US20030005727A1 - Method of manufacturing optical fiber - Google Patents
Method of manufacturing optical fiber Download PDFInfo
- Publication number
- US20030005727A1 US20030005727A1 US09/937,774 US93777401A US2003005727A1 US 20030005727 A1 US20030005727 A1 US 20030005727A1 US 93777401 A US93777401 A US 93777401A US 2003005727 A1 US2003005727 A1 US 2003005727A1
- Authority
- US
- United States
- Prior art keywords
- optical fiber
- diameter
- glass diameter
- preform
- chromatic dispersion
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 181
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 42
- 239000011521 glass Substances 0.000 claims abstract description 89
- 239000006185 dispersion Substances 0.000 claims abstract description 61
- 230000003287 optical effect Effects 0.000 claims description 9
- 238000000034 method Methods 0.000 abstract description 27
- 238000005259 measurement Methods 0.000 description 14
- 238000010438 heat treatment Methods 0.000 description 9
- 230000005540 biological transmission Effects 0.000 description 8
- 239000011347 resin Substances 0.000 description 8
- 229920005989 resin Polymers 0.000 description 8
- 239000011248 coating agent Substances 0.000 description 6
- 238000000576 coating method Methods 0.000 description 6
- 238000012545 processing Methods 0.000 description 6
- 239000000835 fiber Substances 0.000 description 4
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000004891 communication Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 101000661807 Homo sapiens Suppressor of tumorigenicity 14 protein Proteins 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 108090000237 interleukin-24 Proteins 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 230000000644 propagated effect Effects 0.000 description 1
- 230000001902 propagating effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B37/00—Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
- C03B37/01—Manufacture of glass fibres or filaments
- C03B37/02—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor
- C03B37/025—Manufacture of glass fibres or filaments by drawing or extruding, e.g. direct drawing of molten glass from nozzles; Cooling fins therefor from reheated softened tubes, rods, fibres or filaments, e.g. drawing fibres from preforms
- C03B37/0253—Controlling or regulating
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2203/00—Fibre product details, e.g. structure, shape
- C03B2203/36—Dispersion modified fibres, e.g. wavelength or polarisation shifted, flattened or compensating fibres (DSF, DFF, DCF)
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/40—Monitoring or regulating the draw tension or draw rate
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/44—Monotoring or regulating the preform feed rate
-
- C—CHEMISTRY; METALLURGY
- C03—GLASS; MINERAL OR SLAG WOOL
- C03B—MANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
- C03B2205/00—Fibre drawing or extruding details
- C03B2205/60—Optical fibre draw furnaces
- C03B2205/72—Controlling or measuring the draw furnace temperature
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02004—Optical fibres with cladding with or without a coating characterised by the core effective area or mode field radius
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/02214—Optical fibres with cladding with or without a coating tailored to obtain the desired dispersion, e.g. dispersion shifted, dispersion flattened
- G02B6/02219—Characterised by the wavelength dispersion properties in the silica low loss window around 1550 nm, i.e. S, C, L and U bands from 1460-1675 nm
- G02B6/02252—Negative dispersion fibres at 1550 nm
Definitions
- the present invention relates to an optical fiber fabrication method of fabricating an optical fiber with desired optical characteristics by drawing an optical fiber and, more particularly, to a method suitable for fabrication of a dispersion compensating optical fiber.
- the absolute value of accumulated chromatic dispersion of the optical fiber transmission line is desirably as small as possible at the signal wavelengths (e.g., at 1.55 ⁇ m).
- standard single-mode optical fibers used as optical fiber transmission lines have the zero dispersion wavelength near the wavelength of 1.3 ⁇ m and the chromatic dispersion of about 17 ps/nm/km at the wavelength of 1.55 ⁇ m.
- optical communication is thus infeasible at high bit rates because of the deterioration of signal waveform.
- a dispersion compensating optical fiber with negative chromatic dispersion at the wavelength of 1.55 ⁇ m is utilized to compensate for the chromatic dispersion of the single-mode optical fiber, thereby decreasing the absolute value of mean chromatic dispersion at the wavelength of 1.55 ⁇ m.
- the inventors investigated the conventional optical fiber transmission lines and discovered the following problem. Namely, in order to decrease the absolute value of mean chromatic dispersion of the entire transmission line composed of the single-mode optical fiber and the dispersion compensating optical fiber, it is necessary to properly design a ratio of lengths of the single-mode optical fiber and the dispersion compensating optical fiber, properly design the chromatic dispersion of the dispersion compensating optical fiber according to the chromatic dispersion characteristic of the single-mode optical fiber, and produce the optical fibers as designed.
- the chromatic dispersion characteristic of the dispersion compensating optical fiber sensitively varies according to variation in glass size (fiber diameter of the dispersion compensating optical fiber). Processing accuracy of the optical fiber preform was insufficient and measurement accuracy of refractive index profile of the optical fiber preform by a preform analyzer was also insufficient. Accordingly, it was difficult to fabricate the dispersion compensating optical fiber having an objective chromatic dispersion characteristic with high accuracy.
- the above-stated problem is conspicuous in fabrication of the dispersion compensating optical fiber, but also arises in fabrication of optical fibers of other kinds.
- the present invention has been accomplished in order to solve the problem as stated above, and an object of the invention is to provide an optical fiber fabrication method by which an optical fiber with an objective chromatic dispersion characteristic can be obtained readily.
- An optical fiber fabrication method is a method of fabricating an optical fiber with a desired optical characteristic by controlling an outside diameter of the resultant optical fiber.
- a cutoff wavelength is measured in an optical fiber with a fixed length obtained by first drawing a part of an optical fiber preform, a target glass diameter for yielding an objective chromatic dispersion characteristic is determined based on the cutoff wavelength thus measured, and the rest of the optical fiber preform is drawn while an outside diameter is controlled to the target glass diameter thus determined.
- the optical fiber fabrication method according to the present invention is arranged to feed the measurement result of the cutoff wavelength in the optical fiber with the fixed length obtained immediately after the start of drawing of the optical fiber preform, back to the control of the outside diameter, the optical fiber with the objective chromatic dispersion characteristic can be obtained readily even if the processing accuracy of the optical fiber preform is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor.
- An optical fiber fabrication method may also be arranged to control the outside diameter by making use of the measurement result of a mode field diameter in the optical fiber with the fixed length obtained after the start of drawing of the optical fiber preform, instead of the cutoff wavelength.
- the optical fiber fabrication method is arranged to determine the target glass diameter for yielding the objective chromatic dispersion characteristic, based on the mode field diameter thus measured, and then to drawn the rest of the optical fiber preform while controlling the outside diameter to the target glass diameter thus determined.
- the optical fiber with the objective chromatic dispersion characteristic can be obtained readily even if the processing accuracy of the optical fiber preform is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor.
- FIG. 1A and FIG. 1B are views showing schematic structure of a drawing system and a measuring system for implementing the optical fiber fabrication method according to the present invention.
- FIG. 2A is a graph showing a relationship between chromatic dispersion and glass diameter (outside diameter of optical fiber), and FIG. 2B a graph showing a relation between cutoff wavelength and glass diameter (outside diameter of optical fiber).
- FIG. 3 is a flowchart for explaining the first embodiment of the optical fiber fabrication method according to the present invention.
- FIG. 4A is a graph showing a relationship between chromatic dispersion and glass diameter (outside diameter of optical fiber), and FIG. 4B a graph showing a relation between mode field diameter and glass diameter (outside diameter of optical fiber).
- FIG. 5 is a flowchart for explaining the second embodiment of the optical fiber fabrication method according to the present invention.
- FIGS. 1A to 2 B, 3 , 4 A, 4 B, and 5 Embodiments of the optical fiber fabrication method according to the present invention will be described below with reference to FIGS. 1A to 2 B, 3 , 4 A, 4 B, and 5 .
- the same elements will be denoted by the same reference symbols and redundant description will be omitted.
- FIG. 1A is a view showing the schematic structure of the drawing system for implementing the optical fiber fabrication method according to the present invention.
- an optical fiber preform 1 is fixed to a preform feeder 12 and is introduced into the interior of heating furnace 11 by the preform feeder 12 .
- the heating furnace 11 heats and melts the lower part of the optical fiber preform 1 .
- a bared optical fiber drawn from the lower part of the optical fiber preform 1 thus melted is pulled out of the lower part of the heating furnace 11 to the outside.
- the glass diameter d of this bared optical fiber is measured by an outside diameter gauge 13 and the surface of the fiber is coated with a resin by a resin coating unit 14 .
- the resin coating unit 14 coats the surface of the bared optical fiber with an ultraviolet-curing resin through a primary coating die, and this ultraviolet-curing resin is once cured by irradiation with ultraviolet light.
- the resin surface of the coating on the bared optical fiber is further coated with the ultraviolet-curing resin through a secondary coating die, and this ultraviolet-curing resin coating is cured by irradiation with ultraviolet light, thereby obtaining a coated optical fiber 2 .
- this coated optical fiber 2 is guided via capstan 16 and rollers 17 to 19 in order, to be wound up on a bobbin 20 .
- This control unit 21 controls each of the heating temperature (drawing temperature) of the optical fiber preform 1 by the heating furnace 11 , the rotational speed of the capstan 16 (i.e., the drawing rate of the coated optical fiber 2 ), and the feed rate of the optical fiber preform 1 by the preform feeder 12 .
- the control unit 21 controls the set feed rate Vf 1 of the optical fiber preform 1 so as to satisfy Eq (1) below.
- Vf 1 v 1 ⁇ d 2 /D 2 (1)
- FIG. 2A is a graph showing the relationship between chromatic dispersion and glass diameter (outside diameter of the bared optical fiber), and FIG. 2B a graph showing the relationship between cutoff wavelength and glass diameter (outside diameter of the bared optical fiber).
- the cutoff wavelength also varies and the chromatic dispersion also varies. Namely, a difference between an actual cutoff wavelength measured and a target cutoff wavelength corresponds to a difference between actual chromatic dispersion and target chromatic dispersion. Therefore, the optical fiber fabrication method according to the first embodiment is arranged to adjust the glass diameter, based on the difference between the actual cutoff wavelength measured and the target cutoff wavelength, thereby correcting the actual chromatic dispersion to the target chromatic dispersion
- FIG. 3 is a flowchart for explaining the optical fiber fabrication method according to the first embodiment.
- the optical fiber fabrication method according to the first embodiment is carried out by the drawing system and measuring system as shown in FIG. 1A and FIG. 1B.
- the first step is to prepare the optical fiber preform 1 whose refractive index profile is uniform in the longitudinal direction (step ST 11 ), and the refractive index profile of this optical fiber preform 1 is measured by the preform analyzer (step ST 12 ). Based on the result of this measurement and designed values of the preform structure, a glass diameter of the bared optical fiber is determined for fabrication of the coated optical fiber 2 having objective chromatic dispersion at a predetermined wavelength (e.g., 1.55 ⁇ m). This glass diameter determined is used as an initial glass diameter (step ST 13 ).
- a predetermined wavelength e.g., 1.55 ⁇ m
- the optical fiber preform 1 is fixed to the preform feeder 12 and then the optical fiber preform 1 is guided into the heating furnace 11 by the preform feeder 12 . This results in heating and melting the lower end of the optical fiber preform 1 .
- the control unit 21 controls the outside diameter so that the glass diameter of the resultant bared optical fiber becomes the initial glass diameter.
- a portion (an optical fiber 2 a of a fixed length to be measured) is cut out of the coated optical fiber 2 obtained after the start of drawing (step ST 14 ), and the measuring system 210 shown in FIG. 1B measures the cutoff wavelength of this optical fiber 2 a to be measured (step ST 15 ).
- the optical fiber 2 a to be measured has a length enough to measure the cutoff wavelength, which is specifically about 1 m to 10 m.
- the control unit 21 compares this measured cutoff wavelength with the target cutoff wavelength and corrects the glass diameter of the bared optical fiber for production of the coated optical fiber 2 having the objective chromatic dispersion at the predetermined wavelength, based on the result of the comparison.
- This corrected glass diameter is used as a target glass diameter (step ST 16 ).
- the target glass diameter d 1 is given by Eq (2) below.
- the rest of the optical fiber preform 1 is drawn so that the glass diameter of the resultant bared optical fiber becomes the target glass diameter, thereby fabricating the optical fiber with the desired optical characteristic (coated optical fiber 2 ) (step ST 17 )
- the initial glass diameter may also be employed as the target glass diameter as it is.
- the initial glass diameter d 0 is employed as the target glass diameter d 1 as it is.
- the target glass diameter d 1 is determined by foregoing Eq (2).
- the method may also be arranged in such a manner that steps ST 14 to ST 16 are repeatedly carried out while the glass diameter is renewed until the difference between the cutoff wavelength measured at step ST 15 and the target cutoff wavelength falls within the fixed range. This permits the target glass diameter to be set closer to the glass diameter of the fiber with the target cutoff wavelength more accurately.
- the set feed speed Vf 1 of the optical fiber preform 1 is determined based on above Eq (1), on-line measurement is carried out to measure the glass diameter d of the coated optical fiber 2 by the outside diameter gauge 13 , and the rotational speed of the capstan 16 is controlled based on this glass diameter d, which makes it feasible to maintain the glass diameter d of the bared optical fiber constant.
- These controls are carried out by the control unit 21 .
- the cutoff wavelength is measured in the optical fiber with the fixed length obtained after the drawing start (the optical fiber 2 a to be measured), the corrected target glass diameter is determined based on the measurement result, and the rest of the optical fiber preform 1 is drawn to fabricate the coated optical fiber 2 while the outside diameter is controlled so that the glass diameter becomes the target glass diameter.
- the optical fiber fabrication method is suitable for the fabrication of dispersion compensating optical fibers whose chromatic dispersion characteristic sensitively varies according to variation of glass diameter.
- FIG. 4A is a graph showing the relationship between chromatic dispersion and glass diameter (outside diameter of the bared optical fiber), and FIG. 4B a graph showing the relationship between mode field diameter and glass diameter (outside diameter of the bared optical fiber).
- the mode field diameter also varies and the chromatic dispersion also varies. Namely, a difference between an actual mode field diameter measured and a target mode field diameter corresponds to a difference between actual chromatic dispersion and target chromatic dispersion. Therefore, the second embodiment is arranged to adjust the glass diameter, based on the difference between the actual mode field diameter measured and the target mode field diameter, thereby correcting the actual chromatic dispersion to the target chromatic dispersion.
- FIG. 5 is a flowchart for explaining the optical fiber fabrication method according to the second embodiment.
- the optical fiber fabrication method according to the second embodiment is also carried out by the drawing system and measuring system as shown in FIG. 1A and FIG. 1B, as in the first embodiment.
- the first step is to prepare the optical fiber preform 1 whose refractive index profile is uniform in the longitudinal direction (step ST 21 ), and the refractive index profile of this optical fiber preform 1 is measured by the preform analyzer (step ST 22 ). Based on the result of this measurement and designed values of the preform structure, a glass diameter of the bared optical fiber is determined for fabrication of the coated optical fiber 2 having objective chromatic dispersion at a predetermined wavelength (e.g., 1.55 ⁇ m). This glass diameter determined is used as an initial glass diameter (step ST 23 )
- the optical fiber preform 1 is fixed to the preform feeder 12 and then the optical fiber preform 1 is guided into the heating furnace 11 by the preform feeder 12 . This results in heating and melting the lower end of the optical fiber preform 1 .
- the control unit 21 controls the outside diameter so that the glass diameter of the resultant bared optical fiber becomes the initial glass diameter.
- a portion (the optical fiber 2 a to be measured) is cut out of the coated optical fiber 2 obtained after the start of drawing (step ST 24 ), and the measuring system 210 shown in FIG. 1B measures the mode field diameter of this optical fiber 2 a to be measured (step ST 25 ).
- the optical fiber 2 a to be measured has a length enough to measure the mode field diameter, which is specifically about 1 m to 10 m.
- the control unit 21 compares this measured mode field diameter with the target mode field diameter and corrects the glass diameter of the bared optical fiber for fabrication of the coated optical fiber 2 having the objective chromatic dispersion at the predetermined wavelength, based on the result of the comparison.
- This corrected glass diameter is used as a target glass diameter (step ST 26 ).
- the target glass diameter d 1 is given by Eq (4) below.
- the rest of the optical fiber preform 1 is drawn so that the glass diameter of the resultant bared optical fiber becomes the target glass diameter, thereby fabricating the coated optical fiber 2 with the desired optical characteristic (step ST 27 ).
- the initial glass diameter may also be employed as the target glass diameter as it is.
- the initial glass diameter d 0 is employed as the target glass diameter d 1 as it is.
- the target glass diameter d 1 is determined by foregoing Eq (4).
- the method may also be arranged in such a manner that steps ST 24 to ST 26 are repeatedly carried out while the glass diameter is renewed until the difference between the mode field diameter measured at step ST 25 and the target mode field diameter falls within the fixed range. This permits the target glass diameter to be set closer to the glass diameter of the fiber with the target mode field diameter more accurately.
- the set feed speed Vf 1 of the optical fiber preform 1 is determined based on above Eq (1), on-line measurement is carried out to measure the glass diameter d of the optical fiber 2 by the outside diameter gauge 13 , and the rotational speed of the capstan 16 is controlled based on this glass diameter d, which makes it feasible to maintain the glass diameter d of the bared optical fiber constant.
- These controls are carried out by the control unit 21 .
- the mode field diameter is measured in the optical fiber with the fixed length obtained after the drawing start (the optical fiber 2 a to be measured), the corrected target glass diameter is determined based on the measurement result, and the rest of the optical fiber preform 1 is drawn to fabricate the coated optical fiber 2 while the outside diameter is controlled so that the glass diameter becomes the target glass diameter.
- the optical fiber fabrication method is suitable for the fabrication of dispersion compensating optical fibers whose chromatic dispersion characteristic sensitively varies according to variation of glass diameter.
- the target glass diameter for yielding the objective chromatic dispersion characteristic is determined based on the cutoff wavelength or the mode field diameter measured, and the rest of the optical fiber preform is drawn while the outside diameter is controlled to the target glass diameter thus determined. Accordingly, the optical fiber having the objective chromatic dispersion characteristic is obtained readily even if the processing accuracy of the optical fiber preform is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor.
- the present invention is suitably applicable to the fabrication of dispersion compensating optical fibers which sensitively vary the chromatic dispersion characteristic according to variation of the glass diameter (outside diameter of optical fiber).
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Geochemistry & Mineralogy (AREA)
- Manufacturing & Machinery (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
- Glass Compositions (AREA)
Abstract
The present invention relates to an optical fiber fabrication method by which an optical fiber having an objective chromatic dispersion characteristic can be obtained readily. In an optical fiber fabrication method, a cutoff wavelength is measured in an optical fiber with a fixed length obtained by first drawing a part of an optical fiber preform. A target glass diameter for yielding an objective chromatic dispersion characteristic is then determined based on the cutoff wavelength thus measured. Then the rest of the optical fiber preform is drawn so that the glass diameter becomes the target glass diameter thus determined, thereby fabricating the optical fiber.
Description
- The present invention relates to an optical fiber fabrication method of fabricating an optical fiber with desired optical characteristics by drawing an optical fiber and, more particularly, to a method suitable for fabrication of a dispersion compensating optical fiber.
- In an optical transmission system for optical communication with signals of multiple wavelengths propagated in an optical fiber transmission line, in order to restrain waveform deterioration of the signals propagating in the optical fiber transmission line, the absolute value of accumulated chromatic dispersion of the optical fiber transmission line is desirably as small as possible at the signal wavelengths (e.g., at 1.55 μm). However, standard single-mode optical fibers used as optical fiber transmission lines have the zero dispersion wavelength near the wavelength of 1.3 μm and the chromatic dispersion of about 17 ps/nm/km at the wavelength of 1.55 μm. With the optical fiber transmission line constructed of only such a single-mode optical fiber, optical communication is thus infeasible at high bit rates because of the deterioration of signal waveform. Then a dispersion compensating optical fiber with negative chromatic dispersion at the wavelength of 1.55 μm is utilized to compensate for the chromatic dispersion of the single-mode optical fiber, thereby decreasing the absolute value of mean chromatic dispersion at the wavelength of 1.55 μm.
- The inventors investigated the conventional optical fiber transmission lines and discovered the following problem. Namely, in order to decrease the absolute value of mean chromatic dispersion of the entire transmission line composed of the single-mode optical fiber and the dispersion compensating optical fiber, it is necessary to properly design a ratio of lengths of the single-mode optical fiber and the dispersion compensating optical fiber, properly design the chromatic dispersion of the dispersion compensating optical fiber according to the chromatic dispersion characteristic of the single-mode optical fiber, and produce the optical fibers as designed.
- However, the chromatic dispersion characteristic of the dispersion compensating optical fiber sensitively varies according to variation in glass size (fiber diameter of the dispersion compensating optical fiber). Processing accuracy of the optical fiber preform was insufficient and measurement accuracy of refractive index profile of the optical fiber preform by a preform analyzer was also insufficient. Accordingly, it was difficult to fabricate the dispersion compensating optical fiber having an objective chromatic dispersion characteristic with high accuracy. The above-stated problem is conspicuous in fabrication of the dispersion compensating optical fiber, but also arises in fabrication of optical fibers of other kinds.
- The present invention has been accomplished in order to solve the problem as stated above, and an object of the invention is to provide an optical fiber fabrication method by which an optical fiber with an objective chromatic dispersion characteristic can be obtained readily.
- An optical fiber fabrication method according to the present invention is a method of fabricating an optical fiber with a desired optical characteristic by controlling an outside diameter of the resultant optical fiber. In this optical fiber fabrication method, a cutoff wavelength is measured in an optical fiber with a fixed length obtained by first drawing a part of an optical fiber preform, a target glass diameter for yielding an objective chromatic dispersion characteristic is determined based on the cutoff wavelength thus measured, and the rest of the optical fiber preform is drawn while an outside diameter is controlled to the target glass diameter thus determined.
- Since the optical fiber fabrication method according to the present invention is arranged to feed the measurement result of the cutoff wavelength in the optical fiber with the fixed length obtained immediately after the start of drawing of the optical fiber preform, back to the control of the outside diameter, the optical fiber with the objective chromatic dispersion characteristic can be obtained readily even if the processing accuracy of the optical fiber preform is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor.
- An optical fiber fabrication method according to the present invention may also be arranged to control the outside diameter by making use of the measurement result of a mode field diameter in the optical fiber with the fixed length obtained after the start of drawing of the optical fiber preform, instead of the cutoff wavelength. In this case, the optical fiber fabrication method is arranged to determine the target glass diameter for yielding the objective chromatic dispersion characteristic, based on the mode field diameter thus measured, and then to drawn the rest of the optical fiber preform while controlling the outside diameter to the target glass diameter thus determined.
- By this optical fiber fabrication method, the optical fiber with the objective chromatic dispersion characteristic can be obtained readily even if the processing accuracy of the optical fiber preform is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor.
- Each of embodiments of the invention will become fully understood from the detailed description and accompanying drawings which will follow. It is to be considered that these embodiments are presented simply for illustration but do not limit the present invention.
- The scope of further application of the present invention will become apparent from the detailed description which will follow. It is, however, noted that the detailed description and specific examples present only preferred embodiments of the invention and thus are provided only for illustration and that various modifications and improvements within the spirit and scope of the invention are obvious to those skilled in the art from the detailed description.
- FIG. 1A and FIG. 1B are views showing schematic structure of a drawing system and a measuring system for implementing the optical fiber fabrication method according to the present invention.
- FIG. 2A is a graph showing a relationship between chromatic dispersion and glass diameter (outside diameter of optical fiber), and FIG. 2B a graph showing a relation between cutoff wavelength and glass diameter (outside diameter of optical fiber).
- FIG. 3 is a flowchart for explaining the first embodiment of the optical fiber fabrication method according to the present invention.
- FIG. 4A is a graph showing a relationship between chromatic dispersion and glass diameter (outside diameter of optical fiber), and FIG. 4B a graph showing a relation between mode field diameter and glass diameter (outside diameter of optical fiber).
- FIG. 5 is a flowchart for explaining the second embodiment of the optical fiber fabrication method according to the present invention.
- Embodiments of the optical fiber fabrication method according to the present invention will be described below with reference to FIGS. 1A to2B, 3, 4A, 4B, and 5. Throughout the description of the drawings the same elements will be denoted by the same reference symbols and redundant description will be omitted.
- First described is a drawing step in the optical fiber fabrication method according to the present invention. FIG. 1A is a view showing the schematic structure of the drawing system for implementing the optical fiber fabrication method according to the present invention. In the drawing system of FIG. 1A, an
optical fiber preform 1 is fixed to apreform feeder 12 and is introduced into the interior ofheating furnace 11 by thepreform feeder 12. Then theheating furnace 11 heats and melts the lower part of the optical fiber preform 1. A bared optical fiber drawn from the lower part of theoptical fiber preform 1 thus melted is pulled out of the lower part of theheating furnace 11 to the outside. - The glass diameter d of this bared optical fiber is measured by an
outside diameter gauge 13 and the surface of the fiber is coated with a resin by aresin coating unit 14. Namely, theresin coating unit 14 coats the surface of the bared optical fiber with an ultraviolet-curing resin through a primary coating die, and this ultraviolet-curing resin is once cured by irradiation with ultraviolet light. Subsequent thereto, the resin surface of the coating on the bared optical fiber is further coated with the ultraviolet-curing resin through a secondary coating die, and this ultraviolet-curing resin coating is cured by irradiation with ultraviolet light, thereby obtaining a coatedoptical fiber 2. Then this coatedoptical fiber 2 is guided viacapstan 16 androllers 17 to 19 in order, to be wound up on abobbin 20. - The information about the glass diameter d of the bared optical fiber, measured by the
outside diameter gauge 13, is supplied to acontrol unit 21. Thiscontrol unit 21 controls each of the heating temperature (drawing temperature) of the optical fiber preform 1 by theheating furnace 11, the rotational speed of the capstan 16 (i.e., the drawing rate of the coated optical fiber 2), and the feed rate of the optical fiber preform 1 by thepreform feeder 12. At this time, where the outside diameter of theoptical fiber preform 1 is D and the set drawing speed of the coatedoptical fiber 2 v1, thecontrol unit 21 controls the set feed rate Vf1 of the optical fiber preform 1 so as to satisfy Eq (1) below. - Vf1=v1·d 2 /D 2 (1)
- (First Embodiment)
- The first embodiment of the optical fiber fabrication method according to the present invention will be described below with reference to FIGS. 2A, 2B, and3. FIG. 2A is a graph showing the relationship between chromatic dispersion and glass diameter (outside diameter of the bared optical fiber), and FIG. 2B a graph showing the relationship between cutoff wavelength and glass diameter (outside diameter of the bared optical fiber). As seen from these graphs, as the glass diameter varies, the cutoff wavelength also varies and the chromatic dispersion also varies. Namely, a difference between an actual cutoff wavelength measured and a target cutoff wavelength corresponds to a difference between actual chromatic dispersion and target chromatic dispersion. Therefore, the optical fiber fabrication method according to the first embodiment is arranged to adjust the glass diameter, based on the difference between the actual cutoff wavelength measured and the target cutoff wavelength, thereby correcting the actual chromatic dispersion to the target chromatic dispersion
- FIG. 3 is a flowchart for explaining the optical fiber fabrication method according to the first embodiment. The optical fiber fabrication method according to the first embodiment is carried out by the drawing system and measuring system as shown in FIG. 1A and FIG. 1B.
- In the first embodiment, the first step is to prepare the
optical fiber preform 1 whose refractive index profile is uniform in the longitudinal direction (step ST11), and the refractive index profile of thisoptical fiber preform 1 is measured by the preform analyzer (step ST12). Based on the result of this measurement and designed values of the preform structure, a glass diameter of the bared optical fiber is determined for fabrication of the coatedoptical fiber 2 having objective chromatic dispersion at a predetermined wavelength (e.g., 1.55 μm). This glass diameter determined is used as an initial glass diameter (step ST13). - After that, the
optical fiber preform 1 is fixed to thepreform feeder 12 and then theoptical fiber preform 1 is guided into theheating furnace 11 by thepreform feeder 12. This results in heating and melting the lower end of theoptical fiber preform 1. During drawing of theoptical fiber preform 1 melted at the lower end, thecontrol unit 21 controls the outside diameter so that the glass diameter of the resultant bared optical fiber becomes the initial glass diameter. - Here a portion (an
optical fiber 2 a of a fixed length to be measured) is cut out of the coatedoptical fiber 2 obtained after the start of drawing (step ST14), and themeasuring system 210 shown in FIG. 1B measures the cutoff wavelength of thisoptical fiber 2 a to be measured (step ST15). Theoptical fiber 2 a to be measured has a length enough to measure the cutoff wavelength, which is specifically about 1 m to 10 m. - The
control unit 21 compares this measured cutoff wavelength with the target cutoff wavelength and corrects the glass diameter of the bared optical fiber for production of the coatedoptical fiber 2 having the objective chromatic dispersion at the predetermined wavelength, based on the result of the comparison. This corrected glass diameter is used as a target glass diameter (step ST16). For example, where the initial glass diameter is d0, the target cutoff wavelength λc1, and the measured cutoff wavelength λc0, the target glass diameter d1 is given by Eq (2) below. - d 1 =d 0×λc1/λc0 (2)
- After that, the rest of the
optical fiber preform 1 is drawn so that the glass diameter of the resultant bared optical fiber becomes the target glass diameter, thereby fabricating the optical fiber with the desired optical characteristic (coated optical fiber 2) (step ST17) - If at step ST15 the difference between the measured cutoff wavelength and the target cutoff wavelength is within a fixed range, the difference between the actual chromatic dispersion and the target chromatic dispersion is also within tolerance, and thus the initial glass diameter may also be employed as the target glass diameter as it is. For example, when the measured cutoff wavelength λc0 satisfies the following condition (3) relative to the target cutoff wavelength λc1, the initial glass diameter d0 is employed as the target glass diameter d1 as it is.
- λc1−10 nm≦λc0≦λc1+10 nm (3)
- On the other hand, when the measured cutoff wavelength λc0 does not satisfy the above condition (3), the target glass diameter d1 is determined by foregoing Eq (2). The method may also be arranged in such a manner that steps ST14 to ST16 are repeatedly carried out while the glass diameter is renewed until the difference between the cutoff wavelength measured at step ST15 and the target cutoff wavelength falls within the fixed range. This permits the target glass diameter to be set closer to the glass diameter of the fiber with the target cutoff wavelength more accurately.
- For controlling the glass diameter to the target glass diameter (or the initial glass diameter) while maintaining the set drawing speed of the coated
optical fiber 2 at v1, the set feed speed Vf1 of theoptical fiber preform 1 is determined based on above Eq (1), on-line measurement is carried out to measure the glass diameter d of the coatedoptical fiber 2 by theoutside diameter gauge 13, and the rotational speed of thecapstan 16 is controlled based on this glass diameter d, which makes it feasible to maintain the glass diameter d of the bared optical fiber constant. These controls are carried out by thecontrol unit 21. - In the first embodiment, as described above, the cutoff wavelength is measured in the optical fiber with the fixed length obtained after the drawing start (the
optical fiber 2 a to be measured), the corrected target glass diameter is determined based on the measurement result, and the rest of theoptical fiber preform 1 is drawn to fabricate the coatedoptical fiber 2 while the outside diameter is controlled so that the glass diameter becomes the target glass diameter. This permits the optical fiber with the objective chromatic dispersion characteristic to be obtained readily even if the processing accuracy of the optical fiber preform prepared is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor. In particular, the optical fiber fabrication method is suitable for the fabrication of dispersion compensating optical fibers whose chromatic dispersion characteristic sensitively varies according to variation of glass diameter. - (Second Embodiment)
- The second embodiment of the optical fiber fabrication method according to the present invention will be described below with reference to FIGS. 4A, 4B, and5. FIG. 4A is a graph showing the relationship between chromatic dispersion and glass diameter (outside diameter of the bared optical fiber), and FIG. 4B a graph showing the relationship between mode field diameter and glass diameter (outside diameter of the bared optical fiber). As seen from these graphs, as the glass diameter varies, the mode field diameter also varies and the chromatic dispersion also varies. Namely, a difference between an actual mode field diameter measured and a target mode field diameter corresponds to a difference between actual chromatic dispersion and target chromatic dispersion. Therefore, the second embodiment is arranged to adjust the glass diameter, based on the difference between the actual mode field diameter measured and the target mode field diameter, thereby correcting the actual chromatic dispersion to the target chromatic dispersion.
- FIG. 5 is a flowchart for explaining the optical fiber fabrication method according to the second embodiment. The optical fiber fabrication method according to the second embodiment is also carried out by the drawing system and measuring system as shown in FIG. 1A and FIG. 1B, as in the first embodiment.
- In the second embodiment, the first step is to prepare the
optical fiber preform 1 whose refractive index profile is uniform in the longitudinal direction (step ST21), and the refractive index profile of thisoptical fiber preform 1 is measured by the preform analyzer (step ST22). Based on the result of this measurement and designed values of the preform structure, a glass diameter of the bared optical fiber is determined for fabrication of the coatedoptical fiber 2 having objective chromatic dispersion at a predetermined wavelength (e.g., 1.55 μm). This glass diameter determined is used as an initial glass diameter (step ST23) - After that, the
optical fiber preform 1 is fixed to thepreform feeder 12 and then theoptical fiber preform 1 is guided into theheating furnace 11 by thepreform feeder 12. This results in heating and melting the lower end of theoptical fiber preform 1. During drawing of theoptical fiber preform 1 melted at the lower end, thecontrol unit 21 controls the outside diameter so that the glass diameter of the resultant bared optical fiber becomes the initial glass diameter. - Here a portion (the
optical fiber 2 a to be measured) is cut out of the coatedoptical fiber 2 obtained after the start of drawing (step ST24), and themeasuring system 210 shown in FIG. 1B measures the mode field diameter of thisoptical fiber 2 a to be measured (step ST25). Theoptical fiber 2 a to be measured has a length enough to measure the mode field diameter, which is specifically about 1 m to 10 m. - The
control unit 21 compares this measured mode field diameter with the target mode field diameter and corrects the glass diameter of the bared optical fiber for fabrication of the coatedoptical fiber 2 having the objective chromatic dispersion at the predetermined wavelength, based on the result of the comparison. This corrected glass diameter is used as a target glass diameter (step ST26). For example, where the initial glass diameter is d0, the target mode field diameter M1, and the measured mode field diameter M0, the target glass diameter d1 is given by Eq (4) below. - d 1 =d 0 ×M 1 /M 0 (4)
- After that, the rest of the
optical fiber preform 1 is drawn so that the glass diameter of the resultant bared optical fiber becomes the target glass diameter, thereby fabricating the coatedoptical fiber 2 with the desired optical characteristic (step ST27). - If the difference between the mode field diameter measured at step ST25 and the target mode field diameter is within a fixed range, the difference between the actual chromatic dispersion and the target chromatic dispersion is also within tolerance, and thus the initial glass diameter may also be employed as the target glass diameter as it is. For example, when the measured mode field diameter M0 satisfies the following condition (5) relative to the target mode field diameter M1, the initial glass diameter d0 is employed as the target glass diameter d1 as it is.
- M 1−0.2 μm≦M 0 ≦M 1+0.2 μm (5)
- On the other hand, when the measured mode field diameter M0 does not satisfy the above condition (5), the target glass diameter d1 is determined by foregoing Eq (4). The method may also be arranged in such a manner that steps ST24 to ST26 are repeatedly carried out while the glass diameter is renewed until the difference between the mode field diameter measured at step ST25 and the target mode field diameter falls within the fixed range. This permits the target glass diameter to be set closer to the glass diameter of the fiber with the target mode field diameter more accurately.
- For controlling the glass diameter to the target glass diameter (or the initial glass diameter) while maintaining the set drawing speed of the coated
optical fiber 2 at v1, the set feed speed Vf1 of theoptical fiber preform 1 is determined based on above Eq (1), on-line measurement is carried out to measure the glass diameter d of theoptical fiber 2 by theoutside diameter gauge 13, and the rotational speed of thecapstan 16 is controlled based on this glass diameter d, which makes it feasible to maintain the glass diameter d of the bared optical fiber constant. These controls are carried out by thecontrol unit 21. - In the second embodiment, as described above, the mode field diameter is measured in the optical fiber with the fixed length obtained after the drawing start (the
optical fiber 2 a to be measured), the corrected target glass diameter is determined based on the measurement result, and the rest of theoptical fiber preform 1 is drawn to fabricate the coatedoptical fiber 2 while the outside diameter is controlled so that the glass diameter becomes the target glass diameter. This permits the optical fiber with the objective chromatic dispersion characteristic to be obtained readily even if the processing accuracy of the optical fiber preform prepared is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor. In particular, the optical fiber fabrication method is suitable for the fabrication of dispersion compensating optical fibers whose chromatic dispersion characteristic sensitively varies according to variation of glass diameter. - From the above description of the present invention, it is apparent that the present invention involves various modifications. Such modifications are considered to be realized without departing from the spirit and the scope of the present invention and all improvements obvious to those skilled in the art are intended to be included in the scope of the claims which will follow.
- Industrial Applicability
- In accordance with the present invention, as described above, either of the cutoff wavelength and the mode field diameter is measured in the optical fiber with the fixed length obtained after the start of drawing of the optical fiber preform, the target glass diameter for yielding the objective chromatic dispersion characteristic is determined based on the cutoff wavelength or the mode field diameter measured, and the rest of the optical fiber preform is drawn while the outside diameter is controlled to the target glass diameter thus determined. Accordingly, the optical fiber having the objective chromatic dispersion characteristic is obtained readily even if the processing accuracy of the optical fiber preform is poor or even if the measurement accuracy of refractive index profile of the optical fiber preform by the preform analyzer is poor. In particular, the present invention is suitably applicable to the fabrication of dispersion compensating optical fibers which sensitively vary the chromatic dispersion characteristic according to variation of the glass diameter (outside diameter of optical fiber).
Claims (2)
1. An optical fiber fabrication method of fabricating an optical fiber with a desired optical characteristic by drawing an optical fiber preform to produce an optical fiber, comprising the steps of:
measuring a cutoff wavelength in an optical fiber with a fixed length which is obtained by drawing a part of said optical fiber preform;
determining a target glass diameter for yielding an objective chromatic dispersion characteristic, based on said cutoff wavelength measured; and
drawing the rest of said optical fiber preform while controlling an outside diameter to said target glass diameter determined.
2. An optical fiber fabrication method of fabricating an optical fiber with a desired optical characteristic by drawing an optical fiber preform, comprising the steps of:
measuring a mode field diameter in an optical fiber with a fixed length which is obtained by drawing a portion of said optical fiber preform;
determining a target glass diameter for yielding an objective chromatic dispersion characteristic, based on said mode field diameter measured; and
drawing the rest of said optical fiber preform while controlling an outside diameter to said target glass diameter determined.
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2000024225A JP3438775B2 (en) | 2000-02-01 | 2000-02-01 | Optical fiber manufacturing method |
JP2000-24225 | 2000-02-01 | ||
JP2000-024225 | 2001-02-01 | ||
PCT/JP2001/000715 WO2001056940A1 (en) | 2000-02-01 | 2001-02-01 | Method of manufacturing optical fiber |
Publications (2)
Publication Number | Publication Date |
---|---|
US6502429B1 US6502429B1 (en) | 2003-01-07 |
US20030005727A1 true US20030005727A1 (en) | 2003-01-09 |
Family
ID=18550251
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/937,774 Expired - Lifetime US6502429B1 (en) | 2000-02-01 | 2001-02-01 | Optical fiber fabrication method |
Country Status (8)
Country | Link |
---|---|
US (1) | US6502429B1 (en) |
EP (1) | EP1184347A4 (en) |
JP (1) | JP3438775B2 (en) |
KR (1) | KR100750076B1 (en) |
CN (1) | CN1192000C (en) |
AU (2) | AU3056101A (en) |
TW (1) | TW464771B (en) |
WO (1) | WO2001056940A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040016264A1 (en) * | 2002-07-29 | 2004-01-29 | Myung-Sop Lee | Apparatus for drawing an optical fiber and method for controlling feed speed of an optical fiber preform |
US20110240499A1 (en) * | 2010-03-29 | 2011-10-06 | Katsuhiro Taniguchi | Glass roll and method for manufacturing the same |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2809386B1 (en) * | 2000-05-25 | 2003-01-17 | Cit Alcatel | METHOD FOR MANUFACTURING OPTICAL FIBER WITH CONTROL OF TRANSMISSION CHARACTERISTICS |
US6995900B2 (en) * | 2003-01-21 | 2006-02-07 | Jds Uniphase Corporation | Method of making a short-pass fiber with controlled cut-off wavelength |
CN1331654C (en) * | 2004-12-31 | 2007-08-15 | 中国科学院西安光学精密机械研究所 | Drawing equipment for polymer photonic crystal optical fiber preform |
KR100808354B1 (en) * | 2006-08-17 | 2008-02-27 | 엘에스전선 주식회사 | Single mode optical fiber with reduced polarization mode dispersion and manufacturing method thereof |
TWI461768B (en) | 2012-11-01 | 2014-11-21 | Univ Nat Sun Yat Sen | A method for manufacturing an optical fiber and the optical fiber thereof |
US9442007B2 (en) | 2013-05-06 | 2016-09-13 | Phoseon Technology, Inc. | Method and system for monitoring ultraviolet light for a fiber cure system |
CN104973774B (en) * | 2014-04-02 | 2019-08-30 | 住友电气工业株式会社 | Optical fiber manufacturing method and manufacturing device |
JP7012411B2 (en) * | 2018-03-30 | 2022-02-14 | 古河電気工業株式会社 | A method for stretching a core base material, a method for manufacturing an optical fiber base material, and a method for manufacturing an optical fiber. |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0627012B2 (en) * | 1986-06-03 | 1994-04-13 | 日立電線株式会社 | Low loss single mode optical fiber manufacturing method. |
JPH0688806B2 (en) * | 1986-06-03 | 1994-11-09 | 日立電線株式会社 | Low loss single mode optical fiber manufacturing method. |
US5175785A (en) * | 1991-05-02 | 1992-12-29 | Ensign-Bickford Optical Technologies, Inc. | Optical waveguides having reduced bending loss and method of making the same |
US5361319A (en) * | 1992-02-04 | 1994-11-01 | Corning Incorporated | Dispersion compensating devices and systems |
KR950000588A (en) * | 1993-06-18 | 1995-01-03 | 쿠라우찌 노리타카 | Manufacturing method of single mode optical fiber base material |
US5925163A (en) * | 1993-12-27 | 1999-07-20 | Corning, Inc. | Method of making an optical fiber with an axially decreasing group velocity dispersion |
JPH08217481A (en) * | 1995-02-17 | 1996-08-27 | Fujikura Ltd | Production of optical fiber and drawing apparatus |
US6250112B1 (en) * | 1999-06-03 | 2001-06-26 | Corning Incorporated | Method of controlling an extrusion of glass to make an optical fiber |
-
2000
- 2000-02-01 JP JP2000024225A patent/JP3438775B2/en not_active Expired - Fee Related
-
2001
- 2001-02-01 AU AU3056101A patent/AU3056101A/en not_active Withdrawn
- 2001-02-01 WO PCT/JP2001/000715 patent/WO2001056940A1/en active IP Right Grant
- 2001-02-01 US US09/937,774 patent/US6502429B1/en not_active Expired - Lifetime
- 2001-02-01 TW TW090102012A patent/TW464771B/en not_active IP Right Cessation
- 2001-02-01 EP EP01902725A patent/EP1184347A4/en not_active Withdrawn
- 2001-02-01 KR KR1020027009868A patent/KR100750076B1/en not_active Expired - Fee Related
- 2001-02-01 CN CNB018025765A patent/CN1192000C/en not_active Expired - Fee Related
- 2001-02-01 AU AU2001230561A patent/AU2001230561B2/en not_active Ceased
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040016264A1 (en) * | 2002-07-29 | 2004-01-29 | Myung-Sop Lee | Apparatus for drawing an optical fiber and method for controlling feed speed of an optical fiber preform |
US20110240499A1 (en) * | 2010-03-29 | 2011-10-06 | Katsuhiro Taniguchi | Glass roll and method for manufacturing the same |
Also Published As
Publication number | Publication date |
---|---|
JP3438775B2 (en) | 2003-08-18 |
EP1184347A4 (en) | 2006-07-19 |
WO2001056940A1 (en) | 2001-08-09 |
AU3056101A (en) | 2001-08-14 |
JP2001215344A (en) | 2001-08-10 |
KR100750076B1 (en) | 2007-08-21 |
TW464771B (en) | 2001-11-21 |
AU2001230561B2 (en) | 2005-02-17 |
CN1192000C (en) | 2005-03-09 |
US6502429B1 (en) | 2003-01-07 |
CN1388795A (en) | 2003-01-01 |
KR20020084108A (en) | 2002-11-04 |
EP1184347A1 (en) | 2002-03-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6502429B1 (en) | Optical fiber fabrication method | |
US8322166B2 (en) | Method of manufacturing optical fiber with selected draw tension | |
US6473548B2 (en) | Multiple fiber optical cable and method of manufacturing multiple fiber optical cable | |
US20020066292A1 (en) | Robust diameter-controlled optical fiber during optical fiber drawing process | |
US6371394B1 (en) | Method for winding a fibre element having different longitudinal portions | |
US4902327A (en) | Monitoring fiber bend loss characteristics during manufacture | |
US6502428B1 (en) | Manufacturing method of an optical fiber | |
JP4214647B2 (en) | Optical fiber manufacturing method | |
CN1931757B (en) | Optical fiber drawing process and control new method | |
JP5949117B2 (en) | Optical fiber manufacturing method | |
JP4398634B2 (en) | Optical fiber manufacturing method | |
EP2640672B1 (en) | Method of manufacturing optical fiber with selected draw tension | |
US7849713B2 (en) | Optical fibre having low splice loss and method for making it | |
US20010010162A1 (en) | Method of making optical fiber | |
JP2001163632A (en) | Optical fiber manufacturing method and optical fiber manufacturing apparatus | |
JP4477536B2 (en) | Optical fiber preform and optical fiber manufacturing method | |
JPH10182181A (en) | Production of optical fiber | |
JP2007063093A (en) | Method and apparatus for manufacturing optical fiber | |
JP2009126755A (en) | Optical fiber drawing method | |
KR100438348B1 (en) | Optical fiber having different refractive index directed to the length and to be fitted manufacturing method | |
US20060185398A1 (en) | Method for fabricating a multimode optical fiber preform having longitudinal uniformity | |
WO2023190831A1 (en) | Method for producing optical fiber | |
JPH02289441A (en) | Production of optical fiber | |
CN1325827A (en) | Method for drawing optical fibers | |
Hooper | Effects of draw conditions on toss in multimode optical fibers |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: SUMITOMO ELECTRIC INDUSTRIES, LTD., JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:ABE, YUJI;REEL/FRAME:012300/0305 Effective date: 20010919 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |