US20030055209A1 - Process for manufacture of soluble highly branched polyamides, and at least partially aliphatic highly branched polyamides obtained therefrom - Google Patents
Process for manufacture of soluble highly branched polyamides, and at least partially aliphatic highly branched polyamides obtained therefrom Download PDFInfo
- Publication number
- US20030055209A1 US20030055209A1 US09/919,097 US91909701A US2003055209A1 US 20030055209 A1 US20030055209 A1 US 20030055209A1 US 91909701 A US91909701 A US 91909701A US 2003055209 A1 US2003055209 A1 US 2003055209A1
- Authority
- US
- United States
- Prior art keywords
- multifunctional
- monomers
- amine
- process according
- functional
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 63
- 239000004952 Polyamide Substances 0.000 title claims abstract description 60
- 229920002647 polyamide Polymers 0.000 title claims abstract description 60
- 230000008569 process Effects 0.000 title claims abstract description 59
- 125000001931 aliphatic group Chemical group 0.000 title claims abstract description 18
- 238000004519 manufacturing process Methods 0.000 title abstract description 15
- 239000000178 monomer Substances 0.000 claims abstract description 133
- 239000002253 acid Substances 0.000 claims abstract description 47
- 150000001412 amines Chemical class 0.000 claims abstract description 41
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 39
- 229910001868 water Inorganic materials 0.000 claims abstract description 35
- 125000003277 amino group Chemical group 0.000 claims abstract description 27
- 239000000376 reactant Substances 0.000 claims abstract description 21
- 125000000524 functional group Chemical group 0.000 claims abstract description 15
- 125000002843 carboxylic acid group Chemical group 0.000 claims abstract description 12
- 238000006116 polymerization reaction Methods 0.000 claims description 56
- 229920000642 polymer Polymers 0.000 claims description 47
- 150000008064 anhydrides Chemical group 0.000 claims description 14
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 238000009833 condensation Methods 0.000 claims description 11
- 125000003118 aryl group Chemical group 0.000 claims description 10
- 150000003839 salts Chemical class 0.000 claims description 9
- 230000005494 condensation Effects 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 6
- 125000005647 linker group Chemical group 0.000 claims description 6
- 125000002877 alkyl aryl group Chemical group 0.000 claims description 4
- 125000000217 alkyl group Chemical group 0.000 claims description 4
- 150000001408 amides Chemical class 0.000 claims description 4
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 239000007787 solid Substances 0.000 claims description 4
- 238000007112 amidation reaction Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 claims description 2
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 15
- 150000001732 carboxylic acid derivatives Chemical group 0.000 description 15
- 239000000243 solution Substances 0.000 description 14
- MBYLVOKEDDQJDY-UHFFFAOYSA-N tris(2-aminoethyl)amine Chemical compound NCCN(CCN)CCN MBYLVOKEDDQJDY-UHFFFAOYSA-N 0.000 description 12
- 230000015572 biosynthetic process Effects 0.000 description 10
- PXGZQGDTEZPERC-UHFFFAOYSA-N 1,4-cyclohexanedicarboxylic acid Chemical compound OC(=O)C1CCC(C(O)=O)CC1 PXGZQGDTEZPERC-UHFFFAOYSA-N 0.000 description 9
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 7
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 7
- 150000007513 acids Chemical class 0.000 description 6
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 239000000203 mixture Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- -1 sulfinyl amino acid chloride derivatives Chemical class 0.000 description 6
- 238000003786 synthesis reaction Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 239000003795 chemical substances by application Substances 0.000 description 5
- 239000003960 organic solvent Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 4
- 239000008367 deionised water Substances 0.000 description 4
- 229910021641 deionized water Inorganic materials 0.000 description 4
- 238000002360 preparation method Methods 0.000 description 4
- 239000004953 Aliphatic polyamide Substances 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- GTDPSWPPOUPBNX-UHFFFAOYSA-N ac1mqpva Chemical compound CC12C(=O)OC(=O)C1(C)C1(C)C2(C)C(=O)OC1=O GTDPSWPPOUPBNX-UHFFFAOYSA-N 0.000 description 3
- 230000002378 acidificating effect Effects 0.000 description 3
- 229920003231 aliphatic polyamide Polymers 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 239000003054 catalyst Substances 0.000 description 3
- 230000000052 comparative effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- WOSVXXBNNCUXMT-UHFFFAOYSA-N cyclopentane-1,2,3,4-tetracarboxylic acid Chemical compound OC(=O)C1CC(C(O)=O)C(C(O)=O)C1C(O)=O WOSVXXBNNCUXMT-UHFFFAOYSA-N 0.000 description 3
- 238000001879 gelation Methods 0.000 description 3
- NAQMVNRVTILPCV-UHFFFAOYSA-N hexane-1,6-diamine Chemical compound NCCCCCCN NAQMVNRVTILPCV-UHFFFAOYSA-N 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003607 modifier Substances 0.000 description 3
- 238000012643 polycondensation polymerization Methods 0.000 description 3
- 239000000843 powder Substances 0.000 description 3
- 239000000047 product Substances 0.000 description 3
- 239000012266 salt solution Substances 0.000 description 3
- 229910001220 stainless steel Inorganic materials 0.000 description 3
- 239000010935 stainless steel Substances 0.000 description 3
- 239000001384 succinic acid Substances 0.000 description 3
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 2
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 2
- 235000019766 L-Lysine Nutrition 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- OFOBLEOULBTSOW-UHFFFAOYSA-N Malonic acid Chemical compound OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 2
- AHLPHDHHMVZTML-UHFFFAOYSA-N Ornithine Chemical compound NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 2
- JUJWROOIHBZHMG-UHFFFAOYSA-N Pyridine Chemical compound C1=CC=NC=C1 JUJWROOIHBZHMG-UHFFFAOYSA-N 0.000 description 2
- KKEYFWRCBNTPAC-UHFFFAOYSA-N Terephthalic acid Chemical compound OC(=O)C1=CC=C(C(O)=O)C=C1 KKEYFWRCBNTPAC-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- WNLRTRBMVRJNCN-UHFFFAOYSA-N adipic acid Chemical compound OC(=O)CCCCC(O)=O WNLRTRBMVRJNCN-UHFFFAOYSA-N 0.000 description 2
- 239000004760 aramid Substances 0.000 description 2
- 229920003235 aromatic polyamide Polymers 0.000 description 2
- 229910052785 arsenic Inorganic materials 0.000 description 2
- XRFXFAVKXJREHL-UHFFFAOYSA-N arsinine Chemical compound [As]1=CC=CC=C1 XRFXFAVKXJREHL-UHFFFAOYSA-N 0.000 description 2
- 238000010923 batch production Methods 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 235000011089 carbon dioxide Nutrition 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 229920001577 copolymer Polymers 0.000 description 2
- 239000000412 dendrimer Substances 0.000 description 2
- 229920000736 dendritic polymer Polymers 0.000 description 2
- 150000004985 diamines Chemical class 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 230000008570 general process Effects 0.000 description 2
- 238000011065 in-situ storage Methods 0.000 description 2
- QQVIHTHCMHWDBS-UHFFFAOYSA-N isophthalic acid Chemical compound OC(=O)C1=CC=CC(C(O)=O)=C1 QQVIHTHCMHWDBS-UHFFFAOYSA-N 0.000 description 2
- 229920002521 macromolecule Polymers 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004010 onium ions Chemical class 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 2
- XNGIFLGASWRNHJ-UHFFFAOYSA-N phthalic acid Chemical compound OC(=O)C1=CC=CC=C1C(O)=O XNGIFLGASWRNHJ-UHFFFAOYSA-N 0.000 description 2
- KIDHWZJUCRJVML-UHFFFAOYSA-N putrescine Chemical compound NCCCCN KIDHWZJUCRJVML-UHFFFAOYSA-N 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- CXMXRPHRNRROMY-UHFFFAOYSA-N sebacic acid Chemical compound OC(=O)CCCCCCCCC(O)=O CXMXRPHRNRROMY-UHFFFAOYSA-N 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 229940014800 succinic anhydride Drugs 0.000 description 2
- 125000004434 sulfur atom Chemical group 0.000 description 2
- 125000000101 thioether group Chemical group 0.000 description 2
- CBCKQZAAMUWICA-UHFFFAOYSA-N 1,4-phenylenediamine Chemical compound NC1=CC=C(N)C=C1 CBCKQZAAMUWICA-UHFFFAOYSA-N 0.000 description 1
- WUEHOBBABKCBHF-UHFFFAOYSA-N 1-n,1-n-bis(2-aminopropyl)propane-1,2-diamine Chemical compound CC(N)CN(CC(C)N)CC(C)N WUEHOBBABKCBHF-UHFFFAOYSA-N 0.000 description 1
- UYCICMIUKYEYEU-ZHACJKMWSA-N 3-[(e)-dodec-2-enyl]oxolane-2,5-dione Chemical compound CCCCCCCCC\C=C\CC1CC(=O)OC1=O UYCICMIUKYEYEU-ZHACJKMWSA-N 0.000 description 1
- HLBLWEWZXPIGSM-UHFFFAOYSA-N 4-Aminophenyl ether Chemical compound C1=CC(N)=CC=C1OC1=CC=C(N)C=C1 HLBLWEWZXPIGSM-UHFFFAOYSA-N 0.000 description 1
- JJPWJEGNCRGGGA-UHFFFAOYSA-N 4-[[2-[5-[2-(2,3-dihydro-1H-inden-2-ylamino)pyrimidin-5-yl]-1,3,4-oxadiazol-2-yl]acetyl]amino]benzoic acid Chemical compound C1C(CC2=CC=CC=C12)NC1=NC=C(C=N1)C1=NN=C(O1)CC(=O)NC1=CC=C(C(=O)O)C=C1 JJPWJEGNCRGGGA-UHFFFAOYSA-N 0.000 description 1
- RYKIXDBAIYMFDV-UHFFFAOYSA-N 5-(7-carboxyheptyl)-2-hexylcyclohex-3-ene-1-carboxylic acid Chemical compound CCCCCCC1C=CC(CCCCCCCC(O)=O)CC1C(O)=O RYKIXDBAIYMFDV-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- RPNUMPOLZDHAAY-UHFFFAOYSA-N Diethylenetriamine Chemical compound NCCNCCN RPNUMPOLZDHAAY-UHFFFAOYSA-N 0.000 description 1
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- 229920001730 Moisture cure polyurethane Polymers 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- POITUAGOFJFFAH-UHFFFAOYSA-N NCCN(CCN)CCN.NCCN(CCN)CCN.NCCN(CCN)CCNC(=O)CCC(=O)O.NCCN(CCNC(=O)CCC(=O)O)CCNC(=O)CCC(=O)O.O=C(O)CCC(=O)NCCN(CCNC(=O)CCC(=O)O)CCNC(=O)CCC(=O)O.O=C(O)CCC(=O)O.O=C1CCC(=O)O1 Chemical compound NCCN(CCN)CCN.NCCN(CCN)CCN.NCCN(CCN)CCNC(=O)CCC(=O)O.NCCN(CCNC(=O)CCC(=O)O)CCNC(=O)CCC(=O)O.O=C(O)CCC(=O)NCCN(CCNC(=O)CCC(=O)O)CCNC(=O)CCC(=O)O.O=C(O)CCC(=O)O.O=C1CCC(=O)O1 POITUAGOFJFFAH-UHFFFAOYSA-N 0.000 description 1
- 239000005700 Putrescine Substances 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 239000001361 adipic acid Substances 0.000 description 1
- 235000011037 adipic acid Nutrition 0.000 description 1
- 235000001014 amino acid Nutrition 0.000 description 1
- 239000002216 antistatic agent Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 150000004984 aromatic diamines Chemical class 0.000 description 1
- 239000010426 asphalt Substances 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- GHWVXCQZPNWFRO-UHFFFAOYSA-N butane-2,3-diamine Chemical compound CC(N)C(C)N GHWVXCQZPNWFRO-UHFFFAOYSA-N 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 239000002738 chelating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000000536 complexating effect Effects 0.000 description 1
- 239000008139 complexing agent Substances 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 238000010924 continuous production Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000012045 crude solution Substances 0.000 description 1
- 239000002781 deodorant agent Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000000032 diagnostic agent Substances 0.000 description 1
- 229940039227 diagnostic agent Drugs 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 229960001760 dimethyl sulfoxide Drugs 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 229920001971 elastomer Polymers 0.000 description 1
- 239000000806 elastomer Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005538 encapsulation Methods 0.000 description 1
- 238000013401 experimental design Methods 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 239000006260 foam Substances 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- ANSXAPJVJOKRDJ-UHFFFAOYSA-N furo[3,4-f][2]benzofuran-1,3,5,7-tetrone Chemical compound C1=C2C(=O)OC(=O)C2=CC2=C1C(=O)OC2=O ANSXAPJVJOKRDJ-UHFFFAOYSA-N 0.000 description 1
- 238000012637 gene transfection Methods 0.000 description 1
- 238000003306 harvesting Methods 0.000 description 1
- MUTGBJKUEZFXGO-UHFFFAOYSA-N hexahydrophthalic anhydride Chemical compound C1CCCC2C(=O)OC(=O)C21 MUTGBJKUEZFXGO-UHFFFAOYSA-N 0.000 description 1
- 229920000587 hyperbranched polymer Polymers 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 238000003402 intramolecular cyclocondensation reaction Methods 0.000 description 1
- 239000010985 leather Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- GBMDVOWEEQVZKZ-UHFFFAOYSA-N methanol;hydrate Chemical compound O.OC GBMDVOWEEQVZKZ-UHFFFAOYSA-N 0.000 description 1
- MGFYIUFZLHCRTH-UHFFFAOYSA-N nitrilotriacetic acid Chemical compound OC(=O)CN(CC(O)=O)CC(O)=O MGFYIUFZLHCRTH-UHFFFAOYSA-N 0.000 description 1
- 239000012299 nitrogen atmosphere Substances 0.000 description 1
- 238000004806 packaging method and process Methods 0.000 description 1
- 239000003973 paint Substances 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920002635 polyurethane Polymers 0.000 description 1
- 239000004814 polyurethane Substances 0.000 description 1
- 238000001556 precipitation Methods 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- UMJSCPRVCHMLSP-UHFFFAOYSA-N pyridine Natural products COC1=CC=CN=C1 UMJSCPRVCHMLSP-UHFFFAOYSA-N 0.000 description 1
- 230000035484 reaction time Effects 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 239000006254 rheological additive Substances 0.000 description 1
- 239000002195 soluble material Substances 0.000 description 1
- 238000001228 spectrum Methods 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000003784 tall oil Substances 0.000 description 1
- 230000009466 transformation Effects 0.000 description 1
- XZZNDPSIHUTMOC-UHFFFAOYSA-N triphenyl phosphate Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)(=O)OC1=CC=CC=C1 XZZNDPSIHUTMOC-UHFFFAOYSA-N 0.000 description 1
- HVLLSGMXQDNUAL-UHFFFAOYSA-N triphenyl phosphite Chemical compound C=1C=CC=CC=1OP(OC=1C=CC=CC=1)OC1=CC=CC=C1 HVLLSGMXQDNUAL-UHFFFAOYSA-N 0.000 description 1
- 239000004034 viscosity adjusting agent Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G83/00—Macromolecular compounds not provided for in groups C08G2/00 - C08G81/00
- C08G83/002—Dendritic macromolecules
- C08G83/005—Hyperbranched macromolecules
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/04—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/26—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from polyamines and polycarboxylic acids
- C08G69/28—Preparatory processes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08G—MACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
- C08G69/00—Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
- C08G69/02—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids
- C08G69/36—Polyamides derived from amino-carboxylic acids or from polyamines and polycarboxylic acids derived from amino acids, polyamines and polycarboxylic acids
Definitions
- the present invention relates to a process for the manufacture of hyperbranched polymers, and polymers made by such process. Specifically, the present invention relates to a practical polymerization process for the manufacture of hyperbranched polyamides in water, and hyperbranched polyamides made from such process employing aliphatic multifunctional monomers and specific ratios of amine to carboxylic acid groups.
- Polyamides represent one of the most important groups of polymers with excellent heat and flame resistance and high tensile strength and modulus. Branched polymers and copolymers have attracted considerable attention over the past decades, since many advanced materials with new or improved properties can be obtained therefrom.
- the terms “hyperbranched” and “highly branched” used herein with respect to branched polymers are intended to designate polymers having a relatively high percentage of propagated branching sites per number of polymerized monomer units, e.g. at least one branching site per every ten monomer units, preferably at least one branching site per every five monomer units and more preferably at least one branching site per every three monomer units.
- Highly branched polymers can be made by multi-step or one step processes. Multi-step generation processes were exemplified by Frechet in U.S. Pat. No. 5,041,516 and by Hult in U.S. Pat. No. 5,418,301. Both patents described that the highly branched polymers known as dendrimer or “starburst polymer” were made through a series of growth steps consisting of repeatedly reacting, isolating, and purifying.
- a 2 +B 3 polymerization di- and tri-functional monomers are reacted together.
- intramolecular cyclization must be minimized as a competing and chain terminating process during polymer propagation, all A groups and all B groups should have near equal reactivity in both the monomers as well as the growing polymers, and the A and B groups should have exclusive reactivity with each other.
- relatively few specific combinations of A 2 +B 3 polymerization schemes have been proposed.
- Jikei et al (Macromolecules, 32, 2061 (1999)), e.g., has reported synthesis of hyperbranched aromatic polyamides from aromatic diamines and trimesic acid.
- Copending, concurrently filed, commonly assigned USSN ______ is directed towards the synthesis of novel highly branched water soluble or dispersible polyamides using, e.g., an A 2 +B 3 or AB 2 approach by condensation polymerization of multifunctional monomer reactants comprising amine and carboxylic acid functional groups, where in order to obtain a water soluble or dispersible hyperbranched polyamide, at least one of the multifunctional monomer unit reactants contains an amine, phosphine, arsenine or sulfide group, such that the highly branched polyamide contains in the backbone thereof an N, P, As or S atom capable of forming an onium ion.
- the polymerization reaction employing solely aromatic monomers may only lead to soluble materials under certain conditions such as at very low concentration of monomer ( ⁇ 5 g/L).
- the conventional process for manufacturing commercial linear aliphatic polyamides is known as the “salt-strike” process.
- aliphatic dicarboxylic acid monomer is admixed with aliphatic diamine monomer in aqueous solution to form a salt.
- the salt is fed into a reactor in which both temperature and pressure are elevated. With the emission of water and volatile matter, molten polymer is formed and discharged.
- linear polyamides (a) the molar ratio of diamine and diacid must be equal to 1, or only low molecular weight material is obtained; (b) even with the ratio of diamine and diacid being 1, post-polymerization of pre-polymer at even higher temperature is often required in order to get high molecular weight material; (c) the resultant polymer chain usually only possesses limited NH 2 and/or COOH functionality (mostly not more than 2); and (d) high molecular weight linear polyamides are generally characterized by poor proccessability and solubility.
- R 1 and R 2 are each independently a monomeric, oligomeric, or polymeric compound nucleus
- x and y are integers of at least 2, preferably from 2 and 4, without x and y being 2 at the same time
- one of A and B represents an amine functional group
- the other of A and B represents a carboxylic acid functional group
- L represents a monomeric, oligomeric, or polymeric compound nucleus linking group between A and B
- n is at least 1 and m at least 2 and preferably n is 1 and m is 2 or 3, and wherein multiple carboxylic acid functional groups of a multi-functional monomer may be in anhydride form
- multiple carboxylic acid functional groups of a multi-functional monomer may be in anhydride form
- the invention is also directed towards soluble highly branched polyamides obtained from condensation of multifunctional amine and multifunctional acid functional group containing monomer reactants, wherein at least one of the multifunctional amine and the multifunctional acid monomers is aliphatic and the ratio of total amine functional groups to carboxylic acid functional groups in the monomer reactants is from 0.3 to 3.
- the invention is also directed towards soluble highly branched polyamides obtained from condensation of multifunctional amine and multifunctional acid functional group containing monomer reactants, wherein at least one of the multifunctional amine and the multifunctional acid monomers is aliphatic and the weight averaged molecular weight is above 1,000.
- the present invention advantageously provides a simple, practical, and environmentally friendly process for the manufacture of soluble hyperbranched polyamides comprising multifunctional in-chain and/or end groups.
- the present invention also provides a process for the manufacture of relatively high molecular weight soluble hyperbranched polyamides from multifunctional aliphatic monomers with a broad range of the ratio of functional amine groups to acid groups, and uniquely enables the formation of at least partially aliphatic polyamides wherein the ratio of total amine functional groups to carboxylic acid functional groups in the multifunctional monomer reactants is close to 1.
- Soluble hyperbranched polyamides may be obtained with commercially available materials and existing facility, of which the residual terminal groups may be functionalized and chemically capped.
- the process of the present invention comprises the steps of combining multifunctional monomer reactants comprising amine and carboxylic acid functional groups in a reactor with water, and reacting amine and carboxylic acid functional groups of the multi-functional monomers at elevated temperature and pressure for a period of time sufficient to form a highly branched polyamide.
- Polymerization proceeds by reaction of an amine group of a first monomer unit with an acid group of a second monomer unit to form a reaction product having an amide linkage between the first and second monomer units and repetition of such midation reaction between additional amine groups and acid groups of the multi-functional monomers and reaction products of the multi-functional monomers.
- the resulting highly branched polymer may be discharged from the reactor, and precipitated and purified according to conventional polymerization procedures, or the aqueous polymer solution may be directly further used.
- the multifunctional monomer reactants may comprise a combination of di- or higher amine functional group containing monomers and di- or higher carboxylic acid functional group containing monomers, wherein at least one of the amine group or the acid group containing monomers is a tri- or higher amine or acid functional group containing monomer, or a preformed salt of such di- or higher functional monomers.
- the polymerization process comprising multifunctional monomers can be considered as A x +B y hyperbranching polymerization where one of A x and B y represents a multi-functional amine group containing monomer and the other of A x and B y represents a multi-functional carboxylic acid group containing monomer.
- co-monomers of multifunctional amines and multifunctional acids used in the present process of manufacturing soluble hyperbranched polyamides, with the exceptions that the number of functionalities x and y of the co-monomers are each at least 2 with the functionality of at least one of the co-monomers being 3 or more.
- R 1 and R 2 are each independently a monomeric, oligomeric, or polymeric compound nucleus, and x and y are integers of at least 2, preferably between 2 and 4, without x and y being 2 at the same time.
- Each R 1 and R 2 compound nucleus may comprise, e.g., a further substituted or unsubstituted straight or branched alkyl, cycloalkyl, aryl or alkylaryl linking group moiety, or an oligomeric or polymeric chain moiety, to which the functional groups are attached.
- one of the multifunctional amines and multifunctional acids is di-functional (i.e., one of x and y is 2 in Formula I and II), and the other is tri- or tetra-functional (i.e., the other of x and y is 3 or 4 in Formula I and II).
- one of the multifunctional amines and multifunctional acids is di-functional, and the other is tri-functional.
- the present invention may employ anhydride group containing monomers as multifunctional acid monomers. With regard to anhydride group containing monomers, each anhydride group is considered as supplying two functional acid groups in the present process.
- a particular embodiment of the invention is directed towards soluble highly branched aliphatic or partially aliphatic polyamides obtained from condensation of multifunctional amine and multifunctional acid functional group containing monomer reactants, wherein at least one of the multifunctional amine and the multifunctional acid monomers is aliphatic (i.e., non-aromatic) and the ratio of total amine functional groups to carboxylic acid functional groups in the monomer reactants is from 0.3 to 3. Condensation of multifunctional aliphatic monomers to form soluble highly branched polyamides in organic solution has been found to be particularly problematic, especially where the ratio of amine groups to carboxylic acid groups of the multifunctional monomer reactants is close to one (e.g., between 0.3 and 3).
- the process of the invention advantageously enables the preparation of unique aliphatic and partially aliphatic highly branched polyamides.
- multifunctional arnines which may be used in the present invention include but are not limited to: tris(2-aminoethyl) amine, tris(2-aminopropyl)amine, diaminohexane, ethylenediamine, diethylenetriamine, p-phenylene diamine, 4,4′-oxydianiline, Jeffamines, and amino-substituted polydimethylsiloxanes.
- Examples of multifunctional acids which may be used in the present invention include but are not limited to: succinic acid, adipic acid, 1,4-cyclohexyl dicarboxylic acid, tall oil fatty acids, sebacic acid, dodecanedioic acid, dimer acids, C-19 dicarboxylic acid, C-21 dicarboxylic acid, nitrilotriacetic acid, trimesic acid, phthalic acid, isophthalic acid, terephthalic acid.
- Examples of multifunctional acids in anhydride form which may be used in the present invention include but are not limited to succinic anhydride, (cis-/trans-) 1,2-cyclohexanedicarboxylic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, 1,2,3,4-cyclopentane-tetra-carboxylic dianhydride.
- a pre-formed salt or an admixture of multifunctional amine, multifunctional acid or anhydride may be employed.
- the said pre-formed salt may be made in-situ or made separately.
- the salt made separately may be either purified prior to polymerization in accordance with the invention, or used in the form of a crude solution prepared in water.
- the multifunctional monomer reactants may comprise multi-functional branching monomers of the formula (III):
- a and B represents an amine functional group
- the other of A and B represents a carboxylic acid functional group
- L represents a linking group between A and B
- n is at least 1 and m at least 2.
- L may be any monomeric, oligomeric, or polymeric compound nucleus, such as a further substituted or unsubstituted straight or branched alkyl, cycloalkyl, aryl or alkylaryl linking group moiety, or an oligomeric or polymeric chain moiety
- n preferably represents 1 and m preferably represents 2 or 3, and most preferably 2.
- Multifunctional A n ⁇ L ⁇ B m branching monomers may themselves be commercially available, or may be prepared from commercially available starting materials using conventional reaction procedures.
- Multifunctional branching monomers may be pre-formed and isolated prior to subsequent reaction, or may be prepared in-situ in the formation of a highly branched polyamide in accordance with the invention.
- multiple carboxylic acid functional groups of a multi-functional branching monomer may be in anhydride form.
- Examples of multifunctional branching monomers for use in accordance with the invention include but are not limited to: 2,3-diaminoproponic acid, 2,5-diaminopentanoic acid, 1-Lysine hydrate.
- a highly branched water soluble or dispersible polyamide may be obtained using an A 2 +B 3 or AB 2 approach by condensation polymerization of multifunctional monomer reactants comprising amine cad carboxylic acid functional groups, where in order to obtain a water soluble or dispersible hyperbranched polyamide, at least one of the multifunctional monomer unit reactants contains an amine, phosphine, arsenine or sulfide group, such that the highly branched polyamide contains in the backbone thereof an N, P, As or S atom capable of forming an onium ion.
- the present invention may be advantageously employed for formation of such water soluble or dispersible polyamides.
- anhydride group containing multifunctional monomers a hybrid approach comprising both A x B y and A x +B y type hyperbranching polymerization may be employed, since a variety of monomers are formed through reacting amine and anhydride depending upon the experimental conditions employed.
- the mixture of triamine 1 and mono-anhydride 2 may yield the following different kinds of monomers wherein the content of each monomer is strongly dependent of the molar ratio of tramine to mono-anhydride, the method of preparation, and other experimental factors:
- the present process yield hyperbranched polyamide having at least one branched center with one branch site and at least one amide linkage along its backbone.
- One or more structural modifiers may additionally be fed to the reactor together with the multifunctional monomer(s) to modify the chemical structure or architecture of the final polymers may be modified by adding suitable mono- or multi-functional modifiers.
- other functional or special groups may be introduced by adding mono- or multifunctional agents.
- Highly branched polyamides may be prepared in accordance with the invention employing a pure single A n ⁇ L ⁇ B m type branching monomer compound in a “self-condensation” reaction, A x and B y multifunctional monomers in a co-condensation reaction, or a mixture of a variety of branching monomers or branching monomers and non-branching monomers may be employed to achieve a combination of self-condensation and co-condensation.
- Hyperbranched polyamides may be obtained which have number-average molecular weights of from 100 to 10 8 and polydispersity (the ratio of weight-average molecular weight to number-average molecular weight) from 1.01 to 200.
- the temperature and pressure of polymerization, as well as the ratio of amine to acid (or anhydride) groups of the monomers and the amount of water employed in the process of the present invention, are factors which can control the molecular weight, the nature and number of functional groups, the branching degree, and other structural features of the resulting hyperbranched polyamides.
- the temperature employed during polymerization is from 100 to 350° C., more preferably 150 to 280° C., and the pressure varies from 140 kPa to 50 ⁇ 10 3 kPa, preferably from 600 to 7 ⁇ 10 3 kPa. It is an advantage of the invention that polymerization of relatively high molecular weight highly branched polyamides can be obtained in a single polymerization step at such only moderately elevated temperatures. Optionally, solid polymer synthesized at such temperatures can be heated to even higher temperature in order to facilitate further reaction and obtain higher molecular weight poly mer.
- the ratio of amine to acid groups varies from 0.1 to 10, more preferably 0.2 to 6, most preferably 0.3 to 3. It is an advantage of the invention that relatively high molecular weight highly branched polymers can be obtained which are still soluble (i.e., without gelation), even where functional group ratios are close to 1. Water is required for conversion of multi-functional monomers to soluble hyperbranched polyamide without gelation in accordance with the process of the invention.
- the content of water may be from 0.1 to 99.9 wt % in relative to total amount of reaction solution, more preferably 0.5 to 50 wt %, most preferably 1 to 30 wt %.
- the present process is conducted preferably in the absence of a catalyst.
- any catalysts that can facilitate the polymerization and enhance the degree of the control of the molecular weight, the nature and number of functional groups, the branching degree, and other structural features of the hyperbranched polyamide can be optionally used.
- the hyperbranched polyamides obtained by the present invention can be made through batch process, semi-batch process, continuous process, and the like. Many of these processes have been well documented.
- the polymerization reactor preferably may be of the type typically used in the synthesis of linear polyamides, for example a stainless steel autoclave.
- reaction time required to complete polymerization varies depending upon the specific polymerization system and experimental conditions employed. In a typical embodiment, the polymerization time will be from 0.1 to 100 hours, more typically 0.5 to 5 hours. Combinatorial chemistry and experimental design can be used in the present invention to explore and optimize the experimental conditions.
- the final polymers can be purified with known processes such as precipitation, extraction, and the like. Polymers can be used in the forms of solid particle, solution, dispersion, and the like. Since the hyperbranched polyamides made from the present invention comprise either NH 2 or COOH or both of NH 2 and COOH functional end groups, the modification of NH 2 and COOH groups through conventional reactions may yield hyperbranched polyamides with a variety of functional means and with more complex structure/architecture.
- the polymers and copolymers prepared in the present invention can be used in a variety of applications such as plastics, elastomers, fibers, engineering resins, coatings, paints, adhesives, asphalt modifiers, detergents, diagnostic agents and supports, dispersants, emulsifiers, rheology modifiers, viscosity modifiers, in ink and imaging compositions, as leather and cements, lubricants, surfactant, as paper additives, as intermediates for chain extensions such as polyurethanes, as additives in inkjet, printing, optical storage, photography, photoresist, and coloration of polymer, as water treatment chemicals, cosmetics, hair products, personal care products, polymeric dyes, polymeric couplers, polymeric developers, antistatic agents, in food and beverage packaging, pharmaceuticals, carriers for drug and biological materials, slow release agent formulations, crosslinking agents, foams, deodorants, porosity control agents, complexing and chelating agents, carriers for chiral resolution agents, catalysts, carriers for gene
- Example 1 To a three-neck round flask equipped with a stirring bar and water condenser, 117 grams (0.6838 mol) of 1,4-cyclohexanedicarboxylic acid, 100 grams (0.6838 mol) of tris(2-aminoethyl)amine, and 440 ml of deionized water were added. The solution was heated at 60° C. for three hours. The salt solution obtained was concentrated to contain ca. 65 wt % solid (35 wt % water) and then added to a 1 liter stainless steel autoclave. Polymerization was carried out, at 235° C. and ca. 3.3 ⁇ 10 3 kPa (416-480 psi) for 3 hours. The polymer was precipitated twice from cold acetone and dried at room temperature under vacuum for 24 hours.
- Example 2 The general process of Example 1 was repeated, except for changing the molar ratio of reactants to obtain a different ratio of reactive NH 2 and COOH groups.
- Table 1 summarizes the results for hyperbranching polymerization of tris(2-aminoethyl)amine (A 3 ) and 1,4-cyclohexanedicarboxylic acid (B 2 ).
- Solubility d No [A]/[B] a Yield b , Tg, ° C. M w,SEC c Water Methanol Acetone 1 3/2 72% 130 ⁇ 20K S S N 2 3/1 30% 65 S S N
- Example 3 All reactants, tris(2-aminoethyl)amine (44grams), 1,4-cyclohexanedicarboxylic acid (17 gram), pyridine (35grams), N-methylpyrolidinone (396 grams) and triphenyl phosphate (93 grams), were charged into a 1L three-neck round bottom flask along with a stir bar. The solution was stirred at 80° C. in a nitrogen atmosphere for three hours. The product was precipitated in 2L of cold ether, collected via suction filtration and dried in the vacuum oven.
- Examples 4 and 5 The general process of Example 3 was repeated, except for changing the molar ratio of reactants to obtain a different ratio of reactive NH 2 and COOH groups.
- Table 2 shows the polymerization results. TABLE 2 No [A]/[B] [M] o a [P(OPh) 3 ]/[NH 2 ] T, hr Yield Tg, ° C. 3 9/2 3.25% 1/3 3 30% 83 4 3/1 3.25% 1/3 3 c 5 3/2 3.25% 1/3 3 c
- a 40% salt solution in water was first prepared by heating a mixture of diaminobutane (A 2 , 4.4grams) and trimesic acid (B 3 , 10.5 grams) in 10 ml of water at 60° C. for 2 hours. Polymerization of the monomer salt solution prepared above was carried out at 250° C. and under 3172 kPa (460 psi) for 3.5. The polymer was precipitated from cold acetone with 90% yield.
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Polyamides (AREA)
Abstract
Description
- The present invention relates to a process for the manufacture of hyperbranched polymers, and polymers made by such process. Specifically, the present invention relates to a practical polymerization process for the manufacture of hyperbranched polyamides in water, and hyperbranched polyamides made from such process employing aliphatic multifunctional monomers and specific ratios of amine to carboxylic acid groups.
- Polyamides represent one of the most important groups of polymers with excellent heat and flame resistance and high tensile strength and modulus. Branched polymers and copolymers have attracted considerable attention over the past decades, since many advanced materials with new or improved properties can be obtained therefrom. The terms “hyperbranched” and “highly branched” used herein with respect to branched polymers are intended to designate polymers having a relatively high percentage of propagated branching sites per number of polymerized monomer units, e.g. at least one branching site per every ten monomer units, preferably at least one branching site per every five monomer units and more preferably at least one branching site per every three monomer units. Highly branched polymers can be made by multi-step or one step processes. Multi-step generation processes were exemplified by Frechet in U.S. Pat. No. 5,041,516 and by Hult in U.S. Pat. No. 5,418,301. Both patents described that the highly branched polymers known as dendrimer or “starburst polymer” were made through a series of growth steps consisting of repeatedly reacting, isolating, and purifying.
- One-step process was first conceptualized by Flory (J. Am. Chem. Soc., 74, p2718 (1952)) who demonstrated by theoretical analysis that a highly branched and soluble polymers could be formed from monomers comprising the structure AB2, where A and B are reactive groups, by one-step condensation polymerization. In contrast to the dendrimers, the polymer formed by AB2 polymerization is randomly branched. Most AB2 type monomers, however, are not commercially available, and access to such monomers accordingly involves synthetic efforts, which is potentially problematic, especially on a large scale. To cope with such problem, one-step process for formation of a highly branched polymer may also use an A2+B3 approach. In A2+B3 polymerization, di- and tri-functional monomers are reacted together. For ideal A2+B3 polymerization, intramolecular cyclization must be minimized as a competing and chain terminating process during polymer propagation, all A groups and all B groups should have near equal reactivity in both the monomers as well as the growing polymers, and the A and B groups should have exclusive reactivity with each other. In view of such requirements, relatively few specific combinations of A2+B3 polymerization schemes have been proposed.
- With regard to the synthesis of hyperbranched polyamides from AB2-type monomers, Kim reported the synthesis of hyperbranched aromatic polyamides from sulfinyl amino acid chloride derivatives in organic solvents (J. Am. Chem. Soc., 114, 4947 (1992)). U.S. Pat No. 5,514,764 disclosed preparation of hyperbranched aromatic polyesters and polyamides by a one-step process of polymerizing a monomer of the formula A−R−B2 where R represents an aromatic moiety. U.S. Pat. No. 5,567,795 disclosed synthesis of highly branched polymers in a single processing step by using branching aromatic monomers and an end-capping monomer. With regard to A2+B3 polymerization, Jikei et al (Macromolecules, 32, 2061 (1999)), e.g., has reported synthesis of hyperbranched aromatic polyamides from aromatic diamines and trimesic acid. Copending, concurrently filed, commonly assigned USSN ______ (Kodak Docket 82298) is directed towards the synthesis of novel highly branched water soluble or dispersible polyamides using, e.g., an A2+B3 or AB2 approach by condensation polymerization of multifunctional monomer reactants comprising amine and carboxylic acid functional groups, where in order to obtain a water soluble or dispersible hyperbranched polyamide, at least one of the multifunctional monomer unit reactants contains an amine, phosphine, arsenine or sulfide group, such that the highly branched polyamide contains in the backbone thereof an N, P, As or S atom capable of forming an onium ion.
- There are, however, disadvantages associated with the polymerization processes described in the prior art for the manufacture of hyperbranched polyamides. First, the use of organic solvent is not environmentally friendly and practical. Second, as shown previously by Jikei and others (Macromolecules, 32, 2061 (1999)), the A2+B3 polymerization of aromatic di-amine (A2) and aromatic tri-carboxylic acid (B3) can result in gelation within 10-20 min when the feed ratio of amino and carboxyl groups was equal to 1. Moreover, even with the feed ratio of 2:3 of amine to acid group in A2+B3 approach of Jikei, the polymerization reaction employing solely aromatic monomers may only lead to soluble materials under certain conditions such as at very low concentration of monomer (<5 g/L).
- The conventional process for manufacturing commercial linear aliphatic polyamides is known as the “salt-strike” process. In this process, aliphatic dicarboxylic acid monomer is admixed with aliphatic diamine monomer in aqueous solution to form a salt. The salt is fed into a reactor in which both temperature and pressure are elevated. With the emission of water and volatile matter, molten polymer is formed and discharged. The following limitations may be associated with the described manufacture of linear polyamides: (a) the molar ratio of diamine and diacid must be equal to 1, or only low molecular weight material is obtained; (b) even with the ratio of diamine and diacid being 1, post-polymerization of pre-polymer at even higher temperature is often required in order to get high molecular weight material; (c) the resultant polymer chain usually only possesses limited NH2 and/or COOH functionality (mostly not more than 2); and (d) high molecular weight linear polyamides are generally characterized by poor proccessability and solubility.
- It would be desirable to provide a simple, practical, and environmentally friendly process for the manufacture of soluble hyperbranched polyamides with multifunctional groups. There is also another need to develop a manufacturing process which will work well with broader ranges of the ratio of amine groups to acidic groups. It would be further desirable to provide soluble highly branched polyamides obtained by condensation of multifunctional amine and multifunctional acid monomers where at least one of the multifunctional monomers is aliphatic, and where the ratio of total amine functional groups to total acid functional groups of the monomers is close to one.
- In accordance with one embodiment of the invention, a process for the manufacture of soluble hyperbranched polyamides is disclosed comprising
- (a) combining in a reactor water and (a1) multi-functional di- or higher amine functional group containing monomers represented by the following formula (I) and multi-functional di- or higher carboxylic acid functional group containing monomers represented by the following formula (II), or a preformed salt of such di- or higher functional monomers, or (a2) multi-functional branching monomers of the formula (III):
- R1(NH2)x (I)
- R2(COOH)y (II)
- An−L−Bm (III)
- where in formulas (I) and (II), R1 and R2 are each independently a monomeric, oligomeric, or polymeric compound nucleus, x and y are integers of at least 2, preferably from 2 and 4, without x and y being 2 at the same time, and in formula (III), one of A and B represents an amine functional group, the other of A and B represents a carboxylic acid functional group, L represents a monomeric, oligomeric, or polymeric compound nucleus linking group between A and B, n is at least 1 and m at least 2, and preferably n is 1 and m is 2 or 3, and wherein multiple carboxylic acid functional groups of a multi-functional monomer may be in anhydride form, and
- (b) reacting amine and carboxylic acid functional groups of the multi-functional monomers at a temperature of at least 100° C. and a pressure of at least 140 kPa, wherein polymerization proceeds by reaction of an amine group of a first monomer unit with an acid group of a second monomer unit to form a reaction product having an amide linkage between the first and second monomer units and repetition of such amidation reaction between additional amine groups and acid groups of the multi-functional monomers and reaction products of the multi-functional monomers for a period of time sufficient to form a highly branched polyamide.
- In accordance with another embodiment, the invention is also directed towards soluble highly branched polyamides obtained from condensation of multifunctional amine and multifunctional acid functional group containing monomer reactants, wherein at least one of the multifunctional amine and the multifunctional acid monomers is aliphatic and the ratio of total amine functional groups to carboxylic acid functional groups in the monomer reactants is from 0.3 to 3.
- In accordance with a further embodiment, the invention is also directed towards soluble highly branched polyamides obtained from condensation of multifunctional amine and multifunctional acid functional group containing monomer reactants, wherein at least one of the multifunctional amine and the multifunctional acid monomers is aliphatic and the weight averaged molecular weight is above 1,000.
- The present invention advantageously provides a simple, practical, and environmentally friendly process for the manufacture of soluble hyperbranched polyamides comprising multifunctional in-chain and/or end groups. The present invention also provides a process for the manufacture of relatively high molecular weight soluble hyperbranched polyamides from multifunctional aliphatic monomers with a broad range of the ratio of functional amine groups to acid groups, and uniquely enables the formation of at least partially aliphatic polyamides wherein the ratio of total amine functional groups to carboxylic acid functional groups in the multifunctional monomer reactants is close to 1. Soluble hyperbranched polyamides may be obtained with commercially available materials and existing facility, of which the residual terminal groups may be functionalized and chemically capped.
- The process of the present invention comprises the steps of combining multifunctional monomer reactants comprising amine and carboxylic acid functional groups in a reactor with water, and reacting amine and carboxylic acid functional groups of the multi-functional monomers at elevated temperature and pressure for a period of time sufficient to form a highly branched polyamide. Polymerization proceeds by reaction of an amine group of a first monomer unit with an acid group of a second monomer unit to form a reaction product having an amide linkage between the first and second monomer units and repetition of such midation reaction between additional amine groups and acid groups of the multi-functional monomers and reaction products of the multi-functional monomers. The resulting highly branched polymer may be discharged from the reactor, and precipitated and purified according to conventional polymerization procedures, or the aqueous polymer solution may be directly further used.
- In accordance with one embodiment of the invention, the multifunctional monomer reactants may comprise a combination of di- or higher amine functional group containing monomers and di- or higher carboxylic acid functional group containing monomers, wherein at least one of the amine group or the acid group containing monomers is a tri- or higher amine or acid functional group containing monomer, or a preformed salt of such di- or higher functional monomers. The polymerization process comprising multifunctional monomers can be considered as Ax+By hyperbranching polymerization where one of Ax and By represents a multi-functional amine group containing monomer and the other of Ax and By represents a multi-functional carboxylic acid group containing monomer. There is no particular requirement with regard to co-monomers of multifunctional amines and multifunctional acids used in the present process of manufacturing soluble hyperbranched polyamides, with the exceptions that the number of functionalities x and y of the co-monomers are each at least 2 with the functionality of at least one of the co-monomers being 3 or more.
- The compounds with multiple amine substitutes can be represented by the following formula (I):
- R1(NH2)x (I)
- and the multiple acids can be represented by the following formula (II):
- R2(COOH)y (II)
- wherein:
- R1 and R2 are each independently a monomeric, oligomeric, or polymeric compound nucleus, and x and y are integers of at least 2, preferably between 2 and 4, without x and y being 2 at the same time. Each R1 and R2 compound nucleus may comprise, e.g., a further substituted or unsubstituted straight or branched alkyl, cycloalkyl, aryl or alkylaryl linking group moiety, or an oligomeric or polymeric chain moiety, to which the functional groups are attached.
- In a preferred embodiment, one of the multifunctional amines and multifunctional acids is di-functional (i.e., one of x and y is 2 in Formula I and II), and the other is tri- or tetra-functional (i.e., the other of x and y is 3 or 4 in Formula I and II). In a particularly preferred embodiment, one of the multifunctional amines and multifunctional acids is di-functional, and the other is tri-functional. In a particular embodiment, the present invention may employ anhydride group containing monomers as multifunctional acid monomers. With regard to anhydride group containing monomers, each anhydride group is considered as supplying two functional acid groups in the present process.
- A particular embodiment of the invention is directed towards soluble highly branched aliphatic or partially aliphatic polyamides obtained from condensation of multifunctional amine and multifunctional acid functional group containing monomer reactants, wherein at least one of the multifunctional amine and the multifunctional acid monomers is aliphatic (i.e., non-aromatic) and the ratio of total amine functional groups to carboxylic acid functional groups in the monomer reactants is from 0.3 to 3. Condensation of multifunctional aliphatic monomers to form soluble highly branched polyamides in organic solution has been found to be particularly problematic, especially where the ratio of amine groups to carboxylic acid groups of the multifunctional monomer reactants is close to one (e.g., between 0.3 and 3). The process of the invention advantageously enables the preparation of unique aliphatic and partially aliphatic highly branched polyamides.
- Examples of multifunctional arnines which may be used in the present invention include but are not limited to: tris(2-aminoethyl) amine, tris(2-aminopropyl)amine, diaminohexane, ethylenediamine, diethylenetriamine, p-phenylene diamine, 4,4′-oxydianiline, Jeffamines, and amino-substituted polydimethylsiloxanes.
- Examples of multifunctional acids which may be used in the present invention include but are not limited to: succinic acid, adipic acid, 1,4-cyclohexyl dicarboxylic acid, tall oil fatty acids, sebacic acid, dodecanedioic acid, dimer acids, C-19 dicarboxylic acid, C-21 dicarboxylic acid, nitrilotriacetic acid, trimesic acid, phthalic acid, isophthalic acid, terephthalic acid.
- Examples of multifunctional acids in anhydride form which may be used in the present invention include but are not limited to succinic anhydride, (cis-/trans-) 1,2-cyclohexanedicarboxylic anhydride, 1,2,4,5-benzenetetracarboxylic dianhydride, 1,2,3,4-cyclopentane-tetra-carboxylic dianhydride.
- In another particular embodiment of the present invention, a pre-formed salt or an admixture of multifunctional amine, multifunctional acid or anhydride may be employed. The said pre-formed salt may be made in-situ or made separately. The salt made separately may be either purified prior to polymerization in accordance with the invention, or used in the form of a crude solution prepared in water.
- In accordance with a further embodiment of the invention, the multifunctional monomer reactants may comprise multi-functional branching monomers of the formula (III):
- An−L−Bm (III)
- where one of A and B represents an amine functional group, the other of A and B represents a carboxylic acid functional group, L represents a linking group between A and B, and n is at least 1 and m at least 2. L may be any monomeric, oligomeric, or polymeric compound nucleus, such as a further substituted or unsubstituted straight or branched alkyl, cycloalkyl, aryl or alkylaryl linking group moiety, or an oligomeric or polymeric chain moiety, and n preferably represents 1 and m preferably represents 2 or 3, and most preferably 2. Multifunctional An−L−Bm branching monomers may themselves be commercially available, or may be prepared from commercially available starting materials using conventional reaction procedures. Multifunctional branching monomers may be pre-formed and isolated prior to subsequent reaction, or may be prepared in-situ in the formation of a highly branched polyamide in accordance with the invention. As in the case of Ax+By type hyperbranching polymerization as described above, multiple carboxylic acid functional groups of a multi-functional branching monomer may be in anhydride form.
- Examples of multifunctional branching monomers for use in accordance with the invention include but are not limited to: 2,3-diaminoproponic acid, 2,5-diaminopentanoic acid, 1-Lysine hydrate.
- As disclosed in copending, concurrently filed, commonly assigned USSN ______ (Kodak Docket 82298), the disclosure of which is hereby incorporated by reference, a highly branched water soluble or dispersible polyamide may be obtained using an A2+B3 or AB2 approach by condensation polymerization of multifunctional monomer reactants comprising amine cad carboxylic acid functional groups, where in order to obtain a water soluble or dispersible hyperbranched polyamide, at least one of the multifunctional monomer unit reactants contains an amine, phosphine, arsenine or sulfide group, such that the highly branched polyamide contains in the backbone thereof an N, P, As or S atom capable of forming an onium ion. The present invention may be advantageously employed for formation of such water soluble or dispersible polyamides.
-
- The present process yield hyperbranched polyamide having at least one branched center with one branch site and at least one amide linkage along its backbone. One or more structural modifiers may additionally be fed to the reactor together with the multifunctional monomer(s) to modify the chemical structure or architecture of the final polymers may be modified by adding suitable mono- or multi-functional modifiers. Also, other functional or special groups may be introduced by adding mono- or multifunctional agents. Highly branched polyamides may be prepared in accordance with the invention employing a pure single An−L−Bm type branching monomer compound in a “self-condensation” reaction, Ax and By multifunctional monomers in a co-condensation reaction, or a mixture of a variety of branching monomers or branching monomers and non-branching monomers may be employed to achieve a combination of self-condensation and co-condensation.
- Hyperbranched polyamides may be obtained which have number-average molecular weights of from 100 to 108 and polydispersity (the ratio of weight-average molecular weight to number-average molecular weight) from 1.01 to 200.
- The temperature and pressure of polymerization, as well as the ratio of amine to acid (or anhydride) groups of the monomers and the amount of water employed in the process of the present invention, are factors which can control the molecular weight, the nature and number of functional groups, the branching degree, and other structural features of the resulting hyperbranched polyamides.
- In a preferred embodiment, the temperature employed during polymerization is from 100 to 350° C., more preferably 150 to 280° C., and the pressure varies from 140 kPa to 50×103 kPa, preferably from 600 to 7×103 kPa. It is an advantage of the invention that polymerization of relatively high molecular weight highly branched polyamides can be obtained in a single polymerization step at such only moderately elevated temperatures. Optionally, solid polymer synthesized at such temperatures can be heated to even higher temperature in order to facilitate further reaction and obtain higher molecular weight poly mer.
- In a preferred embodiment, the ratio of amine to acid groups (including acid functional groups of any anhydride groups) varies from 0.1 to 10, more preferably 0.2 to 6, most preferably 0.3 to 3. It is an advantage of the invention that relatively high molecular weight highly branched polymers can be obtained which are still soluble (i.e., without gelation), even where functional group ratios are close to 1. Water is required for conversion of multi-functional monomers to soluble hyperbranched polyamide without gelation in accordance with the process of the invention. In a preferred embodiment, the content of water may be from 0.1 to 99.9 wt % in relative to total amount of reaction solution, more preferably 0.5 to 50 wt %, most preferably 1 to 30 wt %.
- The present process is conducted preferably in the absence of a catalyst. However, any catalysts that can facilitate the polymerization and enhance the degree of the control of the molecular weight, the nature and number of functional groups, the branching degree, and other structural features of the hyperbranched polyamide can be optionally used.
- The hyperbranched polyamides obtained by the present invention can be made through batch process, semi-batch process, continuous process, and the like. Many of these processes have been well documented. The polymerization reactor preferably may be of the type typically used in the synthesis of linear polyamides, for example a stainless steel autoclave.
- The reaction time required to complete polymerization varies depending upon the specific polymerization system and experimental conditions employed. In a typical embodiment, the polymerization time will be from 0.1 to 100 hours, more typically 0.5 to 5 hours. Combinatorial chemistry and experimental design can be used in the present invention to explore and optimize the experimental conditions.
- The final polymers can be purified with known processes such as precipitation, extraction, and the like. Polymers can be used in the forms of solid particle, solution, dispersion, and the like. Since the hyperbranched polyamides made from the present invention comprise either NH2 or COOH or both of NH2 and COOH functional end groups, the modification of NH2 and COOH groups through conventional reactions may yield hyperbranched polyamides with a variety of functional means and with more complex structure/architecture.
- The polymers and copolymers prepared in the present invention can be used in a variety of applications such as plastics, elastomers, fibers, engineering resins, coatings, paints, adhesives, asphalt modifiers, detergents, diagnostic agents and supports, dispersants, emulsifiers, rheology modifiers, viscosity modifiers, in ink and imaging compositions, as leather and cements, lubricants, surfactant, as paper additives, as intermediates for chain extensions such as polyurethanes, as additives in inkjet, printing, optical storage, photography, photoresist, and coloration of polymer, as water treatment chemicals, cosmetics, hair products, personal care products, polymeric dyes, polymeric couplers, polymeric developers, antistatic agents, in food and beverage packaging, pharmaceuticals, carriers for drug and biological materials, slow release agent formulations, crosslinking agents, foams, deodorants, porosity control agents, complexing and chelating agents, carriers for chiral resolution agents, catalysts, carriers for gene transfection, for encapsulation, as light harvesting materials, as non-linear optical materials, to form super macromolecular assemble.
- The invention can be better appreciated by reference to the following specific embodiments.
- A typical example of making hyperbranched polyamides from hyperbranching polymerization of tris(2-aminoethyl)amine (A3) and 1,4-cyclohexanedicarboxylic acid (B2) in water is described as follows:
- Example 1: To a three-neck round flask equipped with a stirring bar and water condenser, 117 grams (0.6838 mol) of 1,4-cyclohexanedicarboxylic acid, 100 grams (0.6838 mol) of tris(2-aminoethyl)amine, and 440 ml of deionized water were added. The solution was heated at 60° C. for three hours. The salt solution obtained was concentrated to contain ca. 65 wt % solid (35 wt % water) and then added to a 1 liter stainless steel autoclave. Polymerization was carried out, at 235° C. and ca. 3.3×103 kPa (416-480 psi) for 3 hours. The polymer was precipitated twice from cold acetone and dried at room temperature under vacuum for 24 hours.
- Example 2: The general process of Example 1 was repeated, except for changing the molar ratio of reactants to obtain a different ratio of reactive NH2 and COOH groups.
- Table 1 summarizes the results for hyperbranching polymerization of tris(2-aminoethyl)amine (A3) and 1,4-cyclohexanedicarboxylic acid (B2).
TABLE 1 Solubilityd No [A]/[B]a Yieldb, Tg, ° C. Mw,SEC c Water Methanol Acetone 1 3/2 72% 130 ˜20K S S N 2 3/1 30% 65 S S N - A typical example of making hyperbranched polyamides from hyperbranching polymerization of tris(2-aminoethyl)amine (A3) and 1,4-cyclohexanedicarboxylic acid (B2) in organic solvent is described as follows:
- Example 3: All reactants, tris(2-aminoethyl)amine (44grams), 1,4-cyclohexanedicarboxylic acid (17 gram), pyridine (35grams), N-methylpyrolidinone (396 grams) and triphenyl phosphate (93 grams), were charged into a 1L three-neck round bottom flask along with a stir bar. The solution was stirred at 80° C. in a nitrogen atmosphere for three hours. The product was precipitated in 2L of cold ether, collected via suction filtration and dried in the vacuum oven.
- Examples 4 and 5: The general process of Example 3 was repeated, except for changing the molar ratio of reactants to obtain a different ratio of reactive NH2 and COOH groups.
- Table 2 shows the polymerization results.
TABLE 2 No [A]/[B] [M]o a [P(OPh)3]/[NH2] T, hr Yield Tg, ° C. 3 9/2 3.25% 1/3 3 30% 83 4 3/1 3.25% 1/3 3 c 5 3/2 3.25% 1/3 3 c - While hyperbranching polymerization of tris(2-aminoethyl)amine (A3) and 1,4-cyclohexanedicarboxylic acid (B2) in organic solvents and in the presence of condensation agent worked with relatively high molar ratio of amines to acid group in monomers in Comparative Example 3, Comparative Examples 4 and 5 demonstrate that polymerization of monomers with functional group ratios closer to one did not result in successful polymerization as was attained in Examples 1 and 2.
- A variety of experimental conditions as designated in Table 3 were employed for the polymerization of tris(2-aminoethyl)amine (A3) and succinic acid (B2) in water. The general procedure employed was otherwise generally the same as in Example 1, except for using succinic acid instead of 1,4-cyclohexanedicarboxylic acid as B2 monomer. The polymerization results are summarized in Table 3.
TABLE 3 No [A]/[B] H2O % T, ° C. Time, h Pa, kPa Yield Tg, ° C. Mw,SEC 6 3/1 34 235 3.5 2758 71% 34 7 3/2 35 235 3.5 2758 47% 53 8 3/4 33 235 3.5 2758 60% 50 9 3/2 35 215 3.5 690 92% 61 10 3/2 5 210 3.5 620 83% 48 12,000 11b 3/2 <0.5 200 3.5 <140 Gel 12 3/2 30 250 3.5 2896 93% 58 3,800 13 3/2 30 280 3.5 3999 93% 67 4,800 14 1/1 30 250 3.5 2689 90% 68 11,800 15 1/1 30 280 3.5 4482 63% 52 2,000 16 1/1 30 210 3.5 690 80% 82 6,900 17 1/1 30 250 15 2758 65% - The above results show that soluble (non-gelled) highly branched polyamides of relatively high molecular weight (e,g, above 1,000, above 2,000, above 4,000, and more preferably above 6,000) may be obtained from processes in accordance with the invention employing multifunctional monomers with a variety of amine to carboxylic acid functional group molar ratios.
- An admixture of 13.5 grams of L-lysine and 8 grams of deionized water was added to a 50 ml stainless steel autoclave. Polymerization was carried out at 250° C. and under 2689 kPa (390 psi) for 3 hours. The resulting polymer was precipitated twice from cold acetone and dried at room temperature under vacuum for 24 hours with 90% yield.
- 8.88 grams of tris(2-aminoethyl)amine (A3) was charged into a round bottom flask containing 35 ml of ethanol and a stir bar. After cooling down the solution with a dry ice/acetone bath, a succinic anhydride THF solution (6.07 grams of monomer in 20 ml of TJF) was slowly added over a 30 min period of time. The solution was then allowed to stir at room temperature for two hours and the solvents were removed by rotory evaporation. Polymerization of a monomer solution comprising the dry powder as prepared above and 7.7 ml of deionized water at 250° C. and under 2827 kPa (410 psi) for 3.5 hours gave rise to hyperbranched polyamides with 85% yield. The polymer is soluble in water and methanol, but not in acetone.
- 10.5 grams of diaminohexane (A2) was charged into a round bottom flask containing 35 ml of ethanol and a stir bar. After cooling down the solution with a dry ice/acetone bath, a 1,2,3,4-cyclopentane-tetra-carboxylic dianhydride THF solution (6.33 grams monomer in 15 ml of TBF) was slowly added over ca, 30 min period of time. The solution was then allowed to stir at room temperature for two hours and the solvents were removed by rotory evaporation. Polymerization of a monomer solution comprising the dry powder as prepared above and 7.4 ml of deionized water at 250° C. and under 3172 kPa (460 psi) for 3.5 hours gave rise to white powder hyperbranched polyamides with 82% yield. The polymer is soluble in acidic water, and has a Tg of 65° C.
- A 40% salt solution in water was first prepared by heating a mixture of diaminobutane (A2, 4.4grams) and trimesic acid (B3, 10.5 grams) in 10 ml of water at 60° C. for 2 hours. Polymerization of the monomer salt solution prepared above was carried out at 250° C. and under 3172 kPa (460 psi) for 3.5. The polymer was precipitated from cold acetone with 90% yield.
- A mixture of 2.30 grams of polymer obtained from Example 14 and 7.40 grams of 2-dodecen-1-yl succinic anhydride in 30ml of methylsulfoxide was stirred at room temperature for 4 hours. The final polymer was precipitated from acetone and dried under vacuum overnight. Both NMR and MS spectra confirmed a complete transformation of —NH2 groups to —NH—C(O)— units. The solubility of the polymers before and after modification was also different: the parent polymer was soluble in both acidic and basic water, while the modified polymer was only dispersible in basic water.
- The invention has been described in detail with particular reference to certain preferred embodiments thereof, but it will be understood that variations and modifications can be effected within the spirit and scope of the invention.
Claims (30)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/919,097 US6541599B1 (en) | 2001-07-31 | 2001-07-31 | Process for manufacture of soluble highly branched polyamides, and at least partially aliphatic highly branched polyamides obtained therefrom |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/919,097 US6541599B1 (en) | 2001-07-31 | 2001-07-31 | Process for manufacture of soluble highly branched polyamides, and at least partially aliphatic highly branched polyamides obtained therefrom |
Publications (2)
Publication Number | Publication Date |
---|---|
US20030055209A1 true US20030055209A1 (en) | 2003-03-20 |
US6541599B1 US6541599B1 (en) | 2003-04-01 |
Family
ID=25441505
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/919,097 Expired - Fee Related US6541599B1 (en) | 2001-07-31 | 2001-07-31 | Process for manufacture of soluble highly branched polyamides, and at least partially aliphatic highly branched polyamides obtained therefrom |
Country Status (1)
Country | Link |
---|---|
US (1) | US6541599B1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6872800B1 (en) * | 1999-05-05 | 2005-03-29 | Franck Bouquerel | Hyperbranched copolyamide, composition based on said hyperbranched copolyamide and method for obtaining same |
WO2006018641A1 (en) * | 2004-08-17 | 2006-02-23 | Unilever Plc | Hair care compositions based on a dendritic macromolecule built up from anhydride units |
US20070191586A1 (en) * | 2004-08-11 | 2007-08-16 | Basf Aktiengesellschaft | Method for producing highly branched polyamides |
US20080038215A1 (en) * | 2004-08-17 | 2008-02-14 | Leo Derici | Hair Care Composition Comprising a Dendritic Macromolecule |
US20100152313A1 (en) * | 2004-08-04 | 2010-06-17 | Basf Se | Process for preparation of high-molecular-weight polyamides |
EP2308460A1 (en) | 2005-02-21 | 2011-04-13 | Basf Se | Composition comprising active agents and at least one nitrogen-containing hyper-branched polymer |
WO2011141266A1 (en) | 2010-04-15 | 2011-11-17 | Basf Se | Process for producing flame-proofed polyurethane foams |
CN101331196B (en) * | 2005-12-16 | 2012-08-22 | 巴斯夫涂料有限公司 | Aqueous coating material, method for the production thereof, and use thereof |
WO2013020820A1 (en) | 2011-08-05 | 2013-02-14 | Basf Se | Associative thickeners based on hyperbranched polymers |
CN103468011A (en) * | 2013-09-30 | 2013-12-25 | 张燕军 | Improved asphalt anti-rut additive and method for preparing same |
CN105622928A (en) * | 2014-10-28 | 2016-06-01 | 株洲时代新材料科技股份有限公司 | Branched polyamide and preparation method thereof |
KR20170007796A (en) * | 2014-05-14 | 2017-01-20 | 헌츠만 어드밴스드 머티리얼스 아메리카스 엘엘씨 | Multifunctional polyamides for protective coatings |
CN117586497A (en) * | 2023-11-27 | 2024-02-23 | 江苏众立生包装科技有限公司 | Preparation method of printing ink based on amino-terminated hyperbranched polyamide |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6713530B2 (en) * | 2001-09-20 | 2004-03-30 | Eastman Kodak Company | Ink jet ink composition |
US7034065B2 (en) * | 2001-09-20 | 2006-04-25 | Eastman Kodak Company | Ink jet ink composition |
US20030087987A1 (en) * | 2001-09-20 | 2003-05-08 | Eastman Kodak Company | Ink jet printing method |
US20030087990A1 (en) * | 2001-09-20 | 2003-05-08 | Eastman Kodak Company | Ink jet printing method |
EP1306401A1 (en) * | 2001-10-29 | 2003-05-02 | Dsm N.V. | Oil soluble hyperbranched polyesteramides and method for making the same |
US7166657B2 (en) * | 2002-03-15 | 2007-01-23 | Eastman Kodak Company | Article utilizing highly branched polymers to splay layered materials |
ES2271647T3 (en) * | 2002-07-09 | 2007-04-16 | Dsm Ip Assets B.V. | PROCESS FOR THE APPLICATION OF A POLYAMIDE LAYER DERIVED TO A SUBSTRATE. |
DE102004005657A1 (en) * | 2004-02-04 | 2005-08-25 | Basf Ag | Flowable polyester molding compounds |
DE102004005652A1 (en) | 2004-02-04 | 2005-08-25 | Basf Ag | Flowable polyester molding compounds |
MY139705A (en) * | 2004-07-19 | 2009-10-30 | Basf Ag | Mixtures of hyperbranched polyesters with polycarbonates as additive for polyester molding compositions |
DE102004035357A1 (en) * | 2004-07-21 | 2006-03-16 | Basf Ag | Continuous process for the preparation of polyalkylene arylates with hyperbranched polyesters and / or polycarbonates |
DE102004059243A1 (en) * | 2004-08-10 | 2006-02-23 | Basf Ag | Thermoplastic molding compounds with improved flow and release properties |
DE102004038979A1 (en) * | 2004-08-10 | 2006-02-23 | Basf Ag | Impact-modified polyesters with hyperbranched polyesters |
DE102004038976A1 (en) * | 2004-08-10 | 2006-02-23 | Basf Ag | Flowable polyester molding compounds with ASA / ABS and SAN |
DE102004049342A1 (en) * | 2004-10-08 | 2006-04-13 | Basf Ag | Flowable thermoplastics with halogen-free flame retardance |
DE102004050025A1 (en) * | 2004-10-13 | 2006-04-20 | Basf Ag | Flowable thermoplastics with halogen flame protection |
DE102004051241A1 (en) * | 2004-10-20 | 2006-05-04 | Basf Ag | Flowable polyamides with hyperbranched polyesters / polycarbonates |
DE102005002044A1 (en) * | 2005-01-14 | 2006-07-20 | Basf Ag | Flowable polyesters with hydrolysis protection |
DE102005004856A1 (en) * | 2005-02-01 | 2006-08-03 | Basf Ag | Thermoplastic molded materials, useful for the manufacture of fibers, foils and molded articles, comprises thermoplastic polyester, highly-/hyper-branched polycarbonate and/or polyester, carbodiimide and additives |
DE102005027549A1 (en) | 2005-06-14 | 2006-12-21 | Basf Ag | Multi-component moldings with polyester layers |
DE102005034999A1 (en) * | 2005-07-22 | 2007-01-25 | Basf Ag | Flowable polyesters with polyester elastomers |
DE102005034980A1 (en) * | 2005-07-22 | 2007-01-25 | Basf Ag | Fibers and liquid containers made of PET |
CN107759328A (en) * | 2017-11-13 | 2018-03-06 | 山东省农业科学院生物技术研究中心 | Poor rainfed land special peanut film-coating Controlled Release Fertilizer and preparation method thereof |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1325927A (en) | 1970-06-16 | 1973-08-08 | Ici Ltd | Condensation polymers |
US4857630A (en) | 1987-12-07 | 1989-08-15 | E. I. Du Pont De Nemours And Company | Hyperbranched polyarylene |
US5041516A (en) | 1989-06-21 | 1991-08-20 | Cornell Research Foundation, Inc. | Dendritic molecules and method of production |
WO1992008749A1 (en) * | 1990-11-19 | 1992-05-29 | Cornell Research Foundation, Inc. | Hyperbranched polyesters and polyamides |
US5196502A (en) | 1991-11-05 | 1993-03-23 | Eastman Kodak Company | Method for the preparation of multiply-branched aromatic polyesters |
SE9200564L (en) | 1992-02-26 | 1993-03-15 | Perstorp Ab | DENDRITIC MACROMOLECYLE OF POLYESTER TYPE, PROCEDURES FOR PRODUCING THEREOF AND USING THEREOF |
US5227462A (en) | 1992-07-13 | 1993-07-13 | Eastman Kodak Company | Preparation of multiply-branched aliphatic-aromatic polyesters and multiply-branched aliphatic-aromatic polyesters |
US5225522A (en) | 1992-07-13 | 1993-07-06 | Eastman Kodak Company | Multiply-branched aliphatic-aromatic polyesters and method for preparing multiply-branched aliphatic-aromatic polyesters |
SE503342C2 (en) | 1994-10-24 | 1996-05-28 | Perstorp Ab | Polyester-type hyperbranched macromolecule and process for its preparation |
US5663260A (en) | 1994-11-08 | 1997-09-02 | Cornell Research Foundation, Inc. | Hyperbranched copolymers from AB monomers and C monomers |
US5567795A (en) | 1995-08-18 | 1996-10-22 | Hoechst Celanese Corporation | Process for preparing hyperbranched polymers |
US6252025B1 (en) | 1998-08-11 | 2001-06-26 | Eastman Kodak Company | Vinyl hyperbranched polymer with photographically useful end groups |
JP2003522266A (en) * | 2000-02-09 | 2003-07-22 | チバ スペシャルティ ケミカルズ ホールディング インコーポレーテッド | Hyperbranched amphiphilic polymer additives and polymer compositions with increased surface energy |
-
2001
- 2001-07-31 US US09/919,097 patent/US6541599B1/en not_active Expired - Fee Related
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6872800B1 (en) * | 1999-05-05 | 2005-03-29 | Franck Bouquerel | Hyperbranched copolyamide, composition based on said hyperbranched copolyamide and method for obtaining same |
US20100152313A1 (en) * | 2004-08-04 | 2010-06-17 | Basf Se | Process for preparation of high-molecular-weight polyamides |
US20070191586A1 (en) * | 2004-08-11 | 2007-08-16 | Basf Aktiengesellschaft | Method for producing highly branched polyamides |
JP4808713B2 (en) * | 2004-08-11 | 2011-11-02 | ビーエーエスエフ ソシエタス・ヨーロピア | Process for producing highly branched polyamides |
WO2006018641A1 (en) * | 2004-08-17 | 2006-02-23 | Unilever Plc | Hair care compositions based on a dendritic macromolecule built up from anhydride units |
US20080038215A1 (en) * | 2004-08-17 | 2008-02-14 | Leo Derici | Hair Care Composition Comprising a Dendritic Macromolecule |
JP2008509979A (en) * | 2004-08-17 | 2008-04-03 | ユニリーバー・ナームローゼ・ベンノートシヤープ | Hair care compositions based on dendritic polymers composed of anhydride units |
US20080317696A1 (en) * | 2004-08-17 | 2008-12-25 | Leo Derici | Hair Care Compositions Based On A Dendritic Macromolecule Built Up From Anhydride Units |
US7914773B2 (en) | 2004-08-17 | 2011-03-29 | Conopco, Inc. | Hair care composition comprising a dendritic macromolecule |
EP2308460A1 (en) | 2005-02-21 | 2011-04-13 | Basf Se | Composition comprising active agents and at least one nitrogen-containing hyper-branched polymer |
CN101331196B (en) * | 2005-12-16 | 2012-08-22 | 巴斯夫涂料有限公司 | Aqueous coating material, method for the production thereof, and use thereof |
WO2011141266A1 (en) | 2010-04-15 | 2011-11-17 | Basf Se | Process for producing flame-proofed polyurethane foams |
WO2013020820A1 (en) | 2011-08-05 | 2013-02-14 | Basf Se | Associative thickeners based on hyperbranched polymers |
CN103468011A (en) * | 2013-09-30 | 2013-12-25 | 张燕军 | Improved asphalt anti-rut additive and method for preparing same |
CN103468011B (en) * | 2013-09-30 | 2015-11-11 | 张燕军 | Modifying asphalt anti-rutting additive and preparation method thereof |
KR20170007796A (en) * | 2014-05-14 | 2017-01-20 | 헌츠만 어드밴스드 머티리얼스 아메리카스 엘엘씨 | Multifunctional polyamides for protective coatings |
US10414855B2 (en) * | 2014-05-14 | 2019-09-17 | Huntsman Advanced Materials Americas Llc | Multifunctional polyamides for protective coatings |
KR102354013B1 (en) | 2014-05-14 | 2022-01-24 | 헌츠만 어드밴스드 머티리얼스 아메리카스 엘엘씨 | Multifunctional polyamides for protective coatings |
CN105622928A (en) * | 2014-10-28 | 2016-06-01 | 株洲时代新材料科技股份有限公司 | Branched polyamide and preparation method thereof |
CN117586497A (en) * | 2023-11-27 | 2024-02-23 | 江苏众立生包装科技有限公司 | Preparation method of printing ink based on amino-terminated hyperbranched polyamide |
Also Published As
Publication number | Publication date |
---|---|
US6541599B1 (en) | 2003-04-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6541599B1 (en) | Process for manufacture of soluble highly branched polyamides, and at least partially aliphatic highly branched polyamides obtained therefrom | |
US6541600B1 (en) | Water soluble and dispersible highly branched polyamides | |
EP0672703A1 (en) | Preparation of star-branched polymers | |
KR100879492B1 (en) | Method for producing a copolymer having a polyamide block and a polyether block | |
JP4083982B2 (en) | Process for producing poly (hexamethylene adipamide) from monomethyl adipate and hexamethylenediamine | |
US8063169B2 (en) | Preparation of polyamide block copolymers | |
JP6392787B2 (en) | Telechelic N-alkylated polyamide polymers and copolymers | |
US5254668A (en) | Polyamidopolyfunctional amine from lactam and ether amine | |
CS201502B2 (en) | Method of preparing polyester-amides | |
RU2001132726A (en) | Hyperbranched copolyamide, composition based on hyperbranched copolyamide and method for producing hyperbranched copolyamide | |
WO1998050453A1 (en) | Polymers and their preparation | |
Billiet et al. | Highly functionalized, aliphatic polyamides via CuAAC and thiol-yne chemistries | |
JPH06211986A (en) | Polymer and copolymer obtained by addition reaction of oligomer having dicarboxyl end group and bisoxazin or bisoxzoline and preparation thereof | |
JPH08337649A (en) | Dicarboxy-terminated oligomer, bisimidazoline- added polymerand copolymer and their production | |
JPH04227632A (en) | New polyether-amide and its preparation | |
De Brabander‐van den Berg et al. | Large‐scale production of polypropylenimine dendrimers | |
CN101323662B (en) | Biodegradable hyperbranched aliphatic polyamide and preparation method thereof | |
JP5416829B2 (en) | Method for producing heat-resistant polyamide | |
WO1997000293A1 (en) | Cationic multiblock thermoplastic elastomers | |
Bakkali-Hassani et al. | Synthesis of polyamide 6 with aramid units by combination of anionic ring-opening and condensation reactions | |
US6353082B1 (en) | Highly branched polyesters through one-step polymerization process | |
US6525170B1 (en) | Highly branched polyesters through one-step polymerization process | |
US6812324B2 (en) | Method for preparing nylon 6 copolymer containing sulfonate comonomers | |
KR100764933B1 (en) | Method for producing polyaspartic acid using maleic anhydride | |
US5686556A (en) | Process for the preparation of an α-amino ω-ester monoamide and process for the manufacture of a polyamide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:WANG, JIN-SHAN;REEL/FRAME:012073/0958 Effective date: 20010731 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: CITICORP NORTH AMERICA, INC., AS AGENT, NEW YORK Free format text: SECURITY INTEREST;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:028201/0420 Effective date: 20120215 |
|
AS | Assignment |
Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 Owner name: WILMINGTON TRUST, NATIONAL ASSOCIATION, AS AGENT, MINNESOTA Free format text: PATENT SECURITY AGREEMENT;ASSIGNORS:EASTMAN KODAK COMPANY;PAKON, INC.;REEL/FRAME:030122/0235 Effective date: 20130322 |
|
AS | Assignment |
Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELAWARE Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YORK Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE OF SECURITY INTEREST IN PATENTS;ASSIGNORS:CITICORP NORTH AMERICA, INC., AS SENIOR DIP AGENT;WILMINGTON TRUST, NATIONAL ASSOCIATION, AS JUNIOR DIP AGENT;REEL/FRAME:031157/0451 Effective date: 20130903 Owner name: BARCLAYS BANK PLC, AS ADMINISTRATIVE AGENT, NEW YO Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (SECOND LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031159/0001 Effective date: 20130903 Owner name: JPMORGAN CHASE BANK, N.A., AS ADMINISTRATIVE, DELA Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (FIRST LIEN);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031158/0001 Effective date: 20130903 Owner name: BANK OF AMERICA N.A., AS AGENT, MASSACHUSETTS Free format text: INTELLECTUAL PROPERTY SECURITY AGREEMENT (ABL);ASSIGNORS:EASTMAN KODAK COMPANY;FAR EAST DEVELOPMENT LTD.;FPC INC.;AND OTHERS;REEL/FRAME:031162/0117 Effective date: 20130903 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20150401 |
|
AS | Assignment |
Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:041656/0531 Effective date: 20170202 |
|
AS | Assignment |
Owner name: KODAK AVIATION LEASING LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK AMERICAS, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK PHILIPPINES, LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: PAKON, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: CREO MANUFACTURING AMERICA LLC, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK IMAGING NETWORK, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK (NEAR EAST), INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: QUALEX, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: NPEC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: FPC, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK PORTUGUESA LIMITED, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 Owner name: KODAK REALTY, INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:JP MORGAN CHASE BANK, N.A., AS ADMINISTRATIVE AGENT;REEL/FRAME:049814/0001 Effective date: 20190617 |
|
AS | Assignment |
Owner name: QUALEX INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK PHILIPPINES LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK AMERICAS LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FAR EAST DEVELOPMENT LTD., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK REALTY INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: EASTMAN KODAK COMPANY, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: KODAK (NEAR EAST) INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: NPEC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: LASER PACIFIC MEDIA CORPORATION, NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 Owner name: FPC INC., NEW YORK Free format text: RELEASE BY SECURED PARTY;ASSIGNOR:BARCLAYS BANK PLC;REEL/FRAME:052773/0001 Effective date: 20170202 |