US20030021902A1 - Substrate having a treatment surface - Google Patents
Substrate having a treatment surface Download PDFInfo
- Publication number
- US20030021902A1 US20030021902A1 US10/244,298 US24429802A US2003021902A1 US 20030021902 A1 US20030021902 A1 US 20030021902A1 US 24429802 A US24429802 A US 24429802A US 2003021902 A1 US2003021902 A1 US 2003021902A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- undercoating
- treatment
- water repellent
- radical
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 238000011282 treatment Methods 0.000 title claims abstract description 55
- 239000000758 substrate Substances 0.000 title claims abstract description 52
- 239000005871 repellent Substances 0.000 claims abstract description 61
- 230000002940 repellent Effects 0.000 claims abstract description 61
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 60
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 239000002904 solvent Substances 0.000 claims abstract description 13
- 125000003158 alcohol group Chemical group 0.000 claims abstract description 11
- 230000003746 surface roughness Effects 0.000 claims abstract description 11
- 239000011521 glass Substances 0.000 claims description 36
- 239000010410 layer Substances 0.000 claims description 25
- 238000000034 method Methods 0.000 claims description 22
- 238000000576 coating method Methods 0.000 claims description 18
- 229910003910 SiCl4 Inorganic materials 0.000 claims description 17
- FDNAPBUWERUEDA-UHFFFAOYSA-N silicon tetrachloride Chemical compound Cl[Si](Cl)(Cl)Cl FDNAPBUWERUEDA-UHFFFAOYSA-N 0.000 claims description 17
- 239000011248 coating agent Substances 0.000 claims description 13
- 239000000919 ceramic Substances 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000002344 surface layer Substances 0.000 claims description 5
- 238000000227 grinding Methods 0.000 claims description 4
- 238000004381 surface treatment Methods 0.000 claims description 4
- 238000001035 drying Methods 0.000 claims description 3
- 229910003818 SiH2Cl2 Inorganic materials 0.000 claims description 2
- 229910003822 SiHCl3 Inorganic materials 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims 1
- 239000010408 film Substances 0.000 description 38
- 239000003795 chemical substances by application Substances 0.000 description 28
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 17
- 150000003254 radicals Chemical class 0.000 description 17
- -1 silane compound Chemical class 0.000 description 16
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 11
- 238000005299 abrasion Methods 0.000 description 8
- 239000005046 Chlorosilane Substances 0.000 description 7
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 7
- 238000010521 absorption reaction Methods 0.000 description 7
- 239000000463 material Substances 0.000 description 7
- 239000003921 oil Substances 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- KOPOQZFJUQMUML-UHFFFAOYSA-N chlorosilane Chemical compound Cl[SiH3] KOPOQZFJUQMUML-UHFFFAOYSA-N 0.000 description 6
- 238000002156 mixing Methods 0.000 description 6
- 229910008051 Si-OH Inorganic materials 0.000 description 5
- 229910006358 Si—OH Inorganic materials 0.000 description 5
- 239000012298 atmosphere Substances 0.000 description 5
- 229910000077 silane Inorganic materials 0.000 description 5
- 150000001875 compounds Chemical class 0.000 description 4
- 229910044991 metal oxide Inorganic materials 0.000 description 4
- 150000004706 metal oxides Chemical class 0.000 description 4
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- BOTDANWDWHJENH-UHFFFAOYSA-N Tetraethyl orthosilicate Chemical compound CCO[Si](OCC)(OCC)OCC BOTDANWDWHJENH-UHFFFAOYSA-N 0.000 description 3
- 238000010438 heat treatment Methods 0.000 description 3
- IXCSERBJSXMMFS-UHFFFAOYSA-N hydrogen chloride Substances Cl.Cl IXCSERBJSXMMFS-UHFFFAOYSA-N 0.000 description 3
- 229910000041 hydrogen chloride Inorganic materials 0.000 description 3
- 238000006460 hydrolysis reaction Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000000377 silicon dioxide Substances 0.000 description 3
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- 229920000742 Cotton Polymers 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000004205 dimethyl polysiloxane Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 239000005329 float glass Substances 0.000 description 2
- 150000002222 fluorine compounds Chemical class 0.000 description 2
- 230000007062 hydrolysis Effects 0.000 description 2
- 230000001678 irradiating effect Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 2
- 239000001301 oxygen Substances 0.000 description 2
- 229910052760 oxygen Inorganic materials 0.000 description 2
- 238000010422 painting Methods 0.000 description 2
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 2
- 229920001296 polysiloxane Polymers 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 238000005096 rolling process Methods 0.000 description 2
- 150000003377 silicon compounds Chemical class 0.000 description 2
- VFYFMNCKPJDAPV-UHFFFAOYSA-N 2,2'-(5-oxo-1,3-dioxolan-4,4-diyl)diessigs Chemical compound C1N(C2)CN3CN1CN2C3.OC(=O)CC1(CC(O)=O)OCOC1=O VFYFMNCKPJDAPV-UHFFFAOYSA-N 0.000 description 1
- ZFXNHKPMRQVISH-UHFFFAOYSA-N CC(C)(O)[Si](C)(C)O Chemical compound CC(C)(O)[Si](C)(C)O ZFXNHKPMRQVISH-UHFFFAOYSA-N 0.000 description 1
- NPVDPCSQNVGVQS-UHFFFAOYSA-N CC(C)(O[Si](C)(C)C)[Si](C)(C)C Chemical compound CC(C)(O[Si](C)(C)C)[Si](C)(C)C NPVDPCSQNVGVQS-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- YZCKVEUIGOORGS-IGMARMGPSA-N Protium Chemical compound [1H] YZCKVEUIGOORGS-IGMARMGPSA-N 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 230000002745 absorbent Effects 0.000 description 1
- 239000002250 absorbent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 230000003213 activating effect Effects 0.000 description 1
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 150000001336 alkenes Chemical class 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 150000001343 alkyl silanes Chemical class 0.000 description 1
- 238000007611 bar coating method Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000006482 condensation reaction Methods 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 125000004122 cyclic group Chemical group 0.000 description 1
- 230000007547 defect Effects 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- QUPDWYMUPZLYJZ-UHFFFAOYSA-N ethyl Chemical compound C[CH2] QUPDWYMUPZLYJZ-UHFFFAOYSA-N 0.000 description 1
- 239000007792 gaseous phase Substances 0.000 description 1
- 229910052736 halogen Inorganic materials 0.000 description 1
- 150000002367 halogens Chemical class 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- WCYWZMWISLQXQU-UHFFFAOYSA-N methyl Chemical compound [CH3] WCYWZMWISLQXQU-UHFFFAOYSA-N 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- JRZJOMJEPLMPRA-UHFFFAOYSA-N olefin Natural products CCCCCCCC=C JRZJOMJEPLMPRA-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- SCPYDCQAZCOKTP-UHFFFAOYSA-N silanol Chemical compound [SiH3]O SCPYDCQAZCOKTP-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 238000003980 solgel method Methods 0.000 description 1
- 238000004528 spin coating Methods 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 229920003002 synthetic resin Polymers 0.000 description 1
- 239000000057 synthetic resin Substances 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/009—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone characterised by the material treated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D5/00—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures
- B05D5/08—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface
- B05D5/083—Processes for applying liquids or other fluent materials to surfaces to obtain special surface effects, finishes or structures to obtain an anti-friction or anti-adhesive surface involving the use of fluoropolymers
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/3405—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of organic materials
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C17/00—Surface treatment of glass, not in the form of fibres or filaments, by coating
- C03C17/34—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
- C03C17/42—Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions at least one coating of an organic material and at least one non-metal coating
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/45—Coating or impregnating, e.g. injection in masonry, partial coating of green or fired ceramics, organic coating compositions for adhering together two concrete elements
- C04B41/52—Multiple coating or impregnating multiple coating or impregnating with the same composition or with compositions only differing in the concentration of the constituents, is classified as single coating or impregnation
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B41/00—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone
- C04B41/80—After-treatment of mortars, concrete, artificial stone or ceramics; Treatment of natural stone of only ceramics
- C04B41/81—Coating or impregnation
- C04B41/89—Coating or impregnation for obtaining at least two superposed coatings having different compositions
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C26/00—Coating not provided for in groups C23C2/00 - C23C24/00
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C30/00—Coating with metallic material characterised only by the composition of the metallic material, i.e. not characterised by the coating process
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D1/00—Processes for applying liquids or other fluent materials
- B05D1/18—Processes for applying liquids or other fluent materials performed by dipping
- B05D1/185—Processes for applying liquids or other fluent materials performed by dipping applying monomolecular layers
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B05—SPRAYING OR ATOMISING IN GENERAL; APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D—PROCESSES FOR APPLYING FLUENT MATERIALS TO SURFACES, IN GENERAL
- B05D3/00—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials
- B05D3/10—Pretreatment of surfaces to which liquids or other fluent materials are to be applied; After-treatment of applied coatings, e.g. intermediate treating of an applied coating preparatory to subsequent applications of liquids or other fluent materials by other chemical means
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03C—CHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
- C03C2217/00—Coatings on glass
- C03C2217/70—Properties of coatings
- C03C2217/76—Hydrophobic and oleophobic coatings
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/20—Resistance against chemical, physical or biological attack
- C04B2111/27—Water resistance, i.e. waterproof or water-repellent materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/24—Structurally defined web or sheet [e.g., overall dimension, etc.]
- Y10T428/24355—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.]
- Y10T428/24364—Continuous and nonuniform or irregular surface on layer or component [e.g., roofing, etc.] with transparent or protective coating
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31551—Of polyamidoester [polyurethane, polyisocyanate, polycarbamate, etc.]
- Y10T428/31609—Particulate metal or metal compound-containing
- Y10T428/31612—As silicone, silane or siloxane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31667—Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
Definitions
- the present invention relates to a substrate of glass, ceramics, plastic, or metal, etc., having a treatment surface, i.e., a water repellent coating or film being formed on an undercoating layer or film thereof, and a treatment method therefor.
- a treatment surface i.e., a water repellent coating or film being formed on an undercoating layer or film thereof, and a treatment method therefor.
- a substrate comprising for example glass or the like, on the surface of which a water repellent coating, layer or film is formed, has been already known, in for example, Japanese Patent Publication No. Hei 4-20781 (1992), Japanese Laid-open Patent No. Hei 5-86353 (1993), Japanese Laid-open Patent No. Hei 5-161844 (1993), Japanese Laid-open Patent No. Hei 2-311332 (1990) and Japanese Patent No. 2,525,536.
- Japanese Laid-open Patent No. Hei 2-311332 (1990) describes a water repellent glass obtained through sililating the surface of glass substrate by a silil compound, such as fluorinated alkylsilane, the surface of which is formed from a metal oxide, such as SiO 2 .
- Japanese Patent No. 2,525,536 discloses that an undercoating film or layer of silica is applied on the glass substrate before treating the surface thereof by the fluorine compound, in the same manner as described in Japanese Laid-open Patent No. Hei 2-311332 (1990), and further that weather resistance of the water repellent film is improved by including olefin telomer in the fluorine compound.
- the undercoating layer since the density of the undercoating layer is low, the undercoating layer must be more than 100 nm in thickness thereof and also the temperature for baking must be higher than 400° C.
- a substrate having a treatment surface characterized in that, on a surface of a substrate of glass, ceramics, plastics or metal, an undercoating film layer is formed by drying a liquid for undercoating treatment which is obtained by dissolving and reacting a materiel having chlorosilil radical in molecular form therein within an alcohol group solvent, so that on said undercoating film layer there is formed a water repellent or oil repellent layer, wherein a surface roughness (Ra) of said surface layer is equal to or less than 0.5 nm.
- the surface roughness (Ra) of the surface layer is preferably to be as small as possible.
- the surface roughness (Ra) of a fire polished surface of float glass i.e., upper surface of the float glass floating on molten tin
- the roughness (Ra) of a glass surface obtained through precise grinding is about 0.1 nm. Therefore, the substantially lowest threshold value of surface roughness (Ra) of the glass surface which can be obtained is about 0.1-0.2 nm.
- the undercoating film or layer formed from the undercoating treatment liquid which is obtained by dissolving and reacting the materiel having chlorosilil radical in molecular form therein, has high smoothness, and therefore, the surface layer formed on the undercoating film or layer also comes to have high smoothness (Ra ⁇ 0.5 nm), reflecting the smoothness of the undercoating layer, thereby obtaining a superior water repellent property, i.e., a high contact angle and a low critical inclination angel.
- the roughness (Ra) of the substrate surface exceeds 3.0 nm, it is difficult to make the roughness (Ra) of the surface layer (the water repellent layer) less than 0.5 nm even if effecting the undercoating treatment thereon. Therefore, it is preferable that the roughness (Ra) of the substrate surface be equal to or less than 3.0 nm. Moreover, when the substrate is made of glass plate, transparency of the substrate can be maintained when the roughness (Ra) is within a range of 0.5 nm ⁇ Ra ⁇ 3.0 nm.
- hydrophilic radical is poor in the surface of the substrate
- it is preferable to conduct the surface treatment after treatment for hydrophilizing the surface i.e., by treating the surface with plasma containing oxygen or treating under a corona discharge atmosphere, or alternatively, by irradiating ultraviolet light of a wavelength in the vicinity of from 200 to 300 nm onto the substrate surface in an atmosphere containing oxygen.
- a materiel having chlorosilil radical in molecular form therein there can be listed SiCl 4 , SiHCl 3 or SiH 2 Cl 2 , etc., and it is possible to select a single or a plurality of materials from among these as the material.
- SiCl 4 since it contains the most Cl radicals, SiCl 4 is preferable.
- the chlorosilil radical is very high in reactivity thereof, and it forms a minute or dense undercoating film through a self-condensation reaction or by reaction with the substrate surface.
- it can contain a material in which a part of a hydrogen radical is replaced by methyl radical or ethyl radical.
- the alcohol group solvent for example, methanol, ethanol, 1-propanol, and 2-propanol are desirable.
- the material containing chlorosilil radical in molecular form therein and the alcohol group solvent as is shown by equation (1) below, react to form alkoxide by removing hydrogen chloride:
- an undercoating film being superior in smoothness can be formed, and since a part of the chlorosilil radical takes part in the siloxane bonding, good bonding between the substrate and the water repellent film can be obtained by the siloxane bonding.
- the concentration of the materiel having chiorosilil radical in molecular form therein contained in the undercoating treatment liquid be equal to or greater than 0.01 wt % and equal to or less than 3.0 wt %. If it is lower than that, no effect by adding the material can be obtained, and if higher than that, the effect of adding the material is not improved.
- the concentration be equal to or greater than 0.03 wt % and equal to or less than 1.0 wt %.
- the method for coating the undercoating treatment liquid should not be limited in particular. However, other methods can be listed, such as: a dip coating method, a curtain flow coating method, a spin coating method, a bar coating method, a roll coating method, a hand coating method, a brush painting method, a spray coating method, etc.
- a water repellent treatment and an oil repellent treatment can be listed.
- the liquid agents for the water and oil repellent treatments should not be limited in particular, a treating method by using water repellent or oil repellent agents containing silane compound, siloxane compound or silicon compound therein is preferable.
- silane compound there can be listed water repellent agents containing:
- repellent agents can be used, depending on necessity, by being hydrolyzed using a catalyst such as acid or hydrochloric acid. Further, an agent, containing the siloxane compound which can be obtained through hydrolysis or condensation of the silane compound, can be used too.
- silicon compound there can be used polydimethylsiloxane of straight chain or chain form, or silanol metamorphism, hydrogen metamorphism, halogen metamorphism thereof, etc.
- a hydrophilic treatment or an antifogging treatment can be applied, in addition to the water repellent or oil repellent treatment.
- agent a for the water repellent treatment was put onto a cotton applicator and it was coated onto the glass substrate with a film formed by the undercoating treatment, and thereafter any agent for water repellent treatment which was excessively coated is removed by wiping with a fresh cotton applicator soaked in ethanol, thereby obtaining a water repellent glass substrate.
- the contacting angle with water drops of 2 mg in size was measured as a static contact angle by using a contact goniometer (CA-DT, produced by Kyowa Kaimen Kagaku Co.).
- UV light was irradiated there onto by using Super UV tester (W-13, produced by Iwasaki Denki Co.), under the conditions of an ultraviolet light strength of 76 ⁇ 2 mW/cm 2 , irradiating for 20 hours with a darkness cycle of 4 hours, and by showering the substrate with ion-exchanged water for 30 seconds every hour.
- Super UV tester W-13, produced by Iwasaki Denki Co.
- the surface roughness (Ra) is calculated by measuring the surface contour with an atomic force microscope (AFM) (SPI3700, produced by Seiko Instruments Inc.) by a cyclic contact mode.
- AFM atomic force microscope
- an initial contact angle was 108°
- an initial critical inclination angle 13° was 88°
- the contact angle after the weather resistance test of 400 hours was 88°
- that after the abrasion test is 84°, serving as a measure of the durability thereof.
- a water repellent glass substrate was obtained in the same manner as in embodiment No. 1, except that 0.005 g (0.005 wt %) of chlorosilane was added in the preparation of the liquid for the undercoating treatment.
- Water repellent glass substrates were obtained in the same manner as in embodiment No. 1, except that 0.5 g, 1.0 g, 3.0 g and 5.0 g (0.5 wt %, 1.0 wt %, 3.0 wt % and 5.0 wt % in concentration) of chlorosilane were added to the respective preparations of the liquid for the undercoating treatment.
- the concentration of chlorosilane is high, the thickness of the undercoating becomes thick, and as a result of this, the interference of light is gradually strengthened. When it exceeds 5 wt % in concentration thereof, a remarkable increase in color reflection can be distinguished. When the concentration of chlorosilane rises further so as to increase the thickness of the undercoating layer, a baking process is additionally required.
- the water repellent glass substrate was produced by using the above-mentioned agent b for water repellent treatment thereof.
- the water repellent glass substrate was produced in the same manner as in embodiment 1 except that as the solvent for the undercoating treatment liquid, chloroform was used in place of ethanol.
- TABLE 1 shows a large contact angle at 107°, however, the initial critical inclination angle is large, such as 20°, and the contact angle after the weather resistance test was reduced to 63° and the contact angle after the abrasion test was also reduced to 67°.
- Comparison 6 was performed for double-checking embodiment 6 which is disclosed in the specification of Japanese Patent No. 2,525,536.
- the water repellent glass substrate was obtained in the same manner as in embodiment 1 except that as the solvent for the undercoating treatment liquid perfluorocarbon solution (FC-77, produced by 3M Co.) was used in place of ethanol.
- FC-77 produced by 3M Co.
- Comparison 7 was performed for double-checking embodiment 3 which is disclosed in Japanese Laid-open Patent No. Hei 2-311332 (1990) cited above as the prior art.
- This liquid for the undercoating treatment was painted by the flow coating method in the same manner as in embodiment 1 and was dried in about a minute. After the undercoating treatment, a layer of silicon oxide was formed through a heating process by heating the substrate for an hour. Thereafter, the water repellent glass substrate was obtained by using the above-mentioned agent a for the water repellent treatment, in the same manner as in embodiment 1.
- the surface roughness (Ra) shows a high value at 0.6 nm, and the initial critical inclination angle is also high, at 22°.
- the contact angle was 107°, however, it went down to 67° after the abrasion test.
- the water repellent glass substrate was obtained in the same manner as in embodiment 1 except that the heating process of the undercoating film is not conducted.
- the surface roughness (Ra) shows a high value at 0.7 nm, and the initial critical inclination angle was also high at 23°.
- the contact angle is 108°, however, it went down to 45° after the abrasion test.
- the agent for the undercoating treatment since it is sufficient for the agent for the undercoating treatment to be painted without using a liquid phase absorption or gaseous phase absorption method, the time for the treating can be shortened, and by using a low-cost alcohol solvent, the liquid for the undercoating treatment can painted uniformly and thinly.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Ceramic Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Structural Engineering (AREA)
- Life Sciences & Earth Sciences (AREA)
- General Chemical & Material Sciences (AREA)
- Geochemistry & Mineralogy (AREA)
- Metallurgy (AREA)
- Mechanical Engineering (AREA)
- Combustion & Propulsion (AREA)
- Surface Treatment Of Glass (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Paints Or Removers (AREA)
- Laminated Bodies (AREA)
- Treatments Of Macromolecular Shaped Articles (AREA)
- Non-Metallic Protective Coatings For Printed Circuits (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
Abstract
For obtaining a substrate on the surface of which a water repellent film is firmly bonded through an undercoating film, and which shows a low critical inclination angle, superior durability, and high density, a water repellent and/or oil repellent film layer is formed by using a liquid for undercoating treatment. The liquid for undercoating treatment is obtained by dissolving and reacting a materiel having chlorosilil radical in molecular form therein and is dissolved into an alcohol group solvent, so that a surface roughness (Ra) of less than 0.5 nm is obtained, thereby achieving high durability and a low critical inclination angle.
Description
- 1. Field of the Invention
- The present invention relates to a substrate of glass, ceramics, plastic, or metal, etc., having a treatment surface, i.e., a water repellent coating or film being formed on an undercoating layer or film thereof, and a treatment method therefor.
- 2. Description of Related Art
- Conventionally, a substrate comprising for example glass or the like, on the surface of which a water repellent coating, layer or film is formed, has been already known, in for example, Japanese Patent Publication No. Hei 4-20781 (1992), Japanese Laid-open Patent No. Hei 5-86353 (1993), Japanese Laid-open Patent No. Hei 5-161844 (1993), Japanese Laid-open Patent No. Hei 2-311332 (1990) and Japanese Patent No. 2,525,536.
- In Japanese Patent Publication No. Hei 4-20781 (1992), it is disclosed that on the surface of the substrate there is formed a coating layer or film from a silane compound excluding polyfluoro radical or synthetic resin, and further thereon is formed a water repellent and oil repellent multi-layer coating or film comprising a silane compound including polyfluoro radical.
- Further, in Japanese Laid-open Patent No. Hei 5-86353 (1993), there is disclosed a method by which a thin film of siloxan radical is formed on the surface of glass, ceramics, plastic, or metal, etc., by use of a compound including chlorosilil radical, such as SiCl4, in molecular form thereof, and further thereon is formed a chemical absorption unimolecular accumulation layer or film (a water repellent film or coating).
- Also in Japanese Laid-open Patent No. Hei 5-161844 (1993), there is described a method in which, having formed a unimolecular film of siloxan radical or an absorption film of polysiloxan previously, the chemical absorption unimolecular accumulation film (a water repellent film or coating) is formed on the surface of a substrate by a further chemical absorption processing conducted in an atmosphere including a surface-active agent of chlorosilane radical.
- Moreover, Japanese Laid-open Patent No. Hei 2-311332 (1990) describes a water repellent glass obtained through sililating the surface of glass substrate by a silil compound, such as fluorinated alkylsilane, the surface of which is formed from a metal oxide, such as SiO2.
- Furthermore, Japanese Patent No. 2,525,536 discloses that an undercoating film or layer of silica is applied on the glass substrate before treating the surface thereof by the fluorine compound, in the same manner as described in Japanese Laid-open Patent No. Hei 2-311332 (1990), and further that weather resistance of the water repellent film is improved by including olefin telomer in the fluorine compound.
- With the substrate which can be obtained by the method disclosed in Japanese Patent Publication No. Hei 4-20781 (1992), since the density of the undercoating layer is low, the undercoating layer must be more than 100 nm in thickness thereof and also the temperature for baking must be higher than 400° C.
- In the method disclosed in Japanese Laid-open Patent No. Hei 5-86353 (1993), since the absorbent for the reaction with water treatment in air is unstable, it is necessary to maintain the humidity in the atmosphere low, thereby control of the environment being difficult. Further, there are problems, in that it takes 2-3 hours for the treatment, and the nonaqueous solvent is expensive.
- For implementation of the method which is disclosed in Japanese Laid-open Patent No. Hei 5-161844 (1993), equipment for controlling the atmosphere must be large-scaled, and it takes time to form a perfect absorption film.
- With the substrate which is obtained by the method disclosed in Japanese Laid-open Patent No. Hei 2-311332 (1990), since baking at 500° C. for instance is necessitated for obtaining the high density metal oxide layer when forming the metal oxide film through a sol-gel method, also large-scaled equipment for baking the substrate at high temperature is necessary, thus raising the production cost. Further, having tried this method, the roughness of the metal oxide film thereby obtained is relatively high, resulting that it is difficult for water drops present on the surface of the water repellent glass to roll freely thereon.
- Furthermore, with the substrate which is obtained by the method disclosed in Japanese Patent No. 2,525,536, though being superior with respect to weather resistance, such a result is only obtained through double-checking thereof that the durability of the water repellent film in a friction test is adequate, and it is also difficult for water drops present on the surface of the water repellent glass to roll freely thereon since the roughness of the surface of the silica undercoating layer or coating is relatively high.
- For resolving the drawbacks in the conventional art mentioned above, according to the present invention, there is provided a substrate having a treatment surface, characterized in that, on a surface of a substrate of glass, ceramics, plastics or metal, an undercoating film layer is formed by drying a liquid for undercoating treatment which is obtained by dissolving and reacting a materiel having chlorosilil radical in molecular form therein within an alcohol group solvent, so that on said undercoating film layer there is formed a water repellent or oil repellent layer, wherein a surface roughness (Ra) of said surface layer is equal to or less than 0.5 nm.
- Further, the surface roughness (Ra) of the surface layer is preferably to be as small as possible. However, for example, the surface roughness (Ra) of a fire polished surface of float glass (i.e., upper surface of the float glass floating on molten tin) is about 0.2 nm, and the roughness (Ra) of a glass surface obtained through precise grinding is about 0.1 nm. Therefore, the substantially lowest threshold value of surface roughness (Ra) of the glass surface which can be obtained is about 0.1-0.2 nm.
- As mentioned above, the undercoating film or layer formed from the undercoating treatment liquid, which is obtained by dissolving and reacting the materiel having chlorosilil radical in molecular form therein, has high smoothness, and therefore, the surface layer formed on the undercoating film or layer also comes to have high smoothness (Ra≦0.5 nm), reflecting the smoothness of the undercoating layer, thereby obtaining a superior water repellent property, i.e., a high contact angle and a low critical inclination angel.
- Here, it is possible to remove defects in appearance by keeping the surface of the substrate clean when forming the undercoating layer or film on it, and it is also possible to increase adhesive strength between the substrate surface and the undercoating film by activating the surface of the substrate. For example, even in a case where the glass substrate comprises an oxide, it is possible to form an active surface by grinding the surface to within 0.5 nm≦Ra≦3.0 nm using a grinding agent.
- However, in the case where the roughness (Ra) of the substrate surface exceeds 3.0 nm, it is difficult to make the roughness (Ra) of the surface layer (the water repellent layer) less than 0.5 nm even if effecting the undercoating treatment thereon. Therefore, it is preferable that the roughness (Ra) of the substrate surface be equal to or less than 3.0 nm. Moreover, when the substrate is made of glass plate, transparency of the substrate can be maintained when the roughness (Ra) is within a range of 0.5 nm≦Ra≦3.0 nm.
- Further, in the case where hydrophilic radical is poor in the surface of the substrate, it is preferable to conduct the surface treatment after treatment for hydrophilizing the surface, i.e., by treating the surface with plasma containing oxygen or treating under a corona discharge atmosphere, or alternatively, by irradiating ultraviolet light of a wavelength in the vicinity of from 200 to 300 nm onto the substrate surface in an atmosphere containing oxygen.
- Further, according to the present invention, it is appropriate to restrict the concentration of the materiel having chlorosilil radical in molecular form therein within the liquid for the undercoating treatment, this being equal to or greater than 0.01 wt % and equal to or less than 3.0 wt %.
- As an example of a materiel having chlorosilil radical in molecular form therein, there can be listed SiCl4, SiHCl3 or SiH2Cl2, etc., and it is possible to select a single or a plurality of materials from among these as the material. In particular, since it contains the most Cl radicals, SiCl4 is preferable. The chlorosilil radical is very high in reactivity thereof, and it forms a minute or dense undercoating film through a self-condensation reaction or by reaction with the substrate surface. However, it can contain a material in which a part of a hydrogen radical is replaced by methyl radical or ethyl radical.
- Further, as the alcohol group solvent, for example, methanol, ethanol, 1-propanol, and 2-propanol are desirable. The material containing chlorosilil radical in molecular form therein and the alcohol group solvent, as is shown by equation (1) below, react to form alkoxide by removing hydrogen chloride:
- (—Si—Cl)+(ROH)→(—Si—OR)+(HCl) (1)
- Further, the material containing chlorosilil radical in molecular form therein and the alcohol group solvent react as shown by equation (2) below:
- (—Si—Cl)+(ROH)→(—Si—OH)+(RCl) (2)
- In the alcohol solvent, a part of (—Si—OR) reacts as shown by equation (3) below with an acidic catalyst which is formed as shown by equation (1), and forms (—Si—OH).
- (—Si—OR)+(H2O)→(—Si—OH)+(ROH) (3)
- In addition, (—Si—OH) which is produced as shown by the above equations (2) and (3) reacts as shown by equation (4) below, and forms siloxane bonding:
- (—Si—Cl)+(—Si—OH)→(—Si—O—Si—)+(HCl) (4)
- It is considered that, by means of the above-mentioned siloxane bonding, the bonding between the substrate and the undercoating film, or between the undercoating film and the surface film such as the water repellent film is strengthened. Namely, in the case where a compound including the siloxane bonding is simply used as the liquid for the undercoating treatment as disclosed in the conventional arts, though the siloxane bonding exists within the undercoating film, the siloxane bonding joining between the substrate and the undercoating film, or between the undercoating film and the water repellent film, are not so influential.
- According to the present invention, by treating with a liquid for performing an undercoating treatment which is obtained by reacting the materiel having chiorosilil radical in molecular form in the alcohol group solvent within thirty (30) minutes after mixing thereof, an undercoating film being superior in smoothness can be formed, and since a part of the chlorosilil radical takes part in the siloxane bonding, good bonding between the substrate and the water repellent film can be obtained by the siloxane bonding.
- Here, it is preferable that the concentration of the materiel having chiorosilil radical in molecular form therein contained in the undercoating treatment liquid, though depending on the method of coating, be equal to or greater than 0.01 wt % and equal to or less than 3.0 wt %. If it is lower than that, no effect by adding the material can be obtained, and if higher than that, the effect of adding the material is not improved. For example, in particular, in the case of coating by using, for example, a curtain flow coating method, judging from the appearance during the coating, it is preferable that the concentration be equal to or greater than 0.03 wt % and equal to or less than 1.0 wt %.
- The method for coating the undercoating treatment liquid should not be limited in particular. However, other methods can be listed, such as: a dip coating method, a curtain flow coating method, a spin coating method, a bar coating method, a roll coating method, a hand coating method, a brush painting method, a spray coating method, etc.
- Further, as the surface treatment, for instance, a water repellent treatment and an oil repellent treatment can be listed. Though the liquid agents for the water and oil repellent treatments should not be limited in particular, a treating method by using water repellent or oil repellent agents containing silane compound, siloxane compound or silicon compound therein is preferable.
- As the silane compound, there can be listed water repellent agents containing:
- CF3 (CF2)7(CH2)2Si (OCH3)3,
- CF3(CF2)6(CH2)2Si(OCH3)3,
- CF3(CF2)7(CH2)2SiCl3,
- CF3(CF2)6(CH2)2SiCl3, and the like.
- These repellent agents can be used, depending on necessity, by being hydrolyzed using a catalyst such as acid or hydrochloric acid. Further, an agent, containing the siloxane compound which can be obtained through hydrolysis or condensation of the silane compound, can be used too.
- As the silicon compound there can be used polydimethylsiloxane of straight chain or chain form, or silanol metamorphism, hydrogen metamorphism, halogen metamorphism thereof, etc.
- For the method for the water repellent or oil repellent treatment, in the same manner as the undercoating treatment, though it should not be limited in particular, methods such as the hand coating method, the brush painting method, etc., can be applied thereto.
- Further, as the surface treatment according to the present invention, a hydrophilic treatment or an antifogging treatment can be applied, in addition to the water repellent or oil repellent treatment.
- Hereinafter, detailed explanation of the embodiments according to the present invention will be given.
- (Embodiment 1)
- By adding 0.01 g of chlorosilane (SiCl4, produced by Shinnetsu Silicon Co.) to 100 g of ethanol (produced by Nakaraitesuku Co.) and mixing thereof, a liquid for the undercoating treatment is obtained. The obtained liquid for the undercoating treatment was coated on a glass plate (300×300 mm) which was ground and cleaned, under a humidity of 40% and at room temperature, and was then dried for about one minute, thereby obtaining the undercoating film.
- Then, by dissolving 1.3 g of CF3(CF2)7(CH2)2Si(OCH3)3 (heptadecafluorodesiltrimethoxisilane, produced by Toshiba Silicon Co.) into 40.6 g of ethanol and mixing them for an hour, and thereafter by adding 0.808 g of ion-exchanged water and 0.1 N of hydrochloric acid and mixing them for a further one hour, an agent a for the water repellent treatment was obtained.
- Thereafter, 0.3 ml of agent a for the water repellent treatment was put onto a cotton applicator and it was coated onto the glass substrate with a film formed by the undercoating treatment, and thereafter any agent for water repellent treatment which was excessively coated is removed by wiping with a fresh cotton applicator soaked in ethanol, thereby obtaining a water repellent glass substrate.
- The contacting angle with water drops of 2 mg in size was measured as a static contact angle by using a contact goniometer (CA-DT, produced by Kyowa Kaimen Kagaku Co.).
- As a weather resistance test, ultraviolet light was irradiated there onto by using Super UV tester (W-13, produced by Iwasaki Denki Co.), under the conditions of an ultraviolet light strength of 76±2 mW/cm2, irradiating for 20 hours with a darkness cycle of 4 hours, and by showering the substrate with ion-exchanged water for 30 seconds every hour.
- Further, as an abrasion test, a sand-rubber eraser (product by Lion Co., No. 502) was rubbed on the water repellent glass reciprocally 100 times at a load of 50 g per 15×7 sq. mm.
- Moreover, as a measure for indicating the water repellency, the critical inclination angle was measured. For measuring the performance of rolling a water drop on the surface of the water repellent glass (contact angle=100-110°), a water drop of diameter 5 mm (it comes to be approximately semicircular in shape if the contact angle is 100-110°) was disposed on the surface of the water repellent glass which is horizontally positioned. Then, the water repellent glass plate was inclined gradually, and the inclination angle (the critical inclination angle) when the water drop disposed on the surface of the water repellent glass begins rolling was recorded. The smaller the critical inclination angle, the better in dynamic repellent property. For instance, this applies to rain drops landing on the front windshield glass of a moving automobile which must be easily splashed or scattered away so that they do not interrupt the view of the driver.
- However, as the smoothness of the obtained water repellent glass, the surface roughness (Ra), is calculated by measuring the surface contour with an atomic force microscope (AFM) (SPI3700, produced by Seiko Instruments Inc.) by a cyclic contact mode.
- As shown in TABLE 1, an initial contact angle was 108°, an initial critical inclination angle 13°, and the contact angle after the weather resistance test of 400 hours was 88°, and that after the abrasion test is 84°, serving as a measure of the durability thereof.
- A water repellent glass substrate was obtained in the same manner as in embodiment No. 1, except that 0.005 g (0.005 wt %) of chlorosilane was added in the preparation of the liquid for the undercoating treatment.
- As shown in TABLE 1, though an initial contact angle of 107° is indicated, the initial inclination angle is large, at 18°, and the contact angle after the weather resistance test came down to 71°, thereby indicating that the durability is reduced.
- Water repellent glass substrates were obtained in the same manner as in embodiment No. 1, except that 0.5 g, 1.0 g, 3.0 g and 5.0 g (0.5 wt %, 1.0 wt %, 3.0 wt % and 5.0 wt % in concentration) of chlorosilane were added to the respective preparations of the liquid for the undercoating treatment.
- When the concentration of chlorosilane is high, the thickness of the undercoating becomes thick, and as a result of this, the interference of light is gradually strengthened. When it exceeds 5 wt % in concentration thereof, a remarkable increase in color reflection can be distinguished. When the concentration of chlorosilane rises further so as to increase the thickness of the undercoating layer, a baking process is additionally required.
- In a 1 liter glass reactor having a thermometer, a mixer and a cooler, 10.0 g of polydimethylsiloxane containing hydrolysis radical, which is expressed by the chemical equation shown below, was reacted with 1.0 g of CF3(CF2)7(CH2)2Si(OCH3)3 (heptadecafluorodesiltrimethoxisilane, produced by Toshiba Silicon Co.) together with 360 g of t-buthanol and 0.1 N of hydrochloric acid in a co-hydrolysis reaction for 5 hours at a temperature of 80° C., and further 160 wt % of n-hexane was added and mixed for 10 hours at room temperature.
-
- Further, by adding 10.0 g of organopolysiloxane which is expressed by the chemical equation shown below and 5.0 g of methasulfonic acid into the mix and mixing them for 10 minutes, an agent b for the water repellent treatment was obtained.
-
- By coating the agent for water repellent treatment on the undercoated glass substrate which is produced at a 0.5 wt % concentration of SiCl4, in the same manner as in embodiment 1, a water repellent glass substrate is obtained.
- Also with this repellent glass substrate, as shown in the TABLE 1, superior results can be obtained in the initial contact angle and the durability (i.e., the weather resistance test and the abrasion test).
- After the undercoating treatment using tetrachlorotinstan or tetrachloro as the agent for the undercoating treatment in place of chlorosilane, the water repellent glass substrate was produced by using the above-mentioned agent b for water repellent treatment thereof.
- Though they show 106° for the initial contact angle, however, the initial critical inclination angles thereof became large, such as 18° and 19°, and the contact angles after the weather resistance test were reduced to 65° and 64°, respectively.
- The water repellent glass substrate was produced in the same manner as in embodiment 1 except that as the solvent for the undercoating treatment liquid, chloroform was used in place of ethanol.
- Though TABLE 1 shows a large contact angle at 107°, however, the initial critical inclination angle is large, such as 20°, and the contact angle after the weather resistance test was reduced to 63° and the contact angle after the abrasion test was also reduced to 67°.
- Comparison 6 was performed for double-checking embodiment 6 which is disclosed in the specification of Japanese Patent No. 2,525,536.
- Namely, the water repellent glass substrate was obtained in the same manner as in embodiment 1 except that as the solvent for the undercoating treatment liquid perfluorocarbon solution (FC-77, produced by 3M Co.) was used in place of ethanol.
- The results show a high value for the surface roughness (Ra) at 7.0 nm, and also a high value for the initial critical inclination angle at 25°. Also, though it shows the initial contact angle at 107°, the contact angle thereof after the abrasion test was reduced to 65°.
- Comparison 7 was performed for double-checking embodiment 3 which is disclosed in Japanese Laid-open Patent No. Hei 2-311332 (1990) cited above as the prior art.
- Namely, dissolving and mixing 31 g of tetraethylsilicate (produced by Colcoat Co.) into 380 g of ethanol while adding 6.5 g of water and 1.6 g of 1N hydrochloric acid, and waiting for 24 hours at a temperature of 20°, the liquid for the undercoating treatment was prepared.
- This liquid for the undercoating treatment was painted by the flow coating method in the same manner as in embodiment 1 and was dried in about a minute. After the undercoating treatment, a layer of silicon oxide was formed through a heating process by heating the substrate for an hour. Thereafter, the water repellent glass substrate was obtained by using the above-mentioned agent a for the water repellent treatment, in the same manner as in embodiment 1.
- The surface roughness (Ra) shows a high value at 0.6 nm, and the initial critical inclination angle is also high, at 22°. The contact angle was 107°, however, it went down to 67° after the abrasion test.
- The water repellent glass substrate was obtained in the same manner as in embodiment 1 except that the heating process of the undercoating film is not conducted.
- The surface roughness (Ra) shows a high value at 0.7 nm, and the initial critical inclination angle was also high at 23°. The contact angle is 108°, however, it went down to 45° after the abrasion test.
- Completing the results of the embodiments and comparisons mentioned heretofore, they are arranged and shown in TABLE 1.
TABLE 1 Ingredients for Under- Contact Angle coating Agent for Surface Initial (°) after Contact Angle Treatment Water Rough- Initial Critical Weather (°) after (Concentration Repellent ness Contact Inclination Resistance Abrasion Test wt %) Treatment Appearance Ra (nm) Angle (°) Angle (°) Test (400 H) (100 times) Embodiment 1 SiCl4/0.01 agent a OK 0.4 108 13 82 84 Comparison 1 SiCl4/0.005 agent a OK 0.9 107 18 71 65 Embodiment 2 SiCl4/0.5 agent a OK 0.2 107 12 86 82 Embodiment 3 SiCl4/1.0 agent a OK 0.3 108 12 87 87 Embodiment 2 SiCl4/3.0 agent a OK 0.2 109 13 86 87 Comparison 2 SiCl4/5.0 agent a remarkable 0.3 107 12 87 84 reflection color Embodiment 5 SiCl4/0.5 agent b OK 0.2 108 12 88 86 Comparison 3 SiCl4/1.0 agent b OK 0.7 106 18 65 80 Comparison 4 SiCl4/1.0 agent b OK 0.6 106 19 64 83 Comparison 5 SiCl4/1.0*1 agent a OK 0.8 107 20 63 67 Comparison 6 SiCl4/1.0*2 agent a OK 7.0 107 25 60 65 Comparison 7 TEOS/0.4 agent a OK 0.7 107 22 54 67 Comparison 8 TEOS/0.4 agent a OK 0.7 108 23 50 45 - As is fully explained in the above, in accordance with the substrate and the treating method of the present invention, since a highly reactive compound including chiorosilil radical in molecular form thereof is used as the liquid for the undercoating treatment, there is no necessity for conducting the baking at high temperature after forming the undercoating film layer. As a result, no large-scaled equipment is necessitated, and the production cost can be reduced.
- Further, since it is sufficient for the agent for the undercoating treatment to be painted without using a liquid phase absorption or gaseous phase absorption method, the time for the treating can be shortened, and by using a low-cost alcohol solvent, the liquid for the undercoating treatment can painted uniformly and thinly.
Claims (6)
1. A substrate having a processed surface, characterized in that, on a surface of said substrate formed of glass, ceramics, plastics or metal, an undercoating film layer is formed by drying a liquid for undercoating treatment which is obtained by dissolving and reacting a materiel having chlorosilil radical in molecular form therein within a alcohol group solvent, and further characterized in that on said undercoating film layer there is formed a water repellent or oil repellent layer, and that a surface roughness (Ra) of said surface layer is equal to or less than 0.5 nm.
2. A substrate having a processed surface as defined in claim 1 , further characterized in that a concentration of said materiel having chlorosilil radical in molecular form therein contained in said liquid for undercoating treatment is equal to or greater than 0.01 wt % and equal to or less than 3.0 wt %.
3. A substrate having a processed surface as defined in claim 1 , further characterized in that a concentration of said materiel having chlorosilil radical in molecular form therein contained in said undercoating treatment liquid is equal to or greater than 0.03 wt % and equal to or less than 1.0 wt %.
4. A substrate having a processed surface as defined in one of claims 1 to 3 , further characterized in that said materiel having chlorosilil radical in molecular form therein contained in said liquid for undercoating treatment includes at least one of SiCl4, SiHCl3 and SiH2Cl2.
5. A substrate having a processed surface as defined in one of claims 1 to 4 , further characterized in that the surface of said substrate on which said undercoating film layer is formed an active surface by grinding and cleaning to a surface roughness (Ra) of around from 0.5 nm to 3.0 nm.
6. A surface treating method for a substrate, characterized by coating an undercoating film layer comprised of a liquid for undercoating treatment, which is obtained by dissolving and reacting a materiel having chlorosilil radical in molecular form therein within an alcohol group solvent, on a surface of a substrate of glass, ceramics, plastics or metal; drying said coated liquid for undercoating treatment; and thereafter performing a surface treatment for forming a water repellent or oil repellent surface thereon without baking.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/244,298 US20030021902A1 (en) | 1997-03-11 | 2002-09-16 | Substrate having a treatment surface |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9-56342 | 1997-03-11 | ||
JP5634297 | 1997-03-11 | ||
US09/036,927 US6482524B1 (en) | 1997-03-11 | 1998-03-09 | Substrate having a treatment surface |
US10/244,298 US20030021902A1 (en) | 1997-03-11 | 2002-09-16 | Substrate having a treatment surface |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/036,927 Division US6482524B1 (en) | 1997-03-11 | 1998-03-09 | Substrate having a treatment surface |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030021902A1 true US20030021902A1 (en) | 2003-01-30 |
Family
ID=13024564
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/036,927 Expired - Fee Related US6482524B1 (en) | 1997-03-11 | 1998-03-09 | Substrate having a treatment surface |
US10/244,298 Abandoned US20030021902A1 (en) | 1997-03-11 | 2002-09-16 | Substrate having a treatment surface |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/036,927 Expired - Fee Related US6482524B1 (en) | 1997-03-11 | 1998-03-09 | Substrate having a treatment surface |
Country Status (7)
Country | Link |
---|---|
US (2) | US6482524B1 (en) |
EP (1) | EP0966410B1 (en) |
JP (1) | JP3588364B2 (en) |
BR (1) | BR9808315A (en) |
DE (1) | DE69802072T2 (en) |
ES (1) | ES2166148T3 (en) |
WO (1) | WO1998040323A1 (en) |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050125377A1 (en) * | 2000-06-21 | 2005-06-09 | Microsoft Corporation | System and method for integrating spreadsheets and word processing tables |
US20100102693A1 (en) * | 2008-06-27 | 2010-04-29 | Ssw Holdings Company, Inc. | Spill Containing Refrigerator Shelf Assembly |
US9067821B2 (en) | 2008-10-07 | 2015-06-30 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9074778B2 (en) | 2009-11-04 | 2015-07-07 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern |
US9139744B2 (en) | 2011-12-15 | 2015-09-22 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9388325B2 (en) | 2012-06-25 | 2016-07-12 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
US9546299B2 (en) | 2011-02-21 | 2017-01-17 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US9914849B2 (en) | 2010-03-15 | 2018-03-13 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
US10317129B2 (en) | 2011-10-28 | 2019-06-11 | Schott Ag | Refrigerator shelf with overflow protection system including hydrophobic layer |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
Families Citing this family (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6395331B1 (en) * | 1997-10-28 | 2002-05-28 | Yazaki Corporation | Transparent substrate bearing an anti-stain, hydrophobic coating, and process for making it |
ITBO20010438A1 (en) * | 2001-07-13 | 2003-01-13 | Lesepidado S R L | METHOD FOR DECORATING GLASS SURFACES WITH AN INK JET PRINTER |
ATE375213T1 (en) * | 2002-07-30 | 2007-10-15 | Koninkl Philips Electronics Nv | HYGIENE UTENSIL AND USE OF A SOL-GEL COATING ON SUCH UTENSIL |
US6811884B2 (en) * | 2002-12-24 | 2004-11-02 | Ppg Industries Ohio, Inc. | Water repellant surface treatment and treated articles |
JP4464063B2 (en) | 2003-03-24 | 2010-05-19 | 日本電産株式会社 | Spindle motor manufacturing method and manufacturing apparatus |
JP2005113228A (en) * | 2003-10-09 | 2005-04-28 | Daikin Ind Ltd | Plate material and manufacturing method thereof |
DE10356823A1 (en) * | 2003-12-05 | 2005-07-07 | Bayer Materialscience Ag | Method for coating a substrate |
FR2866643B1 (en) * | 2004-02-24 | 2006-05-26 | Saint Gobain | SUBSTRATE, ESPECIALLY GLASS, WITH A HYDROPHOBIC SURFACE, WITH IMPROVED DURABILITY OF HYDROPHOBIC PROPERTIES |
CN101098945B (en) * | 2004-08-27 | 2014-07-16 | 中央硝子株式会社 | Treatment for forming waterdrop slidable films and process for forming waterdrop slidable films |
CN102448900B (en) * | 2009-07-30 | 2015-05-27 | 日本电气硝子株式会社 | Glass ribbon and process for production thereof |
JP5824809B2 (en) * | 2010-02-10 | 2015-12-02 | 日本電気硝子株式会社 | Sealing material and sealing method using the same |
JP2013170088A (en) * | 2012-02-20 | 2013-09-02 | Asahi Glass Co Ltd | Substrate with antifouling film |
JPWO2014157008A1 (en) * | 2013-03-29 | 2017-02-16 | 旭硝子株式会社 | Glass for chemical strengthening and method for producing the same, and method for producing chemically strengthened glass |
US9110230B2 (en) | 2013-05-07 | 2015-08-18 | Corning Incorporated | Scratch-resistant articles with retained optical properties |
TWI833695B (en) * | 2017-05-08 | 2024-03-01 | 美商康寧公司 | Glass, glass-ceramic and ceramic articles with durable lubricious anti-fingerprint coatings over optical and scratch-resistant coatings and methods of making the same |
CN112986235B (en) * | 2019-12-02 | 2022-12-23 | 泰州国安医疗用品有限公司 | Product material distribution uniformity measuring platform and method |
US12147009B2 (en) | 2020-07-09 | 2024-11-19 | Corning Incorporated | Textured region to reduce specular reflectance including a low refractive index substrate with higher elevated surfaces and lower elevated surfaces and a high refractive index material disposed on the lower elevated surfaces |
JP7534680B2 (en) | 2022-03-01 | 2024-08-15 | ダイキン工業株式会社 | Surface Treatment Agents |
CN116713165B (en) * | 2023-05-15 | 2024-04-16 | 重庆大学 | Super-hydrophobic method applied to surface and shell and device adopting method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4717599A (en) * | 1986-03-20 | 1988-01-05 | General Electric Company | Water repellent for masonry |
US5391794A (en) * | 1994-01-27 | 1995-02-21 | Korea Institute Of Science And Technology | Three-legged silane coupling agents and their preparation methods |
US5425989A (en) * | 1991-02-27 | 1995-06-20 | Matsushita Electric Industrial Co., Ltd. | Self-lubricating device |
US5708054A (en) * | 1995-11-08 | 1998-01-13 | Dow Corning Toray Silicone Co., Ltd. | Two-part curable liquid silicone composition |
US5742026A (en) * | 1995-06-26 | 1998-04-21 | Corning Incorporated | Processes for polishing glass and glass-ceramic surfaces using excimer laser radiation |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6040254A (en) * | 1983-08-16 | 1985-03-02 | 旭硝子株式会社 | Water-repellent oil-repellent film |
JPH02311332A (en) | 1989-05-26 | 1990-12-26 | Sekisui Chem Co Ltd | Preparation of water-repellent glass |
US5328768A (en) * | 1990-04-03 | 1994-07-12 | Ppg Industries, Inc. | Durable water repellant glass surface |
JP2810487B2 (en) | 1990-05-15 | 1998-10-15 | 三洋電機株式会社 | Storage |
JP2981040B2 (en) | 1990-10-25 | 1999-11-22 | 松下電器産業株式会社 | Chemisorbed monomolecular cumulative film and method for producing the same |
EP0484746B1 (en) | 1990-10-25 | 1996-09-18 | Matsushita Electric Industrial Co., Ltd. | Chemically adsorbed monomolecular lamination film and method of manufacturing the same |
JP2500149B2 (en) * | 1991-01-23 | 1996-05-29 | 松下電器産業株式会社 | Water- and oil-repellent coating and method for producing the same |
JP2603017B2 (en) | 1991-12-16 | 1997-04-23 | 松下電器産業株式会社 | Manufacturing method of chemisorption membrane |
US5372851A (en) | 1991-12-16 | 1994-12-13 | Matsushita Electric Industrial Co., Ltd. | Method of manufacturing a chemically adsorbed film |
JP2732777B2 (en) * | 1992-05-27 | 1998-03-30 | 松下電器産業株式会社 | Manufacturing method of chemisorption membrane |
US5550184A (en) | 1994-03-04 | 1996-08-27 | E. I. Du Pont De Nemours & Company | Hydrolyzed silane emulsions and their use as surface coatings |
US5459198A (en) | 1994-07-29 | 1995-10-17 | E. I. Du Pont De Nemours And Company | Fluoroinfused composites, articles of manufacture formed therefrom, and processes for the preparation thereof |
SG83635A1 (en) | 1994-08-30 | 2001-10-16 | Xaar Ltd | Coating, coating composition and method of forming coating |
-
1998
- 1998-03-09 US US09/036,927 patent/US6482524B1/en not_active Expired - Fee Related
- 1998-03-11 DE DE69802072T patent/DE69802072T2/en not_active Expired - Lifetime
- 1998-03-11 JP JP53943998A patent/JP3588364B2/en not_active Expired - Lifetime
- 1998-03-11 WO PCT/JP1998/001001 patent/WO1998040323A1/en active IP Right Grant
- 1998-03-11 ES ES98907161T patent/ES2166148T3/en not_active Expired - Lifetime
- 1998-03-11 EP EP19980907161 patent/EP0966410B1/en not_active Expired - Lifetime
- 1998-03-11 BR BR9808315A patent/BR9808315A/en not_active Application Discontinuation
-
2002
- 2002-09-16 US US10/244,298 patent/US20030021902A1/en not_active Abandoned
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4717599A (en) * | 1986-03-20 | 1988-01-05 | General Electric Company | Water repellent for masonry |
US5425989A (en) * | 1991-02-27 | 1995-06-20 | Matsushita Electric Industrial Co., Ltd. | Self-lubricating device |
US5391794A (en) * | 1994-01-27 | 1995-02-21 | Korea Institute Of Science And Technology | Three-legged silane coupling agents and their preparation methods |
US5742026A (en) * | 1995-06-26 | 1998-04-21 | Corning Incorporated | Processes for polishing glass and glass-ceramic surfaces using excimer laser radiation |
US5708054A (en) * | 1995-11-08 | 1998-01-13 | Dow Corning Toray Silicone Co., Ltd. | Two-part curable liquid silicone composition |
Cited By (25)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050125377A1 (en) * | 2000-06-21 | 2005-06-09 | Microsoft Corporation | System and method for integrating spreadsheets and word processing tables |
US9532649B2 (en) | 2008-06-27 | 2017-01-03 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US20100102693A1 (en) * | 2008-06-27 | 2010-04-29 | Ssw Holdings Company, Inc. | Spill Containing Refrigerator Shelf Assembly |
US8286561B2 (en) | 2008-06-27 | 2012-10-16 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US8596205B2 (en) | 2008-06-27 | 2013-12-03 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US12096854B2 (en) | 2008-06-27 | 2024-09-24 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US11786036B2 (en) | 2008-06-27 | 2023-10-17 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US11191358B2 (en) | 2008-06-27 | 2021-12-07 | Ssw Advanced Technologies, Llc | Spill containing refrigerator shelf assembly |
US9179773B2 (en) | 2008-06-27 | 2015-11-10 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US9207012B2 (en) | 2008-06-27 | 2015-12-08 | Ssw Holding Company, Inc. | Spill containing refrigerator shelf assembly |
US10827837B2 (en) | 2008-06-27 | 2020-11-10 | Ssw Holding Company, Llc | Spill containing refrigerator shelf assembly |
US10130176B2 (en) | 2008-06-27 | 2018-11-20 | Ssw Holding Company, Llc | Spill containing refrigerator shelf assembly |
US9096786B2 (en) | 2008-10-07 | 2015-08-04 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
US9926478B2 (en) | 2008-10-07 | 2018-03-27 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9279073B2 (en) | 2008-10-07 | 2016-03-08 | Ross Technology Corporation | Methods of making highly durable superhydrophobic, oleophobic and anti-icing coatings |
US9243175B2 (en) | 2008-10-07 | 2016-01-26 | Ross Technology Corporation | Spill resistant surfaces having hydrophobic and oleophobic borders |
US9067821B2 (en) | 2008-10-07 | 2015-06-30 | Ross Technology Corporation | Highly durable superhydrophobic, oleophobic and anti-icing coatings and methods and compositions for their preparation |
US9074778B2 (en) | 2009-11-04 | 2015-07-07 | Ssw Holding Company, Inc. | Cooking appliance surfaces having spill containment pattern |
US9914849B2 (en) | 2010-03-15 | 2018-03-13 | Ross Technology Corporation | Plunger and methods of producing hydrophobic surfaces |
US9546299B2 (en) | 2011-02-21 | 2017-01-17 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US10240049B2 (en) | 2011-02-21 | 2019-03-26 | Ross Technology Corporation | Superhydrophobic and oleophobic coatings with low VOC binder systems |
US10317129B2 (en) | 2011-10-28 | 2019-06-11 | Schott Ag | Refrigerator shelf with overflow protection system including hydrophobic layer |
US9528022B2 (en) | 2011-12-15 | 2016-12-27 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9139744B2 (en) | 2011-12-15 | 2015-09-22 | Ross Technology Corporation | Composition and coating for hydrophobic performance |
US9388325B2 (en) | 2012-06-25 | 2016-07-12 | Ross Technology Corporation | Elastomeric coatings having hydrophobic and/or oleophobic properties |
Also Published As
Publication number | Publication date |
---|---|
EP0966410A1 (en) | 1999-12-29 |
EP0966410B1 (en) | 2001-10-17 |
AU736054B2 (en) | 2001-07-26 |
JP2001503100A (en) | 2001-03-06 |
WO1998040323A1 (en) | 1998-09-17 |
DE69802072D1 (en) | 2001-11-22 |
BR9808315A (en) | 2000-05-16 |
ES2166148T3 (en) | 2002-04-01 |
AU6309498A (en) | 1998-09-29 |
JP3588364B2 (en) | 2004-11-10 |
US6482524B1 (en) | 2002-11-19 |
DE69802072T2 (en) | 2002-03-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6482524B1 (en) | Substrate having a treatment surface | |
US6235383B1 (en) | Glass article having a durable water repellent surface | |
EP0810186B1 (en) | Water-repellent glass plate | |
EP0825157B1 (en) | Water-repellent glass pane and method for producing same | |
JPH05170486A (en) | Water repellent for glass surface and water-repellent glass | |
US6403225B1 (en) | Article superior in slipping waterdrops down surface thereof | |
EP1792963A1 (en) | Treatment for forming waterdrop slidable films and process for forming waterdrop slidable films | |
JPH11171594A (en) | Water repellent glass article and its production | |
JP2002012452A (en) | High water slip substrate and its manufacturing method | |
JP3649585B2 (en) | Water repellent coating solution | |
AU736054C (en) | A substrate having a treatment surface | |
JP2000203884A (en) | Water-repellent glass having high durability and its production | |
JP4522357B2 (en) | Manufacturing method for water slidable glass articles | |
KR100281993B1 (en) | Durable water-repellent glass and its manufacturing method | |
JP4826226B2 (en) | Treatment agent for obtaining water slidable film and method for producing water slidable film | |
KR100492396B1 (en) | A substrate having a treatment surface and surface treating method for a substrate | |
JP3672688B2 (en) | Water repellent glass manufacturing method | |
JP4093987B2 (en) | Method for producing surface-treated substrate | |
JP4265925B2 (en) | Method for producing slidable coating and coating liquid for forming slidable coating | |
JP3744736B2 (en) | Highly slidable base material and method for producing the same | |
JPH1111984A (en) | Water-repellent glass and its production | |
JP2001059070A (en) | Production of article covered with water-repellent film, article covered with water-repellent film and liquid composition for covering of water-repellent film | |
JP2000219875A (en) | Production of water repellent film coated article, water repellent film coated article and composition for water repellent film coated article | |
JP4152769B2 (en) | Method for producing highly durable water slidable coating | |
JP2000063153A (en) | Water-repelling substrate and its production |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |