US20030013220A1 - Method of fabricating and structure of an active matrix light-emitting display device - Google Patents
Method of fabricating and structure of an active matrix light-emitting display device Download PDFInfo
- Publication number
- US20030013220A1 US20030013220A1 US10/216,130 US21613002A US2003013220A1 US 20030013220 A1 US20030013220 A1 US 20030013220A1 US 21613002 A US21613002 A US 21613002A US 2003013220 A1 US2003013220 A1 US 2003013220A1
- Authority
- US
- United States
- Prior art keywords
- layer
- display device
- substrate
- material layer
- polymeric
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000011159 matrix material Substances 0.000 title claims abstract description 21
- 238000004519 manufacturing process Methods 0.000 title abstract description 18
- 238000000034 method Methods 0.000 claims abstract description 46
- 239000000463 material Substances 0.000 claims abstract description 39
- 239000000758 substrate Substances 0.000 claims abstract description 38
- 238000000151 deposition Methods 0.000 claims abstract description 12
- 230000008021 deposition Effects 0.000 claims abstract description 10
- 239000010406 cathode material Substances 0.000 claims abstract description 9
- 238000002161 passivation Methods 0.000 claims abstract description 6
- 230000009477 glass transition Effects 0.000 claims abstract description 4
- 239000007788 liquid Substances 0.000 claims abstract description 3
- 239000007787 solid Substances 0.000 claims abstract description 3
- 230000007704 transition Effects 0.000 claims abstract description 3
- 239000010410 layer Substances 0.000 claims description 75
- 230000008569 process Effects 0.000 claims description 18
- 238000003475 lamination Methods 0.000 claims description 9
- 238000002347 injection Methods 0.000 claims description 7
- 239000007924 injection Substances 0.000 claims description 7
- 239000010409 thin film Substances 0.000 claims description 7
- 239000011248 coating agent Substances 0.000 claims description 6
- 238000000576 coating method Methods 0.000 claims description 6
- 125000000524 functional group Chemical group 0.000 claims description 6
- 239000012044 organic layer Substances 0.000 claims description 6
- 239000000126 substance Substances 0.000 claims description 6
- -1 hydroxamine Chemical class 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 239000013047 polymeric layer Substances 0.000 claims description 5
- 239000002131 composite material Substances 0.000 claims description 4
- 150000001412 amines Chemical class 0.000 claims description 3
- 238000012545 processing Methods 0.000 claims description 3
- 229910000838 Al alloy Inorganic materials 0.000 claims description 2
- ABLZXFCXXLZCGV-UHFFFAOYSA-N Phosphorous acid Chemical class OP(O)=O ABLZXFCXXLZCGV-UHFFFAOYSA-N 0.000 claims description 2
- 239000010405 anode material Substances 0.000 claims description 2
- 150000001735 carboxylic acids Chemical class 0.000 claims description 2
- 239000002800 charge carrier Substances 0.000 claims description 2
- 238000005457 optimization Methods 0.000 claims description 2
- 150000003871 sulfonates Chemical class 0.000 claims description 2
- 150000003573 thiols Chemical class 0.000 claims description 2
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 230000004048 modification Effects 0.000 description 11
- 238000012986 modification Methods 0.000 description 11
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 9
- 239000004973 liquid crystal related substance Substances 0.000 description 9
- 238000002360 preparation method Methods 0.000 description 9
- 239000000203 mixture Substances 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 7
- 235000019441 ethanol Nutrition 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 5
- 239000001301 oxygen Substances 0.000 description 5
- 229910052760 oxygen Inorganic materials 0.000 description 5
- 238000005530 etching Methods 0.000 description 4
- 239000010408 film Substances 0.000 description 4
- 238000004528 spin coating Methods 0.000 description 4
- 229910021417 amorphous silicon Inorganic materials 0.000 description 3
- 238000007766 curtain coating Methods 0.000 description 3
- 230000001419 dependent effect Effects 0.000 description 3
- 230000005669 field effect Effects 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 238000007639 printing Methods 0.000 description 3
- 238000007650 screen-printing Methods 0.000 description 3
- 238000010345 tape casting Methods 0.000 description 3
- 238000010023 transfer printing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- URLKBWYHVLBVBO-UHFFFAOYSA-N Para-Xylene Chemical group CC1=CC=C(C)C=C1 URLKBWYHVLBVBO-UHFFFAOYSA-N 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910052782 aluminium Inorganic materials 0.000 description 2
- 230000004888 barrier function Effects 0.000 description 2
- 229910052791 calcium Inorganic materials 0.000 description 2
- 239000003990 capacitor Substances 0.000 description 2
- 210000004027 cell Anatomy 0.000 description 2
- 238000005538 encapsulation Methods 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 230000008020 evaporation Effects 0.000 description 2
- 229910052749 magnesium Inorganic materials 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920002120 photoresistant polymer Polymers 0.000 description 2
- 229910021420 polycrystalline silicon Inorganic materials 0.000 description 2
- 229920005591 polysilicon Polymers 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- BZNBLSJQZFYSPR-UHFFFAOYSA-N 1-octyl-9h-fluorene Chemical compound C1C2=CC=CC=C2C2=C1C(CCCCCCCC)=CC=C2 BZNBLSJQZFYSPR-UHFFFAOYSA-N 0.000 description 1
- 229910000967 As alloy Inorganic materials 0.000 description 1
- NLZUEZXRPGMBCV-UHFFFAOYSA-N Butylhydroxytoluene Chemical compound CC1=CC(C(C)(C)C)=C(O)C(C(C)(C)C)=C1 NLZUEZXRPGMBCV-UHFFFAOYSA-N 0.000 description 1
- 229910004613 CdTe Inorganic materials 0.000 description 1
- 229920000106 Liquid crystal polymer Polymers 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- 230000001588 bifunctional effect Effects 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 229910052681 coesite Inorganic materials 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 229910052906 cristobalite Inorganic materials 0.000 description 1
- 210000002858 crystal cell Anatomy 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 238000001312 dry etching Methods 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 150000002170 ethers Chemical group 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000011049 filling Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 238000005304 joining Methods 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 230000031700 light absorption Effects 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 238000001459 lithography Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000012811 non-conductive material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920002098 polyfluorene Polymers 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 238000010561 standard procedure Methods 0.000 description 1
- 229910052682 stishovite Inorganic materials 0.000 description 1
- 238000003860 storage Methods 0.000 description 1
- 125000005504 styryl group Chemical group 0.000 description 1
- TXEYQDLBPFQVAA-UHFFFAOYSA-N tetrafluoromethane Chemical compound FC(F)(F)F TXEYQDLBPFQVAA-UHFFFAOYSA-N 0.000 description 1
- 150000003568 thioethers Chemical group 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- 229910052905 tridymite Inorganic materials 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
- 235000012431 wafers Nutrition 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
- H10K59/127—Active-matrix OLED [AMOLED] displays comprising two substrates, e.g. display comprising OLED array and TFT driving circuitry on different substrates
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05B—ELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
- H05B33/00—Electroluminescent light sources
- H05B33/12—Light sources with substantially two-dimensional radiating surfaces
- H05B33/14—Light sources with substantially two-dimensional radiating surfaces characterised by the chemical or physical composition or the arrangement of the electroluminescent material, or by the simultaneous addition of the electroluminescent material in or onto the light source
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/81—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/10—OLED displays
- H10K59/12—Active-matrix OLED [AMOLED] displays
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8051—Anodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/805—Electrodes
- H10K59/8052—Cathodes
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
- H10K71/50—Forming devices by joining two substrates together, e.g. lamination techniques
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K2102/00—Constructional details relating to the organic devices covered by this subclass
- H10K2102/301—Details of OLEDs
- H10K2102/302—Details of OLEDs of OLED structures
- H10K2102/3023—Direction of light emission
- H10K2102/3026—Top emission
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K71/00—Manufacture or treatment specially adapted for the organic devices covered by this subclass
Definitions
- the invention relates to a method of fabricating and to the set-up of an active matrix display device formed of a plurality of pixels and comprising at least one thin film transistor element (in the following TFT element) on a first substrate for each pixel, a low work function material layer, in particular a structured cathode layer forming or contacting a pixel electrode layer, an active organic and/or polymeric electroluminescent material layer (EL layer) covering at least said low work function conducting layer, an electrically conducting high work function layer, in particular an anode layer on said EL layer and structured into elements desired for display as well as a second substrate covering said layered arrangement.
- TFT element thin film transistor element
- WO 96/03015 A1 describes an advanced fabrication process for a conjugated polymers based two part integrally connected light-emitting device, in which each polymer layer is separately pretreated, e.g. by a stretching process.
- the advantages of a polymer based light-emitting devices, in particular diodes, are high brightness with low power consumption and low driving voltages.
- the device structure is a relatively simple metal-polymer-transparent electrode sandwich wherein the material of the transparent electrode may be indium tin oxide (ITO).
- such devices require two electrodes of differing work function, at least one of which is transparent: one high work function anode (e.g. ITO, fluorine-dopen tin oxide, or gold) for hole injection and a low work function cathode (e.g. Mg, Al, Li, Ba, Ca) for electron injection into the organic or polymeric material.
- one high work function anode e.g. ITO, fluorine-dopen tin oxide, or gold
- a low work function cathode e.g. Mg, Al, Li, Ba, Ca
- such devices comprise separate layers for electron and hole injection transport as for example proposed in the above mentioned WO-document, and occasionally in addition they also sometimes comprise an additional light-emitting layer sandwiched between the hole- and the electron-transport layers (see Lit. [2]).
- Flexible devices on polymeric substrates have also been reported wherein such substrates are coated with a high work function electrode, usually ITO and/or polyaniline (see Lit. [3]).
- TFT/LCDs Active matrix liquid crystal displays
- LCDs driven by TFTs are commercially widespread, for example in notebook computers.
- TFT/LCDs an abbreviation of thin film transistor-addressed liquid crystal displays, each pixel element (pixel) is controlled by a thin film transistor.
- TFT/LCDs create a whole new world of technology in consumer electronics and in computer and communication systems. The market for TFT/LCDs is now growing much faster than expected and has an impact on new application fields, as well as conventional fields.
- the structure of a single TFT in a matrix type arrangement of hundreds of thousands of TFTs is a FET (field effect transistor) and a pixel electrode.
- the pixel electrode is contacted to the source (or drain) electrode of the FET, and thus the effective window area (aperture ratio) is reduced by the size of the transistor area.
- the aperture ratio governs the brightness of the panel, thus the larger the aperture ratio becomes the brighter the display panel is achieved.
- a-Si:H Hydronated amorphous silicon
- a-Si:H-TFT Since the first report by the Dundee group (Lit. [6]), a-Si:H-TFT has been recognized as a suitable device for TFT/LCDs. So far the combination of TFT and LCD technologies has been greatly growing and the market is already rather large.
- Lamination is a well-known technique for combining desired qualities of two or more different materials into a composite layer system and involves joining of the layers under application of pressure and/or heat (see Lit. [8]).
- Preparation of photovoltaic cell based on polymers by laminating two parts together was recently reported by Friend et al. (see Lit. [9]).
- Cabrera et al. (see Lit. [10]) reported a class of bifunctional materials for non-linear optics which comprised an aromatic group, particularly a styryl group, functionalized at the 4 and 4 ′ positions by trifluorosulfonate groups as an electron acceptor at one end and electron donor groups such as ethers, thioethers and amines on the other end. These materials exhibit high dipole moments while showing a relatively small visible light absorption. Due to the possibility of attaching further functional groups, e.g. alkyl chains, to both donor and acceptor groups it was possible to determine the direction of the dipole moment relative to the second function group. No applications of these materials in EL devices have been reported.
- the low work function cathode materials needed for high efficiency devices are typically unstable against oxidation by oxygen or water. Because of this, such devices and displays comprising a matrix of such devices must be thoroughly encapsulated to eliminate water and oxygen from the device. This is particularly difficult when flexible devices on polymeric substrates are desired (see e.g. U.S. Pat. No. 5,747,928), because a transparent, flexible and thoroughly impervious barrier layer must be applied to the side of the device comprising the transparent electrode, and thus far no such materials with sufficient barrier properties have been reported.
- the invention concerns displays comprising devices which contain organic or polymeric EL materials and its preparation and application, wherein solution to the problems and the objects described above can be achieved.
- a method of fabricating an active display device according the invention is defined in claim 1. Advantageous modifications and embodiments of such a manufacturing method are the subject-matter of dependent claims.
- TFTs and LEPs are promissing in terms of eliminating the viewing dependence and temperature dependence of the response speed in TFT/LCDs, which are crucial problems for displays available on the market.
- the current state of the art leads to poor aperture ratios for high resolution displays based on polymeric EL material.
- the invention as defined in at least one of the appended claims solves the above problems by metal (pixel electrode) fabrication on the TFT side of one of the substrates, such that at least a major part of each TFT is burried under a pixel electrode allowing for an active matrix addressing of the polymeric EL pixels while maintaining a high aperture ratio even at high resolution.
- FIGS. 1A to 1 K visualize sequences and intermediate results of process steps for an active-matrix display device according to the invention
- FIGS. 2A to 2 K exemplify basically the same process steps as FIG. 1 with an advantageous modification in FIG. 2A 2 ;
- FIGS. 3A to 3 K show basically the same process steps and intermediate production stages as FIGS. 2A to 2 H with an advantageous modification in FIG. 3D 1 ;
- FIGS. 4A to 4 K show process steps and intermediate production stages corresponding to those of FIGS. 3A to 3 K with a further modification in FIG. 4G 1 .
- FIGS. 1A to 1 K A first sequence of process steps according to the invention and one embodiment of the device prepared thereby are described with reference to FIGS. 1A to 1 K.
- a matrix of TFTs 2 each comprising a source region S, a drain D and a gap or channel region C, is prepared on a substrate material 1 , which may, but must not be transparent, and may be, but is not limited to silicon wafers, transparent glass or a transparent polymer material, e.g. PET, polysulfone, cycloolefinic copolymers or polycarbonates or flexible composite materials.
- the substrate may include reflective layers to reflect light emitted in the direction of the substrate.
- TFTs 2 can be assigned to each pixel of a display.
- the actual fabrication procedure for the TFTs up to this point can be almost the same as for conventional TFT substrates as used for liquid crystal displays.
- a non-conductive passivation layer 3 which may comprise inorganic (e.g. SiO 2 ) and/or organic (e.g. a cured photoresist) non-conductive materials, is applied in such a way as to cover the source electrode or source region S and the gap or channel region C but to leave at least some part of the drain electrode or drain region D exposed.
- This layer 3 may be applied using standard lithographic techniques but may also be applied using other techniques such as shadow mask evaporation (see FIG. 1B).
- a matrix of cathodes 5 which can cover also the area covered by the TFTs and which define the area of the pixels in a display device according to the invention is applied, for example by vacuum evaporation or sputtering.
- the cathode layer 5 (see FIG. 1C) may comprise but is not limited to Al, Mg, Ca, Ba, Li, Ag, In or any alloys comprising two or more of these metals.
- a stable metal such as Al or alloys thereof is used, which is resistant to photolithographic processing.
- a cathode layer 5 may be structured into pixel elements 5 a , 5 b , . . .
- an additional flattening layer or partial layer 4 may be applied to the pixels in such a way as to create a flat surface at the top of the cathode layer 5 and the pixel electrodes 5 a , 5 b , . . . , respectively.
- This may for example be done by evaporation of further cathode material using for example a shadow mask or by spincoating of organic materials out of a solution.
- the flattening layer 4 may be applied using the same methods before deposition of the cathode layer 5 (see FIGS. 1C and 1D).
- one or more composite active organic and/or polymeric layer(s) is (are) applied to the cathode material, i.e. on top of the pixel areas.
- the composition of the layer(s) 6 may include any of the types of materials known in the literature or referred to in the state of the art. Coating may be done by spincoating, doctor blading, transfer printing, curtain coating, slot-dye coating, or printing techniques such as screen printing (see FIG. 1E).
- a transparent high work function electrode e.g. an anode 7 such as described in the state of the art is deposited.
- the anode layer may be structured into the elements 7 a , 7 b , . . . desired for a display using standard methods such as lithography and etching. Structuring of the anode is, however, optional and may not be necessary even for high resolution displays.
- one or more active organic and/or polymeric layers 6 ′ are applied to the structured anode layer elements 7 a , 7 b . . . , respectively.
- the composition of such polymeric layers may include any of the types of materials known in the literature or referred to in the description of the state of the art. Again, coating may be done by spin-coating, doctor blading, transfer printing, curtain coating, slot-dye coating, or other printing techniques such as screen printing.
- the two coated substrates 1 to 6 and 8 to 6 ′ are laminated-together by application of heat and/or pressure as illustrated in FIG. 1K.
- the polymers have glass transition temperature or if it is a liquid crystalline polymer, it must have phase transition temperature from solid to liquid crystalline state or isotropic state, in which the viscosity of the polymer decreases. Above these appropriately selected temperatures the application of pressure can lead to good physical and electrical contact between the two polymer layers 6 and 6 ′. Therefore, the temperature of lamination should be higher than the glass transition temperature of at least one of the organic and/or polymeric layers. After or during the process of lamination the device or display comprising such devices may be encapsulated if this is necessary or desired.
- a conventional TFT display substrate 1 such as used in the manufacture of liquid crystal displays is used as a substrate.
- Such substrates contain a matrix of TFTs 2 and of electrodes la usually made of ITO which define the pixel areas in such LCDs (see e.g. EP 0 845 770 A1).
- a non-conductive passivation layer 3 which covers the TFTs 2 but leaves part of the ITO electrodes 1 a exposed.
- a matrix of cathodes i.e. in large pixel areas 5 a , 5 b , . . . as above is deposited, which cover also the area containing the TFTs 2 and which in each case define the active area of a pixel in a device according to the invention.
- each pixel area is defined by the respective area 5 a , 5 b , . . . of the cathode.
- the cathode electrode is the respective pixel electrode.
- the source electrode area S and the drain D of the TFT are covered by the non-conductive passivation layer 3 while the drain electrode is in contact with the respective cathode/pixel electrode 5 a , 5 b .
- FIGS. 2F to 2 K are essentially the same as those described above in connection with FIGS. 1A to 1 K.
- an additional conductive layer 4 for the purpose of flattening the layer structure may be applied before or after deposition of the cathode layer 5 as described above.
- the pixel or cathode regions 5 a , 5 b , . . . and/or the anode regions 7 a , 7 b , . . . my be modified chemically before application of the organic and/or polymeric layer 6 , 6 ′ by absorption of functionalized dipoles.
- the functional groups which may be used to attach the dipoles may be, but are not limited to:
- the molecules which are attached to the pixel regions 5 a , 5 b , . . . and/or the anode regions 7 a , 7 b , . . . in order to modify them may comprise in one especially preferred embodiment of the invention the same functional group for light emission and/or charge transport as the active organic or polymeric layer in the device which is adjacent to the thus modified electrode.
- the attached molecules comprise structures of the following formula
- P is a ⁇ -conjugated system such as
- R d is an electron donor group and R a is an electron acceptor group.
- Rd may be chosen from the following groups
- R, R′ and R′′ are independently of each other equal H or C n H( 2n+1 )R att .
- R att one of the above attachement groups or H
- n 0-20, preferred 0-10,
- R′ and R′′ may be the same or different, but one of R′ and R′′ must be ⁇ H.
- the attached molecules are of the form
- R att or R att 1 is an attachment group.
- R′ and R′′ independently of each other ⁇ H or C n H( 2n+1 )R att ,
- R att one of the above attachement groups or H
- n 0-20, preferred 0-10, and
- R′ and R′′ may be the same or different, but one of R′ and R′′ must be ⁇ H.
- the organic and/or polymeric material which is desired to be proximate to the modified electrode is applied.
- this may be done by spincoating, doctor blading, transfer printing, curtain coating, slot-dye coating, or other printing techniques such as screen printing.
- the process of a separate lamination furthermore allows for the TFTs necessary for high resolution displays to be deposited before the preparation of the light emitting element and on the non-transparent side of the display device, thus enabling a display with a higher aperture ratio than is possible with the state of the art.
- the panel is photo resist coated and processed by a usual photolithographic process and dry etched with oxygen at a pressure of 10 ⁇ 3 torr only at data and gate line areas. The etching rate is 100 nm/min.
- (poly)octylfluorene of a molecular weight of 4000 dissolved in p-xylene at a concentration of ca. 20 mg/ml is spin coated onto the thus prepared substrate.
- the spin coater condition is 100 rpm for 4 seconds and then 3000 rpm for 30 seconds to obtain a 70 nm thick film 6 on the Al electrode (cathode 5 a , 5 b , . . . in FIG. 1D) of the TFT panel.
- a 70 nm layer 6 ′ of poly(octylfluorene) is deposited as above, is set on a previously applied polyfluorene film.
- the TFT panel (FIG. 1E) is placed on a hot plate which is set at 180° C. and kept at this temperature for 3 min.
- the second substrate (FIG. 1H) is applied to the first so that the two polymer layers 6 , 6 ′ are in face-to face contact with each other and heating is continued for another 3 min.
- a weight of 1 kg is applied on the combined panel under maintenance of the same temperature (see FIG. 1K).
- the glass edges of the laminated device are encapsulated with epoxy resin to keep out water and oxygen.
- a TFT/LEP display with 513000 pixels and a diagonal size of 1.35′′ (3.43 cm) which can have a brightness of 10 Cd/m 2 and the driving voltages are below 15 V.
- a display device is prepared as in Example 1 with the following modifications (see FIGS. 3A to 3 K):
- the panel is rinsed in ethanol and dried under air at 50° C. for 5 min before deposition of the polymer layer 6.
- the rest of the preparation is as described in Example 1.
- Example 2 With the process of Example 2 and the structure described above, a TFT-LEP display with 513000 pixels and a diagonal size of 1.35′′ (3.43 cm) is obtained with a brightness of about 50 Cd/m 2 and with driving voltages below 15 V.
- a device is prepared as in Example 1 with the following differences (see FIGS. 4A to 4 K). Between the etching of the Al electrode (e.g. cathode pixels 5 a , 5 b , . . . ;) and the deposition of the layer 6 of poly(octylfluorene) the panel is dipped into a breaker 10 containing a 5 mg/ml solution in a mixture of acetonitrile and ethyl alcohol of the following chemical composition for 5 min:
- a breaker 10 containing a 5 mg/ml solution in a mixture of acetonitrile and ethyl alcohol of the following chemical composition for 5 min:
- the panel is rinsed in ethanol and dried under air at 50° C. for 5 min before deposition of the polymer layer 6 .
- the second substrate is dipped into a breaker 11 containing a 5 mg/ml solution in a mixture of acetonitrile and ethanol of the following chemical composition for 5 min (FIG. 4D 1 ):
- the panel is rinsed in ethanol and dried under air at 50° C. for 5 min before deposition of the polymer layer 8 .
- the rest of the preparation is as described in Example 1.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
- Devices For Indicating Variable Information By Combining Individual Elements (AREA)
- Thin Film Transistor (AREA)
Abstract
The invention concerns active matrix light-emitting display devices and a method of their fabrication wherein the problem of chemically unstable cathode electrode layers is solved, simultaneously offering a considerably higher aperture ratio and brightness with rather low driving voltages. These advantages are achieved by separate manufacture of a first substrate bearing TFT elements of which the source and drain regions are at first covered by a non-conductive passivation layer followed by a deposition of a chemically stable cathode material layer and deposition of an appropriately selected EL material layer. The anode side substrate is independently prepared by at first depositing an anode layer followed by application of an EL layer, then the two independently manufactured layered substrates are alligned face-to-face and are combined to a unified structure under application of heat and pressure, the temperature being selected to have the glass transition temperature of said EL layers in case of polymeric EL material or to have the phase transition temperature for solid to liquid crystalline state or isotropic state in case of crystalline EL material.
Description
- The invention relates to a method of fabricating and to the set-up of an active matrix display device formed of a plurality of pixels and comprising at least one thin film transistor element (in the following TFT element) on a first substrate for each pixel, a low work function material layer, in particular a structured cathode layer forming or contacting a pixel electrode layer, an active organic and/or polymeric electroluminescent material layer (EL layer) covering at least said low work function conducting layer, an electrically conducting high work function layer, in particular an anode layer on said EL layer and structured into elements desired for display as well as a second substrate covering said layered arrangement.
- Light emitting devices based on organic and polymeric electroluminescent (EL) materials are known (see Lit. [1]). For achieving a specific colour emission efficiency of such types of light-emitting devices, WO 96/03015 A1 describes an advanced fabrication process for a conjugated polymers based two part integrally connected light-emitting device, in which each polymer layer is separately pretreated, e.g. by a stretching process. The advantages of a polymer based light-emitting devices, in particular diodes, are high brightness with low power consumption and low driving voltages. The device structure is a relatively simple metal-polymer-transparent electrode sandwich wherein the material of the transparent electrode may be indium tin oxide (ITO). It is therefore realistic and principally known to combine light-emitting polymer EL devices with active matrix driving like thin film transistors (TFTs) as proposed for example in EP-0 845 770 A1 or U.S. Pat. No. 5,747,928.
- Typically, such devices require two electrodes of differing work function, at least one of which is transparent: one high work function anode (e.g. ITO, fluorine-dopen tin oxide, or gold) for hole injection and a low work function cathode (e.g. Mg, Al, Li, Ba, Ca) for electron injection into the organic or polymeric material. Up to now the transparent electrode in efficient devices is always the anode, which is in most cases applied to the substrate before diode preparation. Sputtering of ITO onto a finished device has been used, but the efficiency is poor and such processes are expected to damage the active polymer or organic layer. Frequently, but not necessarily, such devices comprise separate layers for electron and hole injection transport as for example proposed in the above mentioned WO-document, and occasionally in addition they also sometimes comprise an additional light-emitting layer sandwiched between the hole- and the electron-transport layers (see Lit. [2]). Flexible devices on polymeric substrates have also been reported wherein such substrates are coated with a high work function electrode, usually ITO and/or polyaniline (see Lit. [3]).
- Active matrix liquid crystal displays (LCDs) driven by TFTs are commercially widespread, for example in notebook computers. In TFT/LCDs, an abbreviation of thin film transistor-addressed liquid crystal displays, each pixel element (pixel) is controlled by a thin film transistor. TFT/LCDs create a whole new world of technology in consumer electronics and in computer and communication systems. The market for TFT/LCDs is now growing much faster than expected and has an impact on new application fields, as well as conventional fields.
- The structure of a single TFT in a matrix type arrangement of hundreds of thousands of TFTs is a FET (field effect transistor) and a pixel electrode. The pixel electrode is contacted to the source (or drain) electrode of the FET, and thus the effective window area (aperture ratio) is reduced by the size of the transistor area. The aperture ratio governs the brightness of the panel, thus the larger the aperture ratio becomes the brighter the display panel is achieved.
- The concept of TFT/LCDs is not new, but rather old. As early as 1966 Weimer proposed the possibility of using TFTs as display switches (see Lit. [4]). A more detailed concept was described in 1971 (Lit. [5]), where the use of diodes or triodes (transistors) was discussed as switches for active matrix liquid crystal displays. The use of storage capacitors implemented in parallel with the liquid crystal cell capacitor was also mentioned.
- Hydronated amorphous silicon (a-Si:H) was a late arrival in TFT technologies. However, it had a great influence in achieving practical TFT/LCDs. Since the first report by the Dundee group (Lit. [6]), a-Si:H-TFT has been recognized as a suitable device for TFT/LCDs. So far the combination of TFT and LCD technologies has been greatly growing and the market is already rather large.
- However, the principle problems of TFT/LCDs are
- a large viewing angle dependence if the LCD due to the application and use of twisted nematic (TN) type liquid crystals,
- considerable dependence of the switching speed on temperature because the switching is greatly dependent on the viscosity of the liquid crystal itself, and
- the liquid crystal injection process, necessary for cell filling takes several hours.
- As mentioned above, the demand for portable uses of flat panel displays is increasing leading to the request for thinner and lighter flat panel displays. One approach to this goal are the polysilicon-based TFT technologies which are also progressing, especially with a proposal for integrating the required shift register within the TFT panel, thus reducing the number of connection lines of the TFT panel.
- Recently a poly-Si-TFT-addressed polymeric EL display was reported by Cambridge Display Technology. Also known are active matrix driven displays based on polymeric EL materials, wherein the active driving elements are thin film field effect transistors (TFTs) of polysilicon or organic TFTs based on oligothiophene (Lit. [5]). In these reports the TFTs are deposited onto the transparent substrate before preparation of the EL devices.
- Also known are techniques to modify the work function of metallic and semiconductor surfaces by attachment of functionalized dipolar layers, e.g. through chemisorption or electrochemical attachment (see Lit. [6]). Such modification has been shown for materials such as ITO, CdTe and CdS. An LED device comprising a modified ITO electrode was recently reported (see Lit. [7]). According to theoretical analysis, the change in the work function is proportional to the dipole moment of the attached molecules and their concentration, and is inversely proportional to their dielectric constants.
- Lamination is a well-known technique for combining desired qualities of two or more different materials into a composite layer system and involves joining of the layers under application of pressure and/or heat (see Lit. [8]). Preparation of photovoltaic cell based on polymers by laminating two parts together was recently reported by Friend et al. (see Lit. [9]).
- Cabrera et al. (see Lit. [10]) reported a class of bifunctional materials for non-linear optics which comprised an aromatic group, particularly a styryl group, functionalized at the4 and 4′ positions by trifluorosulfonate groups as an electron acceptor at one end and electron donor groups such as ethers, thioethers and amines on the other end. These materials exhibit high dipole moments while showing a relatively small visible light absorption. Due to the possibility of attaching further functional groups, e.g. alkyl chains, to both donor and acceptor groups it was possible to determine the direction of the dipole moment relative to the second function group. No applications of these materials in EL devices have been reported.
- Bloor et al. (see Lit. [11]) have reported a class of molecules derived from TCNQ which exhibit dipole moments of up to 25-30 Debyc. No applications of these materials to EL devices have been reported.
- In addition to the conceptional inconsistencies of light-emitting devices briefly mentioned above, having regard to the problems of which the invention offers a solution, the following disadvantages, shortcomings or needs of the state of the art have been discovered by the inventors.
- a. The low work function cathode materials needed for high efficiency devices are typically unstable against oxidation by oxygen or water. Because of this, such devices and displays comprising a matrix of such devices must be thoroughly encapsulated to eliminate water and oxygen from the device. This is particularly difficult when flexible devices on polymeric substrates are desired (see e.g. U.S. Pat. No. 5,747,928), because a transparent, flexible and thoroughly impervious barrier layer must be applied to the side of the device comprising the transparent electrode, and thus far no such materials with sufficient barrier properties have been reported.
- b. A further disadvantage of the use of oxidation sensitive cathode materials is there incompatibility with standard photolithographic processing, which will be necessary to achieve high resolution multicolour displays at reasonable prices.
- c. Under the current state of the art, it is necessary for the achievement of high efficiency devices to prepare the devices onto a transparent anode material deposited onto a substrate and to evaporate the cathode onto the organic and/or polymeric layers. This eliminates the possibility to modify the cathode work function by chemical means and to use more stable materials.
- d. Furthermore, according to the state of the art, in active matrix displays comprising organic and/or polymeric EL devices it is necessary to apply the (non-transparent) TFTs to the substrate before preparation of the EL device. This is a problem because in emissive displays, in which each pixel element consists of a different device element like a TFT, it is difficult to obtain uniformity over the screen, because of the deviation of the each element's electrical properties. In order to circumvent a deviation of the brightness over the screen, one should perform some compensation by a built-in circuit in or for each pixel element. If the additional circuits arc fabricated in the TFT pixel, it means a reduction of the aperture ratio. With the conventional TFT concept, the aperture ratio is reduced even more with an increase of the resolution or number of the pixels on the panel.
- With the above discussed observations and drawbacks in mind, it is an object of the invention to teach a modified or new manufacturing process and a new structure for active matrix display devices offering high resolution displays with a good uniformity of brightness over the screen and simultaneously showing a high aperture ratio.
- The invention concerns displays comprising devices which contain organic or polymeric EL materials and its preparation and application, wherein solution to the problems and the objects described above can be achieved.
- A method of fabricating an active display device according the invention is defined in
claim 1. Advantageous modifications and embodiments of such a manufacturing method are the subject-matter of dependent claims. - An active matrix display device and its specific structure according to the invention is the subject-matter of
claim 10 with advantageous modifications and improved embodiments being defined in further dependent claims. - As mentioned above, the combination of TFTs and LEPs (light-emitting polymers) is promissing in terms of eliminating the viewing dependence and temperature dependence of the response speed in TFT/LCDs, which are crucial problems for displays available on the market. However, the current state of the art leads to poor aperture ratios for high resolution displays based on polymeric EL material.
- The invention as defined in at least one of the appended claims solves the above problems by metal (pixel electrode) fabrication on the TFT side of one of the substrates, such that at least a major part of each TFT is burried under a pixel electrode allowing for an active matrix addressing of the polymeric EL pixels while maintaining a high aperture ratio even at high resolution.
- The fabrication method according to the invention and the resulting product of an active matrix display device will be described in further details by way of examples and embodiments and with reference to the accompanying drawings of which
- FIGS. 1A to1K visualize sequences and intermediate results of process steps for an active-matrix display device according to the invention;
- FIGS. 2A to2K exemplify basically the same process steps as FIG. 1 with an advantageous modification in FIG. 2A2;
- FIGS. 3A to3K show basically the same process steps and intermediate production stages as FIGS. 2A to 2H with an advantageous modification in FIG. 3D1; and
- FIGS. 4A to4K show process steps and intermediate production stages corresponding to those of FIGS. 3A to 3K with a further modification in FIG. 4G1.
- A first sequence of process steps according to the invention and one embodiment of the device prepared thereby are described with reference to FIGS. 1A to1K.
- First, a matrix of
TFTs 2, each comprising a source region S, a drain D and a gap or channel region C, is prepared on asubstrate material 1, which may, but must not be transparent, and may be, but is not limited to silicon wafers, transparent glass or a transparent polymer material, e.g. PET, polysulfone, cycloolefinic copolymers or polycarbonates or flexible composite materials. The substrate may include reflective layers to reflect light emitted in the direction of the substrate. - One or in the case of a multi-colour display more (e.g. three or four)
TFTs 2 can be assigned to each pixel of a display. The actual fabrication procedure for the TFTs up to this point can be almost the same as for conventional TFT substrates as used for liquid crystal displays. - Next, a
non-conductive passivation layer 3, which may comprise inorganic (e.g. SiO2) and/or organic (e.g. a cured photoresist) non-conductive materials, is applied in such a way as to cover the source electrode or source region S and the gap or channel region C but to leave at least some part of the drain electrode or drain region D exposed. Thislayer 3 may be applied using standard lithographic techniques but may also be applied using other techniques such as shadow mask evaporation (see FIG. 1B). - Subsequently a matrix of cathodes5, which can cover also the area covered by the TFTs and which define the area of the pixels in a display device according to the invention is applied, for example by vacuum evaporation or sputtering. The cathode layer 5 (see FIG. 1C) may comprise but is not limited to Al, Mg, Ca, Ba, Li, Ag, In or any alloys comprising two or more of these metals. In a preferred embodiment of the invention a stable metal such as Al or alloys thereof is used, which is resistant to photolithographic processing. A cathode layer 5 may be structured into
pixel elements - It may be and usually it is advantageous to apply an additional flattening layer or
partial layer 4 to the pixels in such a way as to create a flat surface at the top of the cathode layer 5 and thepixel electrodes flattening layer 4 may be applied using the same methods before deposition of the cathode layer 5 (see FIGS. 1C and 1D). - After structuring the pixel areas (FIG. 1D) one or more composite active organic and/or polymeric layer(s) is (are) applied to the cathode material, i.e. on top of the pixel areas. The composition of the layer(s)6 may include any of the types of materials known in the literature or referred to in the state of the art. Coating may be done by spincoating, doctor blading, transfer printing, curtain coating, slot-dye coating, or printing techniques such as screen printing (see FIG. 1E).
- On a second, preferably optically transparent substrate8 (FIG. 1F), which may consist of but is not limited to any of the materials described above for the
first substrate 1, a transparent high work function electrode, e.g. ananode 7 such as described in the state of the art is deposited. If it is desired for certain embodiments of the invention, the anode layer may be structured into theelements polymeric layers 6′ are applied to the structuredanode layer elements - The process for manufacturing said two layered structures shown in FIG. 1E and FIG. 1H, respectively, is quite simple and favourable for mass production.
- Subsequently the two
coated substrates 1 to 6 and 8 to 6′ are laminated-together by application of heat and/or pressure as illustrated in FIG. 1K. As the polymers have glass transition temperature or if it is a liquid crystalline polymer, it must have phase transition temperature from solid to liquid crystalline state or isotropic state, in which the viscosity of the polymer decreases. Above these appropriately selected temperatures the application of pressure can lead to good physical and electrical contact between the twopolymer layers - In another modified process or embodiment of the invention shown in FIG. 2A to FIG. 2K, a conventional
TFT display substrate 1 such as used in the manufacture of liquid crystal displays is used as a substrate. Such substrates contain a matrix ofTFTs 2 and of electrodes la usually made of ITO which define the pixel areas in such LCDs (see e.g. EP 0 845 770 A1). To thissubstrate 1 already provided with saidTFTs 2 and said electrodes la is first applied as above anon-conductive passivation layer 3 which covers theTFTs 2 but leaves part of theITO electrodes 1 a exposed. Subsequently a matrix of cathodes, i.e. inlarge pixel areas TFTs 2 and which in each case define the active area of a pixel in a device according to the invention. - According to this invention, each pixel area is defined by the
respective area non-conductive passivation layer 3 while the drain electrode is in contact with the respective cathode/pixel electrode - The further process steps depicted in FIGS. 2F to2K are essentially the same as those described above in connection with FIGS. 1A to 1K. Again, if it is desired, an additional
conductive layer 4 for the purpose of flattening the layer structure may be applied before or after deposition of the cathode layer 5 as described above. - In preferred process modifications and embodiments of the invention the pixel or
cathode regions anode regions polymeric layer - Carboxylic acids
- Hydroxamine
- Thiols
- Phosphonates
- Sulfonates
- Amine.
- The molecules which are attached to the
pixel regions anode regions - In another especially preferred embodiment of the invention the attached molecules comprise structures of the following formula
- Rd —P—R a
-
- where Rd is an electron donor group and Ra is an electron acceptor group.
- Rd may be chosen from the following groups
- NRR′
- NR′R″
- OR′
- SR′
- where R, R′ and R″ are independently of each other equal H or CnH(2n+1)Ratt.
- Ratt=one of the above attachement groups or H,
- n=0-20, preferred 0-10,
- R′ and R″ may be the same or different, but one of R′ and R″ must be ≠H.
- Ra may be chosen from the following groups:
Ratt — CnHoFp — SO2 — NO2 COORatt where o + p = 2n + 1 n = 0-20, preferred 0-10. -
- where either Ratt or Ratt 1 is an attachment group.
-
- where R′ and R″ independently of each other ═H or CnH(2n+1)Ratt,
- Ratt=one of the above attachement groups or H,
- n=0-20, preferred 0-10, and
- R′ and R″ may be the same or different, but one of R′ and R″ must be ≠H.
- Subsequent to the modification of the cathode5 and/or the
anode 7 the organic and/or polymeric material which is desired to be proximate to the modified electrode is applied. As mentioned above, this may be done by spincoating, doctor blading, transfer printing, curtain coating, slot-dye coating, or other printing techniques such as screen printing. - The main advantages of the invention over the state of the art are the following:
- The process of separate lamination allows for both
electrodes films - The modification of the
electrodes - The process of a separate lamination furthermore allows for the TFTs necessary for high resolution displays to be deposited before the preparation of the light emitting element and on the non-transparent side of the display device, thus enabling a display with a higher aperture ratio than is possible with the state of the art.
- A TFT panel of 513000 (1068×480) pixels and with a diagonal size of 1.35 inches (3.43 cm) is selected and an Al electrode (e.g.5 in FIG. 1C) is vacuum evaporated at a thickness of 50 nm. The panel is photo resist coated and processed by a usual photolithographic process and dry etched with oxygen at a pressure of 10−3 torr only at data and gate line areas. The etching rate is 100 nm/min.
- Subsequently (poly)octylfluorene of a molecular weight of 4000 dissolved in p-xylene at a concentration of ca. 20 mg/ml is spin coated onto the thus prepared substrate. The spin coater condition is 100 rpm for 4 seconds and then 3000 rpm for 30 seconds to obtain a 70 nm
thick film 6 on the Al electrode (cathode - On a
second substrate 8, which comprises 0.7 mm thick Corning 7059 glass with a 50nm ITO film 7, which may be structured as needed using standard lithographic techniques (FIG. 1F), a 70nm layer 6′ of poly(octylfluorene) is deposited as above, is set on a previously applied polyfluorene film. - Then the TFT panel (FIG. 1E) is placed on a hot plate which is set at 180° C. and kept at this temperature for 3 min. The second substrate (FIG. 1H) is applied to the first so that the two
polymer layers - The pressure at heat is maintained for 10 min. Subsequently the whole device is cooled at a rate of 0.5° C./min.
- The glass edges of the laminated device are encapsulated with epoxy resin to keep out water and oxygen.
- With this process and the device structure mentioned above, a TFT/LEP display with 513000 pixels and a diagonal size of 1.35″ (3.43 cm) is obtained which can have a brightness of 10 Cd/m2 and the driving voltages are below 15 V.
- A display device is prepared as in Example 1 with the following modifications (see FIGS. 3A to3K):
-
- Subsequently the panel is rinsed in ethanol and dried under air at 50° C. for 5 min before deposition of the
polymer layer 6. The rest of the preparation is as described in Example 1. - With the process of Example 2 and the structure described above, a TFT-LEP display with 513000 pixels and a diagonal size of 1.35″ (3.43 cm) is obtained with a brightness of about 50 Cd/m2 and with driving voltages below 15 V.
- A device is prepared as in Example 1 with the following differences (see FIGS. 4A to4K). Between the etching of the Al electrode (
e.g. cathode pixels layer 6 of poly(octylfluorene) the panel is dipped into abreaker 10 containing a 5 mg/ml solution in a mixture of acetonitrile and ethyl alcohol of the following chemical composition for 5 min: - Subsequently the panel is rinsed in ethanol and dried under air at 50° C. for 5 min before deposition of the
polymer layer 6. -
- Subsequently the panel is rinsed in ethanol and dried under air at 50° C. for 5 min before deposition of the
polymer layer 8. The rest of the preparation is as described in Example 1. - With the process and the arrangement described in this Example a TFT/LEP display with 513000 pixels and a diagonal size of 1.35″ (3,43 cm) is obtained having a brightness of 100 Cd/m2 and driving voltages below 12 V.
List of Reference Literature Lit. [1]: R. Friend, A. Holmes, D. Bradley et al., Nature 347, 539 (1990) Lit. [2]: Riess, W. “Single- and Heterolayer Polymeric Light Emitting Diodes Based on Poly(p-phenylene vinylene) and Oxdiazole Polymers” Organic electro-luminescent Materials and Devices, edited by Miyata, S. and Nalwa, H. S., Gordon and Breach Science Publishers, Amsterdam, 1997 Lit. [3]: Heeger et al., Nature 357, 477 (1992) Lit. [4]: Weimer, P. K. (1966) Field Effect Transistors, edited by J. T. Wallmark and H. Johnson, New Jersey, Prentice Hall Lit. [5]: R. Friend et al., Science, in press; home page, Cambridge Display Technology Ltd; www.cdt/bd.co.uk Lit. [6]: M. Bruening, E. Moons, D. Cahen. A. Shanzer, J. Phys. Chem 99, 8368 (1995) Lit. [7]: F. Nucsch, L. Si-Ahmed, B. Francois, L. Zuppiroli, Adv. Mater. 9, 222 (1997) Lit. [8]: See, for example, S. A. Giddings, in Encyclopedia of Polymer Science and Technology 2dn Ed., Vol. 8, 617 ffLit. [9]: R. Friend et al. Nature, in press Lit. [10]: Cabrera, A. Meyer, D. Lupo et al. Nonlinear Optics 9, 161 (1995) Lit. [11]: D. Bloor et al., J. American Chem. Soc. xx, xxx (xxxx)
Claims (17)
1. A method for fabricating an active matrix display device formed of a plurality of pixels and comprising:
at least one thin film transistor element (TFT element) (2) is deposited on a first substrate (1) for each pixel,
at least the source region (S) and the channel region (C) of said at least one TFT element (2) for each pixel are covered by a non-conductive passivation layer (3) such as to leave parts or all of the drain region (D) uncovered,
a cathode material layer structured into a plurality of pixel electrode regions (5 a, 5 b, . . . ) is deposited so as to cover at least a substantial part of each of said TFT elements,
a first active organic and/or polymeric electroluminescent material layer (EL layer) (6) is applied to cover at least said pixel electrode regions (5 a, 5 b, . . . ),
a second substrate (8) is separately prepared by depositing an anode layer (7 a, 7 b, . . . ) on one surface of said second substrate and subsequently coating said anode layer with a second active organic and/or polymeric EL material layer (6′),
said two substrates thus prepared and coated are laminated together, said first and second EL material layers (6, 6′) being face-to-face and appropriately alligned, under application of heat and/or pressure for a predetermined time, the temperature being selected to have a glass transition temperature of at least one of said EL layers (6, 6′) in case of a polymeric EL material or to have the phase transition temperature for solid to liquid crystalline state or isotropic state in case of crystalline EL material.
2. The method of claim 1 , characterized in that a flattening layer (4) is deposited before or after deposition of said cathod material layer (5).
3. The method of claim 1 or 2, characterized in that after the process of lamination the display device is encapsulated.
4. The method of claim 1 or 2 wherein said first substrate (1) is non-transparent, characterized in that a stable metal which is resistant to photolithographic processing is selected for said cathode material layer (5).
5. The method of claim 4 , characterized in that Al or an Al alloy is selected as said stable metal.
6. The method of claim 1 or 2, characterized in that at least one of said EL layers (6, 6′) is prepared as a laminated composite layer system of a plurality of EL materials.
7. The method of claim 1 or 2, characterized in that before applying said EL material layer(s), said cathode material layer (5 a, 5 b, . . . ) and/or said anode layer (7 a, 7 b, . . . ) is/are modified by chemical treatment to adsorb functionalized dipoles.
8. The method of claim 7 , characterized in that for optimization of charge carrier injection from said cathode and/or said anode material layer(s), said chemical treatment is selected such that the molecules attached to said cathode and/or said anode layer(s) are of the same functional group for light emission and/or charge transport as the active organic or polymeric EL material which is adjacent to the such modified electrode layer(s).
9. The method of claim 1 or 2, characterized in that said heat-supported lamination process of said two EL material coated substrates is performed under a pressure of more than 10 g/cm2.
10. An active matrix display device formed of a plurality of pixels and comprising:
at least one thin film transistor (TFT) element adhered on a first substrate (1) for each pixel;
a structured non-conductive passivation layer (3) covering the source (S) and drain (D) regions of said TFT clement (2) and leaving at least part of the drain region (D) uncovered;
a low work function material layer structured into pixel electrode areas (5 a, 5 b, . . . ) and electrically contacting said uncovered part of said drain regions;
a second substrate (2) bearing an electrically conducting high work function layer (7 a, 7 b, . . . ); and
an active organic or polymeric electroluminescent EL material layer (6, 6′) placed between said low work function pixel structured layer and said high work function layer on said second substrate (8).
11. The display device of claim 10 , characterized in that said low work function material layer (5 a, 5 b, . . . ) and/or said high work function layer (7 a, 7 b, . . . ) on said second substrate (8) are modified by chemical treatment to comprise adsorbed functionalized dipoles.
12. The display device according to claim 11 , characterized in that the functional groups used to attach the dipoles are carboxylic acids, hydroxamine, thiols, phosphonates, sulfonates and/or amines.
13. The display device according to claim 11 , characterized in that molecules attached to said modified electrodes comprise the same functional group for light emission and/or charge transport as the active organic or polymeric layer in the device adjacent to said modified electrode.
14. The display device according to claim 11 , characterized in that molecules attached to said modified electrodes comprise structures of the following formula
Rd—P—Ra
where P is a π-conjugated system such as
where Rd is an electron donor group and Ra is an electron acceptor group,
wherein Rd may be chosen from the groups NR′R″, OR′ and SR′ where R′ and R″ represent independently of each other ═H or CnH(2n+1)Ratt with Ratt=attachement group according to claim 12 or H and n=0-20, wherein R′ and R″ may be the same or different, but one of R′ and R″ must be ≠H and
wherein Ra may be chosen from the groups Ratt—CnHoFp—SO2—NO2 and COORatt, where o+p=2n+1 and n=0-20,
under the condition that one of Ratt≠H.
16. The display device according to claim 11 , characterized in that molecules attached to said modified electrodes comprise structures of the following formula
where R′ and R″ independently of each other ═H or CnH(2n+1)Ratt, wherein Ratt=attachment group according to claim 12 or H, n=0-20 and wherein R′ and R″ may be the same or different, under the condition that one of R′ and R″ must be ≠H.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/216,130 US20030013220A1 (en) | 1998-10-13 | 2002-08-09 | Method of fabricating and structure of an active matrix light-emitting display device |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP98119323.82203 | 1998-10-13 | ||
EP98119323A EP0996176B8 (en) | 1998-10-13 | 1998-10-13 | Method of fabricating an active matrix light-emitting display device |
US09/415,807 US6461885B1 (en) | 1998-10-13 | 1999-10-11 | Method of fabricating and structure of an active matrix light-emitting display device |
US10/216,130 US20030013220A1 (en) | 1998-10-13 | 2002-08-09 | Method of fabricating and structure of an active matrix light-emitting display device |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/415,807 Division US6461885B1 (en) | 1998-10-13 | 1999-10-11 | Method of fabricating and structure of an active matrix light-emitting display device |
Publications (1)
Publication Number | Publication Date |
---|---|
US20030013220A1 true US20030013220A1 (en) | 2003-01-16 |
Family
ID=8232785
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/415,807 Expired - Lifetime US6461885B1 (en) | 1998-10-13 | 1999-10-11 | Method of fabricating and structure of an active matrix light-emitting display device |
US10/216,130 Abandoned US20030013220A1 (en) | 1998-10-13 | 2002-08-09 | Method of fabricating and structure of an active matrix light-emitting display device |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/415,807 Expired - Lifetime US6461885B1 (en) | 1998-10-13 | 1999-10-11 | Method of fabricating and structure of an active matrix light-emitting display device |
Country Status (5)
Country | Link |
---|---|
US (2) | US6461885B1 (en) |
EP (1) | EP0996176B8 (en) |
JP (1) | JP4536184B2 (en) |
KR (1) | KR100608467B1 (en) |
DE (1) | DE69831243T2 (en) |
Cited By (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040256467A1 (en) * | 2001-10-18 | 2004-12-23 | Wolfgang Clemens | Electronic unit, circuit design for the same, and production method |
US20050009227A1 (en) * | 2003-07-11 | 2005-01-13 | Xiao Steven Shuyong | Organic semiconductor devices and methods of fabrication |
US20060065960A1 (en) * | 2001-04-27 | 2006-03-30 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
US20060124924A1 (en) * | 2004-11-19 | 2006-06-15 | Suh Min-Chul | Thin film transistor and flat panel display including the same |
US20100159205A1 (en) * | 2008-12-24 | 2010-06-24 | National Tsing Hua University | Polymer Molecular Film and Method for Manufacturing the Same |
EP2073287A3 (en) * | 2007-12-18 | 2012-07-25 | Palo Alto Research Center Incorporated | Producing Layered Structures with Lamination |
CN105070737A (en) * | 2015-04-30 | 2015-11-18 | 友达光电股份有限公司 | pixel unit of display panel and manufacturing method thereof |
US20160320872A1 (en) * | 2015-04-30 | 2016-11-03 | Samsung Display Co., Ltd. | Touch sensor device and manufacturing method thereof |
CN106450015A (en) * | 2016-10-11 | 2017-02-22 | 武汉华星光电技术有限公司 | Transparent OLED display and production method thereof |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW480722B (en) | 1999-10-12 | 2002-03-21 | Semiconductor Energy Lab | Manufacturing method of electro-optical device |
TW471011B (en) | 1999-10-13 | 2002-01-01 | Semiconductor Energy Lab | Thin film forming apparatus |
US6566808B1 (en) * | 1999-12-22 | 2003-05-20 | General Electric Company | Luminescent display and method of making |
KR20020031202A (en) * | 2000-10-23 | 2002-05-01 | 구본준, 론 위라하디락사 | flat panel display having a low transparent substrate |
JP3902938B2 (en) * | 2000-10-31 | 2007-04-11 | キヤノン株式会社 | Organic light emitting device manufacturing method, organic light emitting display manufacturing method, organic light emitting device, and organic light emitting display |
US20030016196A1 (en) * | 2001-07-17 | 2003-01-23 | Display Research Laboratories, Inc. | Thin film transistors suitable for use in flat panel displays |
WO2003013192A1 (en) * | 2001-07-27 | 2003-02-13 | The Ohio State University | Methods for fabricating polymer light emitting devices by lamination |
JP4176400B2 (en) * | 2001-09-06 | 2008-11-05 | シャープ株式会社 | Display device |
US7248235B2 (en) | 2001-09-14 | 2007-07-24 | Sharp Kabushiki Kaisha | Display, method of manufacturing the same, and method of driving the same |
JP2003223992A (en) * | 2002-01-31 | 2003-08-08 | Toyota Industries Corp | Organic EL color display device |
US7847284B2 (en) * | 2002-03-26 | 2010-12-07 | Dai Nippon Printing Co., Ltd. | Organic semiconductor material, organic semiconductor structure, and organic semiconductor device |
KR100474000B1 (en) * | 2002-08-13 | 2005-03-10 | 엘지.필립스 엘시디 주식회사 | Dual Panel Type Organic Electroluminescent Device and Method for Fabricating the same |
JP2004134279A (en) * | 2002-10-11 | 2004-04-30 | Tohoku Pioneer Corp | Organic el display panel and its manufacturing method |
US20070178710A1 (en) * | 2003-08-18 | 2007-08-02 | 3M Innovative Properties Company | Method for sealing thin film transistors |
US6844215B1 (en) * | 2003-08-25 | 2005-01-18 | Eastman Kodak Company | Method of forming tapered drain-to-anode connectors in a back plane for an active matrix OLED device |
CN103441218A (en) * | 2004-06-02 | 2013-12-11 | 汤姆森特许公司 | Organic light-emitting diode comprising a doped organic layer |
JP4727978B2 (en) * | 2004-07-20 | 2011-07-20 | シャープ株式会社 | Organic device and organic electroluminescence device |
DE102005017655B4 (en) | 2005-04-15 | 2008-12-11 | Polyic Gmbh & Co. Kg | Multilayer composite body with electronic function |
JP2006302556A (en) * | 2005-04-18 | 2006-11-02 | Seiko Epson Corp | Semiconductor element manufacturing method, semiconductor element, electronic device, and electronic apparatus |
DE102005031448A1 (en) | 2005-07-04 | 2007-01-11 | Polyic Gmbh & Co. Kg | Activatable optical layer |
DE102005035589A1 (en) | 2005-07-29 | 2007-02-01 | Polyic Gmbh & Co. Kg | Manufacturing electronic component on surface of substrate where component has two overlapping function layers |
DE102005044306A1 (en) | 2005-09-16 | 2007-03-22 | Polyic Gmbh & Co. Kg | Electronic circuit and method for producing such |
TW200809739A (en) * | 2006-08-08 | 2008-02-16 | Ritdisplay Corp | Method for fabricating active matrix organic electro-luminescence display panel |
CN102674669B (en) * | 2011-03-16 | 2014-12-03 | 京东方科技集团股份有限公司 | Fixing method for glass substrates |
JP2014067522A (en) * | 2012-09-25 | 2014-04-17 | Toshiba Corp | Display device and method of manufacturing the same |
TWI492935B (en) * | 2013-11-19 | 2015-07-21 | Nat Univ Tsing Hua | Conjugated aromatic derivatives and organic light emitting diode using the same |
JP6685122B2 (en) * | 2015-12-16 | 2020-04-22 | 住友化学株式会社 | Organic EL device manufacturing method and organic EL device |
CN111162189A (en) * | 2018-11-07 | 2020-05-15 | 广东聚华印刷显示技术有限公司 | Light-emitting device, preparation method thereof and mask |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5206749A (en) * | 1990-12-31 | 1993-04-27 | Kopin Corporation | Liquid crystal display having essentially single crystal transistors pixels and driving circuits |
JP3170925B2 (en) * | 1993-01-29 | 2001-05-28 | 東洋インキ製造株式会社 | Organic electroluminescence device |
JP3170926B2 (en) * | 1993-01-29 | 2001-05-28 | 東洋インキ製造株式会社 | Organic electroluminescence device |
US5677545A (en) * | 1994-09-12 | 1997-10-14 | Motorola | Organic light emitting diodes with molecular alignment and method of fabrication |
US5747928A (en) * | 1994-10-07 | 1998-05-05 | Iowa State University Research Foundation, Inc. | Flexible panel display having thin film transistors driving polymer light-emitting diodes |
US5550066A (en) * | 1994-12-14 | 1996-08-27 | Eastman Kodak Company | Method of fabricating a TFT-EL pixel |
US5965979A (en) * | 1995-04-18 | 1999-10-12 | Cambridge Display Technology Limited | Manufacture of organic light emitting devices |
JP2755216B2 (en) * | 1995-06-20 | 1998-05-20 | 日本電気株式会社 | Manufacturing method of organic thin film EL element |
US5737041A (en) * | 1995-07-31 | 1998-04-07 | Image Quest Technologies, Inc. | TFT, method of making and matrix displays incorporating the TFT |
US5811177A (en) * | 1995-11-30 | 1998-09-22 | Motorola, Inc. | Passivation of electroluminescent organic devices |
WO1998007202A1 (en) * | 1996-08-08 | 1998-02-19 | International Business Machines Corporation | Gallium nitride based cathodes for organic electroluminescent devices and displays |
US6072450A (en) * | 1996-11-28 | 2000-06-06 | Casio Computer Co., Ltd. | Display apparatus |
JP3457819B2 (en) * | 1996-11-28 | 2003-10-20 | カシオ計算機株式会社 | Display device |
US5937272A (en) * | 1997-06-06 | 1999-08-10 | Eastman Kodak Company | Patterned organic layers in a full-color organic electroluminescent display array on a thin film transistor array substrate |
GB9806066D0 (en) * | 1998-03-20 | 1998-05-20 | Cambridge Display Tech Ltd | Multilayer photovoltaic or photoconductive devices |
US6312836B1 (en) * | 1998-04-10 | 2001-11-06 | The Trustees Of Princeton University | Color-tunable organic light emitting devices |
-
1998
- 1998-10-13 DE DE69831243T patent/DE69831243T2/en not_active Expired - Lifetime
- 1998-10-13 EP EP98119323A patent/EP0996176B8/en not_active Expired - Lifetime
-
1999
- 1999-10-11 US US09/415,807 patent/US6461885B1/en not_active Expired - Lifetime
- 1999-10-12 KR KR1019990043978A patent/KR100608467B1/en not_active Expired - Fee Related
- 1999-10-13 JP JP29158799A patent/JP4536184B2/en not_active Expired - Fee Related
-
2002
- 2002-08-09 US US10/216,130 patent/US20030013220A1/en not_active Abandoned
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20060065960A1 (en) * | 2001-04-27 | 2006-03-30 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
US7535018B2 (en) * | 2001-04-27 | 2009-05-19 | Semiconductor Energy Laboratory Co., Ltd. | Display device and manufacturing method thereof |
US7483275B2 (en) | 2001-10-18 | 2009-01-27 | Polyic Gmbh & Co. Kg | Electronic unit, circuit design for the same, and production method |
US20040256467A1 (en) * | 2001-10-18 | 2004-12-23 | Wolfgang Clemens | Electronic unit, circuit design for the same, and production method |
US20050009227A1 (en) * | 2003-07-11 | 2005-01-13 | Xiao Steven Shuyong | Organic semiconductor devices and methods of fabrication |
US7063994B2 (en) * | 2003-07-11 | 2006-06-20 | Organic Vision Inc. | Organic semiconductor devices and methods of fabrication including forming two parts with polymerisable groups and bonding the parts |
US20060124924A1 (en) * | 2004-11-19 | 2006-06-15 | Suh Min-Chul | Thin film transistor and flat panel display including the same |
US7381984B2 (en) * | 2004-11-19 | 2008-06-03 | Samsung Sdi Co., Ltd. | Thin film transistor and flat panel display including the same |
EP2073287A3 (en) * | 2007-12-18 | 2012-07-25 | Palo Alto Research Center Incorporated | Producing Layered Structures with Lamination |
US20100159205A1 (en) * | 2008-12-24 | 2010-06-24 | National Tsing Hua University | Polymer Molecular Film and Method for Manufacturing the Same |
US8790746B2 (en) * | 2008-12-24 | 2014-07-29 | National Tsing Hua University | Method for manufacturing a polymer molecular film for photo-electronic device |
CN105070737A (en) * | 2015-04-30 | 2015-11-18 | 友达光电股份有限公司 | pixel unit of display panel and manufacturing method thereof |
US20160320872A1 (en) * | 2015-04-30 | 2016-11-03 | Samsung Display Co., Ltd. | Touch sensor device and manufacturing method thereof |
US9921697B2 (en) * | 2015-04-30 | 2018-03-20 | Samsung Display Co., Ltd. | Touch sensor device and manufacturing method thereof |
CN106450015A (en) * | 2016-10-11 | 2017-02-22 | 武汉华星光电技术有限公司 | Transparent OLED display and production method thereof |
Also Published As
Publication number | Publication date |
---|---|
DE69831243D1 (en) | 2005-09-22 |
JP2000173770A (en) | 2000-06-23 |
JP4536184B2 (en) | 2010-09-01 |
EP0996176B8 (en) | 2005-10-19 |
KR20000028999A (en) | 2000-05-25 |
EP0996176A1 (en) | 2000-04-26 |
EP0996176B1 (en) | 2005-08-17 |
KR100608467B1 (en) | 2006-08-09 |
US6461885B1 (en) | 2002-10-08 |
DE69831243T2 (en) | 2006-08-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6461885B1 (en) | Method of fabricating and structure of an active matrix light-emitting display device | |
US7663147B2 (en) | Display apparatus and fabricating method thereof | |
US7965034B2 (en) | Organic electroluminescence display device comprising a contact electrode with elasticity and fabricating method thereof | |
US7489075B2 (en) | Double-sided light emitting organic electroluminescence display device having a reflection layer and fabrication method thereof | |
TWI248322B (en) | Organic electro luminescence device and fabrication method thereof | |
US6879099B2 (en) | Organic EL element and organic EL display | |
US8030842B2 (en) | Display device and method of making display device | |
US20110198598A1 (en) | Organic light emitting display apparatus and method of manufacturing the same | |
KR100853769B1 (en) | LCD and its manufacturing method | |
US20090009069A1 (en) | Organic el display apparatus and method of manufacturing the same | |
US20040012028A1 (en) | Active matrix organic electroluminescent device simplifying a fabricating process and a fabricating method thereof | |
US20070054582A1 (en) | Manufacturing method of display device | |
US7897975B2 (en) | Light emitting display device and method for fabricating the same | |
US7173378B2 (en) | Active matrix organic electroluminescent display device having organic thin-film transistor and method for manufacturing the display device | |
EP2059957A2 (en) | Organic electronic device | |
US20090140955A1 (en) | Light-emitting element and display device | |
CN101393889A (en) | Manufacturing method of display device | |
US20040017151A1 (en) | Organic electroluminescent display device and method of fabricating the same | |
US20090218941A1 (en) | Organic semiconductor light-emitting device and display device | |
JP2012506568A (en) | Display driver | |
US20010009280A1 (en) | Organic electroluminescence display device | |
US7321134B2 (en) | Organic electroluminescent display device and method for fabricating the same | |
JP2006049811A (en) | Organic thin film transistor and flat panel display device having the same | |
JP2004152595A (en) | Display apparatus | |
CN109755404A (en) | Organic luminescent device and display panel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |