US20030023077A1 - Method for extracting DNA from dried specimens - Google Patents
Method for extracting DNA from dried specimens Download PDFInfo
- Publication number
- US20030023077A1 US20030023077A1 US10/123,532 US12353202A US2003023077A1 US 20030023077 A1 US20030023077 A1 US 20030023077A1 US 12353202 A US12353202 A US 12353202A US 2003023077 A1 US2003023077 A1 US 2003023077A1
- Authority
- US
- United States
- Prior art keywords
- dna
- formamide
- pcr
- tween
- tris
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000000034 method Methods 0.000 title abstract description 36
- 239000000203 mixture Substances 0.000 claims abstract description 38
- 239000012472 biological sample Substances 0.000 claims abstract description 13
- ZHNUHDYFZUAESO-UHFFFAOYSA-N Formamide Chemical compound NC=O ZHNUHDYFZUAESO-UHFFFAOYSA-N 0.000 claims description 126
- 239000007983 Tris buffer Substances 0.000 claims description 46
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical group OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 claims description 46
- 239000000872 buffer Substances 0.000 claims description 21
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 claims description 20
- 239000003599 detergent Substances 0.000 claims description 9
- 229910019142 PO4 Inorganic materials 0.000 claims description 2
- 239000010452 phosphate Substances 0.000 claims description 2
- 235000010482 polyoxyethylene sorbitan monooleate Nutrition 0.000 claims description 2
- 229920000053 polysorbate 80 Polymers 0.000 claims description 2
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 claims 1
- 238000006243 chemical reaction Methods 0.000 abstract description 33
- 239000008280 blood Substances 0.000 abstract description 15
- 210000004369 blood Anatomy 0.000 abstract description 15
- 238000004458 analytical method Methods 0.000 abstract description 6
- 210000000582 semen Anatomy 0.000 abstract description 5
- 230000004544 DNA amplification Effects 0.000 abstract description 4
- 239000000758 substrate Substances 0.000 abstract description 3
- 230000007023 DNA restriction-modification system Effects 0.000 abstract description 2
- 238000001712 DNA sequencing Methods 0.000 abstract description 2
- 239000007787 solid Substances 0.000 abstract description 2
- 238000003752 polymerase chain reaction Methods 0.000 description 54
- 229920000136 polysorbate Polymers 0.000 description 47
- 108020004414 DNA Proteins 0.000 description 44
- 239000000243 solution Substances 0.000 description 38
- 238000000605 extraction Methods 0.000 description 29
- 239000006228 supernatant Substances 0.000 description 26
- 238000012360 testing method Methods 0.000 description 18
- 238000007400 DNA extraction Methods 0.000 description 16
- 238000010790 dilution Methods 0.000 description 16
- 239000012895 dilution Substances 0.000 description 16
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 230000005764 inhibitory process Effects 0.000 description 15
- 230000003321 amplification Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 14
- 238000003199 nucleic acid amplification method Methods 0.000 description 14
- MTHSVFCYNBDYFN-UHFFFAOYSA-N diethylene glycol Chemical compound OCCOCCO MTHSVFCYNBDYFN-UHFFFAOYSA-N 0.000 description 12
- 238000002474 experimental method Methods 0.000 description 10
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 9
- 239000000047 product Substances 0.000 description 9
- SEQKRHFRPICQDD-UHFFFAOYSA-N N-tris(hydroxymethyl)methylglycine Chemical compound OCC(CO)(CO)[NH2+]CC([O-])=O SEQKRHFRPICQDD-UHFFFAOYSA-N 0.000 description 8
- 239000003153 chemical reaction reagent Substances 0.000 description 8
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethyl sulfoxide Natural products CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 8
- 239000011536 extraction buffer Substances 0.000 description 8
- 238000012408 PCR amplification Methods 0.000 description 6
- 229920000742 Cotton Polymers 0.000 description 5
- 239000000284 extract Substances 0.000 description 5
- 150000002334 glycols Chemical class 0.000 description 5
- 239000003112 inhibitor Substances 0.000 description 5
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 4
- 102000001554 Hemoglobins Human genes 0.000 description 4
- 108010054147 Hemoglobins Proteins 0.000 description 4
- UZMAPBJVXOGOFT-UHFFFAOYSA-N Syringetin Natural products COC1=C(O)C(OC)=CC(C2=C(C(=O)C3=C(O)C=C(O)C=C3O2)O)=C1 UZMAPBJVXOGOFT-UHFFFAOYSA-N 0.000 description 4
- 239000007997 Tricine buffer Substances 0.000 description 4
- KCFYHBSOLOXZIF-UHFFFAOYSA-N dihydrochrysin Natural products COC1=C(O)C(OC)=CC(C2OC3=CC(O)=CC(O)=C3C(=O)C2)=C1 KCFYHBSOLOXZIF-UHFFFAOYSA-N 0.000 description 4
- 230000006862 enzymatic digestion Effects 0.000 description 4
- 238000011534 incubation Methods 0.000 description 4
- 230000002401 inhibitory effect Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000007894 restriction fragment length polymorphism technique Methods 0.000 description 4
- 230000002441 reversible effect Effects 0.000 description 4
- DNIAPMSPPWPWGF-VKHMYHEASA-N (+)-propylene glycol Chemical compound C[C@H](O)CO DNIAPMSPPWPWGF-VKHMYHEASA-N 0.000 description 3
- YPFDHNVEDLHUCE-UHFFFAOYSA-N 1,3-propanediol Substances OCCCO YPFDHNVEDLHUCE-UHFFFAOYSA-N 0.000 description 3
- 229940035437 1,3-propanediol Drugs 0.000 description 3
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-N Betaine Natural products C[N+](C)(C)CC([O-])=O KWIUHFFTVRNATP-UHFFFAOYSA-N 0.000 description 3
- 108010010803 Gelatin Proteins 0.000 description 3
- KWIUHFFTVRNATP-UHFFFAOYSA-O N,N,N-trimethylglycinium Chemical compound C[N+](C)(C)CC(O)=O KWIUHFFTVRNATP-UHFFFAOYSA-O 0.000 description 3
- 229920004890 Triton X-100 Polymers 0.000 description 3
- 229960003237 betaine Drugs 0.000 description 3
- 230000015556 catabolic process Effects 0.000 description 3
- 238000006731 degradation reaction Methods 0.000 description 3
- 239000008273 gelatin Substances 0.000 description 3
- 229920000159 gelatin Polymers 0.000 description 3
- 235000019322 gelatine Nutrition 0.000 description 3
- 235000011852 gelatine desserts Nutrition 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- 229920000166 polytrimethylene carbonate Polymers 0.000 description 3
- 230000002829 reductive effect Effects 0.000 description 3
- 238000013207 serial dilution Methods 0.000 description 3
- 238000010561 standard procedure Methods 0.000 description 3
- -1 DMSO EDTA amide Chemical class 0.000 description 2
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- WERYXYBDKMZEQL-UHFFFAOYSA-N butane-1,4-diol Chemical compound OCCCCO WERYXYBDKMZEQL-UHFFFAOYSA-N 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000003205 genotyping method Methods 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 238000009396 hybridization Methods 0.000 description 2
- 239000002198 insoluble material Substances 0.000 description 2
- 238000007403 mPCR Methods 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- KYWXRBNOYGGPIZ-UHFFFAOYSA-N 1-morpholin-4-ylethanone Chemical compound CC(=O)N1CCOCC1 KYWXRBNOYGGPIZ-UHFFFAOYSA-N 0.000 description 1
- IHPYMWDTONKSCO-UHFFFAOYSA-N 2,2'-piperazine-1,4-diylbisethanesulfonic acid Chemical compound OS(=O)(=O)CCN1CCN(CCS(O)(=O)=O)CC1 IHPYMWDTONKSCO-UHFFFAOYSA-N 0.000 description 1
- JKMHFZQWWAIEOD-UHFFFAOYSA-N 2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid Chemical compound OCC[NH+]1CCN(CCS([O-])(=O)=O)CC1 JKMHFZQWWAIEOD-UHFFFAOYSA-N 0.000 description 1
- AJTVSSFTXWNIRG-UHFFFAOYSA-N 2-[bis(2-hydroxyethyl)amino]ethanesulfonic acid Chemical compound OCC[NH+](CCO)CCS([O-])(=O)=O AJTVSSFTXWNIRG-UHFFFAOYSA-N 0.000 description 1
- WSGYTJNNHPZFKR-UHFFFAOYSA-N 3-hydroxypropanenitrile Chemical compound OCCC#N WSGYTJNNHPZFKR-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- 229920000936 Agarose Polymers 0.000 description 1
- 108700020463 BRCA1 Proteins 0.000 description 1
- 102000036365 BRCA1 Human genes 0.000 description 1
- 101150072950 BRCA1 gene Proteins 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 239000007995 HEPES buffer Substances 0.000 description 1
- 239000007987 MES buffer Substances 0.000 description 1
- WSMYVTOQOOLQHP-UHFFFAOYSA-N Malondialdehyde Chemical compound O=CCC=O WSMYVTOQOOLQHP-UHFFFAOYSA-N 0.000 description 1
- 239000007990 PIPES buffer Substances 0.000 description 1
- 206010034016 Paronychia Diseases 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- DBMJMQXJHONAFJ-UHFFFAOYSA-M Sodium laurylsulphate Chemical compound [Na+].CCCCCCCCCCCCOS([O-])(=O)=O DBMJMQXJHONAFJ-UHFFFAOYSA-M 0.000 description 1
- 108700025716 Tumor Suppressor Genes Proteins 0.000 description 1
- 102000044209 Tumor Suppressor Genes Human genes 0.000 description 1
- LEHOTFFKMJEONL-UHFFFAOYSA-N Uric Acid Chemical compound N1C(=O)NC(=O)C2=C1NC(=O)N2 LEHOTFFKMJEONL-UHFFFAOYSA-N 0.000 description 1
- TVWHNULVHGKJHS-UHFFFAOYSA-N Uric acid Natural products N1C(=O)NC(=O)C2NC(=O)NC21 TVWHNULVHGKJHS-UHFFFAOYSA-N 0.000 description 1
- 125000000218 acetic acid group Chemical group C(C)(=O)* 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 230000001010 compromised effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000002405 diagnostic procedure Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- ZMMJGEGLRURXTF-UHFFFAOYSA-N ethidium bromide Chemical compound [Br-].C12=CC(N)=CC=C2C2=CC=C(N)C=C2[N+](CC)=C1C1=CC=CC=C1 ZMMJGEGLRURXTF-UHFFFAOYSA-N 0.000 description 1
- 229960005542 ethidium bromide Drugs 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 238000013100 final test Methods 0.000 description 1
- 239000012634 fragment Substances 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000000415 inactivating effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000007479 molecular analysis Methods 0.000 description 1
- 239000013642 negative control Substances 0.000 description 1
- 229920002113 octoxynol Polymers 0.000 description 1
- 229940066429 octoxynol Drugs 0.000 description 1
- 244000052769 pathogen Species 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- XUWHAWMETYGRKB-UHFFFAOYSA-N piperidin-2-one Chemical compound O=C1CCCCN1 XUWHAWMETYGRKB-UHFFFAOYSA-N 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000000244 polyoxyethylene sorbitan monooleate Substances 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- HNJBEVLQSNELDL-UHFFFAOYSA-N pyrrolidin-2-one Chemical compound O=C1CCCN1 HNJBEVLQSNELDL-UHFFFAOYSA-N 0.000 description 1
- 239000011369 resultant mixture Substances 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- HXJUTPCZVOIRIF-UHFFFAOYSA-N sulfolane Chemical compound O=S1(=O)CCCC1 HXJUTPCZVOIRIF-UHFFFAOYSA-N 0.000 description 1
- 238000004448 titration Methods 0.000 description 1
- GPRLSGONYQIRFK-MNYXATJNSA-N triton Chemical compound [3H+] GPRLSGONYQIRFK-MNYXATJNSA-N 0.000 description 1
- 229940116269 uric acid Drugs 0.000 description 1
- 238000003809 water extraction Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/1003—Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
Definitions
- the present invention relates to a composition and to a method for extracting DNA. More specifically, the present invention relates to a composition and to a method to extract DNA from dried biological samples on solid substrates, including but not limited to, buccal smears, semen and especially blood. The method can be conducted in a single-tube.
- the DNA extracted in accordance with the present invention can be used for DNA amplification reactions, DNA sequencing, DNA restriction analysis and DNA hyridization.
- PCR polymerase chain reaction
- RFLP restriction fragment length polymorphism
- Paper punchers are available, but this process is difficult to automate reliably. Static electricity and normal air movements can cause mishandling of the paper punches. Finally, the smallest available punchers are 1 mm in diameter, which does not fit in a 384-well microtiter plate. This places a lower limit on PCR reactions, which can increase the consumption of expensive reagents.
- a DNA extraction composition (solution) which comprises formamide, citrate, a suitable buffer and optionally a non-ionic detergent.
- a method for extracting DNA from biological samples is provided.
- the biological sample is blood.
- the blood is dried on a cellulosic material. The method comprises contacting the biological sample with the DNA extraction solution, heating the resultant mixture and isolating supernatant containing the extracted DNA. This method is suitable for extracting DNA in a single tube.
- a composition which is capable of (i) extracting DNA from a biological sample, such as buccal smears, semen and particularly blood, dried on a cellulosic material, such as cotton based papers and (ii) removing or inactivating compounds present in the cellulosic material that may otherwise interfere in analysis of the DNA.
- the DNA composition of the present invention is further capable of extracting sufficient DNA for molecular analysis in a single tube in a simple method.
- the DNA extraction composition comprises (1) formamide, (2) citrate and (3) a buffer.
- the DNA extraction composition may optionally comprises a non-ionic detergent.
- Non-limiting examples of the buffer include acetate, BES, citrate, glycine, HEPES, MES, phosphate, PIPES, Tricine and Tris. It is preferred to use Tris.
- the DNA extraction composition may optionally comprise a non-ionic detergent from about 0.1% to about 50%, preferably from about 0.5% to about 10%, and more preferably about 1%.
- Non-limiting examples of non-ionic detergent include Nonidet NP-40, Triton® X-100 (octoxynol), Tween® 20 (polyoxyethylenesorbitan monolaurate) and Tween® 80 (polyoxyethylenesorbitan monooleate). It is preferred to use Tween® 80.
- a simple, rapid, high-throughput method is provided to release DNA from a biological sample, especially from a biological sample adsorbed to a cellulosic material, such as cotton based papers.
- the method can be performed in a single tube, thus greatly simplfying the DNA extraction process for biological samples, especially blood, dried on cotton based papers.
- the DNA extraction method comprises (a) contacting a biological sample with the DNA extraction composition described above, (b) incubating the mixture at a low temperature, (c) incubating the mixture at an elevated temperature and (d) isolating the supernatant which contains the solubilized, extracted DNA.
- a disk of cellulosic material containing a biological material is added to a tube or a well, such as a microtiter well. Any mass of substrate can be immersed in this composition for DNA extraction.
- Commercial paper punches are available that produce sizes useful for 96-well format plates (1-5 mm).
- the process of the present invention performs well with a variety of punch sizes and with various numbers of punches extracted as a single sample. These conditions include sizes of the disks is in the range from about 1 mm to about 5 mm, with between 1 and 20 punches per well.
- the DNA extraction composition described herein is added to the tube or well containing the disk(s) in an amount from about 20 ⁇ L to about 300 ⁇ L, preferably from about 40 ⁇ L to about 100 ⁇ L, and more preferably about 50 ⁇ L.
- the disk(s) and DNA extraction solution is first incubated for about 0.5 minutes to about 60 minutes, preferably for about 5 minutes to about 20 minutes, and more preferably for about 10 minutes at a temperature of from about 4° C. to about 60° C., preferably from about 10° C. to about 45° C., and more preferably at room temperature (25° C.).
- the disk(s) and DNA extraction solution is then incubated for about 0.5 minutes to about 60 minutes, preferably for about 5 minutes to about 20 minutes, and more preferably for about 10 minutes at an elevated temperature of from about 45° C. to about 100° C., preferably from about 55° C. to about 100° C., and more preferably at 95° C.
- the supernatant is then isolated using any suitable technique.
- One suitable technique is centrifugation, such as 3000 ⁇ g for 10 minutes.
- the supernatant can then be used in molecular techniques such as amplification reactions, hybridization analysis, sequencing and restriction analysis. It has been found that the supernatant can be used as target for amplification reactions following a dilution of 5-10 fold, preferably 8-fold, at a 10% to 20% final reaction volume.
- the samples used in this procedure consisted either of EDTA-anticoagulated whole venous blood or capillary blood collected by standard procedures.
- the blood was applied to either S&S 903 or FTATM blood collection cards and dried at room temperature. The dried cards were stored in the dark in plastic bags at room temperature.
- PCR reactions were carried out in 384-well microtiter plates in 10 ⁇ L volumes using Amplitaq Gold (Perkin Elmer) and primers that amplify an approximately 560 bp region of Exon 11 of the BRCA1 tumor-suppressor gene. Targets are described below and also included positive and negative controls.
- PCR products were electrophoresed on 1% SeaKem GTG (FMC) agarose with 100 bp ladder or ⁇ HindIII fragment size standards. The gels were stained with ethidium bromide and photographed using a Kodak MP4+ Polaroid camera system.
- FMC SeaKem GTG
- the compounds and concentrations tested in the PCR reactions are listed in Table 1. These PCR reactions used 20 ng genomic DNA as a target.
- the FTA supernatant was prepared by incubating eight 3 mm bloodstained FTATM disks in 500 ⁇ L of water for 20 minutes, centrifuging briefly, and collecting the supernatant. FTA supernatant and SDS both proved to be potent inhibitors of PCR.
- the candidate compounds for inhibition reversal have been titrated to determine upper thresholds for their concentrations in PCR reactions. Those concentrations, shown in Table 1, that do not adversely affect PCR were further tested for their ability to reverse PCR inhibition.
- S&S 903 supernatant was prepared by incubating 8-3 mm bloodstained S&S 903 disks in 500 ⁇ L water for 5 minutes at 95° C., centrifuging briefly, and collecting the supernatant. This supernatant and SDS were tested as above for inhibition of PCR. Two-fold serial dilutions indicated that 0. 1% SDS completely inhibited PCR, while 50-12.5% S&S 903 supernatant partially inhibited PCR.
- SDS concentrations of 0.02, 0.01 and 0.005% and S&S 903 supernatant concentrations of 25, 12.5, and 6.25% were chosen as the concentrations in PCR to test reversal of inhibition. These three concentrations of inhibitors were each tested against three concentrations of reagent that might reverse inhibition. Table 2 details the results of this experiment. All of the nonionic detergents were capable of reversing SDS inhibition to some extent. The S&S 903 supernatant seemed to extract insufficient material to inhibit PCR.
- Amplification was detected in samples extracted with 100 ⁇ L 1:1 formamide solution:water for dilutions 2 ⁇ 4 through 2 ⁇ 7 and from those extracted with 500 ⁇ L water for dilutions 2 0 and 2 ⁇ 1 . This is the first successful amplification from DNA extracted by a one-step process.
- the PCR reaction may be improved by identifying alternatives to formamide which solubilize material, but are less inhibitory, or using decreased concentrations of formamide.
- citrate was tested as an inhibitor of DNA degradation during the heating process.
- Eight 3 mm bloodstained S&S 903 disks were extracted in 150 ⁇ L of the solutions listed in table 7 using standard protocols. The supernatants were diluted by adding 450 ⁇ L water. A two-fold dilution series was used as a target (one-half the volume of the reaction) in standard PCR reactions. The reactions were qualitatively graded ( ⁇ poor to ++++ very good) for performance as listed in Table 7. Citrate performed very well in the extraction and PCR. However, all reactions that contained 5 mM citrate (the highest final concentration) were partially inhibited.
- Disks were extracted in 10% formamide, 50 mM Tris pH 8.3, and 20 mM citrate as described in Table 8 using standard procedures. A two-fold dilution series was used as target (one-half the volume of the reaction) in standard PCR reactions.
- the 6 mm disks were too big to be used in a 96-well plate format. They do not fall freely to the bottom of the well. Extraction of DNA from a single 3 mm or 3.2 mm disk produced less product than extractions with more or larger punches. A single 4.7 mm punch produced amplified product under all conditions tested. A single 4.7 mm punch extracted in approximately 50 ⁇ L is likely the best system.
- a simple extraction technique for releasing DNA from bloodstained S&S 903 and FTATM cards has been described. This technique uses single paper disks and can be performed in a single tube with a simple extraction solution (10% formamide, 50 mM Tris pH 7.8, 20 mM citrate). Tween®80 at 1% concentration improves amplification of extracts from FTA paper. The system works well for PCR amplification and has the potential to be used for genotyping in multiplex reactions.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Wood Science & Technology (AREA)
- Genetics & Genomics (AREA)
- Zoology (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- General Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Molecular Biology (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Plant Pathology (AREA)
- Crystallography & Structural Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Immunology (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Investigating Or Analysing Biological Materials (AREA)
Abstract
The present invention relates to a composition and to a method for extracting DNA. More specifically, the present invention relates to a composition and to a method to extract DNA from dried biological samples on solid substrates, including but not limited to, buccal smears, semen and especially blood. The method can be conducted in a single-tube. The DNA extracted in accordance with the present invention can be used for DNA amplification reactions, DNA sequencing, DNA restriction analysis and DNA hyridization.
Description
- This application is a Continuation of U.S. patent application Ser. No. 09/513,179 filed Feb. 25, 2000, which is related to U.S. Provisional Patent Application Serial No. 60/122,113 filed Feb. 26, 1999.
- The present invention relates to a composition and to a method for extracting DNA. More specifically, the present invention relates to a composition and to a method to extract DNA from dried biological samples on solid substrates, including but not limited to, buccal smears, semen and especially blood. The method can be conducted in a single-tube. The DNA extracted in accordance with the present invention can be used for DNA amplification reactions, DNA sequencing, DNA restriction analysis and DNA hyridization.
- Blood and other biological samples are commonly archived by applying the sample to filter paper and allowing it to dry. These samples are used for newborn screening, diagnostic testing, and felon databasing. Samples are typically applied to filter paper cards and allowed to dry. Two types of filter paper cards are prevalent, Schleicher & Schuell 903 (S&S 903) and Fitzco FTA™ cards. S&S 903 paper is a heavy, highly absorbent cotton bond paper. Fitzco FTA™ cards are similar, but are treated with several compounds (U.S. Pat. No. 5,496,562) designed to kill pathogens and resist bacterial growth and DNA degradation. These compounds include Tris, EDTA, SDS, and uric acid. Fitzco claims that the “membranes are disrupted and the DNA explodes out of the nucleus causing high molecular weight DNA to become entangled in the fibers of the paper” (Fitzco Product Information).
- To perform molecular diagnostic studies such as polymerase chain reaction (PCR) and restriction fragment length polymorphism (RFLP), the DNA must be purified in situ or extracted from the paper matrix. The currently available protocols require lengthy enzymatic digestions, incubations, and separation steps. Many of these protocols produce very little, poor quality DNA and are not amenable to high-throughput applications. Furthermore, protocols for FTA paper recommend amplification directly from the paper, since it is reported that it is difficult to get the DNA into solution.
- There are several drawbacks to this last approach. There is no method to measure the amount or purity of DNA available in the paper. The protocol for RFLP requires enzymatic digestion to release the DNA from the paper matrix. Since the RFLP protocol involves enzymatic digestion, it poses the problems mentioned above.
- Paper punchers are available, but this process is difficult to automate reliably. Static electricity and normal air movements can cause mishandling of the paper punches. Finally, the smallest available punchers are 1 mm in diameter, which does not fit in a 384-well microtiter plate. This places a lower limit on PCR reactions, which can increase the consumption of expensive reagents.
- Therefore, it is desirable to develop a simple, rapid, high-throughput method to release the DNA from the paper matrix and a composition to be used in this method. DNA in solution is more easily applied to automated processes.
- In accordance with one embodiment of the present invention, a DNA extraction composition (solution) is provided which comprises formamide, citrate, a suitable buffer and optionally a non-ionic detergent. In accordance with a second embodiment of the present invention, a method for extracting DNA from biological samples is provided. In one aspect of the invention, the biological sample is blood. In a second aspect of the invention, the blood is dried on a cellulosic material. The method comprises contacting the biological sample with the DNA extraction solution, heating the resultant mixture and isolating supernatant containing the extracted DNA. This method is suitable for extracting DNA in a single tube.
- Current procedures for extracting DNA from certain biological samples, such as dried blood on cellulosic material such as cotton based papers (e.g., Schleicher & Schuell 903 (S&S 903) and Fitzco FTA™ cards), require lengthy enzymatic digestions, incubations and separation steps. In addition, compounds used as preservatives in FTA™ paper would become soluble as a result of DNA extraction or DNA amplification reactions and inhibit enzymes used for DNA amplification. Thus, it was desired to develop a simple, rapid, high-throughput method to release the DNA from the paper matrix. It was further desired to develop a composition to be used in this method which would not only serve to extract the DNA, but would also serve to remove or inactivate the compounds present in FTA™ paper. The method and composition described herein satisfies these desires and produces DNA that is suitable for use in molecular procedures, including amplification, sequencing, hybridization and restriction analysis.
- In accordance with one aspect of the present invention, a composition is provided which is capable of (i) extracting DNA from a biological sample, such as buccal smears, semen and particularly blood, dried on a cellulosic material, such as cotton based papers and (ii) removing or inactivating compounds present in the cellulosic material that may otherwise interfere in analysis of the DNA. The DNA composition of the present invention is further capable of extracting sufficient DNA for molecular analysis in a single tube in a simple method. According to the present invention, the DNA extraction composition comprises (1) formamide, (2) citrate and (3) a buffer. The DNA extraction composition may optionally comprises a non-ionic detergent.
- The DNA composition comprises formamide in an amount from about 5% to about 90%, preferably from about 5% to about 50%, and more preferably about 10%. The DNA extraction composition comprises citrate in an amount from about 5 mM to about 60 mM, preferably from about 10 mM to about 40 mM, and more preferably about 20 mM. The DNA extraction composition comprises a buffer in the amount from about 1 mM to about 300 mM, preferably from about 10 mM to about 150 mM, more preferably about 50 mM. The pH of the buffer is from about 6.0 to about 8.8, preferably from about 7.5 to about 8.3, and more preferably about 7.8. Non-limiting examples of the buffer include acetate, BES, citrate, glycine, HEPES, MES, phosphate, PIPES, Tricine and Tris. It is preferred to use Tris. The DNA extraction composition may optionally comprise a non-ionic detergent from about 0.1% to about 50%, preferably from about 0.5% to about 10%, and more preferably about 1%. Non-limiting examples of non-ionic detergent include Nonidet NP-40, Triton® X-100 (octoxynol), Tween® 20 (polyoxyethylenesorbitan monolaurate) and Tween® 80 (polyoxyethylenesorbitan monooleate). It is preferred to use Tween® 80.
- In accordance with a second aspect of the present invention, a simple, rapid, high-throughput method is provided to release DNA from a biological sample, especially from a biological sample adsorbed to a cellulosic material, such as cotton based papers. The method can be performed in a single tube, thus greatly simplfying the DNA extraction process for biological samples, especially blood, dried on cotton based papers. According to the present invention, the DNA extraction method comprises (a) contacting a biological sample with the DNA extraction composition described above, (b) incubating the mixture at a low temperature, (c) incubating the mixture at an elevated temperature and (d) isolating the supernatant which contains the solubilized, extracted DNA.
- A disk of cellulosic material containing a biological material is added to a tube or a well, such as a microtiter well. Any mass of substrate can be immersed in this composition for DNA extraction. Commercial paper punches are available that produce sizes useful for 96-well format plates (1-5 mm). The process of the present invention performs well with a variety of punch sizes and with various numbers of punches extracted as a single sample. These conditions include sizes of the disks is in the range from about 1 mm to about 5 mm, with between 1 and 20 punches per well. The DNA extraction composition described herein is added to the tube or well containing the disk(s) in an amount from about 20 μL to about 300 μL, preferably from about 40 μL to about 100 μL, and more preferably about 50 μL. The disk(s) and DNA extraction solution is first incubated for about 0.5 minutes to about 60 minutes, preferably for about 5 minutes to about 20 minutes, and more preferably for about 10 minutes at a temperature of from about 4° C. to about 60° C., preferably from about 10° C. to about 45° C., and more preferably at room temperature (25° C.). The disk(s) and DNA extraction solution is then incubated for about 0.5 minutes to about 60 minutes, preferably for about 5 minutes to about 20 minutes, and more preferably for about 10 minutes at an elevated temperature of from about 45° C. to about 100° C., preferably from about 55° C. to about 100° C., and more preferably at 95° C. The supernatant is then isolated using any suitable technique. One suitable technique is centrifugation, such as 3000× g for 10 minutes. The supernatant can then be used in molecular techniques such as amplification reactions, hybridization analysis, sequencing and restriction analysis. It has been found that the supernatant can be used as target for amplification reactions following a dilution of 5-10 fold, preferably 8-fold, at a 10% to 20% final reaction volume.
- The present invention is further detailed in the following Examples, which are offered by way of illustration and are not intended to limit the invention in any manner. Standard techniques well known in the art or the techniques specifically described below are utilized.
- Materials and Methods
- Blood Samples and Paper Cards:
- The samples used in this procedure consisted either of EDTA-anticoagulated whole venous blood or capillary blood collected by standard procedures. The blood was applied to either S&S 903 or FTA™ blood collection cards and dried at room temperature. The dried cards were stored in the dark in plastic bags at room temperature.
- PCR Amplification:
- PCR reactions were carried out in 384-well microtiter plates in 10 μL volumes using Amplitaq Gold (Perkin Elmer) and primers that amplify an approximately 560 bp region of Exon 11 of the BRCA1 tumor-suppressor gene. Targets are described below and also included positive and negative controls.
- Agarose Gel Electrophoresis:
- PCR products were electrophoresed on 1% SeaKem GTG (FMC) agarose with 100 bp ladder or λ HindIII fragment size standards. The gels were stained with ethidium bromide and photographed using a Kodak MP4+ Polaroid camera system.
- Identifying Reagent Candidates
- Since components of blood (hemoglobin) and FTA™ paper (SDS) are known to inhibit PCR amplification, we sought to identify reagents that could reverse the inhibition of PCR by hemoglobin and SDS. First, we established concentrations of these compounds compatible with PCR amplification.
- The compounds and concentrations tested in the PCR reactions are listed in Table 1. These PCR reactions used 20 ng genomic DNA as a target. The FTA supernatant was prepared by incubating eight 3 mm bloodstained FTA™ disks in 500 μL of water for 20 minutes, centrifuging briefly, and collecting the supernatant. FTA supernatant and SDS both proved to be potent inhibitors of PCR. The candidate compounds for inhibition reversal have been titrated to determine upper thresholds for their concentrations in PCR reactions. Those concentrations, shown in Table 1, that do not adversely affect PCR were further tested for their ability to reverse PCR inhibition.
TABLE 1 Titration of Compounds in PCR FTA Acetyl Form- Hist- PEG Tricine Triton ® Tween ® Tween ® Supernatant SDS Betaine BSA BSA DMSO EDTA amide Gelatin Glycerol idine MP-40 80000 pH 7.8 X-100 20 80 % % mM mg/ml mg/ml % mM % mg/ml % mM % % mM % % % 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 50.0000 25.0000 12.5000 6.2500 3.1250 1.5625 0.7813 0.3906 0.19530.0977 0.0488 0.0244 0.0122 0.0061 # 0.0031 5.00002.50001.25000.62500.31250.15630.07810.03910.01950.00980.00490.00240.00120.00060.0003 2.50001.2500 +UZ,14/17 0.6250 # 0.0003 0.0002 10.0000 5.0000 2.5000 0.50000.25000.12500.06250.03130.01560.00780.0039 0.0020 +UZ,25/28 0.0010 0.0005 0.0002 # 0.0001 0.0001 0.0000 50.000025.000012.50006.25003.1250 1.5625 20.000010.00005.00002.50001.2500 # 0.0024 0.0012 50.000025.000012.50006.25003.12501.56250.7813 10.00005.00002.50001.25000.6250 0.3125 +UZ,45/48 0.1563 # 0.0006 20.000010.0000 +UZ,51/54 5.0000 25.000012.50006.25003.12501.56250.78130.39060.19530.0977 0.0488 0.0244 0.0122 0.0061 0.0031 0.0015 20.0000 10.0000 # 5.0000 # 0.0049 0.0024 0.0012 20.000010.00005.0000 2.5000 250.0000125.000062.500031.250015.62507.8125 +UZ,71/74 3.90631.9531 0.9766 # 0.4883 0.2441 0.1221 0.0610 0.0305 0.00153 10.0000 5.0000 20.0000 10.0000 5.0000 # 0.0195 0.0098 0.0049 0.0024 0.0012 10.0000 5.0000 Key: No PCR product detected Reduced PCR product detected - Testing PCR Inhibition by Hemoglobin and SDS
- The purpose of the next experiment was to test PCR inhibition by hemoglobin and SDS separately. S&S 903 supernatant was prepared by incubating 8-3 mm bloodstained S&S 903 disks in 500 μL water for 5 minutes at 95° C., centrifuging briefly, and collecting the supernatant. This supernatant and SDS were tested as above for inhibition of PCR. Two-fold serial dilutions indicated that 0. 1% SDS completely inhibited PCR, while 50-12.5% S&S 903 supernatant partially inhibited PCR. SDS concentrations of 0.02, 0.01 and 0.005% and S&S 903 supernatant concentrations of 25, 12.5, and 6.25% were chosen as the concentrations in PCR to test reversal of inhibition. These three concentrations of inhibitors were each tested against three concentrations of reagent that might reverse inhibition. Table 2 details the results of this experiment. All of the nonionic detergents were capable of reversing SDS inhibition to some extent. The S&S 903 supernatant seemed to extract insufficient material to inhibit PCR.
TABLE 2 Reversal of PCR Inhibition 903 Supernatant 25% 12.5% 6.25% Betaine (mM) 312.00 156.00 78.00 312.00 156.00 78.00 312.00 156.00 78.00 BSA (mg/ml) 1.25 0.63 0.31 1.25 0.63 0.31 1.25 0.63 0.31 Acetyl-BSA (mg/ml) 0.25 0.13 0.06 0.25 0.13 0.06 0.25 0.13 0.06 DMSO (%) 5.00 2.50 1.25 5.00 2.50 1.25 5.00 2.50 1.25 EDTA (mM) 0.63 0.31 0.16 0.63 0.31 0.16 0.63 0.31 0.16 Formamide (%) 0.20 0.10 0.05 0.20 0.10 0.05 0.20 0.10 0.05 Gelatin (%) 0.04 0.02 0.00 0.04 0.02 0.00 0.04 0.02 0.00 Glycerol (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Histidine (mM) 0.25 0.13 0.06 0.25 0.13 0.06 0.25 0.13 0.06 NP-40 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 PEG (%) 1.25 0.63 0.31 1.25 0.63 0.31 1.25 0.63 0.31 Tricine (mM) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Triton ®X-100 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Tween ®20 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Tween ®80 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 SDS 0.02% 0.01% 0.005% Betaine (mM) 312.00 156.00 78.00 312.00 156.00 78.00 312.00 156.00 78.00 BSA (mg/ml) 1.25 0.63 0.31 1.25 0.63 0.31 1.25 0.63 0.31 Acetyl-BSA (mg/ml) 0.25 0.13 0.06 0.25 0.13 0.06 0.25 0.13 0.06 DMSO (%) 5.00 2.50 1.25 5.00 2.50 1.25 5.00 2.50 1.25 EDTA (mM) 0.63 0.31 0.16 0.63 0.31 0.16 0.63 0.31 0.16 Formamide (%) 0.20 0.10 0.05 0.20 0.10 0.05 0.20 0.10 0.05 Gelatin (%) 0.04 0.02 0.00 0.04 0.02 0.00 0.04 0.02 0.00 Glycerol (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Histidine (mM) 0.25 0.13 0.06 0.25 0.13 0.06 0.25 0.13 0.06 NP-40 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 PEG (%) 1.25 0.63 0.31 1.25 0.63 0.31 1.25 0.63 0.31 Tricine (mM) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Triton ®X-100 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Tween ®20 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 Tween ®80 (%) 2.50 1.25 0.63 2.50 1.25 0.63 2.50 1.25 0.63 - Increasing Solubility of Extracted Material
- In an attempt to increase the amount of material extracted from S&S 903 paper, the incubation time was increased and formamide was included in the composition. The objective was to test the ability of a formamide solution could extract more material from the blood spots and increase its solubility. Eight 3 mm bloodstained S&S 903 disks in 500 μL of water or 95% formamide in 100 mM Tris pH 8.3 at room temperature for 10 minutes. The disks were then incubated for 10 minutes at 95° C. The solutions were centrifuged and the supernatants collected. While the samples extracted with water produced large pellets of insoluble material, the samples extracted with formamide remained soluble.
- These supernatants were tested for inhibition of PCR and for the presence of DNA. Each supernatant was tested in a two-fold dilution series starting at 25% supernatant in the standard PCR reaction. Each supernatant was also tested for DNA in a two-fold dilution series starting at 20% concentration as a target in PCR. The results are shown in Table 3.
- The longer incubation seems to extract more material from the disks. The extraction with formamide produced almost no insoluble material and was a better target for PCR. Formamide extraction looks promising, although it is inhibitory at higher concentrations.
TABLE 3 Formamide Versus Water Extraction Inhibition Test for DNA Formamide % Water % Formamide % Water % 25.0000 25.0000 20.0000 20.0000 12.5000 12.5000 10.0000 10.0000 6.2500 6.2500 5.0000 5.0000 3.1250 3.1250 2.5000 2.5000 1.5625 1.5625 1.2500 1.2500 0.7813 0.7813 0.6250 0.6250 0.3906 0.3906 0.3125 0.3125 0.1953 0.1953 0.1563 0.1563 0.0977 0.0977 0.0781 0.0781 0.0488 0.0488 0.0391 0.0391 0.0244 0.0244 0.0195 0.0195 0.0122 0.0122 0.0098 0.0098 0.0061 0.0061 0.0049 0.0049 0.0031 0.0031 0.0024 0.0024 0.0015 0.0015 0.0012 0.0012 - Optimizing Formamide Concentration in Extraction
- Next, extractions were performed in reduced volumes and with reduced concentrations of formamide in an attempt to improve the formamide to DNA ratio while keeping the extracted material soluble. Eight 3 mm bloodstained S&S 903 disks were extracted in 500 or 100 μL volumes of 95% formamide in 100 mM Tris pH 8.3, water, or a 1:1 mixture of water and the 95% formamide/100 mM Tris solution as described earlier. These solutions were used in two-fold dilution series (20 through 2−12) as targets in PCR (2 μL in 10 μL reaction). Genomic DNA and no target controls were also performed. Amplification was detected in samples extracted with 100 μL 1:1 formamide solution:water for dilutions 2−4 through 2−7 and from those extracted with 500 μL water for dilutions 20 and 2−1. This is the first successful amplification from DNA extracted by a one-step process.
- Testing Alternatives to Formamide
- The PCR reaction may be improved by identifying alternatives to formamide which solubilize material, but are less inhibitory, or using decreased concentrations of formamide.
- The inhibitory effects of twelve reagents as alternatives to formamide were tested in PCR. The amplification was scored for performance by (1) failure-no detectable PCR product, (2) compromised-less PCR product compared to controls, or (3) nominal-PCR product similar to controls. The reagents and the concentrations in PCR that fit these scores are listed in Table 4. Overall, the glycols were less inhibitory to PCR than the amines. Inhibition by the amines was similar to that of formamide. Glycols can now be tested in the DNA extraction solution.
TABLE 4 Testing Alternatives to Formamide PCR Performance (reagent % in PCR) Reagent Failed Compromised Nominal 4-Acetylmorpholine 10 5 2.5 1,4-Butanediol 10 — 5 Diethylene Glycol 20 — 10 1,3-Dimethyl-s- 5 — 2.5 Imidazolidinone Dipropylene Glycol 20 10 5 3-Hydroxypropionitrile 10 — 5 1-Methyl-2-Pyrrolidinone 10 5 2.5 1,3-Propanedione 20 — 10 2-Pyrrolidinone 10 5 2.5 Tetramethylene Sulfone 10 5 2.5 Triethylene Clycol 10 — 5 Valerolactam 5 2.5 1.25 - Testing Glycols and Tween® 80 in Extraction
- In previous experiments, DNA extracted from bloodstained cards with 50% formamide was successfully amplified. Also, Tween® 80, diethylene glycol, and 1,3 propanediol showed encouraging results. In this experiment, eight 3 mm bloodstained S&S 903 disks were extracted in 100 μL of solution (Table 5) using standard protocols. A two-fold dilution series was used in a standard PCR reaction.
- All reactions with the glycols failed. The buffered formamide solutions results are similar to previous results, although the solution containing 5.94% formamide produced results that were not consistent. The solutions containing 10% or 5% Tween® 80 produced good results.
TABLE 5 Testing Tween ® 80 and Glycols in Extraction Detectable PCR Solution Dilution Range 95% Formamide, 100 mM Tris pH 8.3 2−4-2−8 47.5% Formamide, 100 mM Tris pH 8.3 2−2-2−11 23.75% Formamide, 100 mM Tris pH 8.3 All failed 11.88% Formamide, 100 mM Tris pH 8.3 2−1-2−2 5.94% Formamide, 100 mM Tris pH 8.3 2−1-2−5 20% Tween ® 80 All failed 10% Tween ® 80 2−1-2−5 5% Tween ® 80 2−1-2−7 40% Diethylene Glycol All failed 20% Diethylene Glycol All failed 40% 1,3 Propanediol All failed 20% 1,3 Propanediol All failed - Combining Formamide and Tween® 80 in Extraction
- To extend and combine the results from the last experiment, extraction solutions were prepared as described in Table 6. The solutions were used to extract DNA from eight 3 mm S&S bloodstained disks using the standard protocol. These solutions and two-fold serial dilutions in water were used as targets in a standard PCR reaction.
- The solutions that produced the best PCR targets over the dilution range were (1) 11.9% formamide, 50 mM Tris pH 8.3 and (2) 5.9% formamide, 50 mM Tris pH 8.3. The addition of Tween® 80 seemed to slightly decrease the effectiveness of the extraction solution.
TABLE 6 Formamide and Tween ® 80 Combinations Extraction Solution 95% Formamide, 50 mM Tris pH 8.3 47.5% Formamide, 50 mM Tris pH 8.3 23.8% Formamide, 50 mM Tris pH 8.3 11.9% Formamide, 50 mM Tris pH 8.3 5.9% Formamide, 50 mM Tris pH 8.3 20% Tween ® 80 10% Tween ® 80 5% Tween ® 80 20% Tween ® 80, 50 mM Tris pH 8.3 10% Tween ® 80, 50 mM Tris pH 8.3 5% Tween ® 80, 50 mM Tris pH 8.3 47.5% Formamide, 50 mM Tris pH 8.3, 10% Tween ® 80 23.8% Formamide, 50 mM Tris pH 8.3, 10% Tween ® 80 11.9% Formamide, 50 mM Tris pH 8.3, 10% Tween ® 80 5.9% Formamide, 50 mM Tris pH 8.3, 10% Tween ® 80 47.5% Formamide, 50 mM Tris pH 8.3, 5% Tween ® 80 23.8% Formamide, 50 mM Tris pH 8.3, 5% Tween ® 80 11.9% Formamide, 50 mM Tris pH 8.3, 5% Tween ® 80 5.9% Formamide, 50 mM Tris pH 8.3, 5% Tween ® 80 2.5% Chelex, 10% Tween ® 80 10% Tween ® 80, 1 mM EDTA - Testing Citrate as Inhibitor of DNA Degradation During Heating
- In an attempt to improve the extraction solution, citrate was tested as an inhibitor of DNA degradation during the heating process. Eight 3 mm bloodstained S&S 903 disks were extracted in 150 μL of the solutions listed in table 7 using standard protocols. The supernatants were diluted by adding 450 μL water. A two-fold dilution series was used as a target (one-half the volume of the reaction) in standard PCR reactions. The reactions were qualitatively graded (− poor to ++++ very good) for performance as listed in Table 7. Citrate performed very well in the extraction and PCR. However, all reactions that contained 5 mM citrate (the highest final concentration) were partially inhibited.
TABLE 7 Citrate in Extraction Buffer PCR performance (Citrate concentration) Solution None 10 mM 20 mM 40 mM Water − − + ++ 50 mM Tris pH 8.3 + ++ +++ +++ 50 mM Tris pH 8.3, 6% formamide ++ +++ +++ ++++ 50 mM Tris pH 8.3, 12% formamide ++ +++ ++++ ++++ - Determining Optimum Number and Size of Disks and Volume of Extraction
- The next evaluation was designed to determine the number and size of disks and the volume of extraction solution to use. Disks were extracted in 10% formamide, 50 mM Tris pH 8.3, and 20 mM citrate as described in Table 8 using standard procedures. A two-fold dilution series was used as target (one-half the volume of the reaction) in standard PCR reactions.
- The 6 mm disks were too big to be used in a 96-well plate format. They do not fall freely to the bottom of the well. Extraction of DNA from a single 3 mm or 3.2 mm disk produced less product than extractions with more or larger punches. A single 4.7 mm punch produced amplified product under all conditions tested. A single 4.7 mm punch extracted in approximately 50 μL is likely the best system.
TABLE 8 Testing Disk Number, Size and Extraction Volume Disk Number and Size Extraction Volume 8 × 3 mm 100 4 × 3 mm 100 2 × 3 mm 100 1 × 3 mm 100 1 × 3.2 mm 100 2 × 3.2 mm 100 1 × 4.7 mm 100 2 × 4.7 mm 100 1 × 6 mm 100 2 × 6 mm 100 1 × 3.2 mm 80 1 × 3.2 mm 60 1 × 3.2 mm 40 1 × 3.2 mm 20 1 × 4.7 mm 80 1 × 4.7 mm 60 1 × 4.7 mm 40 1 × 4.7 mm 20 - Testing Extraction on FTA™ Paper with Tween®80
- The next experiment was designed to test the optimized extraction buffer system on FTA paper. Since Tween®80 had previously been shown to reverse PCR inhibition due to SDS, a component of FTA™ paper, it was included in some PCR reactions. Bloodstained disks (one 4.7 mm S&S 903 or FTA™) were extracted in 50 μL of 50 mM Tris pH 8.3, 20 mM citrate, and 10% formamide using standard protocols. Then the supernatants were diluted three-fold in water, mixed, and centrifuged for 10 minutes at 3850 rpm. These solutions are defined as neat. The results of this experiment are shown in Table 9. These supernatants were diluted two-fold in water. This supernatant was serially diluted with water or Tween®80 solution and these solutions served as targets (5 μL in 10 μL reaction) in standard PCR.
- This experiment produced good results with FTA™ paper provided that the PCR reaction included Tween®80. The inhibitors from the FTA™ paper do not completely inhibit PCR in the absence of Tween®80 with the target dilution of 2−4. Tween®80 at 1% produced better amplification than at a concentration of 0.2%. However, there might be some inhibition of amplification in extracts from S&S 903 paper at the higher Tween®80 concentration.
TABLE 9 Tween ® 80 in Extraction Solution PCR Result at Final Target Dilution Final Tween ® 80% 2−2 2−3 2−4 S&S 903 0.0 ++ ++ ++ 0.2 NA ++ ++ 1.0 NA ++ ++ FTA ™ 0.0 − − + 0.2 NA + + 1.0 NA ++ ++ - Testing Effect of pH on Extraction Efficiency
- The next experiment was designed to test the effect of varied pH on the extraction process. Bloodstained S&S 903 disks (one 4.7 mm) were extracted in 50 μL of 30 mM Tris (combinations of Tris base and Tris HCl indicated in Table 10), 20 mM citrate, and 10% formamide. The disks were incubated at room temperature for 10 minutes with agitation, incubated at 95° C. for 10 minutes, and diluted three-fold to a final Tris concentration of 20 mM. This dilution either normalized the Tris to a mixture of 50:50 Tris base:Tris HCl (normalized) or maintained the ratio in the extraction buffer (not normalized). Following dilution, the plates were centrifuged for 10 minutes at 3850 rpm and the supernatants were collected. All extractions and reactions were performed in duplicate. Two-fold serial dilutions of the solutions served as targets for amplification.
- The extraction buffer functions well over a wide pH range. All dilutions amplified except those at 2−1 for 100% Tris HCl. Extractions at 20-40% Tris base generated the best amplification, although in 20% Tris base, the amplification was slightly weaker. Little difference was observed between amplifications from extracts that were normalized versus those that were not normalized. It is clear that pH below 8.3 has advantages. The PCR buffer used in these experiments has a pH between 7.8 and 7.9. This pH of extraction solution produced the best results.
TABLE 10 Test Extraction Buffer pH % Tris Base pH of Solution 100 10.27 80 8.73 60 8.31 50 8.11 40 7.94 20 7.51 0 4.62 - Testing the Extraction System in Multiplex PCR
- As a final test of the extraction buffer, a multiplex PCR reaction was tested. DNA was extracted from one 4.7 mm disk (either FTA or S&S 903) in 50 μL of extraction buffer (10% formamide, 50 mM Tris pH 8.3, 20 mM citrate) using standard protocols. These solutions were used as targets in Profiler+ genotyping reactions (3 μL reactions with 1 μL target). The extracted DNA solutions were diluted in Tween®80 solutions to give a final concentration of 1/12 or 1/24 target and 0, 0.13 and 0.67% Tween®80 in the PCR reaction. The Perkin Elmer buffer or our production PCR buffer supplemented with dNTPs at a final concentration in the reaction of 133 μM was used.
- Only the control samples amplified in the Perkin Elmer buffer. The FTA and S&S 903 samples all failed. Surprisingly, all samples in production buffer amplified well. This is likely due to the pH resulting from combinations of PCR buffer and extraction buffer. Production PCR buffer seems more compatible than Perkin Elmer buffer using these extracts as a target. The more dilute samples (1/24) produced markedly lower signal.
- Testing the Extraction System with Alternative Dried Specimens
- Replicate samples of dried buccal smears and semen were extracted in accordance with the above process. PCR amplification was performed on the DNA and the results analyzed. It was found that the PCR amplification was also successful for dried buccal smears and semen.
- Conclusions:
- A simple extraction technique for releasing DNA from bloodstained S&S 903 and FTA™ cards has been described. This technique uses single paper disks and can be performed in a single tube with a simple extraction solution (10% formamide, 50 mM Tris pH 7.8, 20 mM citrate). Tween®80 at 1% concentration improves amplification of extracts from FTA paper. The system works well for PCR amplification and has the potential to be used for genotyping in multiplex reactions.
- While the invention has been disclosed in this patent application by reference to the details of preferred embodiments of the invention, it is to be understood that the disclosure is intended in an illustrative rather than in a limiting sense, as it is contemplated that modifications will readily occur to those skilled in the art, within the spirit of the invention and the scope of the appended claims.
Claims (14)
1. A composition for extracting DNA from a biological sample which comprises:
(a) 5% to 90% formamide;
(b) 5 mM to 60 mM citrate; and
(c) 1 mM to 300 mM buffer, pH 6.0 to 8.8, wherein the buffer is not phosphate.
2. The composition of claim 1 which further comprises 0.1% to 50% of a non-ionic detergent.
3. The composition of claim 1 , wherein the formamide is present at 5% to 50%.
4. The composition of claim 1 , wherein the citrate is present at 10 mM to 40 mM.
5. The composition of claim 1 , wherein the buffer is present at 10 mM to 150 mM, pH 7.5 to 8.3.
6. The composition of claim 1 which comprises:
(a) 10% formamide;
(b) 20 mM citrate; and
(c) 50 mM buffer, pH 7.8.
7. The composition of claim 6 , wherein said buffer is Tris.
8. The composition of claim 2 , wherein the formamide is present at 5% to 50%.
9. The composition of claim 2 , wherein the citrate is present at 10 mM to 40 mM.
10. The composition of claim 2 , wherein the buffer is present at 10 mM to 150 mM, pH 7.5 to 8.3.
11. The composition of claim 2 , wherein the non-ionic detergent is present at 0.5% to 10%.
12. The composition of claim 2 which comprises:
(a) 10% formamide;
(b) 20 mM citrate;
(c) 50 mM buffer, pH 7.8;
(d) 1% non-ionic detergent.
13. The composition of claim 12 , wherein the buffer is Tris.
14. The composition of claim 12 , wherein the non-ionic detergent is Tween 80.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/123,532 US20030023077A1 (en) | 1999-02-26 | 2002-04-17 | Method for extracting DNA from dried specimens |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12211399P | 1999-02-26 | 1999-02-26 | |
US09/513,179 US6410725B1 (en) | 1999-02-26 | 2000-02-25 | Method for extracting DNA from dried specimens |
US10/123,532 US20030023077A1 (en) | 1999-02-26 | 2002-04-17 | Method for extracting DNA from dried specimens |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/513,179 Continuation US6410725B1 (en) | 1999-02-26 | 2000-02-25 | Method for extracting DNA from dried specimens |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030023077A1 true US20030023077A1 (en) | 2003-01-30 |
Family
ID=22400699
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/513,179 Expired - Fee Related US6410725B1 (en) | 1999-02-26 | 2000-02-25 | Method for extracting DNA from dried specimens |
US10/123,532 Abandoned US20030023077A1 (en) | 1999-02-26 | 2002-04-17 | Method for extracting DNA from dried specimens |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/513,179 Expired - Fee Related US6410725B1 (en) | 1999-02-26 | 2000-02-25 | Method for extracting DNA from dried specimens |
Country Status (3)
Country | Link |
---|---|
US (2) | US6410725B1 (en) |
AU (1) | AU3377500A (en) |
WO (1) | WO2000050564A2 (en) |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050287583A1 (en) * | 1997-01-21 | 2005-12-29 | Promega Corporation | Methods and kits for isolating biological target materials using silica magnetic particles |
US6027945A (en) * | 1997-01-21 | 2000-02-22 | Promega Corporation | Methods of isolating biological target materials using silica magnetic particles |
ES2188384B1 (en) * | 2001-06-21 | 2005-01-01 | Clinica Perio, S.L. | PROCEDURE FOR OBTAINING HUMAN DNA FROM GINGIVAL CREVICULAR FLUID. |
US7772383B2 (en) * | 2002-01-25 | 2010-08-10 | The Trustees Of Princeton University | Chemical PCR: Compositions for enhancing polynucleotide amplification reactions |
US7601491B2 (en) * | 2003-02-06 | 2009-10-13 | Becton, Dickinson And Company | Pretreatment method for extraction of nucleic acid from biological samples and kits therefor |
EP1641944B1 (en) * | 2003-07-09 | 2011-06-29 | Genvault Corporation | Room temperature elution of nucleic acids |
US20050176027A1 (en) * | 2003-10-14 | 2005-08-11 | Suzow Joseph G. | Nucleic acid extraction method |
SI1871912T1 (en) * | 2005-04-15 | 2012-06-29 | Epigenomics Ag | Method for determining DNA methylation in blood or urine samples |
KR100710418B1 (en) | 2006-02-09 | 2007-04-24 | 단국대학교 산학협력단 | Die extract strip and die extract method comprising the same |
US20080124777A1 (en) * | 2006-11-29 | 2008-05-29 | Canon U.S. Life Sciences, Inc. | Method for releasing genetic material from solid phase |
ES2532632T3 (en) * | 2008-06-30 | 2015-03-30 | Life Technologies Corporation | Direct amplification method from raw nucleic acid samples |
US8222397B2 (en) * | 2009-08-28 | 2012-07-17 | Promega Corporation | Methods of optimal purification of nucleic acids and kit for use in performing such methods |
US8039613B2 (en) | 2009-08-28 | 2011-10-18 | Promega Corporation | Methods of purifying a nucleic acid and formulation and kit for use in performing such methods |
WO2012083175A1 (en) | 2010-12-17 | 2012-06-21 | Wisconsin Alumni Research Foundation | One-step method of elution of dna from blood samples |
US20130157253A1 (en) * | 2011-12-16 | 2013-06-20 | Mei Wang Baker | Detection of cytomegalovirus dna using amplification from blood samples |
WO2017070643A1 (en) * | 2015-10-22 | 2017-04-27 | University Of Maryland, Baltimore | Methods for extracting nucleic acids from dried blood and uses thereof |
CN108977438A (en) * | 2018-08-29 | 2018-12-11 | 武汉纳磁生物科技有限公司 | A kind of extracting method and kit of partner DNA |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4752565A (en) * | 1986-04-07 | 1988-06-21 | The United States Of America As Represented By The Department Of Health And Human Services | Cell line producing AIDS viral antigens without producing infectious virus particles |
US4762780A (en) * | 1984-04-17 | 1988-08-09 | The Regents Of The University Of California | Method and composition for screening and diagnosing "HCMV" |
US5231015A (en) * | 1989-10-18 | 1993-07-27 | Eastman Kodak Company | Methods of extracting nucleic acids and pcr amplification without using a proteolytic enzyme |
US5234809A (en) * | 1989-03-23 | 1993-08-10 | Akzo N.V. | Process for isolating nucleic acid |
US5334499A (en) * | 1989-04-17 | 1994-08-02 | Eastman Kodak Company | Methods of extracting, amplifying and detecting a nucleic acid from whole blood or PBMC fraction |
US5407823A (en) * | 1990-04-06 | 1995-04-18 | Institut National De La Sante Et De La Recherche Medicale | Polypeptides having a dopaminergic receptor activity, nucleic acids coding for these polypeptides and use of these polypeptides for the screening of substances active on these polypeptides |
US5596092A (en) * | 1990-02-14 | 1997-01-21 | Talent S.R.L. | Extraction of genomic DNA from blood using cationic detergents |
US5631132A (en) * | 1993-05-20 | 1997-05-20 | The United States Of America As Represented By The Department Of Health And Human Services | Nucleic acid probes and methods for detecting Candida glabrata DNA in blood |
US5830759A (en) * | 1994-08-18 | 1998-11-03 | The Trustees Of Columbia University In The City Of New York | Unique associated Kaposi's sarcoma virus sequences and uses thereof |
US5861253A (en) * | 1992-07-17 | 1999-01-19 | Aprogenex, Inc. | Intracellular antigens for identifying fetal cells in maternal blood |
US5977316A (en) * | 1995-01-17 | 1999-11-02 | The Board Of Trustees Of The University Of Kentucky | Monoclonal antibody 1A7 and related polypeptides |
US6297370B1 (en) * | 1991-05-08 | 2001-10-02 | Chiron Corporation | HCV genomic sequences for diagnostics and therapeutics |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5558096A (en) * | 1978-10-25 | 1980-04-30 | Noda Sangyo Kagaku Kenkyusho | Method of making novel recombined dna |
US5348855A (en) * | 1986-03-05 | 1994-09-20 | Miles Inc. | Assay for nucleic acid sequences in an unpurified sample |
US5063162A (en) * | 1987-04-24 | 1991-11-05 | Hoffmann-La Roche Inc. | Process for isolating nucleic acids utilizing protease digestion |
US5807527A (en) * | 1991-05-29 | 1998-09-15 | Flinders Technologies Pty. Ltd. | Solid medium and method for DNA storage |
US5496562A (en) * | 1988-10-05 | 1996-03-05 | Flinders Technologies Pty Ltd | Solid medium and method for DNA storage |
US6043032A (en) * | 1993-09-22 | 2000-03-28 | Tosoh Corporation | Method of extracting nucleic acids and method of detecting specified nucleic acid sequences |
JPH11507544A (en) * | 1995-06-08 | 1999-07-06 | プロジェン インダストリーズ リミテッド | Method and apparatus for extracting DNA |
GB2388803B (en) * | 2002-01-14 | 2005-11-02 | Tcl Supplies Ltd | Drill bit |
-
2000
- 2000-02-25 WO PCT/US2000/004811 patent/WO2000050564A2/en active Application Filing
- 2000-02-25 US US09/513,179 patent/US6410725B1/en not_active Expired - Fee Related
- 2000-02-25 AU AU33775/00A patent/AU3377500A/en not_active Abandoned
-
2002
- 2002-04-17 US US10/123,532 patent/US20030023077A1/en not_active Abandoned
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4762780A (en) * | 1984-04-17 | 1988-08-09 | The Regents Of The University Of California | Method and composition for screening and diagnosing "HCMV" |
US4752565A (en) * | 1986-04-07 | 1988-06-21 | The United States Of America As Represented By The Department Of Health And Human Services | Cell line producing AIDS viral antigens without producing infectious virus particles |
US5234809A (en) * | 1989-03-23 | 1993-08-10 | Akzo N.V. | Process for isolating nucleic acid |
US5334499A (en) * | 1989-04-17 | 1994-08-02 | Eastman Kodak Company | Methods of extracting, amplifying and detecting a nucleic acid from whole blood or PBMC fraction |
US5231015A (en) * | 1989-10-18 | 1993-07-27 | Eastman Kodak Company | Methods of extracting nucleic acids and pcr amplification without using a proteolytic enzyme |
US5596092A (en) * | 1990-02-14 | 1997-01-21 | Talent S.R.L. | Extraction of genomic DNA from blood using cationic detergents |
US5407823A (en) * | 1990-04-06 | 1995-04-18 | Institut National De La Sante Et De La Recherche Medicale | Polypeptides having a dopaminergic receptor activity, nucleic acids coding for these polypeptides and use of these polypeptides for the screening of substances active on these polypeptides |
US6297370B1 (en) * | 1991-05-08 | 2001-10-02 | Chiron Corporation | HCV genomic sequences for diagnostics and therapeutics |
US5861253A (en) * | 1992-07-17 | 1999-01-19 | Aprogenex, Inc. | Intracellular antigens for identifying fetal cells in maternal blood |
US5631132A (en) * | 1993-05-20 | 1997-05-20 | The United States Of America As Represented By The Department Of Health And Human Services | Nucleic acid probes and methods for detecting Candida glabrata DNA in blood |
US5830759A (en) * | 1994-08-18 | 1998-11-03 | The Trustees Of Columbia University In The City Of New York | Unique associated Kaposi's sarcoma virus sequences and uses thereof |
US5977316A (en) * | 1995-01-17 | 1999-11-02 | The Board Of Trustees Of The University Of Kentucky | Monoclonal antibody 1A7 and related polypeptides |
Also Published As
Publication number | Publication date |
---|---|
US6410725B1 (en) | 2002-06-25 |
WO2000050564A2 (en) | 2000-08-31 |
AU3377500A (en) | 2000-09-14 |
WO2000050564A3 (en) | 2000-12-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6410725B1 (en) | Method for extracting DNA from dried specimens | |
EP1053352B1 (en) | Mismatch detection techniques | |
US5935825A (en) | Process and reagent for amplifying nucleic acid sequences | |
DE68911648T2 (en) | CATALYTIC HYBRIDIZING SYSTEMS FOR DETECTING NUCLEIC ACID SEQUENCES BASED ON THEIR ACTIVITY AS COFACTORS IN CATALYTIC REACTIONS IN WHICH A COMPLEMENTARY, MARKED NUCLEIC ACID SAMPLE IS SPLIT. | |
US9944922B2 (en) | Highly simplified lateral flow-based nucleic acid sample preparation and passive fluid flow control | |
JP4354537B2 (en) | Nucleic acid capture and selective release method using weakly basic polymer and amplification method thereof | |
Zhou et al. | A two-step procedure for extracting genomic DNA from dried blood spots on filter paper for polymerase chain reaction amplification | |
AU711836B2 (en) | Detection of mismatches by resolvase cleavage using a magnetic bead support | |
US7504363B2 (en) | Methods using four-layer filter for PCR sample preparation | |
EP0357011B1 (en) | Detection and amplification of target nucleic acid sequences | |
EP0235726A2 (en) | Rapid detection of nucleic acid sequences in a sample by labeling the sample | |
JPH02292298A (en) | Method for extractively amplifying and measuring nucleic acid derived from total blood or pbmc fraction | |
WO2000031306A9 (en) | Multiplex amplification of short tandem repeat loci | |
US20110065110A1 (en) | Method For The Extraction And Purification Of Nucleic Acids On A Membrane | |
WO2011028887A2 (en) | Methods and compositions for direct chemical lysis | |
US20170029808A1 (en) | Method for recovering short-chain nucleic acids | |
US12104206B2 (en) | Method of direct target sequencing using nuclease protection | |
CA1309932C (en) | Nucleic acid hybridization technique and kit therefor | |
US20220106640A1 (en) | Methods of detecting dna and rna in the same sample | |
JPS63241465A (en) | Dna probe |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |