+

US20030003700A1 - Methods providing oxide layers having reduced thicknesses at central portions thereof and related devices - Google Patents

Methods providing oxide layers having reduced thicknesses at central portions thereof and related devices Download PDF

Info

Publication number
US20030003700A1
US20030003700A1 US10/173,373 US17337302A US2003003700A1 US 20030003700 A1 US20030003700 A1 US 20030003700A1 US 17337302 A US17337302 A US 17337302A US 2003003700 A1 US2003003700 A1 US 2003003700A1
Authority
US
United States
Prior art keywords
insulating layer
gate insulating
semiconductor substrate
gate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
US10/173,373
Other versions
US20030199155A9 (en
US6969658B2 (en
Inventor
Chang-hyun Cho
Min-hee Cho
Ki-nam Kim
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of US20030003700A1 publication Critical patent/US20030003700A1/en
Publication of US20030199155A9 publication Critical patent/US20030199155A9/en
Application granted granted Critical
Publication of US6969658B2 publication Critical patent/US6969658B2/en
Adjusted expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B99/00Subject matter not provided for in other groups of this subclass
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • H01L21/28176Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation with a treatment, e.g. annealing, after the formation of the definitive gate conductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28158Making the insulator
    • H01L21/28167Making the insulator on single crystalline silicon, e.g. using a liquid, i.e. chemical oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D64/00Electrodes of devices having potential barriers
    • H10D64/20Electrodes characterised by their shapes, relative sizes or dispositions 
    • H10D64/27Electrodes not carrying the current to be rectified, amplified, oscillated or switched, e.g. gates
    • H10D64/311Gate electrodes for field-effect devices
    • H10D64/411Gate electrodes for field-effect devices for FETs
    • H10D64/511Gate electrodes for field-effect devices for FETs for IGFETs
    • H10D64/514Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers
    • H10D64/516Gate electrodes for field-effect devices for FETs for IGFETs characterised by the insulating layers the thicknesses being non-uniform
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0144Manufacturing their gate insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/0123Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs
    • H10D84/0126Integrating together multiple components covered by H10D12/00 or H10D30/00, e.g. integrating multiple IGBTs the components including insulated gates, e.g. IGFETs
    • H10D84/0151Manufacturing their isolation regions
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10DINORGANIC ELECTRIC SEMICONDUCTOR DEVICES
    • H10D84/00Integrated devices formed in or on semiconductor substrates that comprise only semiconducting layers, e.g. on Si wafers or on GaAs-on-Si wafers
    • H10D84/01Manufacture or treatment
    • H10D84/02Manufacture or treatment characterised by using material-based technologies
    • H10D84/03Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology
    • H10D84/038Manufacture or treatment characterised by using material-based technologies using Group IV technology, e.g. silicon technology or silicon-carbide [SiC] technology using silicon technology, e.g. SiGe

Definitions

  • the present invention relates to semiconductor devices, and more particularly, to methods of fabricating a integrated circuit devices including gate insulating layers and related devices.
  • a gate insulating layer such as a gate oxide layer
  • the thickness of a gate insulating layer may be reduced to increase the operational speed of a semiconductor device.
  • a decrease in the thickness of the gate insulating layer may also increase a frequency of breakdowns because decreasing the thickness of the gate insulating layer generally results in a lower breakdown voltage.
  • different areas of a memory device may have varying performance requirements. Therefore, a desired thickness of a gate insulating layer may vary from point to point on a semiconductor device based on desired performance characteristics.
  • gate insulating layers in a cell array region and a peripheral circuit region have different thicknesses, it may be possible to improve operational features and reliability of the device.
  • performance and reliability can be improved if the cell array region has a gate insulating layer with a greater thickness than the peripheral circuit region.
  • the area of the cell array region of such devices has increased in size compared to the peripheral circuit region. If all of the gate insulating layers formed on a chip have the same thickness, a breakdown may occur first in a gate insulating layer positioned on the cell array region and the semiconductor device may lose reliability or fail to operate at all. This problem may be reduced by increasing thicknesses of the gate insulating layers formed on the cell array region in comparison to gate insulating layers formed on the peripheral circuit region.
  • FIGS. 1A through 1D are cross-sectional views illustrating a semiconductor device having gate oxide layers of different thicknesses fabricated according to a conventional method.
  • the gate oxide layer formed on a left region TK is thicker compared to the gate oxide layer formed on a right region TI.
  • a semiconductor substrate 10 e.g. a silicon substrate, having a trench 11 is first oxidized to obtain a first gate oxide layer 13 .
  • the first gate oxide layer 13 may be about 10 nm thick.
  • a photoresist pattern 15 is formed on a portion of the first gate oxide layer 13 in the TK region.
  • a portion of the first gate oxide layer 13 is then etched from the TI region.
  • the thickness of the first gate oxide layer 13 remaining on the TI region is thinner compared to that on the TK region.
  • the photoresist pattern 15 is removed from the TK region as shown in FIG. 1C.
  • the first gate oxide layer 13 is etched such that the first gate oxide layer 13 is removed from the TI region. Because the photoresist pattern has been removed, the portion of the first gate oxide layer 13 on the TK region is also etched and the thickness of the gate oxide layer 13 in the TK region is reduced.
  • the semiconductor substrate 10 is oxidized again to form a second gate oxide layer 17 on the TI. During this oxidation step, the thickness of the first gate oxide layer 13 on the TK region is increased.
  • the first gate oxide layer 13 on the TK region can have a thickness greater than that of the second gate oxide layer 17 on the TI region.
  • the resulting semiconductor device can thus have gate oxide layers with different thicknesses.
  • the first gate oxide layer 13 remaining on the TK region may, however, be contaminated when the first gate oxide layer 13 is selectively removed from the TI region (see FIGS. 1B and 1C). This contamination may degrade the operational characteristics of the semiconductor device.
  • Methods for forming an integrated circuit device can include forming a gate insulating layer on the semiconductor substrate extending between first and second spaced apart source/drain regions.
  • the gate insulating layer may have a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions.
  • Methods may also include forming a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode.
  • Methods according to additional embodiments may include forming a gate insulating layer having a relatively uniform thickness extending between the first and second spaced apart source/drain regions, and, after forming the gate electrode, increasing a thickness of portions of the gate insulating layer.
  • Methods according to embodiments of the invention can include forming third and fourth spaced apart source/drain regions on the surface of the semiconductor substrate.
  • a second gate insulating layer can be formed on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions.
  • a second gate electrode can be formed on the second gate insulating layer such that the second gate electrode is between the semiconductor substrate and the second gate electrode.
  • a thickness of portions of the gate insulating layer can then be increased while maintaining a uniform thickness for the second gate insulating layer.
  • Methods for forming an integrated circuit device can include forming first and second spaced apart source/drain region on a surface of a semiconductor substrate, forming a gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source drain regions, and forming a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode.
  • Methods according to additional embodiments can include increasing a thickness of portions of the gate insulating layer after forming the gate insulating layer and forming the gate electrode on the gate insulating layer.
  • Certain embodiments can include forming third and fourth spaced apart source/drain regions on the surface of the semiconductor substrate.
  • a second gate insulating layer may be formed on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions.
  • a second gate electrode can be formed on the second gate insulating layer such that the second gate insulating layer is between the semiconductor substrate and the second gate electrode. Methods may include increasing a thickness of portions of the gate insulating layer while maintaining a uniform thickness of the second gate insulating layer.
  • Integrated circuit devices may include a semiconductor substrate having first and second spaced apart source/drain regions at a surface thereof.
  • a gate insulating layer on the semiconductor substrate can extend between the first and second spaced apart source/drain regions.
  • the gate insulating layer can have a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions.
  • a thickness of the gate insulating layer can increase as it extends toward each of the source/drain regions.
  • a gate electrode can be on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode.
  • methods for forming an integrated circuit can include forming a gate oxide layer and a gate pattern on a semiconductor substrate having a cell array region and a peripheral circuit region.
  • a source/drain region between separated portions of the gate patterns can be formed near on the surface of the semiconductor substrate.
  • An interlayer insulating film pattern which fills a gap between separated portions of the gate pattern, can be formed.
  • the interlayer insulating film having a contact hole for exposing the semiconductor substrate may be formed in the cell array region.
  • a gate oxide layer in the exposed cell array region whose thickness is greater than that of the gate oxide layer formed in the peripheral circuit region may be formed through oxygen diffusion by oxidizing the semiconductor substrate on the exposed cell array region.
  • the thickness of the gate oxide layer in the cell array region changes depending on the extent of oxidation when the semiconductor substrate is oxidized.
  • the semiconductor substrate in the exposed cell array region may be oxidized through a wet oxidation or dry oxidation method.
  • a contact pad for filling the contact hole may be formed.
  • FIGS. 1A through 1D are cross-sectional views illustrating a conventional method of fabricating a semiconductor device having gate oxide layers with different thicknesses
  • FIGS. 2 through 12 are cross-sectional views illustrating methods of fabricating integrated circuit devices having according to embodiments of the present invention.
  • FIG. 13 is a plan view of a structure shown in FIG. 7;
  • FIGS. 14A and 14B are cross-sectional views illustrating changes in thickness of a gate oxide layer on a cell array region shown.
  • FIGS. 2 through 12 are cross-sectional views illustrating steps of fabricating integrated circuit devices according to embodiments of the present invention.
  • the gate insulating layer is described as a silicon oxide layer.
  • Other gate insulating materials known to those of ordinary skill in the art may be used.
  • a trench oxide layer 53 is formed in a semiconductor substrate 51 , e.g., p-type silicon substrate, to define two isolated regions.
  • the isolated regions defined by the trench oxide layer 53 shown in FIG. 2 are a cell array (CA) region and a peripheral circuit (PA) region.
  • a shallow trench isolation (STI) method may be used to form the isolated regions in the present embodiment.
  • Other methods known to those of ordinary skill in the art can be used to isolate the cell array region and the peripheral circuit region.
  • the portion of the semiconductor substrate 51 that includes the trench oxide layer 53 may be an inactive region while remaining portions of the semiconductor substrate 51 may be active regions.
  • a gate insulating layer such as a gate oxide layer is formed.
  • a first silicon oxide layer 55 for a gate oxide film can be formed on the entire semiconductor substrate 51 .
  • the first silicon oxide layer 55 may be formed after well-ion implantation for forming a well and field-ion implantation and channel-ion implantation for forming a channel.
  • the first silicon oxide layer 55 can be formed of a thermal oxide film.
  • the first silicon oxide layer 55 can be formed such that its thickness is a thickness desired for a gate oxide layer in the PA region.
  • the first silicon oxide layer 55 may have a thickness in a range of about 20 to about 60 ⁇ .
  • a first conductive layer 57 for a gate electrode is formed on the first silicon oxide layer 55 .
  • the first conductive layer 57 include an impurity-doped polysilicon film having a thickness of between about 500 and about 1000 ⁇ and a metal silicide film having a thickness of between about 500 and about 1000 ⁇ .
  • a first insulating film 59 can be formed on the first conductive layer 57 .
  • the first insulating film 59 may have a thickness of between about 1000 and about 2000 ⁇ .
  • the first insulating film 59 is preferably formed of a material with etching selectivity with respect to the first silicon oxide layer 55 , e.g., a silicon nitride film.
  • the first insulating layer 59 , the first conductive layer 57 and the first silicon oxide layer 55 are patterned, for example, through a photolithography process, to form a gate pattern 61 and a gate oxide layer 55 a .
  • Gate oxide layer 55 a has a substantially uniform thickness.
  • the gate pattern 61 can include a first insulating film pattern 59 a and a gate electrode 57 a . Thereafter, N-type impurities can be ion-implanted into the entire surface of the semiconductor substrate 51 to form a lightly doped drain (LDD).
  • LDD lightly doped drain
  • a first impurity region 63 can be formed on the surface of the semiconductor substrate 51 while being aligned with respect to the sidewalls of the gate pattern 61 .
  • the first impurity region 63 includes first and second spaced apart source/drain regions 62 on the CA region and third and fourth spaced apart source/drain regions 64 on the PA region.
  • a spacer 65 is formed along both sidewalls of the gate pattern 61 and the gate oxide layer 55 a .
  • the spacer 65 may be obtained by forming an insulating film of thickness of about 300 ⁇ to about 1000 ⁇ on the entire surface of the semiconductor substrate 51 having the gate pattern 61 and anisotropically etching the insulating film.
  • the insulating film for the spacer 65 may be formed of a material having high etching selectivity with respect to the silicon oxide layer 55 a , e.g., a silicon nitride film.
  • a thermal oxide layer (not shown) may be formed to a thickness of about 50 ⁇ to about 100 ⁇ by thermally oxidizing the semiconductor substrate 51 so that silicon damaged during the anisotropic etching of the insulating film is removed from the semiconductor substrate 51 .
  • N-type impurities can be implanted into the entire surface of the semiconductor substrate 51 on which the gate pattern 61 and the spacer 65 are formed.
  • a second impurity region 67 is formed on the surface of the semiconductor substrate 51 while being aligned with reference to the spacer 65 .
  • an LDD-type source/drain region 68 composed of the first and second impurity regions 63 and 67 can be obtained.
  • a masking film depicted as second insulating film 69
  • second insulating film 69 can be formed on the surface of the semiconductor substrate 51 .
  • Any masking material may be used for second insulating film 69 .
  • the second insulating film 69 may be formed to a thickness of about 100 ⁇ on the entire surface of the semiconductor substrate 51 having the gate pattern 61 and the gate spacer 65 .
  • the second insulating film 69 is preferably formed of a material having high etching selectivity with respect to the silicon oxide layer 55 a , e.g., a silicon nitride film.
  • another masking film such as third insulating layer 71
  • third insulating layer 71 can be formed on the entire surface of the semiconductor substrate 51 over the second insulating film 69 .
  • the third insulating layer 71 may be formed of a silicon oxide film, which preferably has excellent gap fill features for filling narrow and elongated gaps between gate patterns.
  • an interlayer insulating layer 71 a can be obtained by planarizing the third insulating film 71 , for example, through a chemical mechanical polishing (CMP) method. At this time, the thickness of the interlayer insulating layer 71 a may be adjusted within about 0 ⁇ to about 1000 ⁇ from the upper surface of the gate pattern 61 .
  • CMP chemical mechanical polishing
  • portions of the interlayer insulating layer 71 a and the second insulating layer 69 (shown in FIG. 7) formed on the CA region are removed, for example, by selective etching using a photolithography process.
  • the resulting interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a provide a masking film pattern to expose the CA region while the interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a are maintained on the PA region.
  • the area exposed by interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a in the CA region defines a contact hole 73 to expose the semiconductor substrate 51 .
  • a contact pad may be formed in contact hole 73 in order that a bit line (or storage node) can easily electrically contact the impurity region on the semiconductor substrate 51 (see FIG. 13).
  • the reference numerals 73 , 75 and 77 denote a contact hole, a gate line and an active region, respectively.
  • the contact hole 73 may preferably be formed to be larger than the active region 77 by between about 20 to about 40 nm.
  • a thickness of portions of the silicon oxide layer 55 a may be increased, as described in greater detail herein, to form gate oxide layer 55 b shown in FIG. 10 while a relatively uniform thickness of the gate oxide layer 55 a is maintained.
  • the semiconductor substrate 51 including the contact hole 73 , which exposes the CA region may be thermally oxidized, for example, through a wet-oxidation or dry-oxidation method as shown in FIG. 9.
  • the PA region is covered by a masking film, which is shown in FIGS. 8 and 9 as the interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a .
  • a second silicon oxide layer 79 can be formed having a thickness of between about 30 ⁇ and about 100 ⁇ on the CA region of the semiconductor substrate 51 .
  • the gate oxide layer 55 a shown in FIG. 14A is oxygen-diffused and changed into the second silicon oxide layer 79 .
  • the second silicon oxide layer 79 shown in FIG. 14B has a “bird's beak” shape. That is, the second silicon oxide layer 79 has a reduced thickness at a central portion thereof such that a thickness of the second silicon oxide layer 79 increases as it extends toward each of the first and second source drain regions 62 as shown in FIG. 9. Then, as shown in FIG. 10, the second silicon oxide layer 79 on the CA region is anisotropically etched to form a gate oxide layer 55 b of which thickness is different from that of the gate oxide layer 55 a formed on the PA region.
  • the thickness of the gate oxide layer 55 b on the CA region varies depending on the extent of oxidation of the exposed CA region. As shown in FIG. 10, the edges of the gate oxide layer 55 b are thicker than the central portion of the gate oxide layer 55 b.
  • impurities may be implanted into the impurity region of the CA region, i.e. the source/drain region 68 , so that contact resistance between the source/drain region 68 and a contact pad formed in contact hole 73 is lowered.
  • a second conductive layer 81 for a contact pad may be formed to a thickness of between about 3000 ⁇ and about 5000 ⁇ on the entire surface of the semiconductor substrate 51 such that the contact hole 73 (FIG. 8) on the CA region is completely filled.
  • the second conductive layer 81 may be formed using an impurity-doped polysilicon film.
  • the second conductive layer 81 for a contact pad is planarized, for example, through a CMP method thereby forming contact pads 81 a and 81 b .
  • the upper surface of the gate pattern 61 serves as an etching stopper.
  • Contact pad 81 a and contact pads 81 b are respectively connected with a bit line and storage nodes of a capacitor in a subsequent process.
  • the resulting integrated circuit device includes a semiconductor substrate 51 having first and second spaced apart source/drain regions 62 on the surface thereof.
  • a gate oxide layer 55 b extends between the first and second spaced apart source/drain regions 62 .
  • the gate oxide layer 55 b has a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions 62 and a thickness of the gate oxide layer 55 b increases as it extends toward each of the source/drain regions 62 .
  • the integrated circuit device also includes a gate electrode 57 on the gate oxide layer 55 b such that the gate oxide layer 55 b is between the semiconductor substrate 51 and the gate electrode.
  • the integrated circuit device may also include a second gate oxide layer 55 a on the semiconductor substrate 51 extending between third and fourth spaced apart source/drain regions 64 .
  • the second gate oxide layer 55 a may have a thickness that is relatively uniform across the second gate oxide layer 55 a between the third and fourth spaced apart source/drain regions.
  • a second gate electrode 57 a may be situated on the substrate 51 such that the second gate oxide layer 55 a is between the semiconductor substrate 51 and the second gate electrode 57 a.
  • Methods according to embodiments of the present invention can provide integrated circuit devices having gate insulting layers with a central portion having a reduced thickness.
  • Integrated circuit devices according to embodiments of the present invention may be obtained by oxidizing the exposed semiconductor substrate, for example, in the CA region so that the thickness of gate oxide layer on the CA region is increased relative to that of a gate oxide layer formed on the PA region through oxygen diffusion.
  • a gate oxide layer on the CA region may be formed with reduced contamination that may otherwise occur during etching processes, thus enhancing operational characteristics and reliability of the semiconductor device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Semiconductor Memories (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

Methods of forming an integrated circuit device may include forming first and second spaced apart source/drain regions on a surface of a semiconductor substrate. A gate insulating layer can be formed on the semiconductor substrate extending between the first and second spaced apart souce/drain regions. The gate insulating layer can have a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions. A thickness of the gate insulating layer can increase as it extends toward each of the source/drain regions. A gate electrode can be formed on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode. Related devices are also discussed.

Description

    RELATED APPLICATION
  • This application claims the benefit of Korean Patent Application No. 2001-0037634, filed Mar. 13, 2001, the disclosure of which is hereby incorporated herein by reference in its entirety as if set forth fully herein. [0001]
  • BACKGROUND OF THE INVENTION
  • 1. Field of the Invention [0002]
  • The present invention relates to semiconductor devices, and more particularly, to methods of fabricating a integrated circuit devices including gate insulating layers and related devices. [0003]
  • 2. Description of the Related Art [0004]
  • High integration of semiconductor memory devices such as DRAM devices has resulted in a reduction in the size of transistors. As the length of a gate decreases, the thickness of a gate insulating layer (such as a gate oxide layer) may be reduced to increase the operational speed of a semiconductor device. However, a decrease in the thickness of the gate insulating layer may also increase a frequency of breakdowns because decreasing the thickness of the gate insulating layer generally results in a lower breakdown voltage. In addition, different areas of a memory device may have varying performance requirements. Therefore, a desired thickness of a gate insulating layer may vary from point to point on a semiconductor device based on desired performance characteristics. [0005]
  • For example, if gate insulating layers in a cell array region and a peripheral circuit region have different thicknesses, it may be possible to improve operational features and reliability of the device. Typically, performance and reliability can be improved if the cell array region has a gate insulating layer with a greater thickness than the peripheral circuit region. More specifically, because of advances in highly integrated semiconductor devices such as DRAM devices, the area of the cell array region of such devices has increased in size compared to the peripheral circuit region. If all of the gate insulating layers formed on a chip have the same thickness, a breakdown may occur first in a gate insulating layer positioned on the cell array region and the semiconductor device may lose reliability or fail to operate at all. This problem may be reduced by increasing thicknesses of the gate insulating layers formed on the cell array region in comparison to gate insulating layers formed on the peripheral circuit region. [0006]
  • FIGS. 1A through 1D are cross-sectional views illustrating a semiconductor device having gate oxide layers of different thicknesses fabricated according to a conventional method. In the structure shown in FIGS. 1A through 1D, the gate oxide layer formed on a left region TK is thicker compared to the gate oxide layer formed on a right region TI. As shown in FIG. 1A, a [0007] semiconductor substrate 10, e.g. a silicon substrate, having a trench 11 is first oxidized to obtain a first gate oxide layer 13. The first gate oxide layer 13 may be about 10 nm thick. Next, as shown in FIG. 1B, a photoresist pattern 15 is formed on a portion of the first gate oxide layer 13 in the TK region. A portion of the first gate oxide layer 13 is then etched from the TI region. As a result, the thickness of the first gate oxide layer 13 remaining on the TI region is thinner compared to that on the TK region.
  • The [0008] photoresist pattern 15 is removed from the TK region as shown in FIG. 1C. The first gate oxide layer 13 is etched such that the first gate oxide layer 13 is removed from the TI region. Because the photoresist pattern has been removed, the portion of the first gate oxide layer 13 on the TK region is also etched and the thickness of the gate oxide layer 13 in the TK region is reduced. Next, referring to FIG. 1D, the semiconductor substrate 10 is oxidized again to form a second gate oxide layer 17 on the TI. During this oxidation step, the thickness of the first gate oxide layer 13 on the TK region is increased. Through the above method, the first gate oxide layer 13 on the TK region can have a thickness greater than that of the second gate oxide layer 17 on the TI region. The resulting semiconductor device can thus have gate oxide layers with different thicknesses.
  • The first [0009] gate oxide layer 13 remaining on the TK region may, however, be contaminated when the first gate oxide layer 13 is selectively removed from the TI region (see FIGS. 1B and 1C). This contamination may degrade the operational characteristics of the semiconductor device.
  • SUMMARY OF THE INVENTION
  • Methods for forming an integrated circuit device according to embodiments of the invention can include forming a gate insulating layer on the semiconductor substrate extending between first and second spaced apart source/drain regions. The gate insulating layer may have a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions. Methods may also include forming a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode. Methods according to additional embodiments may include forming a gate insulating layer having a relatively uniform thickness extending between the first and second spaced apart source/drain regions, and, after forming the gate electrode, increasing a thickness of portions of the gate insulating layer. [0010]
  • Methods according to embodiments of the invention can include forming third and fourth spaced apart source/drain regions on the surface of the semiconductor substrate. A second gate insulating layer can be formed on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions. A second gate electrode can be formed on the second gate insulating layer such that the second gate electrode is between the semiconductor substrate and the second gate electrode. A thickness of portions of the gate insulating layer can then be increased while maintaining a uniform thickness for the second gate insulating layer. [0011]
  • Methods for forming an integrated circuit device according to yet additional embodiments of the invention can include forming first and second spaced apart source/drain region on a surface of a semiconductor substrate, forming a gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source drain regions, and forming a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode. Methods according to additional embodiments can include increasing a thickness of portions of the gate insulating layer after forming the gate insulating layer and forming the gate electrode on the gate insulating layer. Certain embodiments can include forming third and fourth spaced apart source/drain regions on the surface of the semiconductor substrate. A second gate insulating layer may be formed on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions. A second gate electrode can be formed on the second gate insulating layer such that the second gate insulating layer is between the semiconductor substrate and the second gate electrode. Methods may include increasing a thickness of portions of the gate insulating layer while maintaining a uniform thickness of the second gate insulating layer. [0012]
  • Integrated circuit devices according to embodiments of the present invention may include a semiconductor substrate having first and second spaced apart source/drain regions at a surface thereof. A gate insulating layer on the semiconductor substrate can extend between the first and second spaced apart source/drain regions. The gate insulating layer can have a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions. A thickness of the gate insulating layer can increase as it extends toward each of the source/drain regions. A gate electrode can be on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode. [0013]
  • In certain embodiments of the invention, methods for forming an integrated circuit can include forming a gate oxide layer and a gate pattern on a semiconductor substrate having a cell array region and a peripheral circuit region. A source/drain region between separated portions of the gate patterns can be formed near on the surface of the semiconductor substrate. An interlayer insulating film pattern, which fills a gap between separated portions of the gate pattern, can be formed. The interlayer insulating film having a contact hole for exposing the semiconductor substrate may be formed in the cell array region. Finally, a gate oxide layer in the exposed cell array region whose thickness is greater than that of the gate oxide layer formed in the peripheral circuit region may be formed through oxygen diffusion by oxidizing the semiconductor substrate on the exposed cell array region. At this time, the thickness of the gate oxide layer in the cell array region changes depending on the extent of oxidation when the semiconductor substrate is oxidized. Also, the semiconductor substrate in the exposed cell array region may be oxidized through a wet oxidation or dry oxidation method. A contact pad for filling the contact hole may be formed.[0014]
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • FIGS. 1A through 1D are cross-sectional views illustrating a conventional method of fabricating a semiconductor device having gate oxide layers with different thicknesses; [0015]
  • FIGS. 2 through 12 are cross-sectional views illustrating methods of fabricating integrated circuit devices having according to embodiments of the present invention; [0016]
  • FIG. 13 is a plan view of a structure shown in FIG. 7; and [0017]
  • FIGS. 14A and 14B are cross-sectional views illustrating changes in thickness of a gate oxide layer on a cell array region shown.[0018]
  • DETAILED DESCRIPTION OF THE INVENTION
  • The present invention now will be described more fully hereinafter with reference to the accompanying drawings, in which various embodiments of the invention are shown. This invention may, however, be embodied in many different forms and should not be construed as limited to the embodiments set forth herein. Rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the invention to those skilled in the art. In the drawings, the relative sizes of elements may be exaggerated for clarity. When a layer is described as being formed on another layer or a semiconductor substrate, the layer may be formed directly on the other layer or semiconductor substrate, or other layers may be interposed therebetween. In contrast, when an element is referred to as being “directly on” another element, there are no intervening elements present. Like reference numerals in the drawings denote like members. [0019]
  • FIGS. 2 through 12 are cross-sectional views illustrating steps of fabricating integrated circuit devices according to embodiments of the present invention. For ease of discussion, the gate insulating layer is described as a silicon oxide layer. Other gate insulating materials known to those of ordinary skill in the art may be used. [0020]
  • Referring to FIG. 2, a [0021] trench oxide layer 53 is formed in a semiconductor substrate 51, e.g., p-type silicon substrate, to define two isolated regions. The isolated regions defined by the trench oxide layer 53 shown in FIG. 2 are a cell array (CA) region and a peripheral circuit (PA) region. A shallow trench isolation (STI) method may be used to form the isolated regions in the present embodiment. Other methods known to those of ordinary skill in the art can be used to isolate the cell array region and the peripheral circuit region. The portion of the semiconductor substrate 51 that includes the trench oxide layer 53 may be an inactive region while remaining portions of the semiconductor substrate 51 may be active regions.
  • Thereafter, a gate insulating layer such as a gate oxide layer is formed. As shown, a first [0022] silicon oxide layer 55 for a gate oxide film can be formed on the entire semiconductor substrate 51. The first silicon oxide layer 55 may be formed after well-ion implantation for forming a well and field-ion implantation and channel-ion implantation for forming a channel. The first silicon oxide layer 55 can be formed of a thermal oxide film. The first silicon oxide layer 55 can be formed such that its thickness is a thickness desired for a gate oxide layer in the PA region. For example, the first silicon oxide layer 55 may have a thickness in a range of about 20 to about 60 Å.
  • Next, a first [0023] conductive layer 57 for a gate electrode is formed on the first silicon oxide layer 55. For example, the first conductive layer 57 include an impurity-doped polysilicon film having a thickness of between about 500 and about 1000 Å and a metal silicide film having a thickness of between about 500 and about 1000 Å. Then, a first insulating film 59 can be formed on the first conductive layer 57. The first insulating film 59 may have a thickness of between about 1000 and about 2000 Å. The first insulating film 59 is preferably formed of a material with etching selectivity with respect to the first silicon oxide layer 55, e.g., a silicon nitride film.
  • Referring to FIG. 3, the first insulating [0024] layer 59, the first conductive layer 57 and the first silicon oxide layer 55 are patterned, for example, through a photolithography process, to form a gate pattern 61 and a gate oxide layer 55 a. Gate oxide layer 55 a has a substantially uniform thickness. The gate pattern 61 can include a first insulating film pattern 59 a and a gate electrode 57 a. Thereafter, N-type impurities can be ion-implanted into the entire surface of the semiconductor substrate 51 to form a lightly doped drain (LDD). As a result, a first impurity region 63 can be formed on the surface of the semiconductor substrate 51 while being aligned with respect to the sidewalls of the gate pattern 61. The first impurity region 63 includes first and second spaced apart source/drain regions 62 on the CA region and third and fourth spaced apart source/drain regions 64 on the PA region.
  • Referring to FIG. 4, a [0025] spacer 65 is formed along both sidewalls of the gate pattern 61 and the gate oxide layer 55 a. The spacer 65 may be obtained by forming an insulating film of thickness of about 300 Å to about 1000 Å on the entire surface of the semiconductor substrate 51 having the gate pattern 61 and anisotropically etching the insulating film. At this time, the insulating film for the spacer 65 may be formed of a material having high etching selectivity with respect to the silicon oxide layer 55 a, e.g., a silicon nitride film.
  • Next, if necessary, a thermal oxide layer (not shown) may be formed to a thickness of about 50 Å to about 100 Å by thermally oxidizing the [0026] semiconductor substrate 51 so that silicon damaged during the anisotropic etching of the insulating film is removed from the semiconductor substrate 51. Further, N-type impurities can be implanted into the entire surface of the semiconductor substrate 51 on which the gate pattern 61 and the spacer 65 are formed. As a result, a second impurity region 67 is formed on the surface of the semiconductor substrate 51 while being aligned with reference to the spacer 65. Finally, an LDD-type source/drain region 68 composed of the first and second impurity regions 63 and 67 can be obtained.
  • Referring to FIG. 5, a masking film, depicted as second insulating [0027] film 69, can be formed on the surface of the semiconductor substrate 51. Any masking material may be used for second insulating film 69. The second insulating film 69 may be formed to a thickness of about 100 Å on the entire surface of the semiconductor substrate 51 having the gate pattern 61 and the gate spacer 65. The second insulating film 69 is preferably formed of a material having high etching selectivity with respect to the silicon oxide layer 55 a, e.g., a silicon nitride film.
  • Referring to FIG. 6, another masking film, such as third insulating [0028] layer 71, can be formed on the entire surface of the semiconductor substrate 51 over the second insulating film 69. The third insulating layer 71 may be formed of a silicon oxide film, which preferably has excellent gap fill features for filling narrow and elongated gaps between gate patterns.
  • Referring to FIG. 7, an [0029] interlayer insulating layer 71 a can be obtained by planarizing the third insulating film 71, for example, through a chemical mechanical polishing (CMP) method. At this time, the thickness of the interlayer insulating layer 71 a may be adjusted within about 0 Å to about 1000 Å from the upper surface of the gate pattern 61.
  • Referring to FIGS. 8 and 13, portions of the interlayer insulating [0030] layer 71 a and the second insulating layer 69 (shown in FIG. 7) formed on the CA region are removed, for example, by selective etching using a photolithography process. The resulting interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a provide a masking film pattern to expose the CA region while the interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a are maintained on the PA region. The area exposed by interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a in the CA region defines a contact hole 73 to expose the semiconductor substrate 51.
  • The CA region of the [0031] semiconductor substrate 51 is exposed and the PA region is covered by the interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a for two reasons. First, a contact pad may be formed in contact hole 73 in order that a bit line (or storage node) can easily electrically contact the impurity region on the semiconductor substrate 51 (see FIG. 13). In FIG. 13, the reference numerals 73, 75 and 77 denote a contact hole, a gate line and an active region, respectively. The contact hole 73 may preferably be formed to be larger than the active region 77 by between about 20 to about 40 nm. Second, a thickness of portions of the silicon oxide layer 55 a may be increased, as described in greater detail herein, to form gate oxide layer 55 b shown in FIG. 10 while a relatively uniform thickness of the gate oxide layer 55 a is maintained.
  • Referring to FIGS. 9, 10, [0032] 14A and 14B, the semiconductor substrate 51 including the contact hole 73, which exposes the CA region may be thermally oxidized, for example, through a wet-oxidation or dry-oxidation method as shown in FIG. 9. The PA region is covered by a masking film, which is shown in FIGS. 8 and 9 as the interlayer insulating layer pattern 71 b and second insulating layer pattern 69 a. A second silicon oxide layer 79 can be formed having a thickness of between about 30 Å and about 100 Å on the CA region of the semiconductor substrate 51. Thus, the gate oxide layer 55 a shown in FIG. 14A is oxygen-diffused and changed into the second silicon oxide layer 79. The second silicon oxide layer 79 shown in FIG. 14B has a “bird's beak” shape. That is, the second silicon oxide layer 79 has a reduced thickness at a central portion thereof such that a thickness of the second silicon oxide layer 79 increases as it extends toward each of the first and second source drain regions 62 as shown in FIG. 9. Then, as shown in FIG. 10, the second silicon oxide layer 79 on the CA region is anisotropically etched to form a gate oxide layer 55 b of which thickness is different from that of the gate oxide layer 55 a formed on the PA region. The thickness of the gate oxide layer 55 b on the CA region varies depending on the extent of oxidation of the exposed CA region. As shown in FIG. 10, the edges of the gate oxide layer 55 b are thicker than the central portion of the gate oxide layer 55 b.
  • If desired, prior to the anisotropical etching of the second [0033] silicon oxide layer 79, impurities may be implanted into the impurity region of the CA region, i.e. the source/drain region 68, so that contact resistance between the source/drain region 68 and a contact pad formed in contact hole 73 is lowered.
  • Referring now to FIG. 11, a second [0034] conductive layer 81 for a contact pad may be formed to a thickness of between about 3000 Å and about 5000 Å on the entire surface of the semiconductor substrate 51 such that the contact hole 73 (FIG. 8) on the CA region is completely filled. The second conductive layer 81 may be formed using an impurity-doped polysilicon film.
  • Referring to FIG. 12, the second [0035] conductive layer 81 for a contact pad is planarized, for example, through a CMP method thereby forming contact pads 81 a and 81 b. When the second conductive layer 81 is polished, the upper surface of the gate pattern 61 serves as an etching stopper. Contact pad 81 a and contact pads 81 b are respectively connected with a bit line and storage nodes of a capacitor in a subsequent process.
  • The resulting integrated circuit device (FIG. 12) includes a [0036] semiconductor substrate 51 having first and second spaced apart source/drain regions 62 on the surface thereof. A gate oxide layer 55 b extends between the first and second spaced apart source/drain regions 62. The gate oxide layer 55 b has a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions 62 and a thickness of the gate oxide layer 55 b increases as it extends toward each of the source/drain regions 62. The integrated circuit device also includes a gate electrode 57 on the gate oxide layer 55 b such that the gate oxide layer 55 b is between the semiconductor substrate 51 and the gate electrode. The integrated circuit device may also include a second gate oxide layer 55 a on the semiconductor substrate 51 extending between third and fourth spaced apart source/drain regions 64. The second gate oxide layer 55 a may have a thickness that is relatively uniform across the second gate oxide layer 55 a between the third and fourth spaced apart source/drain regions. A second gate electrode 57 a may be situated on the substrate 51 such that the second gate oxide layer 55 a is between the semiconductor substrate 51 and the second gate electrode 57 a.
  • Methods according to embodiments of the present invention can provide integrated circuit devices having gate insulting layers with a central portion having a reduced thickness. Integrated circuit devices according to embodiments of the present invention may be obtained by oxidizing the exposed semiconductor substrate, for example, in the CA region so that the thickness of gate oxide layer on the CA region is increased relative to that of a gate oxide layer formed on the PA region through oxygen diffusion. A gate oxide layer on the CA region may be formed with reduced contamination that may otherwise occur during etching processes, thus enhancing operational characteristics and reliability of the semiconductor device. [0037]
  • In the drawings and specification, there have been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims. [0038]

Claims (38)

What is claimed is:
1. A method of forming an integrated circuit device, the method comprising:
forming first and second spaced apart source/drain regions on a surface of a semiconductor substrate;
forming a gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions wherein the gate insulating layer has a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions and wherein a thickness of the gate insulating layer increases as it extends toward each of the source/drain regions; and
forming a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode.
2. A method according to claim 1, wherein forming a gate insulating layer comprises:
forming a gate insulating layer having a relatively uniform thickness extending between the first and second spaced apart source/drain regions; and
after forming the gate electrode, increasing a thickness of portions of the gate insulating layer.
3. A method according to claim 2 further comprising:
forming third and fourth spaced apart source/drain regions on the surface of the semiconductor substrate;
forming a second gate insulating layer on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions; and
forming a second gate electrode on the second gate insulating layer such that the second gate insulating layer is between the semiconductor substrate and the second gate electrode;
wherein increasing a thickness of portions of the gate insulating layer is performed while maintaining a uniform thickness of the second gate insulating layer.
4. A method according to claim 3 wherein increasing the thickness of portions of the gate insulating layer while maintaining the uniform thickness of the second gate insulating layer further comprises providing a masking film on the third and fourth spaced apart source/drain region while exposing the first and second source/drain regions.
5. A method according to claim 4 wherein increasing the thickness of portions of the gate insulating layer while maintaining the uniform thickness of the second gate insulating layer further comprises oxidizing the gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions.
6. A method according to claim 1 wherein the source/drain region is an LDD type.
7. A method according to claim 1 further comprising:
forming a spacer along a side wall of the gate insulating layer and the gate electrode.
8. A method according to claim 1 further comprising:
after the step of forming first and second spaced apart source/drain regions, forming an insulting film with etching selectivity with respect to the gate insulating layer on the surface of the semiconductor substrate.
9. A method according to claim 8 wherein the insulating film is a silicon nitride film.
10. A method according to claim 8 further comprising selectively removing portions of the insulating film to expose the gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions while maintaining the insulating layer on the second gate insulating layer and on the third and fourth source/drain regions.
11. A method according to claim 10 further comprising increasing a thickness of the gate insulting layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions through oxygen diffusion by oxidizing the semiconductor substrate.
12. A method according to claim 11 further comprising:
forming a contact pad electrically connected to the first and second source/drain regions.
13. A method of forming an integrated circuit device, the method comprising:
forming first and second spaced apart source/drain regions on a surface of a semiconductor substrate;
forming a gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source drain regions;
forming a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode; and
after forming the gate insulating layer and forming the gate electrode on the gate insulating layer, increasing a thickness of portions of the gate insulating layer.
14. A method according to claim 13 further comprising:
forming third and fourth spaced apart source/drain regions on the surface of the semiconductor substrate;
forming a second gate insulating layer on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions; and
forming a second gate electrode on the second gate insulating layer such that the second gate insulating layer is between the semiconductor substrate and the second gate electrode;
wherein increasing a thickness of portions of the gate insulating layer is performed while maintaining a uniform thickness of the second gate insulating layer.
15. A method according to claim 14 wherein increasing the thickness of portions of the gate insulating layer while maintaining the uniform thickness of the second gate insulating layer further comprises:
forming a masking film on the third and fourth spaced apart source/drain region wherein the masking film exposes the first and second spaced apart source/drain regions.
16. A method according to claim 13 wherein increasing the thickness of portions of the gate insulating layer further comprises:
oxidizing the gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions after forming the gate electrode.
17. A method according to claim 13 wherein the source/drain region is an LDD type.
18. A method according to claim 13 further comprising:
forming a spacer along a side wall of the gate insulating layer and the gate oxide layer.
19. A method according to claim 13 further comprising:
after the step of forming first and second spaced apart source/drain regions, forming an insulting film with etching selectivity with respect to the gate insulating layer on the surface of the semiconductor substrate.
20. A method according to claim 19 wherein the insulating film is a silicon nitride film.
21. A method according to claim 19 further comprising selectively removing portions of the insulating film expose the gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions while maintaining the insulating layer on the second gate insulating layer and on the third and fourth source/drain regions.
22. A method according to claim 13 wherein increasing a thickness of portions of the gate insulting layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions comprises oxidizing portions of the semiconductor substrate adjacent the gate insulating layer through oxygen diffusion.
23. A method according to claim 13 further comprising forming a contact pad electrically connected to the first and second source/drain regions.
24. An integrated circuit device comprising:
a semiconductor substrate having first and second spaced apart source/drain regions at a surface thereof;
a gate insulating layer on the semiconductor substrate extending between the first and second spaced apart source/drain regions wherein the gate insulating layer has a reduced thickness at a central portion thereof between the first and second spaced apart source/drain regions and wherein a thickness of the gate insulating layer increases as it extends toward each of the source/drain regions; and
a gate electrode on the gate insulating layer such that the gate insulating layer is between the semiconductor substrate and the gate electrode.
25. An integrated circuit device according to claim 24 wherein the semiconductor substrate has third and fourth spaced apart source/drain regions at the surface thereof, the integrated circuit device further comprising:
a second gate insulating layer on the semiconductor substrate extending between the third and fourth spaced apart source/drain regions wherein the second gate insulating layer has a thickness that is relatively uniform across the second gate insulating layer between the third and fourth spaced apart source/drain regions; and
a second gate electrode on the second gate insulating layer such that the second gate insulating layer is between the semiconductor substrate and the second gate electrode.
26. An integrated circuit device according to claim 25 further comprising:
an insulating film pattern covering the second gate insulating layer and exposing the gate insulating layer; and
a contact pad electrically connected to the first and second source drain regions.
27. An integrated circuit device according to claim 25 further comprising a spacer along a side wall of the gate insulating layer and the gate oxide layer.
28. An integrated circuit device according to claim 25 wherein the first and second source drain regions have an increased thickness at a central portion thereof.
29. A method of fabricating a semiconductor device comprising:
forming a gate oxide layer and a gate pattern on a semiconductor substrate having a cell array region and a peripheral circuit region;
forming a source/drain region between separated portions of the gate pattern on the surface of the semiconductor substrate;
forming an interlayer insulating film pattern for filling a gap between separated portions of the gate pattern, the interlayer insulating film having a contact hole for exposing the semiconductor substrate in the cell array region;
increasing the thickness of the portion of the gate oxide layer in the exposed cell array region in comparison with the thickness of the gate oxide layer formed in the peripheral circuit region through oxygen diffusion by oxidizing the semiconductor substrate on the exposed cell array region; and
forming a contact pad for filling the contact hole.
30. The method of claim 29, wherein the source/drain region is an LDD type.
31. The method of claim 29, further comprising:
forming a spacer along sidewalls of the gate pattern and the gate oxide layer.
32. The method of claim 29, further comprising:
forming an insulating film having etching selectivity with regard to a silicon oxide layer on the entire surface of the semiconductor substrate having the gate pattern, after the step of forming the source/drain region.
33. The method of claim 32, wherein the insulating film is a silicon nitride film.
34. The method of claim 29, wherein the step of forming the interlayer insulating film for exposing the semiconductor substrate in the cell array region comprises:
forming an insulating film for filling a gap between separated portions of the gate pattern on the entire surface of the semiconductor substrate;
forming an interlayer insulating film by planarizing the insulating film; and
selectively etching the interlayer insulating film on the cell array region through a photolithography process.
35. The method of claim 34, wherein the thickness of the interlayer insulating film is adjusted within about 0 to about 1000 Å from the upper surface of the gate pattern when the interlayer insulating film is formed by planarizing the insulating film.
36. The method of claim 29, further comprising oxidizing the semiconductor substrate in the exposed cell array region through a wet oxidation or dry oxidation method.
37. The method of claim 29, wherein the step of forming the contact pad comprises:
forming a conductive layer for filling the contact hole on the entire surface of the semiconductor substrate; and
planarizing the conductive layer while making the upper surface of the gate pattern to be an etching stopper.
38. The method of claim 29, wherein the thickness of the gate oxide layer in the cell array region changes depending on the extent of oxidation when the semiconductor substrate is oxidized.
US10/173,373 2001-06-28 2002-06-17 Methods providing oxide layers having reduced thicknesses at central portions thereof Expired - Fee Related US6969658B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020010037634A KR20030001827A (en) 2001-06-28 2001-06-28 Fabrication method of semiconductor device having dual gate oxide layer
KR2001-0037634 2001-06-28

Publications (3)

Publication Number Publication Date
US20030003700A1 true US20030003700A1 (en) 2003-01-02
US20030199155A9 US20030199155A9 (en) 2003-10-23
US6969658B2 US6969658B2 (en) 2005-11-29

Family

ID=19711462

Family Applications (1)

Application Number Title Priority Date Filing Date
US10/173,373 Expired - Fee Related US6969658B2 (en) 2001-06-28 2002-06-17 Methods providing oxide layers having reduced thicknesses at central portions thereof

Country Status (3)

Country Link
US (1) US6969658B2 (en)
JP (1) JP4122181B2 (en)
KR (1) KR20030001827A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067610A1 (en) * 2002-07-26 2004-04-08 Lee Yong Guen RF semiconductor devices and methods for fabricating the same
US20070077717A1 (en) * 2005-09-30 2007-04-05 Hynix Semiconductor Inc. Method for forming transistor of semiconductor device

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100906641B1 (en) * 2002-12-27 2009-07-07 주식회사 하이닉스반도체 Method for manufacturing a semiconductor device having a landing plug
JP4529024B2 (en) * 2003-04-22 2010-08-25 ルネサスエレクトロニクス株式会社 Semiconductor device and manufacturing method thereof
KR100955929B1 (en) 2003-07-25 2010-05-03 주식회사 하이닉스반도체 Method for forming gate buffer spacer of semiconductor device
KR100618908B1 (en) * 2005-08-12 2006-09-05 삼성전자주식회사 Semiconductor device and manufacturing method with improved gate resistance
US7763517B2 (en) * 2007-02-12 2010-07-27 Macronix International Co., Ltd. Method of forming non-volatile memory cell
CN102122637B (en) * 2010-01-08 2013-09-11 中芯国际集成电路制造(上海)有限公司 Detection structure, detection method and method for forming detection structure
KR101865566B1 (en) 2011-09-08 2018-06-11 삼성전자주식회사 Methods of manufacturing a vertical memory device

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5371026A (en) * 1992-11-30 1994-12-06 Motorola Inc. Method for fabricating paired MOS transistors having a current-gain differential
US5512771A (en) * 1992-11-04 1996-04-30 Matsushita Electric Industrial Co., Ltd. MOS type semiconductor device having a low concentration impurity diffusion region
US5858865A (en) * 1995-12-07 1999-01-12 Micron Technology, Inc. Method of forming contact plugs
US6025253A (en) * 1996-06-20 2000-02-15 United Microelectronics Corp. Differential poly-edge oxidation for stable SRAM cells
US6127248A (en) * 1998-02-27 2000-10-03 Hyundai Electronics Industries Co., Ltd. Fabrication method for semiconductor device
US6277720B1 (en) * 1997-06-30 2001-08-21 Texas Instruments Incorporated Silicon nitride dopant diffusion barrier in integrated circuits
US20020048920A1 (en) * 1996-09-17 2002-04-25 Pai-Hung Pan Semiconductor processing methods of forming a conductive gate and line

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0226945A (en) 1988-07-13 1990-01-29 Toray Ind Inc Machine sewing yarn having high elasticity and sewn product using the same
KR920007196A (en) * 1990-09-20 1992-04-28 김광호 Semiconductor memory device and manufacturing method thereof
JPH04165670A (en) * 1990-10-30 1992-06-11 Toshiba Corp Semiconductor memory and manufacture thereof
JP2000269458A (en) * 1999-03-17 2000-09-29 Mitsubishi Electric Corp Semiconductor device and its manufacture
KR20010037866A (en) * 1999-10-20 2001-05-15 박종섭 Method for forming dual gate insulator in semiconductor device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5512771A (en) * 1992-11-04 1996-04-30 Matsushita Electric Industrial Co., Ltd. MOS type semiconductor device having a low concentration impurity diffusion region
US5371026A (en) * 1992-11-30 1994-12-06 Motorola Inc. Method for fabricating paired MOS transistors having a current-gain differential
US5858865A (en) * 1995-12-07 1999-01-12 Micron Technology, Inc. Method of forming contact plugs
US6025253A (en) * 1996-06-20 2000-02-15 United Microelectronics Corp. Differential poly-edge oxidation for stable SRAM cells
US20020048920A1 (en) * 1996-09-17 2002-04-25 Pai-Hung Pan Semiconductor processing methods of forming a conductive gate and line
US6277720B1 (en) * 1997-06-30 2001-08-21 Texas Instruments Incorporated Silicon nitride dopant diffusion barrier in integrated circuits
US6127248A (en) * 1998-02-27 2000-10-03 Hyundai Electronics Industries Co., Ltd. Fabrication method for semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040067610A1 (en) * 2002-07-26 2004-04-08 Lee Yong Guen RF semiconductor devices and methods for fabricating the same
US7361583B2 (en) * 2002-07-26 2008-04-22 Dongbu Electronics Co., Ltd. RF semiconductor devices and methods for fabricating the same
US20080157391A1 (en) * 2002-07-26 2008-07-03 Yong Guen Lee RF semiconductor devices and methods for fabricating the same
US20070077717A1 (en) * 2005-09-30 2007-04-05 Hynix Semiconductor Inc. Method for forming transistor of semiconductor device

Also Published As

Publication number Publication date
JP4122181B2 (en) 2008-07-23
US20030199155A9 (en) 2003-10-23
KR20030001827A (en) 2003-01-08
US6969658B2 (en) 2005-11-29
JP2003060069A (en) 2003-02-28

Similar Documents

Publication Publication Date Title
KR100189966B1 (en) Soy-structured MOS transistor and manufacturing method thereof
US7541656B2 (en) Semiconductor devices with enlarged recessed gate electrodes
JP4422373B2 (en) Manufacturing method of semiconductor device having extended active region effective width
US7422946B2 (en) Independently accessed double-gate and tri-gate transistors in same process flow
JP3998893B2 (en) Method for forming T-type element isolation film
US20070077693A1 (en) Method of fabricating fin field effect transistor using isotropic etching technique
US20040198009A1 (en) Selective formation of metal gate for dual gate oxide application
JPH10214894A (en) Semiconductor device and manufacturing method thereof
JPH0878533A (en) Semiconductor device and manufacturing method thereof
JP2002110930A (en) Semiconductor memory device and method of manufacturing the same
US20040115890A1 (en) Semiconductor device having low resistivity source and drain electrodes
US6642130B2 (en) Method for fabricating highly integrated transistor
KR20000029167A (en) Method for fabricating transistors
US6969658B2 (en) Methods providing oxide layers having reduced thicknesses at central portions thereof
KR100424241B1 (en) Method of manufacturing nonvolatile semiconductor memory device
JPH09260655A (en) Method for manufacturing semiconductor device
JPH11177089A (en) Method for manufacturing semiconductor device
US6146952A (en) Semiconductor device having self-aligned asymmetric source/drain regions and method of fabrication thereof
US6621118B2 (en) MOSFET, semiconductor device using the same and production process therefor
US5872038A (en) Semiconductor device having an elevated active region formed in an oxide trench and method of manufacture thereof
JPH09181197A (en) CMOS analog semiconductor device and manufacturing method thereof
US7645653B2 (en) Method for manufacturing a semiconductor device having a polymetal gate electrode structure
US20020047141A1 (en) Semiconductor device, and manufacture thereof
JPH02281656A (en) Semiconductor memory device
JP2001093860A (en) Semiconductor device and manufacturing method thereof

Legal Events

Date Code Title Description
AS Assignment

Owner name: SAMSUMG ELECTRONICS CO., LTD., KOREA, REPUBLIC OF

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:CHO, CHANG-HYUN;CHO, MIN-HOE;KIM, KI-NAM;REEL/FRAME:013022/0838

Effective date: 20020529

FEPP Fee payment procedure

Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY

FPAY Fee payment

Year of fee payment: 4

REMI Maintenance fee reminder mailed
LAPS Lapse for failure to pay maintenance fees
STCH Information on status: patent discontinuation

Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362

FP Lapsed due to failure to pay maintenance fee

Effective date: 20131129

点击 这是indexloc提供的php浏览器服务,不要输入任何密码和下载