US20020189500A1 - Additive for dewaterable slurry - Google Patents
Additive for dewaterable slurry Download PDFInfo
- Publication number
- US20020189500A1 US20020189500A1 US10/090,338 US9033802A US2002189500A1 US 20020189500 A1 US20020189500 A1 US 20020189500A1 US 9033802 A US9033802 A US 9033802A US 2002189500 A1 US2002189500 A1 US 2002189500A1
- Authority
- US
- United States
- Prior art keywords
- fly ash
- water
- microns
- cement
- additive according
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B13/00—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material
- B32B13/14—Layered products comprising a a layer of water-setting substance, e.g. concrete, plaster, asbestos cement, or like builders' material next to a fibrous or filamentary layer
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B1/00—Producing shaped prefabricated articles from the material
- B28B1/52—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement
- B28B1/522—Producing shaped prefabricated articles from the material specially adapted for producing articles from mixtures containing fibres, e.g. asbestos cement for producing multi-layered articles
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B28—WORKING CEMENT, CLAY, OR STONE
- B28B—SHAPING CLAY OR OTHER CERAMIC COMPOSITIONS; SHAPING SLAG; SHAPING MIXTURES CONTAINING CEMENTITIOUS MATERIAL, e.g. PLASTER
- B28B7/00—Moulds; Cores; Mandrels
- B28B7/40—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material
- B28B7/46—Moulds; Cores; Mandrels characterised by means for modifying the properties of the moulding material for humidifying or dehumidifying
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B18/00—Use of agglomerated or waste materials or refuse as fillers for mortars, concrete or artificial stone; Treatment of agglomerated or waste materials or refuse, specially adapted to enhance their filling properties in mortars, concrete or artificial stone
- C04B18/04—Waste materials; Refuse
- C04B18/06—Combustion residues, e.g. purification products of smoke, fumes or exhaust gases
- C04B18/08—Flue dust, i.e. fly ash
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B28/00—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
- C04B28/02—Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04C—STRUCTURAL ELEMENTS; BUILDING MATERIALS
- E04C2/00—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
- E04C2/02—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials
- E04C2/04—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres
- E04C2/06—Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels characterised by specified materials of concrete or other stone-like material; of asbestos cement; of cement and other mineral fibres reinforced
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F13/00—Coverings or linings, e.g. for walls or ceilings
- E04F13/02—Coverings or linings, e.g. for walls or ceilings of plastic materials hardening after applying, e.g. plaster
-
- E—FIXED CONSTRUCTIONS
- E04—BUILDING
- E04F—FINISHING WORK ON BUILDINGS, e.g. STAIRS, FLOORS
- E04F15/00—Flooring
- E04F15/12—Flooring or floor layers made of masses in situ, e.g. seamless magnesite floors, terrazzo gypsum floors
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00482—Coating or impregnation materials
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2111/00—Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
- C04B2111/00474—Uses not provided for elsewhere in C04B2111/00
- C04B2111/00612—Uses not provided for elsewhere in C04B2111/00 as one or more layers of a layered structure
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02W—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
- Y02W30/00—Technologies for solid waste management
- Y02W30/50—Reuse, recycling or recovery technologies
- Y02W30/91—Use of waste materials as fillers for mortars or concrete
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S106/00—Compositions: coating or plastic
- Y10S106/01—Fly ash
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249924—Noninterengaged fiber-containing paper-free web or sheet which is not of specified porosity
- Y10T428/249932—Fiber embedded in a layer derived from a water-settable material [e.g., cement, gypsum, etc.]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249967—Inorganic matrix in void-containing component
- Y10T428/249968—Of hydraulic-setting material
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249971—Preformed hollow element-containing
- Y10T428/249972—Resin or rubber element
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/249921—Web or sheet containing structurally defined element or component
- Y10T428/249953—Composite having voids in a component [e.g., porous, cellular, etc.]
- Y10T428/249986—Void-containing component contains also a solid fiber or solid particle
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/25—Web or sheet containing structurally defined element or component and including a second component containing structurally defined particles
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/26—Web or sheet containing structurally defined element or component, the element or component having a specified physical dimension
- Y10T428/263—Coating layer not in excess of 5 mils thick or equivalent
- Y10T428/264—Up to 3 mils
- Y10T428/265—1 mil or less
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T428/00—Stock material or miscellaneous articles
- Y10T428/31504—Composite [nonstructural laminate]
- Y10T428/31652—Of asbestos
- Y10T428/31667—Next to addition polymer from unsaturated monomers, or aldehyde or ketone condensation product
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T442/00—Fabric [woven, knitted, or nonwoven textile or cloth, etc.]
- Y10T442/10—Scrim [e.g., open net or mesh, gauze, loose or open weave or knit, etc.]
Definitions
- the present invention relates to admixtures for slurries and in particular cementitious slurry compositions.
- plasticisers sometimes known as water reducers, dispersion agents or super plasticisers, act to increase the workability and validity of the slurry for a given quantity of water. Examples include lignosulphonates, naphthalene sulphonate-formaldehyde condensates.
- these water reducers are added at around 0.3% by weight of cement and provide between 8 and 12% reduction in the water cement ratio, depending upon the addition procedure. Additions of up to 1% by cement provide up to 35% reduction in the water to cement ratio.
- plasticiser/water reducer or combinations thereof to obtain further water reduction of up to 50%.
- detrimental effects are produced, eg setting times increased and compressive strength of a cementitious mixture reduced.
- the present invention provides an additive for a cementitious slurry comprising of one or both of the following mineral components:
- fly ash having a predominant particle size of up to about 10 microns
- aluminous material having a predominant particle size of up to about 150 microns.
- the aforementioned mineral additive can be used in combination with a conventional water reducer/plasticiser to enhance the water reduction capabilities of such a conventional additive.
- the present invention provides a cementitious slurry comprising an hydraulic binder, water, a plasticiser and a mineral additive including one or both of the following components:
- fly ash having a predominant particle size of up to about 10 microns
- aluminous material having a predominant particle size of up to about 150 microns, and the mineral additive being added in a quantity sufficient to provide a water reduction effect.
- the present invention provides a method of reducing the water requirements of a cementitious slurry comprising adding an effective amount of one or both of the following mineral components: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns.
- the present invention provides a method of improving the properties of a cementitious slurry comprising adding an effective amount of one or both of the following mineral components: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns.
- the reference to water reduction effect relates to the ability of the mineral additive to effectively reduce the quantity of water required to obtain a particular viscosity.
- a slurry is designed to have a particular predetermined viscosity for flowability, pumpability or application reasons.
- the mineral additive described above provides excellent water reduction properties for a slurry. As discussed, it can be used on its own to provide water reduction to the slurry or in combination with a conventional plasticiser/water reducer.
- the preferred embodiments of the present invention relate to the use of a mineral additive to manufacture and improve the properties of a cementitious slurry. More preferably, one or both of the following mineral additives may be used: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns.
- fly ash in the mineral additive refers to fly ash with a predominant particle size of up to about 10 microns.
- fly ash is a solid powder having a chemical composition similar to or the same as the composition of material that is produced during the combustion of powdered coal.
- the composition typically comprises about 25 to 60% silica, about 10 to 30% Al 2 O 3 , about 5 to 25% Fe 2 O 3 , up to about 20% CaO and up to about 5% MgO.
- Fly ash particles are typically spherical and range in diameter from about 1 to 100 microns. It is the smaller size fraction of fly ash particles with a predominant size below about 10 microns that has surprising water reduction properties.
- the fly ash preferably makes up about 30-100% based on weight of cement.
- the fly ash is between about 40 and 90% and most preferably about 50 to 70% based on weight of cement.
- the aluminous material in the mineral additive preferably has a predominant particle size less than about 150 microns.
- the reference to “aluminous material” should not be taken literally but refers to alumina type materials including hydrated, partially hydrated and unhydrated alumina.
- the alumina content of aluminous material based on the weight of cement is between about 5 and 30%, preferably about 10 to 25% and most preferably about 15 to 20%.
- the ratio of hydrated alumina:fly ash is preferably between about 1:1 to 1:10.
- hydroaulic or cementitious binder means all inorganic materials which comprise compounds of calcium, aluminum, silicon, oxygen, and/or sulfur which exhibit “hydraulic activity” that is, which set solid and harden in the presence of water.
- Cements of this type include common Portland cements, fast setting or extra fast setting, sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements which contain secondary components such as fly ash, slag and the like.
- the amount of cement present in the composition of the preferred embodiments of the present invention has a lower limit of about 10 weight percent based on the total dry ingredients, preferably about 15 weight percent, more preferably about 20 weight percent, the upper limit of the amount of the cement is about 50 weight percent, preferably about 40 weight percent, more preferably about 30 weight percent.
- the cementitious composition may optionally but preferably include at least one filler material, e.g. graded and ungraded aggregate such as washed river gravel, crushed igneous rock or limestone, lightweight aggregate, crushed hard-burnt clay bricks or air-cooled blast furnace slag, sand, calcium carbonate, silica flour, vermiculite, perlite, gypsum, etc.
- at least one filler material e.g. graded and ungraded aggregate such as washed river gravel, crushed igneous rock or limestone, lightweight aggregate, crushed hard-burnt clay bricks or air-cooled blast furnace slag, sand, calcium carbonate, silica flour, vermiculite, perlite, gypsum, etc.
- the amount of filler present in the cementitious composition preferably has a lower limit of about 5 weight percent based on the total dry ingredients, preferably about 10 weight percent, more preferably about 15 weight percent; the upper limit being about 30 weight percent, preferably about 25 weight percent, more preferably about 20 weight percent.
- the cementitious composition may optionally contain other additives including: cement plasticising agents such as melamine sulphonate-formaldehyde condensates, naphthalene sulphonate-formaldehyde condensates, naphthalene sulphonates, calcium lignosulphonates, sodium lignosulphonates, saccharose, sodium gluconate, sulphonic acids, carbohydrates, amino carboxylic acids, polyhydroxy carboxylic acids, sulphonated melamine, and the like.
- cement plasticising agents such as melamine sulphonate-formaldehyde condensates, naphthalene sulphonate-formaldehyde condensates, naphthalene sulphonates, calcium lignosulphonates, sodium lignosulphonates, saccharose, sodium gluconate, sulphonic acids, carbohydrates, amino carboxylic acids, polyhydroxy carboxylic acids, sulphonated melamine,
- the amount of conventional plasticiser used in the dry cement composition will vary, depending on the fluidising ability of the particular cement plasticiser selected. Generally, the amount of cement plasticiser is preferably in the range of about 0.3 to about 3 wt %, and more preferably about 0.5 to about 2 wt %, based on the weight of the dry cement composition.
- Preferred plasticisers include Melment. F-10, a melamine-formaldehyde-sodium bisulphite polymer dispersant, marketed by SKW-Trostberg in the form of a fine white powder.
- Another suitable plasticiser is Neosyn, a condensed sodium salt of sulphonated naphthalene formaldehyde, available from Hodgson Chemicals.
- Thickener may also be used in the cementitious composition including one or more of the polysaccharide rheology modifiers which can be further subdivided into cellulose based materials and derivatives thereof, starch based materials and derivatives thereof, and other polysaccharides.
- Suitable cellulose based rheology-modifying agents include, for example, methylhydroxyethylcellulose, hydroxymethylethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, etc.
- suitable rheology modifiers will not be listed here, nevertheless, many other cellulose materials have the same or similar properties as these and are equivalent.
- Suitable starch based materials include, for example, amylopectin, amylose, sea-gel, starch acetates, starch hydroxyethyl ethers, ionic starches, long-chain alkylstarches, dextrins, amine starches, phosphate starches, and dialdehyde starches.
- Other natural polysaccharide based rheology-modifying agents include, for example, alginic acid, phycocolloids, agar, gum arabic, guar gum, welan gum, locust bean gum, gum karaya, and gum tragacanth.
- the thickener addition rate in the cementitious composition may range between 0.0001 and 0.5% based on the weight of the dry cement composition.
- Latex addition of at least one latex selected from the group consisting of: an acrylic latex, a styrene latex , and a butadiene latex is also preferred.
- This component improves adherence, elasticity, stability and impermeability of the cementitious compositions containing it, and also favours formation of flexible films.
- the latex may be used in solid amounts of about 0.5 to about 20 wt %, based on the weight of the dry cement composition. Preferably, it is present in an amount of about 1 to about 15 wt %, and more preferably about 10 wt %, based on the weight of the dry cement composition.
- the cementitious composition may optionally incorporate as a substitute to the latex emulsion a proportion of a powdered vinyl polymer or other equivalent polymeric material, to enhance the adhesion; resilience and flexural strength; and abrasion resistance of the composition.
- the powdered vinyl polymer is preferably polyvinyl acetate or a copolymer of vinyl acetate with another monomer, such as ethylene.
- a preferred vinyl acetate resin is VINNAPAS LL5044 thermoplastic resin powder, containing a vinyl acetate-ethylene copolymer, available from WACKER.
- the powdered vinyl polymer may be used in amounts of about 0.5 to about 20 wt %, based on the weight of the dry cement composition. Preferably, it is present in an amount of about 1 to about 15 wt %, and more preferably about 10 wt %, based on the weight of the dry cement composition.
- the cementitious composition may optionally contain about 0-40 wt % of other fillers/additives such as mineral oxides, hydroxides and clays, metal oxides and hydroxides, fire retardants such as magnesite, thickeners, silica fume or amorphous silica, colorants, pigments, water sealing agents, water reducing agents, setting rate modifiers, hardeners, filtering aids, plasticisers, dispersants, foaming agents or flocculating agents, water-proofing agents, density modifiers or other processing aids
- other fillers/additives such as mineral oxides, hydroxides and clays, metal oxides and hydroxides, fire retardants such as magnesite, thickeners, silica fume or amorphous silica, colorants, pigments, water sealing agents, water reducing agents, setting rate modifiers, hardeners, filtering aids, plasticisers, dispersants, foaming agents or flocculating agents, water-proofing agents, density modifiers or other processing aid
- Example 1 demonstrates a means of enhancing the water reduction effect in plasticised mixes using a mineral additive with a specified size range, namely the small size fraction fly ash, without resorting to overdosing with water reducer. The result is a more durable mix with higher strength and reduced shrinkage.
- Mix 1 which was comprised of cement, fly ash and cenospheres (ceramic hollow spheres) required 400 ml of water to achieve the required viscosity (in the presence of 1% addition of Melment F15 water reducer).
- the % solids in this case is 71.4%.
- Mix 1 which was comprised of cement, fly ash and silica required 400 ml of water to achieve the required viscosity (in the presence of 1% water reducer addition).
- the % solids in this case is 71.4%.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Architecture (AREA)
- Ceramic Engineering (AREA)
- Structural Engineering (AREA)
- Civil Engineering (AREA)
- Environmental & Geological Engineering (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Combustion & Propulsion (AREA)
- Inorganic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Curing Cements, Concrete, And Artificial Stone (AREA)
- Producing Shaped Articles From Materials (AREA)
- Laminated Bodies (AREA)
- Application Of Or Painting With Fluid Materials (AREA)
- Coating Apparatus (AREA)
- Paper (AREA)
- Paints Or Removers (AREA)
- Aftertreatments Of Artificial And Natural Stones (AREA)
- Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)
- Porous Artificial Stone Or Porous Ceramic Products (AREA)
- Reinforced Plastic Materials (AREA)
- Soil Conditioners And Soil-Stabilizing Materials (AREA)
- Spray Control Apparatus (AREA)
- Processing Of Solid Wastes (AREA)
- Manufacturing Of Printed Wiring (AREA)
- Production Of Multi-Layered Print Wiring Board (AREA)
- Building Environments (AREA)
Abstract
Description
- This application claims priority from the following Australian provisional patent applications, the full contents of which are hereby incorporated by cross-reference.
Application No Title Date Filed PR3474 A Composite Product 2 Mar. 2001 PR3475 Spattering Apparatus 2 Mar. 2001 PR3476 Additive for a Dewaterable Slurry 2 Mar. 2001 PR3477 A Method and Apparatus for Forming a 2 Mar. 2001 Laminated Sheet Material by Spattering PR3478 Coatings for Building Products 2 Mar. 2001 - 1. Field of the Invention
- The present invention relates to admixtures for slurries and in particular cementitious slurry compositions.
- 2. Description of the Related Art
- As is well known in the art, most cementitious compositions are laid down or used in a slurry form. Increasing difficulty and expense in obtaining high quality aggregate for use in such cementitious material such as concrete has forced manufacturers to resort to low grade materials such as crushed stone, marine sand and even recycled crushed concrete obtained from demolitions or old structures. This leads to problems with the concrete such as a higher water demand, bleeding (where, as the slurry settles, water migrates to the surface), lower workability and pumpability.
- In the past, these problems have been overcome by the addition of certain additives to the cementitious composition. These plasticisers, sometimes known as water reducers, dispersion agents or super plasticisers, act to increase the workability and validity of the slurry for a given quantity of water. Examples include lignosulphonates, naphthalene sulphonate-formaldehyde condensates.
- Typically, these water reducers are added at around 0.3% by weight of cement and provide between 8 and 12% reduction in the water cement ratio, depending upon the addition procedure. Additions of up to 1% by cement provide up to 35% reduction in the water to cement ratio. In high performance concrete application, eg ultra high strength concrete, it is common to overdose in plasticiser/water reducer, (or combinations thereof) to obtain further water reduction of up to 50%. However, at such dosage levels detrimental effects are produced, eg setting times increased and compressive strength of a cementitious mixture reduced.
- It is an object of the present invention to overcome or ameliorate at least one of the disadvantages of the prior art, or to provide a useful alternative.
- In a broad aspect, the present invention provides an additive for a cementitious slurry comprising of one or both of the following mineral components:
- i) fly ash having a predominant particle size of up to about 10 microns, and
- ii) aluminous material having a predominant particle size of up to about 150 microns.
- The applicants have found that use of the small particle size fraction fly ash or large particle size fraction aluminous material acts as an efficient water reducer for cementitious slurries. The applicants have found that addition of a suitable quantity of such a mineral additive indeed provides a substantial reduction in water required to maintain a predetermined viscosity without any of the aforementioned detrimental effects arising from conventional techniques. The aforementioned additive does not significantly increase set times or cause excessive aeration, which can be a major problem with some known admixtures. Further, it inhibits bleeding and improves workability.
- In a preferred embodiment, the aforementioned mineral additive can be used in combination with a conventional water reducer/plasticiser to enhance the water reduction capabilities of such a conventional additive.
- In a second aspect, the present invention provides a cementitious slurry comprising an hydraulic binder, water, a plasticiser and a mineral additive including one or both of the following components:
- i) fly ash having a predominant particle size of up to about 10 microns,
- ii) aluminous material having a predominant particle size of up to about 150 microns, and the mineral additive being added in a quantity sufficient to provide a water reduction effect.
- In a third aspect, the present invention provides a method of reducing the water requirements of a cementitious slurry comprising adding an effective amount of one or both of the following mineral components: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns.
- In a fourth aspect, the present invention provides a method of improving the properties of a cementitious slurry comprising adding an effective amount of one or both of the following mineral components: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns.
- The reference to water reduction effect relates to the ability of the mineral additive to effectively reduce the quantity of water required to obtain a particular viscosity. As will be clear to persons skilled in the art, for certain applications, a slurry is designed to have a particular predetermined viscosity for flowability, pumpability or application reasons. The mineral additive described above provides excellent water reduction properties for a slurry. As discussed, it can be used on its own to provide water reduction to the slurry or in combination with a conventional plasticiser/water reducer.
- When used in combination with an amount of conventional plasticiser/water reducer, it has been found that the aforementioned mineral additive enhances the water reduction properties of the slurry as will be discussed below.
- The preferred embodiments of the present invention relate to the use of a mineral additive to manufacture and improve the properties of a cementitious slurry. More preferably, one or both of the following mineral additives may be used: i) fly ash having a predominant particle size of up to about 10 microns, and ii) aluminous material having a predominant particle size of up to about 150 microns.
- The fly ash in the mineral additive refers to fly ash with a predominant particle size of up to about 10 microns. As will be clear to persons skilled in the art, fly ash is a solid powder having a chemical composition similar to or the same as the composition of material that is produced during the combustion of powdered coal. The composition typically comprises about 25 to 60% silica, about 10 to 30% Al2 O3, about 5 to 25% Fe2O3, up to about 20% CaO and up to about 5% MgO.
- Fly ash particles are typically spherical and range in diameter from about 1 to 100 microns. It is the smaller size fraction of fly ash particles with a predominant size below about 10 microns that has surprising water reduction properties.
- The fly ash preferably makes up about 30-100% based on weight of cement. Preferably, the fly ash is between about 40 and 90% and most preferably about 50 to 70% based on weight of cement.
- Larger size fly ash particles have been known in the past to provide a water reduction effect. Smaller size particles, however, have always been considered unsuitable for water reduction for a few reasons. Firstly, it is expected in the art that the smaller the particle size, the more reactive the particle. Fly ash is a reactive pozzalan and accordingly, smaller size fraction fly ash was considered inappropriately reactive to act as a water reducer.
- In addition, due to the high specific surface area of the smaller size fraction fly ash, it was expected that this material would in fact increase water demand. The applicants have surprisingly found that the opposite is in fact the case. The smaller size fraction fly ash boosts the water reducing properties of conventional water reduction agents by a substantial extent.
- The aluminous material in the mineral additive preferably has a predominant particle size less than about 150 microns. The reference to “aluminous material” should not be taken literally but refers to alumina type materials including hydrated, partially hydrated and unhydrated alumina. Preferably, the alumina content of aluminous material based on the weight of cement is between about 5 and 30%, preferably about 10 to 25% and most preferably about 15 to 20%.
- If a blend of hydrated alumina and fly ash is used in the mineral additive, the ratio of hydrated alumina:fly ash is preferably between about 1:1 to 1:10.
- The term “hydraulic or cementitious binder” as used herein, means all inorganic materials which comprise compounds of calcium, aluminum, silicon, oxygen, and/or sulfur which exhibit “hydraulic activity” that is, which set solid and harden in the presence of water. Cements of this type include common Portland cements, fast setting or extra fast setting, sulphate resisting cements, modified cements, alumina cements, high alumina cements, calcium aluminate cements and cements which contain secondary components such as fly ash, slag and the like. The amount of cement present in the composition of the preferred embodiments of the present invention has a lower limit of about 10 weight percent based on the total dry ingredients, preferably about 15 weight percent, more preferably about 20 weight percent, the upper limit of the amount of the cement is about 50 weight percent, preferably about 40 weight percent, more preferably about 30 weight percent.
- The cementitious composition may optionally but preferably include at least one filler material, e.g. graded and ungraded aggregate such as washed river gravel, crushed igneous rock or limestone, lightweight aggregate, crushed hard-burnt clay bricks or air-cooled blast furnace slag, sand, calcium carbonate, silica flour, vermiculite, perlite, gypsum, etc.
- The amount of filler present in the cementitious composition preferably has a lower limit of about 5 weight percent based on the total dry ingredients, preferably about 10 weight percent, more preferably about 15 weight percent; the upper limit being about 30 weight percent, preferably about 25 weight percent, more preferably about 20 weight percent.
- The cementitious composition may optionally contain other additives including: cement plasticising agents such as melamine sulphonate-formaldehyde condensates, naphthalene sulphonate-formaldehyde condensates, naphthalene sulphonates, calcium lignosulphonates, sodium lignosulphonates, saccharose, sodium gluconate, sulphonic acids, carbohydrates, amino carboxylic acids, polyhydroxy carboxylic acids, sulphonated melamine, and the like.
- The amount of conventional plasticiser used in the dry cement composition will vary, depending on the fluidising ability of the particular cement plasticiser selected. Generally, the amount of cement plasticiser is preferably in the range of about 0.3 to about 3 wt %, and more preferably about 0.5 to about 2 wt %, based on the weight of the dry cement composition.
- Preferred plasticisers include Melment. F-10, a melamine-formaldehyde-sodium bisulphite polymer dispersant, marketed by SKW-Trostberg in the form of a fine white powder. Another suitable plasticiser is Neosyn, a condensed sodium salt of sulphonated naphthalene formaldehyde, available from Hodgson Chemicals.
- Thickener may also be used in the cementitious composition including one or more of the polysaccharide rheology modifiers which can be further subdivided into cellulose based materials and derivatives thereof, starch based materials and derivatives thereof, and other polysaccharides.
- Suitable cellulose based rheology-modifying agents include, for example, methylhydroxyethylcellulose, hydroxymethylethylcellulose, carboxymethylcellulose, methylcellulose, ethylcellulose, hydroxyethylcellulose, hydroxyethylpropylcellulose, etc. The entire range of suitable rheology modifiers will not be listed here, nevertheless, many other cellulose materials have the same or similar properties as these and are equivalent.
- Suitable starch based materials include, for example, amylopectin, amylose, sea-gel, starch acetates, starch hydroxyethyl ethers, ionic starches, long-chain alkylstarches, dextrins, amine starches, phosphate starches, and dialdehyde starches.
- Other natural polysaccharide based rheology-modifying agents include, for example, alginic acid, phycocolloids, agar, gum arabic, guar gum, welan gum, locust bean gum, gum karaya, and gum tragacanth.
- The thickener addition rate in the cementitious composition may range between 0.0001 and 0.5% based on the weight of the dry cement composition.
- Latex addition of at least one latex selected from the group consisting of: an acrylic latex, a styrene latex , and a butadiene latex is also preferred. This component improves adherence, elasticity, stability and impermeability of the cementitious compositions containing it, and also favours formation of flexible films.
- The latex may be used in solid amounts of about 0.5 to about 20 wt %, based on the weight of the dry cement composition. Preferably, it is present in an amount of about 1 to about 15 wt %, and more preferably about 10 wt %, based on the weight of the dry cement composition.
- The cementitious composition may optionally incorporate as a substitute to the latex emulsion a proportion of a powdered vinyl polymer or other equivalent polymeric material, to enhance the adhesion; resilience and flexural strength; and abrasion resistance of the composition.
- The powdered vinyl polymer is preferably polyvinyl acetate or a copolymer of vinyl acetate with another monomer, such as ethylene. A preferred vinyl acetate resin is VINNAPAS LL5044 thermoplastic resin powder, containing a vinyl acetate-ethylene copolymer, available from WACKER.
- The powdered vinyl polymer may be used in amounts of about 0.5 to about 20 wt %, based on the weight of the dry cement composition. Preferably, it is present in an amount of about 1 to about 15 wt %, and more preferably about 10 wt %, based on the weight of the dry cement composition.
- The cementitious composition may optionally contain about 0-40 wt % of other fillers/additives such as mineral oxides, hydroxides and clays, metal oxides and hydroxides, fire retardants such as magnesite, thickeners, silica fume or amorphous silica, colorants, pigments, water sealing agents, water reducing agents, setting rate modifiers, hardeners, filtering aids, plasticisers, dispersants, foaming agents or flocculating agents, water-proofing agents, density modifiers or other processing aids
- So that the present invention may be more clearly understood it will now be described by way of example only with reference to the following embodiments.
- Three mixes (total weight of solids=1000 gm each) were mixed with water to achieve a mix viscosity of 4-3 seconds cup drainage time. The details of the mixes are shown in Table 1 below.
TABLE 1 Mix 1 Mix 2 Mix 3 Mix ingredients weight, gm weight, gm weight, gm Cement 300 gm 300 gm 300 gm Fly ash (large size 700 gm 700 gm 500 gm fraction) Fly ash (small size — — 200 gm fraction) Water reducer — 3 gm 3 gm (sulphonated naphthalene formaldehyde) Styrene Acrylic 60 ml 60 ml 60 ml Latex Emulsion (56% solids) Welan Gum (Kelcocrete) 0.1 gm 0.1 gm 0.1 gm Water 550 ml 350 ml 325 ml Water reduction — 36% 41% in mix, % Viscosity (drainage 3 seconds 3 seconds 4 seconds time in 50 ml cup) - It can be seen that the addition of 1% water reducer by weight in cement resulted in 36% reduction in mix water. This level of water reduction is, according to literature, about the limit of what can be achieved at such high water reducer dose. Using higher doses would result in excessively delayed setting time and reduction in the compressive strength in cementitious mixes. When part of the large size fraction fly ash was substituted with smaller size fraction (predominant particle size less that 10 microns) in mix 3, further water reduction was achieved, bringing total water reduction to 41%. This result is quite surprising, as the finer fly ash was expected to in fact increase the water demand in the mix due to its high surface area.
- Although the water reducing effect of fly ash in cementitious mixes is well documented in literature, the plasticity enhancing effect of the smaller size fraction in an already plasticised cement:fly ash mixture is considered surprising given the universal rule that finer material exhibit larger surface area, leading to an increase in the water demand, needed as mechanical water coating the finer particles.
- Example 1 demonstrates a means of enhancing the water reduction effect in plasticised mixes using a mineral additive with a specified size range, namely the small size fraction fly ash, without resorting to overdosing with water reducer. The result is a more durable mix with higher strength and reduced shrinkage.
- Two mixes (total weight of solids=1000 gm each) were mixed with water to achieve a mix viscosity in the range of 6-10 Poise. The details of the two mixes are shown in Table 2 below.
TABLE 2 Mix 1 Mix 2 Mix ingredients weight, gm weight, gm Cement 300 gm 300 gm Fly ash (large size fraction) 400 gm 250 gm Fly ash (small size fraction) — 150 gm Cenospheres 300 gm 300 gm Melment 15 (SKW Chemicals) 3 gm 3 gm (sulphonated melamine formaldehyde) MC 1834 Acrylic Resin (Rohm & 10 ml 10 ml Haas) Water 400 ml 325 ml Water reduction — 19% Viscosity (Rotothinner) 6.5 Poise 8.8 Poise - It can be seen that Mix 1 which was comprised of cement, fly ash and cenospheres (ceramic hollow spheres) required 400 ml of water to achieve the required viscosity (in the presence of 1% addition of Melment F15 water reducer). The % solids in this case is 71.4%.
- Mix 2, however, required only 325 ml of water to achieve a similar flowability. Such water reduction (around 20%) was enabled by substituting part of the larger fly ash particles with a smaller size fraction (minus 10 microns in size, average size=4 microns).The % solids in this case was increased to 75.5%.
- Two mixes (total weight of solids=1000 gm) were mixed with water to achieve a mix viscosity of 4-3 seconds cup drainage time. The details of the two mixes are shown in Table 3 below.
TABLE 3 Mix 1 Mix 2 Mix ingredients weight, gm weight, gm Cement 300 gm 300 gm Fly ash (large size fraction) 500 gm 500 gm Fly ash (small size fraction) — 200 gm Silica 200 gm — Water reducer 3 gm 3 gm (sulphonated naphthalene formaldehyde) Styrene Acrylic Latex Emulsion 60 ml 60 ml (56% solids) Welan Gum (Kelcocrete) 0.1 gm 0.1 gm Water 400 ml 325 ml Water reduction in plasticised mix — 19% Viscosity (drainage time 4 seconds 4 seconds in 50 ml cup) - It can be seen that Mix 1 which was comprised of cement, fly ash and silica required 400 ml of water to achieve the required viscosity (in the presence of 1% water reducer addition). The % solids in this case is 71.4%.
- Mix 2, however, required only 325 ml of water to achieve a similar flowability. Such water reduction (around 20%) was enabled by substituting the silica with ultra fine fraction (minus 10 microns in size, average size=4 microns).The % solids in this case was increased to 75.5%.
- In Table 4, the water requirements for two mixes containing 1.0% addition (by weight of cement) of a water reducer, ie sulphonated naphthalene formaldehyde, are compared.
TABLE 4 Weight (Mix 1) Weight (Mix 2) without hydrated With hydrated Mix ingredients alumina alumina Cement 10000 gm 10000 gm Fly ash (large size fraction) 16000 gm 16000 gm Fly ash (small size fraction) 8000 gm 8000 gm Calcium Carbonate 6000 gm 4000 gm (Omyacarb Grade 40) Hydrated Alumina — 2000 gm Water reducer 100 gm 100 gm (naphthalene formaldehyde sulphonate) Welan Gum (Kelcocrete) 3 gm 3 gm Styrene Acrylic Latex 2000 ml 2000 ml Emulsion (56% solids) Water 16500 ml 12500 Water reduction in — 25% plasticised mix, % Viscosity (drainage time 3.5 seconds 3 seconds in 50 ml cup) - It can be seen that the addition of 2000 gm of hydrated alumina in mix 2 (in substitution of calcium carbonate), resulted in a significant reduction in the water demand, ie from 16500 to 12500 ml, for the same viscosity level.
- This level of water reduction (around 25% in an already heavily plasticised mix) is quite unexpected. It is also contrary to conventional water reduction trends presented in cement chemistry literature which suggest that the amount of water reduction ranges generally between 15% to 35%, and that (beyond a particular dosage) further water reduction is not possible (Concrete Admixtures Handbook by, Ramachandran, 2nd edition, page 447).
- From the examples outlined above it can be seen that using a mineral additive comprising small size fraction fly ash and/or aluminous materials provide water reduction in non-plasticised cementitious mixes or additional/enhanced water reduction in plasticised cementitious mixes containing a conventional water reducing agent. Such significant increase in water reduction between 20% and 40% will enable production of high performance cementitious mixes (lower shrinkage, higher strength, more durable), without the disadvantages of overdosing with conventional organic water reducers, ie delayed setting time, strength reduction, excessive aeration . etc.
- It will be understood that the modifications or variations can be made to the aforementioned embodiments without departing from the spirit or scope of the present invention. In particular, it will be appreciated that the formulations, coatings, additives, methods and composite products of the present invention are suitable or may be adapted for use in conjunction with the methods and apparatus as described in the various priority documents.
Claims (12)
Applications Claiming Priority (10)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AUPR3478 | 2001-03-02 | ||
AUPR3476 | 2001-03-02 | ||
AUPR3474 | 2001-03-02 | ||
AUPR3477A AUPR347701A0 (en) | 2001-03-02 | 2001-03-02 | A method and apparatus for forming a laminated sheet material by spattering |
AUPR3476A AUPR347601A0 (en) | 2001-03-02 | 2001-03-02 | Additive for dewaterable slurry |
AUPR3475A AUPR347501A0 (en) | 2001-03-02 | 2001-03-02 | Spattering apparatus |
AUPR3475 | 2001-03-02 | ||
AUPR3478A AUPR347801A0 (en) | 2001-03-02 | 2001-03-02 | Coatings for building products |
AUPR3477 | 2001-03-02 | ||
AUPR3474A AUPR347401A0 (en) | 2001-03-02 | 2001-03-02 | A composite product |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020189500A1 true US20020189500A1 (en) | 2002-12-19 |
Family
ID=27507501
Family Applications (14)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/090,385 Abandoned US20020179219A1 (en) | 2001-03-02 | 2002-03-04 | Composite product and method of manufacture |
US10/090,560 Abandoned US20020189499A1 (en) | 2001-03-02 | 2002-03-04 | Coating for building products and composite products incorporating same |
US10/090,406 Expired - Lifetime US6893751B2 (en) | 2001-03-02 | 2002-03-04 | Composite product |
US10/090,299 Expired - Lifetime US7396402B2 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and dewatering aid for use with same |
US10/090,375 Abandoned US20030000424A1 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and formulations for use with same |
US10/090,387 Expired - Lifetime US6749897B2 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and methods of using same |
US10/090,362 Abandoned US20020170466A1 (en) | 2001-03-02 | 2002-03-04 | Additive for dewaterable slurry and method of manufacturing and improving slurry containing same |
US10/090,388 Expired - Fee Related US6824715B2 (en) | 2001-03-02 | 2002-03-04 | Method and apparatus for forming a laminated sheet material by spattering |
US10/090,561 Expired - Fee Related US7704316B2 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and methods of making same |
US10/090,376 Expired - Fee Related US6692570B2 (en) | 2001-03-02 | 2002-03-04 | Spattering apparatus |
US10/090,338 Abandoned US20020189500A1 (en) | 2001-03-02 | 2002-03-04 | Additive for dewaterable slurry |
US11/128,778 Abandoned US20050208287A1 (en) | 2001-03-02 | 2005-05-13 | Composite product |
US11/634,285 Abandoned US20070077436A1 (en) | 2001-03-02 | 2006-12-04 | Composite product |
US12/691,505 Expired - Fee Related US8153245B2 (en) | 2001-03-02 | 2010-01-21 | Composite product |
Family Applications Before (10)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/090,385 Abandoned US20020179219A1 (en) | 2001-03-02 | 2002-03-04 | Composite product and method of manufacture |
US10/090,560 Abandoned US20020189499A1 (en) | 2001-03-02 | 2002-03-04 | Coating for building products and composite products incorporating same |
US10/090,406 Expired - Lifetime US6893751B2 (en) | 2001-03-02 | 2002-03-04 | Composite product |
US10/090,299 Expired - Lifetime US7396402B2 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and dewatering aid for use with same |
US10/090,375 Abandoned US20030000424A1 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and formulations for use with same |
US10/090,387 Expired - Lifetime US6749897B2 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and methods of using same |
US10/090,362 Abandoned US20020170466A1 (en) | 2001-03-02 | 2002-03-04 | Additive for dewaterable slurry and method of manufacturing and improving slurry containing same |
US10/090,388 Expired - Fee Related US6824715B2 (en) | 2001-03-02 | 2002-03-04 | Method and apparatus for forming a laminated sheet material by spattering |
US10/090,561 Expired - Fee Related US7704316B2 (en) | 2001-03-02 | 2002-03-04 | Coatings for building products and methods of making same |
US10/090,376 Expired - Fee Related US6692570B2 (en) | 2001-03-02 | 2002-03-04 | Spattering apparatus |
Family Applications After (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US11/128,778 Abandoned US20050208287A1 (en) | 2001-03-02 | 2005-05-13 | Composite product |
US11/634,285 Abandoned US20070077436A1 (en) | 2001-03-02 | 2006-12-04 | Composite product |
US12/691,505 Expired - Fee Related US8153245B2 (en) | 2001-03-02 | 2010-01-21 | Composite product |
Country Status (21)
Country | Link |
---|---|
US (14) | US20020179219A1 (en) |
EP (5) | EP1370401A4 (en) |
JP (5) | JP2004520975A (en) |
KR (5) | KR100888732B1 (en) |
CN (5) | CN1254352C (en) |
AR (5) | AR034210A1 (en) |
AT (2) | ATE372174T1 (en) |
AU (3) | AU2002234428B2 (en) |
BR (5) | BR0207807A (en) |
CA (5) | CA2439425C (en) |
CR (3) | CR7093A (en) |
CZ (5) | CZ20032629A3 (en) |
DE (2) | DE60222245T2 (en) |
DK (1) | DK1370369T3 (en) |
HU (5) | HU224885B1 (en) |
MX (5) | MXPA03007890A (en) |
MY (3) | MY138957A (en) |
NZ (5) | NZ528307A (en) |
PL (5) | PL200641B1 (en) |
TW (5) | TW574164B (en) |
WO (4) | WO2002070145A1 (en) |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7341105B2 (en) | 2006-06-20 | 2008-03-11 | Holcim (Us) Inc. | Cementitious compositions for oil well cementing applications |
US7344593B2 (en) | 2001-03-09 | 2008-03-18 | James Hardie International Finance B.V. | Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility |
US20090151604A1 (en) * | 2005-10-17 | 2009-06-18 | Hiroshi Hirao | Cement additive and cement composition |
US7658794B2 (en) | 2000-03-14 | 2010-02-09 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7704316B2 (en) | 2001-03-02 | 2010-04-27 | James Hardie Technology Limited | Coatings for building products and methods of making same |
US7815841B2 (en) | 2000-10-04 | 2010-10-19 | James Hardie Technology Limited | Fiber cement composite materials using sized cellulose fibers |
US7942964B2 (en) | 2003-01-09 | 2011-05-17 | James Hardie Technology Limited | Fiber cement composite materials using bleached cellulose fibers |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US7998571B2 (en) | 2004-07-09 | 2011-08-16 | James Hardie Technology Limited | Composite cement article incorporating a powder coating and methods of making same |
US8133352B2 (en) | 2000-10-17 | 2012-03-13 | James Hardie Technology Limited | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
US8209927B2 (en) | 2007-12-20 | 2012-07-03 | James Hardie Technology Limited | Structural fiber cement building materials |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
Families Citing this family (116)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19944307C2 (en) * | 1999-09-15 | 2003-04-10 | Sp Beton Gmbh & Co Kg | Multilayer composite material made of cement-bound concrete and polymer-bound concrete, process for its production and use of the multilayer composite material |
US6689451B1 (en) | 1999-11-19 | 2004-02-10 | James Hardie Research Pty Limited | Pre-finished and durable building material |
AUPQ468299A0 (en) * | 1999-12-15 | 2000-01-20 | James Hardie Research Pty Limited | Method and apparatus for extruding cementitious articles |
NZ525392A (en) * | 2000-10-17 | 2006-03-31 | James Hardie Int Finance Bv | Fiber cement composite material using biocide treated durable cellulose fibers |
US20030164119A1 (en) | 2002-03-04 | 2003-09-04 | Basil Naji | Additive for dewaterable slurry and slurry incorporating same |
WO2002081842A1 (en) | 2001-04-03 | 2002-10-17 | James Hardie Research Pty Limited | Reinforced fiber cement article, methods of making and installing |
US6644405B2 (en) * | 2002-03-21 | 2003-11-11 | Halliburton Energy Services, Inc. | Storable water-microsphere suspensions for use in well cements and methods |
US8281535B2 (en) | 2002-07-16 | 2012-10-09 | James Hardie Technology Limited | Packaging prefinished fiber cement articles |
JP4406360B2 (en) | 2002-07-16 | 2010-01-27 | ジェイムズ ハーディー インターナショナル ファイナンス ベスローテン フェンノートシャップ | Packaging of prefinished fiber cement products |
US20040043682A1 (en) * | 2002-09-04 | 2004-03-04 | Taylor Steven L. | Composite board |
US7028436B2 (en) | 2002-11-05 | 2006-04-18 | Certainteed Corporation | Cementitious exterior sheathing product with rigid support member |
US7155866B2 (en) * | 2002-11-05 | 2007-01-02 | Certainteed Corporation | Cementitious exterior sheathing product having improved interlaminar bond strength |
WO2004080214A2 (en) * | 2003-03-07 | 2004-09-23 | Mars, Incorporated | Perimeter enhancement on edible products |
WO2004080204A2 (en) * | 2003-03-07 | 2004-09-23 | Mars, Incorporated | Multicolor image optimization on edible colored products |
US6994905B2 (en) * | 2003-06-23 | 2006-02-07 | Sunlife, Inc. | Sealant coating for stucco and method of production thereof |
EP1663901A2 (en) * | 2003-08-01 | 2006-06-07 | Aalborg Universitet | Method for preparing materials containing binder systems derived from amorphous silica and bases |
FR2860511B1 (en) * | 2003-10-02 | 2005-12-02 | Saint Gobain Mat Constr Sas | PLASTIC CEMENT PRODUCT AND METHOD OF MANUFACTURE |
US7762040B2 (en) | 2004-08-12 | 2010-07-27 | Progressive Foam Technologies, Inc. | Insulated fiber cement siding |
US8844233B2 (en) | 2004-08-12 | 2014-09-30 | Progressive Foam Technologies, Inc. | Foam insulation board with edge sealer |
US8910444B2 (en) | 2004-08-12 | 2014-12-16 | Progressive Foam Technologies, Inc. | Foam insulation backer board |
US8910443B2 (en) | 2004-08-12 | 2014-12-16 | Progressive Foam Technologies, Inc. | Foam backer for insulation |
US8857123B2 (en) | 2004-08-12 | 2014-10-14 | Progressive Foam Technologies, Inc. | Foam insulation board |
US20060068188A1 (en) | 2004-09-30 | 2006-03-30 | Morse Rick J | Foam backed fiber cement |
US7360685B2 (en) * | 2004-10-07 | 2008-04-22 | International Business Machines Corporation | Controlling electronic withdrawals by a withdrawal device |
NZ561265A (en) * | 2005-02-15 | 2011-11-25 | Hardie James Technology Ltd | Nailable flooring sheet which includes low density additives in cement |
JP4525421B2 (en) * | 2005-03-30 | 2010-08-18 | Tdk株式会社 | Ceramic green sheet laminating apparatus and laminating method |
US7510630B2 (en) * | 2005-04-20 | 2009-03-31 | Albany International Corp. | Extended couch nip on cylinder former |
US7736720B2 (en) * | 2005-06-09 | 2010-06-15 | United States Gypsum Company | Composite light weight gypsum wallboard |
US7803226B2 (en) * | 2005-07-29 | 2010-09-28 | United States Gypsum Company | Siloxane polymerization in wallboard |
EP1920022B1 (en) * | 2005-08-02 | 2013-10-09 | Rory E. Brennan | Compositions and methods for adhesion |
US7413603B2 (en) * | 2005-08-30 | 2008-08-19 | United States Gypsum Company | Fiberboard with improved water resistance |
US20070062143A1 (en) * | 2005-09-21 | 2007-03-22 | Noushad Rafie L | Construction products and method of making same |
DE102005053336B4 (en) * | 2005-11-07 | 2007-07-12 | Henkel Kgaa | Bitumen-free building material composition and its use |
EP1948574B1 (en) | 2005-11-15 | 2010-01-06 | Valspar Sourcing, Inc. | Crush resistant latex topcoat composition for fiber cement substrates |
WO2007090132A1 (en) * | 2006-01-31 | 2007-08-09 | Valspar Sourcing, Inc. | Method for coating a cement fiberboard article |
US9783622B2 (en) | 2006-01-31 | 2017-10-10 | Axalta Coating Systems Ip Co., Llc | Coating system for cement composite articles |
EP1979426A1 (en) | 2006-01-31 | 2008-10-15 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
CA2636435C (en) | 2006-01-31 | 2013-10-22 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
PL207450B1 (en) * | 2006-03-31 | 2010-12-31 | Politechnika Wroclawska | Two-gear synchronous motor with durable magnets |
WO2007137233A1 (en) * | 2006-05-19 | 2007-11-29 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
US7812090B2 (en) | 2006-06-02 | 2010-10-12 | Valspar Sourcing, Inc. | High performance aqueous coating compositions |
CA2655125C (en) | 2006-06-02 | 2014-10-14 | Valspar Sourcing, Inc. | High performance aqueous coating compositions |
EP2043967B1 (en) | 2006-07-07 | 2018-07-04 | Valspar Sourcing, Inc. | Coating systems for cement composite articles |
US20080057318A1 (en) * | 2006-08-29 | 2008-03-06 | Adzima Leonard J | Low density drywall |
US20080160294A1 (en) * | 2006-12-27 | 2008-07-03 | United States Gypsum Company | Multiple layer gypsum cellulose fiber composite board and the method for the manufacture thereof |
ITMC20070008A1 (en) * | 2007-01-17 | 2008-07-18 | Diasen Srl | WATERPROOFING REDUCING PROPAGATION OF FIRE. |
US8070895B2 (en) | 2007-02-12 | 2011-12-06 | United States Gypsum Company | Water resistant cementitious article and method for preparing same |
MX2008002220A (en) * | 2007-02-16 | 2009-02-25 | Valspar Sourcing Inc | Treatment for cement composite articles. |
US20080196623A1 (en) * | 2007-02-19 | 2008-08-21 | Mark Berens | Multiple Component Multiple Layer Coating Composition and Method of Application |
US20080202415A1 (en) * | 2007-02-28 | 2008-08-28 | David Paul Miller | Methods and systems for addition of cellulose ether to gypsum slurry |
US20090239429A1 (en) | 2007-03-21 | 2009-09-24 | Kipp Michael D | Sound Attenuation Building Material And System |
CA2681528C (en) * | 2007-03-21 | 2018-10-23 | Ashtech Industries, Llc | Utility materials incorporating a microparticle matrix |
US8445101B2 (en) * | 2007-03-21 | 2013-05-21 | Ashtech Industries, Llc | Sound attenuation building material and system |
US7976963B2 (en) | 2007-05-01 | 2011-07-12 | Boral Stone Products, LLC | Concrete product with enhanced ornamental surface layer |
US8057915B2 (en) * | 2007-05-31 | 2011-11-15 | United States Gypsum Company | Acoustical gypsum board panel and method of making it |
US7803296B2 (en) * | 2007-06-11 | 2010-09-28 | United States Gypsum Company | Methods and systems for preparing gypsum slurry containing a cellulose ether |
EP2183200A1 (en) * | 2007-08-01 | 2010-05-12 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
US7514002B1 (en) * | 2007-11-09 | 2009-04-07 | Hokuriku Electric Power Company | Method for removing phosphorus and method for reutilizing recovered phosphorus |
WO2009076913A1 (en) * | 2007-12-18 | 2009-06-25 | Penpor S.R.O. | Mixture for controlling the set time of cements based on cement clinker, method of control and its use |
CL2009000373A1 (en) * | 2008-03-03 | 2009-10-30 | United States Gypsum Co | Method to make an explosive resistant panel, with the steps of preparing an aqueous cementitious mixture of cement, inorganic fillers and pozzolanic, polycarboxylate self-leveling agent, and forming the mixture into a panel with fiber reinforcement, then curing, polishing, cutting and cure the panel. |
KR100971330B1 (en) * | 2008-06-11 | 2010-07-20 | 주식회사 한진중공업 | Electro gas welding device with open sliding plate |
EP2326691B2 (en) * | 2008-08-15 | 2020-05-06 | Swimc Llc | Self-etching cementitious substrate coating composition |
US9186869B2 (en) | 2008-08-29 | 2015-11-17 | Certainteed Gypsum, Inc. | Composite floor underlayment with thermoplastic coatings |
US9346244B2 (en) | 2008-08-29 | 2016-05-24 | Certainteed Gypsum, Inc. | Composite building boards with thermoplastic coatings and cementitious precoated fibrous mats |
US8486516B2 (en) * | 2008-08-29 | 2013-07-16 | Certainteed Gypsum, Inc. | Plastic coated composite building boards and method of making same |
US20100077939A1 (en) * | 2008-09-29 | 2010-04-01 | Kathy Trout | Extruded Cross-Banded Magnesium Oxide Construction Board and Method of Making Same |
US8591677B2 (en) | 2008-11-04 | 2013-11-26 | Ashtech Industries, Llc | Utility materials incorporating a microparticle matrix formed with a setting agent |
US9266778B2 (en) * | 2008-11-21 | 2016-02-23 | Usg Interiors, Llc | Multi-layer acoustical plaster system |
WO2010060109A1 (en) | 2008-11-24 | 2010-05-27 | Valspar Sourcing, Inc. | Coating system for cement composite articles |
US8770139B2 (en) * | 2009-03-03 | 2014-07-08 | United States Gypsum Company | Apparatus for feeding cementitious slurry onto a moving web |
US8329308B2 (en) | 2009-03-31 | 2012-12-11 | United States Gypsum Company | Cementitious article and method for preparing the same |
TWI574904B (en) * | 2010-04-09 | 2017-03-21 | 尼康股份有限公司 | A substrate tray, a substrate storage device and a substrate processing system |
KR101044591B1 (en) * | 2011-04-07 | 2011-06-29 | 주식회사 다인그룹엔지니어링건축사사무소 | Welding spark protection member |
JP5854254B2 (en) * | 2011-04-25 | 2016-02-09 | ニッカ株式会社 | Powder spreader |
US8915033B2 (en) | 2012-06-29 | 2014-12-23 | Intellectual Gorilla B.V. | Gypsum composites used in fire resistant building components |
US9375899B2 (en) | 2012-06-29 | 2016-06-28 | The Intellectual Gorilla Gmbh | Gypsum composites used in fire resistant building components |
US20140000193A1 (en) | 2012-06-29 | 2014-01-02 | 820 Industrial Loop Partners Llc | Fire rated door core |
US10336036B2 (en) | 2013-03-15 | 2019-07-02 | United States Gypsum Company | Cementitious article comprising hydrophobic finish |
EP2792461A1 (en) * | 2013-04-15 | 2014-10-22 | Redco NV | A hatschek process for the production of fiber cement plates |
CN111003958A (en) | 2013-04-24 | 2020-04-14 | 知识产权古里亚有限责任公司 | Extruded lightweight thermally insulating cement-based material |
US9339837B2 (en) | 2013-06-14 | 2016-05-17 | Theodore Tench | Misting and atomization systems and methods |
GB201314880D0 (en) * | 2013-08-20 | 2013-10-02 | C G I Internat Ltd | Fire resistant glazing unit |
CN103553380B (en) * | 2013-10-12 | 2015-01-28 | 山东宏艺科技股份有限公司 | Cement containing large volume of fly ash and preparation method thereof |
US10016777B2 (en) * | 2013-10-29 | 2018-07-10 | Palo Alto Research Center Incorporated | Methods and systems for creating aerosols |
WO2015119987A1 (en) | 2014-02-04 | 2015-08-13 | Intellectual Gorilla B.V. | Lightweight thermal insulating cement based materials |
US9527056B2 (en) * | 2014-05-27 | 2016-12-27 | Palo Alto Research Center Incorporated | Methods and systems for creating aerosols |
US11072562B2 (en) | 2014-06-05 | 2021-07-27 | The Intellectual Gorilla Gmbh | Cement-based tile |
EP3157884A4 (en) | 2014-06-05 | 2018-02-28 | The Intellectual Gorilla GmbH | Extruded cement based materials |
JP6068399B2 (en) * | 2014-07-25 | 2017-01-25 | 株式会社ビーエス | Paper machine |
EP3067176A1 (en) | 2015-03-09 | 2016-09-14 | Eternit AG | Process and apparatus for making a hydrophobized fiber cement product |
BE1022959B1 (en) * | 2015-06-29 | 2016-10-21 | Eternit Nv | Hatschek process |
HRP20230920T1 (en) * | 2015-09-11 | 2023-11-24 | Rockwool A/S | Acoustic panel |
EP3222795B1 (en) * | 2016-03-23 | 2022-07-27 | Li & Co AG | Wall or floor covering element |
CN106007613B (en) * | 2016-05-18 | 2018-01-30 | 东南大学 | A kind of self heat insulation wall gypsum based composite and preparation method thereof |
EP3481903B8 (en) * | 2016-07-08 | 2021-09-15 | Akzo Nobel Coatings International B.V. | Heat insulating coating composition, method for applying such coating composition and kit of parts comprising such coating composition |
CN106079635A (en) * | 2016-07-27 | 2016-11-09 | 四川威尔达节能科技有限公司 | A kind of flexible inorganic fireproof decoration plate and thermal insulating composite panel and preparation method thereof |
CN110914494B (en) | 2017-07-14 | 2022-07-12 | 3M创新有限公司 | Noise control article |
US10316201B2 (en) * | 2017-08-15 | 2019-06-11 | Usg Interiors, Llc | Acoustically transparent sandable coating |
CN107630522A (en) * | 2017-09-15 | 2018-01-26 | 山东省建设发展研究院 | High-performance steam-pressing aero-concrete composite thermal self-insulation building block and preparation method thereof |
EA201992222A1 (en) | 2017-09-28 | 2020-02-10 | Юнилин, Бвба | PLATE AND METHOD FOR MAKING A PLATE |
WO2019089771A1 (en) * | 2017-10-31 | 2019-05-09 | The Regents Of The University Of Michigan | Self-reinforced cementitious composite compositions for building-scale three dimensional (3d) printing |
EP3727837A4 (en) | 2017-12-19 | 2021-09-08 | Saint-Gobain ADFORS Canada, Ltd. | REINFORCEMENT LAYER, CEMENT SHEET AND METHOD FOR MANUFACTURING THE CEMENT SHEET |
CN108481529B (en) * | 2018-03-26 | 2024-02-06 | 佛山市东鹏陶瓷有限公司 | Device for producing corrugated texture decoration and corrugated brick thereof |
CN108395188A (en) * | 2018-04-08 | 2018-08-14 | 胡建农 | Preparation method, preparation facilities, the preparation method of calcium silicate board with microporous and the calcium silicate board with microporous of calcium silicate board with microporous slab |
CN108505402A (en) * | 2018-04-08 | 2018-09-07 | 胡建农 | Production technology, process units, the production technology of calcium silicate board with microporous and the calcium silicate board with microporous of calcium silicate board with microporous slab |
US10953425B2 (en) * | 2018-04-25 | 2021-03-23 | Palo Alto Research Center Incorporated | Methods and systems for collecting droplets of strain hardening viscoelastic fluids in a spray |
WO2020041494A1 (en) * | 2018-08-23 | 2020-02-27 | Cortex Composites, Inc. | Machine for manufacturing composite materials |
CN109277265B (en) * | 2018-08-29 | 2022-05-20 | 广州倬粤动力新能源有限公司 | Thickness adjusting method of bipolar plate pasting equipment |
US10759697B1 (en) | 2019-06-11 | 2020-09-01 | MSB Global, Inc. | Curable formulations for structural and non-structural applications |
JP6675030B1 (en) * | 2019-06-20 | 2020-04-01 | 株式会社フッコー | Blast furnace slag paint |
CN112776147B (en) * | 2021-01-14 | 2025-04-08 | 佛山市珑华台科技开发有限公司 | Glaze spraying device |
US11660631B2 (en) * | 2021-05-05 | 2023-05-30 | Oav Equipment And Tools, Inc. | Glue applying mechanism of edge banding machine with glue quantity regulator |
US11541415B2 (en) * | 2021-05-26 | 2023-01-03 | Oav Equipment And Tools, Inc. | Glue applying mechanism of edge banding machine for applying glue to workpiece having oblique surface and edge banding machine using the glue applying mechanism |
WO2023161866A1 (en) * | 2022-02-24 | 2023-08-31 | Everest Industries Limited | Cool roof and a process for its preparation |
WO2023163666A1 (en) * | 2022-02-28 | 2023-08-31 | Shera Public Company Limited | A process for forming a fiber-cement composite sheet having smooth-surface and the fiber-cement composite sheet obtained from said process |
US20240208108A1 (en) * | 2022-12-22 | 2024-06-27 | General Electric Company | Prepreg tape assembly |
Citations (33)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2987408A (en) * | 1958-03-27 | 1961-06-06 | Corson G & W H | Pozzolanic material |
US3360392A (en) * | 1964-07-09 | 1967-12-26 | Celotex Corp | Apparatus and method for applying spatter finish |
US3873025A (en) * | 1974-05-06 | 1975-03-25 | Stora Kopparbergs Bergslags Ab | Method and apparatus for atomizing a liquid medium and for spraying the atomized liquid medium in a predetermined direction |
US4204644A (en) * | 1976-11-18 | 1980-05-27 | Asahi Glass Company, Limited | Spraying apparatus for preparing glass fiber reinforced cementitious product |
US4250134A (en) * | 1979-06-20 | 1981-02-10 | L. John Minnick | Method for the production of cementitious compositions and aggregate derivatives from said compositions |
US4256584A (en) * | 1979-07-20 | 1981-03-17 | Mold-Masters Limited | Injection molding filter assembly |
US4261286A (en) * | 1978-07-07 | 1981-04-14 | Maschinenfabrik Max Kroenert | Apparatus for coating of moving sheets with a contact adhesive |
US4268316A (en) * | 1979-07-27 | 1981-05-19 | Martin Marietta Corporation | Masonry cement composition |
US4403006A (en) * | 1980-01-10 | 1983-09-06 | United States Gypsum Company | Sag-resistant gypsum board containing coal fly ash and method for making same |
US4411723A (en) * | 1979-10-03 | 1983-10-25 | Kurimoto Iron Works, Ltd. | Glass fiber-reinforced cement plates |
US4818595A (en) * | 1984-04-25 | 1989-04-04 | Delphic Research Laboratories, Inc. | Fire barrier coating and fire barrier plywood |
US4915740A (en) * | 1986-09-25 | 1990-04-10 | Denki Kagaku Kogyo Kabushiki Kaisha | Hydraulic material composition having high strength |
US4981740A (en) * | 1989-03-10 | 1991-01-01 | Kkkk A/S | Acid resistant concrete articles, especially sulfur concrete pipes, and a method of manufacturing said articles |
US5032548A (en) * | 1990-02-27 | 1991-07-16 | Marathon Oil Company | Construction material containing catalytic cracking catalyst particles |
US5073197A (en) * | 1988-08-12 | 1991-12-17 | National Research Development Corporation | Cement compositions |
US5236773A (en) * | 1991-10-25 | 1993-08-17 | The United States Of America As Represented By The Secretary Of The Navy | Fire-resistant barriers for composite materials |
US5294255A (en) * | 1992-09-23 | 1994-03-15 | Specrete-Ip Incorporated | Pumpable backfill grout |
US5314119A (en) * | 1992-04-20 | 1994-05-24 | Latanick Equipment, Inc. | Method and apparatus for applying thin coatings of fluid droplets |
US5383521A (en) * | 1993-04-01 | 1995-01-24 | Halliburton Company | Fly ash cementing compositions and methods |
US5387283A (en) * | 1993-05-27 | 1995-02-07 | Kirkpatrick; William D. | Process for producing a hydraulic cement binder for both general and special applications |
US5439518A (en) * | 1993-01-06 | 1995-08-08 | Georgia-Pacific Corporation | Flyash-based compositions |
US5484480A (en) * | 1993-10-19 | 1996-01-16 | Jtm Industries, Inc. | Use of alumina clay with cement fly ash mixtures |
US5490889A (en) * | 1993-05-27 | 1996-02-13 | Kirkpatrick; William D. | Blended hydraulic cement for both general and special applications |
US5536310A (en) * | 1991-11-27 | 1996-07-16 | Sandoz Ltd. | Cementitious compositions containing fly ash |
US5556458A (en) * | 1991-11-27 | 1996-09-17 | Sandoz Ltd. | Cementitious compositions |
US5820668A (en) * | 1995-12-22 | 1998-10-13 | Ib Technologies Llc | Inorganic binder composition, production and uses thereof |
US5853475A (en) * | 1994-05-20 | 1998-12-29 | New Jersey Institute Of Technology | Compressive strength of concrete and mortar containing fly ash |
US5997632A (en) * | 1997-02-12 | 1999-12-07 | Mineral Resources Technologies, Llc | Blended hydraulic cement |
US6008275A (en) * | 1997-05-15 | 1999-12-28 | Mbt Holding Ag | Cementitious mixture containing high pozzolan cement replacement and compatabilizing admixtures therefor |
US6332921B1 (en) * | 1997-08-15 | 2001-12-25 | Halliburton Energy Services, Inc. | Cement compositions and methods for high temperature wells containing carbon dioxide |
US6346146B1 (en) * | 1997-04-10 | 2002-02-12 | James Hardie Research Pty Limited | Building products |
US6482258B2 (en) * | 2000-01-28 | 2002-11-19 | Mineral Resource Technologies, Llc | Fly ash composition for use in concrete mix |
US6682595B1 (en) * | 2002-09-12 | 2004-01-27 | Ronald Lee Barbour | Settable composition containing potassium sulfate |
Family Cites Families (265)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US548480A (en) * | 1895-10-22 | Steam-pump | ||
US803484A (en) * | 1904-10-07 | 1905-10-31 | Dory Hickox | Apparatus for sinking wells. |
US2118762A (en) * | 1936-07-03 | 1938-05-24 | Lehon Co | Machine for making tapered cement asbestos shingles |
US2156901A (en) * | 1936-12-09 | 1939-05-02 | Bakelite Building Prod Co Inc | Method and apparatus for feeding and distributing sludgy materials |
US3501324A (en) | 1966-07-15 | 1970-03-17 | Osaka Packing | Manufacturing aqueous slurry of hydrous calcium silicate and products thereof |
GB1265471A (en) | 1967-11-23 | 1972-03-01 | ||
US3679446A (en) | 1968-06-04 | 1972-07-25 | Osaka Packing | Molding materials of calcium silicate hydrate and shaped products thereof |
DE1784657B2 (en) | 1968-09-02 | 1977-12-01 | Ferma International Entwicklungswerk Fuer Rationelle Fertigbaumethoden Und Maschinenanlagen Gmbh & Co Kg, 7516 Karlsbad | Process for the continuous production of moldings, in particular panels, from plaster of paris and fibers |
US3592724A (en) * | 1969-04-21 | 1971-07-13 | Dow Chemical Co | Cementitious laminate of sulfonated polymers |
US3949144A (en) * | 1969-08-21 | 1976-04-06 | Duff Raymond A | Reinforced concrete construction |
GB1136661A (en) | 1970-02-13 | 1968-12-11 | W N Nicholson & Sons Ltd | Improvements in or relating to agricultural implements |
WO1992018434A1 (en) | 1991-04-09 | 1992-10-29 | Nihon Cement Co., Ltd. | Low heat building cement composition |
US3782985A (en) * | 1971-11-26 | 1974-01-01 | Cadcom Inc | Lightweight,high strength concrete and method for manufacturing the same |
US3782958A (en) * | 1972-02-07 | 1974-01-01 | Us Air Force | Glass showing electrical switching phenomena |
SU411054A1 (en) | 1972-03-02 | 1974-01-15 | ||
US3843380A (en) | 1972-12-26 | 1974-10-22 | Scm Corp | Process for spray drying pigment |
AT356571B (en) | 1973-05-08 | 1980-05-12 | Sika Ag | STORAGE STABLE, LOW VISCOSES, LIQUID ADDITIVES FOR MORTAR AND CONCRETE |
DD105415A1 (en) | 1973-07-03 | 1974-04-20 | ||
DE2344773A1 (en) | 1973-09-05 | 1975-03-27 | Osaka Packing | Low density shapes from beta-wollastonite - prepd. hydrothermally and formulated with fibres, clay and binder and fired at 1000 deg C |
DE2349910B2 (en) | 1973-10-04 | 1978-05-18 | Hoechst Ag, 6000 Frankfurt | Additive for mortar and concrete |
US3932275A (en) * | 1974-08-29 | 1976-01-13 | Amax Resource Recovery Systems, Inc. | Process for the treatment of mineral slimes |
JPS5945953B2 (en) | 1975-04-18 | 1984-11-09 | 株式会社精工舎 | Parent-child clock |
JPS5829721B2 (en) * | 1975-05-29 | 1983-06-24 | 松下電工株式会社 | Manufacturing method of fiber reinforced cement sheet |
US4102697A (en) | 1975-07-09 | 1978-07-25 | Sumitomo Chemical Company, Limited | Fluid plaster composition |
US4039170A (en) * | 1975-09-08 | 1977-08-02 | Cornwell Charles E | System of continuous dustless mixing and aerating and a method combining materials |
US4052220A (en) | 1975-09-10 | 1977-10-04 | The Partners Limited | Method of making an improved concrete |
IE45045B1 (en) * | 1975-10-28 | 1982-06-16 | Ici Ltd | Cementitious compositions |
US4240840A (en) | 1975-10-28 | 1980-12-23 | Imperial Chemical Industries Limited | Cementitious compositions |
US4066723A (en) * | 1976-03-19 | 1978-01-03 | Caterpillar Tractor Co. | Method and apparatus for making fibrous concrete |
JPS52135330A (en) * | 1976-05-10 | 1977-11-12 | Nippon Asbestos Co Ltd | Production of calcium silicate boad free from asbestos |
JPS5614466Y2 (en) | 1976-10-30 | 1981-04-04 | ||
US4101335A (en) * | 1976-11-04 | 1978-07-18 | Cape Boards & Panels Ltd. | Building board |
GB1514239A (en) * | 1976-12-07 | 1978-06-14 | Nat Res Dev | Fibre-reinforced composites |
BG24579A1 (en) * | 1977-03-11 | 1978-04-12 | Simeonov | METHOD FOR VRATED VTV "RDJAVANE I POVISHAVANE JAKOSTTA NA.SIMENTI |
US4131480A (en) | 1977-03-16 | 1978-12-26 | Fosroc Holdings (U.K.) Limited | Pumpable cementitious compositions |
DE2818615C2 (en) * | 1977-05-03 | 1985-09-05 | James Hardie & Coy. Pty. Ltd., Sydney, New South Wales | Process for the production of asbestos-cement laminate panels |
US4188231A (en) | 1977-06-17 | 1980-02-12 | Valore Rudolph C | Methods of preparing iron oxide mortars or cements with admixtures and the resulting products |
US4131638A (en) | 1977-07-05 | 1978-12-26 | Johns-Manville Corporation | Process for the manufacture of calcium silicate hydrate objects |
JPS5717452Y2 (en) | 1977-12-28 | 1982-04-12 | ||
HU180773B (en) | 1978-04-27 | 1983-04-29 | Geza Nemes | Method for surface treating concrete bodies made by thermal curing particularly prefabricated reinforced concrete members |
JPS58351Y2 (en) | 1978-06-21 | 1983-01-06 | 古河電気工業株式会社 | Jumper device for multi-conductor transmission lines |
DE2832125C2 (en) | 1978-07-21 | 1983-03-03 | Mars Inc., 22102 McLean, Va. | Process for the production of fire-resistant, dimensionally accurate lightweight panels |
JPS5425927Y2 (en) | 1978-07-26 | 1979-08-29 | ||
DE2835423A1 (en) * | 1978-08-12 | 1980-03-06 | Hoechst Ag | CONCRETE AND MORTAR ADDITIVES AND THEIR USE |
AR227376A1 (en) | 1978-10-20 | 1982-10-29 | Horacio Ernst Cristian | PROCEDURE FOR OBTAINING IMPROVED MOLDED CONCRETE PARTS FOR TRACCINE AND COMPRESSION STRENGTH AND PARTS SO OBTAINED |
AU528009B2 (en) | 1978-11-21 | 1983-03-31 | Stamicarbon B.V. | Sheet of fibre-reinforced hydraulically bindable material |
JPS5817587Y2 (en) | 1978-12-22 | 1983-04-09 | 東芝テック株式会社 | carpet cleaning equipment |
JPS55130847U (en) | 1979-03-09 | 1980-09-16 | ||
JPS5857386B2 (en) | 1979-04-02 | 1983-12-20 | 株式会社トクヤマ | mortar composition |
IT1121592B (en) * | 1979-06-21 | 1986-04-02 | Montedison Spa | PROCEDURE AND DEVICE FOR THE MANUFACTURE OF REINFORCING CONCRETE SLABS |
US4379729A (en) | 1979-08-09 | 1983-04-12 | Tarmac Industrial Holdings Limited | Method and apparatus for the production of composite sheet material and a sheet material produced thereby |
US4256504A (en) | 1979-10-16 | 1981-03-17 | The United States Of America As Represented By The Secretary Of The Interior | Fly ash-based cement |
US4328145A (en) | 1979-10-26 | 1982-05-04 | American Admixtures And Chemicals Corporation | Additive for air-entrained super plasticized concrete, concrete produced thereby and method of producing air-entrained super plasticized concrete |
JPS5669602A (en) * | 1979-11-12 | 1981-06-11 | Fuji Photo Optical Co Ltd | Light guide device |
JPS56109855A (en) | 1980-02-04 | 1981-08-31 | Mitsubishi Chem Ind | Manufacture of calcium silicate formed body |
US4298413A (en) * | 1980-03-03 | 1981-11-03 | Teare John W | Method and apparatus for producing concrete panels |
US4374672A (en) * | 1980-04-04 | 1983-02-22 | The Detroit Edison Company | Method of and composition for producing a stabilized fill material |
CS222361B1 (en) | 1980-06-13 | 1983-06-24 | Jan Vrbecky | Muxture for autoclaved lime-silicon concrete |
FR2484899A1 (en) | 1980-06-18 | 1981-12-24 | Saint Gobain Isover | METHOD AND DEVICE FOR REMOVING WATER EXCEEDING A MIXTURE OF PLASTER AND WATER, AND PRODUCTS OBTAINED |
JPS5717452A (en) | 1980-07-03 | 1982-01-29 | Asahi Ishiwata Kogyo Kk | Manufacture of refractory heat-resistant material |
AU515151B1 (en) | 1980-07-21 | 1981-03-19 | James Hardie Research Pty Limited | Fibre-reinforced cementitious articles |
US4339289A (en) | 1980-08-25 | 1982-07-13 | Battelle Development Corporation | Concrete overlay construction |
US4441723A (en) * | 1980-12-02 | 1984-04-10 | General Connectors Corp. | Duct seal |
US4394175A (en) | 1981-05-07 | 1983-07-19 | Cheriton Leslie W | Self-levelling cementitious mixes |
SE435271B (en) | 1981-06-26 | 1984-09-17 | Thermobase Snc | PROCEDURE FOR MANUFACTURING ANGHERDATED INORGANIC POROST INSULATION MATERIAL WITH EXTREMELY LOW VOLUME WEIGHT |
FR2512440A1 (en) | 1981-09-07 | 1983-03-11 | Colas Sa | Inexpensive mixt. for filling trenches or repairing roads - based on fly ash, which is mixed with small amts. of cement and activator, followed by adding water when mixt. is used |
CA1218910A (en) | 1981-09-17 | 1987-03-10 | Lawrence R. Roberts | Dispersing composition |
CH648272A5 (en) * | 1981-10-12 | 1985-03-15 | Sika Ag | ALKALIF-FREE SETTING AND HARDENING ACCELERATOR AND METHOD FOR ACCELERATING THE SETTING AND HARDENING OF A HYDRAULIC BINDING AGENT. |
JPS5888055A (en) * | 1981-11-19 | 1983-05-26 | Matsushita Electric Works Ltd | Painting apparatus |
US4441944A (en) | 1981-12-31 | 1984-04-10 | Pmp Corporation | Building board composition and method of making same |
JPS58131018A (en) * | 1982-01-30 | 1983-08-04 | 松下電工株式会社 | Manufacture of board for building |
JPS57183344U (en) | 1982-02-23 | 1982-11-20 | ||
JPS58145652A (en) | 1982-02-24 | 1983-08-30 | 三菱化学株式会社 | Calcium silicate molded body |
JPS58149939A (en) | 1982-03-01 | 1983-09-06 | Sumitomo Bakelite Co Ltd | Fresin composition |
JPS58149939U (en) | 1982-03-31 | 1983-10-07 | 山本 恵一 | dressing table |
JPS58209513A (en) * | 1982-05-31 | 1983-12-06 | 松下電工株式会社 | Manufacture of fiber reinforced cement board |
US4450022A (en) * | 1982-06-01 | 1984-05-22 | United States Gypsum Company | Method and apparatus for making reinforced cement board |
GB2128178B (en) | 1982-10-01 | 1986-01-08 | Bryan James Walker | Lightweight aggregate |
JPS59107985A (en) * | 1982-12-07 | 1984-06-22 | ニチアス株式会社 | Manufacture of floor board |
US4478736A (en) * | 1983-01-14 | 1984-10-23 | Monier Resources, Inc. | Composition and process for the treatment of clay slimes |
AU572111B2 (en) | 1983-01-21 | 1988-05-05 | A.V. Syntec Pty. Ltd. | Modifiers for cementitious materials |
US4495301A (en) | 1983-04-06 | 1985-01-22 | Dresser Industries, Inc. | Insulating refractories |
JPS59217659A (en) | 1983-05-24 | 1984-12-07 | 株式会社大阪パツキング製造所 | Manufacture of lightweight calcium silicate formed body |
DE3324671C2 (en) | 1983-07-08 | 1987-02-05 | Didier-Werke Ag, 6200 Wiesbaden | Use of industrial sewage sludge |
US4504335A (en) * | 1983-07-20 | 1985-03-12 | United States Gypsum Company | Method for making reinforced cement board |
JPS6041561A (en) * | 1983-08-10 | 1985-03-05 | Kikusui Kagaku Kogyo Kk | Coating apparatus |
SE438114B (en) * | 1983-09-12 | 1985-04-01 | Rovac Ab | PROCEDURE TO MEDIUM A PRESSURE CHAMBER MAKE FOAM PLASTIC MATERIAL |
JPS6083808A (en) * | 1983-10-15 | 1985-05-13 | 松下電工株式会社 | Manufacture of asbestos cement group building board |
JPS60135211A (en) * | 1983-12-23 | 1985-07-18 | 松下電工株式会社 | Sprinkler for fiber mixed cement slurry |
JPS60166451A (en) * | 1984-02-10 | 1985-08-29 | 松下電工株式会社 | Manufacture of asbestos cement group building board |
JPS60135211U (en) | 1984-02-20 | 1985-09-09 | カヤバ工業株式会社 | vehicle height adjustment device |
JPS60191074A (en) | 1984-03-13 | 1985-09-28 | 松下電工株式会社 | Manufacture of inorganic cured body |
JPS60191074U (en) | 1984-05-29 | 1985-12-18 | 日本電気株式会社 | luggage tag |
AU584105B2 (en) | 1984-06-20 | 1989-05-18 | Sandoz Ag | Organic compounds for cement mixes |
FR2573064B1 (en) | 1984-11-15 | 1991-10-25 | Schlumberger Cie Dowell | IMPROVED LIGHT-DUTY CEMENT MILK COMPOSITION FOR CEMENTING OIL WELLS AND GASES |
JPS6236055Y2 (en) | 1984-12-22 | 1987-09-12 | ||
JPS61178462A (en) | 1985-02-05 | 1986-08-11 | 電気化学工業株式会社 | High strength cement composition |
IT1183353B (en) | 1985-02-15 | 1987-10-22 | Moplefan Spa | DEVICE FOR THE CONTINUOUS MANUFACTURING OF PRODUCTS REINFORCED BY MIXTURES OF HYDRAULIC BINDERS AND RELATED PROCEDURE |
JPH0224041Y2 (en) | 1985-02-23 | 1990-07-02 | ||
JPS6217056A (en) | 1985-07-12 | 1987-01-26 | 清水建設株式会社 | High fluidity concrete |
CN1019099B (en) * | 1985-08-06 | 1992-11-18 | 电气化学工业株式会社 | High Strength Hydraulic Composite |
NO158499C (en) * | 1985-09-03 | 1988-09-21 | Elkem As | HYDRAULIC CEMENT SUSPENSION. |
CS253499B1 (en) | 1985-09-28 | 1987-11-12 | Frantisek Skvara | Gypsum-free binding agent with stabilized qualities on base of cement clinker |
JPS6271371U (en) | 1985-10-22 | 1987-05-07 | ||
JPS62202850A (en) * | 1985-11-07 | 1987-09-07 | 花王株式会社 | Cement dispersant |
JPS62207751A (en) * | 1986-03-10 | 1987-09-12 | 電気化学工業株式会社 | Cement composition |
JPS62235274A (en) | 1986-03-24 | 1987-10-15 | ニチアス株式会社 | Manufacturing method of calcium silicate molded body |
DE3711549C2 (en) | 1986-04-04 | 1997-09-04 | Ube Industries | Light calcium silicate article and process for its manufacture |
US5580508A (en) | 1986-04-04 | 1996-12-03 | Ube Industries, Ltd. | Process for preparing calcium silicate articles |
JPS62252357A (en) | 1986-04-23 | 1987-11-04 | 三菱化学株式会社 | Method for producing water-repellent calcium silicate molded body |
DE3619363A1 (en) | 1986-06-09 | 1987-12-10 | Brockhues Chem Werke Ag | METHOD FOR COLORING CONCRETE |
JPS638248A (en) | 1986-06-25 | 1988-01-14 | 四国電力株式会社 | Quality improver for cement and concrete |
US4772328A (en) | 1986-12-18 | 1988-09-20 | Basf Corporation | Hydraulic cementitious compositions reinforced with fibers containing polyacrylonitrile |
JPS63248751A (en) | 1987-04-02 | 1988-10-17 | 太平洋セメント株式会社 | Hydraulic cement and manufacture |
AU606344B2 (en) | 1987-06-12 | 1991-02-07 | Kabushiki Kaisha Osaka Packing Seizosho | Calcium silicate crystal board |
JPS6429843U (en) | 1987-08-17 | 1989-02-22 | ||
DE3730585A1 (en) | 1987-09-11 | 1989-03-23 | Pfleiderer Ind Gmbh & Co Kg | METHOD AND DEVICE FOR PRODUCING PLASTER FIBER PANELS |
US4816091A (en) | 1987-09-24 | 1989-03-28 | Miller Robert G | Method and apparatus for producing reinforced cementious panel webs |
US4904503A (en) | 1987-09-29 | 1990-02-27 | W. R. Grace & Co.-Conn. | Rapid setting cementitious fireproofing compositions and method of spray applying same |
EP0314242A1 (en) | 1987-10-28 | 1989-05-03 | Pumptech N.V. | Additives for oilfield cements and corresponding cement slurries |
NO165673C (en) | 1987-11-16 | 1991-03-20 | Elkem As | HYDRAULIC CEMENT SUSPENSION. |
DE3743467A1 (en) | 1987-12-22 | 1989-07-13 | Heidelberger Zement Ag | Process for producing a building material and binder having increased water resistance |
SU1571024A1 (en) | 1988-01-04 | 1990-06-15 | Херсонский Сельскохозяйственный Институт Им.А.Д.Цюрупы | Complex additive for concrete mix |
US4846889A (en) | 1988-02-02 | 1989-07-11 | The Dow Chemical Company | Polymeric blend useful in thin-bed mortar compositions comprising a water-soluble cellulose ether and a water-insoluble, but water-dispersible polymer |
FR2626873B1 (en) * | 1988-02-08 | 1992-12-24 | Lafarge Fondu Int | METHOD AND COMPOSITION FOR ACCELERATING CEMENT SETTING AND SUPPRESSING EFFLORESCENCE |
JPH01215504A (en) * | 1988-02-24 | 1989-08-29 | Matsushita Electric Works Ltd | Manufacture of fiber cement sheet |
JPH07115902B2 (en) | 1988-05-06 | 1995-12-13 | 信越化学工業株式会社 | Cement composition for extrusion molding |
GB8813894D0 (en) * | 1988-06-11 | 1988-07-13 | Redland Roof Tiles Ltd | Process for production of concrete building products |
IT1226339B (en) * | 1988-07-18 | 1991-01-09 | Fibronit Spa | EQUIPMENT AND PROCESS FOR THE PRODUCTION OF SLABS FOR BUILDING CONSISTING OF CEMENT, INERT MATERIALS AND ADDITIVES AND REINFORCED BY PLASTIC NETS. |
JP2506208B2 (en) | 1988-12-28 | 1996-06-12 | 株式会社アスク | Asbestos inorganic cured product and method for producing the same |
SU1668346A1 (en) | 1989-01-09 | 1991-08-07 | Хабаровский политехнический институт | Method for decorative finishing surfaces of concrete articles |
JP2517393B2 (en) | 1989-04-24 | 1996-07-24 | 信越化学工業株式会社 | Cement extrusion molding composition |
GB2230772A (en) | 1989-04-24 | 1990-10-31 | Jaypack Limited | Cement/sand composition for covering surfaces |
CH679149A5 (en) | 1989-05-19 | 1991-12-31 | Sika Ag | |
EP0409609B1 (en) | 1989-07-19 | 1994-04-13 | Takeda Chemical Industries, Ltd. | Hydraulic inorganic composition and molded articles thereof |
US5192366A (en) * | 1989-12-05 | 1993-03-09 | Denki Kagaku Koygo Kabushiki Kaisha | Cement admixture and cement composition |
US5174821A (en) | 1989-12-12 | 1992-12-29 | Taisei Corporation | Hydraulic composition, formed products therefrom and segregation reduction agent for hydraulic substances |
US4994113A (en) * | 1990-02-06 | 1991-02-19 | Core-Guard Industries, Inc. | Mixture for the preparation of building materials |
JPH03295843A (en) * | 1990-04-13 | 1991-12-26 | Taisei Corp | Cement composition |
JP2930215B2 (en) * | 1990-04-17 | 1999-08-03 | 株式会社四国総合研究所 | Cement composition for watertight concrete and method for producing the same |
ATE134598T1 (en) | 1990-06-25 | 1996-03-15 | Univ California | VERY DURABLE CEMENT PRODUCTS CONTAINING SILICA ASH |
HU209836B (en) | 1990-07-30 | 1994-11-28 | Kis | Method for producing building material having calcium-silicate links |
JPH0489340A (en) | 1990-07-31 | 1992-03-23 | Sekisui Chem Co Ltd | Cement composition to be extrusion-molded |
JP3140039B2 (en) | 1990-11-07 | 2001-03-05 | 日本たばこ産業株式会社 | Flash drying method and apparatus for tobacco raw materials |
GB9102904D0 (en) | 1991-02-12 | 1991-03-27 | Ici America Inc | Modified cementitious composition |
JPH07121821B2 (en) * | 1991-05-27 | 1995-12-25 | 秩父小野田株式会社 | Admixture for concrete or mortar and kneaded product containing the same |
JP2635884B2 (en) | 1991-06-25 | 1997-07-30 | 日本国土開発株式会社 | Concrete composition |
US5195366A (en) * | 1991-08-22 | 1993-03-23 | Duncan Coy R | Testing apparatus for two or four cylinder engines |
TW210994B (en) * | 1991-09-03 | 1993-08-11 | Hoechst Ag | |
JP2538459B2 (en) | 1991-09-05 | 1996-09-25 | ニチアス株式会社 | Manufacturing method of machinable high strength insulation |
JP2633763B2 (en) | 1991-10-01 | 1997-07-23 | 大和紡績株式会社 | Polypropylene fiber for cement reinforcement |
JPH05154816A (en) | 1991-12-03 | 1993-06-22 | Kubota Corp | Production of fiber reinforced cement slab |
US5303042A (en) * | 1992-03-25 | 1994-04-12 | One Touch Systems, Inc. | Computer-implemented method and apparatus for remote educational instruction |
US5342485A (en) * | 1992-08-05 | 1994-08-30 | Reynolds Metals Company | Process for preparing ultra-white alumina trihydrate |
US5453310A (en) | 1992-08-11 | 1995-09-26 | E. Khashoggi Industries | Cementitious materials for use in packaging containers and their methods of manufacture |
US5508072A (en) * | 1992-08-11 | 1996-04-16 | E. Khashoggi Industries | Sheets having a highly inorganically filled organic polymer matrix |
US5549859A (en) | 1992-08-11 | 1996-08-27 | E. Khashoggi Industries | Methods for the extrusion of novel, highly plastic and moldable hydraulically settable compositions |
JPH06127992A (en) | 1992-10-16 | 1994-05-10 | Kao Corp | Cement composition for extrusion molded article |
JP2688156B2 (en) | 1992-11-04 | 1997-12-08 | 株式会社クボタ | Fiber-reinforced inorganic extruded product and method for producing the same |
CA2110658A1 (en) | 1992-12-16 | 1994-06-17 | Theodor A. Burge | Thixotroping and set-accelerating additive for mixtures containing a hydraulic binder, process using the additive, apparatus for preparing the mixtures containing a hydraulic binder as well as the additive |
US5346012A (en) | 1993-02-01 | 1994-09-13 | Halliburton Company | Fine particle size cement compositions and methods |
JPH06256053A (en) | 1993-03-01 | 1994-09-13 | Denki Kagaku Kogyo Kk | Cement admixture and cement composition |
JP3261199B2 (en) | 1993-03-09 | 2002-02-25 | 日立電子エンジニアリング株式会社 | Pantograph frame deformation inspection device |
GB2276875B (en) | 1993-03-11 | 1997-04-30 | Mhj Ltd | Method and a composition for dewatering silt |
IT1262267B (en) | 1993-03-24 | 1996-06-19 | METHOD AND MACHINE FOR WRAPPING PRODUCTS WITH EXTENSIBLE FILM AND WRAPPING MADE WITH SUCH METHOD. | |
JP3420274B2 (en) * | 1993-04-05 | 2003-06-23 | ダブリュー・アール・グレース・アンド・カンパニー−コーン | Novel cement dispersant composition excellent in preventing flowability deterioration |
US5366637A (en) * | 1993-05-24 | 1994-11-22 | Betz Laboratories, Inc. | Method for dewatering municipal solid waste refuse |
DE4320508A1 (en) | 1993-06-21 | 1994-12-22 | Hoechst Ag | Thickener combinations of macro surfactants and organic additives for aqueous application systems |
JP3353955B2 (en) * | 1993-08-13 | 2002-12-09 | フクダ電子株式会社 | How to change the shape of the region of interest |
JPH07165455A (en) * | 1993-10-20 | 1995-06-27 | Sekisui Chem Co Ltd | Curable inorganic composition |
WO1995011204A1 (en) | 1993-10-21 | 1995-04-27 | Chichibu Onoda Cement Corporation | Self-leveling water-base composition |
AU659400B3 (en) | 1993-12-13 | 1995-05-11 | Vinyl-Crete Products Australia Pty Ltd | Thermosetting moulding compositions and associated methods |
JPH07187734A (en) * | 1993-12-24 | 1995-07-25 | Sekisui Chem Co Ltd | Curable inorganic composition |
CA2182014A1 (en) * | 1994-02-01 | 1995-08-10 | Surendra P. Shah | Extruded fiber-reinforced cement matrix composites and method of making same |
US5403394A (en) * | 1994-02-24 | 1995-04-04 | Burgand; Yves | Self-leveling floor coating material |
US5584895A (en) * | 1994-04-18 | 1996-12-17 | Ngk Insulators, Ltd. | Process for preparing solidified material containing coal ash |
DE4416160A1 (en) | 1994-05-09 | 1995-11-16 | Durapact Glasfaserbetontechn | Process and device for the continuous production of fiber-reinforced molded articles from hydraulically settable compositions |
CN1099089A (en) | 1994-06-03 | 1995-02-22 | 北京市石景山区华泰化学品公司 | Early strength water reducing agent for non-alkali concrete |
US5583079A (en) | 1994-07-19 | 1996-12-10 | Golitz; John T. | Ceramic products, of glass, fly ash and clay and methods of making the same |
JPH0867541A (en) | 1994-08-30 | 1996-03-12 | Kubota Corp | Fiber cement board |
JPH0873283A (en) * | 1994-09-07 | 1996-03-19 | Sekisui Chem Co Ltd | Foamable inorganic composition |
US5562832A (en) * | 1995-01-13 | 1996-10-08 | Beloit Technologies, Inc. | Absorptive sludge dewatering process for papermaking waste |
JP3699743B2 (en) * | 1995-03-17 | 2005-09-28 | 株式会社エーアンドエーマテリアル | Calcium silicate plate manufacturing method |
AU5438496A (en) | 1995-04-04 | 1996-10-23 | Diversitech Corporation | Light-weight high-strength composite pad and method of makin g same |
US5681384A (en) | 1995-04-24 | 1997-10-28 | New Jersey Institute Of Technology | Method for increasing the rate of compressive strength gain in hardenable mixtures containing fly ash |
JP3783734B2 (en) | 1995-05-30 | 2006-06-07 | 株式会社エーアンドエーマテリアル | Calcium silicate plate manufacturing method |
JP3783736B2 (en) * | 1995-06-05 | 2006-06-07 | 株式会社エーアンドエーマテリアル | Calcium silicate plate manufacturing method |
WO1996040598A1 (en) | 1995-06-07 | 1996-12-19 | The Nutrasweet Company | Stable suspension of hydrocolloids and superplasticizer |
GB9513116D0 (en) | 1995-06-28 | 1995-08-30 | Sandoz Ltd | Improvements in or relating to organic compounds |
JP4131574B2 (en) * | 1995-08-17 | 2008-08-13 | 電気化学工業株式会社 | Mixed cement stimulator and mixed cement composition |
AUPN504095A0 (en) | 1995-08-25 | 1995-09-21 | James Hardie Research Pty Limited | Cement formulation |
WO1997021640A1 (en) | 1995-12-15 | 1997-06-19 | New Jersey Institute Of Technology | Method for preparing fly ash for high compressive strength concrete and mortar, and compositions thereof |
WO1997027152A1 (en) | 1996-01-26 | 1997-07-31 | The Nutrasweet Company | Sugar and/or acid addition to anionic polysaccharide-containing cementitious formulations |
JPH09201561A (en) * | 1996-01-29 | 1997-08-05 | Kubota Corp | Coating method and apparatus to create stonetexture |
DE19607081C2 (en) | 1996-02-24 | 1999-09-09 | Bilfinger & Berger Umweltverfa | Process for immobilizing pollutants and for solidifying the immobilizate and use of the products obtained |
JP3265183B2 (en) * | 1996-02-28 | 2002-03-11 | ニチハ株式会社 | Manufacturing method of inorganic plate |
US6204214B1 (en) | 1996-03-18 | 2001-03-20 | University Of Chicago | Pumpable/injectable phosphate-bonded ceramics |
CZ283459B6 (en) | 1996-03-21 | 1998-04-15 | Všcht | Mixture for refractory purposes |
JP3719546B2 (en) * | 1996-04-22 | 2005-11-24 | 株式会社エーアンドエーマテリアル | Calcium silicate plate and method for producing the same |
JP3318487B2 (en) * | 1996-05-24 | 2002-08-26 | ニチハ株式会社 | Manufacturing method of wood chip cement board |
US6325853B1 (en) | 1996-07-19 | 2001-12-04 | Nordson Corporation | Apparatus for applying a liquid coating with an improved spray nozzle |
CN1160070A (en) | 1996-12-09 | 1997-09-24 | 万启洪 | Multipurpose temp.-resistent water-proof material |
US5695551A (en) | 1996-12-09 | 1997-12-09 | Dow Corning Corporation | Water repellent composition |
TW408089B (en) | 1996-12-31 | 2000-10-11 | Shen De Shian | Content and production method for semi-rigid asphalt concrete |
CN1061328C (en) * | 1997-03-18 | 2001-01-31 | 沈阳建筑工程学院 | Method for preparing composite concrete additive by using ultrafine fly ash |
GB9708831D0 (en) * | 1997-04-30 | 1997-06-25 | Unilever Plc | Suspensions with high storage stability, comprising an aqueous silicate solution and filler material |
US6645289B2 (en) | 1997-05-26 | 2003-11-11 | Sci Con Technologies, Inc. | Complex admixture and method of cement based materials production |
BR9702557B1 (en) | 1997-07-02 | 2009-05-05 | pharmaceutical composition for the treatment of malignant neoplasms and process for manufacturing a pharmaceutical composition for the treatment of malignant neoplasms. | |
US5888322A (en) | 1997-07-14 | 1999-03-30 | Nalco Chemical Company | Polymeric oxyalkylate viscosity modifiers for use in gypsum wallboard production |
US5900053A (en) | 1997-08-15 | 1999-05-04 | Halliburton Energy Services, Inc. | Light weight high temperature well cement compositions and methods |
WO1999008885A1 (en) | 1997-08-19 | 1999-02-25 | Dean James Clowes | Building elements, coatings therefor and methods of applying them |
US5817230A (en) | 1997-08-29 | 1998-10-06 | University Of Kentucky Research Foundation | Method for improving the pozzolanic character of fly ash |
US5922124A (en) | 1997-09-12 | 1999-07-13 | Supplee; William W. | Additive for, method of adding thereof and resulting cured cement-type concreations for improved heat and freeze-thaw durability |
DE29716803U1 (en) * | 1997-09-18 | 1998-01-08 | Rauch, Walter, 66440 Blieskastel | Device for coating parts with liquid, pasty, thixotropic and fibrous or particle-containing substances |
JP4002642B2 (en) | 1997-09-26 | 2007-11-07 | ホリゾン・インターナショナル株式会社 | Bookbinding line conveyor |
CN1178202A (en) | 1997-11-03 | 1998-04-08 | 内江市车务段装卸服务公司 | Lightweight hollow wall panel and manufacture thereof |
JPH11139859A (en) * | 1997-11-04 | 1999-05-25 | Sumitomo Osaka Cement Co Ltd | Very quick-hardening cement composition |
US6030275A (en) * | 1998-03-17 | 2000-02-29 | International Business Machines Corporation | Variable control of carrier curvature with direct feedback loop |
US6343267B1 (en) | 1998-04-30 | 2002-01-29 | Matsushita Electric Industrial Co., Ltd. | Dimensionality reduction for speaker normalization and speaker and environment adaptation using eigenvoice techniques |
US6409819B1 (en) * | 1998-06-30 | 2002-06-25 | International Mineral Technology Ag | Alkali activated supersulphated binder |
KR20000014685A (en) | 1998-08-24 | 2000-03-15 | 정종순 | Light insulating mortar composition having improved curing property and contraction-stability |
JP2000160057A (en) | 1998-11-27 | 2000-06-13 | Ando Corp | Material for building and civil engineering work |
RU2161695C2 (en) | 1998-12-15 | 2001-01-10 | Предприятие "Кубаньгазпром" | Grouting mortar |
US6242098B1 (en) * | 1999-02-17 | 2001-06-05 | Mineral Resources Technologies, Llc | Method of making mineral filler and pozzolan product from fly ash |
JP2000302522A (en) | 1999-04-21 | 2000-10-31 | Matsushita Electric Works Ltd | Production of fiber reinforced cement board |
JP3295843B2 (en) | 1999-06-03 | 2002-06-24 | 京楽産業株式会社 | Pachinko machine |
JP2001026485A (en) | 1999-07-13 | 2001-01-30 | Sumitomo Osaka Cement Co Ltd | Formed body of hydraulic composition |
RU2157796C1 (en) | 1999-07-27 | 2000-10-20 | Новосибирский государственный архитектурно-строительный университет | Polymer-cement slurry |
RU2167485C2 (en) | 1999-08-26 | 2001-05-20 | Новопашин Игорь Витальевич | Dc-to-ac converter |
CN1251358A (en) | 1999-10-15 | 2000-04-26 | 唐绍林 | Light-wt. composite wall slurry and method for forming composite wall thereof |
IT1311962B1 (en) | 1999-11-04 | 2002-03-20 | Giovanni Masini | WATER DILUTABLE COMPOSITION HAVING HIGH ADHESION AND ELASTICITY CHARACTERISTICS, SUITABLE FOR PROVIDING FIRE PROTECTION. |
GB9928977D0 (en) | 1999-12-08 | 2000-02-02 | Mbt Holding Ag | Process |
DE10000682A1 (en) | 2000-01-10 | 2001-07-26 | Hans Willi Babka | Coating mass |
RU2168485C1 (en) | 2000-01-31 | 2001-06-10 | Белов Владимир Владимирович | Composition for preparing cellular sol concrete and method of preparing thereof |
JP2001316157A (en) | 2000-03-03 | 2001-11-13 | Kuraray Co Ltd | Hydraulic material composition and fiber-reinforced hydraulically cured product |
US6485561B1 (en) | 2000-03-03 | 2002-11-26 | Clinton D. Dattel | Low density cellular concrete with accelerators for rapid hardening |
US6533848B1 (en) * | 2000-03-13 | 2003-03-18 | University Of Kentucky Research Foundation | Technology and methodology for the production of high quality polymer filler and super-pozzolan from fly ash |
MXPA02008921A (en) * | 2000-03-14 | 2004-10-15 | James Hardie Res Pty Ltd | Fiber cement building materials with low density additives. |
US6375853B1 (en) * | 2000-03-17 | 2002-04-23 | Roe-Hoan Yoon | Methods of using modified natural products as dewatering aids for fine particles |
JP4511680B2 (en) * | 2000-03-28 | 2010-07-28 | 太平洋セメント株式会社 | Slurry molding equipment |
WO2002004378A2 (en) | 2000-07-10 | 2002-01-17 | The Regents Of The University Of Michigan | Self-compacting cementitious composite |
JP4727792B2 (en) * | 2000-08-10 | 2011-07-20 | 株式会社エーアンドエーマテリアル | Method for manufacturing ceramic laminates |
JP4458639B2 (en) | 2000-08-10 | 2010-04-28 | 住友大阪セメント株式会社 | Concrete composition for immediate mold release |
CN1810699A (en) | 2000-10-04 | 2006-08-02 | 詹姆斯哈迪国际财金公司 | Fiber cement composite materials using sized cellulose fibers |
EP1330420B1 (en) * | 2000-10-04 | 2017-01-25 | James Hardie Technology Limited | Fiber cement composite materials using sized cellulose fibers |
US6387175B1 (en) | 2000-10-05 | 2002-05-14 | Bethlehem Steel Corporation | Roadway base intermediate, roadway base, and methods of manufacture |
FR2815342B1 (en) | 2000-10-13 | 2003-08-01 | Francais Ciments | CEMENTITIOUS COMPOSITION, ITS USE FOR THE PRODUCTION OF A SELF-LEVELING LIQUID SCREW AND A SCREEN THUS OBTAINED |
NZ525392A (en) | 2000-10-17 | 2006-03-31 | James Hardie Int Finance Bv | Fiber cement composite material using biocide treated durable cellulose fibers |
KR100865807B1 (en) * | 2000-10-17 | 2008-10-28 | 제임스 하디 인터내셔널 파이낸스 비.브이. | Method and apparatus for reducing impurities in cellulose fibers for the production of fiber reinforced cement composites |
US20050126430A1 (en) | 2000-10-17 | 2005-06-16 | Lightner James E.Jr. | Building materials with bioresistant properties |
US6551114B2 (en) | 2001-02-20 | 2003-04-22 | Advanced Micro Devices, Inc. | Semiconductor device having signal contacts and high current power contacts |
US20030164119A1 (en) * | 2002-03-04 | 2003-09-04 | Basil Naji | Additive for dewaterable slurry and slurry incorporating same |
CN1254352C (en) | 2001-03-02 | 2006-05-03 | 詹姆士·哈代国际金融公司 | Method and apparatus for forming laminated sheet material by spattering |
ES2284820T3 (en) | 2001-03-09 | 2007-11-16 | James Hardie International Finance B.V. | FIBER REINFORCED CEMENT COMPOUND MATERIALS USING CHEMICALLY TREATED FIBERS WITH IMPROVED DISPERSABILITY. |
US6660077B2 (en) | 2001-07-10 | 2003-12-09 | Nestor De Buen-Unna | Additive for the preparation of ecological permeable concretes with high compression, bending and abrasion resistance, and production process |
US6641658B1 (en) | 2002-07-03 | 2003-11-04 | United States Gypsum Company | Rapid setting cementitious composition |
JP4182333B2 (en) | 2002-09-17 | 2008-11-19 | 日本精工株式会社 | Linear motion device |
US7155866B2 (en) | 2002-11-05 | 2007-01-02 | Certainteed Corporation | Cementitious exterior sheathing product having improved interlaminar bond strength |
US7028436B2 (en) * | 2002-11-05 | 2006-04-18 | Certainteed Corporation | Cementitious exterior sheathing product with rigid support member |
WO2004063113A2 (en) | 2003-01-09 | 2004-07-29 | James Hardie International Finance B.V. | Fiber cement composite materials using bleached cellulose fibers |
US20040211342A1 (en) | 2003-04-25 | 2004-10-28 | Mbt Holding Ag | Rheology stabilizer for cementitious compositions |
JP2005034695A (en) | 2003-07-16 | 2005-02-10 | Kyowa Exeo Corp | Molten fly ash trapping apparatus and molten fly ash trapping method |
RU2243189C1 (en) | 2003-07-30 | 2004-12-27 | Государственное образовательное учреждение высшего профессионального образования "Уральский государственный технический университет - УПИ" | Method of production of non-steam-and-pressure cured concrete and composition of mixture of such concrete |
US6832652B1 (en) | 2003-08-22 | 2004-12-21 | Bj Services Company | Ultra low density cementitious slurries for use in cementing of oil and gas wells |
JP4260645B2 (en) | 2004-01-30 | 2009-04-30 | セイコーインスツル株式会社 | Manufacturing method of near-field optical head |
-
2002
- 2002-03-01 CN CNB028058976A patent/CN1254352C/en not_active Expired - Fee Related
- 2002-03-01 DK DK02701097T patent/DK1370369T3/en active
- 2002-03-01 MY MYPI20020733A patent/MY138957A/en unknown
- 2002-03-01 PL PL365343A patent/PL200641B1/en not_active IP Right Cessation
- 2002-03-01 EP EP02701098A patent/EP1370401A4/en not_active Withdrawn
- 2002-03-01 TW TW91103847A patent/TW574164B/en active
- 2002-03-01 CZ CZ20032629A patent/CZ20032629A3/en unknown
- 2002-03-01 TW TW91103844A patent/TW529987B/en not_active IP Right Cessation
- 2002-03-01 AR ARP020100742 patent/AR034210A1/en active IP Right Grant
- 2002-03-01 MX MXPA03007890A patent/MXPA03007890A/en active IP Right Grant
- 2002-03-01 WO PCT/AU2002/000226 patent/WO2002070145A1/en active IP Right Grant
- 2002-03-01 AR ARP020100741 patent/AR032925A1/en active IP Right Grant
- 2002-03-01 CN CNB02805900XA patent/CN1243615C/en not_active Expired - Fee Related
- 2002-03-01 TW TW91103845A patent/TW590882B/en not_active IP Right Cessation
- 2002-03-01 NZ NZ528307A patent/NZ528307A/en unknown
- 2002-03-01 TW TW91103843A patent/TW505727B/en not_active IP Right Cessation
- 2002-03-01 AU AU2002234428A patent/AU2002234428B2/en not_active Ceased
- 2002-03-01 MY MYPI20020719A patent/MY141057A/en unknown
- 2002-03-01 KR KR1020037011486A patent/KR100888732B1/en not_active Expired - Fee Related
- 2002-03-01 MY MYPI20020732A patent/MY128723A/en unknown
- 2002-03-01 DE DE2002622245 patent/DE60222245T2/en not_active Expired - Fee Related
- 2002-03-01 NZ NZ528306A patent/NZ528306A/en unknown
- 2002-03-01 AT AT02701097T patent/ATE372174T1/en not_active IP Right Cessation
- 2002-03-01 TW TW91103846A patent/TWI225822B/en not_active IP Right Cessation
- 2002-03-01 WO PCT/AU2002/000227 patent/WO2002070218A1/en active IP Right Grant
- 2002-03-01 AR ARP020100740 patent/AR032924A1/en unknown
- 2002-03-01 JP JP2002569367A patent/JP2004520975A/en active Pending
- 2002-03-01 EP EP02701097A patent/EP1370369B1/en not_active Expired - Lifetime
- 2002-03-01 HU HU0303327A patent/HU224885B1/en not_active IP Right Cessation
- 2002-03-01 AR ARP020100738 patent/AR032923A1/en unknown
- 2002-03-01 CA CA 2439425 patent/CA2439425C/en not_active Expired - Fee Related
- 2002-03-01 BR BR0207807A patent/BR0207807A/en not_active Application Discontinuation
- 2002-03-01 PL PL363545A patent/PL201390B1/en not_active IP Right Cessation
- 2002-03-01 JP JP2002569306A patent/JP4226331B2/en not_active Expired - Fee Related
- 2002-03-01 MX MXPA03007891A patent/MXPA03007891A/en active IP Right Grant
- 2002-03-01 BR BR0207808A patent/BR0207808A/en not_active Application Discontinuation
- 2002-03-01 CA CA 2439451 patent/CA2439451A1/en not_active Abandoned
- 2002-03-01 KR KR1020037011485A patent/KR100870627B1/en not_active Expired - Fee Related
- 2002-03-01 CZ CZ20032630A patent/CZ20032630A3/en unknown
- 2002-03-01 AR ARP020100739 patent/AR033610A1/en unknown
- 2002-03-01 AU AU2002234429A patent/AU2002234429B2/en not_active Ceased
- 2002-03-01 HU HU0303345A patent/HUP0303345A3/en unknown
- 2002-03-04 US US10/090,385 patent/US20020179219A1/en not_active Abandoned
- 2002-03-04 US US10/090,560 patent/US20020189499A1/en not_active Abandoned
- 2002-03-04 US US10/090,406 patent/US6893751B2/en not_active Expired - Lifetime
- 2002-03-04 EP EP02703394A patent/EP1372952A4/en not_active Withdrawn
- 2002-03-04 AT AT02700057T patent/ATE459466T1/en not_active IP Right Cessation
- 2002-03-04 PL PL02363533A patent/PL363533A1/en not_active Application Discontinuation
- 2002-03-04 NZ NZ528304A patent/NZ528304A/en not_active IP Right Cessation
- 2002-03-04 US US10/090,299 patent/US7396402B2/en not_active Expired - Lifetime
- 2002-03-04 NZ NZ528305A patent/NZ528305A/en not_active IP Right Cessation
- 2002-03-04 BR BR0207806A patent/BR0207806A/en not_active Application Discontinuation
- 2002-03-04 US US10/090,375 patent/US20030000424A1/en not_active Abandoned
- 2002-03-04 JP JP2002569750A patent/JP2004529836A/en active Pending
- 2002-03-04 KR KR10-2003-7011517A patent/KR20030084960A/en not_active Ceased
- 2002-03-04 MX MXPA03007894A patent/MXPA03007894A/en active IP Right Grant
- 2002-03-04 BR BR0207804A patent/BR0207804A/en not_active Application Discontinuation
- 2002-03-04 CN CNA028072855A patent/CN1500038A/en active Pending
- 2002-03-04 HU HU0303320A patent/HUP0303320A3/en unknown
- 2002-03-04 CA CA 2439508 patent/CA2439508A1/en not_active Abandoned
- 2002-03-04 JP JP2002569397A patent/JP4435479B2/en not_active Expired - Fee Related
- 2002-03-04 KR KR1020037011467A patent/KR100865043B1/en not_active Expired - Fee Related
- 2002-03-04 DE DE60235531T patent/DE60235531D1/en not_active Expired - Lifetime
- 2002-03-04 US US10/090,387 patent/US6749897B2/en not_active Expired - Lifetime
- 2002-03-04 HU HU0303370A patent/HUP0303370A3/en unknown
- 2002-03-04 WO PCT/AU2002/000240 patent/WO2002070421A2/en active IP Right Grant
- 2002-03-04 PL PL02363465A patent/PL363465A1/en unknown
- 2002-03-04 BR BR0207805A patent/BR0207805A/en not_active Application Discontinuation
- 2002-03-04 KR KR10-2003-7011547A patent/KR20030083726A/en not_active Ceased
- 2002-03-04 US US10/090,362 patent/US20020170466A1/en not_active Abandoned
- 2002-03-04 WO PCT/AU2002/000241 patent/WO2002070247A1/en active IP Right Grant
- 2002-03-04 NZ NZ528303A patent/NZ528303A/en not_active IP Right Cessation
- 2002-03-04 CA CA 2439484 patent/CA2439484C/en not_active Expired - Lifetime
- 2002-03-04 CZ CZ20032658A patent/CZ20032658A3/en unknown
- 2002-03-04 CN CNA028071611A patent/CN1498162A/en active Pending
- 2002-03-04 EP EP20020700057 patent/EP1377440B1/en not_active Expired - Lifetime
- 2002-03-04 JP JP2002569396A patent/JP4287654B2/en not_active Expired - Fee Related
- 2002-03-04 HU HU0303328A patent/HUP0303328A3/en unknown
- 2002-03-04 US US10/090,388 patent/US6824715B2/en not_active Expired - Fee Related
- 2002-03-04 EP EP02702163A patent/EP1373157A4/en not_active Withdrawn
- 2002-03-04 MX MXPA03007893A patent/MXPA03007893A/en active IP Right Grant
- 2002-03-04 CN CNB028071360A patent/CN100391883C/en not_active Expired - Fee Related
- 2002-03-04 US US10/090,561 patent/US7704316B2/en not_active Expired - Fee Related
- 2002-03-04 PL PL02363498A patent/PL363498A1/en unknown
- 2002-03-04 US US10/090,376 patent/US6692570B2/en not_active Expired - Fee Related
- 2002-03-04 MX MXPA03007892A patent/MXPA03007892A/en not_active Application Discontinuation
- 2002-03-04 CA CA 2439513 patent/CA2439513C/en not_active Expired - Lifetime
- 2002-03-04 CZ CZ20032656A patent/CZ20032656A3/en unknown
- 2002-03-04 CZ CZ20032657A patent/CZ20032657A3/en unknown
- 2002-03-04 US US10/090,338 patent/US20020189500A1/en not_active Abandoned
-
2003
- 2003-10-02 CR CR7093A patent/CR7093A/en not_active Application Discontinuation
- 2003-10-02 CR CR7094A patent/CR7094A/en unknown
- 2003-10-02 CR CR7096A patent/CR7096A/en not_active Application Discontinuation
-
2005
- 2005-05-13 US US11/128,778 patent/US20050208287A1/en not_active Abandoned
-
2006
- 2006-12-04 US US11/634,285 patent/US20070077436A1/en not_active Abandoned
-
2008
- 2008-03-06 AU AU2008201088A patent/AU2008201088B2/en not_active Expired - Fee Related
-
2010
- 2010-01-21 US US12/691,505 patent/US8153245B2/en not_active Expired - Fee Related
Patent Citations (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2987408A (en) * | 1958-03-27 | 1961-06-06 | Corson G & W H | Pozzolanic material |
US3360392A (en) * | 1964-07-09 | 1967-12-26 | Celotex Corp | Apparatus and method for applying spatter finish |
US3873025A (en) * | 1974-05-06 | 1975-03-25 | Stora Kopparbergs Bergslags Ab | Method and apparatus for atomizing a liquid medium and for spraying the atomized liquid medium in a predetermined direction |
US4204644A (en) * | 1976-11-18 | 1980-05-27 | Asahi Glass Company, Limited | Spraying apparatus for preparing glass fiber reinforced cementitious product |
US4261286A (en) * | 1978-07-07 | 1981-04-14 | Maschinenfabrik Max Kroenert | Apparatus for coating of moving sheets with a contact adhesive |
US4250134A (en) * | 1979-06-20 | 1981-02-10 | L. John Minnick | Method for the production of cementitious compositions and aggregate derivatives from said compositions |
US4256584A (en) * | 1979-07-20 | 1981-03-17 | Mold-Masters Limited | Injection molding filter assembly |
US4268316A (en) * | 1979-07-27 | 1981-05-19 | Martin Marietta Corporation | Masonry cement composition |
US4411723A (en) * | 1979-10-03 | 1983-10-25 | Kurimoto Iron Works, Ltd. | Glass fiber-reinforced cement plates |
US4403006A (en) * | 1980-01-10 | 1983-09-06 | United States Gypsum Company | Sag-resistant gypsum board containing coal fly ash and method for making same |
US4818595A (en) * | 1984-04-25 | 1989-04-04 | Delphic Research Laboratories, Inc. | Fire barrier coating and fire barrier plywood |
US4915740A (en) * | 1986-09-25 | 1990-04-10 | Denki Kagaku Kogyo Kabushiki Kaisha | Hydraulic material composition having high strength |
US5073197A (en) * | 1988-08-12 | 1991-12-17 | National Research Development Corporation | Cement compositions |
US4981740A (en) * | 1989-03-10 | 1991-01-01 | Kkkk A/S | Acid resistant concrete articles, especially sulfur concrete pipes, and a method of manufacturing said articles |
US5032548A (en) * | 1990-02-27 | 1991-07-16 | Marathon Oil Company | Construction material containing catalytic cracking catalyst particles |
US5236773A (en) * | 1991-10-25 | 1993-08-17 | The United States Of America As Represented By The Secretary Of The Navy | Fire-resistant barriers for composite materials |
US5556458A (en) * | 1991-11-27 | 1996-09-17 | Sandoz Ltd. | Cementitious compositions |
US5536310A (en) * | 1991-11-27 | 1996-07-16 | Sandoz Ltd. | Cementitious compositions containing fly ash |
US5314119A (en) * | 1992-04-20 | 1994-05-24 | Latanick Equipment, Inc. | Method and apparatus for applying thin coatings of fluid droplets |
US5294255A (en) * | 1992-09-23 | 1994-03-15 | Specrete-Ip Incorporated | Pumpable backfill grout |
US5439518A (en) * | 1993-01-06 | 1995-08-08 | Georgia-Pacific Corporation | Flyash-based compositions |
US5383521A (en) * | 1993-04-01 | 1995-01-24 | Halliburton Company | Fly ash cementing compositions and methods |
US5387283A (en) * | 1993-05-27 | 1995-02-07 | Kirkpatrick; William D. | Process for producing a hydraulic cement binder for both general and special applications |
US5490889A (en) * | 1993-05-27 | 1996-02-13 | Kirkpatrick; William D. | Blended hydraulic cement for both general and special applications |
US5693137A (en) * | 1993-10-19 | 1997-12-02 | Jtm Industries, Inc. | Use of alumina clay with cement fly ash mixtures |
US5484480A (en) * | 1993-10-19 | 1996-01-16 | Jtm Industries, Inc. | Use of alumina clay with cement fly ash mixtures |
US5853475A (en) * | 1994-05-20 | 1998-12-29 | New Jersey Institute Of Technology | Compressive strength of concrete and mortar containing fly ash |
US5820668A (en) * | 1995-12-22 | 1998-10-13 | Ib Technologies Llc | Inorganic binder composition, production and uses thereof |
US5997632A (en) * | 1997-02-12 | 1999-12-07 | Mineral Resources Technologies, Llc | Blended hydraulic cement |
US6346146B1 (en) * | 1997-04-10 | 2002-02-12 | James Hardie Research Pty Limited | Building products |
US6008275A (en) * | 1997-05-15 | 1999-12-28 | Mbt Holding Ag | Cementitious mixture containing high pozzolan cement replacement and compatabilizing admixtures therefor |
US6332921B1 (en) * | 1997-08-15 | 2001-12-25 | Halliburton Energy Services, Inc. | Cement compositions and methods for high temperature wells containing carbon dioxide |
US6482258B2 (en) * | 2000-01-28 | 2002-11-19 | Mineral Resource Technologies, Llc | Fly ash composition for use in concrete mix |
US6682595B1 (en) * | 2002-09-12 | 2004-01-27 | Ronald Lee Barbour | Settable composition containing potassium sulfate |
Cited By (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8603239B2 (en) | 2000-03-14 | 2013-12-10 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7658794B2 (en) | 2000-03-14 | 2010-02-09 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7727329B2 (en) | 2000-03-14 | 2010-06-01 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US8182606B2 (en) | 2000-03-14 | 2012-05-22 | James Hardie Technology Limited | Fiber cement building materials with low density additives |
US7815841B2 (en) | 2000-10-04 | 2010-10-19 | James Hardie Technology Limited | Fiber cement composite materials using sized cellulose fibers |
US8133352B2 (en) | 2000-10-17 | 2012-03-13 | James Hardie Technology Limited | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
US8268119B2 (en) | 2000-10-17 | 2012-09-18 | James Hardie Technology Limited | Method and apparatus for reducing impurities in cellulose fibers for manufacture of fiber reinforced cement composite materials |
US7704316B2 (en) | 2001-03-02 | 2010-04-27 | James Hardie Technology Limited | Coatings for building products and methods of making same |
US7344593B2 (en) | 2001-03-09 | 2008-03-18 | James Hardie International Finance B.V. | Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility |
US7857906B2 (en) | 2001-03-09 | 2010-12-28 | James Hardie Technology Limited | Fiber reinforced cement composite materials using chemically treated fibers with improved dispersibility |
US7993570B2 (en) | 2002-10-07 | 2011-08-09 | James Hardie Technology Limited | Durable medium-density fibre cement composite |
US7942964B2 (en) | 2003-01-09 | 2011-05-17 | James Hardie Technology Limited | Fiber cement composite materials using bleached cellulose fibers |
US8333836B2 (en) | 2003-01-09 | 2012-12-18 | James Hardie Technology Limited | Fiber cement composite materials using bleached cellulose fibers |
US7998571B2 (en) | 2004-07-09 | 2011-08-16 | James Hardie Technology Limited | Composite cement article incorporating a powder coating and methods of making same |
US8133317B2 (en) * | 2005-10-17 | 2012-03-13 | Taiheiyo Cement Corporation | Cement additive and cement composition |
US20090151604A1 (en) * | 2005-10-17 | 2009-06-18 | Hiroshi Hirao | Cement additive and cement composition |
US8993462B2 (en) | 2006-04-12 | 2015-03-31 | James Hardie Technology Limited | Surface sealed reinforced building element |
US7341105B2 (en) | 2006-06-20 | 2008-03-11 | Holcim (Us) Inc. | Cementitious compositions for oil well cementing applications |
US7527688B2 (en) | 2006-06-20 | 2009-05-05 | Holcim (Us) Inc. | Cementitious compositions for oil well cementing applications |
US8209927B2 (en) | 2007-12-20 | 2012-07-03 | James Hardie Technology Limited | Structural fiber cement building materials |
Also Published As
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7708826B2 (en) | Additive for dewaterable slurry and slurry incorporating same | |
AU2008201088B2 (en) | Additive for dewaterable slurry | |
US10526248B2 (en) | White cementitious compositions | |
JP2010535700A (en) | Rheology control additive for dry cast cement composition | |
US20110178209A1 (en) | Manufacturing hydraulic cement aggregates for use in insulating and heat reflecting products | |
CN111875322A (en) | Multi-component concrete composite repair mortar | |
KR20060104990A (en) | Condensation accelerator for cement | |
JPS63129051A (en) | Quick settable self-leveling material | |
CA3051243A1 (en) | Particle size optimized white cementitious compositions | |
CN114988799A (en) | High-water-content high-strength cement-based self-leveling mortar and application thereof | |
CZ9900863A3 (en) | Mortar for grouting | |
AU2021327074A1 (en) | Use of a polyol for reducing shrinking of construction chemicals | |
AU2002235660A1 (en) | Additive for dewaterable slurry | |
JPS63129052A (en) | Cementitious self-leveling material composition | |
OA21716A (en) | Cementitious compositions having biomass ashes, especially bagasse ashes, and uses thereof. | |
WO2023138947A1 (en) | Cementitious compositions having biomass ashes, especially bagasse ashes, and uses thereof | |
KR102324937B1 (en) | Binder composition for improved mortars and coatings | |
EP4335831A1 (en) | Method of placing a flowable construction material | |
WO2023250164A1 (en) | Cement free self-leveling materials | |
JP2025015916A (en) | Concrete Composition | |
CN119528515A (en) | Dry-mix mortar composition and adhesive slurry | |
KR20030059512A (en) | A skim coat mortar composition using by product | |
JPS63260880A (en) | Floor finishing material |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: JAMES HARDIE RESEARCH PTY LIMITED, AUSTRALIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:NAJI, BASIL;O'CHEE, MILTON;REEL/FRAME:012957/0333 Effective date: 20020529 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V., NETHERLAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:016309/0067 Effective date: 20050207 Owner name: JAMES HARDIE INTERNATIONAL FINANCE B.V.,NETHERLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:JAMES HARDIE RESEARCH PTY LIMITED;REEL/FRAME:016309/0067 Effective date: 20050207 |