US20020193030A1 - Functional fibers and fibrous materials - Google Patents
Functional fibers and fibrous materials Download PDFInfo
- Publication number
- US20020193030A1 US20020193030A1 US09/838,200 US83820001A US2002193030A1 US 20020193030 A1 US20020193030 A1 US 20020193030A1 US 83820001 A US83820001 A US 83820001A US 2002193030 A1 US2002193030 A1 US 2002193030A1
- Authority
- US
- United States
- Prior art keywords
- fiber
- material according
- fibers
- nylon
- weight percent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000835 fiber Substances 0.000 title claims abstract description 358
- 239000002657 fibrous material Substances 0.000 title claims abstract description 36
- 239000011230 binding agent Substances 0.000 claims abstract description 98
- 239000000463 material Substances 0.000 claims description 125
- -1 polypropylene Polymers 0.000 claims description 53
- 229920001778 nylon Polymers 0.000 claims description 50
- 239000004743 Polypropylene Substances 0.000 claims description 45
- 229920001155 polypropylene Polymers 0.000 claims description 44
- 239000004698 Polyethylene Substances 0.000 claims description 39
- 229920000573 polyethylene Polymers 0.000 claims description 38
- 229920001634 Copolyester Polymers 0.000 claims description 33
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 33
- 239000004677 Nylon Substances 0.000 claims description 31
- 229920002292 Nylon 6 Polymers 0.000 claims description 27
- 239000005020 polyethylene terephthalate Substances 0.000 claims description 25
- 229920000139 polyethylene terephthalate Polymers 0.000 claims description 25
- 229920002302 Nylon 6,6 Polymers 0.000 claims description 20
- 229920001707 polybutylene terephthalate Polymers 0.000 claims description 15
- 229920000049 Carbon (fiber) Polymers 0.000 claims description 13
- 239000004793 Polystyrene Substances 0.000 claims description 10
- 229920002678 cellulose Polymers 0.000 claims description 10
- 239000001913 cellulose Substances 0.000 claims description 10
- 229920002451 polyvinyl alcohol Polymers 0.000 claims description 10
- WSSSPWUEQFSQQG-UHFFFAOYSA-N 4-methyl-1-pentene Chemical compound CC(C)CC=C WSSSPWUEQFSQQG-UHFFFAOYSA-N 0.000 claims description 9
- 239000004917 carbon fiber Substances 0.000 claims description 9
- 239000003365 glass fiber Substances 0.000 claims description 9
- 239000004372 Polyvinyl alcohol Substances 0.000 claims description 8
- 239000000919 ceramic Substances 0.000 claims description 8
- 229920002223 polystyrene Polymers 0.000 claims description 8
- 229920000642 polymer Polymers 0.000 claims description 6
- 229920002125 Sokalan® Polymers 0.000 claims description 5
- 239000004584 polyacrylic acid Substances 0.000 claims description 5
- 229920002972 Acrylic fiber Polymers 0.000 claims description 4
- 239000004626 polylactic acid Substances 0.000 claims description 4
- 239000003566 sealing material Substances 0.000 claims description 4
- DHKHKXVYLBGOIT-UHFFFAOYSA-N acetaldehyde Diethyl Acetal Natural products CCOC(C)OCC DHKHKXVYLBGOIT-UHFFFAOYSA-N 0.000 claims description 3
- 125000002777 acetyl group Chemical class [H]C([H])([H])C(*)=O 0.000 claims description 3
- 229920006018 co-polyamide Polymers 0.000 claims description 3
- 229920000747 poly(lactic acid) Polymers 0.000 claims description 3
- 239000011112 polyethylene naphthalate Substances 0.000 claims description 3
- 239000004814 polyurethane Substances 0.000 claims description 3
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims description 2
- 229920002635 polyurethane Polymers 0.000 claims description 2
- 229920005644 polyethylene terephthalate glycol copolymer Polymers 0.000 description 46
- 239000000203 mixture Substances 0.000 description 31
- 238000000034 method Methods 0.000 description 22
- 238000012360 testing method Methods 0.000 description 21
- 229920000433 Lyocell Polymers 0.000 description 18
- 229920000297 Rayon Polymers 0.000 description 16
- 238000010521 absorption reaction Methods 0.000 description 16
- 239000002964 rayon Substances 0.000 description 16
- 239000003550 marker Substances 0.000 description 15
- 238000002844 melting Methods 0.000 description 14
- 102000004169 proteins and genes Human genes 0.000 description 14
- 108090000623 proteins and genes Proteins 0.000 description 14
- 239000000976 ink Substances 0.000 description 13
- 238000007789 sealing Methods 0.000 description 12
- 108090000790 Enzymes Proteins 0.000 description 10
- 102000004190 Enzymes Human genes 0.000 description 10
- 238000004519 manufacturing process Methods 0.000 description 10
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- 239000002131 composite material Substances 0.000 description 9
- 238000005342 ion exchange Methods 0.000 description 9
- 235000019422 polyvinyl alcohol Nutrition 0.000 description 9
- 229920001577 copolymer Polymers 0.000 description 8
- 230000008018 melting Effects 0.000 description 8
- 239000000126 substance Substances 0.000 description 8
- JHWNWJKBPDFINM-UHFFFAOYSA-N Laurolactam Chemical compound O=C1CCCCCCCCCCCN1 JHWNWJKBPDFINM-UHFFFAOYSA-N 0.000 description 7
- 229920000299 Nylon 12 Polymers 0.000 description 7
- 239000002250 absorbent Substances 0.000 description 7
- 230000002745 absorbent Effects 0.000 description 7
- 239000012867 bioactive agent Substances 0.000 description 7
- 239000003153 chemical reaction reagent Substances 0.000 description 7
- 238000001914 filtration Methods 0.000 description 7
- 238000009472 formulation Methods 0.000 description 7
- 238000007306 functionalization reaction Methods 0.000 description 7
- 238000001179 sorption measurement Methods 0.000 description 7
- YYROPELSRYBVMQ-UHFFFAOYSA-N 4-toluenesulfonyl chloride Chemical compound CC1=CC=C(S(Cl)(=O)=O)C=C1 YYROPELSRYBVMQ-UHFFFAOYSA-N 0.000 description 6
- 229920003043 Cellulose fiber Polymers 0.000 description 6
- 238000009960 carding Methods 0.000 description 6
- 238000006243 chemical reaction Methods 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 239000002253 acid Substances 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 238000005245 sintering Methods 0.000 description 5
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- 239000007853 buffer solution Substances 0.000 description 4
- 239000003795 chemical substances by application Substances 0.000 description 4
- ATDGTVJJHBUTRL-UHFFFAOYSA-N cyanogen bromide Chemical compound BrC#N ATDGTVJJHBUTRL-UHFFFAOYSA-N 0.000 description 4
- 125000000524 functional group Chemical group 0.000 description 4
- 229920000578 graft copolymer Polymers 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 239000000155 melt Substances 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000000047 product Substances 0.000 description 4
- 238000003828 vacuum filtration Methods 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- PFKFTWBEEFSNDU-UHFFFAOYSA-N carbonyldiimidazole Chemical compound C1=CN=CN1C(=O)N1C=CN=C1 PFKFTWBEEFSNDU-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000005516 engineering process Methods 0.000 description 3
- 239000011521 glass Substances 0.000 description 3
- 229920001903 high density polyethylene Polymers 0.000 description 3
- 239000004700 high-density polyethylene Substances 0.000 description 3
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 3
- 239000004745 nonwoven fabric Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000002904 solvent Substances 0.000 description 3
- 238000003860 storage Methods 0.000 description 3
- 125000003396 thiol group Chemical group [H]S* 0.000 description 3
- 238000012546 transfer Methods 0.000 description 3
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 2
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 2
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 2
- 229920003189 Nylon 4,6 Polymers 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 229920006322 acrylamide copolymer Polymers 0.000 description 2
- 239000007825 activation reagent Substances 0.000 description 2
- 150000001299 aldehydes Chemical class 0.000 description 2
- 230000002152 alkylating effect Effects 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 230000000975 bioactive effect Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 229920002301 cellulose acetate Polymers 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001816 cooling Methods 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- VAYGXNSJCAHWJZ-UHFFFAOYSA-N dimethyl sulfate Chemical compound COS(=O)(=O)OC VAYGXNSJCAHWJZ-UHFFFAOYSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 229940079593 drug Drugs 0.000 description 2
- 239000000975 dye Substances 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 239000004744 fabric Substances 0.000 description 2
- 229920001684 low density polyethylene Polymers 0.000 description 2
- 239000004702 low-density polyethylene Substances 0.000 description 2
- 239000000314 lubricant Substances 0.000 description 2
- 239000000178 monomer Substances 0.000 description 2
- 229910017604 nitric acid Inorganic materials 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 230000000704 physical effect Effects 0.000 description 2
- 239000000049 pigment Substances 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000058 polyacrylate Polymers 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 238000000746 purification Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 150000004756 silanes Chemical class 0.000 description 2
- 239000008107 starch Substances 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 241000207199 Citrus Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- PIICEJLVQHRZGT-UHFFFAOYSA-N Ethylenediamine Chemical compound NCCN PIICEJLVQHRZGT-UHFFFAOYSA-N 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108010093096 Immobilized Enzymes Proteins 0.000 description 1
- 108010058683 Immobilized Proteins Proteins 0.000 description 1
- 229920010126 Linear Low Density Polyethylene (LLDPE) Polymers 0.000 description 1
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- LFTLOKWAGJYHHR-UHFFFAOYSA-N N-methylmorpholine N-oxide Chemical compound CN1(=O)CCOCC1 LFTLOKWAGJYHHR-UHFFFAOYSA-N 0.000 description 1
- 244000061176 Nicotiana tabacum Species 0.000 description 1
- 235000002637 Nicotiana tabacum Nutrition 0.000 description 1
- 229920000571 Nylon 11 Polymers 0.000 description 1
- 229920000305 Nylon 6,10 Polymers 0.000 description 1
- 229920000572 Nylon 6/12 Polymers 0.000 description 1
- 229920000577 Nylon 6/66 Polymers 0.000 description 1
- 108091034117 Oligonucleotide Proteins 0.000 description 1
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 description 1
- 229920001213 Polysorbate 20 Polymers 0.000 description 1
- JLCPHMBAVCMARE-UHFFFAOYSA-N [3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[3-[[3-[[3-[[3-[[3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-[[5-(2-amino-6-oxo-1H-purin-9-yl)-3-hydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxyoxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(5-methyl-2,4-dioxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(6-aminopurin-9-yl)oxolan-2-yl]methoxy-hydroxyphosphoryl]oxy-5-(4-amino-2-oxopyrimidin-1-yl)oxolan-2-yl]methyl [5-(6-aminopurin-9-yl)-2-(hydroxymethyl)oxolan-3-yl] hydrogen phosphate Polymers Cc1cn(C2CC(OP(O)(=O)OCC3OC(CC3OP(O)(=O)OCC3OC(CC3O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c3nc(N)[nH]c4=O)C(COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3COP(O)(=O)OC3CC(OC3CO)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3ccc(N)nc3=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cc(C)c(=O)[nH]c3=O)n3cc(C)c(=O)[nH]c3=O)n3ccc(N)nc3=O)n3cc(C)c(=O)[nH]c3=O)n3cnc4c3nc(N)[nH]c4=O)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)n3cnc4c(N)ncnc34)O2)c(=O)[nH]c1=O JLCPHMBAVCMARE-UHFFFAOYSA-N 0.000 description 1
- 238000005299 abrasion Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000000274 adsorptive effect Effects 0.000 description 1
- 125000003172 aldehyde group Chemical group 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000029936 alkylation Effects 0.000 description 1
- 238000005804 alkylation reaction Methods 0.000 description 1
- 150000001412 amines Chemical class 0.000 description 1
- 125000003277 amino group Chemical group 0.000 description 1
- 238000005349 anion exchange Methods 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 239000004599 antimicrobial Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- TZYHIGCKINZLPD-UHFFFAOYSA-N azepan-2-one;hexane-1,6-diamine;hexanedioic acid Chemical compound NCCCCCCN.O=C1CCCCCN1.OC(=O)CCCCC(O)=O TZYHIGCKINZLPD-UHFFFAOYSA-N 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 238000009835 boiling Methods 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 238000005341 cation exchange Methods 0.000 description 1
- 238000007385 chemical modification Methods 0.000 description 1
- 238000004587 chromatography analysis Methods 0.000 description 1
- 235000020971 citrus fruits Nutrition 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 210000001520 comb Anatomy 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001877 deodorizing effect Effects 0.000 description 1
- 239000002274 desiccant Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 235000004879 dioscorea Nutrition 0.000 description 1
- 230000009881 electrostatic interaction Effects 0.000 description 1
- 229920001038 ethylene copolymer Polymers 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000012467 final product Substances 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 229960000587 glutaral Drugs 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011874 heated mixture Substances 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical group [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 150000002463 imidates Chemical class 0.000 description 1
- 239000002917 insecticide Substances 0.000 description 1
- 238000009413 insulation Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000002414 normal-phase solid-phase extraction Methods 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000003960 organic solvent Substances 0.000 description 1
- 230000003204 osmotic effect Effects 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 238000012856 packing Methods 0.000 description 1
- 229920001522 polyglycol ester Polymers 0.000 description 1
- 102000040430 polynucleotide Human genes 0.000 description 1
- 108091033319 polynucleotide Proteins 0.000 description 1
- 239000002157 polynucleotide Substances 0.000 description 1
- 239000000256 polyoxyethylene sorbitan monolaurate Substances 0.000 description 1
- 235000010486 polyoxyethylene sorbitan monolaurate Nutrition 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 239000012460 protein solution Substances 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 239000004627 regenerated cellulose Substances 0.000 description 1
- 239000000779 smoke Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 159000000000 sodium salts Chemical class 0.000 description 1
- 238000009987 spinning Methods 0.000 description 1
- 238000003756 stirring Methods 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 150000003573 thiols Chemical class 0.000 description 1
- 238000012384 transportation and delivery Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/14—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyester as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/06—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyolefin as constituent
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F8/00—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof
- D01F8/04—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers
- D01F8/12—Conjugated, i.e. bi- or multicomponent, artificial filaments or the like; Manufacture thereof from synthetic polymers with at least one polyamide as constituent
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4282—Addition polymers
- D04H1/4291—Olefin series
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/4334—Polyamides
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4326—Condensation or reaction polymers
- D04H1/435—Polyesters
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43828—Composite fibres sheath-core
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43825—Composite fibres
- D04H1/43832—Composite fibres side-by-side
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/42—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
- D04H1/4382—Stretched reticular film fibres; Composite fibres; Mixed fibres; Ultrafine fibres; Fibres for artificial leather
- D04H1/43835—Mixed fibres, e.g. at least two chemically different fibres or fibre blends
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/54—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by welding together the fibres, e.g. by partially melting or dissolving
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H1/00—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
- D04H1/40—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
- D04H1/58—Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties by applying, incorporating or activating chemical or thermoplastic bonding agents, e.g. adhesives
-
- D—TEXTILES; PAPER
- D04—BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
- D04H—MAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
- D04H5/00—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length
- D04H5/06—Non woven fabrics formed of mixtures of relatively short fibres and yarns or like filamentary material of substantial length strengthened or consolidated by welding-together thermoplastic fibres, filaments, or yarns
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249933—Fiber embedded in or on the surface of a natural or synthetic rubber matrix
- Y10T428/249938—Composite or conjugate fiber [e.g., fiber contains more than one chemically different material in monofilament or multifilament form, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249942—Fibers are aligned substantially parallel
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249942—Fibers are aligned substantially parallel
- Y10T428/249946—Glass fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249942—Fibers are aligned substantially parallel
- Y10T428/249947—Polymeric fiber
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/24994—Fiber embedded in or on the surface of a polymeric matrix
- Y10T428/249949—Two or more chemically different fibers
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/603—Including strand or fiber material precoated with other than free metal or alloy
- Y10T442/604—Strand or fiber material is glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/603—Including strand or fiber material precoated with other than free metal or alloy
- Y10T442/605—Strand or fiber material is inorganic
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/603—Including strand or fiber material precoated with other than free metal or alloy
- Y10T442/607—Strand or fiber material is synthetic polymer
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/627—Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
- Y10T442/629—Composite strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/627—Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
- Y10T442/635—Synthetic polymeric strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/608—Including strand or fiber material which is of specific structural definition
- Y10T442/627—Strand or fiber material is specified as non-linear [e.g., crimped, coiled, etc.]
- Y10T442/635—Synthetic polymeric strand or fiber material
- Y10T442/636—Synthetic polymeric strand or fiber material is of staple length
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
- Y10T442/638—Side-by-side multicomponent strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
- Y10T442/64—Islands-in-sea multicomponent strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/637—Including strand or fiber material which is a monofilament composed of two or more polymeric materials in physically distinct relationship [e.g., sheath-core, side-by-side, islands-in-sea, fibrils-in-matrix, etc.] or composed of physical blend of chemically different polymeric materials or a physical blend of a polymeric material and a filler material
- Y10T442/641—Sheath-core multicomponent strand or fiber material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/643—Including parallel strand or fiber material within the nonwoven fabric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/643—Including parallel strand or fiber material within the nonwoven fabric
- Y10T442/644—Parallel strand or fiber material is glass
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/643—Including parallel strand or fiber material within the nonwoven fabric
- Y10T442/646—Parallel strand or fiber material is naturally occurring [e.g., cotton, wool, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/696—Including strand or fiber material which is stated to have specific attributes [e.g., heat or fire resistance, chemical or solvent resistance, high absorption for aqueous compositions, water solubility, heat shrinkability, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/60—Nonwoven fabric [i.e., nonwoven strand or fiber material]
- Y10T442/697—Containing at least two chemically different strand or fiber materials
Definitions
- the invention relates to fibers and fibrous materials and methods of making and using the same.
- Fibers and materials made from them have a variety of uses. Many fibrous materials are composites.
- U.S. Pat. No. 4,270,962 discloses a method of manufacturing fused bundles of fibers. In this method, a bundle of low and high melting-point fibers is heated under pressure at a temperature that melts the low melting-point fibers, and then cooled to provide a bar-like material. See, e.g., col. 1, lines 26-61.
- U.S. Pat. No. 4,795,668 discloses the manufacture of bicomponent fibers. These fibers are distinguishable from fused bundles of fibers in that each fiber consists of two components that “generally extend continuously along the fiber.” Col. 3, lines 38-41.
- Examples of bicomponent fibers contain a core surrounded by a sheath, wherein the core is made of a crystallizable material such as polyethylene terephthalate (PET), and the sheath is made of a thermosoftening material such as crystalline polypropylene or amorphous polystyrene. See, e.g., col. 3, lines 30-36; col. 4, lines 55-60.
- the bicomponent fibers can allegedly be incorporated into webs along with other fibers. See, e.g., col. 3, line 52 to col. 4, line 7.
- U.S. Pat. No. 4,830,094 discloses a porous non-woven fabric made of multiple fibers that allegedly form a uniform web when heated together. See, col. 1, lines 42-48.
- the fabric is reportedly made by carding a bicomponent fiber to form a fibrous web, which is then heated to cause the fibers to bind to each other. See, col. 2, lines 17-24.
- the bicomponent fiber is made of components that have crystalline melting points which differ by at least 30° C., and which can allegedly be arranged in a variety of configurations. See col. 2, lines 65-67; col. 3, lines 29-33.
- U.S. Pat. No. 5,948,529 discloses bicomponent fibers having a core made of PET and functionalized ethylene copolymer, and a sheath made of polyethylene. See, e.g., col. 1, line 64 to col. 2, line 1.
- the functionalized copolymer allegedly helps the sheath adhere to the core. See, col. 2, lines 1-3.
- This invention is directed to fibers and materials made from them that can be used in a variety of applications such as, but not limited to, wicks and other elements designed to collect, hold, transfer or deliver liquids for medical and other applications (e.g., marker nibs, wicks used for chemical sample collection, storage, or analysis), lateral flow devices, self-sealing devices (e.g., self-sealing filters, and self-sealing pipette filters), selective absorptive devices (e.g., bio-liquid filtration, air and liquid separation/filtration filters, ion exchange filters), heat and moisture exchangers, and other diverse fibrous matrices, such as insulation, packing materials, and battery (cathode/anode) separators.
- wicks and other elements designed to collect, hold, transfer or deliver liquids for medical and other applications (e.g., marker nibs, wicks used for chemical sample collection, storage, or analysis), lateral flow devices, self-sealing devices (e.g.,
- the invention is based, in part, on the discovery that staple fibers can be used to provide fibers and fibrous materials with specific and precisely tuned chemical and physical properties.
- a first embodiment of the invention encompasses a fibrous material comprised of a binder fiber adhered to a functional fiber, wherein the binder fiber is a staple bicomponent fiber oriented in substantially the same direction as the functional fiber.
- the functional fiber can be a staple or continuous fiber.
- binder fibers include, but are not limited to, bicomponent fibers made of the following pairs of polymers: polypropylene/polyethylene terephthalate (PET); polyethylene/PET; polypropylene/Nylon-6; Nylon-6/PET; copolyester/PET; copolyester/Nylon-6; copolyester/Nylon-6,6; poly-4-methyl-1-pentene/PET; poly-4-methyl-1-pentene/Nylon-6; poly-4-methyl-1-pentene/Nylon-6,6; PET/polyethylene naphthalate (PEN); Nylon-6,6/poly-1,4-cyclohexanedimethyl (PCT); polypropylene/polybutylene terephthalate (PBT); Nylon-6/co-polyamide; polylactic acid/polystyrene; polyurethane/acetal; and soluble copolyester/polyethylene.
- PET polypropylene/polyethylene terephthal
- Examples of functional fibers include, but are not limited to, Nylons, cellulose-based materials, polyvinyl alcohols (e.g., phosphorylated polyvinyl alcohol), superabsorbent fibers, carbon fibers, glass fibers, ceramic fibers, and acrylic fibers.
- polyvinyl alcohols e.g., phosphorylated polyvinyl alcohol
- superabsorbent fibers carbon fibers, glass fibers, ceramic fibers, and acrylic fibers.
- Preferred fibrous materials have a density of from about 0.15 g/cm 3 to about 0.8 g/cm 3 , more preferably from about 0.2 g/cm 3 to about 0.65 g/cm 3 , and most preferably from about 0.25 g/cm 3 to about 0.5 g/cm 3 .
- a second embodiment of the invention is a functional wicking material comprising a binder fiber adhered to a hydrophilic functional fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the hydrophilic fiber.
- suitable bicomponent binder fibers include, but are not limited to, the binder pair materials listed in Table 1.
- monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, and CoPET.
- Preferred bicomponent binder fibers made of polyethylene/PET, polypropylene/PET, or CoPET/PET.
- the preferred monocomponent binder fibers are PE, PP, or PET.
- suitable hydrophilic functional fibers include, but are not limited to, high absorbent rayon, Lyocel or Tencel, hydrophilic nylon, hydrophilic acrylic fibers, and cellulosic based high absorbent fibers.
- a preferred wicking material wicks water at a rate of from about 0.05 to about 1.0 inches/second at 1 inch wicking length, preferably from about 0.1 to about 0.6 inches/second, and most preferably from about 0.2 to about 0.4 inches/second.
- Another preferred functional wicking material comprises from about 1 to about 98 weight percent, more preferably from about 5 to about 95 weight percent, and most preferably from about 5 to about 50 weight percent of binder fiber. Still another preferred wicking material comprises from about 5 to about 70, more preferably from about 5 to about 55, and most preferably from about 10 to about 40 weight percent of functional fiber.
- a third embodiment of the invention is a functional self-sealing materail comprising a binder fiber adhered to a superabsorbent fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the superabsorbent fiber.
- suitable bicomponent binder fibers include, but are not limited to, the pairs listed in Table 1.
- monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, and CoPET, or the mixtures thereof.
- the preferred bicomponent binder fibers are PE/PP, PE/PET, PP/PET, and CoPET/PET.
- the preferred monocomponent binder fibers are PE, PP, and PET.
- suitable superabsorbent fibers include, but are not limited to, cellulosic based fibers, hydrolyzed starch acrylonitrile graft copolymer; neutralized starch-acrylic acid graft copolymer; saponified acrylic acid ester-vinyl acetate copolymer; hydrolyzed acrylonitrile copolymer; acrylamide copolymer; modified cross-linked polyvinyl alcohol; neutralized self-crosslinking polyacrylic acid; crosslinked polyacrylate salts; neutralized crosslinked isobutylene-maleic anhydride copolymers; or salts or mixtures thereof.
- a preferred functional self-sealing material comprises from about 30 to about 95 weight percent, more preferably from about 45 to about 95 weight percent, and most preferably from about 60 to about 90 weight percent binder fiber.
- Another preferred functional self-sealing material comprises from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent superabsorbent fiber.
- a fourth embodiment of the invention is a functional bioabsorbent material comprising a binder fiber adhered to a bioabsorbent fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the bioabsorbent fiber.
- suitable bicomponent binder fibers include, but are not limited to, the pairs listed in Table 1.
- monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, CoPET, or mixtures thereof.
- the preferred bicomponent binder fibers are PE/PP, PE/PET, PP/PET, or CoPET/PET.
- the preferred monocomponent binder fibers are PE, PP, or PET.
- suitable bioabsorbent fibers include, but are not limited to, cellulose acetate, cellulosic based fibers, phosphorylated polyvinyl alcohol, glass fibers, ceramic fibers, hydrophilic nylon, alkylated nylon, CNBr modified cellulose fibers, ion exchange fiber, or mixtures thereof.
- a preferred bioabsorbent material comprises from about 30 to about 95 weight percent, more preferably from about 45 to about 95 weight percent, and most preferably from about 60 to about 90 weight percent binder fiber.
- Another preferred bioabsorbent material comprises from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent bioabsorbent fiber.
- a fifth embodiment of the invention is a functional selective absorption/filtration material comprising a binder fiber adhered to a functional fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the bioabsorbent fiber.
- suitable bicomponent binder fibers include, but are not limited to, the pairs listed in Table 1.
- monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, and CoPET.
- the preferred bicomponent binder fibers are PE/PP, PE/PET, PP/PET, and CoPET/PET.
- the preferred monocomponent binder fibers are PE, PP, and PET.
- suitable functional fibers include, but are not limited to, phosphorylated polyvinyl alcohol, glass fibers, hydrophilic nylon, alkylated nylon, ion exchange fibers, and activated carbon fibers.
- a preferred functional selective absorption/filtration media comprises from about 30 to about 95 weight percent, more preferably from about 45 to about 95 weight percent, and most preferably from about 60 to about 90 weight percent binder fiber.
- Another preferred functional selective absorption/filtration media comprises from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent bioabsorbent fiber.
- fiber means as any thread-like object or structure with a high length-to-width ratio and with suitable characteristics for being processed into a fibrous materials. Fibers can be made of materials including, but not limited to, synthetic or natural materials.
- staple fibers means fibers cut to specific lengths.
- bicomponent fiber means a fiber combining segments of two differing compositions, generally side-by-side or one inside another (core and sheath).
- the term “functional fiber” means a fiber having a desired function.
- the term “oriented in substantially the same direction” means that the longitudinal axes of less than about 35, more preferably less than about 15, and most preferably less than about 10 percent of the fibers referred to deviate from the mean longitudinal axis of the total fibers referred to by less than about 45, more preferably less than about 30, and most preferably less than about 15 degrees.
- FIG. 1 provides a representation of a core/sheath staple binder fiber and a cross-sectional view of the same;
- FIG. 2 provides a representation of a side-by-side staple binder fiber and a cross-sectional view of the same;
- FIG. 3 provides a representation of a fiber of the invention comprised of single-component continuous functional fibers adhered to core/sheath staple binder fibers and a cross-sectional view of the same;
- FIG. 4 provides a representation of a fiber of the invention comprised of staple single-component functional fibers adhered to core/sheath staple binder fibers and a cross-sectional view of the same;
- FIG. 5 provides a representation of a fiber of the invention comprised of continuous single-component functional fibers adhered to side-by-side staple binder fibers and a cross-sectional view of the same;
- FIG. 6 provides a representation of a fiber of the invention comprised of staple single-component functional fibers adhered to side-by-side staple binder fibers and a cross-sectional view of the same;
- FIG. 7 illustrates the effect of bulk density on water absorption
- FIG. 8 illustrates the effect of percent weight composition of functional fiber on water absorption in a wicking material
- FIG. 9 illustrates the effect of percent weight composition of functional fiber on water wicking rate
- FIG. 10 compares the ink flow rate between several permanent marker nibs with felt nibs.
- binder fibers can be sintered with functional fibers to provide materials with a variety of desirable properties.
- Other fibrous materials used in this invention include, but are not limited to, staple or continuous functional fibers.
- Staple fibers are fibers cut to specific lengths.
- Binder fibers can be bicomponent fibers with a sheath having a low melting point and a core having a high melting point or can be monocomponent fibers having a lower melting point than other matrix fibers or web elements that are activated through the application of heat.
- the present invention used bicomponent binder fibers.
- Functional fibers can have any desired function.
- the functional fiber component of a material can be useful for wicking aqueous-based solutions will be a fiber of a hydrophilic material.
- a functional fiber can also be a binder fiber, and a second or third staple mono-component or bicomponent fiber can be used as structural fiber to either reinforce the matrix or control pore size and porosity of the matrix.
- Other functional fibers include, but are not limited to: superabsorbent fibers, which can be used to provide self-sealing materials; bioabsorbent fibers, which can be used to provide materials useful in biomedical applications (e.g., sample collecting and testing); bioactive fibers, which can be used to provide biomolecule adsorption/binding function that are useful in biomedical applications (e.g., sample collecting and testing); and low adsorptive fibers, which can be used to reduce specific adsorption of biomolecules on the fiber surface.
- Functional fibers can be single or multi-component (e.g., bicomponent), and staple or continuous.
- the wicking rate of a material of the invention can be controlled by the type(s) and relative amount(s) of hydrophilic/wicking functional fiber(s) in it.
- a material to be used as a biosensor must contain a specific amount or concentration of enzymes, this can be controlled by varying the type(s) and relative amount(s) of hydrophilic or chemically activated functional fiber(s) in it.
- Another example of uses of the materials of the invention include, but are not limited to, self-sealing pipette tips (i.e., pipette tips that allow the passage of air, but seal when contacted with an aqueous solution).
- Biomolecules including, proteins, enzymes, nucleic acids, and cells can be immobilized onto different substrates by either physical adsorption or chemical covalent binding. They can be immobilized on different types of fiber materials through covalent binding or other interactions, including hydrophobic interaction, hydrogen bonds, or electrostatic interaction. There are wide varieties of chemistries available to immobilize biomolecules onto fiber materials. Many of these methods can be used to immobilize biomolecules onto the functional fiber materials disclosed herein.
- the materials of the invention also include materials that have controlled biomolecule adsorption ability for medical devices and diagnostic applications.
- FIGS. 1 and 2 provide representations of core/sheath and side-by-side staple fibers that can be used as binder fibers.
- FIGS. 3 and 5 illustrate materials that comprise single-component continuous functional fibers adhered to core/sheath and side-by-side binder fibers, respectively.
- Materials of the invention that comprise staple single-component functional fibers are shown in FIGS. 4 and 6. Variations of each of these embodiments are described herein and will be readily apparent to those skilled in the art.
- binder and functional fiber components of a fiber of the invention are oriented in substantially the same direction.
- binder and functional fibers can be oriented in substantially the same direction using techniques such as carding.
- the binder fibers used in the invention include bicomponent and monocomponent staple fiber.
- the cross-sectional structures of binder fibers that can be used in materials of the invention are preferably core/sheath and side-by-side, as shown in FIGS. 1 and 2, respectively.
- other cross-sectional structures known in the art can also be used. These include, but are not limited to, islands-in-the-sea, matrix fibril, citrus fibril, and segmented-pie cross-section types.
- Bicomponent fibers used in the invention typically have a low-melting point component and a high-melting point component.
- the low-melting point component melts at a temperature that will not disturb the crystallinity of the high-melting point component. More preferably, the low-melting point component melts at a temperature of about 30° C. lower than the melting temperature of the high-melting point component. A temperature difference of about 50° C. is even more preferred.
- binder fibers include, but are not limited to, bicomponent fibers disclosed by U.S. Pat. Nos. 4,795,668; 4,830,094; 5,284,704.; 5,509,430; 5,607,766, 5,620,641; 5,633,032; and 5,948,529, each of which is incorporated herein by reference.
- polystyrene examples include, but are not limited to, bicomponent fibers made of the following pairs of polymers: Nylon-6/PET; poly-4-methyl-1-pentene/PET; poly-4-methyl-1-pentene/Nylon-6; poly-4-methyl-1-pentene/Nylon-6,6; Nylon-6/co-polyamide; polylactic acid/polystyrene; and soluble copolyester/polyethylene.
- Polyethylenes include, but are not limited to, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE).
- Copolyesters include, but are not limited to, polyethylene isophthalate, PBT, and cis and trans poly-1,4-cyclohexylene-dimethylene terephthalate.
- binder fibers include, but are not limited to, bicomponent fibers made of the following pairs of polymers listed in Table 1.
- TABLE 1 Bicomponent Binder Fiber Materials SHEATH CORE polyethylene (PE) polypropylene (PP) ethylene-vinyl acetate copolymer polypropylene (PP) (EVA) polyethylene (PE) polyethylene terephthalate (PET) polyethylene (PE) polybutylene terephthalate (PBT) Polypropylene (PP) polyethylene terephthalate (PET) Polypropylene (PP) polybutylene terephthalate (PBT) polyethylene (PE) Nylon-6 polyethylene (PE) Nylon-6,6 polypropylene (PP) Nylon-6 polypropylene (PP) Nylon-6,6 Nylon-6 Nylon-6 Nylon-6,6 Nylon-12 Nylon-6 copolyester (CoPET) polyethylene terephthalate (PET) copolyester (CoPET) polyethylene terephthalate (PET) cop
- Examples of monocomponent binder fibers include, but are not limited to, polyethylene (PE), polypropylene (PP), polystyrene (PS), Nylon-6, Nylon-6,6, Nylon-12, copolyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and copolyester (CoPET).
- PE polyethylene
- PP polypropylene
- PS polystyrene
- Nylon-6 Nylon-6,6, Nylon-12
- copolyamides polyethylene terephthalate
- PET polybutylene terephthalate
- CoPET copolyester
- the size of staple fibers may be within a wide range, typically from about 0.5 dpf (denier per filament) to about 200 dpf, preferably, from about 1 dpf to about 20 dpf. More preferably, the size of staple fibers may be from about 1.5 dpf to about 10 dpf.
- the length of staple fibers is from about 0.5 inches to about 20 inches, preferably, from the length is from about 1 inch to about 5 inches. More preferably, the length of stable fibers is from about 1.5 inches to about 3 inches.
- fibrous materials typically have a bulk density from about 0.15 g/cm 3 to about 0.8 g/cm 3 , more preferably from about 0.2 g/cm 3 to about 0.65 g/cm 3 , and most preferably from about 0.25 g/cm 3 to about 0.5 g/cm 3 .
- Staple bicomponent fibers suitable for use as binder fibers can be prepared by methods well known in the art.
- Copolymers of PET (CoPET) are prepared by copolymerizing other monomers, such as di-alcohols and di-carboxylic acids.
- the melting temperature of CoPET can be adjusted form about 100° C. to about 260° C., preferably, the melting temperature of CoPET is from about 110° C. to about 185° C.
- staple bicomponent fibers include, but are not limited to, T-201 (CoPET/PET), T-202 (CoPET/PET), T-230 (PP/PCT), T-253 (HDPE/PET), T-260 (PP/PET) and T-271 (Nylon-6/Nylon-6,6), manufactured by Fiber Innovation Technology Inc., Johnson City, Tenn., and KoSa 256 (PP/PET), manufactured by KoSa Co., Charlotte, N.C.
- a preferred method of making fibers and fibrous materials of the invention comprises sintering a mixture of binder and functional fibers. Consequently, it is important that the binder fibers contain a component that is exposed to the functional fibers (e.g., the sheath of a core/sheath bicomponent fiber), and has a melting or sintering temperature lower than the temperature at which the functional fiber melts or decomposes.
- the functional fiber selected to provide a material with a desired property may therefore dictate what bicomponent fibers can be used as binder fibers.
- the applications of the functional fibrous composites in the invention include, but are not limited to, wicking device, self-sealing device, selective adsorption, and low retention or low adsorption.
- Wicking applications are based on the capillary function of functional fibers and binder fibers. Wicks functions include collection, storage, transfer or delivery of liquids.
- Wicking devices include, but are not limited to, writing instruments (e.g., permanent marker nibs, dry erase marker nibs, and highlight marker nibs), fragrance wicks, insecticide wicks, reservoirs for marker inks, and diagnostic devices (e.g., blood and other body fluid sample collection, storage, transfer, or analysis).
- writing instruments e.g., permanent marker nibs, dry erase marker nibs, and highlight marker nibs
- fragrance wicks e.g., insecticide wicks, reservoirs for marker inks
- diagnostic devices e.g., blood and other body fluid sample collection, storage, transfer, or analysis.
- Self-sealing devices include, but are not limited to, self-sealing filters, self-sealing pipette filters, self-sealing valves, self-sealing dispensers, and self-sealing separators.
- biomolecules include, but are not limited to, biomolecules, such as proteins (e.g., antibody, antigen, enzyme), DNA/RNA, cells, etc.
- binding partners include, but are not limited to, heavy ions, gas molecules, water, and oils.
- Applications of selective absorption devices include, but are not limited to, biomolecule (protein, DNA/RNA, cell, etc.) filtration, substrate for diagnostic devices, water purification, enzyme immobilization, oil/water separation, solid phase extraction for pre-chromatography treatment, and desiccants.
- Examples of functional fibers include, but are not limited to, Nylons, cellulose-based materials, polyvinyl alcohols, superabsorbent fibers, carbon fibers, glass fibers, ceramic fibers, and acrylic fibers.
- Nylons can be particularly useful as functional fibers in applications wherein the immobilization of hydrophilic materials (e.g., bioactive agents such as drugs, oligonucleotides, polynucleotides, peptides, proteins, and cells) is desired.
- hydrophilic materials e.g., bioactive agents such as drugs, oligonucleotides, polynucleotides, peptides, proteins, and cells
- Other advantages of Nylons include high mechanical strength, superficial hardness, and resistence to abrasion. Examples of Nylons include, but are not limited to: Nylon-6; Nylon-9; Nylon-11; Nylon-12; Nylon-46; Nylon-46 monomer based; Nylon-6,6; Nylon-6,9; Nylon-6/66; Nylon-610; Nylon-612; and Nylon-6/T.
- a Nylon is to be used for the immobilization of a bioactive agent, it is preferably pretreated to provide end-groups that are free for their attachment (e.g., via covalent bonds or ligand-receptor interactions).
- Suitable methods of pretreatment are known in the art and include, but are not limited to, hydrophilization.
- Methods for hydrophilization are known in the art and include, but are not limited to, copolymerization and surface treatment.
- Examples of hydrophilization of nylon from which functional hydrophilic nylon fibers can be made include, but are not limited to, those disclosed by U.S. Pat. Nos. 5,695,640, 5,643,662, 4,919,997, 4,923,454, 4,615,985, 3,970,597.
- Examples of hydrophilic nylons include, but are not limited to, StayGard®, manufactured by Honeywell International Inc., Hopewell, Va.
- Alkylated nylon materials can be used to immobilize nucleic acids, e.g., DNA and RNA.
- One method of alkylating nylon is to treat nylon with an alkylating agent such as a trialkyloxonium salt under anhydrous conditions (See e.g. U.S. Pat. Nos. 4,806,546, 4,806,631).
- Active Nylon fiber is nylon that has been partially hydrolyzed, O-alkylated, N-alkylated, or altered during post-treatment such that fibers made from traditional nylons and binders is treated with O-alkylated reagent.
- active nylons Compared with traditional nylon, active nylons have more reactive functional groups, such as O-alkylated nylon, also called nylon imidoester, which can directly form covalent bonds with protein or can transferred to other reactive functional groups such as amino, thiol, and hydroxide.
- O-alkylated nylon also called nylon imidoester
- proteins having lysine can be directly immobilized to O-alkylated nylon through the chemical reaction between the amino group in the protein and the oxygen in the O-alkylated nylon.
- Cellulose-based materials can also be used to provide fibers and fibrous materials to which bioactive agents can be bound or trapped (e.g., via surface hydroxyl groups).
- cellulose-based material is rayon, which is a regenerated cellulose fiber.
- purified cellulose is chemically converted into a soluble compound.
- a solution of this compound is passed through the spinneret to form soft filaments that are then converted or “regenerated” into cellulose.
- Rayon, especially high absorbent rayon is a high water absorbent material. Examples of commercially available high absorbent rayon are Acordis Rayon-6140 and Rayon-6150, manufactured by Acordis Acordis Cellulosic Fibers Inc., Axis, Alabama.
- Rayon and other cellulose fiber materials can be activated to immobilize biomolecules.
- the hydroxyl groups in rayon are activated by treating rayon with an alkaline solution, followed by reaction with cyanogen bromide, 1,1-carbonyldiimidazole (CDI), or p-toluenesulfonyl chloride (tosyl chloride).
- CDI 1,1-carbonyldiimidazole
- p-toluenesulfonyl chloride tosyl chloride
- Another method to manufacture high protein binding cellulose fiber is post-treatment. In this method, the fibers are made from cellulose fiber and binder fibers, such as rayon, and subsequently treated with activation reagents, such as, CNBr, CDI or tosyl chloride.
- Tencel is a new form of cellulosic fiber, manufactured using an organic solvent spinning process without the formation of a derivative.
- wood cellulose is dissolved directly in n-methyl morpholine n-oxide at high temperature and pressure. The cellulose precipitates in fiber form as the solvent is diluted. Subsequently, the fiber is purified and dried while the solvent is recovered and reused.
- Tencel has all the advantages of rayon, and in many respects is superior to rayon because of its high strength in both dry and wet states and high absorbency.
- the closed-loop manufacturing process used for Tencel is environmentally friendlier than that used to manufacture rayon. Examples of commercially available Tencel and Lyocel are Acordis Tencel®, manufactured by Acordis Acordis Cellulosic Fibers Inc., and Lyocel®, manufactured by Lenzing Aktiengesellschaft, A-4860 Lenzing, Austria.
- bioabsorbent fibers include, but are not limited to, cellulose acetate, cellulosic based fibers, phosphorylated polyvinyl alcohol, glass fibers, ceramic fibers, hydrophilic nylon, alkylated nylon, CNBr modified cellulose fibers, ion exchange fiber, or mixtures thereof.
- Absorbent fibers are made from materials including, but are not limited to, phosphorylated polyvinyl alcohol, glass fibers, hydrophilic nylon, alkylated nylon, ion exchange fibers, and activated carbon fibers.
- Superabsorbent fibers are made from materials sometimes referred to as “superabsorptive polymers.” Such materials can absorb large amounts of water and retain their structural integrity when wet. See Tomoko Ichikawa and Toshinari Nakajima, “Superabsorptive Polymers,” Concise Polymeric Materials Encyclopedia, 1523-1524 (Joseph C. Salamone, ed.; CRC; 1999). Examples of superabsorbent materials from which functional fibers can be made include, but are not limited to, those disclosed by U.S. Pat. Nos.
- Specific superabsorbent fibers are made of hydrolyzed starch acrylonitrile graft copolymer; neutralized starch-acrylic acid graft copolymer; saponified acrylic acid ester-vinyl acetate copolymer; hydrolyzed acrylonitrile copolymer; acrylamide copolymer; modified cross-linked polyvinyl alcohol; neutralized self-crosslinking polyacrylic acid; crosslinked polyacrylate salts; neutralized crosslinked isobutylene-maleic anhydride copolymers; or salts or mixtures thereof.
- Particularly preferred superabsorbent fibers are made from sodium polyacrylic acid and the sodium salt of poly(2-propenamide-co-2-propenoic acid).
- superabsorbent fibers include Camelot® 908 made from polyacrylic acid, and manufactured by Camelot Ltd., Canada, and Toyobo® N-38, made from cellulosic based rayon and manufactured by Toyobo Co. LTD., Osaka, 530-8230 Japan.
- Carbon fibers can also be used in applications that require the immobilization of bioactive agents (e.g., enzymes), and can also be used to provide materials that are electrically conductive (e.g., for use as enzyme electrodes). Staple carbon fibers in particular have good mechanical strength, conductivity, and flexibility, and can be processed in a relatively easy manner. Carbon fibers can be used to passively adsorb biomolecules or they can be modified to covalently bond to biomolecules. Carbon fibers can be activated by reacting with oxide acid, such as nitric acid, or by treating a fiber made from carbon fiber and binder with activation reagents, such as nitric acid, after fiber formation.
- oxide acid such as nitric acid
- Activated carbon fibers can be used in air and water purification, recovery of organic compounds and solvents, deodorizing and decoloring, and ozone removal.
- Examples of commercially available activated carbon fibers (ACF) include, but are not limited to, Finegard® FED. CIR.-300-4, manufactured by Toho Carbon Fibers Inc., Japan, and rayon based ACF, manufactured by Carbon Resources Inc., Huntington Beach, Calif.
- Enzymes and other bioactive agents can also be immobilized on glass and ceramic fibers, particularly those whose surfaces have been treated to provide readily accessible and/or reactive functional groups (e.g., hydroxyl, thiol, amine, carboxylic acid, and aldehyde groups). Particular advantages of these types of fibers is their resistance to microbial attack, high thermal stability, and high dimensional stability.
- functional groups e.g., hydroxyl, thiol, amine, carboxylic acid, and aldehyde groups.
- Particular advantages of these types of fibers is their resistance to microbial attack, high thermal stability, and high dimensional stability.
- glass and ceramic fibers that can be used as functional fibers include, but are not limited to, Chop Vantage® and Delta Chop®, manufactured by PPG Industries Inc., Pittsburgh, Pa. and H Filament-700, manufactured by Advanced Glass Yams LLC, Aiken, S.C.
- functionalized binder fiber materials also include, glass fibers treated with organofunctional silanes, e.g. aminoalkyl-functional silanes.
- Ion exchange fibers are used to develop cleaning systems for liquor waste and exhaust from nuclear power plants.
- Ion exchange fibers include, but are not limited to, strong acid based, weak acid based, strong base based, and weak base based.
- Examples of commercially available ion exchange fibers that can be used as functional fibers include, but are not limited to, Ionex® IEF-SC (strong acid), manufactured by Toray Industries Inc., Japan; Nitivy Ion Exchange Fiber (strong base), manufactured by Nitivy Inc., Japan; Fiban® K-1 (strong base), Fiban® A-1 (weak acid), and Fiban(K-4 (weak base), and Fiban® AK-22 (has both anion and cation exchange capabilities), manufactured by Fiba Inc., Minsk, Zealand.
- Fibers and fibrous materials of the invention can be readily made using techniques known in the art.
- one or more types of functional fiber are selected based on the desired function of the final material.
- At least one binder fiber is selected that contains at least one component that will sinter at a temperature lower than the temperature at which the functional fiber(s) melt or decompose.
- the functional and binder fibers are then combined in a ratio determined by factors readily apparent to those skilled in the art. Such factors include, but are not limited to, the desired functionality of the final material, chemical stability, thermal stability, strength, flexibility, hardness, and other physical and chemical characteristics.
- the relative amount of binder fiber cannot be so little that the final material will not hold together under the conditions in which it is expected to be used.
- Factors such as the desired mechanical strength of the final material will often dictate the ratio of binder fiber to functional fiber. For example, materials made with functional fibers that have little mechanical strength (e.g., cellulose-based fibers) will require a greater binder-to-functional fiber ratio than materials such as Nylon in order to provide a strong final material.
- a typical material of the invention has from about 1 to about 98 weight percent, more preferably from about 5 to about 95 weight percent, and most preferably from about 5 to about 50 weight percent binder fiber, and from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent functional fiber.
- the mixture of functional and binder fibers is blended and carded by a carder, such as those manufactured by J.D. Hollingsworth on Wheels, Inc., Greenville, S.C. Carding is a well-known technique, which aligns the fibers, and can be carried out using conventional carding equipment.
- a carder is a machine that combs or works fibers between the fine surfaces or points of a toothed surface in order to separate, clean, and align the fibers in a parallel orientation. Carding is the process that transforms entangled fiber mats into parallel fibrous slivers that are untwisted strand.
- Carding performs four major functions, a carder blends binder fibers and functional fibers, separates every fiber individually from the other fibers, arranges the fibers to a high degree of parallelization, and delivers the fiber to the outfeed in a consistently even manner. This last function is the most important step in the carding process. This is the point where the controllable linear density of the fiber stream is established.
- the carded material is then heated in an oven, optionally under pressure, at a temperature sufficient to sinter the binder and functional fibers together, yet at a temperature insufficient to melt or damage the functional fibers.
- the mixture can either be heated in a mold or forced through a dye to achieve a product of a desired size, shape, and density. Once sintered, the product is cooled to provide the material of the invention.
- additional materials can be added to the binder and functional fiber mixture.
- Additional materials include, but are not limited to, finishing agents and dyes.
- surface finishing agents include, but are not limited to, surfactants, lubricants, softeners, antistats, and other finishing agents, such as, antioxidants, antimicrobials.
- surfactants and lubricants which can be added to facilitate the extrusion of sintered mixtures, are well known in the art and include, but are not limited to, Tween-20® and Afilan® (fatty acid polyglycol ester).
- the sintered material can be further processed in a variety of ways.
- the material can be cut, molded, or polished. If the material is a fiber (e.g., it was made by extruding the heated mixture of binder and functional fibers through a mold), it can be woven or heated to provide woven and non-woven fabrics. Further processing can also involve the immobilization of bioactive agents (e.g., drugs, peptides, proteins, or cells) onto the functional fiber portions of the final material. In some cases, the product may need to be processed to provide functional groups to which the bioactive agents can be bound.
- bioactive agents e.g., drugs, peptides, proteins, or cells
- the material was blended and carded in John D. Hollingsworth on Wheels, Inc., Greenville, S.C. Three tests were carried out. For each formulation, three slivers (bundles) of fiber material with total size of 110, 120 and 130 g/yard, respectively, were introduced into the heating zone of an oven.
- Oven was 70 inches in length, 9.5 inches in width, and 15 inches in depth.
- the oven processing temperature was 200° C.
- the die control temperature was 90° C.
- the pulling rate was 4 inches/min.
- the resulting functional fibrous material was shaped into a rectangular rod by pulling it through a die, and then the fibrous rod was introduced into a cooling zone where the rod was cooled by directing compressed cooling air.
- the comparison of the water absorption and water wicking rate properties of the functionalized formulations of (T-202/Tencel® blended fibers) with pure T-202 are illustrated in FIGS. 7, 8, and 9 .
- the water absorption for the composites with Tencel® content was much higher than that of pure T-202.
- Tencel® is a cellulosic based fiber, which is a high water absorbent, and therefore functions as a high water absorption component in the composites.
- the amount of water absorption can be controlled by changing fiber bulk density. As shown in FIG. 7, the water absorption decreased as the bulk density increased.
- the water absorption can also be controlled by changing the fiber formulation. As shown in FIG. 8, as the Tencel® content changed from 0 to 30 weight percent, the water absorption doubled from 120% to 250 weight percent of fiber component.
- the capillary force between water and fiber components affect the water wicking rate of fiber composites.
- the hydrophilic feature of cellulosic based fibers attributed a very good water wicking property to the fiber composites. As shown in FIG. 8, the higher the Tence® content, the higher the water wicking rate.
- both water absorption and water wicking property were controlled.
- the binder fiber was T-202 with 3 dpf in size and 1.5 inches in length.
- the functional fibers were Tencel® and rayon-6150, respectively.
- the permanent marker nib formulation was pure T-202, and there were two formulations for dry erase marker nibs, Tencel®/T-202 and rayon-6150/T-202.
- the oven processing temperature was 210° C.
- the die control temperature was 100° C.
- the pulling rate was 4 inches/minute.
- the die cross section was 3.7 mm in height and 5.7 mm in width.
- the cooled composites rectangular rods were cut into wedge shaped marker nibs of 40 mm in length.
- the dry erase marker ink was a suspension comprising insoluble pigments and liquid vehicle.
- the capillary force, average pore size and porosity of fiber nibs determined the ink wicking property and ink flow.
- Good capillary force between the liquid vehicle and fibrous materials ensured a high ink flow.
- Sufficiently large pore size and suitable porosity were critical to allow ink pigment flow through.
- all three formulations of sample A, B and C had higher ink flow, which can be attributed to the high hydrophilictiy and high capillary force of the additive fibers.
- Staple nylon fiber was mixed with staple binder fiber, and the mixture was carded into slivers. Fiber slivers were sintered in a heated oven to make fibrous rods. The sintered fibrous rods were cut into suitably sized samples, and then nylon fiber component in the samples was activated by alkylating reagent. The alkylated nylon components were used to immobilize protein, or modified by subsequent chemical methods, such as thiol functionalization, hydrazine functionalization, and aldehyde functionalization agents.
- the mixture of fibers comprised 30 percent by weight of staple bicomponent nylon-6/nylon-6,6, T-270, with size of 3 dpf, and length of 1.5 inches, and 70 percent of staple binder fiber, CoPET/PET, T-202, with size of 3 dpf, and length of 1.5 inches, both manufactured by Fiber Innovation Technology, Inc.
- the material was mixed and carded in John D. Hollingsworth on Wheels, Inc.
- the total size of fiber slivers were 110 grams/yard.
- the oven processing temperature was 190° C.
- the die control temperature was 90° C.
- the pulling rate was 4 inches/minute.
- the resulting functional fibrous material was shaped into rectangular rods by pulling it through a die with 3.5 mm in width, and 9.5 mm in length.
- the sintered fibrous rods were cut into samples with dimension of 5.0 ⁇ 5.0 ⁇ 0.5 mm. 5 pieces of the samples were added into a screw-capped test tube. Subsequently to each was added an alkylation reagent and dimethyl sulfate. Each samples was covered in a closed test tube, and immediately immersed into boiling water bath for 4 minutes without stirring and submerged into an ice bath to stop the reaction. Excess dimethyl sulfate was removed on a suction filter and the alkylated nylon was washed several times with ice-cold methanol. The activated samples were immediately used for the enzyme attachment or subsequent chemical modification.
- An enzymatic amplification method was developed to detect immobilized biomolecule on the nylon fiber component.
- the enzymatic amplification method was based on immobilization of bioactive enzyme onto the fiber.
- the immobilized enzyme can quantitative carry out specific chemical reactions and the product of these specific chemical reactions has a special physical property that can be detected with unaided human eye or a instrument, such as UV-VIS, such as horseradish peroxidase (HRP) labeled protein.
- UV-VIS such as horseradish peroxidase (HRP) labeled protein.
- a protein solution at 1 mg/ml in a PBS buffer (0.01 m, pH 7.2) was added to the treated fiber. After 30 minutes, the nylon fiber component was washed with deionized water and dried at room temperature.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Nonwoven Fabrics (AREA)
- Solid-Sorbent Or Filter-Aiding Compositions (AREA)
- Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)
Abstract
Description
- The invention relates to fibers and fibrous materials and methods of making and using the same.
- Fibers and materials made from them (referred to herein as “fibrous materials”) have a variety of uses. Many fibrous materials are composites. For example, U.S. Pat. No. 4,270,962 discloses a method of manufacturing fused bundles of fibers. In this method, a bundle of low and high melting-point fibers is heated under pressure at a temperature that melts the low melting-point fibers, and then cooled to provide a bar-like material. See, e.g., col. 1, lines 26-61.
- U.S. Pat. No. 4,795,668 discloses the manufacture of bicomponent fibers. These fibers are distinguishable from fused bundles of fibers in that each fiber consists of two components that “generally extend continuously along the fiber.” Col. 3, lines 38-41. Examples of bicomponent fibers contain a core surrounded by a sheath, wherein the core is made of a crystallizable material such as polyethylene terephthalate (PET), and the sheath is made of a thermosoftening material such as crystalline polypropylene or amorphous polystyrene. See, e.g., col. 3, lines 30-36; col. 4, lines 55-60. The bicomponent fibers can allegedly be incorporated into webs along with other fibers. See, e.g., col. 3, line 52 to col. 4, line 7.
- U.S. Pat. No. 4,830,094 discloses a porous non-woven fabric made of multiple fibers that allegedly form a uniform web when heated together. See, col. 1, lines 42-48. The fabric is reportedly made by carding a bicomponent fiber to form a fibrous web, which is then heated to cause the fibers to bind to each other. See, col. 2, lines 17-24. The bicomponent fiber is made of components that have crystalline melting points which differ by at least 30° C., and which can allegedly be arranged in a variety of configurations. See col. 2, lines 65-67; col. 3, lines 29-33.
- The fusing of commercially available core/sheath bicomponent fibers to provide a non-woven fabric is also disclosed by U.S. Pat. No. 5,284,704. The fabric can allegedly be used as drive belts and seals, nibs felts for marking pens, filter cloths for plate and frame filters, filtration cartridges, stamp pad ink reservoirs, and battery separators. Col. 2, lines 20-24.
- The use of bicomponent fibers to provide materials allegedly useful as tobacco smoke filters is disclosed by U.S. Pat. Nos. 5,509,430; 5,607,766; 5,620,641; and 5,633,032. In each of these patents, a core/sheath bicomponent fiber is melt-blown and formed into a porous element using methods known in the art. See, e.g., U.S. Pat. No. 5,509,430 at col. 9, lines 38-58.
- A final example of composite fibrous materials is provided by U.S. Pat. No. 5,948,529, which discloses bicomponent fibers having a core made of PET and functionalized ethylene copolymer, and a sheath made of polyethylene. See, e.g., col. 1, line 64 to col. 2,
line 1. The functionalized copolymer allegedly helps the sheath adhere to the core. See, col. 2, lines 1-3. - Until now, the physical and chemical properties of fibers and fibrous materials could not be precisely tuned to particular applications. In part, this is due to manufacturers' desire to produce materials that have consistent properties (e.g., density) and because they are extruded from raw materials, continuous fibers provide that desired consistency. However, it is very difficult and expensive to make fibers comprised of more than one type of continuous fiber using that process. It is for this reason that fibers and fibrous materials used in many applications are a compromise between cost and commercial availability and the demands of those applications. A need therefore exists for fibers and fibrous materials that can be specifically tailored for use in a wide range of applications.
- This invention is directed to fibers and materials made from them that can be used in a variety of applications such as, but not limited to, wicks and other elements designed to collect, hold, transfer or deliver liquids for medical and other applications (e.g., marker nibs, wicks used for chemical sample collection, storage, or analysis), lateral flow devices, self-sealing devices (e.g., self-sealing filters, and self-sealing pipette filters), selective absorptive devices (e.g., bio-liquid filtration, air and liquid separation/filtration filters, ion exchange filters), heat and moisture exchangers, and other diverse fibrous matrices, such as insulation, packing materials, and battery (cathode/anode) separators.
- The invention is based, in part, on the discovery that staple fibers can be used to provide fibers and fibrous materials with specific and precisely tuned chemical and physical properties.
- A first embodiment of the invention encompasses a fibrous material comprised of a binder fiber adhered to a functional fiber, wherein the binder fiber is a staple bicomponent fiber oriented in substantially the same direction as the functional fiber. The functional fiber can be a staple or continuous fiber.
- Examples of suitable binder fibers include, but are not limited to, bicomponent fibers made of the following pairs of polymers: polypropylene/polyethylene terephthalate (PET); polyethylene/PET; polypropylene/Nylon-6; Nylon-6/PET; copolyester/PET; copolyester/Nylon-6; copolyester/Nylon-6,6; poly-4-methyl-1-pentene/PET; poly-4-methyl-1-pentene/Nylon-6; poly-4-methyl-1-pentene/Nylon-6,6; PET/polyethylene naphthalate (PEN); Nylon-6,6/poly-1,4-cyclohexanedimethyl (PCT); polypropylene/polybutylene terephthalate (PBT); Nylon-6/co-polyamide; polylactic acid/polystyrene; polyurethane/acetal; and soluble copolyester/polyethylene.
- Examples of functional fibers include, but are not limited to, Nylons, cellulose-based materials, polyvinyl alcohols (e.g., phosphorylated polyvinyl alcohol), superabsorbent fibers, carbon fibers, glass fibers, ceramic fibers, and acrylic fibers.
- Preferred fibrous materials have a density of from about 0.15 g/cm3 to about 0.8 g/cm3, more preferably from about 0.2 g/cm3 to about 0.65 g/cm3, and most preferably from about 0.25 g/cm3 to about 0.5 g/cm3.
- A second embodiment of the invention is a functional wicking material comprising a binder fiber adhered to a hydrophilic functional fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the hydrophilic fiber. Examples of suitable bicomponent binder fibers include, but are not limited to, the binder pair materials listed in Table 1. Examples of monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, and CoPET. Preferred bicomponent binder fibers made of polyethylene/PET, polypropylene/PET, or CoPET/PET. The preferred monocomponent binder fibers are PE, PP, or PET. Examples of suitable hydrophilic functional fibers include, but are not limited to, high absorbent rayon, Lyocel or Tencel, hydrophilic nylon, hydrophilic acrylic fibers, and cellulosic based high absorbent fibers.
- A preferred wicking material wicks water at a rate of from about 0.05 to about 1.0 inches/second at 1 inch wicking length, preferably from about 0.1 to about 0.6 inches/second, and most preferably from about 0.2 to about 0.4 inches/second.
- Another preferred functional wicking material comprises from about 1 to about 98 weight percent, more preferably from about 5 to about 95 weight percent, and most preferably from about 5 to about 50 weight percent of binder fiber. Still another preferred wicking material comprises from about 5 to about 70, more preferably from about 5 to about 55, and most preferably from about 10 to about 40 weight percent of functional fiber.
- A third embodiment of the invention is a functional self-sealing materail comprising a binder fiber adhered to a superabsorbent fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the superabsorbent fiber. Examples of suitable bicomponent binder fibers include, but are not limited to, the pairs listed in Table 1. Examples of monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, and CoPET, or the mixtures thereof. The preferred bicomponent binder fibers are PE/PP, PE/PET, PP/PET, and CoPET/PET. The preferred monocomponent binder fibers are PE, PP, and PET. Examples of suitable superabsorbent fibers include, but are not limited to, cellulosic based fibers, hydrolyzed starch acrylonitrile graft copolymer; neutralized starch-acrylic acid graft copolymer; saponified acrylic acid ester-vinyl acetate copolymer; hydrolyzed acrylonitrile copolymer; acrylamide copolymer; modified cross-linked polyvinyl alcohol; neutralized self-crosslinking polyacrylic acid; crosslinked polyacrylate salts; neutralized crosslinked isobutylene-maleic anhydride copolymers; or salts or mixtures thereof.
- A preferred functional self-sealing material comprises from about 30 to about 95 weight percent, more preferably from about 45 to about 95 weight percent, and most preferably from about 60 to about 90 weight percent binder fiber. Another preferred functional self-sealing material comprises from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent superabsorbent fiber.
- A fourth embodiment of the invention is a functional bioabsorbent material comprising a binder fiber adhered to a bioabsorbent fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the bioabsorbent fiber. Examples of suitable bicomponent binder fibers include, but are not limited to, the pairs listed in Table 1. Examples of monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, CoPET, or mixtures thereof. The preferred bicomponent binder fibers are PE/PP, PE/PET, PP/PET, or CoPET/PET. The preferred monocomponent binder fibers are PE, PP, or PET. Examples of suitable bioabsorbent fibers include, but are not limited to, cellulose acetate, cellulosic based fibers, phosphorylated polyvinyl alcohol, glass fibers, ceramic fibers, hydrophilic nylon, alkylated nylon, CNBr modified cellulose fibers, ion exchange fiber, or mixtures thereof.
- A preferred bioabsorbent material comprises from about 30 to about 95 weight percent, more preferably from about 45 to about 95 weight percent, and most preferably from about 60 to about 90 weight percent binder fiber. Another preferred bioabsorbent material comprises from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent bioabsorbent fiber.
- A fifth embodiment of the invention is a functional selective absorption/filtration material comprising a binder fiber adhered to a functional fiber, wherein the binder fiber is a staple bicomponent or monocomponent fiber oriented in substantially the same direction as the bioabsorbent fiber. Examples of suitable bicomponent binder fibers include, but are not limited to, the pairs listed in Table 1. Examples of monocomponent binder fibers include, but are not limited to, PE, PP, PS, nylon-6, nylon-6,6, nylon-12, copolyamides, PET, PBT, and CoPET. The preferred bicomponent binder fibers are PE/PP, PE/PET, PP/PET, and CoPET/PET. The preferred monocomponent binder fibers are PE, PP, and PET. Examples of suitable functional fibers include, but are not limited to, phosphorylated polyvinyl alcohol, glass fibers, hydrophilic nylon, alkylated nylon, ion exchange fibers, and activated carbon fibers.
- A preferred functional selective absorption/filtration media comprises from about 30 to about 95 weight percent, more preferably from about 45 to about 95 weight percent, and most preferably from about 60 to about 90 weight percent binder fiber. Another preferred functional selective absorption/filtration media comprises from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent bioabsorbent fiber.
- 3.1. Definitions
- As used herein, unless otherwise specified, the term “fiber,” means as any thread-like object or structure with a high length-to-width ratio and with suitable characteristics for being processed into a fibrous materials. Fibers can be made of materials including, but not limited to, synthetic or natural materials.
- As used herein, unless otherwise specified the term “staple fibers” means fibers cut to specific lengths.
- As used herein, unless otherwise specified the term “bicomponent fiber” means a fiber combining segments of two differing compositions, generally side-by-side or one inside another (core and sheath).
- As used herein, unless otherwise specified the term “functional fiber” means a fiber having a desired function.
- As used herein, unless otherwise specified, the term “oriented in substantially the same direction” means that the longitudinal axes of less than about 35, more preferably less than about 15, and most preferably less than about 10 percent of the fibers referred to deviate from the mean longitudinal axis of the total fibers referred to by less than about 45, more preferably less than about 30, and most preferably less than about 15 degrees.
- Aspects of the invention can be understood with reference to the following drawings. It is to be understood, however, that the scope of this invention and various aspects of it are not limited by the figures, which are merely representative of a few of its embodiments:
- FIG. 1 provides a representation of a core/sheath staple binder fiber and a cross-sectional view of the same;
- FIG. 2 provides a representation of a side-by-side staple binder fiber and a cross-sectional view of the same;
- FIG. 3 provides a representation of a fiber of the invention comprised of single-component continuous functional fibers adhered to core/sheath staple binder fibers and a cross-sectional view of the same;
- FIG. 4 provides a representation of a fiber of the invention comprised of staple single-component functional fibers adhered to core/sheath staple binder fibers and a cross-sectional view of the same;
- FIG. 5 provides a representation of a fiber of the invention comprised of continuous single-component functional fibers adhered to side-by-side staple binder fibers and a cross-sectional view of the same;
- FIG. 6 provides a representation of a fiber of the invention comprised of staple single-component functional fibers adhered to side-by-side staple binder fibers and a cross-sectional view of the same;
- FIG. 7 illustrates the effect of bulk density on water absorption;
- FIG. 8 illustrates the effect of percent weight composition of functional fiber on water absorption in a wicking material;
- FIG. 9 illustrates the effect of percent weight composition of functional fiber on water wicking rate; and
- FIG. 10 compares the ink flow rate between several permanent marker nibs with felt nibs.
- This invention is based, in part, on the discovery that certain staple fibers (referred to herein as “binder fibers”) can be sintered with functional fibers to provide materials with a variety of desirable properties. Other fibrous materials used in this invention include, but are not limited to, staple or continuous functional fibers. Staple fibers are fibers cut to specific lengths. Binder fibers can be bicomponent fibers with a sheath having a low melting point and a core having a high melting point or can be monocomponent fibers having a lower melting point than other matrix fibers or web elements that are activated through the application of heat. Preferably, the present invention used bicomponent binder fibers.
- Functional fibers can have any desired function. For example, the functional fiber component of a material can be useful for wicking aqueous-based solutions will be a fiber of a hydrophilic material. A functional fiber can also be a binder fiber, and a second or third staple mono-component or bicomponent fiber can be used as structural fiber to either reinforce the matrix or control pore size and porosity of the matrix. Other functional fibers include, but are not limited to: superabsorbent fibers, which can be used to provide self-sealing materials; bioabsorbent fibers, which can be used to provide materials useful in biomedical applications (e.g., sample collecting and testing); bioactive fibers, which can be used to provide biomolecule adsorption/binding function that are useful in biomedical applications (e.g., sample collecting and testing); and low adsorptive fibers, which can be used to reduce specific adsorption of biomolecules on the fiber surface. Functional fibers can be single or multi-component (e.g., bicomponent), and staple or continuous.
- Because the ability of a particular fiber or fibrous material of the invention to perform a given function can be determined primarily or solely by the functional fiber(s) in it, this invention allows the unprecedented ability to design fibers and fibrous materials that are optimized for particular tasks.
- For example, the wicking rate of a material of the invention can be controlled by the type(s) and relative amount(s) of hydrophilic/wicking functional fiber(s) in it. Similarly, if a material to be used as a biosensor must contain a specific amount or concentration of enzymes, this can be controlled by varying the type(s) and relative amount(s) of hydrophilic or chemically activated functional fiber(s) in it. Another example of uses of the materials of the invention include, but are not limited to, self-sealing pipette tips (i.e., pipette tips that allow the passage of air, but seal when contacted with an aqueous solution). The speed with which such pipette tips seal when contacted with water can be varied by adjusting the type(s) and amount(s) of functional fiber(s) (e.g., superabsorbent functional fibers) use therein. Other variations of this principle will be readily apparent to those skilled in the art.
- Biomolecules, including, proteins, enzymes, nucleic acids, and cells can be immobilized onto different substrates by either physical adsorption or chemical covalent binding. They can be immobilized on different types of fiber materials through covalent binding or other interactions, including hydrophobic interaction, hydrogen bonds, or electrostatic interaction. There are wide varieties of chemistries available to immobilize biomolecules onto fiber materials. Many of these methods can be used to immobilize biomolecules onto the functional fiber materials disclosed herein. The materials of the invention also include materials that have controlled biomolecule adsorption ability for medical devices and diagnostic applications.
- A general understanding of the structures of certain fibers and materials of the invention is aided by the attached figures. FIGS. 1 and 2 provide representations of core/sheath and side-by-side staple fibers that can be used as binder fibers. FIGS. 3 and 5 illustrate materials that comprise single-component continuous functional fibers adhered to core/sheath and side-by-side binder fibers, respectively. Materials of the invention that comprise staple single-component functional fibers are shown in FIGS. 4 and 6. Variations of each of these embodiments are described herein and will be readily apparent to those skilled in the art.
- As shown in FIGS. 3 and 5, it is preferred that the binder and functional fiber components of a fiber of the invention are oriented in substantially the same direction. As described herein, binder and functional fibers can be oriented in substantially the same direction using techniques such as carding.
- 5.1. Components of Fibers and Fibrous Materials
- 5.1.1. Binder Fibers
- The binder fibers used in the invention include bicomponent and monocomponent staple fiber. The cross-sectional structures of binder fibers that can be used in materials of the invention are preferably core/sheath and side-by-side, as shown in FIGS. 1 and 2, respectively. However, other cross-sectional structures known in the art can also be used. These include, but are not limited to, islands-in-the-sea, matrix fibril, citrus fibril, and segmented-pie cross-section types.
- Bicomponent fibers used in the invention typically have a low-melting point component and a high-melting point component. Preferably, the low-melting point component melts at a temperature that will not disturb the crystallinity of the high-melting point component. More preferably, the low-melting point component melts at a temperature of about 30° C. lower than the melting temperature of the high-melting point component. A temperature difference of about 50° C. is even more preferred.
- Examples of binder fibers include, but are not limited to, bicomponent fibers disclosed by U.S. Pat. Nos. 4,795,668; 4,830,094; 5,284,704.; 5,509,430; 5,607,766, 5,620,641; 5,633,032; and 5,948,529, each of which is incorporated herein by reference. Other examples include, but are not limited to, bicomponent fibers made of the following pairs of polymers: Nylon-6/PET; poly-4-methyl-1-pentene/PET; poly-4-methyl-1-pentene/Nylon-6; poly-4-methyl-1-pentene/Nylon-6,6; Nylon-6/co-polyamide; polylactic acid/polystyrene; and soluble copolyester/polyethylene. Polyethylenes include, but are not limited to, high-density polyethylene (HDPE), low-density polyethylene (LDPE), and linear low-density polyethylene (LLDPE). Copolyesters include, but are not limited to, polyethylene isophthalate, PBT, and cis and trans poly-1,4-cyclohexylene-dimethylene terephthalate.
- Examples of suitable binder fibers include, but are not limited to, bicomponent fibers made of the following pairs of polymers listed in Table 1.
TABLE 1 Bicomponent Binder Fiber Materials SHEATH CORE polyethylene (PE) polypropylene (PP) ethylene-vinyl acetate copolymer polypropylene (PP) (EVA) polyethylene (PE) polyethylene terephthalate (PET) polyethylene (PE) polybutylene terephthalate (PBT) Polypropylene (PP) polyethylene terephthalate (PET) Polypropylene (PP) polybutylene terephthalate (PBT) polyethylene (PE) Nylon-6 polyethylene (PE) Nylon-6,6 polypropylene (PP) Nylon-6 polypropylene (PP) Nylon-6,6 Nylon-6 Nylon-6,6 Nylon-12 Nylon-6 copolyester (CoPET) polyethylene terephthalate (PET) copolyester (CoPET) Nylon-6 copolyester (CoPET) Nylon-6,6 glycol-modified PET (PETG) polyethylene terephthalate (PET) polypropylene (PP) poly-1,4-cyclohexanedimethyl (PCT) polyethylene terephthalate (PET) poly-1,4-cyclohexanedimethyl (PCT) polyethylene terephthalate (PET) polyethylene naphthalate (PEN) Nylon-6,6 poly-1,4-cyclohexanedimethyl (PCT) polylactic acid (PLA) polystyrene (PS) polyurethane (PU) acetal - Examples of monocomponent binder fibers include, but are not limited to, polyethylene (PE), polypropylene (PP), polystyrene (PS), Nylon-6, Nylon-6,6, Nylon-12, copolyamides, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), and copolyester (CoPET).
- The size of staple fibers may be within a wide range, typically from about 0.5 dpf (denier per filament) to about 200 dpf, preferably, from about 1 dpf to about 20 dpf. More preferably, the size of staple fibers may be from about 1.5 dpf to about 10 dpf. Typically, the length of staple fibers is from about 0.5 inches to about 20 inches, preferably, from the length is from about 1 inch to about 5 inches. More preferably, the length of stable fibers is from about 1.5 inches to about 3 inches.
- Preferably, fibrous materials typically have a bulk density from about 0.15 g/cm3 to about 0.8 g/cm3, more preferably from about 0.2 g/cm3 to about 0.65 g/cm3, and most preferably from about 0.25 g/cm3 to about 0.5 g/cm3.
- Staple bicomponent fibers suitable for use as binder fibers can be prepared by methods well known in the art. Copolymers of PET (CoPET) are prepared by copolymerizing other monomers, such as di-alcohols and di-carboxylic acids. The melting temperature of CoPET can be adjusted form about 100° C. to about 260° C., preferably, the melting temperature of CoPET is from about 110° C. to about 185° C.
- Commercially available staple bicomponent fibers include, but are not limited to, T-201 (CoPET/PET), T-202 (CoPET/PET), T-230 (PP/PCT), T-253 (HDPE/PET), T-260 (PP/PET) and T-271 (Nylon-6/Nylon-6,6), manufactured by Fiber Innovation Technology Inc., Johnson City, Tenn., and KoSa 256 (PP/PET), manufactured by KoSa Co., Charlotte, N.C.
- As described in more detail below, a preferred method of making fibers and fibrous materials of the invention comprises sintering a mixture of binder and functional fibers. Consequently, it is important that the binder fibers contain a component that is exposed to the functional fibers (e.g., the sheath of a core/sheath bicomponent fiber), and has a melting or sintering temperature lower than the temperature at which the functional fiber melts or decomposes. The functional fiber selected to provide a material with a desired property may therefore dictate what bicomponent fibers can be used as binder fibers.
- 5.1.2. Functional Fibers
- The applications of the functional fibrous composites in the invention include, but are not limited to, wicking device, self-sealing device, selective adsorption, and low retention or low adsorption.
- Wicking applications are based on the capillary function of functional fibers and binder fibers. Wicks functions include collection, storage, transfer or delivery of liquids.
- Wicking devices include, but are not limited to, writing instruments (e.g., permanent marker nibs, dry erase marker nibs, and highlight marker nibs), fragrance wicks, insecticide wicks, reservoirs for marker inks, and diagnostic devices (e.g., blood and other body fluid sample collection, storage, transfer, or analysis).
- Self-sealing devices include, but are not limited to, self-sealing filters, self-sealing pipette filters, self-sealing valves, self-sealing dispensers, and self-sealing separators.
- In the selective adsorption applications, functional fibers are selected to adsorb or filter biomolecules and other binding partners, usually through non-covalent or covalent interactions. Examples of biomolecules include, but are not limited to, biomolecules, such as proteins (e.g., antibody, antigen, enzyme), DNA/RNA, cells, etc. Examples of other binding partners include, but are not limited to, heavy ions, gas molecules, water, and oils. Applications of selective absorption devices include, but are not limited to, biomolecule (protein, DNA/RNA, cell, etc.) filtration, substrate for diagnostic devices, water purification, enzyme immobilization, oil/water separation, solid phase extraction for pre-chromatography treatment, and desiccants.
- Examples of functional fibers include, but are not limited to, Nylons, cellulose-based materials, polyvinyl alcohols, superabsorbent fibers, carbon fibers, glass fibers, ceramic fibers, and acrylic fibers.
- Because of their favorable hydrophilic microenvironments, Nylons can be particularly useful as functional fibers in applications wherein the immobilization of hydrophilic materials (e.g., bioactive agents such as drugs, oligonucleotides, polynucleotides, peptides, proteins, and cells) is desired. Other advantages of Nylons include high mechanical strength, superficial hardness, and resistence to abrasion. Examples of Nylons include, but are not limited to: Nylon-6; Nylon-9; Nylon-11; Nylon-12; Nylon-46; Nylon-46 monomer based; Nylon-6,6; Nylon-6,9; Nylon-6/66; Nylon-610; Nylon-612; and Nylon-6/T. If a Nylon is to be used for the immobilization of a bioactive agent, it is preferably pretreated to provide end-groups that are free for their attachment (e.g., via covalent bonds or ligand-receptor interactions). Suitable methods of pretreatment are known in the art and include, but are not limited to, hydrophilization. Methods for hydrophilization are known in the art and include, but are not limited to, copolymerization and surface treatment. Examples of hydrophilization of nylon from which functional hydrophilic nylon fibers can be made include, but are not limited to, those disclosed by U.S. Pat. Nos. 5,695,640, 5,643,662, 4,919,997, 4,923,454, 4,615,985, 3,970,597. Examples of hydrophilic nylons include, but are not limited to, StayGard®, manufactured by Honeywell International Inc., Hopewell, Va.
- Alkylated nylon materials can be used to immobilize nucleic acids, e.g., DNA and RNA. One method of alkylating nylon is to treat nylon with an alkylating agent such as a trialkyloxonium salt under anhydrous conditions (See e.g. U.S. Pat. Nos. 4,806,546, 4,806,631). Active Nylon fiber is nylon that has been partially hydrolyzed, O-alkylated, N-alkylated, or altered during post-treatment such that fibers made from traditional nylons and binders is treated with O-alkylated reagent. Compared with traditional nylon, active nylons have more reactive functional groups, such as O-alkylated nylon, also called nylon imidoester, which can directly form covalent bonds with protein or can transferred to other reactive functional groups such as amino, thiol, and hydroxide. For example, proteins having lysine can be directly immobilized to O-alkylated nylon through the chemical reaction between the amino group in the protein and the oxygen in the O-alkylated nylon.
- Cellulose-based materials can also be used to provide fibers and fibrous materials to which bioactive agents can be bound or trapped (e.g., via surface hydroxyl groups). One example of cellulose-based material is rayon, which is a regenerated cellulose fiber. In the production of rayon, purified cellulose is chemically converted into a soluble compound. A solution of this compound is passed through the spinneret to form soft filaments that are then converted or “regenerated” into cellulose. Rayon, especially high absorbent rayon, is a high water absorbent material. Examples of commercially available high absorbent rayon are Acordis Rayon-6140 and Rayon-6150, manufactured by Acordis Acordis Cellulosic Fibers Inc., Axis, Alabama.
- Rayon and other cellulose fiber materials can be activated to immobilize biomolecules. For example, the hydroxyl groups in rayon are activated by treating rayon with an alkaline solution, followed by reaction with cyanogen bromide, 1,1-carbonyldiimidazole (CDI), or p-toluenesulfonyl chloride (tosyl chloride). Another method to manufacture high protein binding cellulose fiber is post-treatment. In this method, the fibers are made from cellulose fiber and binder fibers, such as rayon, and subsequently treated with activation reagents, such as, CNBr, CDI or tosyl chloride.
- Another cellulosic based functional fiber are Tencel or Lyocel. Tencel is a new form of cellulosic fiber, manufactured using an organic solvent spinning process without the formation of a derivative. For Tencel production, wood cellulose is dissolved directly in n-methyl morpholine n-oxide at high temperature and pressure. The cellulose precipitates in fiber form as the solvent is diluted. Subsequently, the fiber is purified and dried while the solvent is recovered and reused. Tencel has all the advantages of rayon, and in many respects is superior to rayon because of its high strength in both dry and wet states and high absorbency. In addition, the closed-loop manufacturing process used for Tencel is environmentally friendlier than that used to manufacture rayon. Examples of commercially available Tencel and Lyocel are Acordis Tencel®, manufactured by Acordis Acordis Cellulosic Fibers Inc., and Lyocel®, manufactured by Lenzing Aktiengesellschaft, A-4860 Lenzing, Austria.
- Examples of suitable bioabsorbent fibers include, but are not limited to, cellulose acetate, cellulosic based fibers, phosphorylated polyvinyl alcohol, glass fibers, ceramic fibers, hydrophilic nylon, alkylated nylon, CNBr modified cellulose fibers, ion exchange fiber, or mixtures thereof. Absorbent fibers are made from materials including, but are not limited to, phosphorylated polyvinyl alcohol, glass fibers, hydrophilic nylon, alkylated nylon, ion exchange fibers, and activated carbon fibers.
- Superabsorbent fibers are made from materials sometimes referred to as “superabsorptive polymers.” Such materials can absorb large amounts of water and retain their structural integrity when wet. See Tomoko Ichikawa and Toshinari Nakajima, “Superabsorptive Polymers,”Concise Polymeric Materials Encyclopedia, 1523-1524 (Joseph C. Salamone, ed.; CRC; 1999). Examples of superabsorbent materials from which functional fibers can be made include, but are not limited to, those disclosed by U.S. Pat. Nos. 5,998,032; 5,750,585; 5,175,046; 5,939,086; 5,836,929; 5,824,328; 5,797,347; 4,820,577; 4,724,114; and 4,443,515, each of which is incorporated herein by reference.
- Specific superabsorbent fibers are made of hydrolyzed starch acrylonitrile graft copolymer; neutralized starch-acrylic acid graft copolymer; saponified acrylic acid ester-vinyl acetate copolymer; hydrolyzed acrylonitrile copolymer; acrylamide copolymer; modified cross-linked polyvinyl alcohol; neutralized self-crosslinking polyacrylic acid; crosslinked polyacrylate salts; neutralized crosslinked isobutylene-maleic anhydride copolymers; or salts or mixtures thereof. Particularly preferred superabsorbent fibers are made from sodium polyacrylic acid and the sodium salt of poly(2-propenamide-co-2-propenoic acid). Commercially available superabsorbent fibers include Camelot® 908 made from polyacrylic acid, and manufactured by Camelot Ltd., Canada, and Toyobo® N-38, made from cellulosic based rayon and manufactured by Toyobo Co. LTD., Osaka, 530-8230 Japan.
- Carbon fibers can also be used in applications that require the immobilization of bioactive agents (e.g., enzymes), and can also be used to provide materials that are electrically conductive (e.g., for use as enzyme electrodes). Staple carbon fibers in particular have good mechanical strength, conductivity, and flexibility, and can be processed in a relatively easy manner. Carbon fibers can be used to passively adsorb biomolecules or they can be modified to covalently bond to biomolecules. Carbon fibers can be activated by reacting with oxide acid, such as nitric acid, or by treating a fiber made from carbon fiber and binder with activation reagents, such as nitric acid, after fiber formation. Activated carbon fibers can be used in air and water purification, recovery of organic compounds and solvents, deodorizing and decoloring, and ozone removal. Examples of commercially available activated carbon fibers (ACF) include, but are not limited to, Finegard® FED. CIR.-300-4, manufactured by Toho Carbon Fibers Inc., Japan, and rayon based ACF, manufactured by Carbon Resources Inc., Huntington Beach, Calif.
- Enzymes and other bioactive agents can also be immobilized on glass and ceramic fibers, particularly those whose surfaces have been treated to provide readily accessible and/or reactive functional groups (e.g., hydroxyl, thiol, amine, carboxylic acid, and aldehyde groups). Particular advantages of these types of fibers is their resistance to microbial attack, high thermal stability, and high dimensional stability. Examples of glass and ceramic fibers that can be used as functional fibers include, but are not limited to, Chop Vantage® and Delta Chop®, manufactured by PPG Industries Inc., Pittsburgh, Pa. and H Filament-700, manufactured by Advanced Glass Yams LLC, Aiken, S.C.
- Other examples of functionalized binder fiber materials also include, glass fibers treated with organofunctional silanes, e.g. aminoalkyl-functional silanes.
- Ion exchange fibers are used to develop cleaning systems for liquor waste and exhaust from nuclear power plants. Ion exchange fibers include, but are not limited to, strong acid based, weak acid based, strong base based, and weak base based. Examples of commercially available ion exchange fibers that can be used as functional fibers include, but are not limited to, Ionex® IEF-SC (strong acid), manufactured by Toray Industries Inc., Japan; Nitivy Ion Exchange Fiber (strong base), manufactured by Nitivy Inc., Japan; Fiban® K-1 (strong base), Fiban® A-1 (weak acid), and Fiban(K-4 (weak base), and Fiban® AK-22 (has both anion and cation exchange capabilities), manufactured by Fiba Inc., Minsk, Belarus.
- 5.2. Manufacture of Fibers and Fibrous Materials
- Fibers and fibrous materials of the invention can be readily made using techniques known in the art. In a preferred method, one or more types of functional fiber are selected based on the desired function of the final material. At least one binder fiber is selected that contains at least one component that will sinter at a temperature lower than the temperature at which the functional fiber(s) melt or decompose. The functional and binder fibers are then combined in a ratio determined by factors readily apparent to those skilled in the art. Such factors include, but are not limited to, the desired functionality of the final material, chemical stability, thermal stability, strength, flexibility, hardness, and other physical and chemical characteristics. However, the relative amount of binder fiber cannot be so little that the final material will not hold together under the conditions in which it is expected to be used.
- Factors such as the desired mechanical strength of the final material will often dictate the ratio of binder fiber to functional fiber. For example, materials made with functional fibers that have little mechanical strength (e.g., cellulose-based fibers) will require a greater binder-to-functional fiber ratio than materials such as Nylon in order to provide a strong final material.
- While the ratio of binder fiber(s) to functional fiber(s) will vary with the fibers used and the intended application of the final product, a typical material of the invention has from about 1 to about 98 weight percent, more preferably from about 5 to about 95 weight percent, and most preferably from about 5 to about 50 weight percent binder fiber, and from about 5 to about 70 weight percent, more preferably from about 5 to about 55 weight percent, and most preferably from about 10 to about 40 weight percent functional fiber.
- The mixture of functional and binder fibers is blended and carded by a carder, such as those manufactured by J.D. Hollingsworth on Wheels, Inc., Greenville, S.C. Carding is a well-known technique, which aligns the fibers, and can be carried out using conventional carding equipment. A carder is a machine that combs or works fibers between the fine surfaces or points of a toothed surface in order to separate, clean, and align the fibers in a parallel orientation. Carding is the process that transforms entangled fiber mats into parallel fibrous slivers that are untwisted strand. Carding performs four major functions, a carder blends binder fibers and functional fibers, separates every fiber individually from the other fibers, arranges the fibers to a high degree of parallelization, and delivers the fiber to the outfeed in a consistently even manner. This last function is the most important step in the carding process. This is the point where the controllable linear density of the fiber stream is established.
- The carded material is then heated in an oven, optionally under pressure, at a temperature sufficient to sinter the binder and functional fibers together, yet at a temperature insufficient to melt or damage the functional fibers. The mixture can either be heated in a mold or forced through a dye to achieve a product of a desired size, shape, and density. Once sintered, the product is cooled to provide the material of the invention.
- Optionally, prior to sintering, additional materials can be added to the binder and functional fiber mixture. Additional materials include, but are not limited to, finishing agents and dyes. Examples of surface finishing agents include, but are not limited to, surfactants, lubricants, softeners, antistats, and other finishing agents, such as, antioxidants, antimicrobials. Surfactants and lubricants, which can be added to facilitate the extrusion of sintered mixtures, are well known in the art and include, but are not limited to, Tween-20® and Afilan® (fatty acid polyglycol ester). The relative amounts of these materials will be readily apparent to those skilled in the art, but typically range from about 0.005 to about 1 weight percent, more preferably from about 0.01 to about 0.75 weight percent, and most preferably from about 0.015 to about 0.5 weight percent of the mixture prior to sintering.
- The sintered material can be further processed in a variety of ways. For example, the material can be cut, molded, or polished. If the material is a fiber (e.g., it was made by extruding the heated mixture of binder and functional fibers through a mold), it can be woven or heated to provide woven and non-woven fabrics. Further processing can also involve the immobilization of bioactive agents (e.g., drugs, peptides, proteins, or cells) onto the functional fiber portions of the final material. In some cases, the product may need to be processed to provide functional groups to which the bioactive agents can be bound.
- The manufacture of some specific materials of the invention is described in further detail in the following non-limiting examples.
- The fiber material comprised T-202 (CoPET/PET, weight ratio was about 50 to 50) staple fiber, manufactured by Fiber Innovation Technology Inc, Johnson City, Tenn., and Tencel®, manufactured by Acordis Cellulosic Fibers Inc, Axis, Ala. The staple fiber diameter of T-202 was 3 dpf and length was 1.5 inches. The staple fiber diameter of Tencel® was 3 dpf, and length was 1.5 inches. The material was blended and carded in John D. Hollingsworth on Wheels, Inc., Greenville, S.C. Three tests were carried out. For each formulation, three slivers (bundles) of fiber material with total size of 110, 120 and 130 g/yard, respectively, were introduced into the heating zone of an oven. Oven was 70 inches in length, 9.5 inches in width, and 15 inches in depth. The oven processing temperature was 200° C., the die control temperature was 90° C., and the pulling rate was 4 inches/min. The resulting functional fibrous material was shaped into a rectangular rod by pulling it through a die, and then the fibrous rod was introduced into a cooling zone where the rod was cooled by directing compressed cooling air. The comparison of the water absorption and water wicking rate properties of the functionalized formulations of (T-202/Tencel® blended fibers) with pure T-202 are illustrated in FIGS. 7, 8, and9.
- Given a specific fiber bulk density, the water absorption for the composites with Tencel® content was much higher than that of pure T-202. Tencel® is a cellulosic based fiber, which is a high water absorbent, and therefore functions as a high water absorption component in the composites. The amount of water absorption can be controlled by changing fiber bulk density. As shown in FIG. 7, the water absorption decreased as the bulk density increased. The water absorption can also be controlled by changing the fiber formulation. As shown in FIG. 8, as the Tencel® content changed from 0 to 30 weight percent, the water absorption doubled from 120% to 250 weight percent of fiber component.
- The capillary force between water and fiber components affect the water wicking rate of fiber composites. The hydrophilic feature of cellulosic based fibers attributed a very good water wicking property to the fiber composites. As shown in FIG. 8, the higher the Tence® content, the higher the water wicking rate. In summary, by changing the density and fiber formulation, both water absorption and water wicking property were controlled.
- The binder fiber was T-202 with 3 dpf in size and 1.5 inches in length. The functional fibers were Tencel® and rayon-6150, respectively. The permanent marker nib formulation was pure T-202, and there were two formulations for dry erase marker nibs, Tencel®/T-202 and rayon-6150/T-202. The oven processing temperature was 210° C., the die control temperature was 100° C., and the pulling rate was 4 inches/minute. The die cross section was 3.7 mm in height and 5.7 mm in width. The cooled composites rectangular rods were cut into wedge shaped marker nibs of 40 mm in length.
- An alcohol based dry erase marker ink was used to test the fiber composite ink wicking property. The test writing machine was made by Hutt, Germany. The machine was designed for pen writing on test paper. When the dry erase marker nibs were tested, the machine was modified by replacing writing paper with whiteboard covering with a non-osmotic smooth writing surface. The markers were fixed on the holders of the test writing machine at 60°, and the load applied on every marker was 120 g. The feed speed of test paper or test covering was 450 mm/min, and the writing-out speed was 4.5 m/min. The weight of each marker was measured at the initial, and every 50 m after writing test. FIG. 10 illustrates a comparison of the ink flow of permanent marker nibs with felt nibs with compositions as described in Table 2.
TABLE 2 Nib Material Group Material A 30% Tencel ®, 70% T-202 B 10% Tencel ®, 70% T-202 C 10% Rayon, 70% T-202 - The dry erase marker ink was a suspension comprising insoluble pigments and liquid vehicle. The capillary force, average pore size and porosity of fiber nibs determined the ink wicking property and ink flow. Good capillary force between the liquid vehicle and fibrous materials ensured a high ink flow. Sufficiently large pore size and suitable porosity were critical to allow ink pigment flow through. As shown in FIG. 10, all three formulations of sample A, B and C had higher ink flow, which can be attributed to the high hydrophilictiy and high capillary force of the additive fibers.
- Staple nylon fiber was mixed with staple binder fiber, and the mixture was carded into slivers. Fiber slivers were sintered in a heated oven to make fibrous rods. The sintered fibrous rods were cut into suitably sized samples, and then nylon fiber component in the samples was activated by alkylating reagent. The alkylated nylon components were used to immobilize protein, or modified by subsequent chemical methods, such as thiol functionalization, hydrazine functionalization, and aldehyde functionalization agents.
- 6.3.1. Fiber Component Sintering
- The mixture of fibers comprised 30 percent by weight of staple bicomponent nylon-6/nylon-6,6, T-270, with size of 3 dpf, and length of 1.5 inches, and 70 percent of staple binder fiber, CoPET/PET, T-202, with size of 3 dpf, and length of 1.5 inches, both manufactured by Fiber Innovation Technology, Inc. The material was mixed and carded in John D. Hollingsworth on Wheels, Inc. The total size of fiber slivers were 110 grams/yard. The oven processing temperature was 190° C., the die control temperature was 90° C., and the pulling rate was 4 inches/minute. The resulting functional fibrous material was shaped into rectangular rods by pulling it through a die with 3.5 mm in width, and 9.5 mm in length.
- 6.3.2. Nylon Fiber Component Activation—Post-Treatment
- 1). O-alkylated Functionalization
- The sintered fibrous rods were cut into samples with dimension of 5.0×5.0×0.5 mm. 5 pieces of the samples were added into a screw-capped test tube. Subsequently to each was added an alkylation reagent and dimethyl sulfate. Each samples was covered in a closed test tube, and immediately immersed into boiling water bath for 4 minutes without stirring and submerged into an ice bath to stop the reaction. Excess dimethyl sulfate was removed on a suction filter and the alkylated nylon was washed several times with ice-cold methanol. The activated samples were immediately used for the enzyme attachment or subsequent chemical modification.
- 2). Thiol Functionalization
- Into a screw-capped test tube containing the five pieces of O-alkylated nylon fiber component, was added 10 ml 0.5 M mecarptoethylamine aqueous solution, and the mixture was shaken for 30 minutes at room temperature. The excess reagents were separated by vacuum filtration and the modified nylon matrices were rinsed with five portions of PBS buffer solution (0.01 M, pH 7.2).
- 3). Hydrazine Functionalization
- Into a screw-capped test tube containing the five pieces of O-alkylated nylon fiber component, was added 10 ml 0.5 M dihydrazine aqueous solution, and the mixture was shaken for 30 minutes at room temperature. The excess reagents were separated by vacuum filtration and the modified nylon matrices were rinsed with five portions of PBS buffer solution(0.01 M, pH 7.2).
- 4). Aldehyde Functionalization
- Into a screw-capped test tube containing the five pieces of O-alkylated nylon fiber component, was added 10 ml 0.5 M ethylenediamine solution, and the mixture was shaken for 30 minutes at room temperature. The excess reagents were separated by vacuum filtration and the modified nylon matrices were rinsed with five portions of PBS buffer solution (0.01 M, pH 7.2).
- Into a screw-capped test tube containing the five pieces of amino functionalized nylon fiber component, was added 10% glutaric dialdehyde aqueous solution, and the mixture was shaken for 30 minutes at room temperature. The excess reagents were separated by vacuum filtration and the modified nylon matrices were rinsed with five portions of PBS buffer solution (0.01 M, pH 7.2).
- 6.3.3. Protein Immobilization and Quantitative Detection
- An enzymatic amplification method was developed to detect immobilized biomolecule on the nylon fiber component. The enzymatic amplification method was based on immobilization of bioactive enzyme onto the fiber. The immobilized enzyme can quantitative carry out specific chemical reactions and the product of these specific chemical reactions has a special physical property that can be detected with unaided human eye or a instrument, such as UV-VIS, such as horseradish peroxidase (HRP) labeled protein. By optimizing the chemical composition, a linear relationship between the enzyme quantity and the intensity of color absorption at wavelength 450 nm can be set up. Immobilized protein amount can be determined through the comparison between the sample and the standard curve.
- 1). Protein Immobilization
- A protein solution at 1 mg/ml in a PBS buffer (0.01 m, pH 7.2) was added to the treated fiber. After 30 minutes, the nylon fiber component was washed with deionized water and dried at room temperature.
- 2). Quantitative Determination of Immobilized Protein
- The following were the procedures used to quantitatively determine IgG binding on activated nylon fibrous matrices. Two pieces of test samples were placed into 1.5 ml centrifuge PE tubes (VWR) and 0.5
ml 1 μg/ml IgG-HRP, 1 mg/ml IgG deionized water solution was added to each test tube. The test tubes were shaken on a vibrator for two hours at room temperature. The samples were removed from the test tubes and dried using a KimWipe(g. The test pieces were washed with three portions of 1 ml deionized water and the dried pieces were placed into dry 1.5 ml centrifuge tubes. 1 ml TMB Turbo solution (Pierces) was added to each tube, and each tube was incubated at room temperature for 15 minutes. The reaction was terminated by adding 0.5 ml of 2M HCl, the solution was transferred to a 1.5 ml UV cuvette, and the UV absorption was measured at the wavelength of 450 nm. - The embodiments of the invention described above are intended to be merely exemplary, and those skilled in the art will recognize, or will be able to ascertain using routine experimentation, numerous equivalents of the specific materials, procedures, and devices described herein. All such equivalents are considered to be within the scope of the invention and are encompassed by the appended claims.
Claims (36)
Priority Applications (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/838,200 US20020193030A1 (en) | 2001-04-20 | 2001-04-20 | Functional fibers and fibrous materials |
JP2003578622A JP2005520067A (en) | 2001-04-20 | 2002-04-15 | Functional fibers and materials |
AU2002367813A AU2002367813A1 (en) | 2001-04-20 | 2002-04-15 | Functional fibers and fibrous materials |
PCT/US2002/011829 WO2003080904A2 (en) | 2001-04-20 | 2002-04-15 | Functional fibers and fibrous materials |
CNA028125339A CN1543520A (en) | 2001-04-20 | 2002-04-15 | Functional fibers and fibrous materials |
EP02806820A EP1392896A4 (en) | 2001-04-20 | 2002-04-15 | Functional fibers and fibrous materials |
US10/464,443 US20030211799A1 (en) | 2001-04-20 | 2003-06-19 | Functional fibers and fibrous materials |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/838,200 US20020193030A1 (en) | 2001-04-20 | 2001-04-20 | Functional fibers and fibrous materials |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/464,443 Continuation US20030211799A1 (en) | 2001-04-20 | 2003-06-19 | Functional fibers and fibrous materials |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020193030A1 true US20020193030A1 (en) | 2002-12-19 |
Family
ID=25276530
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/838,200 Abandoned US20020193030A1 (en) | 2001-04-20 | 2001-04-20 | Functional fibers and fibrous materials |
US10/464,443 Abandoned US20030211799A1 (en) | 2001-04-20 | 2003-06-19 | Functional fibers and fibrous materials |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/464,443 Abandoned US20030211799A1 (en) | 2001-04-20 | 2003-06-19 | Functional fibers and fibrous materials |
Country Status (6)
Country | Link |
---|---|
US (2) | US20020193030A1 (en) |
EP (1) | EP1392896A4 (en) |
JP (1) | JP2005520067A (en) |
CN (1) | CN1543520A (en) |
AU (1) | AU2002367813A1 (en) |
WO (1) | WO2003080904A2 (en) |
Cited By (37)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003024891A2 (en) * | 2001-09-15 | 2003-03-27 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Method and device for producing straight ceramic fibres |
US20030215633A1 (en) * | 2002-03-13 | 2003-11-20 | Morris Steven J. | Fiber glass product incorporating string binders |
US20050153132A1 (en) * | 2002-04-10 | 2005-07-14 | Filtrona Richmond, Inc. | Melt blown fiber structures for use in high strength wicks |
EP1781391A2 (en) * | 2004-03-01 | 2007-05-09 | Filtrona Richmond, Inc. | Bicomponent fiber wick |
US20070111194A1 (en) * | 2003-12-15 | 2007-05-17 | Preentec Ag | Method for the concentration and purification of biological compounds |
US20070149690A1 (en) * | 2005-12-23 | 2007-06-28 | Boston Scientific Scimed, Inc. | Functionalized block copolymers |
US7309372B2 (en) | 2004-11-05 | 2007-12-18 | Donaldson Company, Inc. | Filter medium and structure |
US20080041791A1 (en) * | 2003-03-07 | 2008-02-21 | Seldon Technologies, Llc | Purification of fluids with nanomaterials |
EP1894609A1 (en) * | 2004-11-05 | 2008-03-05 | Donaldson Company, Inc. | Filter medium and structure |
US20080164632A1 (en) * | 2007-01-09 | 2008-07-10 | Oriental Institute Of Technology | DNA counterfeit-proof fiber together with spinning nozzle and method used to produced thereof |
US7419601B2 (en) | 2003-03-07 | 2008-09-02 | Seldon Technologies, Llc | Nanomesh article and method of using the same for purifying fluids |
US20080274657A1 (en) * | 2004-03-31 | 2008-11-06 | Hirohumi Yashiro | Woven Fabric and Articles Made by Using the Same |
US20090141376A1 (en) * | 2007-02-26 | 2009-06-04 | Smith Lloyd M | Surface plasmon resonance compatible carbon thin films |
WO2009079674A2 (en) * | 2007-12-20 | 2009-07-02 | Lenzing Ag | Yarns, high wear resistance fabrics and objects made therefrom |
US20100065653A1 (en) * | 2008-08-01 | 2010-03-18 | Wingo James P | Wicks for dispensers of vaporizable materials |
US20100176210A1 (en) * | 2009-01-09 | 2010-07-15 | Porex Corporation | Hydrophilic Porous Wicks for Vaporizable Materials |
US20100190891A1 (en) * | 2007-05-09 | 2010-07-29 | Borealis Technology Oy | Polyefin compositions with highly crystalline cellulose regenrate fibers |
US20100324510A1 (en) * | 2007-06-27 | 2010-12-23 | Molnlycke Health Care Ab | device for treatment of wounds with reduced pressure |
US20110108630A1 (en) * | 2006-06-22 | 2011-05-12 | Ward Bennett C | Bonded Fiber Wick |
US7985344B2 (en) * | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
WO2012145379A1 (en) | 2011-04-19 | 2012-10-26 | Porex Corporation | Liquid sampling, storage, transfer and delivery device |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
CN103263806A (en) * | 2012-12-11 | 2013-08-28 | 张延青 | Novel filter material for removing ultrafine particles in high temperature flue gas and production technology thereof |
US20130330994A1 (en) * | 2012-05-31 | 2013-12-12 | Wm. T. Burnett Ip, Llc | Nonwoven Composite Fabric and Panel Made Therefrom |
US20140079914A1 (en) * | 2004-04-29 | 2014-03-20 | The Procter & Gamble Company | Polymeric structures and method for making same |
CN104441811A (en) * | 2014-12-09 | 2015-03-25 | 常熟涤纶有限公司 | High-strength low-shrinkage polyester filament |
US9114558B1 (en) * | 2013-08-26 | 2015-08-25 | Amad Tayebi | Method of making a non-clogging porous fibrous mass for air scenting |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
US20160095951A1 (en) * | 2014-10-06 | 2016-04-07 | Kci Licensing, Inc. | Ion exchange absorbent systems, apparatuses, and methods |
CN108084670A (en) * | 2017-11-24 | 2018-05-29 | 杭州雅姿窗饰材料有限公司 | A kind of composite layer for being used to prepare venetian blind curtain sheet interlayer |
US11441014B2 (en) * | 2015-04-22 | 2022-09-13 | Ensinger Gmbh | Translucent fibre composite materials comprising chemically modified polymers |
US12098482B2 (en) | 2017-05-11 | 2024-09-24 | Carl Freudenberg Kg | Textile flat structure for electrical insulation |
US12172111B2 (en) | 2004-11-05 | 2024-12-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
Families Citing this family (49)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6743273B2 (en) | 2000-09-05 | 2004-06-01 | Donaldson Company, Inc. | Polymer, polymer microfiber, polymer nanofiber and applications including filter structures |
US20040192141A1 (en) * | 2001-09-06 | 2004-09-30 | Alain Yang | Sub-layer material for laminate flooring |
US20050160711A1 (en) * | 2004-01-28 | 2005-07-28 | Alain Yang | Air filtration media |
US20040176003A1 (en) * | 2001-09-06 | 2004-09-09 | Alain Yang | Insulation product from rotary and textile inorganic fibers and thermoplastic fibers |
US20070060005A1 (en) * | 2001-09-06 | 2007-03-15 | Certainteed Corporation | Insulation product from rotary and textile inorganic fibers with improved binder component and method of making same |
US7597733B2 (en) | 2004-01-23 | 2009-10-06 | Ric Investments, Llc | Liquid absorbing filter assembly and system |
WO2006002395A2 (en) | 2004-06-24 | 2006-01-05 | Jeffrey Sherwood | Scent devices and methods |
US8702670B2 (en) * | 2004-06-30 | 2014-04-22 | Mcneil-Ppc, Inc. | Intravaginal device with controlled expansion |
US20060057351A1 (en) * | 2004-09-10 | 2006-03-16 | Alain Yang | Method for curing a binder on insulation fibers |
CN101098741B (en) * | 2004-11-05 | 2012-10-10 | 唐纳森公司 | Filter medium and structure |
DE102005005437A1 (en) * | 2005-02-05 | 2006-08-10 | Eppendorf Ag | Filter pipette tip |
US20060217813A1 (en) * | 2005-03-22 | 2006-09-28 | Posnick Jeffrey C | Facial implant |
TW200719507A (en) * | 2005-11-08 | 2007-05-16 | Univ Chang Gung | Making method for separator with high ionic conductivity |
DE202006007567U1 (en) * | 2006-05-10 | 2006-07-27 | Colbond B.V. | Nonwoven fabric, tufted nonwoven fabric and products containing substances |
US20060287654A1 (en) * | 2006-08-11 | 2006-12-21 | Jeffrey Posnick | Implant securing device and method |
CN101528824B (en) * | 2006-08-18 | 2012-05-09 | 珀雷克斯公司 | Sintered polymeric materials and applications thereof |
MY157276A (en) * | 2007-02-12 | 2016-05-31 | Porex Corp | Porous barrier media comprising color change indicators |
WO2008108295A1 (en) * | 2007-03-08 | 2008-09-12 | Kuraray Kuraflex Co., Ltd. | Nonwoven fabric |
US8932470B2 (en) * | 2008-04-14 | 2015-01-13 | Asahi Kasei Medical Co., Ltd. | Filter material for removing aggregates and method of filtering blood product |
KR101654179B1 (en) * | 2008-10-14 | 2016-09-06 | 가부시키가이샤 와이.지.케이 | Fishing line having integrated composite yarn containing short fibers |
US20110169182A1 (en) * | 2008-10-23 | 2011-07-14 | Honeywell International Inc. | Methods of forming bulk absorbers |
US8357220B2 (en) * | 2008-11-07 | 2013-01-22 | Hollingsworth & Vose Company | Multi-phase filter medium |
US20100213002A1 (en) * | 2009-02-26 | 2010-08-26 | Honeywell International Inc. | Fibrous materials, noise suppression materials, and methods of manufacturing noise suppression materials |
CN102134758B (en) * | 2010-01-27 | 2012-06-13 | 大亚科技股份有限公司 | Method for preparing tows for modified cigarettes |
KR101856793B1 (en) | 2010-03-31 | 2018-06-20 | 엔바이로센트 아이엔씨. | Methods, compositions and articles for olfactory-active substances |
US8679218B2 (en) | 2010-04-27 | 2014-03-25 | Hollingsworth & Vose Company | Filter media with a multi-layer structure |
SG186917A1 (en) * | 2010-07-05 | 2013-02-28 | Achira Labs Pvt Ltd | Methods of making a diagnostic device by interweaving hydrophobic and hydrophilic fibers, and diagnostic device therefrom |
WO2012040333A1 (en) | 2010-09-23 | 2012-03-29 | Porex Corporation | Filtered adapter for pipettors |
ES2654587T3 (en) * | 2010-10-27 | 2018-02-14 | Teijin Frontier Co., Ltd. | Cut fibers of biomass-derived polyester and non-woven 'wet' fabrics formed from them |
EP2721103A1 (en) | 2011-06-15 | 2014-04-23 | Porex Corporation | Sintered porous plastic liquid barrier media and applications thereof |
JP2014525282A (en) | 2011-08-15 | 2014-09-29 | ポレックス コーポレーション | Conductive composite wick and method of making and using the same |
WO2013046098A2 (en) | 2011-09-29 | 2013-04-04 | Koninklijke Philips Electronics N.V. | Pressure sensing tube with in-line contaminant blocking |
US9694306B2 (en) | 2013-05-24 | 2017-07-04 | Hollingsworth & Vose Company | Filter media including polymer compositions and blends |
CN104078103A (en) * | 2014-07-16 | 2014-10-01 | 江苏长海复合材料股份有限公司 | Insulation reinforcing mat for cable and preparing method thereof |
CN105297230A (en) * | 2014-07-22 | 2016-02-03 | 句容市润龙纺织品有限公司 | Functional quick-dry moisture absorbable and breathable fibers and preparation method thereof |
US9149552B1 (en) | 2014-09-29 | 2015-10-06 | Enviroscent, Inc. | Coating providing modulated release of volatile compositions |
WO2016052386A1 (en) * | 2014-09-30 | 2016-04-07 | 東洋紡株式会社 | Nucleic acid separation/purification method, solid carrier, device, and kit |
CN104460382A (en) * | 2014-12-17 | 2015-03-25 | 苏州龙杰特种纤维股份有限公司 | Sea-island filament PET and COPET metering pump switch interlocking circuit |
WO2016201089A1 (en) | 2015-06-09 | 2016-12-15 | Enviroscent, Inc. | Formed three-dimensional matrix and associated coating providing modulated release of volatile compositions |
CN106283318A (en) * | 2015-06-24 | 2017-01-04 | 余姚市创辉树脂笔头厂 | A kind of marker fiber bar stock manufacture method |
USD800286S1 (en) | 2015-07-31 | 2017-10-17 | Enviroscent, Inc. | Collection of scent-infused wound sheets |
DE202016102602U1 (en) * | 2016-05-13 | 2016-07-21 | Mantz airmotions GmbH & Co. KG | Perfume body |
EP3257585A1 (en) | 2016-06-16 | 2017-12-20 | bioMérieux | Tip and device for sampling colonies of microorganisms and sampling method implementing same |
EP4520867A2 (en) | 2016-09-30 | 2025-03-12 | Enviroscent, Inc. | Articles formed of pulp base materials with modulated scent release |
US11491297B2 (en) | 2017-01-09 | 2022-11-08 | ResMed Pty Ltd | Humidifier for a respiratory therapy device |
CN109341762B (en) * | 2018-10-08 | 2020-10-13 | 上海晨光文具股份有限公司 | Fiber water storage core performance detection and rapid judgment method and water passing amount detector |
IT201900006409A1 (en) | 2019-04-29 | 2020-10-29 | Advanced Nonwovens Tech Srl | Non-woven fabric for multi-tubular sheaths |
CN113463394B (en) * | 2021-06-10 | 2023-06-06 | 阜阳和益鞋业有限公司 | Deodorizing and antibacterial indoor cotton shoe and production process thereof |
IT202100019670A1 (en) * | 2021-07-23 | 2023-01-23 | Arianna Fibers Srl | Process for the production of natural and/or synthetic and/or artificial fiber concentrates in polymeric matrices in the form of granules |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4176145B2 (en) * | 1993-10-21 | 2008-11-05 | ザ プロクター アンド ギャンブル カンパニー | Menstrual absorption structure |
US5601545A (en) * | 1994-06-29 | 1997-02-11 | Kimberly-Clark Corporation | Disposable absorbent article with improved waist containment and gasketing |
US5879343A (en) * | 1996-11-22 | 1999-03-09 | Kimberly-Clark Worldwide, Inc. | Highly efficient surge material for absorbent articles |
US6610903B1 (en) * | 1998-12-18 | 2003-08-26 | Kimberly-Clark Worldwide, Inc. | Materials for fluid management in personal care products |
US6103181A (en) * | 1999-02-17 | 2000-08-15 | Filtrona International Limited | Method and apparatus for spinning a web of mixed fibers, and products produced therefrom |
NL1012661C2 (en) * | 1999-07-21 | 2001-01-23 | Vepetex B V | Yarn and method for manufacturing a yarn with super absorbent fibers. |
JP2003506592A (en) * | 1999-08-06 | 2003-02-18 | イーストマン ケミカル カンパニー | Polyester having a controlled melting point and fibers formed therefrom |
-
2001
- 2001-04-20 US US09/838,200 patent/US20020193030A1/en not_active Abandoned
-
2002
- 2002-04-15 AU AU2002367813A patent/AU2002367813A1/en not_active Abandoned
- 2002-04-15 WO PCT/US2002/011829 patent/WO2003080904A2/en not_active Application Discontinuation
- 2002-04-15 CN CNA028125339A patent/CN1543520A/en active Pending
- 2002-04-15 JP JP2003578622A patent/JP2005520067A/en active Pending
- 2002-04-15 EP EP02806820A patent/EP1392896A4/en not_active Withdrawn
-
2003
- 2003-06-19 US US10/464,443 patent/US20030211799A1/en not_active Abandoned
Cited By (75)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003024891A2 (en) * | 2001-09-15 | 2003-03-27 | Thüringisches Institut für Textil- und Kunststoff-Forschung e.V. | Method and device for producing straight ceramic fibres |
WO2003024891A3 (en) * | 2001-09-15 | 2003-07-03 | Thueringisches Inst Textil | Method and device for producing straight ceramic fibres |
US20030215633A1 (en) * | 2002-03-13 | 2003-11-20 | Morris Steven J. | Fiber glass product incorporating string binders |
US20050153132A1 (en) * | 2002-04-10 | 2005-07-14 | Filtrona Richmond, Inc. | Melt blown fiber structures for use in high strength wicks |
US20080041791A1 (en) * | 2003-03-07 | 2008-02-21 | Seldon Technologies, Llc | Purification of fluids with nanomaterials |
US7815806B2 (en) | 2003-03-07 | 2010-10-19 | Cooper Christopher H | Purification of fluids with carbon nanotubes having attached functional group |
US7419601B2 (en) | 2003-03-07 | 2008-09-02 | Seldon Technologies, Llc | Nanomesh article and method of using the same for purifying fluids |
US20070111194A1 (en) * | 2003-12-15 | 2007-05-17 | Preentec Ag | Method for the concentration and purification of biological compounds |
US7833796B2 (en) * | 2003-12-15 | 2010-11-16 | Preentec Ag | Method for the concentration and purification of biological compounds |
CN101208604B (en) * | 2004-03-01 | 2012-07-11 | 菲尔特罗纳多孔科技公司 | bicomponent fiber core |
EP1781391A2 (en) * | 2004-03-01 | 2007-05-09 | Filtrona Richmond, Inc. | Bicomponent fiber wick |
EP1781391A4 (en) * | 2004-03-01 | 2010-04-28 | Filtrona Richmond Inc | Bicomponent fiber wick |
US20080274657A1 (en) * | 2004-03-31 | 2008-11-06 | Hirohumi Yashiro | Woven Fabric and Articles Made by Using the Same |
US20140079914A1 (en) * | 2004-04-29 | 2014-03-20 | The Procter & Gamble Company | Polymeric structures and method for making same |
USRE49097E1 (en) | 2004-11-05 | 2022-06-07 | Donaldson Company, Inc. | Filter medium and structure |
US7314497B2 (en) | 2004-11-05 | 2008-01-01 | Donaldson Company, Inc. | Filter medium and structure |
US8268033B2 (en) | 2004-11-05 | 2012-09-18 | Donaldson Company, Inc. | Filter medium and structure |
US10610813B2 (en) | 2004-11-05 | 2020-04-07 | Donaldson Company, Inc. | Filter medium and breather filter structure |
USRE47737E1 (en) | 2004-11-05 | 2019-11-26 | Donaldson Company, Inc. | Filter medium and structure |
US8641796B2 (en) | 2004-11-05 | 2014-02-04 | Donaldson Company, Inc. | Filter medium and breather filter structure |
EP4026600A1 (en) * | 2004-11-05 | 2022-07-13 | Donaldson Company, Inc. | Filter medium and structure |
US11504663B2 (en) | 2004-11-05 | 2022-11-22 | Donaldson Company, Inc. | Filter medium and breather filter structure |
EP1894609A1 (en) * | 2004-11-05 | 2008-03-05 | Donaldson Company, Inc. | Filter medium and structure |
EP3646931A1 (en) * | 2004-11-05 | 2020-05-06 | Donaldson Company, Inc. | Method of filtering a heated fluid |
USRE50226E1 (en) | 2004-11-05 | 2024-12-03 | Donaldson Company, Inc. | Filter medium and structure |
US8512435B2 (en) | 2004-11-05 | 2013-08-20 | Donaldson Company, Inc. | Filter medium and breather filter structure |
EP2308579A1 (en) * | 2004-11-05 | 2011-04-13 | Donaldson Company, Inc. | Aerosol separator |
US12172111B2 (en) | 2004-11-05 | 2024-12-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7985344B2 (en) * | 2004-11-05 | 2011-07-26 | Donaldson Company, Inc. | High strength, high capacity filter media and structure |
US8277529B2 (en) | 2004-11-05 | 2012-10-02 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8021457B2 (en) | 2004-11-05 | 2011-09-20 | Donaldson Company, Inc. | Filter media and structure |
US8057567B2 (en) | 2004-11-05 | 2011-11-15 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US7309372B2 (en) | 2004-11-05 | 2007-12-18 | Donaldson Company, Inc. | Filter medium and structure |
US9795906B2 (en) | 2004-11-05 | 2017-10-24 | Donaldson Company, Inc. | Filter medium and breather filter structure |
US8460424B2 (en) | 2005-02-04 | 2013-06-11 | Donaldson Company, Inc. | Aerosol separator; and method |
US8177875B2 (en) | 2005-02-04 | 2012-05-15 | Donaldson Company, Inc. | Aerosol separator; and method |
US8404014B2 (en) | 2005-02-22 | 2013-03-26 | Donaldson Company, Inc. | Aerosol separator |
US20070149690A1 (en) * | 2005-12-23 | 2007-06-28 | Boston Scientific Scimed, Inc. | Functionalized block copolymers |
US7723422B2 (en) | 2005-12-23 | 2010-05-25 | Boston Scientific Scimed, Inc. | Functionalized block copolymers |
US20110108630A1 (en) * | 2006-06-22 | 2011-05-12 | Ward Bennett C | Bonded Fiber Wick |
US20080164632A1 (en) * | 2007-01-09 | 2008-07-10 | Oriental Institute Of Technology | DNA counterfeit-proof fiber together with spinning nozzle and method used to produced thereof |
US8021455B2 (en) | 2007-02-22 | 2011-09-20 | Donaldson Company, Inc. | Filter element and method |
US9114339B2 (en) | 2007-02-23 | 2015-08-25 | Donaldson Company, Inc. | Formed filter element |
US20090141376A1 (en) * | 2007-02-26 | 2009-06-04 | Smith Lloyd M | Surface plasmon resonance compatible carbon thin films |
US9651487B2 (en) * | 2007-02-26 | 2017-05-16 | Wisconsin Alumni Research Foundation | Surface plasmon resonance compatible carbon thin films |
US20100190891A1 (en) * | 2007-05-09 | 2010-07-29 | Borealis Technology Oy | Polyefin compositions with highly crystalline cellulose regenrate fibers |
US8545466B2 (en) * | 2007-06-27 | 2013-10-01 | Mölnlycke Health Care Ab | Device for treatment of wounds with reduced pressure |
US20100324510A1 (en) * | 2007-06-27 | 2010-12-23 | Molnlycke Health Care Ab | device for treatment of wounds with reduced pressure |
WO2009079674A3 (en) * | 2007-12-20 | 2009-09-11 | Lenzing Ag | Yarns, high wear resistance fabrics and objects made therefrom |
WO2009079674A2 (en) * | 2007-12-20 | 2009-07-02 | Lenzing Ag | Yarns, high wear resistance fabrics and objects made therefrom |
TWI471465B (en) * | 2007-12-20 | 2015-02-01 | Chemiefaser Lenzing Ag | Yarns, high wear resistance fabrics and objects made therefrom |
US20100330351A1 (en) * | 2007-12-20 | 2010-12-30 | Lenzing Ag | Yarns, high wear resistance fabrics and objects made therefrom |
US20100065653A1 (en) * | 2008-08-01 | 2010-03-18 | Wingo James P | Wicks for dispensers of vaporizable materials |
US20100176210A1 (en) * | 2009-01-09 | 2010-07-15 | Porex Corporation | Hydrophilic Porous Wicks for Vaporizable Materials |
US8267681B2 (en) | 2009-01-28 | 2012-09-18 | Donaldson Company, Inc. | Method and apparatus for forming a fibrous media |
US8524041B2 (en) | 2009-01-28 | 2013-09-03 | Donaldson Company, Inc. | Method for forming a fibrous media |
US9885154B2 (en) | 2009-01-28 | 2018-02-06 | Donaldson Company, Inc. | Fibrous media |
US9353481B2 (en) | 2009-01-28 | 2016-05-31 | Donldson Company, Inc. | Method and apparatus for forming a fibrous media |
US10316468B2 (en) | 2009-01-28 | 2019-06-11 | Donaldson Company, Inc. | Fibrous media |
US8920339B2 (en) | 2011-04-19 | 2014-12-30 | Porex Corporation | Liquid sampling, storage, transfer and delivery device |
US9696241B2 (en) | 2011-04-19 | 2017-07-04 | Porex Corporation | Liquid sampling, storage, transfer and delivery device |
WO2012145379A1 (en) | 2011-04-19 | 2012-10-26 | Porex Corporation | Liquid sampling, storage, transfer and delivery device |
US8852122B2 (en) | 2011-04-19 | 2014-10-07 | Porex Corporation | Liquid sampling, storage, transfer and delivery device |
US9689097B2 (en) * | 2012-05-31 | 2017-06-27 | Wm. T. Burnett Ip, Llc | Nonwoven composite fabric and panel made therefrom |
US20130330994A1 (en) * | 2012-05-31 | 2013-12-12 | Wm. T. Burnett Ip, Llc | Nonwoven Composite Fabric and Panel Made Therefrom |
CN103263806A (en) * | 2012-12-11 | 2013-08-28 | 张延青 | Novel filter material for removing ultrafine particles in high temperature flue gas and production technology thereof |
US9114558B1 (en) * | 2013-08-26 | 2015-08-25 | Amad Tayebi | Method of making a non-clogging porous fibrous mass for air scenting |
US11207442B2 (en) | 2014-10-06 | 2021-12-28 | Kci Licensing, Inc. | Ion exchange absorbent systems, apparatuses, and methods |
US10485891B2 (en) | 2014-10-06 | 2019-11-26 | Kci Licensing, Inc. | Multi-function dressing structure for negative-pressure therapy |
US10245346B2 (en) * | 2014-10-06 | 2019-04-02 | Kci Licensing, Inc. | Ion exchange absorbent systems, apparatuses, and methods |
US20160095951A1 (en) * | 2014-10-06 | 2016-04-07 | Kci Licensing, Inc. | Ion exchange absorbent systems, apparatuses, and methods |
CN104441811A (en) * | 2014-12-09 | 2015-03-25 | 常熟涤纶有限公司 | High-strength low-shrinkage polyester filament |
US11441014B2 (en) * | 2015-04-22 | 2022-09-13 | Ensinger Gmbh | Translucent fibre composite materials comprising chemically modified polymers |
US12098482B2 (en) | 2017-05-11 | 2024-09-24 | Carl Freudenberg Kg | Textile flat structure for electrical insulation |
CN108084670A (en) * | 2017-11-24 | 2018-05-29 | 杭州雅姿窗饰材料有限公司 | A kind of composite layer for being used to prepare venetian blind curtain sheet interlayer |
Also Published As
Publication number | Publication date |
---|---|
AU2002367813A8 (en) | 2003-10-08 |
EP1392896A2 (en) | 2004-03-03 |
JP2005520067A (en) | 2005-07-07 |
WO2003080904A3 (en) | 2003-11-27 |
US20030211799A1 (en) | 2003-11-13 |
EP1392896A4 (en) | 2005-06-29 |
WO2003080904A2 (en) | 2003-10-02 |
AU2002367813A1 (en) | 2003-10-08 |
CN1543520A (en) | 2004-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20020193030A1 (en) | Functional fibers and fibrous materials | |
US5607766A (en) | Polyethylene terephthalate sheath/thermoplastic polymer core bicomponent fibers, method of making same and products formed therefrom | |
US7290668B2 (en) | Bicomponent fiber wick | |
EP1855779A2 (en) | Porous composite materials comprising a plurality of bonded fiber component structures | |
WO2003087445A9 (en) | Method and apparatus for making nibs and ink reserviors for writing and marking instruments and the resultant products | |
CN1497099A (en) | Papermaking press felt and press device for paper machine | |
US5204197A (en) | Separator material for storage batteries and method for making the same | |
EP1489929B1 (en) | Method and apparatus for applying additive to fibrous products and products produced thereby | |
JP4176528B2 (en) | Waste ink absorber for inkjet printer | |
JP4015831B2 (en) | Ultrafine fiber nonwoven fabric and method for producing the same | |
EP1230863B1 (en) | Porous element | |
CA2555663C (en) | Bicomponent fiber wick | |
JP4028958B2 (en) | Durable hydrophilic fiber and non-woven fabric using the same | |
JP4785659B2 (en) | Thermally divided composite fiber and fiber assembly | |
JPH02221448A (en) | Moisture-retentive nonwoven fabric | |
JP2004169249A (en) | Nonwoven fabric and wiping material using the same | |
JP2764335B2 (en) | Alkaline battery separator | |
JP4269804B2 (en) | Special fiber | |
JP3857056B2 (en) | Thermally divided composite fiber and fiber assembly | |
JPH10212648A (en) | Oil absorbent felt | |
JPH0249350A (en) | Separator for alkaline batteries |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: POREX TECHNOLOGIES CORPORATION, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:YAO, LI;MAO, GUOQIANG;LI, XINGGUO;REEL/FRAME:011746/0919 Effective date: 20010419 |
|
AS | Assignment |
Owner name: POREX TECHNOLOGIES CORPORATION, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALDOPOULUS, IOAKIM IKE;REEL/FRAME:012294/0597 Effective date: 20010925 Owner name: POREX TECHNOLOGIES CORPORATION, GEORGIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:HALDOPOULOS, IOAKIM IKE;REEL/FRAME:012296/0079 Effective date: 20010925 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |