSA-N 0.000 claims description 9
- UHPAZODVFFYEEL-QWRGUYRKSA-N Gly-Leu-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)CN UHPAZODVFFYEEL-QWRGUYRKSA-N 0.000 claims description 9
- CNMOKANDJMLAIF-CIQUZCHMSA-N Ile-Thr-Ala Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](C)C(O)=O CNMOKANDJMLAIF-CIQUZCHMSA-N 0.000 claims description 9
- WSGXUIQTEZDVHJ-GARJFASQSA-N Leu-Ala-Pro Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C)C(=O)N1CCC[C@@H]1C(O)=O WSGXUIQTEZDVHJ-GARJFASQSA-N 0.000 claims description 9
- SITLTJHOQZFJGG-UHFFFAOYSA-N N-L-alpha-glutamyl-L-valine Natural products CC(C)C(C(O)=O)NC(=O)C(N)CCC(O)=O SITLTJHOQZFJGG-UHFFFAOYSA-N 0.000 claims description 9
- WNQJTLATMXYSEL-OEAJRASXSA-N Thr-Phe-Leu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O WNQJTLATMXYSEL-OEAJRASXSA-N 0.000 claims description 9
- XLMDWQNAOKLKCP-XDTLVQLUSA-N Tyr-Ala-Gln Chemical compound C[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)N XLMDWQNAOKLKCP-XDTLVQLUSA-N 0.000 claims description 9
- 108010045350 alanyl-tyrosyl-alanine Proteins 0.000 claims description 9
- 108010051307 glycyl-glycyl-proline Proteins 0.000 claims description 9
- 230000036961 partial effect Effects 0.000 claims description 8
- OBVSBEYOMDWLRJ-BFHQHQDPSA-N Ala-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@H](C)N OBVSBEYOMDWLRJ-BFHQHQDPSA-N 0.000 claims description 7
- SMEYEQDCCBHTEF-FXQIFTODSA-N Cys-Pro-Ala Chemical compound [H]N[C@@H](CS)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O SMEYEQDCCBHTEF-FXQIFTODSA-N 0.000 claims description 7
- XYSXOCIWCPFOCG-IHRRRGAJSA-N Pro-Leu-Leu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC(C)C)C(O)=O XYSXOCIWCPFOCG-IHRRRGAJSA-N 0.000 claims description 7
- YMTLKLXDFCSCNX-BYPYZUCNSA-N Ser-Gly-Gly Chemical compound OC[C@H](N)C(=O)NCC(=O)NCC(O)=O YMTLKLXDFCSCNX-BYPYZUCNSA-N 0.000 claims description 7
- 108010089975 arginyl-glycyl-aspartyl-serine Proteins 0.000 claims description 7
- 108010069926 arginyl-glycyl-serine Proteins 0.000 claims description 7
- 230000002797 proteolythic effect Effects 0.000 claims description 7
- 108010001336 Horseradish Peroxidase Proteins 0.000 claims description 6
- ZFNLIDNJUWNIJL-WDCWCFNPSA-N Leu-Glu-Thr Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O ZFNLIDNJUWNIJL-WDCWCFNPSA-N 0.000 claims description 6
- ONORAGIFHNAADN-LLLHUVSDSA-N Phe-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](CC2=CC=CC=C2)N ONORAGIFHNAADN-LLLHUVSDSA-N 0.000 claims description 6
- CVIXTAITYJQMPE-LAEOZQHASA-N Val-Glu-Asn Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(N)=O)C(O)=O CVIXTAITYJQMPE-LAEOZQHASA-N 0.000 claims description 6
- 150000001875 compounds Chemical class 0.000 claims description 6
- KIUYPHAMDKDICO-WHFBIAKZSA-N Ala-Asp-Gly Chemical compound C[C@H](N)C(=O)N[C@@H](CC(O)=O)C(=O)NCC(O)=O KIUYPHAMDKDICO-WHFBIAKZSA-N 0.000 claims description 5
- NZGRHTKZFSVPAN-BIIVOSGPSA-N Ala-Ser-Pro Chemical compound C[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N NZGRHTKZFSVPAN-BIIVOSGPSA-N 0.000 claims description 5
- OHYQKYUTLIPFOX-ZPFDUUQYSA-N Arg-Glu-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O OHYQKYUTLIPFOX-ZPFDUUQYSA-N 0.000 claims description 5
- KMFPQTITXUKJOV-DCAQKATOSA-N Arg-Ser-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(O)=O KMFPQTITXUKJOV-DCAQKATOSA-N 0.000 claims description 5
- YNSUUAOAFCVINY-OSUNSFLBSA-N Arg-Thr-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O YNSUUAOAFCVINY-OSUNSFLBSA-N 0.000 claims description 5
- XTHUKRLJRUVVBF-WHFBIAKZSA-N Cys-Gly-Ser Chemical compound SC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O XTHUKRLJRUVVBF-WHFBIAKZSA-N 0.000 claims description 5
- BMWFDYIYBAFROD-WPRPVWTQSA-N Gly-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN BMWFDYIYBAFROD-WPRPVWTQSA-N 0.000 claims description 5
- WNQKUUQIVDDAFA-ZPFDUUQYSA-N Ile-Gln-Met Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCSC)C(=O)O)N WNQKUUQIVDDAFA-ZPFDUUQYSA-N 0.000 claims description 5
- YOKVEHGYYQEQOP-QWRGUYRKSA-N Leu-Leu-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)NCC(O)=O YOKVEHGYYQEQOP-QWRGUYRKSA-N 0.000 claims description 5
- ZASPELYMPSACER-HOCLYGCPSA-N Lys-Gly-Trp Chemical compound [H]N[C@@H](CCCCN)C(=O)NCC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O ZASPELYMPSACER-HOCLYGCPSA-N 0.000 claims description 5
- LBSWWNKMVPAXOI-GUBZILKMSA-N Met-Val-Ser Chemical compound CSCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O LBSWWNKMVPAXOI-GUBZILKMSA-N 0.000 claims description 5
- PESQCPHRXOFIPX-UHFFFAOYSA-N N-L-methionyl-L-tyrosine Natural products CSCCC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 PESQCPHRXOFIPX-UHFFFAOYSA-N 0.000 claims description 5
- KZNQNBZMBZJQJO-UHFFFAOYSA-N N-glycyl-L-proline Natural products NCC(=O)N1CCCC1C(O)=O KZNQNBZMBZJQJO-UHFFFAOYSA-N 0.000 claims description 5
- AJHCSUXXECOXOY-UHFFFAOYSA-N N-glycyl-L-tryptophan Natural products C1=CC=C2C(CC(NC(=O)CN)C(O)=O)=CNC2=C1 AJHCSUXXECOXOY-UHFFFAOYSA-N 0.000 claims description 5
- 108010022999 Serine Proteases Proteins 0.000 claims description 5
- 102000012479 Serine Proteases Human genes 0.000 claims description 5
- DNCUODYZAMHLCV-XGEHTFHBSA-N Thr-Pro-Cys Chemical compound C[C@H]([C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](CS)C(=O)O)N)O DNCUODYZAMHLCV-XGEHTFHBSA-N 0.000 claims description 5
- BIVIUZRBCAUNPW-JRQIVUDYSA-N Tyr-Thr-Asn Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(N)=O)C(O)=O BIVIUZRBCAUNPW-JRQIVUDYSA-N 0.000 claims description 5
- 108010078144 glutaminyl-glycine Proteins 0.000 claims description 5
- 239000004366 Glucose oxidase Substances 0.000 claims description 4
- 108010015776 Glucose oxidase Proteins 0.000 claims description 4
- 108010005774 beta-Galactosidase Proteins 0.000 claims description 4
- 229940116332 glucose oxidase Drugs 0.000 claims description 4
- 235000019420 glucose oxidase Nutrition 0.000 claims description 4
- 108090000204 Dipeptidase 1 Proteins 0.000 claims description 3
- LVTJJOJKDCVZGP-QWRGUYRKSA-N Leu-Lys-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O LVTJJOJKDCVZGP-QWRGUYRKSA-N 0.000 claims description 3
- 108010046334 Urease Proteins 0.000 claims description 3
- 102000006635 beta-lactamase Human genes 0.000 claims description 3
- 230000005764 inhibitory process Effects 0.000 claims description 3
- 230000001105 regulatory effect Effects 0.000 claims description 3
- 230000002103 transcriptional effect Effects 0.000 claims description 3
- YWEHYKGJWHPGPY-XGEHTFHBSA-N Cys-Thr-Arg Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CS)N)O YWEHYKGJWHPGPY-XGEHTFHBSA-N 0.000 claims description 2
- GWCJMBNBFYBQCV-XPUUQOCRSA-N Gly-Val-Ala Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C)C(O)=O GWCJMBNBFYBQCV-XPUUQOCRSA-N 0.000 claims description 2
- IRNSXVOWSXSULE-DCAQKATOSA-N Lys-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCCN IRNSXVOWSXSULE-DCAQKATOSA-N 0.000 claims description 2
- 230000002401 inhibitory effect Effects 0.000 claims description 2
- 239000003550 marker Substances 0.000 claims description 2
- VPZXBVLAVMBEQI-UHFFFAOYSA-N glycyl-DL-alpha-alanine Natural products OC(=O)C(C)NC(=O)CN VPZXBVLAVMBEQI-UHFFFAOYSA-N 0.000 claims 10
- 108010037850 glycylvaline Proteins 0.000 claims 9
- QKHWNPQNOHEFST-VZFHVOOUSA-N Ala-Thr-Cys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](C)N)O QKHWNPQNOHEFST-VZFHVOOUSA-N 0.000 claims 8
- SRUUBQBAVNQZGJ-LAEOZQHASA-N Asn-Gln-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](CC(=O)N)N SRUUBQBAVNQZGJ-LAEOZQHASA-N 0.000 claims 8
- OGNJZUXUTPQVBR-BQBZGAKWSA-N Glu-Gly-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)NCC(=O)N[C@@H](CCC(O)=O)C(O)=O OGNJZUXUTPQVBR-BQBZGAKWSA-N 0.000 claims 8
- UAVQIQOOBXFKRC-BYULHYEWSA-N Ile-Asn-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O UAVQIQOOBXFKRC-BYULHYEWSA-N 0.000 claims 8
- WCNWGAUZWWSYDG-SVSWQMSJSA-N Ile-Thr-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CO)C(=O)O)N WCNWGAUZWWSYDG-SVSWQMSJSA-N 0.000 claims 8
- CPTQYHDSVGVGDZ-UKJIMTQDSA-N Val-Gln-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CCC(=O)N)NC(=O)[C@H](C(C)C)N CPTQYHDSVGVGDZ-UKJIMTQDSA-N 0.000 claims 8
- UJMCYJKPDFQLHX-XGEHTFHBSA-N Val-Ser-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CO)NC(=O)[C@H](C(C)C)N)O UJMCYJKPDFQLHX-XGEHTFHBSA-N 0.000 claims 8
- UULLJGQFCDXVTQ-CYDGBPFRSA-N Arg-Pro-Ile Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)CC)C(O)=O UULLJGQFCDXVTQ-CYDGBPFRSA-N 0.000 claims 6
- ZBYLEBZCVKLPCY-FXQIFTODSA-N Asp-Ser-Arg Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O ZBYLEBZCVKLPCY-FXQIFTODSA-N 0.000 claims 6
- FQKKPCWTZZEDIC-XPUUQOCRSA-N Gly-His-Ala Chemical compound OC(=O)[C@H](C)NC(=O)[C@@H](NC(=O)CN)CC1=CN=CN1 FQKKPCWTZZEDIC-XPUUQOCRSA-N 0.000 claims 6
- WNGHUXFWEWTKAO-YUMQZZPRSA-N Gly-Ser-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)CN WNGHUXFWEWTKAO-YUMQZZPRSA-N 0.000 claims 6
- SBANPBVRHYIMRR-GARJFASQSA-N Leu-Ser-Pro Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CO)C(=O)N1CCC[C@@H]1C(=O)O)N SBANPBVRHYIMRR-GARJFASQSA-N 0.000 claims 6
- SBANPBVRHYIMRR-UHFFFAOYSA-N Leu-Ser-Pro Natural products CC(C)CC(N)C(=O)NC(CO)C(=O)N1CCCC1C(O)=O SBANPBVRHYIMRR-UHFFFAOYSA-N 0.000 claims 6
- FHIAJWBDZVHLAH-YUMQZZPRSA-N Lys-Gly-Ser Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O FHIAJWBDZVHLAH-YUMQZZPRSA-N 0.000 claims 6
- DPUOLKQSMYLRDR-UBHSHLNASA-N Phe-Arg-Ala Chemical compound NC(N)=NCCC[C@@H](C(=O)N[C@@H](C)C(O)=O)NC(=O)[C@@H](N)CC1=CC=CC=C1 DPUOLKQSMYLRDR-UBHSHLNASA-N 0.000 claims 6
- PLQWGQUNUPMNOD-KKUMJFAQSA-N Ser-Tyr-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(C)C)C(O)=O PLQWGQUNUPMNOD-KKUMJFAQSA-N 0.000 claims 6
- STKZKWFOKOCSLW-UMPQAUOISA-N Trp-Thr-Val Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C(C)C)C(O)=O)[C@@H](C)O)=CNC2=C1 STKZKWFOKOCSLW-UMPQAUOISA-N 0.000 claims 6
- MVYRJYISVJWKSX-KBPBESRZSA-N Tyr-His-Gly Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CC2=CN=CN2)C(=O)NCC(=O)O)N)O MVYRJYISVJWKSX-KBPBESRZSA-N 0.000 claims 6
- PMDOQZFYGWZSTK-LSJOCFKGSA-N Val-Gly-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)C(C)C PMDOQZFYGWZSTK-LSJOCFKGSA-N 0.000 claims 6
- 108010034529 leucyl-lysine Proteins 0.000 claims 6
- BVLPIIBTWIYOML-ZKWXMUAHSA-N Ala-Val-Asp Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O BVLPIIBTWIYOML-ZKWXMUAHSA-N 0.000 claims 5
- BOKLLPVAQDSLHC-FXQIFTODSA-N Ala-Val-Cys Chemical compound C[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)O)N BOKLLPVAQDSLHC-FXQIFTODSA-N 0.000 claims 5
- TWLMXDWFVNEFFK-FJXKBIBVSA-N Thr-Arg-Gly Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O TWLMXDWFVNEFFK-FJXKBIBVSA-N 0.000 claims 5
- OHDXOXIZXSFCDN-RCWTZXSCSA-N Thr-Met-Arg Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O OHDXOXIZXSFCDN-RCWTZXSCSA-N 0.000 claims 5
- RUCNAYOMFXRIKJ-DCAQKATOSA-N Val-Ala-Lys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@H](C(O)=O)CCCCN RUCNAYOMFXRIKJ-DCAQKATOSA-N 0.000 claims 5
- 108010069205 aspartyl-phenylalanine Proteins 0.000 claims 5
- UWQJHXKARZWDIJ-ZLUOBGJFSA-N Ala-Ala-Cys Chemical compound C[C@H](N)C(=O)N[C@@H](C)C(=O)N[C@@H](CS)C(O)=O UWQJHXKARZWDIJ-ZLUOBGJFSA-N 0.000 claims 4
- BTYTYHBSJKQBQA-GCJQMDKQSA-N Ala-Asp-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC(=O)O)NC(=O)[C@H](C)N)O BTYTYHBSJKQBQA-GCJQMDKQSA-N 0.000 claims 4
- IKKVASZHTMKJIR-ZKWXMUAHSA-N Ala-Asp-Val Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](C(C)C)C(O)=O IKKVASZHTMKJIR-ZKWXMUAHSA-N 0.000 claims 4
- FEGOCLZUJUFCHP-CIUDSAMLSA-N Ala-Pro-Gln Chemical compound [H]N[C@@H](C)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(O)=O FEGOCLZUJUFCHP-CIUDSAMLSA-N 0.000 claims 4
- YJHKTAMKPGFJCT-NRPADANISA-N Ala-Val-Glu Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O YJHKTAMKPGFJCT-NRPADANISA-N 0.000 claims 4
- HQIZDMIGUJOSNI-IUCAKERBSA-N Arg-Gly-Arg Chemical compound N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O HQIZDMIGUJOSNI-IUCAKERBSA-N 0.000 claims 4
- JZLFYAAGGYMRIK-BYULHYEWSA-N Asn-Val-Asp Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CC(O)=O)C(O)=O JZLFYAAGGYMRIK-BYULHYEWSA-N 0.000 claims 4
- QNMKWNONJGKJJC-NHCYSSNCSA-N Asp-Leu-Val Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](C(C)C)C(O)=O QNMKWNONJGKJJC-NHCYSSNCSA-N 0.000 claims 4
- XOASPVGNFAMYBD-WFBYXXMGSA-N Asp-Trp-Ala Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N[C@@H](C)C(O)=O XOASPVGNFAMYBD-WFBYXXMGSA-N 0.000 claims 4
- XEYMBRRKIFYQMF-GUBZILKMSA-N Gln-Asp-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O XEYMBRRKIFYQMF-GUBZILKMSA-N 0.000 claims 4
- JXFLPKSDLDEOQK-JHEQGTHGSA-N Gln-Gly-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CCC(N)=O JXFLPKSDLDEOQK-JHEQGTHGSA-N 0.000 claims 4
- QXDXIXFSFHUYAX-MNXVOIDGSA-N Glu-Ile-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)CC)NC(=O)[C@@H](N)CCC(O)=O QXDXIXFSFHUYAX-MNXVOIDGSA-N 0.000 claims 4
- XBWMTPAIUQIWKA-BYULHYEWSA-N Gly-Asp-Ile Chemical compound CC[C@H](C)[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)CN XBWMTPAIUQIWKA-BYULHYEWSA-N 0.000 claims 4
- FJWSJWACLMTDMI-WPRPVWTQSA-N Gly-Met-Val Chemical compound [H]NCC(=O)N[C@@H](CCSC)C(=O)N[C@@H](C(C)C)C(O)=O FJWSJWACLMTDMI-WPRPVWTQSA-N 0.000 claims 4
- YOBGUCWZPXJHTN-BQBZGAKWSA-N Gly-Ser-Arg Chemical compound NCC(=O)N[C@@H](CO)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YOBGUCWZPXJHTN-BQBZGAKWSA-N 0.000 claims 4
- YXTFLTJYLIAZQG-FJXKBIBVSA-N Gly-Thr-Arg Chemical compound NCC(=O)N[C@@H]([C@H](O)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N YXTFLTJYLIAZQG-FJXKBIBVSA-N 0.000 claims 4
- FOKISINOENBSDM-WLTAIBSBSA-N Gly-Thr-Tyr Chemical compound [H]NCC(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O FOKISINOENBSDM-WLTAIBSBSA-N 0.000 claims 4
- PASHZZBXZYEXFE-LSDHHAIUSA-N Gly-Trp-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CC2=CNC3=CC=CC=C32)NC(=O)CN)C(=O)O PASHZZBXZYEXFE-LSDHHAIUSA-N 0.000 claims 4
- DKJWUIYLMLUBDX-XPUUQOCRSA-N Gly-Val-Cys Chemical compound NCC(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)O DKJWUIYLMLUBDX-XPUUQOCRSA-N 0.000 claims 4
- KZTLOHBDLMIFSH-XVYDVKMFSA-N His-Ala-Asp Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O KZTLOHBDLMIFSH-XVYDVKMFSA-N 0.000 claims 4
- NOQPTNXSGNPJNS-YUMQZZPRSA-N His-Asn-Gly Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(N)=O)C(=O)NCC(O)=O NOQPTNXSGNPJNS-YUMQZZPRSA-N 0.000 claims 4
- YADRBUZBKHHDAO-XPUUQOCRSA-N His-Gly-Ala Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)NCC(=O)N[C@@H](C)C(O)=O YADRBUZBKHHDAO-XPUUQOCRSA-N 0.000 claims 4
- LVWIJITYHRZHBO-IXOXFDKPSA-N His-Leu-Thr Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O LVWIJITYHRZHBO-IXOXFDKPSA-N 0.000 claims 4
- SVBAHOMTJRFSIC-SXTJYALSSA-N Ile-Ile-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC(=O)N)C(=O)O)N SVBAHOMTJRFSIC-SXTJYALSSA-N 0.000 claims 4
- MLSUZXHSNRBDCI-CYDGBPFRSA-N Ile-Pro-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)O)N MLSUZXHSNRBDCI-CYDGBPFRSA-N 0.000 claims 4
- LHSGPCFBGJHPCY-UHFFFAOYSA-N L-leucine-L-tyrosine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-UHFFFAOYSA-N 0.000 claims 4
- REPPKAMYTOJTFC-DCAQKATOSA-N Leu-Arg-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(O)=O)C(O)=O REPPKAMYTOJTFC-DCAQKATOSA-N 0.000 claims 4
- YFBBUHJJUXXZOF-UWVGGRQHSA-N Leu-Gly-Pro Chemical compound CC(C)C[C@H](N)C(=O)NCC(=O)N1CCC[C@H]1C(O)=O YFBBUHJJUXXZOF-UWVGGRQHSA-N 0.000 claims 4
- JDBQSGMJBMPNFT-AVGNSLFASA-N Leu-Pro-Val Chemical compound CC(C)C[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O JDBQSGMJBMPNFT-AVGNSLFASA-N 0.000 claims 4
- JGKHAFUAPZCCDU-BZSNNMDCSA-N Leu-Tyr-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CC=C(O)C=C1 JGKHAFUAPZCCDU-BZSNNMDCSA-N 0.000 claims 4
- RFQATBGBLDAKGI-VHSXEESVSA-N Lys-Gly-Pro Chemical compound C1C[C@@H](N(C1)C(=O)CNC(=O)[C@H](CCCCN)N)C(=O)O RFQATBGBLDAKGI-VHSXEESVSA-N 0.000 claims 4
- WVJNGSFKBKOKRV-AJNGGQMLSA-N Lys-Leu-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O WVJNGSFKBKOKRV-AJNGGQMLSA-N 0.000 claims 4
- JPCHYAUKOUGOIB-HJGDQZAQSA-N Met-Glu-Thr Chemical compound CSCC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JPCHYAUKOUGOIB-HJGDQZAQSA-N 0.000 claims 4
- JHVNNUIQXOGAHI-KJEVXHAQSA-N Met-Tyr-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=C(C=C1)O)NC(=O)[C@H](CCSC)N)O JHVNNUIQXOGAHI-KJEVXHAQSA-N 0.000 claims 4
- HBXAOEBRGLCLIW-AVGNSLFASA-N Phe-Ser-Gln Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N HBXAOEBRGLCLIW-AVGNSLFASA-N 0.000 claims 4
- APKRGYLBSCWJJP-FXQIFTODSA-N Pro-Ala-Asp Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C)C(=O)N[C@@H](CC(O)=O)C(O)=O APKRGYLBSCWJJP-FXQIFTODSA-N 0.000 claims 4
- XQLBWXHVZVBNJM-FXQIFTODSA-N Pro-Ala-Ser Chemical compound OC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H]1CCCN1 XQLBWXHVZVBNJM-FXQIFTODSA-N 0.000 claims 4
- XJROSHJRQTXWAE-XGEHTFHBSA-N Pro-Cys-Thr Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CS)C(=O)N[C@@H]([C@@H](C)O)C(O)=O XJROSHJRQTXWAE-XGEHTFHBSA-N 0.000 claims 4
- YXHYJEPDKSYPSQ-AVGNSLFASA-N Pro-Leu-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H]1CCCN1 YXHYJEPDKSYPSQ-AVGNSLFASA-N 0.000 claims 4
- FHJQROWZEJFZPO-SRVKXCTJSA-N Pro-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 FHJQROWZEJFZPO-SRVKXCTJSA-N 0.000 claims 4
- FIXILCYTSAUERA-FXQIFTODSA-N Ser-Ala-Arg Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](C)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O FIXILCYTSAUERA-FXQIFTODSA-N 0.000 claims 4
- BGOWRLSWJCVYAQ-CIUDSAMLSA-N Ser-Asp-Leu Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(O)=O BGOWRLSWJCVYAQ-CIUDSAMLSA-N 0.000 claims 4
- MUJQWSAWLLRJCE-KATARQTJSA-N Ser-Leu-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O MUJQWSAWLLRJCE-KATARQTJSA-N 0.000 claims 4
- OWCVUSJMEBGMOK-YUMQZZPRSA-N Ser-Lys-Gly Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CCCCN)C(=O)NCC(O)=O OWCVUSJMEBGMOK-YUMQZZPRSA-N 0.000 claims 4
- NMZXJDSKEGFDLJ-DCAQKATOSA-N Ser-Pro-Lys Chemical compound C1C[C@H](N(C1)C(=O)[C@H](CO)N)C(=O)N[C@@H](CCCCN)C(=O)O NMZXJDSKEGFDLJ-DCAQKATOSA-N 0.000 claims 4
- PPCZVWHJWJFTFN-ZLUOBGJFSA-N Ser-Ser-Asp Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(O)=O PPCZVWHJWJFTFN-ZLUOBGJFSA-N 0.000 claims 4
- PKXHGEXFMIZSER-QTKMDUPCSA-N Thr-Arg-His Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)N)O PKXHGEXFMIZSER-QTKMDUPCSA-N 0.000 claims 4
- LYGKYFKSZTUXGZ-ZDLURKLDSA-N Thr-Cys-Gly Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CS)C(=O)NCC(O)=O LYGKYFKSZTUXGZ-ZDLURKLDSA-N 0.000 claims 4
- XOWKUMFHEZLKLT-CIQUZCHMSA-N Thr-Ile-Ala Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](C)C(O)=O XOWKUMFHEZLKLT-CIQUZCHMSA-N 0.000 claims 4
- XEVHXNLPUBVQEX-DVJZZOLTSA-N Thr-Trp-Gly Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)NCC(=O)O)N)O XEVHXNLPUBVQEX-DVJZZOLTSA-N 0.000 claims 4
- BPGDJSUFQKWUBK-KJEVXHAQSA-N Thr-Val-Tyr Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 BPGDJSUFQKWUBK-KJEVXHAQSA-N 0.000 claims 4
- PXYJUECTGMGIDT-WDSOQIARSA-N Trp-Arg-Leu Chemical compound C1=CC=C2C(C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](CC(C)C)C(O)=O)=CNC2=C1 PXYJUECTGMGIDT-WDSOQIARSA-N 0.000 claims 4
- CDKZJGMPZHPAJC-ULQDDVLXSA-N Tyr-Leu-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 CDKZJGMPZHPAJC-ULQDDVLXSA-N 0.000 claims 4
- VUTHNLMCXKLLFI-LAEOZQHASA-N Val-Asp-Gln Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CCC(=O)N)C(=O)O)N VUTHNLMCXKLLFI-LAEOZQHASA-N 0.000 claims 4
- DBMMKEHYWIZTPN-JYJNAYRXSA-N Val-Cys-Trp Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N DBMMKEHYWIZTPN-JYJNAYRXSA-N 0.000 claims 4
- JVYIGCARISMLMV-HOCLYGCPSA-N Val-Gly-Trp Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CC1=CNC2=CC=CC=C21)C(=O)O)N JVYIGCARISMLMV-HOCLYGCPSA-N 0.000 claims 4
- WNZSAUMKZQXHNC-UKJIMTQDSA-N Val-Ile-Gln Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)O)NC(=O)[C@H](C(C)C)N WNZSAUMKZQXHNC-UKJIMTQDSA-N 0.000 claims 4
- JZWZACGUZVCQPS-RNJOBUHISA-N Val-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)[C@H](C(C)C)N JZWZACGUZVCQPS-RNJOBUHISA-N 0.000 claims 4
- MNSSBIHFEUUXNW-RCWTZXSCSA-N Val-Thr-Arg Chemical compound CC(C)[C@H](N)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@H](C(O)=O)CCCN=C(N)N MNSSBIHFEUUXNW-RCWTZXSCSA-N 0.000 claims 4
- MIAZWUMFUURQNP-YDHLFZDLSA-N Val-Tyr-Asn Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N MIAZWUMFUURQNP-YDHLFZDLSA-N 0.000 claims 4
- 108010070944 alanylhistidine Proteins 0.000 claims 4
- 108010013835 arginine glutamate Proteins 0.000 claims 4
- 108010047857 aspartylglycine Proteins 0.000 claims 4
- 108010016616 cysteinylglycine Proteins 0.000 claims 4
- 108010040030 histidinoalanine Proteins 0.000 claims 4
- 108010012058 leucyltyrosine Proteins 0.000 claims 4
- 108010064235 lysylglycine Proteins 0.000 claims 4
- 108010025826 prolyl-leucyl-arginine Proteins 0.000 claims 4
- HFPVRZWORNJRRC-UWVGGRQHSA-N Gly-Pro-Leu Chemical compound CC(C)C[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)CN HFPVRZWORNJRRC-UWVGGRQHSA-N 0.000 claims 2
- PBGDOSARRIJMEV-DLOVCJGASA-N Leu-His-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(O)=O PBGDOSARRIJMEV-DLOVCJGASA-N 0.000 claims 2
- DCHQYSOGURGJST-FJXKBIBVSA-N Pro-Thr-Gly Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H]([C@@H](C)O)C(=O)NCC(O)=O DCHQYSOGURGJST-FJXKBIBVSA-N 0.000 claims 2
- WSTIOCFMWXNOCX-YUMQZZPRSA-N Ser-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CO)N WSTIOCFMWXNOCX-YUMQZZPRSA-N 0.000 claims 2
- FZEUTKVQGMVGHW-AVGNSLFASA-N Ser-Phe-Gln Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CCC(N)=O)C(O)=O FZEUTKVQGMVGHW-AVGNSLFASA-N 0.000 claims 2
- SRSPTFBENMJHMR-WHFBIAKZSA-N Ser-Ser-Gly Chemical compound OC[C@H](N)C(=O)N[C@@H](CO)C(=O)NCC(O)=O SRSPTFBENMJHMR-WHFBIAKZSA-N 0.000 claims 2
- PCJLFYBAQZQOFE-KATARQTJSA-N Ser-Thr-Lys Chemical compound C[C@H]([C@@H](C(=O)N[C@@H](CCCCN)C(=O)O)NC(=O)[C@H](CO)N)O PCJLFYBAQZQOFE-KATARQTJSA-N 0.000 claims 2
- REJBPZVUHYNMEN-LSJOCFKGSA-N Val-Ala-His Chemical compound C[C@@H](C(=O)N[C@@H](CC1=CN=CN1)C(=O)O)NC(=O)[C@H](C(C)C)N REJBPZVUHYNMEN-LSJOCFKGSA-N 0.000 claims 2
- XBJKAZATRJBDCU-GUBZILKMSA-N Val-Pro-Ala Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O XBJKAZATRJBDCU-GUBZILKMSA-N 0.000 claims 2
- GQMNEJMFMCJJTD-NHCYSSNCSA-N Val-Pro-Gln Chemical compound CC(C)[C@H](N)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCC(N)=O)C(O)=O GQMNEJMFMCJJTD-NHCYSSNCSA-N 0.000 claims 2
- IXKSXJFAGXLQOQ-XISFHERQSA-N WHWLQLKPGQPMY Chemical compound C([C@@H](C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N1CCC[C@H]1C(=O)NCC(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(=O)N1CCC[C@H]1C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC=1C=CC(O)=CC=1)C(O)=O)NC(=O)[C@@H](N)CC=1C2=CC=CC=C2NC=1)C1=CNC=N1 IXKSXJFAGXLQOQ-XISFHERQSA-N 0.000 claims 2
- 102000005936 beta-Galactosidase Human genes 0.000 claims 2
- 108010017391 lysylvaline Proteins 0.000 claims 2
- ICRHGPYYXMWHIE-LPEHRKFASA-N Arg-Ser-Pro Chemical compound C1C[C@@H](N(C1)C(=O)[C@H](CO)NC(=O)[C@H](CCCN=C(N)N)N)C(=O)O ICRHGPYYXMWHIE-LPEHRKFASA-N 0.000 claims 1
- HDHZCEDPLTVHFZ-GUBZILKMSA-N Asn-Leu-Glu Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O HDHZCEDPLTVHFZ-GUBZILKMSA-N 0.000 claims 1
- SNYCNNPOFYBCEK-ZLUOBGJFSA-N Asn-Ser-Ser Chemical compound [H]N[C@@H](CC(N)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H](CO)C(O)=O SNYCNNPOFYBCEK-ZLUOBGJFSA-N 0.000 claims 1
- KNMRXHIAVXHCLW-ZLUOBGJFSA-N Asp-Asn-Ser Chemical compound C([C@@H](C(=O)N[C@@H](CC(=O)N)C(=O)N[C@@H](CO)C(=O)O)N)C(=O)O KNMRXHIAVXHCLW-ZLUOBGJFSA-N 0.000 claims 1
- PCJOFZYFFMBZKC-PCBIJLKTSA-N Asp-Phe-Ile Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O PCJOFZYFFMBZKC-PCBIJLKTSA-N 0.000 claims 1
- RAGOJJCBGXARPO-XVSYOHENSA-N Phe-Thr-Asp Chemical compound OC(=O)C[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CC1=CC=CC=C1 RAGOJJCBGXARPO-XVSYOHENSA-N 0.000 claims 1
- KBUAPZAZPWNYSW-SRVKXCTJSA-N Pro-Pro-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@@H]1CCCN1C(=O)[C@H]1NCCC1 KBUAPZAZPWNYSW-SRVKXCTJSA-N 0.000 claims 1
- IMNVAOPEMFDAQD-NHCYSSNCSA-N Pro-Val-Glu Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O IMNVAOPEMFDAQD-NHCYSSNCSA-N 0.000 claims 1
- DINQYZRMXGWWTG-GUBZILKMSA-N Ser-Pro-Pro Chemical compound OC[C@H](N)C(=O)N1CCC[C@H]1C(=O)N1[C@H](C(O)=O)CCC1 DINQYZRMXGWWTG-GUBZILKMSA-N 0.000 claims 1
- CKDXFSPMIDSMGV-GUBZILKMSA-N Ser-Pro-Val Chemical compound [H]N[C@@H](CO)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C(C)C)C(O)=O CKDXFSPMIDSMGV-GUBZILKMSA-N 0.000 claims 1
- PJCYRZVSACOYSN-ZJDVBMNYSA-N Thr-Thr-Met Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CCSC)C(O)=O PJCYRZVSACOYSN-ZJDVBMNYSA-N 0.000 claims 1
- YKNOJPJWNVHORX-UNQGMJICSA-N Val-Phe-Thr Chemical compound CC(C)[C@H](N)C(=O)N[C@H](C(=O)N[C@@H]([C@@H](C)O)C(O)=O)CC1=CC=CC=C1 YKNOJPJWNVHORX-UNQGMJICSA-N 0.000 claims 1
- 108010026333 seryl-proline Proteins 0.000 claims 1
- 238000003776 cleavage reaction Methods 0.000 abstract description 25
- 230000007017 scission Effects 0.000 abstract description 24
- 108010076039 Polyproteins Proteins 0.000 abstract description 22
- 102000035195 Peptidases Human genes 0.000 abstract description 10
- 238000003556 assay Methods 0.000 abstract description 8
- 238000012545 processing Methods 0.000 abstract description 5
- 239000003443 antiviral agent Substances 0.000 abstract description 2
- 102100038132 Endogenous retrovirus group K member 6 Pro protein Human genes 0.000 description 92
- 235000019419 proteases Nutrition 0.000 description 90
- 239000012634 fragment Substances 0.000 description 59
- 210000004027 cell Anatomy 0.000 description 50
- 235000001014 amino acid Nutrition 0.000 description 45
- 108090000623 proteins and genes Proteins 0.000 description 37
- 108020004414 DNA Proteins 0.000 description 34
- 102000004190 Enzymes Human genes 0.000 description 26
- 108090000790 Enzymes Proteins 0.000 description 26
- 229940088598 enzyme Drugs 0.000 description 26
- 125000003275 alpha amino acid group Chemical group 0.000 description 22
- 241000588724 Escherichia coli Species 0.000 description 21
- 235000014680 Saccharomyces cerevisiae Nutrition 0.000 description 21
- 239000013612 plasmid Substances 0.000 description 20
- 102000004169 proteins and genes Human genes 0.000 description 18
- 235000018102 proteins Nutrition 0.000 description 17
- 241000700605 Viruses Species 0.000 description 15
- 239000003112 inhibitor Substances 0.000 description 15
- 239000000047 product Substances 0.000 description 15
- 239000002299 complementary DNA Substances 0.000 description 14
- 239000000523 sample Substances 0.000 description 12
- 239000002773 nucleotide Substances 0.000 description 11
- 125000003729 nucleotide group Chemical group 0.000 description 11
- 239000000758 substrate Substances 0.000 description 11
- 230000003612 virological effect Effects 0.000 description 11
- 241000710831 Flavivirus Species 0.000 description 9
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 9
- 230000000875 corresponding effect Effects 0.000 description 9
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 description 8
- 239000000872 buffer Substances 0.000 description 8
- 210000004962 mammalian cell Anatomy 0.000 description 8
- 239000000463 material Substances 0.000 description 8
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 8
- 108091026890 Coding region Proteins 0.000 description 7
- 241000710772 Yellow fever virus Species 0.000 description 7
- 239000000427 antigen Substances 0.000 description 7
- 108091007433 antigens Proteins 0.000 description 7
- 102000036639 antigens Human genes 0.000 description 7
- 238000010367 cloning Methods 0.000 description 7
- 238000009396 hybridization Methods 0.000 description 7
- 229940051021 yellow-fever virus Drugs 0.000 description 7
- 241000894006 Bacteria Species 0.000 description 6
- 101710172711 Structural protein Proteins 0.000 description 6
- 102000006602 glyceraldehyde-3-phosphate dehydrogenase Human genes 0.000 description 6
- 108020004445 glyceraldehyde-3-phosphate dehydrogenase Proteins 0.000 description 6
- 238000011534 incubation Methods 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 108091008146 restriction endonucleases Proteins 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 5
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 5
- 108091028043 Nucleic acid sequence Proteins 0.000 description 5
- 108700026244 Open Reading Frames Proteins 0.000 description 5
- 210000004899 c-terminal region Anatomy 0.000 description 5
- 238000010276 construction Methods 0.000 description 5
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000011780 sodium chloride Substances 0.000 description 5
- 230000009466 transformation Effects 0.000 description 5
- 241000201370 Autographa californica nucleopolyhedrovirus Species 0.000 description 4
- 102000004594 DNA Polymerase I Human genes 0.000 description 4
- 108010017826 DNA Polymerase I Proteins 0.000 description 4
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 4
- 241000238631 Hexapoda Species 0.000 description 4
- 239000000020 Nitrocellulose Substances 0.000 description 4
- 101710182846 Polyhedrin Proteins 0.000 description 4
- 239000006180 TBST buffer Substances 0.000 description 4
- 208000003152 Yellow Fever Diseases 0.000 description 4
- 229960000723 ampicillin Drugs 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 230000001580 bacterial effect Effects 0.000 description 4
- 239000011324 bead Substances 0.000 description 4
- 230000003197 catalytic effect Effects 0.000 description 4
- 230000029087 digestion Effects 0.000 description 4
- 239000008103 glucose Substances 0.000 description 4
- 238000000338 in vitro Methods 0.000 description 4
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 4
- 230000003278 mimic effect Effects 0.000 description 4
- 229920001220 nitrocellulos Polymers 0.000 description 4
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 4
- 230000010076 replication Effects 0.000 description 4
- 230000028327 secretion Effects 0.000 description 4
- 238000012163 sequencing technique Methods 0.000 description 4
- 210000002966 serum Anatomy 0.000 description 4
- 239000007790 solid phase Substances 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 239000006228 supernatant Substances 0.000 description 4
- 238000013518 transcription Methods 0.000 description 4
- 230000035897 transcription Effects 0.000 description 4
- 238000013519 translation Methods 0.000 description 4
- 241000701447 unidentified baculovirus Species 0.000 description 4
- 102100034044 All-trans-retinol dehydrogenase [NAD(+)] ADH1B Human genes 0.000 description 3
- 101710193111 All-trans-retinol dehydrogenase [NAD(+)] ADH4 Proteins 0.000 description 3
- 102000053602 DNA Human genes 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- 241001131785 Escherichia coli HB101 Species 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- 102100036263 Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Human genes 0.000 description 3
- 102100038885 Histone acetyltransferase p300 Human genes 0.000 description 3
- 101001001786 Homo sapiens Glutamyl-tRNA(Gln) amidotransferase subunit C, mitochondrial Proteins 0.000 description 3
- 101710128560 Initiator protein NS1 Proteins 0.000 description 3
- 101710144127 Non-structural protein 1 Proteins 0.000 description 3
- 108090001074 Nucleocapsid Proteins Proteins 0.000 description 3
- 108091034117 Oligonucleotide Proteins 0.000 description 3
- 229940124158 Protease/peptidase inhibitor Drugs 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 241000700618 Vaccinia virus Species 0.000 description 3
- 230000003115 biocidal effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 208000015181 infectious disease Diseases 0.000 description 3
- 239000006166 lysate Substances 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000008188 pellet Substances 0.000 description 3
- 238000002741 site-directed mutagenesis Methods 0.000 description 3
- 239000000243 solution Substances 0.000 description 3
- 238000001890 transfection Methods 0.000 description 3
- 241000701161 unidentified adenovirus Species 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 238000001262 western blot Methods 0.000 description 3
- OCKGFTQIICXDQW-ZEQRLZLVSA-N 5-[(1r)-1-hydroxy-2-[4-[(2r)-2-hydroxy-2-(4-methyl-1-oxo-3h-2-benzofuran-5-yl)ethyl]piperazin-1-yl]ethyl]-4-methyl-3h-2-benzofuran-1-one Chemical compound C1=C2C(=O)OCC2=C(C)C([C@@H](O)CN2CCN(CC2)C[C@H](O)C2=CC=C3C(=O)OCC3=C2C)=C1 OCKGFTQIICXDQW-ZEQRLZLVSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 2
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 2
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 2
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 2
- 241000283690 Bos taurus Species 0.000 description 2
- 241000701822 Bovine papillomavirus Species 0.000 description 2
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 108090000317 Chymotrypsin Proteins 0.000 description 2
- 108020004635 Complementary DNA Proteins 0.000 description 2
- 241000701022 Cytomegalovirus Species 0.000 description 2
- 238000002965 ELISA Methods 0.000 description 2
- 101150068427 EP300 gene Proteins 0.000 description 2
- 241000710781 Flaviviridae Species 0.000 description 2
- 108010010369 HIV Protease Proteins 0.000 description 2
- 208000005176 Hepatitis C Diseases 0.000 description 2
- 241000709721 Hepatovirus A Species 0.000 description 2
- ZZLWLWSUIBSMNP-CIUDSAMLSA-N His-Asp-Ser Chemical compound [H]N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O ZZLWLWSUIBSMNP-CIUDSAMLSA-N 0.000 description 2
- 241000701044 Human gammaherpesvirus 4 Species 0.000 description 2
- 241000725303 Human immunodeficiency virus Species 0.000 description 2
- 241000710912 Kunjin virus Species 0.000 description 2
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 2
- 239000006137 Luria-Bertani broth Substances 0.000 description 2
- 241000829100 Macaca mulatta polyomavirus 1 Species 0.000 description 2
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 2
- 108060004795 Methyltransferase Proteins 0.000 description 2
- 108010038807 Oligopeptides Proteins 0.000 description 2
- 102000015636 Oligopeptides Human genes 0.000 description 2
- 108010067372 Pancreatic elastase Proteins 0.000 description 2
- 102000016387 Pancreatic elastase Human genes 0.000 description 2
- 241001494479 Pecora Species 0.000 description 2
- 108091000080 Phosphotransferase Proteins 0.000 description 2
- 108010076504 Protein Sorting Signals Proteins 0.000 description 2
- 206010037660 Pyrexia Diseases 0.000 description 2
- 241000714474 Rous sarcoma virus Species 0.000 description 2
- 241000235070 Saccharomyces Species 0.000 description 2
- 108091081024 Start codon Proteins 0.000 description 2
- 108090000631 Trypsin Proteins 0.000 description 2
- 102000004142 Trypsin Human genes 0.000 description 2
- 206010046865 Vaccinia virus infection Diseases 0.000 description 2
- 241000251539 Vertebrata <Metazoa> Species 0.000 description 2
- 108010067390 Viral Proteins Proteins 0.000 description 2
- 201000006449 West Nile encephalitis Diseases 0.000 description 2
- 206010057293 West Nile viral infection Diseases 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 239000008272 agar Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 230000004075 alteration Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 239000001506 calcium phosphate Substances 0.000 description 2
- 229910000389 calcium phosphate Inorganic materials 0.000 description 2
- 235000011010 calcium phosphates Nutrition 0.000 description 2
- 238000005119 centrifugation Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000001684 chronic effect Effects 0.000 description 2
- 229960002376 chymotrypsin Drugs 0.000 description 2
- 230000000295 complement effect Effects 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 239000000287 crude extract Substances 0.000 description 2
- 241001493065 dsRNA viruses Species 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 208000006454 hepatitis Diseases 0.000 description 2
- 231100000283 hepatitis Toxicity 0.000 description 2
- 208000029570 hepatitis D virus infection Diseases 0.000 description 2
- 238000002744 homologous recombination Methods 0.000 description 2
- 230000006801 homologous recombination Effects 0.000 description 2
- 238000003780 insertion Methods 0.000 description 2
- 230000037431 insertion Effects 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 229930182817 methionine Natural products 0.000 description 2
- 108010035972 myxobacter alpha-lytic proteinase Proteins 0.000 description 2
- 239000006225 natural substrate Substances 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 150000002894 organic compounds Chemical class 0.000 description 2
- 230000003204 osmotic effect Effects 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- YBYRMVIVWMBXKQ-UHFFFAOYSA-N phenylmethanesulfonyl fluoride Chemical compound FS(=O)(=O)CC1=CC=CC=C1 YBYRMVIVWMBXKQ-UHFFFAOYSA-N 0.000 description 2
- 102000020233 phosphotransferase Human genes 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 229920000136 polysorbate Polymers 0.000 description 2
- 238000001556 precipitation Methods 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000003259 recombinant expression Methods 0.000 description 2
- 230000002829 reductive effect Effects 0.000 description 2
- FGDZQCVHDSGLHJ-UHFFFAOYSA-M rubidium chloride Chemical compound [Cl-].[Rb+] FGDZQCVHDSGLHJ-UHFFFAOYSA-M 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 230000035939 shock Effects 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 238000012360 testing method Methods 0.000 description 2
- 230000014621 translational initiation Effects 0.000 description 2
- QORWJWZARLRLPR-UHFFFAOYSA-H tricalcium bis(phosphate) Chemical compound [Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O QORWJWZARLRLPR-UHFFFAOYSA-H 0.000 description 2
- 239000012588 trypsin Substances 0.000 description 2
- 208000007089 vaccinia Diseases 0.000 description 2
- 210000002845 virion Anatomy 0.000 description 2
- 238000003260 vortexing Methods 0.000 description 2
- 210000005253 yeast cell Anatomy 0.000 description 2
- FDKWRPBBCBCIGA-REOHCLBHSA-N (2r)-2-azaniumyl-3-$l^{1}-selanylpropanoate Chemical compound [Se]C[C@H](N)C(O)=O FDKWRPBBCBCIGA-REOHCLBHSA-N 0.000 description 1
- JOJRTULPKHKGCQ-LBPRGKRZSA-N (2s)-2-acetamido-n-(2-oxoethyl)-3-phenylpropanamide Chemical compound O=CCNC(=O)[C@@H](NC(=O)C)CC1=CC=CC=C1 JOJRTULPKHKGCQ-LBPRGKRZSA-N 0.000 description 1
- NNRFRJQMBSBXGO-CIUDSAMLSA-N (3s)-3-[[2-[[(2s)-2-amino-5-(diaminomethylideneamino)pentanoyl]amino]acetyl]amino]-4-[[(1s)-1-carboxy-2-hydroxyethyl]amino]-4-oxobutanoic acid Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H](CO)C(O)=O NNRFRJQMBSBXGO-CIUDSAMLSA-N 0.000 description 1
- VIIIJFZJKFXOGG-UHFFFAOYSA-N 3-methylchromen-2-one Chemical class C1=CC=C2OC(=O)C(C)=CC2=C1 VIIIJFZJKFXOGG-UHFFFAOYSA-N 0.000 description 1
- OSJPPGNTCRNQQC-UWTATZPHSA-N 3-phospho-D-glyceric acid Chemical compound OC(=O)[C@H](O)COP(O)(O)=O OSJPPGNTCRNQQC-UWTATZPHSA-N 0.000 description 1
- OMLWNBVRVJYMBQ-YUMQZZPRSA-N Arg-Arg Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O OMLWNBVRVJYMBQ-YUMQZZPRSA-N 0.000 description 1
- WVNFNPGXYADPPO-BQBZGAKWSA-N Arg-Gly-Ser Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O WVNFNPGXYADPPO-BQBZGAKWSA-N 0.000 description 1
- SLNCSSWAIDUUGF-LSJOCFKGSA-N Arg-His-Ala Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CNC=N1)C(=O)N[C@@H](C)C(O)=O SLNCSSWAIDUUGF-LSJOCFKGSA-N 0.000 description 1
- OOWSBIOUKIUWLO-RCOVLWMOSA-N Asn-Gly-Val Chemical compound [H]N[C@@H](CC(N)=O)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O OOWSBIOUKIUWLO-RCOVLWMOSA-N 0.000 description 1
- BKXPJCBEHWFSTF-ACZMJKKPSA-N Asp-Gln-Asp Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O BKXPJCBEHWFSTF-ACZMJKKPSA-N 0.000 description 1
- MYOHQBFRJQFIDZ-KKUMJFAQSA-N Asp-Leu-Tyr Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O MYOHQBFRJQFIDZ-KKUMJFAQSA-N 0.000 description 1
- VSMYBNPOHYAXSD-GUBZILKMSA-N Asp-Lys-Glu Chemical compound OC(=O)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(O)=O)C(O)=O VSMYBNPOHYAXSD-GUBZILKMSA-N 0.000 description 1
- NJLLRXWFPQQPHV-SRVKXCTJSA-N Asp-Tyr-Asn Chemical compound [H]N[C@@H](CC(O)=O)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CC(N)=O)C(O)=O NJLLRXWFPQQPHV-SRVKXCTJSA-N 0.000 description 1
- UXRVDHVARNBOIO-QSFUFRPTSA-N Asp-Val-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](C(C)C)NC(=O)[C@H](CC(=O)O)N UXRVDHVARNBOIO-QSFUFRPTSA-N 0.000 description 1
- 241000193830 Bacillus <bacterium> Species 0.000 description 1
- 102100026189 Beta-galactosidase Human genes 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 101100479039 Caenorhabditis elegans aars-1 gene Proteins 0.000 description 1
- 101100000858 Caenorhabditis elegans act-3 gene Proteins 0.000 description 1
- 241000282465 Canis Species 0.000 description 1
- 102100037633 Centrin-3 Human genes 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- 241000723607 Comovirus Species 0.000 description 1
- 241000557626 Corvus corax Species 0.000 description 1
- 241000699800 Cricetinae Species 0.000 description 1
- 241000699802 Cricetulus griseus Species 0.000 description 1
- KARBMKZDLYMMOW-JYBASQMISA-N Cys-Trp-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)[C@H](CS)N)O KARBMKZDLYMMOW-JYBASQMISA-N 0.000 description 1
- FDKWRPBBCBCIGA-UWTATZPHSA-N D-Selenocysteine Natural products [Se]C[C@@H](N)C(O)=O FDKWRPBBCBCIGA-UWTATZPHSA-N 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 230000004543 DNA replication Effects 0.000 description 1
- 230000007018 DNA scission Effects 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 208000001490 Dengue Diseases 0.000 description 1
- 206010012310 Dengue fever Diseases 0.000 description 1
- 102000016911 Deoxyribonucleases Human genes 0.000 description 1
- 108010053770 Deoxyribonucleases Proteins 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 101710091045 Envelope protein Proteins 0.000 description 1
- 108060002716 Exonuclease Proteins 0.000 description 1
- 229920001917 Ficoll Polymers 0.000 description 1
- 108700028146 Genetic Enhancer Elements Proteins 0.000 description 1
- 108700007698 Genetic Terminator Regions Proteins 0.000 description 1
- PRBLYKYHAJEABA-SRVKXCTJSA-N Gln-Arg-Leu Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O PRBLYKYHAJEABA-SRVKXCTJSA-N 0.000 description 1
- JEFZIKRIDLHOIF-BYPYZUCNSA-N Gln-Gly Chemical compound NC(=O)CC[C@H](N)C(=O)NCC(O)=O JEFZIKRIDLHOIF-BYPYZUCNSA-N 0.000 description 1
- MWERYIXRDZDXOA-QEWYBTABSA-N Gln-Ile-Phe Chemical compound [H]N[C@@H](CCC(N)=O)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O MWERYIXRDZDXOA-QEWYBTABSA-N 0.000 description 1
- JWNZHMSRZXXGTM-XKBZYTNZSA-N Glu-Ser-Thr Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](CO)C(=O)N[C@@H]([C@@H](C)O)C(O)=O JWNZHMSRZXXGTM-XKBZYTNZSA-N 0.000 description 1
- YQPFCZVKMUVZIN-AUTRQRHGSA-N Glu-Val-Gln Chemical compound [H]N[C@@H](CCC(O)=O)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCC(N)=O)C(O)=O YQPFCZVKMUVZIN-AUTRQRHGSA-N 0.000 description 1
- DTPOVRRYXPJJAZ-FJXKBIBVSA-N Gly-Arg-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@@H](NC(=O)CN)CCCN=C(N)N DTPOVRRYXPJJAZ-FJXKBIBVSA-N 0.000 description 1
- FCKPEGOCSVZPNC-WHOFXGATSA-N Gly-Ile-Phe Chemical compound NCC(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 FCKPEGOCSVZPNC-WHOFXGATSA-N 0.000 description 1
- BHPQOIPBLYJNAW-NGZCFLSTSA-N Gly-Ile-Pro Chemical compound CC[C@H](C)[C@@H](C(=O)N1CCC[C@@H]1C(=O)O)NC(=O)CN BHPQOIPBLYJNAW-NGZCFLSTSA-N 0.000 description 1
- FHQRLHFYVZAQHU-IUCAKERBSA-N Gly-Lys-Gln Chemical compound [H]NCC(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CCC(N)=O)C(O)=O FHQRLHFYVZAQHU-IUCAKERBSA-N 0.000 description 1
- 108060003393 Granulin Proteins 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000005331 Hepatitis D Diseases 0.000 description 1
- 229920000209 Hexadimethrine bromide Polymers 0.000 description 1
- HXKZJLWGSWQKEA-LSJOCFKGSA-N His-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CN=CN1 HXKZJLWGSWQKEA-LSJOCFKGSA-N 0.000 description 1
- 101000880522 Homo sapiens Centrin-3 Proteins 0.000 description 1
- 101001002657 Homo sapiens Interleukin-2 Proteins 0.000 description 1
- 241000713772 Human immunodeficiency virus 1 Species 0.000 description 1
- 108010016183 Human immunodeficiency virus 1 p16 protease Proteins 0.000 description 1
- HEFNNWSXXWATRW-UHFFFAOYSA-N Ibuprofen Chemical compound CC(C)CC1=CC=C(C(C)C(O)=O)C=C1 HEFNNWSXXWATRW-UHFFFAOYSA-N 0.000 description 1
- NBJAAWYRLGCJOF-UGYAYLCHSA-N Ile-Asp-Asn Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC(=O)O)C(=O)N[C@@H](CC(=O)N)C(=O)O)N NBJAAWYRLGCJOF-UGYAYLCHSA-N 0.000 description 1
- LKACSKJPTFSBHR-MNXVOIDGSA-N Ile-Gln-Lys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CCC(=O)N)C(=O)N[C@@H](CCCCN)C(=O)O)N LKACSKJPTFSBHR-MNXVOIDGSA-N 0.000 description 1
- HQEPKOFULQTSFV-JURCDPSOSA-N Ile-Phe-Ala Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](C)C(=O)O)N HQEPKOFULQTSFV-JURCDPSOSA-N 0.000 description 1
- WLRJHVNFGAOYPS-HJPIBITLSA-N Ile-Ser-Tyr Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CO)C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)O)N WLRJHVNFGAOYPS-HJPIBITLSA-N 0.000 description 1
- JZBVBOKASHNXAD-NAKRPEOUSA-N Ile-Val-Ser Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(=O)O)N JZBVBOKASHNXAD-NAKRPEOUSA-N 0.000 description 1
- 108060003951 Immunoglobulin Proteins 0.000 description 1
- 108010054477 Immunoglobulin Fab Fragments Proteins 0.000 description 1
- 102000001706 Immunoglobulin Fab Fragments Human genes 0.000 description 1
- 102100024319 Intestinal-type alkaline phosphatase Human genes 0.000 description 1
- 101710184243 Intestinal-type alkaline phosphatase Proteins 0.000 description 1
- 241000588748 Klebsiella Species 0.000 description 1
- 241001138401 Kluyveromyces lactis Species 0.000 description 1
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 1
- FBOZXECLQNJBKD-ZDUSSCGKSA-N L-methotrexate Chemical compound C=1N=C2N=C(N)N=C(N)C2=NC=1CN(C)C1=CC=C(C(=O)N[C@@H](CCC(O)=O)C(O)=O)C=C1 FBOZXECLQNJBKD-ZDUSSCGKSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- KSZCCRIGNVSHFH-UWVGGRQHSA-N Leu-Arg-Gly Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O KSZCCRIGNVSHFH-UWVGGRQHSA-N 0.000 description 1
- HFBCHNRFRYLZNV-GUBZILKMSA-N Leu-Glu-Asp Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(=O)N[C@@H](CC(O)=O)C(O)=O HFBCHNRFRYLZNV-GUBZILKMSA-N 0.000 description 1
- CSFVADKICPDRRF-KKUMJFAQSA-N Leu-His-Leu Chemical compound CC(C)C[C@H]([NH3+])C(=O)N[C@H](C(=O)N[C@@H](CC(C)C)C([O-])=O)CC1=CN=CN1 CSFVADKICPDRRF-KKUMJFAQSA-N 0.000 description 1
- RXGLHDWAZQECBI-SRVKXCTJSA-N Leu-Leu-Ser Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CO)C(O)=O RXGLHDWAZQECBI-SRVKXCTJSA-N 0.000 description 1
- AAKRWBIIGKPOKQ-ONGXEEELSA-N Leu-Val-Gly Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O AAKRWBIIGKPOKQ-ONGXEEELSA-N 0.000 description 1
- QESXLSQLQHHTIX-RHYQMDGZSA-N Leu-Val-Thr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H]([C@@H](C)O)C(O)=O QESXLSQLQHHTIX-RHYQMDGZSA-N 0.000 description 1
- 102000003960 Ligases Human genes 0.000 description 1
- 108090000364 Ligases Proteins 0.000 description 1
- 239000000232 Lipid Bilayer Substances 0.000 description 1
- OJDFAABAHBPVTH-MNXVOIDGSA-N Lys-Ile-Gln Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CCC(N)=O)C(O)=O OJDFAABAHBPVTH-MNXVOIDGSA-N 0.000 description 1
- DLCAXBGXGOVUCD-PPCPHDFISA-N Lys-Thr-Ile Chemical compound [H]N[C@@H](CCCCN)C(=O)N[C@@H]([C@@H](C)O)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O DLCAXBGXGOVUCD-PPCPHDFISA-N 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 239000012901 Milli-Q water Substances 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 108010002311 N-glycylglutamic acid Proteins 0.000 description 1
- 238000005481 NMR spectroscopy Methods 0.000 description 1
- 101710163270 Nuclease Proteins 0.000 description 1
- 108010036939 Occlusion Body Matrix Proteins Proteins 0.000 description 1
- 108020005187 Oligonucleotide Probes Proteins 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 229910019142 PO4 Inorganic materials 0.000 description 1
- 241000282579 Pan Species 0.000 description 1
- 108090000526 Papain Proteins 0.000 description 1
- 108010087702 Penicillinase Proteins 0.000 description 1
- 241000710778 Pestivirus Species 0.000 description 1
- 108010022181 Phosphopyruvate Hydratase Proteins 0.000 description 1
- 241000709664 Picornaviridae Species 0.000 description 1
- 108010021757 Polynucleotide 5'-Hydroxyl-Kinase Proteins 0.000 description 1
- 102000008422 Polynucleotide 5'-hydroxyl-kinase Human genes 0.000 description 1
- ICTZKEXYDDZZFP-SRVKXCTJSA-N Pro-Arg-Pro Chemical compound N([C@@H](CCCN=C(N)N)C(=O)N1[C@@H](CCC1)C(O)=O)C(=O)[C@@H]1CCCN1 ICTZKEXYDDZZFP-SRVKXCTJSA-N 0.000 description 1
- WPQKSRHDTMRSJM-CIUDSAMLSA-N Pro-Asp-Gln Chemical compound NC(=O)CC[C@@H](C(O)=O)NC(=O)[C@H](CC(O)=O)NC(=O)[C@@H]1CCCN1 WPQKSRHDTMRSJM-CIUDSAMLSA-N 0.000 description 1
- WWXNZNWZNZPDIF-SRVKXCTJSA-N Pro-Val-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)[C@@H]1CCCN1 WWXNZNWZNZPDIF-SRVKXCTJSA-N 0.000 description 1
- 108010076181 Proinsulin Proteins 0.000 description 1
- 101710180012 Protease 7 Proteins 0.000 description 1
- 101710188315 Protein X Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 239000012614 Q-Sepharose Substances 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 229920005654 Sephadex Polymers 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- BTPAWKABYQMKKN-LKXGYXEUSA-N Ser-Asp-Thr Chemical compound [H]N[C@@H](CO)C(=O)N[C@@H](CC(O)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O BTPAWKABYQMKKN-LKXGYXEUSA-N 0.000 description 1
- 108010003723 Single-Domain Antibodies Proteins 0.000 description 1
- 108020004682 Single-Stranded DNA Proteins 0.000 description 1
- 241000187392 Streptomyces griseus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- OUUQCZGPVNCOIJ-UHFFFAOYSA-M Superoxide Chemical compound [O-][O] OUUQCZGPVNCOIJ-UHFFFAOYSA-M 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- VTVVYQOXJCZVEB-WDCWCFNPSA-N Thr-Leu-Glu Chemical compound [H]N[C@@H]([C@@H](C)O)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCC(O)=O)C(O)=O VTVVYQOXJCZVEB-WDCWCFNPSA-N 0.000 description 1
- 108020004440 Thymidine kinase Proteins 0.000 description 1
- 241000710924 Togaviridae Species 0.000 description 1
- XGFOXYJQBRTJPO-PJODQICGSA-N Trp-Pro-Ala Chemical compound [H]N[C@@H](CC1=CNC2=C1C=CC=C2)C(=O)N1CCC[C@H]1C(=O)N[C@@H](C)C(O)=O XGFOXYJQBRTJPO-PJODQICGSA-N 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- 101150050575 URA3 gene Proteins 0.000 description 1
- VVZDBPBZHLQPPB-XVKPBYJWSA-N Val-Glu-Gly Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(=O)NCC(O)=O VVZDBPBZHLQPPB-XVKPBYJWSA-N 0.000 description 1
- OQWNEUXPKHIEJO-NRPADANISA-N Val-Glu-Ser Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCC(=O)O)C(=O)N[C@@H](CO)C(=O)O)N OQWNEUXPKHIEJO-NRPADANISA-N 0.000 description 1
- OTJMMKPMLUNTQT-AVGNSLFASA-N Val-Leu-Arg Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](C(C)C)N OTJMMKPMLUNTQT-AVGNSLFASA-N 0.000 description 1
- XPKCFQZDQGVJCX-RHYQMDGZSA-N Val-Lys-Thr Chemical compound C[C@H]([C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](C(C)C)N)O XPKCFQZDQGVJCX-RHYQMDGZSA-N 0.000 description 1
- JPBGMZDTPVGGMQ-ULQDDVLXSA-N Val-Tyr-His Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CC1=CC=C(C=C1)O)C(=O)N[C@@H](CC2=CN=CN2)C(=O)O)N JPBGMZDTPVGGMQ-ULQDDVLXSA-N 0.000 description 1
- 241000710886 West Nile virus Species 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 230000000890 antigenic effect Effects 0.000 description 1
- 108010068380 arginylarginine Proteins 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 230000002238 attenuated effect Effects 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000010310 bacterial transformation Effects 0.000 description 1
- WQZGKKKJIJFFOK-FPRJBGLDSA-N beta-D-galactose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-FPRJBGLDSA-N 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 125000005620 boronic acid group Chemical class 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000007853 buffer solution Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001628 calcium chloride Inorganic materials 0.000 description 1
- 244000309466 calf Species 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 230000004656 cell transport Effects 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000002512 chemotherapy Methods 0.000 description 1
- 229960005091 chloramphenicol Drugs 0.000 description 1
- WIIZWVCIJKGZOK-RKDXNWHRSA-N chloramphenicol Chemical compound ClC(Cl)C(=O)N[C@H](CO)[C@H](O)C1=CC=C([N+]([O-])=O)C=C1 WIIZWVCIJKGZOK-RKDXNWHRSA-N 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 201000003486 coccidioidomycosis Diseases 0.000 description 1
- 238000007398 colorimetric assay Methods 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 230000021615 conjugation Effects 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 235000018417 cysteine Nutrition 0.000 description 1
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- 208000025729 dengue disease Diseases 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 125000005594 diketone group Chemical group 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 231100000676 disease causative agent Toxicity 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000004520 electroporation Methods 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 230000002255 enzymatic effect Effects 0.000 description 1
- 238000009585 enzyme analysis Methods 0.000 description 1
- 238000001976 enzyme digestion Methods 0.000 description 1
- 102000013165 exonuclease Human genes 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 239000000706 filtrate Substances 0.000 description 1
- 239000007850 fluorescent dye Substances 0.000 description 1
- 230000002538 fungal effect Effects 0.000 description 1
- 238000002290 gas chromatography-mass spectrometry Methods 0.000 description 1
- 238000007429 general method Methods 0.000 description 1
- 108010042598 glutamyl-aspartyl-glycine Proteins 0.000 description 1
- 230000002414 glycolytic effect Effects 0.000 description 1
- 108010084389 glycyltryptophan Proteins 0.000 description 1
- 229910001385 heavy metal Inorganic materials 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 231100000844 hepatocellular carcinoma Toxicity 0.000 description 1
- VBZWSGALLODQNC-UHFFFAOYSA-N hexafluoroacetone Chemical class FC(F)(F)C(=O)C(F)(F)F VBZWSGALLODQNC-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 108010036413 histidylglycine Proteins 0.000 description 1
- 102000055277 human IL2 Human genes 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 210000001822 immobilized cell Anatomy 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000000984 immunochemical effect Effects 0.000 description 1
- 238000010166 immunofluorescence Methods 0.000 description 1
- 102000018358 immunoglobulin Human genes 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002458 infectious effect Effects 0.000 description 1
- 239000003999 initiator Substances 0.000 description 1
- 230000000977 initiatory effect Effects 0.000 description 1
- 239000002198 insoluble material Substances 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 230000002452 interceptive effect Effects 0.000 description 1
- 108010031424 isoleucyl-prolyl-proline Proteins 0.000 description 1
- 210000003734 kidney Anatomy 0.000 description 1
- 238000002372 labelling Methods 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000002502 liposome Substances 0.000 description 1
- 208000019423 liver disease Diseases 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 108010009298 lysylglutamic acid Proteins 0.000 description 1
- 229910001629 magnesium chloride Inorganic materials 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 229960000485 methotrexate Drugs 0.000 description 1
- 230000011987 methylation Effects 0.000 description 1
- 238000007069 methylation reaction Methods 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 238000000520 microinjection Methods 0.000 description 1
- 230000003228 microsomal effect Effects 0.000 description 1
- 230000035772 mutation Effects 0.000 description 1
- 210000004897 n-terminal region Anatomy 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000004942 nuclear accumulation Effects 0.000 description 1
- 238000007899 nucleic acid hybridization Methods 0.000 description 1
- 239000002751 oligonucleotide probe Substances 0.000 description 1
- 238000002515 oligonucleotide synthesis Methods 0.000 description 1
- 210000001672 ovary Anatomy 0.000 description 1
- 125000000636 p-nitrophenyl group Chemical group [H]C1=C([H])C(=C([H])C([H])=C1*)[N+]([O-])=O 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 230000001717 pathogenic effect Effects 0.000 description 1
- 229950009506 penicillinase Drugs 0.000 description 1
- 230000007030 peptide scission Effects 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 239000008177 pharmaceutical agent Substances 0.000 description 1
- 238000002205 phenol-chloroform extraction Methods 0.000 description 1
- 108010018625 phenylalanylarginine Proteins 0.000 description 1
- 239000010452 phosphate Substances 0.000 description 1
- 230000026731 phosphorylation Effects 0.000 description 1
- 238000006366 phosphorylation reaction Methods 0.000 description 1
- 239000013600 plasmid vector Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 238000002264 polyacrylamide gel electrophoresis Methods 0.000 description 1
- 230000008488 polyadenylation Effects 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000001267 polyvinylpyrrolidone Substances 0.000 description 1
- 229920000036 polyvinylpyrrolidone Polymers 0.000 description 1
- 235000013855 polyvinylpyrrolidone Nutrition 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 108010015796 prolylisoleucine Proteins 0.000 description 1
- 235000019833 protease Nutrition 0.000 description 1
- 238000001742 protein purification Methods 0.000 description 1
- 230000003161 proteinsynthetic effect Effects 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 230000006337 proteolytic cleavage Effects 0.000 description 1
- 210000001938 protoplast Anatomy 0.000 description 1
- 238000011002 quantification Methods 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 210000001995 reticulocyte Anatomy 0.000 description 1
- 229940102127 rubidium chloride Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 229940055619 selenocysteine Drugs 0.000 description 1
- ZKZBPNGNEQAJSX-UHFFFAOYSA-N selenocysteine Natural products [SeH]CC(N)C(O)=O ZKZBPNGNEQAJSX-UHFFFAOYSA-N 0.000 description 1
- 235000016491 selenocysteine Nutrition 0.000 description 1
- 125000003607 serino group Chemical group [H]N([H])[C@]([H])(C(=O)[*])C(O[H])([H])[H] 0.000 description 1
- 239000013605 shuttle vector Substances 0.000 description 1
- 238000010898 silica gel chromatography Methods 0.000 description 1
- 239000002002 slurry Substances 0.000 description 1
- AJPJDKMHJJGVTQ-UHFFFAOYSA-M sodium dihydrogen phosphate Chemical compound [Na+].OP(O)([O-])=O AJPJDKMHJJGVTQ-UHFFFAOYSA-M 0.000 description 1
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 1
- 229910000162 sodium phosphate Inorganic materials 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000002269 spontaneous effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 238000003786 synthesis reaction Methods 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 231100000331 toxic Toxicity 0.000 description 1
- 230000002588 toxic effect Effects 0.000 description 1
- 230000002463 transducing effect Effects 0.000 description 1
- 238000000844 transformation Methods 0.000 description 1
- 239000001226 triphosphate Substances 0.000 description 1
- 235000011178 triphosphate Nutrition 0.000 description 1
- 125000002264 triphosphate group Chemical class [H]OP(=O)(O[H])OP(=O)(O[H])OP(=O)(O[H])O* 0.000 description 1
- 241001515965 unidentified phage Species 0.000 description 1
- 241001430294 unidentified retrovirus Species 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 108010073969 valyllysine Proteins 0.000 description 1
- 230000029302 virus maturation Effects 0.000 description 1
- DGVVWUTYPXICAM-UHFFFAOYSA-N β‐Mercaptoethanol Chemical compound OCCS DGVVWUTYPXICAM-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0089—Oxidoreductases (1.) acting on superoxide as acceptor (1.15)
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/48—Hydrolases (3) acting on peptide bonds (3.4)
- C12N9/50—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25)
- C12N9/503—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses
- C12N9/506—Proteinases, e.g. Endopeptidases (3.4.21-3.4.25) derived from viruses derived from RNA viruses
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/90—Isomerases (5.)
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/02—Fusion polypeptide containing a localisation/targetting motif containing a signal sequence
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/95—Fusion polypeptide containing a motif/fusion for degradation (ubiquitin fusions, PEST sequence)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2770/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA ssRNA viruses positive-sense
- C12N2770/00011—Details
- C12N2770/24011—Flaviviridae
- C12N2770/24211—Hepacivirus, e.g. hepatitis C virus, hepatitis G virus
- C12N2770/24222—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
Definitions
- This invention relates to the molecular biology and virology of the hepatitis C virus (HCV). More specifically, this invention relates to a novel protease produced by HCV, methods of expression, recombinant protease, protease mutants, and inhibitors of HCV protease.
- Non-A, Non-B hepatitis is a transmissible disease (or family of diseases) that is believed to be virally induced, and is distinguishable from other forms of virus-associated liver disease, such as those caused by hepatitis A virus (HAV), hepatitis B virus (HBV), delta hepatitis virus (HDV), cytomegalovirus (CMV) or Epstein-Barr virus (EBV).
- HAV hepatitis A virus
- HBV hepatitis B virus
- HDV delta hepatitis virus
- CMV cytomegalovirus
- EBV Epstein-Barr virus
- HCV hepatitis C virus
- BB-NANBH blood-associated NANBH
- viruses including adenoviruses, baculoviruses, comoviruses, pico-maviruses, retroviruses, and togaviruses, rely on specific, virally-encoded proteases for processing polypeptides from their initial translated form into mature, active proteins.
- adenoviruses including adenoviruses, baculoviruses, comoviruses, pico-maviruses, retroviruses, and togaviruses
- proteases for processing polypeptides from their initial translated form into mature, active proteins.
- picornaviruses all of the viral proteins are believed to arise from cleavage of a single polyprotein (B.D. Korant, CRC Crit Rev Biotech (1988) 8:149-57).
- HIV protease found in HIV-1.
- the HIV protease was obtained in the form of a fusion protein, by fusing DNA encoding an HIV protease precursor to DNA encoding human superoxide dismutase (hSOD), and expressing the product in E. coli.
- hSOD human superoxide dismutase
- Transformed cells expressed products of 36 and 10 kDa (corresponding to the hSOD-protease fusion protein and the protease alone), suggesting that the protease was expressed in a form capable of autocatalytic proteolysis.
- T. J. McQuade et al, Science (1990) 247:454-56 disclosed preparation of a peptide mimic capable of specifically inhibiting the HIV-1 protease.
- the protease is believed responsible for cleavage of the initial p55 gag precursor transcript into the core structural proteins (pl7, p24, p8, and p7).
- Adding 1 ⁇ M inhibitor to HIV-infected peripheral blood lymphocytes in culture reduced the concentration of processed HIV p24 by about 70%. Viral maturation and levels of infectious virus were reduced by the protease inhibitor.
- HCV protease HCV protease fusion proteins, truncated and altered HCV proteases, cloning and expression vectors therefore, and methods for identifying antiviral agents effective for treating HCV.
- FIG. 1 shows the sequence of HCV protease.
- FIG. 2 shows the polynucleotide sequence and deduced amino acid sequence of the clone C20c.
- FIG. 3 shows the polynucleotide sequence and deduced amino acid sequence of the clone C26d.
- FIG. 4 shows the polynucleotide sequence and deduced amino acid sequence of the clone C8h.
- FIG. 5 shows the polynucleotide sequence and deduced amino acid sequence of the clone C7f.
- FIG. 6 shows the polynucleotide sequence and deduced amino acid sequence of the clone C3 1.
- FIG. 7 shows the polynucleotide sequence and deduced amino acid sequence of the clone C35.
- FIG. 8 shows the polynucleotide sequence and deduced amino acid sequence of the clone C33c.
- FIG. 9 schematically illustrates assembly of the vector C7fC20cC300C200.
- FIG. 10 shows the sequence of vector cf1SODp600.
- Hepatitis C Virus and “HCV” refer to the viral species that is the major etiological agent of BB-NANBH, the prototype isolate of which is identified in PCT WO89/046699; EPO publication 318,216; U.S. Ser. No. 7/355,008, filed May 18, 1989; and U.S. Ser. No. 7/456,637, the disclosures of which are incorporated herein by reference.
- HCV as used herein includes the pathogenic strains capable of causing hepatitis C, and attenuated strains or defective interfering particles derived therefrom.
- the HCV genome is comprised of RNA.
- RNA-containing viruses have relatively high rates of spontaneous mutation, reportedly on the order of 10 ⁇ 3 to 10 ⁇ 4 per incorporated nucleotide (Fields & Knipe, “Fundamental Virology” (1986, Raven Press, N.Y.)).
- Yields & Knipe, “Fundamental Virology” (1986, Raven Press, N.Y.) As heterogeneity and fluidity of genotype are inherent characteristics of RNA viruses, there will be multiple strains/isolates, which may be virulent or avirulent, within the HCV species.
- strain or isolate CDCIHCVI also called HCV1
- Information from one strain or isolate is sufficient to allow those skilled in the art using standard techniques to isolate new strains/isolates and to identify whether such new strains/isolates are HCV.
- several different strains/isolates are described below. These strains, which were obtained from a number of human sera (and from different geographical areas), were isolated utilizing the information from the genomic sequence of HCV1.
- Flavivirus family contains a large number of viruses which are small, enveloped pathogens of man.
- the morphology and composition of Flavivirus particles are known, and are discussed in M. A. Brinton, in “The Viruses: The Togaviridae And Flaviviridae” (Series eds. Fraenkel-Conrat and Wagner, vol. eds. Schlesinger and Schlesinger, Plenum Press, 1986), pp. 327-374.
- Flaviviruses contain a central nucleocapsid surrounded by a lipid bilayer.
- Virions are spherical and have a diameter of about 40-50 nm. Their cores are about 25-30 nm in diameter. Along the outer surface of the virion envelope are projections measuring about 5-10 nm in length with terminal knobs about 2 nm in diameter.
- Typical examples of the family include Yellow Fever virus, West Nile virus, and Dengue Fever virus. They possess positive-stranded RNA genomes (about 11,000 nucleotides) that are slightly larger than that of HCV and encode a polyprotein precursor of about 3500 amino acids. Individual viral proteins are cleaved from this precursor polypeptide.
- the genome of HCV appears to be single-stranded RNA containing about 10,000 nucleotides.
- the genome is positive-stranded, and possesses a continuous translational open reading frame (ORF) that encodes a polyprotein of about 3,000 amino acids.
- ORF continuous translational open reading frame
- the structural proteins appear to be encoded in approximately the first quarter of the N-terminal region, with the majority of the polyprotein attributed to non-structural proteins.
- ORF continuous translational open reading frame
- FIG. 1 A schematic alignment of possible regions of a flaviviral polyprotein (using Yellow Fever Virus as an example), and of a putative polyprotein encoded in the major ORF of the HCV genome, is shown in FIG. 1. Possible domains of the HCV polyprotein are indicated in the figure.
- the Yellow Fever Virus polyprotein contains, from the amino terminus to the carboxy terminus, the nucleocapsid protein (C), the matrix protein (M), the envelope protein (E), and the non-structural proteins 1, 2 (a+b), 3, 4 (a+b), and 5 (NS1, NS2, NS3, NS4, and NS5).
- HCV nucleocapsid protein
- C nucleocapsid protein
- NS2-5 non-structural proteins 2,3,4, and 5 (NS2-5) of HCV and of yellow fever virus (YFV) appear to have counterparts of similar size and hydropathicity, although the amino acid sequences diverge.
- YFV yellow fever virus
- the region of HCV which would correspond to the regions of YFV polyprotein which contains the M, E, and NS1 protein not only differs in sequence, but also appears to be quite different in size and hydropathicity.
- putative HCV strains and isolates are identifiable by their homology at the polypeptide level.
- new ,HCV strains or isolates are expected to be at least about 40% homologous, some more than about 70% homologous, and some even more than about 80% homologous: some may be more than about 90% homologous at the polypeptide level.
- the tehniques for determining amino acid sequence homology are known in the art. For example, the amino acid sequence may be determined directly and compared to the sequences provided herein. Altematively the nucleotide sequence of the genomic material of the putative HCV may be determined (usually via a cDNA intermediate), the amino acid sequence encoded therein can be determined, and the corresponding regions compared.
- HCV protease refers to an enzyme derived from HCV which exhibits proteolytic activity, specifically the polypeptide encoded in the NS3 domain of the HCV genome.
- At least one strain of HCV contains a protease believed to be substantially encoded by or within the following sequence: Arg Arg Gly Arg Glu Ile Leu Leu Gly Pro 10 Ala Asp Gly Met Val Ser Lys Gly Trp Arg 20 Leu Leu Ala Pro Ile Thr Ala Tyr Ala Gln 30 Gln Thr Arg Gly Leu Leu Gly Cys Ile lle 40 Thr Set Leu Thr Gly Arg Asp Lys Asn Gln 50 Val Glu Gly Glu Val Gln Ile Val Ser Thr 60 Ala Ala Gln Thr Phe Leu Ala Thr CysI le 70 Asn Gly Val Cys Trp Thr Val Tyr His Gly 80 Ala Gly Thr Arg Thr Ile Ala Ser Pro Lys
- N and C termini are putative, the actual termini being defmed by expression and processing in an appropriate host of a DNA construct encoding the entire N53 domain. It is understood that this sequence may vary from strai to strain, as RNA viruses like HCV are known to exhibit a great deal of variation. Further, the actual N and C termini may vary, as the protease is cleaved from a precursor polyprotein: variations in the protease amino acid sequence can result in cleavage from the polyprotein at different points. Thus, the amino- and carboxy-termnini may differ from strain to strain of H-CV. The first amino acid shown above corresponds to residue 60 in FIG. 1. However, the minimum sequence necessary for activity can be determined by routine methods.
- the sequence may be truncated at either end by treating an appropriate expression vector with an exonuclease (after cleavage at the 5′ or 3′ end of the coding sequence) to remove any desired number of base pairs.
- the resulting coding polynucleotide is then expressed and the sequence determined.
- the activity of the resulting product may be correlated with the amino acid sequence: a limited series of such experiments (removing progressively greater numbers of base pairs) determines the minimum internal sequence necessary for protease activity.
- the sequence may be substantially truncated, particularly at the carboxy terminus, apparently with full retention of protease activity. It is presently believed that a portion of the protein at the carboxy terminus may exhibit helicase activity. However, helicase activity is not required of the HCV proteases of the invention.
- the amino terminus may also be truncated to a degree without loss of protease activity.
- HCV protease analogs refer to polypeptides which vary from the full length protease sequence by deletion, alteration and/or addition to the amino acid sequence of the native protease.
- HCV protease analogs include the truncated proteases described above, as well as HCV protease muteins and fusion proteins comprising HCV protease, truncated protease, or protease muteins.
- Alterations to form HCV protease muteins are preferably conservative amino acid substitutions, in which an amino acid is replaced with another naturally-occurring amino acid of similar character. For example, the following substitutions are considered “conservative”:
- Nonconservative changes are generally substitutions of one of the above amino acids with an amino acid from a different group (e.g., substituting Asn for Glu), or substituting Cys, Met, His, or Pro for any of the above amino acids.
- Substitutions involving common amino acids are conveniently performed by site specific mutagenesis of an expression vector encoding the desired protein, and subsequent expression of the altered form.
- the total number of residues changed, deleted or added to the native sequence in the muteins will be no more than about 20, preferably no more than about 10, and most preferably no more than about 5.
- fusion protein generally refers to a polypeptide comprising an amino acid sequence drawn from two or more individual proteins.
- fusion protein is used to denote a polypeptide comprising the HCV protease, truncate, mutein or a functional portion thereof, fused to a non-HCV protein or polypeptide (“fusion partner”). Fusion proteins are most conveniently produced by expression of a fused gene, which encodes a portion of one polypeptide at the 5′ end and a portion of a different polypeptide at the 3′ end, where the different portions are joined in one reading frame which may be expressed in a suitable host.
- HCV protease or analog it is presently preferred (although not required) to position the HCV protease or analog at the carboxy terminus of the fusion protein, and to employ a functional enzyme fragment at the amino terminus.
- a functional enzyme fragment As the HCV protease is normally expressed within a large polyprotein, it is not expected to include cell transport signals (e.g., export or secretion signals).
- Suitable functional enzyme fragments are those polypeptides which exhibit a quantifiable activity when expressed fused to the HCV protease.
- Exemplary enzymes include, without limitation, ⁇ -galactosidase ( ⁇ -gal), ⁇ -lactamase, horseradish peroxidase (HRP), glucose oxidase (GO), human superoxide dismutase (hSOD), urease, and the like. These enzymes are convenient because the amount of fusion protein produced can be quantified by means of simple colorimetric assays. Alternatively, one may employ antigenic proteins or fragments, to permit simple detection and quantification of fusion proteins using antibodies specific for the fusion partner. The presently preferred fusion partner is hSOD.
- the practice of the present invention generally employs conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See for example J. Sambrook et al, “Molecular Cloning; A Laboratory Manual (1989); “DNA Cloning”, Vol. I and II (D. N Glover ed. 1985); “Oligo-nucleotide Synthesis” (M J. Gait ed, 1984); “Nucleic Acid Hybridization” (B. D. Hames & S. J. Higgins eds. 1984); “Transcription And Translation” (B. D. Hames & S. J. Higgins eds.
- prokaryotic and eukaryotic host cells are useful for expressing desired coding sequences when appropriate control sequences compatible with the designated host are used.
- E. coli is most frequently used.
- Expression control sequences for prokaryotes include promoters, optionally containing operator portions, and ribosome binding sites.
- Transfer vectors compatible with prokaryotic hosts are commonly derived from, for example, pBR322, a plasmid containing operons conferring ampicillin and tetracycline resistance, and the various pUC vectors, which also contain sequences conferring antibiotic resistance markers. These plasmids are commercially available. The markers may be used to obtain successful transformants by selection.
- prokaryotic control sequences include the 4-lactamase (penicillinase) and lactose promoter systems (Chang et al, Nature (1977) 198:1056), the tryptophan (trp) promoter system (Goeddel et al, Nuc Acids Res (1980) 8:4057) and the lambda-derived P L promoter and N gene ribosome binding site (Shimatake et al, Nature (1981) 292:128) and the hybrid tac promoter (De Boer et al, Proc Nat Acad Sci USA (1983) 292:128) derived from sequences of the trp and lac Uv5 promoters.
- the foregoing systems are particularly compatible with E. coli; if desired, other prokaryotic hosts such as strains of Bacillus or Pseudomonas may be used, with corresponding control sequences.
- Eukaryotic hosts include without limitation yeast and mammalian cells in culture systems.
- Yeast expression hosts include Saccharomyces, Klebsiella, Picia, and the like. Saccharomyces cerevisiae and Saccharomyces carisbergensis and K. lactis are the most commonly used yeast hosts, and are convenient fungal hosts.
- Yeast-compatible vectors carry markers which permit selection of successful transformants by conferring prototrophy to auxotrophic mutants or resistance to heavy metals on wild-type strains.
- Yeast compatible vectors may employ the 2 ⁇ origin of replication (Broach et al, Meth Enzymol (1983) 101:307), the combination of CEN3 and ARS 1 or other means for assuring replication, such as sequences which will result in incorporation of an appropriate fragment into the host cell genome.
- Control sequences for yeast vectors are known in the art and include promoters for the synthesis of glycolytic enzymes (Hess et al, J Adv Enzvme Reg (1968) 7:149; Holland et al, Biochem (1978), 17:4900), including the promoter for 3-phosphoglycerate kinase (R. Hitzeman et al, J Biol Chem (1980) 255:2073).
- Terminators may also be included, such as those derived from the enolase gene (Holland, J Biol Chem (1981) 256:1385). Particularly useful control systems are those which comprise the glyceraldehyde-3 phosphate dehydrogenase (GAPDH) promoter or alcohol dehydrogenase (ADH) regulatable promoter, terminators also derived from GAPDH, and if secretion is desired, a leader sequence derived from yeast a-factor (see U.S. Pat. No. 4,870,008, incorporated herein by reference).
- GAPDH glyceraldehyde-3 phosphate dehydrogenase
- ADH alcohol dehydrogenase
- a presently preferred expression system employs the ubiquitin leader as the fusion partner.
- Copending application U.S. Ser. No. 7/390,599 filed Aug. 7, 1989 disclosed vectors for high expression of yeast ubiquitin fusion proteins.
- Yeast ubiquitin provides a 76 amino acid polypeptide which is automatically cleaved from the fused protein upon expression.
- the ubiquitin amino acid sequence is as follows: Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Set Lys Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Set Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly
- ubiquitin polypeptide may be synthesized by standard methods, for example following the technique of Barr et al, J Biol Chem (1988) 268:1671-78 using an Applied Biosystem 380A DNA synthesizer. Using appropriate linkers, the ubiquitin gene may be inserted into a suitable vector and ligated to a sequence encoding the HCV protease or a fragment thereof.
- the transcriptional regulatory region and the transcriptional initiation region which are operably linked may be such that they are not naturally associated in the wild-type organism.
- Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including HeLa cells, Chinese hamster ovary (CHO) cells, baby hamster kidney 03HK) cells, and a number of other cell lines. Suitable promoters for mammalian cells are also known in the art and include viral promoters such as that from Simian Virus 40 (SV40) (Fiers et al, Nature (1978) 273:113), Rous sarcoma virus (RSV), adenovirus (ADV), and bovine papilloma virus (BPV). Mammalian cells may also require terminator sequences and poly-A addition sequences. Enhancer sequences which increase expression may also be included, and sequences which promote amplification of the gene may also be desirable (for example methotrexate resistance genes). These sequences are known in the art.
- ATCC American Type Culture Collection
- CHO Chinese hamster ovary
- ADV adenovirus
- Vectors suitable for replication in mammalian cells are known in the art, and may include viral replicons, or sequences which insure integration of the appropriate sequences encoding HCV epitopes into the host genome.
- another vector used to express foreign DNA is Vaccinia virus.
- the heterologous DNA is inserted into the Vaccinia genome.
- Techniques for the insertion of foreign DNA into the vaccinia virus genome are known in the art, and may utilize, for example, homologous recombination.
- the heterologous DNA is generally inserted into a gene which is non-essential to the virus, for example, the thymidine kinase gene (tk, which also provides a selectable marker.
- tk thymidine kinase gene
- Plasmid vectors that greatly facilitate the construction of recombinant viruses have been described (see, for example, Mackett et al, J Virol (1984) 49:857; Chakrabarti et al, Mol Cell Biol (1985) 5:3403; Moss, in GENE TRANSFER VECTORS FOR MAMMALIAN CELLS (Miller and Calos, eds., Cold Spring Harbor Laboratory, NY, 1987), p. 10). Expression of the HCV polypeptide then occurs in cells or animals which are infected with the live recombinant vaccinia virus.
- BSC 1 cells may be infected with the recombinant vector and grown on microscope slides under conditions which allow expression. The cells may then be acetone-fixed, and immunofluorescence assays performed using serum which is known to contain anti-HCV antibodies to a polypeptide(s) encoded in the region of the HCV genome from which the HCV segment in the recombinant expression vector was derived.
- Other systems for expression of eukaryotic or viral genomes include insect cells and vectors suitable for use in these cells. These systems are known in the art, and include, for example, insect expression transfer vectors derived from the baculovirus Autographa californica nuclear polyhedrosis virus (AcNPV), which is a helper-independent, viral expression vector. Expression vectors derived from this system usually use the strong viral polyhedrin gene promoter to drive expression of heterologous genes. Currently the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373 (see PCT WO891046699 and U.S. Ser. No. 7/456,637). Many other vectors known to those of skill in the art have also been designed for improved expression.
- AdNPV baculovirus Autographa californica nuclear polyhedrosis virus
- pVL985 which alters the polyhedrin start codon from ATG to ATT, and introduces a BamHI cloning site 32 bp downstream from the ATT; See Luckow and Summers, Virol (1989) 17:31).
- AcNPV transfer vectors for high level expression of nonfused foreign proteins are described in copending applications PCT WO89/046699 and U.S. Ser. No. 7/456,637.
- a unique BamHI site is located following position -8 with respect to the translation initiation codon ATG of the polyhedrin gene. There are no cleavage sites for SmaI, PstI, BglIl, Xbal or SstI.
- the plasmid also contains the polyhedrin polyadenylation signal and the ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.
- heterologous DNA can be inserted into a gene such as the polyhedrin gene by homologous recombination, or into a restriction enzyme site engineered into the desired baculovirus gene.
- the inserted sequences may be those which encode all or varying segments of the polyprotein, or other offs which encode viral polypeptides.
- the insert could encode the following numbers of amino acid segments from the polyprotein: amino acids 1-1078; amino acids 332-662; amino acids 406-662; amino acids 156-328, and amino acids 199-328.
- the signals for post-translational modifications such as signal peptide cleavage, proteolytic cleavage, and phosphorylation, appear to be recognized by insect cells.
- the signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells. Examples of the signal sequences from vertebrate cells which are effective in invertebrate cells are known in the art, for example, the human interleukin-2 signal (IL2 S ) which signals for secretion from the cell, is recognized and properly removed in insect cells.
- IL2 S human interleukin-2 signal
- Transformation may be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus and transducing a host cell with the virus, and by direct uptake of the polynucleotide.
- the transformation procedure used depends upon the host to be transformed.
- Bacterial transformation by direct uptake generally employs treatment with calcium or rubidium chloride (Cohen, Proc Nat Acad Sci USA (1972) 69:2110; T. Maniatis et al, “Molecular Cloning; A Laboratory Manual” (Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1982).
- Yeast transformation by direct uptake may be carried out using the method of Hinnen et al, Proc Nat Acad Sci USA (1978) L5:1929. Mammalian transformations by direct uptake may be conducted using the calcium phosphate precipitation methodl,of Graham and Van der Eb, Virol (1978) 52:546, or the various known modifications thereof.
- Other methods for introducing recombinant polynucleotides into cells, particularly into mammalian cells, include dextran-mediated transfection, calcium phosphate mediated transfection, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the polynucleotides into nuclei.
- Vector construction employs techniques which are known in the art. Site-specific DNA cleavage is performed by treating with suitable restriction enzymes under conditions which generally are specified by the manufacturer of these commercially available enzymes. In general, about 1 ug of plasmid or DNA sequence is cleaved by 1 unit of enzyme in about 20 pL buffer solution by incubation for 1-2 hr at 37° C. After incubation with the restriction enzyme, protein is removed by phenolchloroform extraction and the DNA recovered by precipitation with ethanol. The cleaved fragments may be separated using polyacrylamide or agarose gel electrophoresis techniques, according to the general procedures described in Meth Enzymol (1980) 65:499-560.
- Sticky-ended cleavage fragments may be blunt ended using E. coli DNA polymerase I (Klenow fragment) with the appropriate deoxynucleotide triphosphates (dNTIPs) present in the mixture. Treatment with S1 nuclease may also be used, resulting in the hydrolysis of any single stranded DNA portions.
- E. coli DNA polymerase I Klenow fragment
- dNTIPs deoxynucleotide triphosphates
- Ligations are carried out under standard buffer and temperature conditions using T4 DNA ligase and ATP; sticky end ligations require less ATP and less ligase than blunt end ligations.
- the vector fragment is often treated with bacterial alkaline phosphatase (BAP) or calf intestinal alkaline phosphatase to remove the 5′-phosphate, thus preventing religation of the vector.
- BAP bacterial alkaline phosphatase
- restriction enzyme digestion of unwanted fragments can be used to prevent ligation.
- Ligation mixtures are transformed into suitable cloning hosts, such as E. coli, and successful transformants selected using the markers incorporated (e.g., antibiotic resistance), and screened for the correct construction.
- suitable cloning hosts such as E. coli
- successful transformants selected using the markers incorporated (e.g., antibiotic resistance), and screened for the correct construction.
- Synthetic oligonucleotides may be prepared using an automated oligonucleotide synthesizer as described by Warner, DNA (1984) 3:401. If desired, the synthetic strands may be labeled with 32 P by treatment with polynucleotide kinase in the presence of 32 P-ATP under standard reaction conditions.
- DNA sequences including those isolated from cDNA libraries, may be modified by known techniques, for example by site directed mutagenesis (see e.g., Zoller, Nuc Acids Res (1982) 10:6487). Briefly, the DNA to be modified is packaged into phage as a single stranded sequence, and converted to a double stranded DNA with DNA polymerase, using as a primer a synthetic oligonucleotide complementary to the portion of the DNA to be modified, where the desired modification is included in the primer sequence. The resulting double stranded DNA is transformed into a phage-supporting host bacterium. Cultures of the transformed bacteria which contain copies of each strand of the phage are plated in agar to obtain plaques.
- site directed mutagenesis see e.g., Zoller, Nuc Acids Res (1982) 10:6487. Briefly, the DNA to be modified is packaged into phage as a single stranded sequence, and converted to a double stranded DNA
- DNA libraries may be probed using the procedure of Grunstein and Hogness Proc Nat Acad Sci USA (1975) 73:3961. Briefly, in this procedure the DNA to be probed is immobilized on nitrocellulose filters, denatured, and prehybridized with a buffer containing 0-50% formamide, 0.75 M NaCl, 75 mM Na citrate, 0.02% (wt/v) each of bovine serum albumin, polyvinylpyrrolidone, and Ficoll®, 50 mM NaH 2 PO 4 (pH 6.5), 0.1% SDS, and 100 ⁇ g/mL carrier denatured DNA.
- the percentage of formamide in the buffer, as well as the time and temperature conditions of the prehybridization and subsequent hybridization steps depend on the stringency required. Oligomeric probes which require lower stringency conditions are generally used with low percentages of formamide, lower temperatures, and longer hybridization times. Probes containing more than 30 or 40 nucleotides, such as those derived from cDNA or genomic sequences generally employ higher temperatures, e.g., about 40-42° C., and a high percentage formamide, e.g., 50%. Following prehybridization, 5′- 32 P-labeled oligonucleotide probe is added to the buffer, and the filters are incubated in this mixture under hybridization conditions. After washing, the treated filters are subjected to autoradiography to show the location of the hybridized probe; DNA in corresponding locations on the original agar plates is used as the source of the desired DNA.
- ligation mixtures are transformed into E. coli strain HB101 or other suitable hosts, and successful transformants selected by antibiotic resistance or other markers. Plasmids from the transformants are then prepared according to the method of Clewell et al, Proc Nat Acad Sci USA (1969) 62:1159, usually following chloramphenicol amplification (Clewell, J Bacteriol (1972) 110:667). The DNA is isolated and analyzed, usually by restriction enzyme analysis and/or sequencing.
- Sequencing may be performed by the dideoxy method of Sanger et al, Proc Nat Acad Sci USA (1977) 24:5463, as further described by Messing et al, Nuc Acids Res (1981) 9:309, or by the method of Maxam et al, Meth Enzymol (1980) 65:499. Problems with band compression, which are sometimes observed in GC-rich regions, were overcome by use of T-deazoguanosine according to Barr et al, Biotechniques ( 1986) 4:428.
- the enzyme-linked immunosorbent assay can be used to measure either antigen or antibody concentrations. This method depends upon conjugation of an enzyme to either an antigen or an antibody, and uses the bound enzyme activity as a quantitative label.
- the known antigen is fixed to a solid phase (e.g., a microtiter dish, plastic cup, dipstick, plastic bead, or the like), incubated with test serum dilutions, washed, incubated with anti-immunoglobulin labeled with an enzyme, and washed again.
- Enzymes suitable for labeling are known in the art, and include, for example, horseradish peroxidase (HRP).
- Enzyme activity bound to the solid phase is usually measured by adding a specific substrate, and determining product formation or substrate utilization calorimetrically. The enzyme activity bound is a direct function of the amount of antibody bound.
- a known specific antibody is fixed to the solid phase, the test material containing antigen is added, after an incubation the solid phase is washed, and a second enzyme-labeled antibody is added. After washing, substrate is added, and enzyme activity is measured colorimetrically, and related to antigen concentration.
- Proteases of the invention may be assayed for activity by cleaving a substrate which provides detectable cleavage products.
- HCV protease As the HCV protease is believed to cleave itself from the genomic polyprotein, one can employ this autocatalytic activity both to assay expression of the protein and determine activity. For example, if the protease is joined to its fusion partner so that the HCV protease N-terminal cleavage signal (Arg—Arg) is included, the expression product will cleave itself into fusion partner and active HCV protease. One may then assay the products, for example by western blot, to verify that the proteins produced correspond in size to the separate fusion partner and protease proteins.
- cleavage may then be followed by spectrophotometric or fluorescent assays.
- spectrophotometric or fluorescent assays Following the method described by E. D. Matayoshi et al, Science (1990) 247:231-35, one may attach a fluorescent label to one end of the substrate and a quenching molecule to the other end: cleavage is then determined by measuring the resulting increase in fluorescence. If a suitable enzyme or antigen has been employed as the fusion partner, the quantity of protein produced may easily be determined.
- HCV protease N-terminal cleavage signal preventing self-cleavage
- a separate cleavage substrate such as a fragment of the HCV NS3 domain including the native processing signal or a synthetic analog
- the HCV polyprotein should remain in its unprocessed form, and thus render the virus noninfectious.
- the protease is useful for assaying pharmaceutical agents for control of HCV, as compounds which inhibit the protease activity sufficiently will also inhibit viral infectivity.
- Such inhibitors may take the form of organic compounds, particularly compounds which mimic the cleavage site of HCV recognized by the protease.
- HCV polyprotein Three of the putative cleavage sites of the HCV polyprotein have the following amino acid sequences: Val-Ser-Ala-Arg-Arg // Gly-Arg-Glu-lle-Leu-Leu-Gly Ala-lle-Leu-Arg-Arg // His-Val-Gly-Pro- Val-Ser-Cys-Gln-Arg // Gly-Tyr-
- protease inhibitors may be prepared which mimic the basic/basic/small neutral motif of the HCV cleavage sites, but substituting a nonlabile linkage for the peptide bond cleaved in the natural substrate.
- Suitable inhibitors include peptide trifluoromethyl ketones, peptide boronic acids, peptide ⁇ -ketoesters, peptide difluoroketo compounds, peptide aldehydes, peptide diketones, and the like.
- the peptide aldehyde N-acetyl-phenylalanyl-glycinaldehyde is a potent inhibitor of the protease papain.
- This application teaches methods for generating mixtures of peptides up to hexapeptides having all possible amino acid sequences, and further teaches assay methods for identifying those peptides capable of binding to proteases.
- protease inhibitors may be proteins, particularly antibodies and antibody derivatives.
- Recombinant expression systems may be used to generate quantities of protease sufficient for production of monoclonal antibodies (MAbs) specific for the protease.
- MAbs monoclonal antibodies
- Suitable antibodies for protease inhibition will bind to the protease in a manner reducing or eliminating the enzymatic activity, typically by obscuring the active site.
- Suitable MAbs may be used to generate derivatives, such as Fab fragments, chimeric antibodies, altered antibodies, univalent antibodies, and single domain antibodies, using methods known in the art.
- Protease inhibitors are screened using methods of the invention.
- a substrate is employed which mimics the enzyme's natural substrate, but which provides a quantifiable signal when cleaved.
- the signal is preferably detectable by colorimetric or fluorometric means: however, other methods such as HPLC or silica gel chromatography, GC-MS, nuclear magnetic resonance, and the like may also be useful.
- a candidate protease inhibitor is added to the reaction mixture at a range of concentrations.
- the assay conditions ideally should resemble the conditions under which the protease is to be inhibited in vivo, i.e., under physiologic pH, temperature, ionic strength, etc.
- Suitable inhibitors will exhibit strong protease inhibition at concentrations which do not raise toxic side effects in the subject.
- Inhibitors which compete for binding to the protease active site may require concentrations equal to or greater than the substrate concentration, while inhibitors capable of binding irreversibly to the protease active site may be added in concentrations on the order of the enzyme concentration.
- an inactive protease mutein is employed rather than an active enzyme. It has been found that replacing a critical residue within the active site of a protease (e.g., replacing the active site Ser of a serine protease) does not significantly alter the structure of the enzyme, and thus preserves the binding specificity. The altered enzyme still recognizes and binds to its proper substrate, but fails to effect cleavage. Thus, in one method of the invention an inactivated HCV protease is immobilized, and a mixture of candidate inhibitors added inhibitors that closely mimic the enzyme's preferred recognition sequence will compete more successfully for binding than other candidate inhibitors.
- HCV protease may be prepared substituting Ala for Ser 221 (FIG. 1), providing an enzyme capable of binding the HCV protease substrate, but incapable of cleaving it.
- the resulting protease mutein is then bound to a solid support, for example Sephadex® beads, and packed into a column.
- a mixture of candidate protease inhibitors in solution is then passed through the column and fractions collected. The last fractions to elute will contain the strongest-binding compounds, and provide the preferred protease inhibitor candidates.
- Protease inhibitors may be administered by a variety of methods, such as intravenously, orally, intramuscularly, intraperitoneally, bronchially, intranasally, and so forth.
- the preferred route of administration will depend upon the nature of the inhibitor.
- Inhibitors prepared as organic compounds may often be administered orally (which is generally preferred) if well absorbed.
- Protein-based inhibitors (such as most antibody derivatives) must generally be administered by parenteral routes.
- a genomic library of HCV CDNA was prepared as described in PCT WO89/046699 and U.S. Ser. No. 7/456,637. This library, ATCC accession no. 40394, has been deposited as set forth below.
- the SOD/5-1-1 expression vector was transformed into E. coli D1210 cells. These cells, named Cf1/5-1-1 in E. coli, were deposited as set forth below and have an ATCC accession no. of 67967.
- Plasmid containing the insert was restricted with EcoRI.
- the HCV CDNA insert in clone 5-1-1 was excised with EcoRI, and ligated into this EcoRI linearized plasmid DNA.
- the DNA mixture was used to transform E. coli strain D1210 (Sadler et al, Gene ( 1980) 8:279). Recombinants with the 5-1-1 cDNA in the correct orientation for expressing the ORF shown in FIG. 1 were identified by restriction mapping and nucleotide sequencing.
- pcf1AB Three separate expression vectors, pcf1AB, pcf1CD, and pcf1EF were created by ligating three new linkers, AB, CD, and EF to a BamHI-EcoRI fragment derived by digesting to completion the vector pSODCF1 with EcoRI and BamHI, followed by treatment with alkaline phosphatase.
- the linkers were created from six oligomers, A, B, C, D, E, and F. Each oligomer was phosphorylated by treatment with kinase in the presence of ATP prior to annealing to its complementary oligomer.
- sequences of the synthetic linkers were the following: Name DNA Sequence (5′ to 3′) A GATC CTG AAT TCC TGA TAA B GAC TTA AGG ACT ATT TTA A C GATC CGA ATT CTG TGA TAA D GCT TAA GAC ACT ATT TTA A E GATC CTG GAA TTC TGA TAA F GAC CTT AAG ACT ATT TTA A
- Each of the three linkers destroys the original EcoRI site, and creates a new EcoRI site within the linker, but within a different reading frame.
- the HCV cDNA EcoRI fragments isolated from the clones, when inserted into the expression vector, were in three different reading frames.
- HCV cDNA fragments in the designated ⁇ gt11 clones were excised by digestion with EcoRI; each fragment was inserted into pef1AB, pcf1CD, and pcf1EF. These expression constructs were then transformed into D1210 E. coli cells, the transformants cloned, and polypeptides expressed as described in part B below.
- Each filter then was placed in an individual 100 mm Petri dish containing 10 mL of 50 mM Tris HCl, pH 7.5, 150 mM NaCl, 5 mM MgCl 2 , 3% (w/v) BSA, 40 ⁇ g/mL lysozyme, and 0.1 ⁇ g/mL DNase.
- the plates were agitated gently for at least 8 hours at room temperature.
- the filters were rinsed in TBST (50 mM Tris HCl, pH 8.0, 150 mM NaCl, 0.005% Tween® 20). After incubation, the cell residues were rinsed and incubated for one hour in TBS (TBST without Tween®) containing 10% sheep serum.
- the filters were then incubated with pretreated sera in TBS from individuals with NANBH, which-included 3 chimpanzees; 8 patients with chronic NANBH whose sera were positive with respect to antibodies to HCV C100-3 polypeptide (also called C100); 8 patients with chronic NANBH whose sera were negative for anti-C100 antibodies; a convalescent patient whose serum was negative for anti-C100 antibodies; and 6 patients with community-acquired NANBH, including one whose sera was strongly positive with respect to anti-C100 antibodies, and one whose sera was marginally positive with respect to anti-C100 antibodies.
- the sera, diluted in TBS was pretreated by preabsorption with hSOD for at least 30 minutes at 37° C.
- the filters were washed twice for 30 min with TBST.
- the expressed proteins which bound antibodies in the sera were labeled by incubation for 2 hours with 125 I-labeled sheep anti-human antibody. After washing, the filters were washed twice for 30 min with TBST, dried, and autoradiographed.
- FIG. 8 The sequence of the HCV CDNA in clone C33c is shown in FIG. 8, which also shows the amino acids encoded therein.
- Clone C31 is shown in FIG. 6, which also shows the amino acids encoded therein.
- a C200 cassette was constructed by ligating together a 718 bp fragment obtained by digestion of clone C33c DNA with EcoRI and Hinfl, a 179 bp fragment obtained by digestion of clone C31 DNA with HinfI and BglI, and a 377 bp fragment obtained by digesting clone C35 DNA with BglI and EcoRI. The construct of ligated fragments were inserted into the EcoRI site of pBR322, yielding the plasmid pBR322-C200.
- Clones 7f and C20c were digested with EcoRI and SfaNI to form 400 bp and 260 bp fragments, respectively. The fragments were then cloned into the EcoRI site of pBR322 to form the vector C7f+C20c, and transformed into HB101 cells.
- Clone 8h was isolated using a probe based on the sequence of nucleotides in clone 33c. The nucleotide sequence of the probe was
- Clones C26d and C33c were transformed into the methylation minus E. coli s train GM48.
- Clone C26d was digested with EcoRII and DdeI to provide a 100 bp fragment.
- Clone C33c was digested with EcoRII and EcoRI to provide a 700 bp fragment.
- Clone C8h was digested with EcoRI and DdeI to provide a 208 bp fragment These three fragments were then ligated into the EcoRI site of pBR322, and transformed into E. coli HB101, to provide the vector C300.
- a 600 bp fragment was obtained from C7f+C20c by digestion with EcoRI and Nael, and ligated to a 945 bp NaeIEcoRI fragment from C300, and the construct inserted into the EcoRI site of pGEM4Z (commercially available from Promega) to form the vector C7fC20cC300.
- C7fC20cC300 was digested with NdeI and EcoRI to provide a 892 bp fragment, which was ligated with a 1160 bp fragment obtained by digesting C200 with NdeI and EcoRI.
- the resulting construct was inserted into the EcoRI site of pBR322 to provide the vector C7fC20cC300C200. Construction of this vector is illustrated schematically in FIG. 9.
- This vector contains a full-length HCV protease coding sequence fused to a functional hSOD leader.
- the vector C7fC20cC300C200 was cleaved with EcoRI to provide a 2000 bp fragment, which was then ligated into the EcoRI site of plasmid cf1CD (Example 2A).
- the resulting vector encodes amino acids 1-151 of hSOD, and amino acids 946-1630 of HCV (numbered from the beginning of the polyprotein, corresponding to amino acids 1-686 in FIG. 1).
- the vector was labeled cf1SODp600 (sometimes referred to as P600), and was transformed into E. coli D1210 cells. These cells, ATCC accession no. 68275, were deposited as set forth below.
- a truncated SOD-protease fusion polynucleotide was prepared by excising a 600 bp EcoRI/Nael fragment from C7f+C20c, blunting the fragment with Klenow fragment, ligating the blunted fragment into the Klenow-blunted EcoRI site of cf1EF (Example 2A).
- This polynucleotide encodes a fusion protein having amino acids 1-151 of hSOD, and amino acids 1-199 of HCV protease.
- a longer truncated SOD-protease fusion polynucleotide was prepared by excising an 892 bp EcoRI/NdeI fragment from C7fC20cC300, blunting the fragment with Klenow fragment, ligating the blunted fragment into the Klenow-blunted EcoRI site of cf1EF.
- This polynucleotide encodes a fusion protein having amino acids 1-151 of hSOD, and amino acids 1-299 of HCV protease.
- a longer truncated SOD-protease fusion polynucleotide was prepared by excising a 1550 bp EcoRI/EcoRI fragment from C7fC20cC300, and ligating the fragment into the EcoRI site of cf1CD to form P500.
- This polynucleotide encodes a fusion protein having amino acids 1-151 of hSOD, and amino acids 946-1457 of HCV protease (amino acids 1-513 in FIG. 1).
- This vector contains a full-length HCV protease coding sequence fused to the FLAG sequence, Hopp et al. (1988) Biotechnology 6: 1204-1210. PCR was used to produce a HCV protease gene with special restriction ends for cloning ease. Plasmid p500 was digested with EcoRI and NdeI to yield a 900 bp fragment. This fragment and two primers were used in a polymerase chain reaction to introduce a unique BglIl site at amino acid 1009 and a stop codon with a SalI site at amino acid 1262 of the HCV-1, as shown in FIG. 17 of WO 90/11089, published Oct. 4, 1990. The sequence of the primers is as follows: 5′ CCC GAG CAA GAT CTC CCG GCC C 3′ and 5′ CCC CGC TGC ATA AGC AGT CGA CTT GGA 3′
- the duplex encodes the FLAG sequence, and initiator methionine, and a 5′ Ncol restriction site.
- the resulting NcoI/SalI fragment was ligated into a derivative of pCF1.
- This construct is then transformed into E. coli D1210 cells and expression of the protease is induced by the addition of IPTG.
- the FLAG sequence was fused to the HCV protease to facilitate purification.
- a calcium dependent monoclonal antibody which binds to the FLAG encoded peptide, is used to purify the fusion protein without harsh eluting conditions.
- E. coli D1210 cells were transformed with cf1SODp600 and grown in Luria broth containing 100 ⁇ g/mL ampicillin to an OD of 0.3-0.5. IPTG was then added to a concentration of 2 mM, and the cells cultured to a final OD of 0.9 to 1.3. The cells were then lysed, and the lysate analyzed by Western blot using anti-HCV sera, as described in U.S. Ser. No. 7/456,637.
- E. coli D1210 cells were transformed with P500 and grown in Luria broth containing 100 ⁇ g/mL ampicillin to an OD of 0.3-0.5. IPTG was then added to a concentration of 2 mM, and the cells cultured to a final OD of 0.8 to 1.0. The cells were then lysed, and the lysate analyzed as described above.
- the P190 expression product appeared only as the full (encoded) length product without cleavage, forming a band at about 40 kDa, which corresponds to the theoretical molecular weight for the uncleaved product. This may indicate that the minimum essential sequence for HCV protease extends to the region between amino acids 199 and 299.
- HCV protease and fragments expressed in Example 5 may be purified as follows:
- the bacterial cells in which the polypeptide was expressed are subjected to osmotic shock and mechanical disruption, the insoluble fraction containing the protease is isolated and subjected to differential extraction with an alkaline-NaCl solution, and the polypeptide in the extract purified by chromatography on columns of S-Sepharose® and Q-Sepharose®.
- the crude extract resulting from osmotic shock and mechanical disruption is prepared by suspending 1 g of the packed cells in 10 mL of a solution containing 0.02 M Tris HCl, pH 7.5, 10 mM EDTA, 20% sucrose, and incubating for 10 minutes on ice. The cells are then pelleted by centrifugation at 4,000 ⁇ g for 15 min at 4° G. After the supernatant is removed, the cell pellets are resuspended in 10 mL of Buffer A1 (0.01 M Tris HCl, pH 7.5, 1 mM EDTA, 14 mM ⁇ -mercaptoethanol—“ ⁇ ME”), and incubated on ice for 10 minutes.
- Buffer A1 (0.01 M Tris HCl, pH 7.5, 1 mM EDTA, 14 mM ⁇ -mercaptoethanol—“ ⁇ ME”)
- the cells are again pelleted at 4,000 ⁇ g for 15 minutes at 4° G.
- the cell pellets are resuspended in Buffer Al, incubated on ice for 10 minutes, and again centrifuged at 4,000 ⁇ g for 15 minutes at 4° G.
- the clear supernatant (periplasmic fraction II) is removed, and the cell pellet resuspended in 5 mL of Buffer T2 (0.02 M Tris HCl, pH 7.5, 14 mM ⁇ ME, 1 mM EDTA, 1 mM PMSF).
- the suspension (5 mL) and 7.5 mL of Dyno-mrll lead-free acid washed glass beads (0.10-0.15 mm diameter) (available from Glen-Mills, Inc.) are placed in a Falcon tube and vortexed at top speed for two minutes, followed by cooling for at least 2 min on ice. The vortexing-cooling procedure is repeated another four times. After vortexing, the slurry is filtered through a sintered glass funnel using low suction, the glass beads washed twice with Buffer A2, and the filtrate and washes combined.
- Dyno-mrll lead-free acid washed glass beads (0.10-0.15 mm diameter) (available from Glen-Mills, Inc.) are placed in a Falcon tube and vortexed at top speed for two minutes, followed by cooling for at least 2 min on ice. The vortexing-cooling procedure is repeated another four times. After vortexing, the slurry is filtered through a sintered glass funnel using low suction, the glass beads was
- the insoluble fraction of the crude extract is collected by centrifugation at 20,000 ⁇ g for 15 min at 4° C., washed twice with 10 mL Buffer A2, and resuspended in 5 mL of MILLI-Q water.
- a fraction containing the HCV protease is isolated from the insoluble material by adding to the suspension NaOH (2 M) and NaCl (2 M) to yield a fmal concentation of 20 mM each, vortexing the mixture for 1 minute, centrifuging it 20,000 ⁇ g for 20 min at 4° C., and retaining the supernatant.
- the partially purified protease is then purified by SDS-PAGE.
- the protease may be identified by western blot, and the band excised from the gel.
- the protease is then eluted from the band, and analyzed to confmn its amino acid sequence.
- N-terminal sequences may be analyzed using an automated amino acid sequencer, while C-terminal sequences may be analyzed by automated amino acid sequencing of a series of tryptic fragments.
- (A) P650 SOD/Protease Fusion
- This vector contains HCV sequence, which includes the wild-type full-length HCV protease coding sequence, fused at the 5′ end to a SOD coding sequence.
- Two fragments a 441 bp EcoRIVBglII fragment from clone 1 lb and a 1471 bp BglII/EcoRI fragment from expression vector P500, were used to reconstruct a wild-type, full-length HCV protease coding sequence. These two fragments were ligated together with an EcoRI digested pS356 vector to produce an expression cassette.
- the expression cassette encodes the ADH2/GAPDH hybrid yeast promoter, human SOD, the HCV protease, and a GAPDH transcription terminator.
- the resulting vector was digested with BamHI and a 4052 bp fragment was isolated. This fragment was ligated to the BamHI digested pAB24 vector to produce p650.
- p650 expresses a polyprotein containing, from its amino terminal end, amino acids 1-154 of hSOD, an oligopeptide —Asn—Leu—Gly—Ile—Arg—, and amino acids 819 to 1458 of HCV-1, as shown in FIG. 17 of WO 90/11089, published Oct. 4, 1990.
- Clone 11b was isolated from the genomic library of HCV cDNA, ATCC accession no. 40394, as described above in Example 3A, using a hybridization probe having the following sequence:
- the vector pS3EF which is a pBR322 derivative, contains the ADH2/GAPDH hybrid yeast promoter upstream of the human superoxide dimutase gene, an adaptor, and a downstream yeast effective transcription terminator.
- a similar expression vector containing these control elements and the superoxide dismutase gene is described in Cousens et al. (1987) Gene 61: 265, and in copending application EPO 196,056, published Oct. 1, 1986.
- pS3EF differs from that in Cousens et al. in that the heterologous proinsulin gene and the immunoglobulin hinge are deleted, and Gln 154 of SOD is followed by an
- adaptor sequence which contains an EcoRI site.
- the sequence of the adaptor is: 5′ AAT TTG GGA ATT CCA TAA TTA ATT AAG 3′ 3′ AC CCT TAA GGT ATT AAT TAA TTC AGCT 5′
- the EcoRI site facilitates the insertion of heterologous sequences.
- a SOD fusion is expressed which contains an oligopeptide that links SOD to the heterologous sequences.
- pS3EF is exactly the same as pS356 except that pS356 contains a different adaptor.
- the sequence of the adaptor is shown below: 5′ AAT TTG GGA ATT CCA TAA TGA G 3′ 3′ AC CCT TAA GGT ATT ACT CAG CT 5′
- Plasmid pAB24 is a yeast shuttle vector, which contains pBR322 sequences, the complete 2p sequence for DNA replication in yeast (Broach (1981) in: Molecular Biologv of the Yeast Saccharomyces, Vol. 1, p. 445, Cold spring Harbor Press.) and the yeast LEU2d gene derived from plasmid pC1/1, described in EPO Pub. No. 116 201. Plasmid pAB24 was constructed by digesting YEp24 with EcoRI and re-ligating the vector to remove the partial 2 micron sequences.
- the resulting plasmid, YEp24deltaRI was linearized with Clal and ligated with the complete 2 micron plasmid which had been linearized with ClaI.
- the resulting plasmid, pCBou was then digested with Xbal, and the 8605 bp vector fragment was gel isolated. This isolated XbaI fragment was ligated with a 4460 bp XbaI fragment containing the LEU 2d gene isolated from pC1/1; the orientation of LEU2d gene is in the same direction as the URA3 gene.
- S. cerevisae, 2150-2-3 (pAB24-GAP-env2), accession no. 20827, is deposited with the American Type Culture Collection as set forth below.
- the plasmid pAB24-GAP-env2 can be recovered from the yeast cells by known techniques.
- the GAP-env2 expression cassette can be removed by digesting pAB24GAPenv2 with BamHI.
- pAB24 is recovered by religating the vector without the BamnHI insert.
- p650 was transformed in S. cerevisae strain JSC310, Mata, leu2, ura3-52, prbl-1122, pep4-3, prcl-407, cirl: DM15 (g418 resistance).
- the transformation is as described by Hinnen et al. (1978) Proc Natl Acad Sci USA 75: 1929.
- the transformed cells were selected on ura- plates with 8% glucose.
- the plates were incubated at 30° C. for 45 days.
- the tranformants were further selected on leu- plates with 8% glucose putatively for high numbers of the p650 plasmid.
- Colonies from the leu- plates were inoculated into leu- medium with 3% glucose. These cultures were shaken at 30° C. for 2 days and then diluted 1/20 into YEPD medium with 2% glucose and shaken for 2 more days at 30° C.
- S. cerevisae JSC310 contains DM15 DNA, described in EPO Pub. No. 340 986, published Nov. 8, 1989. This DM15 DNA enhances ADH2 regulated expression of heterologous proteins.
- pDM15 accession no. 40453, is deposited with the American Type Culture Collection as set forth below.
- Mature HCV protease is prepared by cleaving vector C7fC20cC300C200 with EcoRI to obtain a 2 Kb coding sequence, and inserting the sequence with the appropriate linkers into a ubiquitin expression vector, such as that described in WO 88/02406, published Apr. 7, 1988, or U.S. Ser. No. 7/390,599 filed Aug. 7, 1989, incorporated herein by reference.
- Mature HCV protease is recovered upon expression of the vector in suitable hosts, particularly yeast. Specifically, the yeast expression protocol described in Example 8 is used to express a ubiquitin/HCV protease vector.
- YFK-1 5′ AAT TCG TAA ATC CTG TGT GCT AAT TGA GGT GCA TTG GTC TGC AAA TCG AGT TGC TAG GCA ATA AAC ACA TT 3′ YFK-2: 5′ TAT TGC CTA GCA ACT CGA TTT GCA GAC CAA TGC ACC TCA ATT AGC ACA CAG GAT TTA CG 3′ YFK-3: 5′ TGG ATT AAT TTT AAT CGT TCG TTG AGC GAT TAG CAG AGA ACT GAC CAG AAC ATG TCT GAG CT 3′ YFK-4: 5′ CAG ACA TGT TCT GGT CAG TTC TCT GCT AAT CGC TCA ACG AAC GAT TAA AAT TAA TCC AAA TGT GTT 3′.
- the new pGEM®-3Z/Yellow Fever leader vector was digested with BamHI and blunted with Klenow.
- a clone p6000 was constructed from sequences available from the genomic library of HCV cDNA, ATCC accession no. 40394.
- the HCV encoding DNA sequence of p6000 is identical to nucleotide ⁇ 275 to nucleotide 6372 of FIG. 17 of WO 90/11089, published Oct. 4, 1990.
- p6000 was digested with PvuII, and from the digest, a 2,864 bp fragment was isolated. This 2,864 bp fragment was ligated to the prepared pGEM®-3Z/Yellow Fever leader vector fragment, described above.
- the pGEM®-3Z7Yellow Fever leader/PvulI vector was linearized with XbaI and transcribed using the materials and protocols from Promega's Riboprobe® Gemini II Core system.
- RNA produced by the above protocol was translated using Promega's rabbit reticulocyte lysate, minus methionine, canine pancreatic microsomal membranes, as well as, other necessary materials and instructions from Promega.
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Genetics & Genomics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Engineering & Computer Science (AREA)
- Molecular Biology (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Engineering & Computer Science (AREA)
- Virology (AREA)
- Biotechnology (AREA)
- Biomedical Technology (AREA)
- Microbiology (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Enzymes And Modification Thereof (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Peptides Or Proteins (AREA)
- Immobilizing And Processing Of Enzymes And Microorganisms (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
- Polysaccharides And Polysaccharide Derivatives (AREA)
Abstract
The protease necessary for polyprotein processing in Hepatitis C virus is identified, cloned, and expressed. Proteases, truncated protease, and altered proteases are disclosed which are useful for cleavage of specific polypeptides, and for assay and design of antiviral agents specific for HCV.
Description
- This application is a continuation-in-part application of U.S. Ser. No. 07/505,433, filed on Apr. 4, 1990.
- This invention relates to the molecular biology and virology of the hepatitis C virus (HCV). More specifically, this invention relates to a novel protease produced by HCV, methods of expression, recombinant protease, protease mutants, and inhibitors of HCV protease.
- Non-A, Non-B hepatitis (NANBH) is a transmissible disease (or family of diseases) that is believed to be virally induced, and is distinguishable from other forms of virus-associated liver disease, such as those caused by hepatitis A virus (HAV), hepatitis B virus (HBV), delta hepatitis virus (HDV), cytomegalovirus (CMV) or Epstein-Barr virus (EBV). Epidemiologic evidence suggests that there may be three types of NANBH: the water-borne epidemic type; the blood or needle associated type; and the sporadically occurring (community acquired) type. However, the number of causative agents is unknown. Recently, however, a new viral species, hepatitis C virus (HCV) has been identified as the primary (if not only) cause of blood-associated NANBH (BB-NANBH). See for example, PCT WO89/046699; U.S. patent application Ser. No. 7/456,637, filed Dec. 21, 1989; and U.S. patent application Ser. No. 7/456,637, filed Dec. 21, 1989, incorporated herein by reference. Hepatitis C appears to be the major form of transfusion-associated hepatitis in a number of countries, including the United States and Japan. There is also evidence implicating HCV in induction of hepatocellular carcinoma. Thus, a need exists for an effective method for treating HCV infection: currently, there is none.
- Many viruses, including adenoviruses, baculoviruses, comoviruses, pico-maviruses, retroviruses, and togaviruses, rely on specific, virally-encoded proteases for processing polypeptides from their initial translated form into mature, active proteins. In the case of picornaviruses, all of the viral proteins are believed to arise from cleavage of a single polyprotein (B.D. Korant,CRC Crit Rev Biotech (1988) 8:149-57).
- S. Pichuantes et al, in “Viral Proteinases As Targets For Chemotherapy” (Cold Spring Harbor Laboratory Press, 1989) pp. 215-22, disclosed expression of a viral protease found in HIV-1. The HIV protease was obtained in the form of a fusion protein, by fusing DNA encoding an HIV protease precursor to DNA encoding human superoxide dismutase (hSOD), and expressing the product inE. coli. Transformed cells expressed products of 36 and 10 kDa (corresponding to the hSOD-protease fusion protein and the protease alone), suggesting that the protease was expressed in a form capable of autocatalytic proteolysis.
- T. J. McQuade et al,Science (1990) 247:454-56 disclosed preparation of a peptide mimic capable of specifically inhibiting the HIV-1 protease. In HIV, the protease is believed responsible for cleavage of the initial p55 gag precursor transcript into the core structural proteins (pl7, p24, p8, and p7). Adding 1 μM inhibitor to HIV-infected peripheral blood lymphocytes in culture reduced the concentration of processed HIV p24 by about 70%. Viral maturation and levels of infectious virus were reduced by the protease inhibitor.
- We have now invented recombinant HCV protease, HCV protease fusion proteins, truncated and altered HCV proteases, cloning and expression vectors therefore, and methods for identifying antiviral agents effective for treating HCV.
- FIG. 1 shows the sequence of HCV protease.
- FIG. 2 shows the polynucleotide sequence and deduced amino acid sequence of the clone C20c.
- FIG. 3 shows the polynucleotide sequence and deduced amino acid sequence of the clone C26d.
- FIG. 4 shows the polynucleotide sequence and deduced amino acid sequence of the clone C8h.
- FIG. 5 shows the polynucleotide sequence and deduced amino acid sequence of the clone C7f.
- FIG. 6 shows the polynucleotide sequence and deduced amino acid sequence of the
clone C3 1. - FIG. 7 shows the polynucleotide sequence and deduced amino acid sequence of the clone C35.
- FIG. 8 shows the polynucleotide sequence and deduced amino acid sequence of the clone C33c.
- FIG. 9 schematically illustrates assembly of the vector C7fC20cC300C200.
- FIG. 10 shows the sequence of vector cf1SODp600.
- A. Definitions
- The terms “Hepatitis C Virus” and “HCV” refer to the viral species that is the major etiological agent of BB-NANBH, the prototype isolate of which is identified in PCT WO89/046699; EPO publication 318,216; U.S. Ser. No. 7/355,008, filed May 18, 1989; and U.S. Ser. No. 7/456,637, the disclosures of which are incorporated herein by reference. “HCV” as used herein includes the pathogenic strains capable of causing hepatitis C, and attenuated strains or defective interfering particles derived therefrom. The HCV genome is comprised of RNA. It is known that RNA-containing viruses have relatively high rates of spontaneous mutation, reportedly on the order of 10−3 to 10−4 per incorporated nucleotide (Fields & Knipe, “Fundamental Virology” (1986, Raven Press, N.Y.)). As heterogeneity and fluidity of genotype are inherent characteristics of RNA viruses, there will be multiple strains/isolates, which may be virulent or avirulent, within the HCV species.
- Information on several different strains/isolates of HCV is disclosed herein, particularly strain or isolate CDCIHCVI (also called HCV1). Information from one strain or isolate, such as a partial genomic sequence, is sufficient to allow those skilled in the art using standard techniques to isolate new strains/isolates and to identify whether such new strains/isolates are HCV. For example, several different strains/isolates are described below. These strains, which were obtained from a number of human sera (and from different geographical areas), were isolated utilizing the information from the genomic sequence of HCV1.
- The information provided herein suggests that HCV may be distantly related to the flaviviridae. The Flavivirus family contains a large number of viruses which are small, enveloped pathogens of man. The morphology and composition of Flavivirus particles are known, and are discussed in M. A. Brinton, in “The Viruses: The Togaviridae And Flaviviridae” (Series eds. Fraenkel-Conrat and Wagner, vol. eds. Schlesinger and Schlesinger, Plenum Press, 1986), pp. 327-374. Generally, with respect to morphology, Flaviviruses contain a central nucleocapsid surrounded by a lipid bilayer. Virions are spherical and have a diameter of about 40-50 nm. Their cores are about 25-30 nm in diameter. Along the outer surface of the virion envelope are projections measuring about 5-10 nm in length with terminal knobs about 2 nm in diameter. Typical examples of the family include Yellow Fever virus, West Nile virus, and Dengue Fever virus. They possess positive-stranded RNA genomes (about 11,000 nucleotides) that are slightly larger than that of HCV and encode a polyprotein precursor of about 3500 amino acids. Individual viral proteins are cleaved from this precursor polypeptide.
- The genome of HCV appears to be single-stranded RNA containing about 10,000 nucleotides. The genome is positive-stranded, and possesses a continuous translational open reading frame (ORF) that encodes a polyprotein of about 3,000 amino acids. In the ORF, the structural proteins appear to be encoded in approximately the first quarter of the N-terminal region, with the majority of the polyprotein attributed to non-structural proteins. When compared with all known viral sequences, small but significant co-linear homologies are observed with the non-structural proteins of the Flavivirus family, and with the pestiviruses (which are now also considered to be part of the Flavivirus family).
- A schematic alignment of possible regions of a flaviviral polyprotein (using Yellow Fever Virus as an example), and of a putative polyprotein encoded in the major ORF of the HCV genome, is shown in FIG. 1. Possible domains of the HCV polyprotein are indicated in the figure. The Yellow Fever Virus polyprotein contains, from the amino terminus to the carboxy terminus, the nucleocapsid protein (C), the matrix protein (M), the envelope protein (E), and the
non-structural proteins 1, 2 (a+b), 3, 4 (a+b), and 5 (NS1, NS2, NS3, NS4, and NS5). Based upon the putative amino acids encoded in the nucleotide sequence of HCV1, a small domain at the extreme N-terminus of the HCV polyprotein appears similar both in size and high content of basic residues to the nucleocapsid protein (C) found at the N-terminus of flaviviral polyproteins. Thenon-structural proteins 2,3,4, and 5 (NS2-5) of HCV and of yellow fever virus (YFV) appear to have counterparts of similar size and hydropathicity, although the amino acid sequences diverge. However, the region of HCV which would correspond to the regions of YFV polyprotein which contains the M, E, and NS1 protein not only differs in sequence, but also appears to be quite different in size and hydropathicity. Thus, while certain domains of the HCV genome may be referred to herein as, for example, NS1, or NS2, it should be understood that these designations are for convenience of reference only; there may be considerable differences between the HCV family and flaviviruses that have yet to be appreciated. - Due to the evolutionary relationship of the strains or isolates of HCV, putative HCV strains and isolates are identifiable by their homology at the polypeptide level. With respect to the isolates disclosed herein, new ,HCV strains or isolates are expected to be at least about 40% homologous, some more than about 70% homologous, and some even more than about 80% homologous: some may be more than about 90% homologous at the polypeptide level. The tehniques for determining amino acid sequence homology are known in the art. For example, the amino acid sequence may be determined directly and compared to the sequences provided herein. Altematively the nucleotide sequence of the genomic material of the putative HCV may be determined (usually via a cDNA intermediate), the amino acid sequence encoded therein can be determined, and the corresponding regions compared.
- The term “HCV protease” refers to an enzyme derived from HCV which exhibits proteolytic activity, specifically the polypeptide encoded in the NS3 domain of the HCV genome. At least one strain of HCV contains a protease believed to be substantially encoded by or within the following sequence:
Arg Arg Gly Arg Glu Ile Leu Leu Gly Pro 10 Ala Asp Gly Met Val Ser Lys Gly Trp Arg 20 Leu Leu Ala Pro Ile Thr Ala Tyr Ala Gln 30 Gln Thr Arg Gly Leu Leu Gly Cys Ile lle 40 Thr Set Leu Thr Gly Arg Asp Lys Asn Gln 50 Val Glu Gly Glu Val Gln Ile Val Ser Thr 60 Ala Ala Gln Thr Phe Leu Ala Thr CysI le 70 Asn Gly Val Cys Trp Thr Val Tyr His Gly 80 Ala Gly Thr Arg Thr Ile Ala Ser Pro Lys 90 Gly Pro Val Ile Gln Met Tyr Thr Asn Val 100 Asp Gln Asp Leu Val Gly Trp Pro Ala Ser 110 Gln Gly Tbr Arg Ser Leu Thr Pro Cys Thr 120 Cys Gly Ser Set Asp Leu Tyr Leu Val Thr 130 Arg His Ala Asp Val Ile Pro Val Arg Arg 140 Arg Gly Asp Ser Arg Gly Ser Leu Leu Ser 150 Pro Arg Pro ile Ser Tyr Leu Lys Gly Ser 160 Ser Gly Gly Pro Leu Leu Cys Pro Ala Gly 170 His Ala Val Gly Ile Phe Arg Ala Ala Val 180 Cys Thr Arg Gly Val Ala Lys Ala Val Asp 190 Phe Ile Pro Val Glu Asn Leu Glu Thr Thr 200 Met Arg . . . 202 - The above N and C termini are putative, the actual termini being defmed by expression and processing in an appropriate host of a DNA construct encoding the entire N53 domain. It is understood that this sequence may vary from strai to strain, as RNA viruses like HCV are known to exhibit a great deal of variation. Further, the actual N and C termini may vary, as the protease is cleaved from a precursor polyprotein: variations in the protease amino acid sequence can result in cleavage from the polyprotein at different points. Thus, the amino- and carboxy-termnini may differ from strain to strain of H-CV. The first amino acid shown above corresponds to
residue 60 in FIG. 1. However, the minimum sequence necessary for activity can be determined by routine methods. The sequence may be truncated at either end by treating an appropriate expression vector with an exonuclease (after cleavage at the 5′ or 3′ end of the coding sequence) to remove any desired number of base pairs. The resulting coding polynucleotide is then expressed and the sequence determined. In this manner the activity of the resulting product may be correlated with the amino acid sequence: a limited series of such experiments (removing progressively greater numbers of base pairs) determines the minimum internal sequence necessary for protease activity. We have found that the sequence may be substantially truncated, particularly at the carboxy terminus, apparently with full retention of protease activity. It is presently believed that a portion of the protein at the carboxy terminus may exhibit helicase activity. However, helicase activity is not required of the HCV proteases of the invention. The amino terminus may also be truncated to a degree without loss of protease activity. - The amino acids underlined above are believed to be the residues necessary for catalytic activity, based on sequence homology to putative flavivirus serine proteases. Table I shows the alignment of the three serine protease catalytic residues for HCV protease and the protease obtained from Yellow Fever Virus, West Nile Fever virus, Murray Valley Fever virus, and Kunjin virus. Although the other four flavivirus protease sequences exhibit higher homology with each other than with HCV, a degree of homology is still observed with HCV. This homology, however, was not sufficient for indication by currently available alignment software. The indicated amino acids are numbered His79, Asp103, and Ser161 in the sequence listed above (His139, Asp163, and Ser221 in FIG. 1).
TABLE 1 Alignment of Active Residues by Sequence Protease His Asp Ser HCV CWTVYHGAG DQDLGWPAP LKGSSGGPL Yellow Fever FHTMWHVTR KEDLVAYGG PSGTSGSPI West Nile Fever FHTLWHTTK KEDRLCYGG PTGTSGSPI Murray Valley FHTLWHTTR KEDRVTYGG PIGTSGSPI Kunjin Virus FHTLWHTTK KEDRLCYGG PTGTSGSPI - ALternatively, one can make catalytic residue assignments based on structural homology. Table 2 shows alignment of HCV with against the catalytic sites of several well-characterized serine proteases based on structural considerations: protease A fromStreptomyces griseus, α-lytic protease, bovine trypsin, chymotrypsin, and elastase (M. James et al, Can J Biochem (1978) 56:396). Again, a degree of homology is observed. The HCV residues identified are numbered His79, Asp125, and Ser161 in the sequence listed above.
TABLE 2 Alignment of Active Residues by Structure Protease His Asp Ser S. griseusA TAGHC NNDYGII GDSGGSL α-Lytic protease TAGHC GNDRAWV GDSGGSW Bovine Trypsin SAAHC NNDIMLI GDSGGPV Chymotrypsin TAAHC NNDITLL GDSGGPL Elastase TAAHC GYDIALL GDSGGPL HCV TVYHG SSDLYLV GSSGGPL - The most direct manner to verify the residues essential to the active site is to replace each residue individually with a residue of equivalent stearic size. This is easily accomplished by site-specific mutagenesis and similar methods known in the art. If replacement of a particular residue with a residue of equivalent size results in loss of activity, the essential nature of the replaced residue is confirmed.
- “HCV protease analogs” refer to polypeptides which vary from the full length protease sequence by deletion, alteration and/or addition to the amino acid sequence of the native protease. HCV protease analogs include the truncated proteases described above, as well as HCV protease muteins and fusion proteins comprising HCV protease, truncated protease, or protease muteins. Alterations to form HCV protease muteins are preferably conservative amino acid substitutions, in which an amino acid is replaced with another naturally-occurring amino acid of similar character. For example, the following substitutions are considered “conservative”:
- Gly<→>Ala; Asp<→>Glu;
- Val<→>Ile<→>Leu;
- Lys<→>Arg;
- Asn<→>Gln; and
- Phe<→>Trp<→>Tyr.
- Nonconservative changes are generally substitutions of one of the above amino acids with an amino acid from a different group (e.g., substituting Asn for Glu), or substituting Cys, Met, His, or Pro for any of the above amino acids. Substitutions involving common amino acids are conveniently performed by site specific mutagenesis of an expression vector encoding the desired protein, and subsequent expression of the altered form. One may also alter amino acids by synthetic or semi-synthetic methods. For example, one may convert cysteine or serine residues to selenocysteine by appropriate chemical treatment of the isolated protein. Alternatively, one may incorporate uncommon amino acids in standard in vitro protein synthetic methods. Typically, the total number of residues changed, deleted or added to the native sequence in the muteins will be no more than about 20, preferably no more than about 10, and most preferably no more than about 5.
- The term fusion protein generally refers to a polypeptide comprising an amino acid sequence drawn from two or more individual proteins. In the present invention, “fusion protein” is used to denote a polypeptide comprising the HCV protease, truncate, mutein or a functional portion thereof, fused to a non-HCV protein or polypeptide (“fusion partner”). Fusion proteins are most conveniently produced by expression of a fused gene, which encodes a portion of one polypeptide at the 5′ end and a portion of a different polypeptide at the 3′ end, where the different portions are joined in one reading frame which may be expressed in a suitable host. It is presently preferred (although not required) to position the HCV protease or analog at the carboxy terminus of the fusion protein, and to employ a functional enzyme fragment at the amino terminus. As the HCV protease is normally expressed within a large polyprotein, it is not expected to include cell transport signals (e.g., export or secretion signals). Suitable functional enzyme fragments are those polypeptides which exhibit a quantifiable activity when expressed fused to the HCV protease. Exemplary enzymes include, without limitation, β-galactosidase (β-gal), β-lactamase, horseradish peroxidase (HRP), glucose oxidase (GO), human superoxide dismutase (hSOD), urease, and the like. These enzymes are convenient because the amount of fusion protein produced can be quantified by means of simple colorimetric assays. Alternatively, one may employ antigenic proteins or fragments, to permit simple detection and quantification of fusion proteins using antibodies specific for the fusion partner. The presently preferred fusion partner is hSOD.
- B. General Method
- The practice of the present invention generally employs conventional techniques of molecular biology, microbiology, recombinant DNA, and immunology, which are within the skill of the art. Such techniques are explained fully in the literature. See for example J. Sambrook et al, “Molecular Cloning; A Laboratory Manual (1989); “DNA Cloning”, Vol. I and II (D. N Glover ed. 1985); “Oligo-nucleotide Synthesis” (M J. Gait ed, 1984); “Nucleic Acid Hybridization” (B. D. Hames & S. J. Higgins eds. 1984); “Transcription And Translation” (B. D. Hames & S. J. Higgins eds. 1984); “Animal Cell Culture” (R. I. Freshney ed. 1986); “Immobilized Cells And Enzymes” (IRL Press, 1986); B. Perbal, “A Practical Guide To Molecular Cloning” (1984); the series, “Methods In Enzymology” (Academic Press, Inc.); “Gene Transfer Vectors For Mammalian Cells” (J. H. Miller and M. P. Calos eds. 1987, Cold Spring Harbor Laboratory);Meth Enzymol (1987) 154 and 155 (Wu and Grossman, and Wu, eds., respectively); Mayer & Walker, eds. (1987), “Immunochemical Methods In Cell And Molecular Biology” (Academic Press, London); Scopes, “Protein Purification: Principles And Practice”, 2nd Ed (Springer-Verlag, N.Y., 1987); and “Handbook Of Experimental Immunology”, volumes I-IV (Weir and Blackwell, eds, 1986).
- Both prokaryotic and eukaryotic host cells are useful for expressing desired coding sequences when appropriate control sequences compatible with the designated host are used. Among prokaryotic hosts,E. coli is most frequently used. Expression control sequences for prokaryotes include promoters, optionally containing operator portions, and ribosome binding sites. Transfer vectors compatible with prokaryotic hosts are commonly derived from, for example, pBR322, a plasmid containing operons conferring ampicillin and tetracycline resistance, and the various pUC vectors, which also contain sequences conferring antibiotic resistance markers. These plasmids are commercially available. The markers may be used to obtain successful transformants by selection. Commonly used prokaryotic control sequences include the 4-lactamase (penicillinase) and lactose promoter systems (Chang et al, Nature (1977) 198:1056), the tryptophan (trp) promoter system (Goeddel et al, Nuc Acids Res (1980) 8:4057) and the lambda-derived PL promoter and N gene ribosome binding site (Shimatake et al, Nature (1981) 292:128) and the hybrid tac promoter (De Boer et al, Proc Nat Acad Sci USA (1983) 292:128) derived from sequences of the trp and lac Uv5 promoters. The foregoing systems are particularly compatible with E. coli; if desired, other prokaryotic hosts such as strains of Bacillus or Pseudomonas may be used, with corresponding control sequences.
- Eukaryotic hosts include without limitation yeast and mammalian cells in culture systems. Yeast expression hosts include Saccharomyces, Klebsiella, Picia, and the like.Saccharomyces cerevisiae and Saccharomyces carisbergensis and K. lactis are the most commonly used yeast hosts, and are convenient fungal hosts. Yeast-compatible vectors carry markers which permit selection of successful transformants by conferring prototrophy to auxotrophic mutants or resistance to heavy metals on wild-type strains. Yeast compatible vectors may employ the 2μ origin of replication (Broach et al, Meth Enzymol (1983) 101:307), the combination of CEN3 and
ARS 1 or other means for assuring replication, such as sequences which will result in incorporation of an appropriate fragment into the host cell genome. Control sequences for yeast vectors are known in the art and include promoters for the synthesis of glycolytic enzymes (Hess et al, J Adv Enzvme Reg (1968) 7:149; Holland et al, Biochem (1978), 17:4900), including the promoter for 3-phosphoglycerate kinase (R. Hitzeman et al, J Biol Chem (1980) 255:2073). Terminators may also be included, such as those derived from the enolase gene (Holland, J Biol Chem (1981) 256:1385). Particularly useful control systems are those which comprise the glyceraldehyde-3 phosphate dehydrogenase (GAPDH) promoter or alcohol dehydrogenase (ADH) regulatable promoter, terminators also derived from GAPDH, and if secretion is desired, a leader sequence derived from yeast a-factor (see U.S. Pat. No. 4,870,008, incorporated herein by reference). - A presently preferred expression system employs the ubiquitin leader as the fusion partner. Copending application U.S. Ser. No. 7/390,599 filed Aug. 7, 1989 disclosed vectors for high expression of yeast ubiquitin fusion proteins. Yeast ubiquitin provides a 76 amino acid polypeptide which is automatically cleaved from the fused protein upon expression. The ubiquitin amino acid sequence is as follows:
Gln Ile Phe Val Lys Thr Leu Thr Gly Lys Thr Ile Thr Leu Glu Val Glu Ser Ser Asp Thr Ile Asp Asn Val Lys Set Lys Ile Gln Asp Lys Glu Gly Ile Pro Pro Asp Gln Gln Arg Leu Ile Phe Ala Gly Lys Gln Leu Glu Asp Gly Arg Thr Leu Set Asp Tyr Asn Ile Gln Lys Glu Ser Thr Leu His Leu Val Leu Arg Leu Arg Gly Gly - See also Ozkaynak et al,Nature (1984) 312:663-66. Polynucleotides encoding the ubiquitin polypeptide may be synthesized by standard methods, for example following the technique of Barr et al, J Biol Chem (1988) 268:1671-78 using an Applied Biosystem 380A DNA synthesizer. Using appropriate linkers, the ubiquitin gene may be inserted into a suitable vector and ligated to a sequence encoding the HCV protease or a fragment thereof.
- In addition, the transcriptional regulatory region and the transcriptional initiation region which are operably linked may be such that they are not naturally associated in the wild-type organism. These systems are described in detail in EPO 120,551, published Oct. 3, 1984; EPO 116,201, published Aug. 22, 1984; and EPO 164,556, published December 18, 1985, all of which are commonly owned with the present invention, and are hereby incorporated herein by reference in full.
- Mammalian cell lines available as hosts for expression are known in the art and include many immortalized cell lines available from the American Type Culture Collection (ATCC), including HeLa cells, Chinese hamster ovary (CHO) cells, baby hamster kidney 03HK) cells, and a number of other cell lines. Suitable promoters for mammalian cells are also known in the art and include viral promoters such as that from Simian Virus 40 (SV40) (Fiers et al,Nature (1978) 273:113), Rous sarcoma virus (RSV), adenovirus (ADV), and bovine papilloma virus (BPV). Mammalian cells may also require terminator sequences and poly-A addition sequences. Enhancer sequences which increase expression may also be included, and sequences which promote amplification of the gene may also be desirable (for example methotrexate resistance genes). These sequences are known in the art.
- Vectors suitable for replication in mammalian cells are known in the art, and may include viral replicons, or sequences which insure integration of the appropriate sequences encoding HCV epitopes into the host genome. For example, another vector used to express foreign DNA is Vaccinia virus. In this case the heterologous DNA is inserted into the Vaccinia genome. Techniques for the insertion of foreign DNA into the vaccinia virus genome are known in the art, and may utilize, for example, homologous recombination. The heterologous DNA is generally inserted into a gene which is non-essential to the virus, for example, the thymidine kinase gene (tk, which also provides a selectable marker. Plasmid vectors that greatly facilitate the construction of recombinant viruses have been described (see, for example, Mackett et al,J Virol (1984) 49:857; Chakrabarti et al, Mol Cell Biol (1985) 5:3403; Moss, in GENE TRANSFER VECTORS FOR MAMMALIAN CELLS (Miller and Calos, eds., Cold Spring Harbor Laboratory, NY, 1987), p. 10). Expression of the HCV polypeptide then occurs in cells or animals which are infected with the live recombinant vaccinia virus.
- In order to detect whether or not the HCV polypeptide is expressed from the vaccinia vector,
BSC 1 cells may be infected with the recombinant vector and grown on microscope slides under conditions which allow expression. The cells may then be acetone-fixed, and immunofluorescence assays performed using serum which is known to contain anti-HCV antibodies to a polypeptide(s) encoded in the region of the HCV genome from which the HCV segment in the recombinant expression vector was derived. - Other systems for expression of eukaryotic or viral genomes include insect cells and vectors suitable for use in these cells. These systems are known in the art, and include, for example, insect expression transfer vectors derived from the baculovirusAutographa californica nuclear polyhedrosis virus (AcNPV), which is a helper-independent, viral expression vector. Expression vectors derived from this system usually use the strong viral polyhedrin gene promoter to drive expression of heterologous genes. Currently the most commonly used transfer vector for introducing foreign genes into AcNPV is pAc373 (see PCT WO891046699 and U.S. Ser. No. 7/456,637). Many other vectors known to those of skill in the art have also been designed for improved expression. These include, for example, pVL985 (which alters the polyhedrin start codon from ATG to ATT, and introduces a BamHI cloning site 32 bp downstream from the ATT; See Luckow and Summers, Virol (1989) 17:31). AcNPV transfer vectors for high level expression of nonfused foreign proteins are described in copending applications PCT WO89/046699 and U.S. Ser. No. 7/456,637. A unique BamHI site is located following position -8 with respect to the translation initiation codon ATG of the polyhedrin gene. There are no cleavage sites for SmaI, PstI, BglIl, Xbal or SstI. Good expression of nonfused foreign proteins usually requires foreign genes that ideally have a short leader sequence containing suitable translation initiation signals preceding an ATG start signal. The plasmid also contains the polyhedrin polyadenylation signal and the ampicillin-resistance (amp) gene and origin of replication for selection and propagation in E. coli.
- Methods for the introduction of heterologous DNA into the desired site in the baculovirus virus are known in the arts (See Summer and Smith, Texas Agricultural Experiment Station Bulletin No. 1555; Smith et al,Mol Cell Biol (1983) 3:215&2165; and Luckow and Summers, Virol (1989) 17:31). For example, the heterologous DNA can be inserted into a gene such as the polyhedrin gene by homologous recombination, or into a restriction enzyme site engineered into the desired baculovirus gene. The inserted sequences may be those which encode all or varying segments of the polyprotein, or other offs which encode viral polypeptides. For example, the insert could encode the following numbers of amino acid segments from the polyprotein: amino acids 1-1078; amino acids 332-662; amino acids 406-662; amino acids 156-328, and amino acids 199-328.
- The signals for post-translational modifications, such as signal peptide cleavage, proteolytic cleavage, and phosphorylation, appear to be recognized by insect cells. The signals required for secretion and nuclear accumulation also appear to be conserved between the invertebrate cells and vertebrate cells. Examples of the signal sequences from vertebrate cells which are effective in invertebrate cells are known in the art, for example, the human interleukin-2 signal (IL2S) which signals for secretion from the cell, is recognized and properly removed in insect cells.
- Transformation may be by any known method for introducing polynucleotides into a host cell, including, for example packaging the polynucleotide in a virus and transducing a host cell with the virus, and by direct uptake of the polynucleotide. The transformation procedure used depends upon the host to be transformed. Bacterial transformation by direct uptake generally employs treatment with calcium or rubidium chloride (Cohen,Proc Nat Acad Sci USA (1972) 69:2110; T. Maniatis et al, “Molecular Cloning; A Laboratory Manual” (Cold Spring Harbor Press, Cold Spring Harbor, N.Y., 1982). Yeast transformation by direct uptake may be carried out using the method of Hinnen et al, Proc Nat Acad Sci USA (1978) L5:1929. Mammalian transformations by direct uptake may be conducted using the calcium phosphate precipitation methodl,of Graham and Van der Eb, Virol (1978) 52:546, or the various known modifications thereof. Other methods for introducing recombinant polynucleotides into cells, particularly into mammalian cells, include dextran-mediated transfection, calcium phosphate mediated transfection, polybrene mediated transfection, protoplast fusion, electroporation, encapsulation of the polynucleotide(s) in liposomes, and direct microinjection of the polynucleotides into nuclei.
- Vector construction employs techniques which are known in the art. Site-specific DNA cleavage is performed by treating with suitable restriction enzymes under conditions which generally are specified by the manufacturer of these commercially available enzymes. In general, about 1 ug of plasmid or DNA sequence is cleaved by 1 unit of enzyme in about 20 pL buffer solution by incubation for 1-2 hr at 37° C. After incubation with the restriction enzyme, protein is removed by phenolchloroform extraction and the DNA recovered by precipitation with ethanol. The cleaved fragments may be separated using polyacrylamide or agarose gel electrophoresis techniques, according to the general procedures described inMeth Enzymol (1980) 65:499-560.
- Sticky-ended cleavage fragments may be blunt ended usingE. coli DNA polymerase I (Klenow fragment) with the appropriate deoxynucleotide triphosphates (dNTIPs) present in the mixture. Treatment with S1 nuclease may also be used, resulting in the hydrolysis of any single stranded DNA portions.
- Ligations are carried out under standard buffer and temperature conditions using T4 DNA ligase and ATP; sticky end ligations require less ATP and less ligase than blunt end ligations. When vector fragments are used as part of a ligation mixture, the vector fragment is often treated with bacterial alkaline phosphatase (BAP) or calf intestinal alkaline phosphatase to remove the 5′-phosphate, thus preventing religation of the vector. Alternatively, restriction enzyme digestion of unwanted fragments can be used to prevent ligation.
- Ligation mixtures are transformed into suitable cloning hosts, such asE. coli, and successful transformants selected using the markers incorporated (e.g., antibiotic resistance), and screened for the correct construction.
- Synthetic oligonucleotides may be prepared using an automated oligonucleotide synthesizer as described by Warner,DNA (1984) 3:401. If desired, the synthetic strands may be labeled with 32P by treatment with polynucleotide kinase in the presence of 32P-ATP under standard reaction conditions.
- DNA sequences, including those isolated from cDNA libraries, may be modified by known techniques, for example by site directed mutagenesis (see e.g., Zoller,Nuc Acids Res (1982) 10:6487). Briefly, the DNA to be modified is packaged into phage as a single stranded sequence, and converted to a double stranded DNA with DNA polymerase, using as a primer a synthetic oligonucleotide complementary to the portion of the DNA to be modified, where the desired modification is included in the primer sequence. The resulting double stranded DNA is transformed into a phage-supporting host bacterium. Cultures of the transformed bacteria which contain copies of each strand of the phage are plated in agar to obtain plaques. Theoretically, 50% of the new plaques contain phage having the mutated sequence, and the remaining 50% have the original sequence. Replicates of the plaques are hybridized to labeled synthetic probe at temperatures and conditions which pernit hybridization with the correct strand, but not with the unmodified sequence. The sequences which have been identified by hybridization are recovered and cloned.
- DNA libraries may be probed using the procedure of Grunstein and HognessProc Nat Acad Sci USA (1975) 73:3961. Briefly, in this procedure the DNA to be probed is immobilized on nitrocellulose filters, denatured, and prehybridized with a buffer containing 0-50% formamide, 0.75 M NaCl, 75 mM Na citrate, 0.02% (wt/v) each of bovine serum albumin, polyvinylpyrrolidone, and Ficoll®, 50 mM NaH2PO4 (pH 6.5), 0.1% SDS, and 100 μg/mL carrier denatured DNA. The percentage of formamide in the buffer, as well as the time and temperature conditions of the prehybridization and subsequent hybridization steps depend on the stringency required. Oligomeric probes which require lower stringency conditions are generally used with low percentages of formamide, lower temperatures, and longer hybridization times. Probes containing more than 30 or 40 nucleotides, such as those derived from cDNA or genomic sequences generally employ higher temperatures, e.g., about 40-42° C., and a high percentage formamide, e.g., 50%. Following prehybridization, 5′-32P-labeled oligonucleotide probe is added to the buffer, and the filters are incubated in this mixture under hybridization conditions. After washing, the treated filters are subjected to autoradiography to show the location of the hybridized probe; DNA in corresponding locations on the original agar plates is used as the source of the desired DNA.
- For routine vector constructions, ligation mixtures are transformed intoE. coli strain HB101 or other suitable hosts, and successful transformants selected by antibiotic resistance or other markers. Plasmids from the transformants are then prepared according to the method of Clewell et al, Proc Nat Acad Sci USA (1969) 62:1159, usually following chloramphenicol amplification (Clewell, J Bacteriol (1972) 110:667). The DNA is isolated and analyzed, usually by restriction enzyme analysis and/or sequencing. Sequencing may be performed by the dideoxy method of Sanger et al, Proc Nat Acad Sci USA (1977) 24:5463, as further described by Messing et al, Nuc Acids Res (1981) 9:309, or by the method of Maxam et al, Meth Enzymol (1980) 65:499. Problems with band compression, which are sometimes observed in GC-rich regions, were overcome by use of T-deazoguanosine according to Barr et al, Biotechniques (1986) 4:428.
- The enzyme-linked immunosorbent assay (ELISA) can be used to measure either antigen or antibody concentrations. This method depends upon conjugation of an enzyme to either an antigen or an antibody, and uses the bound enzyme activity as a quantitative label. To measure antibody, the known antigen is fixed to a solid phase (e.g., a microtiter dish, plastic cup, dipstick, plastic bead, or the like), incubated with test serum dilutions, washed, incubated with anti-immunoglobulin labeled with an enzyme, and washed again. Enzymes suitable for labeling are known in the art, and include, for example, horseradish peroxidase (HRP). Enzyme activity bound to the solid phase is usually measured by adding a specific substrate, and determining product formation or substrate utilization calorimetrically. The enzyme activity bound is a direct function of the amount of antibody bound.
- To measure antigen, a known specific antibody is fixed to the solid phase, the test material containing antigen is added, after an incubation the solid phase is washed, and a second enzyme-labeled antibody is added. After washing, substrate is added, and enzyme activity is measured colorimetrically, and related to antigen concentration.
- Proteases of the invention may be assayed for activity by cleaving a substrate which provides detectable cleavage products. As the HCV protease is believed to cleave itself from the genomic polyprotein, one can employ this autocatalytic activity both to assay expression of the protein and determine activity. For example, if the protease is joined to its fusion partner so that the HCV protease N-terminal cleavage signal (Arg—Arg) is included, the expression product will cleave itself into fusion partner and active HCV protease. One may then assay the products, for example by western blot, to verify that the proteins produced correspond in size to the separate fusion partner and protease proteins. It is presently preferred to employ small peptide p-nitrophenyl esters or methylcoumarins, as cleavage may then be followed by spectrophotometric or fluorescent assays. Following the method described by E. D. Matayoshi et al,Science (1990) 247:231-35, one may attach a fluorescent label to one end of the substrate and a quenching molecule to the other end: cleavage is then determined by measuring the resulting increase in fluorescence. If a suitable enzyme or antigen has been employed as the fusion partner, the quantity of protein produced may easily be determined. Alternatively, one may exclude the HCV protease N-terminal cleavage signal (preventing self-cleavage) and add a separate cleavage substrate, such as a fragment of the HCV NS3 domain including the native processing signal or a synthetic analog.
- In the absence of this protease activity, the HCV polyprotein should remain in its unprocessed form, and thus render the virus noninfectious. Thus, the protease is useful for assaying pharmaceutical agents for control of HCV, as compounds which inhibit the protease activity sufficiently will also inhibit viral infectivity. Such inhibitors may take the form of organic compounds, particularly compounds which mimic the cleavage site of HCV recognized by the protease. Three of the putative cleavage sites of the HCV polyprotein have the following amino acid sequences:
Val-Ser-Ala-Arg-Arg // Gly-Arg-Glu-lle-Leu-Leu-Gly Ala-lle-Leu-Arg-Arg // His-Val-Gly-Pro- Val-Ser-Cys-Gln-Arg // Gly-Tyr- - These sites are characterized by the presence of two basic anino acids immediately before the cleavage site, and are similar to the cleavage sites recognized by other flavivirus proteases. Thus, suitable protease inhibitors may be prepared which mimic the basic/basic/small neutral motif of the HCV cleavage sites, but substituting a nonlabile linkage for the peptide bond cleaved in the natural substrate. Suitable inhibitors include peptide trifluoromethyl ketones, peptide boronic acids, peptide α-ketoesters, peptide difluoroketo compounds, peptide aldehydes, peptide diketones, and the like. For example, the peptide aldehyde N-acetyl-phenylalanyl-glycinaldehyde is a potent inhibitor of the protease papain. One may conveniently prepare and assay large mixtures of peptides using the methods disclosed in U.S. patent application Ser. No. 7/189,318, filed May 2, 1988 (published as PCT WO89/10931), incorporated herein by reference. This application teaches methods for generating mixtures of peptides up to hexapeptides having all possible amino acid sequences, and further teaches assay methods for identifying those peptides capable of binding to proteases.
- Other protease inhibitors may be proteins, particularly antibodies and antibody derivatives. Recombinant expression systems may be used to generate quantities of protease sufficient for production of monoclonal antibodies (MAbs) specific for the protease. Suitable antibodies for protease inhibition will bind to the protease in a manner reducing or eliminating the enzymatic activity, typically by obscuring the active site. Suitable MAbs may be used to generate derivatives, such as Fab fragments, chimeric antibodies, altered antibodies, univalent antibodies, and single domain antibodies, using methods known in the art.
- Protease inhibitors are screened using methods of the invention. In general, a substrate is employed which mimics the enzyme's natural substrate, but which provides a quantifiable signal when cleaved. The signal is preferably detectable by colorimetric or fluorometric means: however, other methods such as HPLC or silica gel chromatography, GC-MS, nuclear magnetic resonance, and the like may also be useful. After optimum substrate and enzyme concentrations are determined, a candidate protease inhibitor is added to the reaction mixture at a range of concentrations. The assay conditions ideally should resemble the conditions under which the protease is to be inhibited in vivo, i.e., under physiologic pH, temperature, ionic strength, etc. Suitable inhibitors will exhibit strong protease inhibition at concentrations which do not raise toxic side effects in the subject. Inhibitors which compete for binding to the protease active site may require concentrations equal to or greater than the substrate concentration, while inhibitors capable of binding irreversibly to the protease active site may be added in concentrations on the order of the enzyme concentration.
- In a presently preferred embodiment, an inactive protease mutein is employed rather than an active enzyme. It has been found that replacing a critical residue within the active site of a protease (e.g., replacing the active site Ser of a serine protease) does not significantly alter the structure of the enzyme, and thus preserves the binding specificity. The altered enzyme still recognizes and binds to its proper substrate, but fails to effect cleavage. Thus, in one method of the invention an inactivated HCV protease is immobilized, and a mixture of candidate inhibitors added inhibitors that closely mimic the enzyme's preferred recognition sequence will compete more successfully for binding than other candidate inhibitors. The poorly-binding candidates may then be separated, and the identity of the strongly-binding inhibitors determined For example, HCV protease may be prepared substituting Ala for Ser221 (FIG. 1), providing an enzyme capable of binding the HCV protease substrate, but incapable of cleaving it. The resulting protease mutein is then bound to a solid support, for example Sephadex® beads, and packed into a column. A mixture of candidate protease inhibitors in solution is then passed through the column and fractions collected. The last fractions to elute will contain the strongest-binding compounds, and provide the preferred protease inhibitor candidates.
- Protease inhibitors may be administered by a variety of methods, such as intravenously, orally, intramuscularly, intraperitoneally, bronchially, intranasally, and so forth. The preferred route of administration will depend upon the nature of the inhibitor. Inhibitors prepared as organic compounds may often be administered orally (which is generally preferred) if well absorbed. Protein-based inhibitors (such as most antibody derivatives) must generally be administered by parenteral routes.
- The examples presented below are provided as a further guide to the practitioner of ordinary skill in the art, and are not to be construed as limiting the invention in any way.
- (Preparation of HCV CDNA)
- A genomic library of HCV CDNA was prepared as described in PCT WO89/046699 and U.S. Ser. No. 7/456,637. This library, ATCC accession no. 40394, has been deposited as set forth below.
- (Expression of the Polypeptide Encoded in Clone 5-1-1.)
- (A) The HCV polypeptide encoded within clone 5-1-1 (see Example 1) was expressed as a fusion-polypeptide with human superoxide dismutase (SOD). This was accomplished by subcloning the clone 5-1-1 CDNA insert into the expression vector pSODCFI (K.S. Steimer et al,J Virol (1986) 58:9; EPO 138,111) as follows. The SOD/5-1-1 expression vector was transformed into E. coli D1210 cells. These cells, named Cf1/5-1-1 in E. coli, were deposited as set forth below and have an ATCC accession no. of 67967.
- First, DNA isolated from pSODCF1 was treated with BamHI and EcoRI, and the following linker was ligated into the linear DNA created by the restriction enzymes:
- GAT CCT GGA ATT CTG ATA AGA CCT TAA GAC TAT TIT AA
- After cloning, the plasmid containing the insert was isolated.
- Plasmid containing the insert was restricted with EcoRI. The HCV CDNA insert in clone 5-1-1 was excised with EcoRI, and ligated into this EcoRI linearized plasmid DNA. The DNA mixture was used to transformE. coli strain D1210 (Sadler et al, Gene (1980) 8:279). Recombinants with the 5-1-1 cDNA in the correct orientation for expressing the ORF shown in FIG. 1 were identified by restriction mapping and nucleotide sequencing.
- Recombinant bacteria from one clone were induced to express the SOD-HCV5-1-1 polypeptide by growing the bacteria in the presence of IPTG.
- Three separate expression vectors, pcf1AB, pcf1CD, and pcf1EF were created by ligating three new linkers, AB, CD, and EF to a BamHI-EcoRI fragment derived by digesting to completion the vector pSODCF1 with EcoRI and BamHI, followed by treatment with alkaline phosphatase. The linkers were created from six oligomers, A, B, C, D, E, and F. Each oligomer was phosphorylated by treatment with kinase in the presence of ATP prior to annealing to its complementary oligomer. The sequences of the synthetic linkers were the following:
Name DNA Sequence (5′ to 3′) A GATC CTG AAT TCC TGA TAA B GAC TTA AGG ACT ATT TTA A C GATC CGA ATT CTG TGA TAA D GCT TAA GAC ACT ATT TTA A E GATC CTG GAA TTC TGA TAA F GAC CTT AAG ACT ATT TTA A - Each of the three linkers destroys the original EcoRI site, and creates a new EcoRI site within the linker, but within a different reading frame. Thus, the HCV cDNA EcoRI fragments isolated from the clones, when inserted into the expression vector, were in three different reading frames.
- The HCV cDNA fragments in the designated λgt11 clones were excised by digestion with EcoRI; each fragment was inserted into pef1AB, pcf1CD, and pcf1EF. These expression constructs were then transformed into D1210E. coli cells, the transformants cloned, and polypeptides expressed as described in part B below.
- (B3) Expression products of the indicated HCV cDNAs were tested for antigenicity by direct immunological screening of the colonies, using a modification of the method described in Helfman et al,Proc Nat Acad Sci USA (1983), 80:31. Briefly, the bacteria were plated onto nitrocellulose filters overlaid on ampicillin plates to give approximately 40 colonies per filter. Colonies were replica plated onto nitrocellulose filters, and the replicas were regrown overnight in the presence of 2 mM IPTG and ampicllin. The bacterial colonies were lysed by suspending the nitrocellulose filters for about 15 to 20 min in an atmosphere saturated with CHCl3 vapor. Each filter then was placed in an individual 100 mm Petri dish containing 10 mL of 50 mM Tris HCl, pH 7.5, 150 mM NaCl, 5 mM MgCl2, 3% (w/v) BSA, 40 μg/mL lysozyme, and 0.1 μg/mL DNase. The plates were agitated gently for at least 8 hours at room temperature. The filters were rinsed in TBST (50 mM Tris HCl, pH 8.0, 150 mM NaCl, 0.005% Tween® 20). After incubation, the cell residues were rinsed and incubated for one hour in TBS (TBST without Tween®) containing 10% sheep serum. The filters were then incubated with pretreated sera in TBS from individuals with NANBH, which-included 3 chimpanzees; 8 patients with chronic NANBH whose sera were positive with respect to antibodies to HCV C100-3 polypeptide (also called C100); 8 patients with chronic NANBH whose sera were negative for anti-C100 antibodies; a convalescent patient whose serum was negative for anti-C100 antibodies; and 6 patients with community-acquired NANBH, including one whose sera was strongly positive with respect to anti-C100 antibodies, and one whose sera was marginally positive with respect to anti-C100 antibodies. The sera, diluted in TBS, was pretreated by preabsorption with hSOD for at least 30 minutes at 37° C. After incubation, the filters were washed twice for 30 min with TBST. The expressed proteins which bound antibodies in the sera were labeled by incubation for 2 hours with 125I-labeled sheep anti-human antibody. After washing, the filters were washed twice for 30 min with TBST, dried, and autoradiographed.
- (Cloning of Full-Length SOD-Protease Fusion Proteins)
- (A) pBR322-C200:
- The nucleotide sequences of the HCV cDNAs used below were determined essentially as described above, except that the cDNA excised from these phages were substituted for the cDNA isolated from clone 5-1-1.
- Clone C33c was isolated using a hybridization probe having the following sequence:
- 5′ ATC AGG ACC GGG GTG AGA ACA ATT ACC ACT 3′
- The sequence of the HCV CDNA in clone C33c is shown in FIG. 8, which also shows the amino acids encoded therein.
-
Clone 35 was isolated by screening with a synthetic polynucleotide having the sequence: - 5′ AAG CCA CCG TGT GCG CTA GGG CTC AAG CCC 3′
- Approximately 1 in 50,000 clones hybridized with the probe. The polynucleotide and deduced amino acid sequences for C35 are shown in FIG. 7.
- Clone C31 is shown in FIG. 6, which also shows the amino acids encoded therein. A C200 cassette was constructed by ligating together a 718 bp fragment obtained by digestion of clone C33c DNA with EcoRI and Hinfl, a 179 bp fragment obtained by digestion of clone C31 DNA with HinfI and BglI, and a 377 bp fragment obtained by digesting clone C35 DNA with BglI and EcoRI. The construct of ligated fragments were inserted into the EcoRI site of pBR322, yielding the plasmid pBR322-C200.
- (B) C7f+C20c:
- Clone 7f was isolated using a probe having the sequence:
- 5′-AGC AGA CAA GGG GCC TCC TAG GGT GCA TAA T-3′
- The sequence of HCV cDNA in clone 7f and the amino acids encoded therein are shown in FIG. 5.
- Clone C20c is isolated using a probe having the following sequence:
- 5′-TGC ATC AAT GGG GTG TGC TGG-3′
- The sequence of HCV cDNA in clone C20c, and the amino acids encoded therein are shown in FIG. 2.
- Clones 7f and C20c were digested with EcoRI and SfaNI to form 400 bp and 260 bp fragments, respectively. The fragments were then cloned into the EcoRI site of pBR322 to form the vector C7f+C20c, and transformed into HB101 cells.
- S (C) C300:
- Clone 8h was isolated using a probe based on the sequence of nucleotides in clone 33c. The nucleotide sequence of the probe was
- 5′-AGA GAC AAC CAT GAG GTC CCC GGT GIT C-3′.
- The sequence of the HCV cDNA in clone 8h, and the amino acids encoded therein, are shown in FIG. 4.
- Clone C26d is isolated using a probe having the following sequence:
- 5′-CTG TIG TGC CCC GCG GCA GCC-3′
- The sequence and amino acid translation of clone C26d is shown in FIG. 3.
- Clones C26d and C33c (see part A above) were transformed into the methylation minusE. coli strain GM48. Clone C26d was digested with EcoRII and DdeI to provide a 100 bp fragment. Clone C33c was digested with EcoRII and EcoRI to provide a 700 bp fragment. Clone C8h was digested with EcoRI and DdeI to provide a 208 bp fragment These three fragments were then ligated into the EcoRI site of pBR322, and transformed into E. coli HB101, to provide the vector C300.
- (D) Preparation of Full Length Clones:
- A 600 bp fragment was obtained from C7f+C20c by digestion with EcoRI and Nael, and ligated to a 945 bp NaeIEcoRI fragment from C300, and the construct inserted into the EcoRI site of pGEM4Z (commercially available from Promega) to form the vector C7fC20cC300.
- C7fC20cC300 was digested with NdeI and EcoRI to provide a 892 bp fragment, which was ligated with a 1160 bp fragment obtained by digesting C200 with NdeI and EcoRI. The resulting construct was inserted into the EcoRI site of pBR322 to provide the vector C7fC20cC300C200. Construction of this vector is illustrated schematically in FIG. 9.
- (Preparation ofE. coli Expression Vectors)
- (A) cf1SODP600:
- This vector contains a full-length HCV protease coding sequence fused to a functional hSOD leader. The vector C7fC20cC300C200 was cleaved with EcoRI to provide a 2000 bp fragment, which was then ligated into the EcoRI site of plasmid cf1CD (Example 2A). The resulting vector encodes amino acids 1-151 of hSOD, and amino acids 946-1630 of HCV (numbered from the beginning of the polyprotein, corresponding to amino acids 1-686 in FIG. 1). The vector was labeled cf1SODp600 (sometimes referred to as P600), and was transformed intoE. coli D1210 cells. These cells, ATCC accession no. 68275, were deposited as set forth below.
- (B) P190:
- A truncated SOD-protease fusion polynucleotide was prepared by excising a 600 bp EcoRI/Nael fragment from C7f+C20c, blunting the fragment with Klenow fragment, ligating the blunted fragment into the Klenow-blunted EcoRI site of cf1EF (Example 2A). This polynucleotide encodes a fusion protein having amino acids 1-151 of hSOD, and amino acids 1-199 of HCV protease.
- (C) p300:
- A longer truncated SOD-protease fusion polynucleotide was prepared by excising an 892 bp EcoRI/NdeI fragment from C7fC20cC300, blunting the fragment with Klenow fragment, ligating the blunted fragment into the Klenow-blunted EcoRI site of cf1EF. This polynucleotide encodes a fusion protein having amino acids 1-151 of hSOD, and amino acids 1-299 of HCV protease.
- (D) P500:
- A longer truncated SOD-protease fusion polynucleotide was prepared by excising a 1550 bp EcoRI/EcoRI fragment from C7fC20cC300, and ligating the fragment into the EcoRI site of cf1CD to form P500. This polynucleotide encodes a fusion protein having amino acids 1-151 of hSOD, and amino acids 946-1457 of HCV protease (amino acids 1-513 in FIG. 1).
- (E) FLAG/Protease Fusion
- This vector contains a full-length HCV protease coding sequence fused to the FLAG sequence, Hopp et al. (1988)Biotechnology 6: 1204-1210. PCR was used to produce a HCV protease gene with special restriction ends for cloning ease. Plasmid p500 was digested with EcoRI and NdeI to yield a 900 bp fragment. This fragment and two primers were used in a polymerase chain reaction to introduce a unique BglIl site at amino acid 1009 and a stop codon with a SalI site at amino acid 1262 of the HCV-1, as shown in FIG. 17 of WO 90/11089, published Oct. 4, 1990. The sequence of the primers is as follows:
5′ CCC GAG CAA GAT CTC CCG GCC C 3′ and 5′ CCC CGC TGC ATA AGC AGT CGA CTT GGA 3′ - After 30 cycles of PCR, the reaction was digested with BglII and SalI, and the 710 bp fragment was isolated. This fragment wos annealed and ligated to the following duplex:
MetAspTyrLysAspAspAspAspLysGlyArgGlu CATGGACTACAAAGACGATGACGATAAAGGCCGGGA CTGATGTTTCTGCTACTGCTATTTCCGGCCCTCTAG - The duplex encodes the FLAG sequence, and initiator methionine, and a 5′ Ncol restriction site. The resulting NcoI/SalI fragment was ligated into a derivative of pCF1.
- This construct is then transformed intoE. coli D1210 cells and expression of the protease is induced by the addition of IPTG.
- The FLAG sequence was fused to the HCV protease to facilitate purification. A calcium dependent monoclonal antibody, which binds to the FLAG encoded peptide, is used to purify the fusion protein without harsh eluting conditions.
- (E. coli Expression of SOD-Protease Fusion Proteins)
- (A)E. coli D1210 cells were transformed with cf1SODp600 and grown in Luria broth containing 100 μg/mL ampicillin to an OD of 0.3-0.5. IPTG was then added to a concentration of 2 mM, and the cells cultured to a final OD of 0.9 to 1.3. The cells were then lysed, and the lysate analyzed by Western blot using anti-HCV sera, as described in U.S. Ser. No. 7/456,637.
- The results indicated the occurrence of cleavage, as no full length product (theoretical Mr 93 kDa) was evident on the geL Bands corresponding to the hSOD fusion partner and the separate HCV protease appeared at relative molecular weights of about 34, 53, and 66 kDa The 34 kDa band corresponds to the hSOD partner (about 20 kDa) with a portion of the NS3 domain, while the 53 and 66 kDa bands correspond to HCV protease with varying degrees of (possibly bacterial) processing.
- (B)E. coli D1210 cells were transformed with P500 and grown in Luria broth containing 100 μg/mL ampicillin to an OD of 0.3-0.5. IPTG was then added to a concentration of 2 mM, and the cells cultured to a final OD of 0.8 to 1.0. The cells were then lysed, and the lysate analyzed as described above.
- The results again indicated the occurrence of cleavage, as no full length product (theoretical Mr 73 kDa) was evident on the gel. Bands corresponding to the hSOD fusion partner and the truncated HCV protease appeared at molecular weights of about 34 and 45 kDa, respectively.
- (C)E. coli D1210 cells were transformed with vectors P300 and P190 and grown as described above.
- The results from P300 expression indicated the occurrence of cleavage, as no full length product (theoretical Mr 51 kDa) was evident on the gel. A band corresponding to the hSOD fusion partner appeared at a relative molecular weight of about 34. The corresponding HCV protease band was not visible, as this region of the NS3 domain is not recognized by the sera employed to detect the products. However, appearance of the hSOD band at 34 kDa rather than 51 kDa indicates that cleavage occurred.
- The P190 expression product appeared only as the full (encoded) length product without cleavage, forming a band at about 40 kDa, which corresponds to the theoretical molecular weight for the uncleaved product. This may indicate that the minimum essential sequence for HCV protease extends to the region between amino acids 199 and 299.
- (Purification ofE. coli Expressed Protease)
- The HCV protease and fragments expressed in Example 5 may be purified as follows:
- The bacterial cells in which the polypeptide was expressed are subjected to osmotic shock and mechanical disruption, the insoluble fraction containing the protease is isolated and subjected to differential extraction with an alkaline-NaCl solution, and the polypeptide in the extract purified by chromatography on columns of S-Sepharose® and Q-Sepharose®.
- The crude extract resulting from osmotic shock and mechanical disruption is prepared by suspending 1 g of the packed cells in 10 mL of a solution containing 0.02 M Tris HCl, pH 7.5, 10 mM EDTA, 20% sucrose, and incubating for 10 minutes on ice. The cells are then pelleted by centrifugation at 4,000×g for 15 min at 4° G. After the supernatant is removed, the cell pellets are resuspended in 10 mL of Buffer A1 (0.01 M Tris HCl, pH 7.5, 1 mM EDTA, 14 mM β-mercaptoethanol—“βME”), and incubated on ice for 10 minutes. The cells are again pelleted at 4,000×g for 15 minutes at 4° G. After removal of the clear supernatant (periplasmic fraction I), the cell pellets are resuspended in Buffer Al, incubated on ice for 10 minutes, and again centrifuged at 4,000×g for 15 minutes at 4° G. The clear supernatant (periplasmic fraction II) is removed, and the cell pellet resuspended in 5 mL of Buffer T2 (0.02 M Tris HCl, pH 7.5, 14 mM βME, 1 mM EDTA, 1 mM PMSF). In order to disrupt the cells, the suspension (5 mL) and 7.5 mL of Dyno-mrll lead-free acid washed glass beads (0.10-0.15 mm diameter) (available from Glen-Mills, Inc.) are placed in a Falcon tube and vortexed at top speed for two minutes, followed by cooling for at least 2 min on ice. The vortexing-cooling procedure is repeated another four times. After vortexing, the slurry is filtered through a sintered glass funnel using low suction, the glass beads washed twice with Buffer A2, and the filtrate and washes combined.
- The insoluble fraction of the crude extract is collected by centrifugation at 20,000×g for 15 min at 4° C., washed twice with 10 mL Buffer A2, and resuspended in 5 mL of MILLI-Q water.
- A fraction containing the HCV protease is isolated from the insoluble material by adding to the suspension NaOH (2 M) and NaCl (2 M) to yield a fmal concentation of 20 mM each, vortexing the mixture for 1 minute, centrifuging it 20,000×g for 20 min at 4° C., and retaining the supernatant.
- The partially purified protease is then purified by SDS-PAGE. The protease may be identified by western blot, and the band excised from the gel. The protease is then eluted from the band, and analyzed to confmn its amino acid sequence. N-terminal sequences may be analyzed using an automated amino acid sequencer, while C-terminal sequences may be analyzed by automated amino acid sequencing of a series of tryptic fragments.
- (Preparation of Yeast Expression Vector)
- (A) P650 (SOD/Protease Fusion) This vector contains HCV sequence, which includes the wild-type full-length HCV protease coding sequence, fused at the 5′ end to a SOD coding sequence. Two fragments, a 441 bp EcoRIVBglII fragment from
clone 1 lb and a 1471 bp BglII/EcoRI fragment from expression vector P500, were used to reconstruct a wild-type, full-length HCV protease coding sequence. These two fragments were ligated together with an EcoRI digested pS356 vector to produce an expression cassette. The expression cassette encodes the ADH2/GAPDH hybrid yeast promoter, human SOD, the HCV protease, and a GAPDH transcription terminator. The resulting vector was digested with BamHI and a 4052 bp fragment was isolated. This fragment was ligated to the BamHI digested pAB24 vector to produce p650. p650 expresses a polyprotein containing, from its amino terminal end, amino acids 1-154 of hSOD, an oligopeptide —Asn—Leu—Gly—Ile—Arg—, and amino acids 819 to 1458 of HCV-1, as shown in FIG. 17 of WO 90/11089, published Oct. 4, 1990. - Clone 11b was isolated from the genomic library of HCV cDNA, ATCC accession no. 40394, as described above in Example 3A, using a hybridization probe having the following sequence:
- 5′ CAC CTA TGT TrA TAA CCA TCT CAC TCC TCT 3′.
- This procedure is also described in EPO Pub. No. 318 216, Example IV.A.17.
- The vector pS3EF, which is a pBR322 derivative, contains the ADH2/GAPDH hybrid yeast promoter upstream of the human superoxide dimutase gene, an adaptor, and a downstream yeast effective transcription terminator. A similar expression vector containing these control elements and the superoxide dismutase gene is described in Cousens et al. (1987)Gene 61: 265, and in copending application EPO 196,056, published Oct. 1, 1986. pS3EF, however, differs from that in Cousens et al. in that the heterologous proinsulin gene and the immunoglobulin hinge are deleted, and Gln154 of SOD is followed by an
- adaptor sequence which contains an EcoRI site. The sequence of the adaptor is:
5′ AAT TTG GGA ATT CCA TAA TTA ATT AAG 3′ 3′ AC CCT TAA GGT ATT AAT TAA TTC AGCT 5′ - The EcoRI site facilitates the insertion of heterologous sequences. Once inserted into pS3EF, a SOD fusion is expressed which contains an oligopeptide that links SOD to the heterologous sequences. pS3EF is exactly the same as pS356 except that pS356 contains a different adaptor. The sequence of the adaptor is shown below:
5′ AAT TTG GGA ATT CCA TAA TGA G 3′ 3′ AC CCT TAA GGT ATT ACT CAG CT 5′ - pS356, ATCC accession no. 67683, is deposited as set forth below.
- Plasmid pAB24 is a yeast shuttle vector, which contains pBR322 sequences, the complete 2p sequence for DNA replication in yeast (Broach (1981) in:Molecular Biologv of the Yeast Saccharomyces, Vol. 1, p. 445, Cold spring Harbor Press.) and the yeast LEU2d gene derived from plasmid pC1/1, described in EPO Pub. No. 116 201. Plasmid pAB24 was constructed by digesting YEp24 with EcoRI and re-ligating the vector to remove the partial 2 micron sequences. The resulting plasmid, YEp24deltaRI, was linearized with Clal and ligated with the complete 2 micron plasmid which had been linearized with ClaI. The resulting plasmid, pCBou, was then digested with Xbal, and the 8605 bp vector fragment was gel isolated. This isolated XbaI fragment was ligated with a 4460 bp XbaI fragment containing the LEU2d gene isolated from pC1/1; the orientation of LEU2d gene is in the same direction as the URA3 gene.
-
- (Yeast Expression of SOD-Protease Fusion Protein)
- p650 was transformed in S. cerevisae strain JSC310, Mata, leu2, ura3-52, prbl-1122, pep4-3, prcl-407, cirl: DM15 (g418 resistance). The transformation is as described by Hinnen et al. (1978)Proc Natl Acad Sci USA 75: 1929. The transformed cells were selected on ura- plates with 8% glucose. The plates were incubated at 30° C. for 45 days. The tranformants were further selected on leu- plates with 8% glucose putatively for high numbers of the p650 plasmid. Colonies from the leu- plates were inoculated into leu- medium with 3% glucose. These cultures were shaken at 30° C. for 2 days and then diluted 1/20 into YEPD medium with 2% glucose and shaken for 2 more days at 30° C.
-
- (Yeast Ubiquitin Expression of Mature HCV Protease)
- Mature HCV protease is prepared by cleaving vector C7fC20cC300C200 with EcoRI to obtain a 2 Kb coding sequence, and inserting the sequence with the appropriate linkers into a ubiquitin expression vector, such as that described in WO 88/02406, published Apr. 7, 1988, or U.S. Ser. No. 7/390,599 filed Aug. 7, 1989, incorporated herein by reference. Mature HCV protease is recovered upon expression of the vector in suitable hosts, particularly yeast. Specifically, the yeast expression protocol described in Example 8 is used to express a ubiquitin/HCV protease vector.
- (Preparation of an In-Vitro Expression Vector)
- (A) nGEMO-3ZIYeflow Fever Leader Vector
- Four synthetic DNA fragments were annealed and ligated** together to create a EcoRIlSacI Yellow Fever leader, which was ligated to a EcoRI/SacI digested pGEM®-3Z vector from Promega®. The sequence of the four fragments are listed below:
YFK-1: 5′ AAT TCG TAA ATC CTG TGT GCT AAT TGA GGT GCA TTG GTC TGC AAA TCG AGT TGC TAG GCA ATA AAC ACA TT 3′ YFK-2: 5′ TAT TGC CTA GCA ACT CGA TTT GCA GAC CAA TGC ACC TCA ATT AGC ACA CAG GAT TTA CG 3′ YFK-3: 5′ TGG ATT AAT TTT AAT CGT TCG TTG AGC GAT TAG CAG AGA ACT GAC CAG AAC ATG TCT GAG CT 3′ YFK-4: 5′ CAG ACA TGT TCT GGT CAG TTC TCT GCT AAT CGC TCA ACG AAC GAT TAA AAT TAA TCC AAA TGT GTT 3′. - For in-vitro translation of the HCV protease, the new pGEM®-3Z/Yellow Fever leader vector was digested with BamHI and blunted with Klenow.
- (B) PvulI Construct from p6000
- A clone p6000 was constructed from sequences available from the genomic library of HCV cDNA, ATCC accession no. 40394. The HCV encoding DNA sequence of p6000 is identical to nucleotide −275 to nucleotide 6372 of FIG. 17 of WO 90/11089, published Oct. 4, 1990. p6000 was digested with PvuII, and from the digest, a 2,864 bp fragment was isolated. This 2,864 bp fragment was ligated to the prepared pGEM®-3Z/Yellow Fever leader vector fragment, described above.
- (In-Vitro Expression of HCV Protease)
- (A) Transcription
- The pGEM®-3Z7Yellow Fever leader/PvulI vector was linearized with XbaI and transcribed using the materials and protocols from Promega's Riboprobe® Gemini II Core system.
- (B) Translation
- The RNA produced by the above protocol was translated using Promega's rabbit reticulocyte lysate, minus methionine, canine pancreatic microsomal membranes, as well as, other necessary materials and instructions from Promega.
- Deposited Biological Materials:
- The following materials were deposited with the American Type Culture Collection (ATCC), 12301 Parklawn Dr., Rockville, Md.:
Name Deposit Date Accession No. E. coli D1210, cf1SODp600 Mar 23 1990 68275 Cf1/5-1-1 in E. coli D1210 May 11 1989 67967 Bacteriophage λ-gt11 cDNA Dec 01 1987 40394 library E. coli HB101, pS356 Apr 29 1988 67683 plasmid DNA, pDM15 May 05 1988 40453 S. cerevisae, 2150-2-3 Dec 23 1986 20827 (pAB24-GAP-env2) - The above materials have been deposited with the ATCC under the accession numbers indicated. These deposits will be maintained under the terms of the Budapest Treaty on the International Recognition of the Deposit of Microorganisms for purposes of Patent Procedure. These deposits are provided as a convenience to those of skill in the art, and are not an admission that a deposit is required under 35 U.S.C. §112. The polynucleotide sequences contained in the deposited materials, as well as the amino acid sequence of the polypeptides encoded thereby, are incorporated herein by reference and are controlling in the event of any conflict with the sequences described herein. A license may be required to make, use or sell the deposited materials, and no such license is granted hereby.
Claims (26)
1. A composition comprising a purified proteolytic polypeptide derived from Hepatitis C virus.
2. The composition of claim 1 , wherein said polypeptide has a partial internal sequence substantially as follows:
Trp Thr Val Tyr His Gly Ala Gly Thr Arg Thr.
3. The composition of claim 1 , wherein said polypeptide has a partial internal sequence substantially as follows:
Leu Lys Gly Ser Ser Gly Gly Pro Leu.
4. The composition of claim 2 , wherein said polypeptide has substantially the partial internal sequence:
5. The composition of claim 1 , wherein said polypeptide has substantially the amino acid sequence shown in FIG. 1.
6. A fusion protein, comprising:
a suitable fusion partner, fused to
a proteolytic polypeptide derived from Hepatitis C virus.
7. The fusion protein of claim 6 , wherein said fusion partner comprises human superoxide dismutase.
8. The fusion protein of claim 6 , wherein said proteolytic polypeptide has a partial internal sequence substantially as follows:
Trp Thr Val Tyr His Gly Ala Gly Thr Arg Thr.
9. The fusion protein of claim 6 , wherein said proteolytic polypeptide has a partial internal sequence substantially as follows:
Leu Lys Gly Ser Ser Gly Gly Pro Leu.
10. The fusion protein of claim 6 , wherein said proteolytic polypeptide has as a partial internal sequence:
11. The fusion protein of claim 6 , wherein said fusion partner is ubiquitin.
12. A composition comprising a polynucleotide which encodes only the HCV protease or an active HCV protease analog.
13. The composition of claim 12 , wherein said polynucleotide encodes the HCV protease of FIG. 1.
14. A composition comprising a polynucleotide which encodes a fusion protein comprising:
HCV protease or HCV protease analog; and
a fusion partner.
15. The composition of claim 14 , wherein said fusion partner is selected from the group consisting of hSOD, yeast a-factor, IL-2S, ubiquitin, β-galactosidase, β-lactamase, horseradish peroxidase, glucose oxidase, and urease.
16. The composition of claim 14 , wherein said HCV protease or HCV protease analog comprises a polypeptide having substantially the following sequence:
17. The composition of claim 14 , wherein said HCV protease or analog comprises a polypeptide having substantially the sequence:
18. The composition of claim 14 , wherein said polypeptide has substantially the sequence:
19. A method for assaying compounds for activity against hepatitis C virus, comprising:
providing an active hepatitis C virus protease;
contacting said protease with a compound capable of inhibiting serine protease activity; and
measuring inhibition of the proteolytic activity of said hepatitis C virus protease.
20. An expression vector for producing HCV protease or HCV protease analogs in a host cell, which vector comprises:
a polynucleotide encoding HCV protease or an HCV analog;
transcriptional and translational regulatory sequences functional in said host cell operably linked to said HCV protease-encoding polynucleotide; and
a selectable marker.
21. The vector of claim 20 , which further comprises a sequence encoding a fusion partner, linked to said HCV protease-encoding polynucleotide to form a fusion protein upon expression.
22. The vector of claim 21 , wherein said fusion partner is selected from the group consisting of hSOD, yeast α-factor, IL-2S, ubiquitin, β-galactosidase, β-lactamase, horseradish peroxidase, glucose oxidase, and urease.
23. The vector of claim 22 , where in said fusion partner is selected from the group consisting of ubiquitin, hSOD, and yeast α-factor.
24. The vector of claim 20 , wherein said HCV protease-encoding polynucleotide encodes a polypeptide having the substantially the following sequence:
25. The vector of claim 20 , wherein said HCV protease-encoding polynucleotide encodes a polypeptide having the substantially the following sequence:
26. The vector of claim 20 , wherein said HCV protease-encoding polynucleotide encodes a polypeptide having the substantially the following sequence:
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/884,455 US20030064499A1 (en) | 1990-04-04 | 2001-06-18 | Hepatitis C virus protease |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US50543390A | 1990-04-04 | 1990-04-04 | |
US07/680,296 US5371017A (en) | 1990-04-04 | 1991-04-04 | Hepatitis C virus protease |
US08350884 US5585258C1 (en) | 1990-04-04 | 1994-12-06 | Hepatitus c virus protease |
US08440548 US5597691C1 (en) | 1990-04-04 | 1995-05-12 | Hepatitus c virus protease |
US08/709,177 US5885799A (en) | 1990-04-04 | 1996-09-06 | Hepatitis C virus protease |
US25367599A | 1999-02-18 | 1999-02-18 | |
US09/884,455 US20030064499A1 (en) | 1990-04-04 | 2001-06-18 | Hepatitis C virus protease |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US25367599A Continuation | 1990-04-04 | 1999-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030064499A1 true US20030064499A1 (en) | 2003-04-03 |
Family
ID=24010295
Family Applications (7)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/680,296 Expired - Lifetime US5371017A (en) | 1990-04-04 | 1991-04-04 | Hepatitis C virus protease |
US08350884 Expired - Lifetime US5585258C1 (en) | 1990-04-04 | 1994-12-06 | Hepatitus c virus protease |
US08440548 Expired - Lifetime US5597691C1 (en) | 1990-04-04 | 1995-05-12 | Hepatitus c virus protease |
US08/709,173 Expired - Lifetime US5712145A (en) | 1990-04-04 | 1996-09-06 | Hepatitis C virus protease |
US08/709,177 Expired - Lifetime US5885799A (en) | 1990-04-04 | 1996-09-06 | Hepatitis C virus protease |
US09/884,455 Abandoned US20030064499A1 (en) | 1990-04-04 | 2001-06-18 | Hepatitis C virus protease |
US09/884,456 Abandoned US20030027317A1 (en) | 1990-04-04 | 2001-06-18 | Hepatitis C virus protease |
Family Applications Before (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/680,296 Expired - Lifetime US5371017A (en) | 1990-04-04 | 1991-04-04 | Hepatitis C virus protease |
US08350884 Expired - Lifetime US5585258C1 (en) | 1990-04-04 | 1994-12-06 | Hepatitus c virus protease |
US08440548 Expired - Lifetime US5597691C1 (en) | 1990-04-04 | 1995-05-12 | Hepatitus c virus protease |
US08/709,173 Expired - Lifetime US5712145A (en) | 1990-04-04 | 1996-09-06 | Hepatitis C virus protease |
US08/709,177 Expired - Lifetime US5885799A (en) | 1990-04-04 | 1996-09-06 | Hepatitis C virus protease |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/884,456 Abandoned US20030027317A1 (en) | 1990-04-04 | 2001-06-18 | Hepatitis C virus protease |
Country Status (12)
Country | Link |
---|---|
US (7) | US5371017A (en) |
EP (2) | EP1304335B1 (en) |
JP (3) | JP3320411B2 (en) |
AT (2) | ATE433460T1 (en) |
AU (1) | AU7675491A (en) |
CA (1) | CA2079105C (en) |
DE (2) | DE69133402T2 (en) |
DK (1) | DK0527788T3 (en) |
ES (2) | ES2324597T3 (en) |
IE (1) | IE911129A1 (en) |
PL (1) | PL169273B1 (en) |
WO (1) | WO1991015575A1 (en) |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060110755A1 (en) * | 2002-12-16 | 2006-05-25 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US20080069831A1 (en) * | 2004-10-18 | 2008-03-20 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis c infection |
WO2009082701A1 (en) * | 2007-12-21 | 2009-07-02 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
WO2009082697A1 (en) * | 2007-12-21 | 2009-07-02 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
US20100069294A1 (en) * | 2007-12-21 | 2010-03-18 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
US8188137B2 (en) | 2008-08-15 | 2012-05-29 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
US8293705B2 (en) | 2007-12-21 | 2012-10-23 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
US8728489B2 (en) | 2008-09-19 | 2014-05-20 | Globeimmune, Inc. | Immunotherapy for chronic hepatitis C virus infection |
Families Citing this family (94)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6194140B1 (en) | 1990-04-04 | 2001-02-27 | Chiron Corporation | HCV NS3 protein fragments having helicase activity and improved solubility |
PL169273B1 (en) * | 1990-04-04 | 1996-06-28 | Chiron Corp | Method of testing chemical compounds for their activity against hepatitis c |
EP0527815B1 (en) * | 1990-04-06 | 2000-07-19 | Genelabs Technologies, Inc. | Hepatitis c virus epitopes |
WO1993000365A2 (en) * | 1991-06-24 | 1993-01-07 | Chiron Corporation | Hepatitis c virus (hcv) polypeptides |
DE4428705A1 (en) * | 1994-08-12 | 1996-02-15 | Boehringer Mannheim Gmbh | Recombinant antigen from the NS3 region of the hepatitis C virus |
US5861267A (en) * | 1995-05-01 | 1999-01-19 | Vertex Pharmaceuticals Incorporated | Methods, nucleotide sequences and host cells for assaying exogenous and endogenous protease activity |
US5843752A (en) * | 1995-05-12 | 1998-12-01 | Schering Corporation | Soluble active hepatitis C virus protease |
US5767233A (en) * | 1995-05-12 | 1998-06-16 | Schering Corporation | Soluble cleavable substrates of the hepatitis C virus protease |
US5698396A (en) * | 1995-06-07 | 1997-12-16 | Ludwig Institute For Cancer Research | Method for identifying auto-immunoreactive substances from a subject |
IT1277914B1 (en) | 1995-08-22 | 1997-11-12 | Angeletti P Ist Richerche Bio | PROCEDURE TO PRODUCE - IN PURE FORM AND IN HIGH QUANTITIES - POLYPEPTIDES WITH THE PROTEOLYTIC ACTIVITY OF THE NS3 PROTEASE OF HCV, AND |
US6127116A (en) * | 1995-08-29 | 2000-10-03 | Washington University | Functional DNA clone for hepatitis C virus (HCV) and uses thereof |
US7235394B1 (en) | 1995-08-29 | 2007-06-26 | Washington University | Functional DNA clone for hepatitis C virus (HCV) and uses thereof |
JP2000508521A (en) * | 1996-01-23 | 2000-07-11 | バイロファーマ・インコーポレイテッド | Methods for identifying RNA virus inhibitors |
US5766916A (en) * | 1996-04-24 | 1998-06-16 | Genelabs Technologies, Inc. | Hepatitis G virus protease |
US5990276A (en) * | 1996-05-10 | 1999-11-23 | Schering Corporation | Synthetic inhibitors of hepatitis C virus NS3 protease |
US5861297A (en) * | 1996-09-27 | 1999-01-19 | Merck & Co., Inc. | Detergent-free hepatitis C protease |
WO1998016657A1 (en) * | 1996-10-17 | 1998-04-23 | Chiron Corporation | Protease regulator screening assay |
US7049428B1 (en) * | 1998-03-04 | 2006-05-23 | Washington University | HCV variants |
US7338759B1 (en) | 1997-03-04 | 2008-03-04 | Washington University | HCV variants |
US5849800A (en) * | 1997-03-28 | 1998-12-15 | The Penn State Research Foundation | Use of amantadine for treatment of Hepatitis C |
US20020034732A1 (en) * | 1997-07-30 | 2002-03-21 | Daniel J. Capon | Compositions and methods for determining anti-viral drug susceptibility and resistance and anti-viral drug screening |
US7078500B1 (en) * | 1998-01-30 | 2006-07-18 | The General Hospital Corporation | Genetic immunization with nonstructural proteins of hepatitis C virus |
KR20060057653A (en) * | 1998-01-30 | 2006-05-26 | 더 제너럴 하스피탈 코포레이션 | Gene Immunoassay Using Nonstructural Proteins of Hepatitis C Virus |
JP2002510509A (en) * | 1998-04-02 | 2002-04-09 | バイロファーマ・インコーポレイテッド | Hepatitis C virus NS5B composition and method of use |
DE69939132D1 (en) | 1998-04-17 | 2008-08-28 | Innogenetics Nv | Method for improving protein conformation with the aid of reducing agents |
US6280940B1 (en) | 1998-08-05 | 2001-08-28 | Agouron Pharmaceuticals, Inc. | Reporter gene system for use in cell-based assessment of inhibitors of the Hepatitis C virus protease |
WO2000039348A1 (en) * | 1998-12-24 | 2000-07-06 | Small Molecule Therapeutics, Inc. | Methods and compositions for identifying protease modulators |
EP1141255A4 (en) * | 1999-01-08 | 2002-09-11 | Bristol Myers Squibb Co | Modified forms of hepatitis c virus ns3 protease |
ATE362538T1 (en) * | 1999-06-04 | 2007-06-15 | Us Gov Health & Human Serv | CLONED GENOMES OF INFECTIOUS HEPATITIS C VIRUSES GENOTYPE 2A AND THEIR USES |
US7084266B1 (en) | 1999-06-04 | 2006-08-01 | The United States Of America As Represented By The Department Of Health And Human Services | Cloned genome of infectious hepatitus C virus of genotype 2A and uses thereof |
US20060141480A1 (en) * | 1999-11-10 | 2006-06-29 | Kalyanaraman Ramnarayan | Use of computationally derived protein structures of genetic polymorphisms in pharmacogenomics and clinical applications |
EP1228370A2 (en) * | 1999-11-10 | 2002-08-07 | Structural Bioinformatics Inc. | Computationally derived protein structures in pharmacogenomics |
US6986892B1 (en) * | 1999-11-24 | 2006-01-17 | Chiron Corporation | Immunogenic Hepatitis C virus non-structural polypeptides |
US20050074465A1 (en) * | 1999-11-24 | 2005-04-07 | Michael Houghton | HCV fusion proteins with modified NS3 domains |
SK14192002A3 (en) | 2000-04-05 | 2003-03-04 | Schering Corporation | Macrocyclic NS3-serine protease inhibitors of hepatitis C virus comprising N-cyclic p2 moieties |
BR0110104A (en) | 2000-04-19 | 2003-01-07 | Schering Corp | Macroscopic hepatitis C virus ns-3 serine rotease inhibitors comprising portions of p2 alkyl and aryl alanine |
MY164523A (en) | 2000-05-23 | 2017-12-29 | Univ Degli Studi Cagliari | Methods and compositions for treating hepatitis c virus |
EP1160332A1 (en) * | 2000-05-30 | 2001-12-05 | Amsterdam Support Diagnostics B.V. | Methods for detecting enzymatic activity or detecting resistance to enzyme inhibitors |
US7491808B2 (en) * | 2000-06-15 | 2009-02-17 | Novartis Vaccines And Diagnostics, Inc. | HCV non-structural protein mutants and uses thereof |
AR029851A1 (en) * | 2000-07-21 | 2003-07-16 | Dendreon Corp | NEW PEPTIDES AS INHIBITORS OF NS3-SERINA PROTEASA DEL VIRUS DE HEPATITIS C |
US7244721B2 (en) * | 2000-07-21 | 2007-07-17 | Schering Corporation | Peptides as NS3-serine protease inhibitors of hepatitis C virus |
MXPA03000627A (en) * | 2000-07-21 | 2004-07-30 | Schering Corp | Novel peptides as ns3-serine protease inhibitors of hepatitis c virus. |
EP1303487A4 (en) * | 2000-07-21 | 2005-11-23 | Schering Corp | Novel peptides as ns3-serine protease inhibitors of hepatitis c virus |
EP1301527A2 (en) * | 2000-07-21 | 2003-04-16 | Corvas International, Inc. | Peptides as ns3-serine protease inhibitors of hepatitis c virus |
US7022830B2 (en) * | 2000-08-17 | 2006-04-04 | Tripep Ab | Hepatitis C virus codon optimized non-structural NS3/4A fusion gene |
US6680059B2 (en) * | 2000-08-29 | 2004-01-20 | Tripep Ab | Vaccines containing ribavirin and methods of use thereof |
ES2296803T3 (en) | 2000-08-17 | 2008-05-01 | Tripep Ab | VACCINES CONTAINING RIBAVIRINE. |
US6858590B2 (en) | 2000-08-17 | 2005-02-22 | Tripep Ab | Vaccines containing ribavirin and methods of use thereof |
CA2430458A1 (en) | 2000-12-12 | 2002-06-20 | Schering Corporation | Diaryl peptides as ns3-serine protease inhibitors of hepatits c virus |
WO2003026589A2 (en) * | 2001-09-28 | 2003-04-03 | Idenix (Cayman) Limited | Methods and compositions for treating hepatitis c virus using 4'-modified nucleosides |
IL162828A0 (en) * | 2002-01-23 | 2005-11-20 | Schering Corp | Proline compounds as ns3-serine protease inhibitors for use in treatment of hepatites c virus infection |
US20030215917A1 (en) * | 2002-04-04 | 2003-11-20 | Mingjun Huang | Assay for evaluation of activity of compounds against HCV using a novel detection system in the HCV replicon |
US7666627B2 (en) * | 2002-08-08 | 2010-02-23 | Targetex Kft. | Folded recombinant catalytic fragments of multidomain serine proteases, preparation and uses thereof |
NZ543815A (en) * | 2003-06-03 | 2008-08-29 | Benitec Australia Ltd | Double-stranded nucleic acid |
WO2005017125A2 (en) * | 2003-08-14 | 2005-02-24 | California Institute Of Molecular Medicine | Method for isolation and replication of infectious human hepatitis-c virus |
US7449447B2 (en) * | 2003-08-26 | 2008-11-11 | Schering Corporation | Peptidomimetic NS3-serine protease inhibitors of hepatitis C virus |
PE20050953A1 (en) | 2003-09-26 | 2005-11-19 | Schering Corp | MACROCYCLIC COMPOUNDS AS INHIBITORS OF THE SERINE PROTEASE NS3 OF THE HEPATITIS C VIRUS |
US20110150835A1 (en) * | 2003-09-26 | 2011-06-23 | Schering Corporation | Macrocyclic Inhibitors of Hepatitis C Virus NS3 Serine Protease |
CN1902216A (en) | 2003-11-20 | 2007-01-24 | 先灵公司 | Depeptidized inhibitors of hepatitis c virus NS3 protease |
AR048413A1 (en) | 2004-02-27 | 2006-04-26 | Schering Corp | PROLINA 3,4- (CYCLOPENTIL) COMPOUNDS - FUSIONED, AS INHIBITORS OF SERINA PROTEASA NS3 OF HEPATITIS C VIRUS |
AU2005219859A1 (en) * | 2004-02-27 | 2005-09-15 | Schering Corporation | Inhibitors of hepatitis C virus NS3 protease |
CA2557247A1 (en) * | 2004-02-27 | 2005-09-22 | Schering Corporation | Compounds as inhibitors of hepatitis c virus ns3 serine protease |
DK1730110T3 (en) * | 2004-02-27 | 2010-09-27 | Schering Corp | Sulfur compounds as inhibitors of hepatitis C virus NS3 serine protease |
ES2327544T3 (en) | 2004-02-27 | 2009-10-30 | Schering Corporation | NEW COMPOUNDS AS INHIBITORS OF SERINA PROTEASA NS3 DE VIRUS DE HEPETITIS C. |
US7816326B2 (en) * | 2004-02-27 | 2010-10-19 | Schering Corporation | Sulfur compounds as inhibitors of hepatitis C virus NS3 serine protease |
CN103060324B (en) * | 2004-03-05 | 2015-04-01 | 贝尼泰克生物制药有限公司 | Multiple promoter expression cassettes for simultaneous delivery of RNAI agents |
AR049635A1 (en) * | 2004-05-06 | 2006-08-23 | Schering Corp | (1R, 2S, 5S) -N - ((1S) -3-AMINO-1- (CYCLLOBUTILMETIL) -2,3-DIOXOPROPIL) -3 - ((2S) -2 - (((((1,1-DIMETILETIL ) AMINO) CARBONIL) AMINO) -3,3-DIMETIL-1-OXOBUTIL) -6,6-DIMETIL-3-AZABICICLO (3.1.0) HEXAN-2-CARBOXAMIDE AS INHIBITOR OF THE NS3 / NS4A SERINA PROTEASA DEL VIRUS DE HEPATITIS C |
WO2005113581A1 (en) | 2004-05-20 | 2005-12-01 | Schering Corporation | Substituted prolines as inhibitors of hepatitis c virus ns3 serine protease |
MX2007002371A (en) * | 2004-08-27 | 2007-04-23 | Schering Corp | Acylsulfonamide compounds as inhibitors of hepatitis c virus ns3 serine protease. |
US7414031B2 (en) * | 2004-11-22 | 2008-08-19 | Genelabs Technologies, Inc. | 5-nitro-nucleoside compounds for treating viral infections |
CN101128474A (en) * | 2005-02-28 | 2008-02-20 | 健亚生物科技公司 | Tricyclic-nucleoside prodrugs for treating viral infections |
TW200720285A (en) * | 2005-04-25 | 2007-06-01 | Genelabs Tech Inc | Nucleoside compounds for treating viral infections |
CA2618429A1 (en) * | 2005-05-25 | 2007-03-22 | Tripep Ab | A hepatitis c virus non-structural ns3/4a fusion gene |
US8119602B2 (en) | 2005-06-02 | 2012-02-21 | Schering Corporation | Administration of HCV protease inhibitors in combination with food to improve bioavailability |
AR055198A1 (en) * | 2005-06-02 | 2007-08-08 | Schering Corp | PHARMACEUTICAL FORMULATIONS AND TREATMENT METHODS THAT USE THEM |
US20070237818A1 (en) * | 2005-06-02 | 2007-10-11 | Malcolm Bruce A | Controlled-release formulation of HCV protease inhibitor and methods using the same |
BRPI0612124A2 (en) * | 2005-06-24 | 2010-10-19 | Genelabs Tech Inc | heteroaryl derivatives for the treatment of viruses |
AR059430A1 (en) * | 2006-02-09 | 2008-04-09 | Schering Corp | NEW COMBINATIONS AND METHODS OF HCV INHIBITORS |
JP2009528353A (en) * | 2006-03-03 | 2009-08-06 | シェーリング コーポレイション | Pharmaceutical combination of HCV protease inhibitor and IRES inhibitor |
EP1998759A2 (en) * | 2006-03-23 | 2008-12-10 | Schering Corporation | Combinations of hcv protease inhibitor(s) and cyp3a4 inhibitor(s), and methods of treatment related thereto |
MX2008013119A (en) | 2006-04-11 | 2008-10-21 | Novartis Ag | Hcv/hiv inhibitors an their uses. |
JP2009544622A (en) * | 2006-07-20 | 2009-12-17 | スミスクライン・ビーチャム・コーポレーション | Polycyclic virus inhibitor |
US20090214593A1 (en) * | 2007-08-16 | 2009-08-27 | Tripep Ab | Immunogen platform |
WO2009022236A2 (en) | 2007-08-16 | 2009-02-19 | Tripep Ab | Immunogen platform |
WO2009029729A1 (en) * | 2007-08-31 | 2009-03-05 | Genelabs Technologies, Inc. | Amino tricyclic-nucleoside compounds, compositions, and methods of use |
CA2703954A1 (en) * | 2007-10-30 | 2009-05-07 | Intermune, Inc. | Hcv genotyping and phenotyping |
US7699111B2 (en) * | 2008-01-29 | 2010-04-20 | Tam International, Inc. | Float collar and method |
WO2010008828A2 (en) | 2008-06-24 | 2010-01-21 | Codexis, Inc. | Biocatalytic processes for the preparation of substantially stereomerically pure fused bicyclic proline compounds |
AR074582A1 (en) | 2008-12-12 | 2011-01-26 | Schering Corp | COMPUTERS DEUTERATED AS INHIBITORS OF THE HEPATITIS C VIRUS (HCV) |
EP2459211A1 (en) | 2009-07-31 | 2012-06-06 | Medtronic, Inc. | Continuous subcutaneous administration of interferon- to hepatitis c infected patients |
AR082453A1 (en) | 2010-04-21 | 2012-12-12 | Novartis Ag | FUROPIRIDINE COMPOUNDS, PHARMACEUTICAL COMPOSITIONS THAT CONTAIN THEM AND USES OF THE SAME |
EA201300160A1 (en) | 2010-07-22 | 2013-06-28 | Новартис Аг | 2,3,5-Trisulfonated TIOPHENES AND THEIR APPLICATION |
US9351989B2 (en) | 2010-12-29 | 2016-05-31 | Inhibitex, Inc. | Substituted purine nucleosides, phosphoroamidate and phosphorodiamidate derivatives for treatment of viral infections |
KR101784455B1 (en) | 2015-12-04 | 2017-10-11 | 주식회사 바이오노트 | Fusion polypeptide comprising hydrophilic fragments of Hepatitis C virus, composition, kit and method for diagnosing Hepatitis C virus infection comprising the same |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5350671A (en) * | 1987-11-18 | 1994-09-27 | Chiron Corporation | HCV immunoassays employing C domain antigens |
US5372928A (en) * | 1989-09-15 | 1994-12-13 | Chiron Corporation | Hepatitis C virus isolates |
US5523215A (en) * | 1985-03-28 | 1996-06-04 | Chiron Corporation | Enhanced purification and expression of insoluble recombinant proteins |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4702909A (en) * | 1982-05-05 | 1987-10-27 | Louisiana State University A & M | Non-A, non-B hepatitis antigen, antigen compositions, vaccine and diagnostic reagent |
US4870026A (en) * | 1982-09-16 | 1989-09-26 | The General Hospital Corporation | Non-A, non-B. hepatitis, virus, methods of identification purification, characterization, diagnosis and immunization |
CA1293591C (en) * | 1985-01-11 | 1991-12-24 | Charles A. Kettner | Peptide substrates for detecting virus-specified protease activity |
US4673634A (en) * | 1985-03-08 | 1987-06-16 | The United States Of America As Represented By The Department Of Health And Human Services | Purified antigen from non-A, non-B hepatitis causing factor |
US5218099A (en) * | 1986-04-01 | 1993-06-08 | The United States Of America As Represented By The Department Of Health And Human Services | Post-transfusion, non-A, non-B hepatitis virus polynucleotides |
EP0318216B2 (en) * | 1987-11-18 | 2001-08-29 | Chiron Corporation | NANBV diagnostics |
US5010175A (en) * | 1988-05-02 | 1991-04-23 | The Regents Of The University Of California | General method for producing and selecting peptides with specific properties |
US5176994A (en) * | 1988-12-21 | 1993-01-05 | Immuno Japan Inc. | Non-A, Non-B hepatitis virus genome RNA, cDNA and virus antigen protein |
JP2656995B2 (en) * | 1989-03-17 | 1997-09-24 | カイロン コーポレイション | NANBV diagnostics |
JP3156200B2 (en) | 1989-09-15 | 2001-04-16 | 国立予防衛生研究所長 | New HCV isolate |
PL169273B1 (en) * | 1990-04-04 | 1996-06-28 | Chiron Corp | Method of testing chemical compounds for their activity against hepatitis c |
US5258496A (en) * | 1990-07-10 | 1993-11-02 | Scios Nova Inc. | Isolation and purification of lung surfactant protein |
CA2090407A1 (en) | 1990-09-21 | 1992-03-22 | Ronald M. Evans | Functional antagonism between proto-oncoprotein c-jun and hormone receptors |
-
1991
- 1991-04-04 PL PL91296328A patent/PL169273B1/en unknown
- 1991-04-04 ES ES02019415T patent/ES2324597T3/en not_active Expired - Lifetime
- 1991-04-04 US US07/680,296 patent/US5371017A/en not_active Expired - Lifetime
- 1991-04-04 DK DK91908105T patent/DK0527788T3/en active
- 1991-04-04 AT AT02019415T patent/ATE433460T1/en not_active IP Right Cessation
- 1991-04-04 EP EP02019415A patent/EP1304335B1/en not_active Expired - Lifetime
- 1991-04-04 ES ES91908105T patent/ES2219637T3/en not_active Expired - Lifetime
- 1991-04-04 JP JP50763191A patent/JP3320411B2/en not_active Expired - Lifetime
- 1991-04-04 CA CA002079105A patent/CA2079105C/en not_active Expired - Lifetime
- 1991-04-04 EP EP91908105A patent/EP0527788B1/en not_active Expired - Lifetime
- 1991-04-04 AU AU76754/91A patent/AU7675491A/en not_active Abandoned
- 1991-04-04 DE DE69133402T patent/DE69133402T2/en not_active Expired - Lifetime
- 1991-04-04 DE DE69133617T patent/DE69133617D1/en not_active Expired - Lifetime
- 1991-04-04 WO PCT/US1991/002210 patent/WO1991015575A1/en active IP Right Grant
- 1991-04-04 IE IE112991A patent/IE911129A1/en not_active IP Right Cessation
- 1991-04-04 AT AT91908105T patent/ATE270326T1/en not_active IP Right Cessation
-
1994
- 1994-12-06 US US08350884 patent/US5585258C1/en not_active Expired - Lifetime
-
1995
- 1995-05-12 US US08440548 patent/US5597691C1/en not_active Expired - Lifetime
-
1996
- 1996-09-06 US US08/709,173 patent/US5712145A/en not_active Expired - Lifetime
- 1996-09-06 US US08/709,177 patent/US5885799A/en not_active Expired - Lifetime
-
2001
- 2001-06-11 JP JP2001176369A patent/JP3507045B2/en not_active Expired - Lifetime
- 2001-06-18 US US09/884,455 patent/US20030064499A1/en not_active Abandoned
- 2001-06-18 US US09/884,456 patent/US20030027317A1/en not_active Abandoned
-
2003
- 2003-10-31 JP JP2003373722A patent/JP2004073212A/en not_active Withdrawn
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5523215A (en) * | 1985-03-28 | 1996-06-04 | Chiron Corporation | Enhanced purification and expression of insoluble recombinant proteins |
US5350671A (en) * | 1987-11-18 | 1994-09-27 | Chiron Corporation | HCV immunoassays employing C domain antigens |
US5372928A (en) * | 1989-09-15 | 1994-12-13 | Chiron Corporation | Hepatitis C virus isolates |
US5871903A (en) * | 1989-09-15 | 1999-02-16 | Chiron Corporation | HCV isolates |
Cited By (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7439042B2 (en) | 2002-12-16 | 2008-10-21 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US20060110755A1 (en) * | 2002-12-16 | 2006-05-25 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US20100150963A1 (en) * | 2004-10-18 | 2010-06-17 | Globelmmune, Inc. | Yeast-Based Therapeutic for Chronic Hepatitis C Infection |
US20080069831A1 (en) * | 2004-10-18 | 2008-03-20 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis c infection |
US20080107671A1 (en) * | 2004-10-18 | 2008-05-08 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis c infection |
US20090074805A1 (en) * | 2004-10-18 | 2009-03-19 | Globeimmune, Inc. | Yeast-based Therapeutic for Chronic Hepatitis C Infection |
US8821892B2 (en) | 2004-10-18 | 2014-09-02 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US8388980B2 (en) | 2004-10-18 | 2013-03-05 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US7625569B2 (en) | 2004-10-18 | 2009-12-01 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US8007816B2 (en) | 2004-10-18 | 2011-08-30 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US7632511B2 (en) | 2004-10-18 | 2009-12-15 | Globeimmune, Inc. | Yeast-based therapeutic for chronic hepatitis C infection |
US8778877B2 (en) | 2007-12-21 | 2014-07-15 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US8741837B2 (en) | 2007-12-21 | 2014-06-03 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US20090306085A1 (en) * | 2007-12-21 | 2009-12-10 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
US9694086B2 (en) | 2007-12-21 | 2017-07-04 | Celgene Car Llc | HCV protease inhibitors and uses thereof |
US8293705B2 (en) | 2007-12-21 | 2012-10-23 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
US8309685B2 (en) | 2007-12-21 | 2012-11-13 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US20090176858A1 (en) * | 2007-12-21 | 2009-07-09 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
US9676785B2 (en) | 2007-12-21 | 2017-06-13 | Celgene Car Llc | HCV protease inhibitors and uses thereof |
US9163061B2 (en) | 2007-12-21 | 2015-10-20 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US20100069294A1 (en) * | 2007-12-21 | 2010-03-18 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
WO2009082697A1 (en) * | 2007-12-21 | 2009-07-02 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
WO2009082701A1 (en) * | 2007-12-21 | 2009-07-02 | Avila Therapeutics, Inc. | Hcv protease inhibitors and uses thereof |
US8980935B2 (en) | 2008-08-15 | 2015-03-17 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US9422333B2 (en) | 2008-08-15 | 2016-08-23 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US8524760B2 (en) | 2008-08-15 | 2013-09-03 | Celgene Avilomics Research, Inc. | HCV protease inhibitors and uses thereof |
US8188137B2 (en) | 2008-08-15 | 2012-05-29 | Avila Therapeutics, Inc. | HCV protease inhibitors and uses thereof |
US8728489B2 (en) | 2008-09-19 | 2014-05-20 | Globeimmune, Inc. | Immunotherapy for chronic hepatitis C virus infection |
Also Published As
Publication number | Publication date |
---|---|
EP0527788B1 (en) | 2004-06-30 |
ATE433460T1 (en) | 2009-06-15 |
EP1304335A3 (en) | 2004-04-07 |
DK0527788T3 (en) | 2004-09-06 |
US5712145A (en) | 1998-01-27 |
ATE270326T1 (en) | 2004-07-15 |
US5585258A (en) | 1996-12-17 |
EP0527788A1 (en) | 1993-02-24 |
AU7675491A (en) | 1991-10-30 |
PL169273B1 (en) | 1996-06-28 |
WO1991015575A1 (en) | 1991-10-17 |
CA2079105A1 (en) | 1991-10-05 |
ES2219637T3 (en) | 2004-12-01 |
US20030027317A1 (en) | 2003-02-06 |
US5885799A (en) | 1999-03-23 |
US5597691A (en) | 1997-01-28 |
DE69133617D1 (en) | 2009-07-23 |
EP1304335B1 (en) | 2009-06-10 |
US5585258C1 (en) | 2002-01-15 |
EP1304335A2 (en) | 2003-04-23 |
DE69133402D1 (en) | 2004-08-12 |
US5597691C1 (en) | 2001-12-11 |
JP3507045B2 (en) | 2004-03-15 |
US5371017A (en) | 1994-12-06 |
CA2079105C (en) | 2000-06-13 |
JP2004073212A (en) | 2004-03-11 |
IE911129A1 (en) | 1991-10-09 |
JPH05507612A (en) | 1993-11-04 |
JP2002051791A (en) | 2002-02-19 |
IE20060594A1 (en) | 2009-05-27 |
ES2324597T3 (en) | 2009-08-11 |
DE69133402T2 (en) | 2004-11-11 |
JP3320411B2 (en) | 2002-09-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5585258A (en) | Hepatitis C virus protease | |
US5989905A (en) | HCV NS3 protein fragments having helicase activity and improved solubility | |
IE84608B1 (en) | Hepatitis C virus protease | |
AU5250199A (en) | Reporter gene system for use in cell-based assessment of inhibitors of the hepatitis c virus protease | |
WO1991015596A1 (en) | Hepatitis c virus protease inhibitors | |
WO1997040168A1 (en) | Hepatitis g virus protease | |
IE85503B1 (en) | Hepatitis c virus protease | |
JPH07184648A (en) | HCV proteinase active substance, method for producing the same, assay method for the proteinase and proteinase inhibitor | |
JPH05192160A (en) | C type hepatitis virus genome rna, cdna and polypeptide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |