US20020180348A1 - Organic electroluminescent device with a defraction grading and luminescent layer - Google Patents
Organic electroluminescent device with a defraction grading and luminescent layer Download PDFInfo
- Publication number
- US20020180348A1 US20020180348A1 US09/275,409 US27540999A US2002180348A1 US 20020180348 A1 US20020180348 A1 US 20020180348A1 US 27540999 A US27540999 A US 27540999A US 2002180348 A1 US2002180348 A1 US 2002180348A1
- Authority
- US
- United States
- Prior art keywords
- diffraction grating
- organic electroluminescent
- electroluminescent device
- light
- organic
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000470 constituent Substances 0.000 claims abstract description 6
- 239000010410 layer Substances 0.000 claims description 54
- 239000000758 substrate Substances 0.000 claims description 27
- 239000012044 organic layer Substances 0.000 claims description 20
- 230000000737 periodic effect Effects 0.000 claims description 10
- 238000000034 method Methods 0.000 description 20
- 239000000463 material Substances 0.000 description 18
- 230000005525 hole transport Effects 0.000 description 9
- 150000001875 compounds Chemical class 0.000 description 8
- 238000000151 deposition Methods 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- -1 tris(8-quinolinol)-aluminum Chemical compound 0.000 description 7
- 230000005540 biological transmission Effects 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- JRLALOMYZVOMRI-UHFFFAOYSA-N BPPC Chemical compound BPPC JRLALOMYZVOMRI-UHFFFAOYSA-N 0.000 description 5
- 238000001704 evaporation Methods 0.000 description 5
- 239000010408 film Substances 0.000 description 5
- 229910052751 metal Inorganic materials 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 239000010409 thin film Substances 0.000 description 5
- 230000008020 evaporation Effects 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000006798 recombination Effects 0.000 description 4
- 238000005215 recombination Methods 0.000 description 4
- 229910001316 Ag alloy Inorganic materials 0.000 description 3
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 3
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 3
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 239000010406 cathode material Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000008021 deposition Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 229910052749 magnesium Inorganic materials 0.000 description 3
- 239000011777 magnesium Substances 0.000 description 3
- SJCKRGFTWFGHGZ-UHFFFAOYSA-N magnesium silver Chemical compound [Mg].[Ag] SJCKRGFTWFGHGZ-UHFFFAOYSA-N 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 239000011368 organic material Substances 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 238000004528 spin coating Methods 0.000 description 3
- FQJQNLKWTRGIEB-UHFFFAOYSA-N 2-(4-tert-butylphenyl)-5-[3-[5-(4-tert-butylphenyl)-1,3,4-oxadiazol-2-yl]phenyl]-1,3,4-oxadiazole Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=C(C=CC=2)C=2OC(=NN=2)C=2C=CC(=CC=2)C(C)(C)C)O1 FQJQNLKWTRGIEB-UHFFFAOYSA-N 0.000 description 2
- YLYPIBBGWLKELC-UHFFFAOYSA-N 4-(dicyanomethylene)-2-methyl-6-(4-(dimethylamino)styryl)-4H-pyran Chemical compound C1=CC(N(C)C)=CC=C1C=CC1=CC(=C(C#N)C#N)C=C(C)O1 YLYPIBBGWLKELC-UHFFFAOYSA-N 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 2
- 239000010405 anode material Substances 0.000 description 2
- 239000011248 coating agent Substances 0.000 description 2
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 2
- 229910052737 gold Inorganic materials 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 239000001989 lithium alloy Substances 0.000 description 2
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 238000004544 sputter deposition Methods 0.000 description 2
- TVIVIEFSHFOWTE-UHFFFAOYSA-K tri(quinolin-8-yloxy)alumane Chemical compound [Al+3].C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1.C1=CN=C2C([O-])=CC=CC2=C1 TVIVIEFSHFOWTE-UHFFFAOYSA-K 0.000 description 2
- DAYVBDBBZKWNBY-UHFFFAOYSA-N 1,2-bis[(2,5-ditert-butylphenyl)carbamoyl]perylene-3,4-dicarboxylic acid Chemical compound CC(C)(C)C1=CC=C(C(C)(C)C)C(NC(=O)C=2C(=C3C=4C=CC=C5C=CC=C(C=45)C=4C=CC(=C(C3=4)C=2C(O)=O)C(O)=O)C(=O)NC=2C(=CC=C(C=2)C(C)(C)C)C(C)(C)C)=C1 DAYVBDBBZKWNBY-UHFFFAOYSA-N 0.000 description 1
- UHXOHPVVEHBKKT-UHFFFAOYSA-N 1-(2,2-diphenylethenyl)-4-[4-(2,2-diphenylethenyl)phenyl]benzene Chemical group C=1C=C(C=2C=CC(C=C(C=3C=CC=CC=3)C=3C=CC=CC=3)=CC=2)C=CC=1C=C(C=1C=CC=CC=1)C1=CC=CC=C1 UHXOHPVVEHBKKT-UHFFFAOYSA-N 0.000 description 1
- OWEOYUSGIQAOBA-UHFFFAOYSA-N 3-(2-methylphenyl)-n-[4-[4-[3-(2-methylphenyl)anilino]phenyl]phenyl]aniline Chemical group CC1=CC=CC=C1C1=CC=CC(NC=2C=CC(=CC=2)C=2C=CC(NC=3C=C(C=CC=3)C=3C(=CC=CC=3)C)=CC=2)=C1 OWEOYUSGIQAOBA-UHFFFAOYSA-N 0.000 description 1
- CMSGUKVDXXTJDQ-UHFFFAOYSA-N 4-(2-naphthalen-1-ylethylamino)-4-oxobutanoic acid Chemical compound C1=CC=C2C(CCNC(=O)CCC(=O)O)=CC=CC2=C1 CMSGUKVDXXTJDQ-UHFFFAOYSA-N 0.000 description 1
- CFNMUZCFSDMZPQ-GHXNOFRVSA-N 7-[(z)-3-methyl-4-(4-methyl-5-oxo-2h-furan-2-yl)but-2-enoxy]chromen-2-one Chemical compound C=1C=C2C=CC(=O)OC2=CC=1OC/C=C(/C)CC1OC(=O)C(C)=C1 CFNMUZCFSDMZPQ-GHXNOFRVSA-N 0.000 description 1
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910001148 Al-Li alloy Inorganic materials 0.000 description 1
- KVLOAFOUWCMJQM-UHFFFAOYSA-N C1(=C(C=CC=C1)C1(CC=C(C=C1)N(C1=CC=C(C2=CC=CC=C12)N(C1=CCC(C=C1)(C1=C(C=CC=C1)C)C)C=CC1=CC=CC=C1)C=CC1=CC=CC=C1)C)C Chemical compound C1(=C(C=CC=C1)C1(CC=C(C=C1)N(C1=CC=C(C2=CC=CC=C12)N(C1=CCC(C=C1)(C1=C(C=CC=C1)C)C)C=CC1=CC=CC=C1)C=CC1=CC=CC=C1)C)C KVLOAFOUWCMJQM-UHFFFAOYSA-N 0.000 description 1
- 241000284156 Clerodendrum quadriloculare Species 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241000511976 Hoya Species 0.000 description 1
- 229910000846 In alloy Inorganic materials 0.000 description 1
- 229910000733 Li alloy Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- NRCMAYZCPIVABH-UHFFFAOYSA-N Quinacridone Chemical class N1C2=CC=CC=C2C(=O)C2=C1C=C1C(=O)C3=CC=CC=C3NC1=C2 NRCMAYZCPIVABH-UHFFFAOYSA-N 0.000 description 1
- 229910052581 Si3N4 Inorganic materials 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- JFBZPFYRPYOZCQ-UHFFFAOYSA-N [Li].[Al] Chemical compound [Li].[Al] JFBZPFYRPYOZCQ-UHFFFAOYSA-N 0.000 description 1
- JHYLKGDXMUDNEO-UHFFFAOYSA-N [Mg].[In] Chemical compound [Mg].[In] JHYLKGDXMUDNEO-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- HSFWRNGVRCDJHI-UHFFFAOYSA-N alpha-acetylene Natural products C#C HSFWRNGVRCDJHI-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- SNAAJJQQZSMGQD-UHFFFAOYSA-N aluminum magnesium Chemical compound [Mg].[Al] SNAAJJQQZSMGQD-UHFFFAOYSA-N 0.000 description 1
- 238000000149 argon plasma sintering Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- XZCJVWCMJYNSQO-UHFFFAOYSA-N butyl pbd Chemical compound C1=CC(C(C)(C)C)=CC=C1C1=NN=C(C=2C=CC(=CC=2)C=2C=CC=CC=2)O1 XZCJVWCMJYNSQO-UHFFFAOYSA-N 0.000 description 1
- 125000000609 carbazolyl group Chemical class C1(=CC=CC=2C3=CC=CC=C3NC12)* 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000007598 dipping method Methods 0.000 description 1
- 230000005684 electric field Effects 0.000 description 1
- 239000007772 electrode material Substances 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 229910052738 indium Inorganic materials 0.000 description 1
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012212 insulator Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- ORUIBWPALBXDOA-UHFFFAOYSA-L magnesium fluoride Chemical compound [F-].[F-].[Mg+2] ORUIBWPALBXDOA-UHFFFAOYSA-L 0.000 description 1
- 229910001635 magnesium fluoride Inorganic materials 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- DCZNSJVFOQPSRV-UHFFFAOYSA-N n,n-diphenyl-4-[4-(n-phenylanilino)phenyl]aniline Chemical class C1=CC=CC=C1N(C=1C=CC(=CC=1)C=1C=CC(=CC=1)N(C=1C=CC=CC=1)C=1C=CC=CC=1)C1=CC=CC=C1 DCZNSJVFOQPSRV-UHFFFAOYSA-N 0.000 description 1
- IBHBKWKFFTZAHE-UHFFFAOYSA-N n-[4-[4-(n-naphthalen-1-ylanilino)phenyl]phenyl]-n-phenylnaphthalen-1-amine Chemical compound C1=CC=CC=C1N(C=1C2=CC=CC=C2C=CC=1)C1=CC=C(C=2C=CC(=CC=2)N(C=2C=CC=CC=2)C=2C3=CC=CC=C3C=CC=2)C=C1 IBHBKWKFFTZAHE-UHFFFAOYSA-N 0.000 description 1
- 229920000620 organic polymer Polymers 0.000 description 1
- 150000004866 oxadiazoles Chemical class 0.000 description 1
- 125000002080 perylenyl group Chemical group C1(=CC=C2C=CC=C3C4=CC=CC5=CC=CC(C1=C23)=C45)* 0.000 description 1
- CSHWQDPOILHKBI-UHFFFAOYSA-N peryrene Natural products C1=CC(C2=CC=CC=3C2=C2C=CC=3)=C3C2=CC=CC3=C1 CSHWQDPOILHKBI-UHFFFAOYSA-N 0.000 description 1
- 229910052697 platinum Inorganic materials 0.000 description 1
- 238000005498 polishing Methods 0.000 description 1
- 229920003227 poly(N-vinyl carbazole) Polymers 0.000 description 1
- 229920000553 poly(phenylenevinylene) Polymers 0.000 description 1
- 229920001197 polyacetylene Polymers 0.000 description 1
- 229920000767 polyaniline Polymers 0.000 description 1
- 229920000015 polydiacetylene Polymers 0.000 description 1
- 238000002310 reflectometry Methods 0.000 description 1
- YYMBJDOZVAITBP-UHFFFAOYSA-N rubrene Chemical compound C1=CC=CC=C1C(C1=C(C=2C=CC=CC=2)C2=CC=CC=C2C(C=2C=CC=CC=2)=C11)=C(C=CC=C2)C2=C1C1=CC=CC=C1 YYMBJDOZVAITBP-UHFFFAOYSA-N 0.000 description 1
- 235000012239 silicon dioxide Nutrition 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 description 1
- 229910052814 silicon oxide Inorganic materials 0.000 description 1
- 239000002904 solvent Substances 0.000 description 1
- 229940042055 systemic antimycotics triazole derivative Drugs 0.000 description 1
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 1
- 229910001887 tin oxide Inorganic materials 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- 239000012780 transparent material Substances 0.000 description 1
- 238000007738 vacuum evaporation Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B7/00—Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
- B32B7/02—Physical, chemical or physicochemical properties
- B32B7/023—Optical properties
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/85—Arrangements for extracting light from the devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/805—Electrodes
- H10K50/82—Cathodes
- H10K50/822—Cathodes characterised by their shape
Definitions
- This invention relates to organic electroluminescent devices having high luminous efficiency.
- Organic electroluminescent devices are self-luminous devices based on the principle that, when an electric field is applied, a fluorescent material emits light owing to the energy of the recombination of positive holes injected from an anode and electrons injected from a cathode. Since low-voltage driven organic electroluminescent devices of the laminated structure type were reported by C. W. Tang et al. (e.g., C. W. Tang and S. A. VanSlyke, Applied Physics Letters, Vol. 51, p. 913, 1987), active investigations on organic electroluminescent devices using organic materials as components have been carried on. Tang et al.
- the laminated structure are such that the efficiency of the injection of positive holes into the luminescent layer can be enhanced, the efficiency of the formation of excitons by recombination can be enhanced by blocking electrons injecting from the cathode, and the excitons formed in the luminescent layer can be confined.
- the well-known structures of organic electroluminescent devices include, for example, a two-layer type consisting of a hole transport (or injection) layer and an electron-transporting luminescent layer, and a triple-layered type consisting of a hole transport (or injection) layer, a luminescent layer and an electron transport (or injection) layer.
- a two-layer type consisting of a hole transport (or injection) layer and an electron-transporting luminescent layer
- a triple-layered type consisting of a hole transport (or injection) layer, a luminescent layer and an electron transport (or injection) layer.
- the method of improving light output efficiency has conventionally been investigated in light-emitting devices having a similar structure, such as inorganic electroluminescent devices.
- a method for enhancing efficiency by imparting light-condensing properties to the substrate Japanese Patent Laid-Open No. 314795/'88
- a method for enhancing efficiency by forming reflecting surfaces on the sides or other parts of the device Japanese Patent Laid-Open No. 220394/'89.
- These methods are effective for devices having a large light emission area.
- devices having a minute picture element area such as dot matrix displays, it is difficult to fabricate lenses for providing light-condensing properties or form lateral reflecting surfaces or the like.
- the luminescent layer of an organic electroluminescent device has a thickness of several micrometers or less, it is difficult to make the device tapered and form reflecting mirrors on the sides thereof according to current fine machining techniques. Even if it is possible, a considerable increase in cost will be caused.
- a method for forming an antireflection film by interposing a flat layer having an intermediate refractive index between the glass substrate and the luminescent layer is also known (Japanese Patent Laid-Open No. 172691/'87). This method is effective in improving light output efficiency in the forward direction, but cannot prevent total reflection. Consequently, this method is effective for inorganic electroluminescent devices having a high refractive index, but fails to produce a remarkable efficiency-improving effect on organic electroluminescent devices using a luminescent material having a relatively low refractive index.
- the conventional light output method used for organic electroluminescent devices is still unsatisfactory, and the development of a new light output method is essential for the purpose of enhancing the efficiency of organic electroluminescent devices.
- Japanese Patent Laid-open No. 83688/96 discloses an organic EL device having a light scattering part on an outside surface of the element.
- Japanese Patent Laid-open No. 115667/97 discloses an EL device having a light reflecting structure which reflects light from the light emitting surface.
- Japanese Utility-model Laid-open No. 54184/88 discloses an EL device having micro lense film on the EL element.
- An object of the present invention is to improve light output efficiency in organic electroluminescent devices and thereby provide organic electroluminescent devices having higher efficiency.
- the present invention provides a EL device which has the following feature.
- the device additionally includes a diffraction grating or zone plate as a constituent element.
- the present invention also has the following features.
- the anode and the cathode form the same picture elements, one of these electrodes is an electrode reflecting visible light, and the diffraction grating or zone plate is formed in this reflecting electrode.
- the device has a structure in which the diffraction grating or zone plate, the reflecting electrode, the organic layers and the transparent electrode are formed on a substrate in the order mentioned.
- the anode and the cathode form the same picture elements, one of these electrodes is an electrode reflecting visible light, and the diffraction grating or zone plate is formed in the electrode opposite to the reflecting electrode.
- the device has a structure in which the diffraction grating or zone plate, the transparent electrode, the organic layers and the reflecting electrode are formed on a transparent substrate in the order mentioned.
- the diffraction grating or zone plate has no light-intercepting part.
- the diffraction grating has a two-dimensional periodic configuration.
- the present invention relates to an organic electroluminescent device having one or more organic thin-film layers including a luminescent layer between an anode and a cathode, the device additionally includes a diffraction grating or zone plate as a constituent element.
- This diffraction grating or zone plate may be either of the reflection type or the transmission type.
- a diffraction grating or zone plate of the transmission type not only an amplitude grating formed by providing it with light-intercepting parts can be used, but also a phase grating formed by modulating the thickness of a layer having a different refractive index may be used to further enhance light output efficiency.
- a grating having a two-dimensional periodic configuration may be used.
- a grating having a two-dimensional periodic configuration may be used.
- FIG. 1 is a sectional view for explaining the structure of a device having a reflection type diffraction grating according to the present invention
- FIG. 2 is a sectional view for explaining the structure of a device having a transmission type diffraction grating according to the present invention
- FIG. 3 is a schematic view for explaining the reflection of light on a diffraction grating
- FIG. 4 is a graph for explaining the relationship between incidence angle and exit angle for a diffraction grating having a grating interval of 1 mm, a wavelength of 500 nm, and a refractive index of 1.7;
- FIG. 5 is a graph showing the dependence of incidence angle and exit angle on the grating interval/optical wavelength ratio for first-order diffraction by a diffraction grating
- FIG. 6 is a plan view for explaining a zone plate
- FIG. 7 is a plan view of a two-dimensional grating pattern used in Examples 4 and 5;
- FIG. 8 is a sectional view for explaining a conventional organic electroluminescent device.
- the refractive index of the organic layer including the luminescent layer is higher than that of the substrate material (e.g., glass), so that all of the light produced therein cannot be taken out owing to the occurrence of total reflection at the interface between the organic layer and the substrate. Even where the light is taken out from the side opposite to the substrate, total reflection also occurs at the interface between the device and air owing to the difference in refractive index between them.
- the principle of the present invention is that, in order to suppress such total reflection, a diffraction grating is formed in the substrate interface or the reflecting surface so as to alter the incidence angle of light with respect to the light output surface and thereby enhance light output efficiency.
- the critical angle for total reflection is 36.0 degrees.
- the exit angle observed when light having a wavelength of 500 nm is incident on a reflection type diffraction grating having a grating interval of 2 ⁇ m is shown in FIG. 4.
- the incidence angle in order to give an exit angle within 36 degrees, the incidence angle must be less than 46 degrees for first-order diffraction, must be less than 60 degrees for second-order diffraction, and may have any desired value for third-order diffraction.
- the diffraction grating serves as a reflecting surface. Consequently, most of the light having an incidence angle greater than 36 degrees and having undergone total reflection at the interface between the transparent electrode 2 and the ambient medium of the device has an exit angle less than 36 degrees. Thus, this light reaches again the interface between the transparent electrode and the ambient medium of the device, and leaves the device without undergoing total reflection.
- the component obtained by first-order diffraction and reflected at an exit angle greater than 36 degrees undergoes total reflection at the interface between the transparent electrode and the ambient medium of the device, and strikes again on the diffraction grating. After this process is repeated, almost all of the light is eventually taken out of the device.
- the reflection type diffraction grating used in this case may have any desired shape, so long as it can function as a diffraction grating.
- a laminary grating having a rectangular cross section or an echelette grating having a tapered cross section may be formed on the substrate, and the cathode may be deposited thereon so as to serve as a reflecting surface.
- the cathode may be deposited in the form of alternating stripes by using two cathode materials having different reflection coefficients, or the cathode itself may be formed in a striped pattern to make a diffraction grating.
- a device may be fabricated by forming a diffraction grating 5 on a substrate 1 and then depositing thereon an anode 2 , an organic layer 3 and a cathode 4 in that order, as shown in FIG. 2.
- the transmission type diffraction grating may comprise either an amplitude grating or a phase grating, and may have any desired shape.
- a phase grating may be made by forming grooves in the substrate surface, depositing thereon a layer of a transparent material having a different refractive index, planarizing it, and then depositing an anode, an organic layer and a cathode successively in the usual manner.
- a material opaque to light may be deposited on the substrate surface in the form of stripes, or the anode itself may be formed in a striped pattern. In the latter case, the anode material may be either transparent or opaque.
- a device may be fabricated by forming a gold electrode having a striped pattern as the anode, and then depositing thereon an organic layer and a cathode.
- the dimensions of the diffraction grating should be determined so that the light output efficiency is enhanced for the desired wavelength region of the electroluminescent device.
- the effect of the ratio (R) of the grating interval to the optical wavelength for the desired wavelength i.e., the value obtained by dividing the wavelength by the refractive index
- the ratio is unduly large, the diffraction grating is less effective in reducing the exit angle, so that reflection at a mirror surface is repeated many times to cause a considerable loss.
- the ratio is unduly small, light having a large incidence angle gives reflected light having a large exit angle, so that the proportion of light taken out in the forward direction is decreased.
- unduly large and unduly small ratios both reduce the light output efficiency. Accordingly, it is desirable that the ratio is in the range of 0.1 to 10.
- a diffraction grating made by forming grooves in a concentric pattern may also be used.
- the intervals of the concentric grooves may be periodic or, as shown in FIG. 6, may be determined according to the interval rule for the formation of a zone plate.
- these diffraction gratings may also be made by forming grooves in the substrate or by forming an electrode itself in a grating pattern.
- the groove may have any desired cross-sectional shape.
- the anode functions to inject positive holes into a hole transport layer, and it is effective that the anode has a work function of not less than 4.5 eV.
- Specific examples of the anode materials which can be used in the present invention include indium-tin oxide alloy (ITO); tin oxide (NESA); metals such as gold, silver, platinum and copper, and their oxides; and mixtures thereof.
- the cathode serves to inject electrons into an electron transport layer or a luminescent layer, and it is preferable to use a material having a small work function.
- cathode material examples include indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy, and mixtures thereof.
- one of the anode and the cathode is transparent in the region of visible light, and the other has high reflectivity.
- No particular limitation is placed on the thicknesses of these electrodes, so long as they can perform their proper functions. However, their thicknesses are preferably in the range of 0.02 to 2 ⁇ m.
- the organic electroluminescent devices of the present invention have a structure in which one or more organic layers are disposed between the aforesaid electrodes, and no additional restriction is imposed on their structure.
- Examples thereof are those consisting of (1) an anode, a luminescent layer and a cathode, (2) an anode, a hole transport layer, a luminescent layer, an electron transport layer and a cathode, (3) an anode, a hole transport layer, a luminescent layer and a cathode, and (4) an anode, a luminescent layer, an electron transport layer and a cathode.
- a thin-film layer formed of an inorganic dielectric or insulator e.g., lithium fluoride, magnesium fluoride, silicon oxide, silicon dioxide or silicon nitride
- the type of the luminescent material used in the present invention there may be used any compound that is commonly used as a luminescent material.
- examples thereof include tris(8-quinolinol)-aluminum complex (Alq3) [1], bis(diphenylvinyl)biphenyl (BDPVBi) [2], 1,3-bis(p-t-butylphenyl-1,3,4-oxadiazolyl)phenyl (OXD-7) [3], N,N′-bis(2,5-di-t-butylphenyl)perylenetetracarboxylic acid diimide (BPPC) [4] and 1,4-bis(p-tolyl-p-methylstyrylphenylamino)naphthalene [5].
- Alq3 tris(8-quinolinol)-aluminum complex
- BDPVBi bis(diphenylvinyl)biphenyl
- OXD-7 1,3-bis(
- a layer of a charge transport material doped with a fluorescent material may be used as a luminescent material.
- a layer of a quinolinol-metal complex such as the aforesaid Alq3[1], doped with 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) [6], a quinacridone derivative such as 2,3-quinacridone [7] or a coumarin derivative such as 3-(2′-benzothiazole)-7-diethylaminocoumarin [8]; a layer of the electron transport material bis(2-methyl-8-hydroxyquinoline)-4-phenylphenol-aluminum complex [9] doped with a fused polycyclic aromatic compound such as perylene [10]; or a layer of the hole transport material 4,4′-bis(m-tolylphenylamino)biphenyl (TPD) [11] doped with rubren
- the type of the hole transport material used in the present invention there may be used any compound that is commonly used as a hole transport material.
- Examples thereof include triphenyldiamines such as bis[di(p-tolyl)aminophenyl]-1,1-cyclohexane [13], TPD [11] and N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) [14]; and starburst type molecules (e.g., [15] to [17]).
- triphenyldiamines such as bis[di(p-tolyl)aminophenyl]-1,1-cyclohexane [13], TPD [11] and N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) [
- the type of the electron transport material used in the present invention there may be used any compound that is commonly used as an electron transport material.
- examples thereof include oxadiazole derivatives such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (Bu-PBD) [18] and OXD-7[3]; triazole derivatives (e.g., [19] and [20]); and quinolinol-metal complexes (e.g., [1], [9], and [21] to [24]).
- oxadiazole derivatives such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (Bu-PBD) [18] and OXD-7[3]
- triazole derivatives e.g., [19] and [20]
- quinolinol-metal complexes e.g., [1],
- the organic thin-film layers each containing a compound as described above, which is used in the organic electroluminescent device of the present invention can be formed according to any well-known method such as vapor evaporation, molecular beam evaporation (MBE), or coating method such as dipping (in a solution prepared by dissolving the compound in a solvent), spin coating, casting, bar coating or roll coating.
- MBE molecular beam evaporation
- coating method such as dipping (in a solution prepared by dissolving the compound in a solvent), spin coating, casting, bar coating or roll coating.
- each organic layer used in the organic electroluminescent device of the present invention No particular limitation is placed on the thickness of each organic layer used in the organic electroluminescent device of the present invention. However, it is usually preferable that each organic layer have a thickness ranging from several tens of nanometers to 1 micrometer.
- this device comprises a substrate 1 having thereon an anode 2 , an organic layer 3 (composed of a hole injection layer, a luminescent layer and an electron transport layer) and a cathode 4 .
- An ITO layer having a thickness of 100 nm was deposited on a 50 mm ⁇ 25 mm glass substrate (a thickness of 1.1 mm; NA 45 manufactured by Hoya Corp.) by sputtering.
- a metal mask was used to deposit the ITO layer in the form of stripes measuring 2 mm ⁇ 50 mm. Its sheet resistance was 20 ⁇ / ⁇ .
- an organic luminescent layer was deposited by means of a resistance heating type vapor evaporator. While the substrate was mounted in the upper part of a vacuum chamber, a molybdenum boat was placed at a position 250 mm below the substrate. The substrate was arranged so as to give an incidence angle of 38° and rotated at a speed of 30 rotation per minutes. As soon as a pressure of 5 ⁇ 10 ⁇ 7 Torr was reached, evaporation was started, and the deposition rate was controlled by means of a crystal oscillator type film thickness controller mounted beside the substrate. The deposition rate was preset at 0.15 nm per second.
- a hole injection layer comprising compound [15] was deposited to a thickness of 40 nm. Thereafter, a 70 nm thick luminescent layer comprising compound [5] and a 40 nm thick electron transport layer comprising compound [19] were successively evaporated under the same conditions as described above.
- a cathode comprising a magnesium-silver alloy was deposited by evaporating magnesium and silver simultaneously from separate boats.
- the deposition rates of magnesium and silver were adjusted to 1.0 and 0.2 nm per second, respectively, and the film thickness was preset at 200 nm.
- a metal mask was used to deposit the cathode in such a way that it consisted of 12 stripes measuring 25 mm ⁇ 2 mm which were arranged at intervals of 1 mm and in a direction orthogonal to the stripes of ITO.
- this device When a voltage of 10 V was applied, this device exhibited a current density of 50 mA/cm 2 and a luminance of 1,950 cd/m 2 . Consequently, its efficiency was 3.9 cd/A or 1.22 lm/W.
- a grating pattern having a line width of 1 ⁇ m and an interval of 1 ⁇ m was formed according to a photolithographic process. Specifically, a 2 ⁇ m thick layer of an i-line resist (THMR-iP1700; manufactured by Tokyo Ohka Kogyo Co., Ltd.) was formed on the substrate by spin coating, and patterned by means of an i-line stepper. Then, this substrate was soaked in a hydrofluoric acid solution to form grooves having a depth of 200 nm, and the remaining resist was removed by use of an exclusive stripping fluid. After a cathode comprising a 200 nm thick layer of a magnesium-silver alloy was evaporated thereon under the same conditions as described in Comparative Example 1, organic layers with reverse order of Comparative Example 1 and an ITO layer were successively deposited.
- THMR-iP1700 manufactured by Tokyo Ohka Kogyo Co., Ltd.
- a device was fabricated in exactly the same manner as in Example 1, except that the grating pattern had a line width of 0.40 ⁇ m and an interval of 0.40 ⁇ m.
- a device was fabricated in exactly the same manner as in Example 1, except that the two-dimensional grating pattern shown in FIG. 7 was used. When a voltage of 10 V was applied, this device exhibited a current density of 52 mA/cm 2 and a luminance of 3,733 cd/m 2 . Consequently, its efficiency was 7.17 cd/A or 2.25 lm/W.
- a device was fabricated in exactly the same manner as in Example 3, except that the two-dimensional grating pattern shown in FIG. 7 was used. When a voltage of 10 V was applied, this device exhibited a current density of 58 mA/cm 2 and a luminance of 3,210 cd/m 2 . Consequently, its efficiency was 5.53 cd/A or 1.73 lm/W.
- n is an integer ranging from 1 to 100. Grooves were formed in the zones where n changes from an even number to an odd number. After this zone pattern was formed so as to cover a 5 mm ⁇ 5 mm area of the substrate surface, the treatment (e.g., planarization) and the formation of several layers were carried out in the same manner as in Example 3.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
Description
- 1. Field of the Invention
- This invention relates to organic electroluminescent devices having high luminous efficiency.
- 2. Description of the Prior Art
- Organic electroluminescent devices are self-luminous devices based on the principle that, when an electric field is applied, a fluorescent material emits light owing to the energy of the recombination of positive holes injected from an anode and electrons injected from a cathode. Since low-voltage driven organic electroluminescent devices of the laminated structure type were reported by C. W. Tang et al. (e.g., C. W. Tang and S. A. VanSlyke, Applied Physics Letters, Vol. 51, p. 913, 1987), active investigations on organic electroluminescent devices using organic materials as components have been carried on. Tang et al. used tris(8-quinolinol)-aluminum for the luminescent layer and a triphenyldiamine derivative for the hole transport layer. Advantages of the laminated structure are such that the efficiency of the injection of positive holes into the luminescent layer can be enhanced, the efficiency of the formation of excitons by recombination can be enhanced by blocking electrons injecting from the cathode, and the excitons formed in the luminescent layer can be confined. As can be seen from these examples, the well-known structures of organic electroluminescent devices include, for example, a two-layer type consisting of a hole transport (or injection) layer and an electron-transporting luminescent layer, and a triple-layered type consisting of a hole transport (or injection) layer, a luminescent layer and an electron transport (or injection) layer. In these devices of the laminated structure type, various attempts have been made to modify the device structure or their fabrication method and thereby enhance the efficiency of the recombination of injected positive holes and electrons.
- However, in organic electroluminescent devices, the probability of singlet formation during carrier recombination is limited owing to its dependence on spin statistics. Consequently, there is an upper limit to the probability of light emission. This upper limit is known to have a value of about 25%. Moreover, in organic electroluminescent devices, light having an exit angle greater than the critical angle undergoes total reflection owing to the influence of the refractive index of the luminescent material, and cannot be taken out of the device as shown in FIG. 1. Consequently, on the assumption that the luminescent material has a refractive index of 1.6, only 20% of the total light produced can be effectively utilized. When the probability of singlet formation is also taken into consideration, energy conversion efficiency is inevitably limited to as low as about 5% (Tetsuo Tsutsui, “Present State and Trend of Organic Electroluminescent”, The Display Monthly, Vol. 1, No. 3, p. 11, September, 1995). In organic electroluminescent devices in which the probability of light emission is severely limited, low light output efficiency would cause a fatal reduction in efficiency.
- The method of improving light output efficiency has conventionally been investigated in light-emitting devices having a similar structure, such as inorganic electroluminescent devices. For example, there have been proposed a method for enhancing efficiency by imparting light-condensing properties to the substrate (Japanese Patent Laid-Open No. 314795/'88) and a method for enhancing efficiency by forming reflecting surfaces on the sides or other parts of the device (Japanese Patent Laid-Open No. 220394/'89). These methods are effective for devices having a large light emission area. However, for devices having a minute picture element area, such as dot matrix displays, it is difficult to fabricate lenses for providing light-condensing properties or form lateral reflecting surfaces or the like. Moreover, since the luminescent layer of an organic electroluminescent device has a thickness of several micrometers or less, it is difficult to make the device tapered and form reflecting mirrors on the sides thereof according to current fine machining techniques. Even if it is possible, a considerable increase in cost will be caused. Furthermore, a method for forming an antireflection film by interposing a flat layer having an intermediate refractive index between the glass substrate and the luminescent layer is also known (Japanese Patent Laid-Open No. 172691/'87). This method is effective in improving light output efficiency in the forward direction, but cannot prevent total reflection. Consequently, this method is effective for inorganic electroluminescent devices having a high refractive index, but fails to produce a remarkable efficiency-improving effect on organic electroluminescent devices using a luminescent material having a relatively low refractive index.
- Accordingly, the conventional light output method used for organic electroluminescent devices is still unsatisfactory, and the development of a new light output method is essential for the purpose of enhancing the efficiency of organic electroluminescent devices.
- Japanese Patent Laid-open No. 83688/96 discloses an organic EL device having a light scattering part on an outside surface of the element. Japanese Patent Laid-open No. 115667/97 discloses an EL device having a light reflecting structure which reflects light from the light emitting surface. Japanese Utility-model Laid-open No. 54184/88 discloses an EL device having micro lense film on the EL element.
- These three publications neither teach nor suggest the present organic EL device having a diffraction grating or zone plate as a constituent element.
- An object of the present invention is to improve light output efficiency in organic electroluminescent devices and thereby provide organic electroluminescent devices having higher efficiency.
- In order to accomplish the above objects, the present invention provides a EL device which has the following feature.
- (1) In an organic electroluminescent device having one or more organic layers including a luminescent layer between an anode and a cathode, the device additionally includes a diffraction grating or zone plate as a constituent element.
- In preferred embodiments, the present invention also has the following features.
- (2) In the device described above in (1), the anode and the cathode form the same picture elements, one of these electrodes is an electrode reflecting visible light, and the diffraction grating or zone plate is formed in this reflecting electrode.
- (3) In the device described above in (2), the device has a structure in which the diffraction grating or zone plate, the reflecting electrode, the organic layers and the transparent electrode are formed on a substrate in the order mentioned.
- (4) In the device described above in (1), the anode and the cathode form the same picture elements, one of these electrodes is an electrode reflecting visible light, and the diffraction grating or zone plate is formed in the electrode opposite to the reflecting electrode.
- (5) In the device described above in (4), the device has a structure in which the diffraction grating or zone plate, the transparent electrode, the organic layers and the reflecting electrode are formed on a transparent substrate in the order mentioned.
- (6) In the device described above in (4) or (5), the diffraction grating or zone plate has no light-intercepting part.
- (7) In the device described above in any of (1) to (6), the diffraction grating has a two-dimensional periodic configuration.
- As described above, the present invention relates to an organic electroluminescent device having one or more organic thin-film layers including a luminescent layer between an anode and a cathode, the device additionally includes a diffraction grating or zone plate as a constituent element. This diffraction grating or zone plate may be either of the reflection type or the transmission type. In the case of a diffraction grating or zone plate of the transmission type, not only an amplitude grating formed by providing it with light-intercepting parts can be used, but also a phase grating formed by modulating the thickness of a layer having a different refractive index may be used to further enhance light output efficiency. Moreover, in the case of a diffraction grating, a grating having a two-dimensional periodic configuration may be used. Thus, as compared with a conventional diffraction grating consisting of a plurality of stripes, light output in a direction parallel to the stripes can be improved.
- FIG. 1 is a sectional view for explaining the structure of a device having a reflection type diffraction grating according to the present invention;
- FIG. 2 is a sectional view for explaining the structure of a device having a transmission type diffraction grating according to the present invention;
- FIG. 3 is a schematic view for explaining the reflection of light on a diffraction grating;
- FIG. 4 is a graph for explaining the relationship between incidence angle and exit angle for a diffraction grating having a grating interval of 1 mm, a wavelength of 500 nm, and a refractive index of 1.7;
- FIG. 5 is a graph showing the dependence of incidence angle and exit angle on the grating interval/optical wavelength ratio for first-order diffraction by a diffraction grating;
- FIG. 6 is a plan view for explaining a zone plate;
- FIG. 7 is a plan view of a two-dimensional grating pattern used in Examples 4 and 5; and
- FIG. 8 is a sectional view for explaining a conventional organic electroluminescent device.
- First of all, the principle of the present invention is explained below.
- In an organic electroluminescent device, the refractive index of the organic layer including the luminescent layer is higher than that of the substrate material (e.g., glass), so that all of the light produced therein cannot be taken out owing to the occurrence of total reflection at the interface between the organic layer and the substrate. Even where the light is taken out from the side opposite to the substrate, total reflection also occurs at the interface between the device and air owing to the difference in refractive index between them. The principle of the present invention is that, in order to suppress such total reflection, a diffraction grating is formed in the substrate interface or the reflecting surface so as to alter the incidence angle of light with respect to the light output surface and thereby enhance light output efficiency.
-
- Accordingly, for light having an incidence angle greater than the critical angle for total reflection, its incidence angle can be reduced to a value smaller than the critical angle by controlling the grating interval properly. For example, on the assumption that an organic material having a refractive index of 1.7 is used, the critical angle for total reflection is 36.0 degrees. The exit angle observed when light having a wavelength of 500 nm is incident on a reflection type diffraction grating having a grating interval of 2 μm is shown in FIG. 4. It can be seen from this figure that, in order to give an exit angle within 36 degrees, the incidence angle must be less than 46 degrees for first-order diffraction, must be less than 60 degrees for second-order diffraction, and may have any desired value for third-order diffraction.
- In the case of a device structure as shown in FIG. 1, i.e., a structure obtained by forming a reflection
type diffraction grating 5 on a surface of asubstrate 1 so as to serve as acathode 4, too, and depositing thereon anorganic layer 3 and ananode 2 comprising a transparent electrode, the diffraction grating serves as a reflecting surface. Consequently, most of the light having an incidence angle greater than 36 degrees and having undergone total reflection at the interface between thetransparent electrode 2 and the ambient medium of the device has an exit angle less than 36 degrees. Thus, this light reaches again the interface between the transparent electrode and the ambient medium of the device, and leaves the device without undergoing total reflection. The component obtained by first-order diffraction and reflected at an exit angle greater than 36 degrees undergoes total reflection at the interface between the transparent electrode and the ambient medium of the device, and strikes again on the diffraction grating. After this process is repeated, almost all of the light is eventually taken out of the device. - The reflection type diffraction grating used in this case may have any desired shape, so long as it can function as a diffraction grating. For example, a laminary grating having a rectangular cross section or an echelette grating having a tapered cross section may be formed on the substrate, and the cathode may be deposited thereon so as to serve as a reflecting surface. Alternatively, the cathode may be deposited in the form of alternating stripes by using two cathode materials having different reflection coefficients, or the cathode itself may be formed in a striped pattern to make a diffraction grating.
- Where it is desired to use a transmission type diffraction grating, a device may be fabricated by forming a
diffraction grating 5 on asubstrate 1 and then depositing thereon ananode 2, anorganic layer 3 and acathode 4 in that order, as shown in FIG. 2. In this case, the transmission type diffraction grating may comprise either an amplitude grating or a phase grating, and may have any desired shape. For example, a phase grating may be made by forming grooves in the substrate surface, depositing thereon a layer of a transparent material having a different refractive index, planarizing it, and then depositing an anode, an organic layer and a cathode successively in the usual manner. In the case of an amplitude grating, a material opaque to light may be deposited on the substrate surface in the form of stripes, or the anode itself may be formed in a striped pattern. In the latter case, the anode material may be either transparent or opaque. For example, a device may be fabricated by forming a gold electrode having a striped pattern as the anode, and then depositing thereon an organic layer and a cathode. - When a transmission type diffraction grating is used, the light incident on the diffraction grating is divided into transmitted light and reflected light. However, since the reflected light has a smaller exit angle, it strikes on the diffraction grating again at a smaller incidence angle after being reflected by the cathode. Thus, similarly to a device using a reflection type diffraction grating, almost all of the light can be taken out of the device.
- The dimensions of the diffraction grating should be determined so that the light output efficiency is enhanced for the desired wavelength region of the electroluminescent device. Specifically, when the wavelength of the electroluminescent device is in the region of visible light (i.e., in the wavelength region of 350 to 800 nm), the effect of the ratio (R) of the grating interval to the optical wavelength for the desired wavelength (i.e., the value obtained by dividing the wavelength by the refractive index) is shown in FIG. 5. Specifically, if the ratio is unduly large, the diffraction grating is less effective in reducing the exit angle, so that reflection at a mirror surface is repeated many times to cause a considerable loss. If the ratio is unduly small, light having a large incidence angle gives reflected light having a large exit angle, so that the proportion of light taken out in the forward direction is decreased. Thus, unduly large and unduly small ratios both reduce the light output efficiency. Accordingly, it is desirable that the ratio is in the range of 0.1 to 10.
- In the case of an ordinary diffraction grating, no diffraction effect is produced in a direction parallel to the stripes, so that the light output efficiency in this direction cannot be enhanced. This disadvantage can be overcome by using a two-dimensional diffraction grating. Alternatively, a diffraction grating made by forming grooves in a concentric pattern may also be used. In this case, the intervals of the concentric grooves may be periodic or, as shown in FIG. 6, may be determined according to the interval rule for the formation of a zone plate. Similarly to the above-described diffraction gratings, these diffraction gratings may also be made by forming grooves in the substrate or by forming an electrode itself in a grating pattern. Moreover, the groove may have any desired cross-sectional shape.
- Next, the various constituent elements of the device are explained below. With respect to the electrodes of an organic electroluminescent device, the anode functions to inject positive holes into a hole transport layer, and it is effective that the anode has a work function of not less than 4.5 eV. Specific examples of the anode materials which can be used in the present invention include indium-tin oxide alloy (ITO); tin oxide (NESA); metals such as gold, silver, platinum and copper, and their oxides; and mixtures thereof. On the other hand, the cathode serves to inject electrons into an electron transport layer or a luminescent layer, and it is preferable to use a material having a small work function. Although no particular limitation is placed on the type of the cathode material, specific example of usable cathode materials include indium, aluminum, magnesium, magnesium-indium alloy, magnesium-aluminum alloy, aluminum-lithium alloy, aluminum-scandium-lithium alloy, magnesium-silver alloy, and mixtures thereof.
- With respect to these electrodes, one of the anode and the cathode is transparent in the region of visible light, and the other has high reflectivity. No particular limitation is placed on the thicknesses of these electrodes, so long as they can perform their proper functions. However, their thicknesses are preferably in the range of 0.02 to 2 μm.
- The organic electroluminescent devices of the present invention have a structure in which one or more organic layers are disposed between the aforesaid electrodes, and no additional restriction is imposed on their structure. Examples thereof are those consisting of (1) an anode, a luminescent layer and a cathode, (2) an anode, a hole transport layer, a luminescent layer, an electron transport layer and a cathode, (3) an anode, a hole transport layer, a luminescent layer and a cathode, and (4) an anode, a luminescent layer, an electron transport layer and a cathode. Moreover, in order to improve charge injection characteristics, suppress dielectric breakdown, or enhance luminous efficiency, a thin-film layer formed of an inorganic dielectric or insulator (e.g., lithium fluoride, magnesium fluoride, silicon oxide, silicon dioxide or silicon nitride), a layer formed of a mixture of an organic material and an electrode material or metal, or a thin film of an organic polymer (e.g., polyaniline, a polyacetylene derivative, a polydiacetylene derivative, a polyvinyl carbazole derivative or a poly(p-phenylene-vinylene) derivative) may be interposed between adjacent organic layers and/or between an organic layer and an electrode.
- No particular limitation is placed on the type of the luminescent material used in the present invention, and there may be used any compound that is commonly used as a luminescent material. As given below, examples thereof include tris(8-quinolinol)-aluminum complex (Alq3) [1], bis(diphenylvinyl)biphenyl (BDPVBi) [2], 1,3-bis(p-t-butylphenyl-1,3,4-oxadiazolyl)phenyl (OXD-7) [3], N,N′-bis(2,5-di-t-butylphenyl)perylenetetracarboxylic acid diimide (BPPC) [4] and 1,4-bis(p-tolyl-p-methylstyrylphenylamino)naphthalene [5].
- Alternatively, a layer of a charge transport material doped with a fluorescent material may be used as a luminescent material. Examples thereof include a layer of a quinolinol-metal complex such as the aforesaid Alq3[1], doped with 4-dicyanomethylene-2-methyl-6-(p-dimethylaminostyryl)-4H-pyran (DCM) [6], a quinacridone derivative such as 2,3-quinacridone [7] or a coumarin derivative such as 3-(2′-benzothiazole)-7-diethylaminocoumarin [8]; a layer of the electron transport material bis(2-methyl-8-hydroxyquinoline)-4-phenylphenol-aluminum complex [9] doped with a fused polycyclic aromatic compound such as perylene [10]; or a layer of the
hole transport material - No particular limitation is placed on the type of the hole transport material used in the present invention, and there may be used any compound that is commonly used as a hole transport material. Examples thereof include triphenyldiamines such as bis[di(p-tolyl)aminophenyl]-1,1-cyclohexane [13], TPD [11] and N,N′-diphenyl-N,N′-bis(1-naphthyl)-1,1′-biphenyl-4,4′-diamine (NPB) [14]; and starburst type molecules (e.g., [15] to [17]).
- No particular limitation is placed on the type of the electron transport material used in the present invention, and there may be used any compound that is commonly used as an electron transport material. Examples thereof include oxadiazole derivatives such as 2-(4-biphenylyl)-5-(4-t-butylphenyl)-1,3,4-oxadiazole (Bu-PBD) [18] and OXD-7[3]; triazole derivatives (e.g., [19] and [20]); and quinolinol-metal complexes (e.g., [1], [9], and [21] to [24]).
- No particular limitation is placed on the method for forming the various layers constituting the organic electroluminescent device of the present invention. Any conventionally known methods such as vacuum evaporation and spin coating may be employed. The organic thin-film layers each containing a compound as described above, which is used in the organic electroluminescent device of the present invention, can be formed according to any well-known method such as vapor evaporation, molecular beam evaporation (MBE), or coating method such as dipping (in a solution prepared by dissolving the compound in a solvent), spin coating, casting, bar coating or roll coating.
- No particular limitation is placed on the thickness of each organic layer used in the organic electroluminescent device of the present invention. However, it is usually preferable that each organic layer have a thickness ranging from several tens of nanometers to 1 micrometer.
- The present invention is further illustrated by the following examples. However, these examples are not to be construed to limit the scope of the invention.
- The procedure for the fabrication of an organic thin-film electroluminescent device serving as a comparative example is described below. As illustrated in FIG. 8, this device comprises a
substrate 1 having thereon ananode 2, an organic layer 3 (composed of a hole injection layer, a luminescent layer and an electron transport layer) and acathode 4. An ITO layer having a thickness of 100 nm was deposited on a 50 mm×25 mm glass substrate (a thickness of 1.1 mm; NA 45 manufactured by Hoya Corp.) by sputtering. In this step, a metal mask was used to deposit the ITO layer in the form of stripes measuring 2 mm×50 mm. Its sheet resistance was 20 Ω/□. - Then, an organic luminescent layer was deposited by means of a resistance heating type vapor evaporator. While the substrate was mounted in the upper part of a vacuum chamber, a molybdenum boat was placed at a position 250 mm below the substrate. The substrate was arranged so as to give an incidence angle of 38° and rotated at a speed of 30 rotation per minutes. As soon as a pressure of 5×10−7 Torr was reached, evaporation was started, and the deposition rate was controlled by means of a crystal oscillator type film thickness controller mounted beside the substrate. The deposition rate was preset at 0.15 nm per second. Under the above-described conditions, a hole injection layer comprising compound [15] was deposited to a thickness of 40 nm. Thereafter, a 70 nm thick luminescent layer comprising compound [5] and a 40 nm thick electron transport layer comprising compound [19] were successively evaporated under the same conditions as described above.
- Subsequently, a cathode comprising a magnesium-silver alloy was deposited by evaporating magnesium and silver simultaneously from separate boats. Using the aforesaid film thickness controller, the deposition rates of magnesium and silver were adjusted to 1.0 and 0.2 nm per second, respectively, and the film thickness was preset at 200 nm. During this evaporation, a metal mask was used to deposit the cathode in such a way that it consisted of 12 stripes measuring 25 mm×2 mm which were arranged at intervals of 1 mm and in a direction orthogonal to the stripes of ITO. When a voltage of 10 V was applied, this device exhibited a current density of 50 mA/cm2 and a luminance of 1,950 cd/m2. Consequently, its efficiency was 3.9 cd/A or 1.22 lm/W.
- On a glass substrate similar to that used in Comparative Example 1, a grating pattern having a line width of 1 μm and an interval of 1 μm was formed according to a photolithographic process. Specifically, a 2 μm thick layer of an i-line resist (THMR-iP1700; manufactured by Tokyo Ohka Kogyo Co., Ltd.) was formed on the substrate by spin coating, and patterned by means of an i-line stepper. Then, this substrate was soaked in a hydrofluoric acid solution to form grooves having a depth of 200 nm, and the remaining resist was removed by use of an exclusive stripping fluid. After a cathode comprising a 200 nm thick layer of a magnesium-silver alloy was evaporated thereon under the same conditions as described in Comparative Example 1, organic layers with reverse order of Comparative Example 1 and an ITO layer were successively deposited.
- When a voltage of 10 V was applied, this device exhibited a current density of 55 mA/cm2 and a luminance of 3,265 cd/m2. Consequently, its efficiency was 5.94 cd/A or 1.86 lm/W.
- A device was fabricated in exactly the same manner as in Example 1, except that the grating pattern had a line width of 0.40 μm and an interval of 0.40 μm.
- When a voltage of 10 V was applied, this device exhibited a current density of 58 mA/cm2 and a luminance of 4,028 cd/m2. Consequently, its efficiency was 6.94 cd/A or 2.18 lm/W.
- In order to make a diffraction grating, grooves were formed in a substrate according to the same procedure as described in Example 1. Thereafter, a 500 nm thick layer having a high refractive index was deposited over the grooves according to a sputtering process using titanium oxide as the target, and its surface was planarized by ordinary optical polishing. Subsequently, an ITO layer, an organic layer and a cathode were deposited thereon in exactly the same manner as in Comparative Example 1 to fabricate a device.
- When a voltage of 10 V was applied, this device exhibited a current density of 50 mA/cm2 and a luminance of 2,623 cd/m2. Consequently, its efficiency was 5.246 cd/A or 1.647 lm/W.
- A device was fabricated in exactly the same manner as in Example 1, except that the two-dimensional grating pattern shown in FIG. 7 was used. When a voltage of 10 V was applied, this device exhibited a current density of 52 mA/cm2 and a luminance of 3,733 cd/m2. Consequently, its efficiency was 7.17 cd/A or 2.25 lm/W.
- A device was fabricated in exactly the same manner as in Example 3, except that the two-dimensional grating pattern shown in FIG. 7 was used. When a voltage of 10 V was applied, this device exhibited a current density of 58 mA/cm2 and a luminance of 3,210 cd/m2. Consequently, its efficiency was 5.53 cd/A or 1.73 lm/W.
-
- In this equation, 1 is 0.08 μm, r0 is 3 μm, and n is an integer ranging from 1 to 100. Grooves were formed in the zones where n changes from an even number to an odd number. After this zone pattern was formed so as to cover a 5 mm×5 mm area of the substrate surface, the treatment (e.g., planarization) and the formation of several layers were carried out in the same manner as in Example 3.
- When a voltage of 10 V was applied, this device exhibited a current density of 50 mA/cm2 and a luminance of 3,640 cd/m2. Consequently, its efficiency was 7.28 cd/A or 2.28 lm/W.
Claims (14)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP10-081860 | 1998-03-27 | ||
JP10081860A JP2991183B2 (en) | 1998-03-27 | 1998-03-27 | Organic electroluminescence device |
Publications (2)
Publication Number | Publication Date |
---|---|
US6476550B1 US6476550B1 (en) | 2002-11-05 |
US20020180348A1 true US20020180348A1 (en) | 2002-12-05 |
Family
ID=13758248
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/275,409 Expired - Lifetime US6476550B1 (en) | 1998-03-27 | 1999-03-24 | Organic Electroluminescent device with a defraction grading and luminescent layer |
Country Status (2)
Country | Link |
---|---|
US (1) | US6476550B1 (en) |
JP (1) | JP2991183B2 (en) |
Cited By (48)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040056592A1 (en) * | 2002-09-25 | 2004-03-25 | Fuji Photo Film Co., Ltd. | Light-emitting element |
US20050077820A1 (en) * | 2003-05-22 | 2005-04-14 | Yasuharu Onishi | Electroluminescent display device |
US20060006778A1 (en) * | 2004-06-26 | 2006-01-12 | Joon-Gu Lee | Organic electroluminescent display device and method for manufacturing the same |
US20060049749A1 (en) * | 2004-09-06 | 2006-03-09 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US20060066230A1 (en) * | 2004-09-28 | 2006-03-30 | Hirofumi Kubota | Organic EL display |
US20060286889A1 (en) * | 1999-12-15 | 2006-12-21 | Semiconductor Energy Laboratory Co., Ltd. | EL display device |
US20090160317A1 (en) * | 2007-12-21 | 2009-06-25 | Herschel Clement Burstyn | Increasing the external efficiency of organic light emitting diodes utilizing a diffraction grating |
US20100118522A1 (en) * | 2007-05-02 | 2010-05-13 | Koninklijke Philips Electronics N.V. | Light emitting device using oled panels in folded or deployed configuration |
US20100289038A1 (en) * | 2009-05-13 | 2010-11-18 | Canon Kabushiki Kaisha | Display apparatus |
US20110025201A1 (en) * | 2009-07-28 | 2011-02-03 | Canon Kabushiki Kaisha | Image display apparatus |
US20110080737A1 (en) * | 2009-05-12 | 2011-04-07 | Seiji Nishiwaki | Sheet, light emitting device, and method for producing the sheet |
US20110080738A1 (en) * | 2009-05-12 | 2011-04-07 | Wakabayashi Shin-Ichi | Optical sheet, light-emitting device, and method for manufacturing optical sheet |
US20110090697A1 (en) * | 2009-05-12 | 2011-04-21 | Jyunpei Matsuzaki | Sheet and light emitting device |
US20110101386A1 (en) * | 2007-11-14 | 2011-05-05 | Canon Kabushiki Kaisha | Display apparatus and method of producing same |
US20110133624A1 (en) * | 2008-12-26 | 2011-06-09 | Wakabayashi Shin-Ichi | Sheet and light emitting apparatus |
US20110156991A1 (en) * | 2009-12-25 | 2011-06-30 | Canon Kabushiki Kaisha | Display unit |
US20110180823A1 (en) * | 2008-09-22 | 2011-07-28 | Yoshihisa Usami | Light-emitting device, production method therefor, and display containing the same |
CN102257651A (en) * | 2008-12-19 | 2011-11-23 | 皇家飞利浦电子股份有限公司 | Transparent organic light emitting diode |
CN102393541A (en) * | 2007-11-13 | 2012-03-28 | 松下电器产业株式会社 | Sheet and light-emitting device |
CN102405424A (en) * | 2009-05-12 | 2012-04-04 | 松下电器产业株式会社 | Sheet and light-emitting device |
US8232572B2 (en) | 2007-11-14 | 2012-07-31 | Canon Kabushiki Kaisha | Light emitting device |
US20120228647A1 (en) * | 2009-08-25 | 2012-09-13 | Sumitomo Chemical Company, Limited | Organic electroluminescent element |
US8669559B2 (en) | 2010-04-12 | 2014-03-11 | Canon Kabushiki Kaisha | Image display apparatus and image display apparatus manufacturing method |
CN103928635A (en) * | 2014-04-18 | 2014-07-16 | 上海和辉光电有限公司 | OLED device anode structure |
US20140347609A1 (en) * | 2011-03-31 | 2014-11-27 | Chi Mei Materials Technology Corporation | Display apparatus and liquid crystal display device |
JP2015005494A (en) * | 2013-05-22 | 2015-01-08 | パナソニックIpマネジメント株式会社 | Light extraction substrate of organic el illumination |
US9194545B2 (en) | 2011-09-07 | 2015-11-24 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting device and light sheet |
WO2016144779A1 (en) * | 2015-03-06 | 2016-09-15 | Massachusetts Institute Of Technology | Systems, methods, and apparatus for radiation detection |
US9515239B2 (en) | 2014-02-28 | 2016-12-06 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device and light-emitting apparatus |
US9518215B2 (en) | 2014-02-28 | 2016-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device and light-emitting apparatus |
US9595648B2 (en) | 2013-04-12 | 2017-03-14 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device |
US9618697B2 (en) | 2014-02-28 | 2017-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Light directional angle control for light-emitting device and light-emitting apparatus |
US9620740B2 (en) | 2012-10-11 | 2017-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Organic electroluminescence element and lighting device |
US9647240B2 (en) | 2013-05-21 | 2017-05-09 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting apparatus |
US9880336B2 (en) | 2014-02-28 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US9882100B2 (en) | 2015-08-20 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device having surface structure for limiting directional angle of light |
US9890912B2 (en) | 2014-02-28 | 2018-02-13 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
US9899577B2 (en) | 2015-06-08 | 2018-02-20 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
US10012780B2 (en) | 2014-02-28 | 2018-07-03 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US10031276B2 (en) | 2015-03-13 | 2018-07-24 | Panasonic Intellectual Property Management Co., Ltd. | Display apparatus including photoluminescent layer |
US10094522B2 (en) | 2016-03-30 | 2018-10-09 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device having photoluminescent layer |
US10115874B2 (en) | 2015-06-08 | 2018-10-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US10113712B2 (en) | 2015-03-13 | 2018-10-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US10182702B2 (en) | 2015-03-13 | 2019-01-22 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
US10359155B2 (en) | 2015-08-20 | 2019-07-23 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus |
US20210408424A1 (en) * | 2020-11-05 | 2021-12-30 | Anhui University | Perovskite light-emitting diode with adjustable light field |
USRE49093E1 (en) | 2015-03-13 | 2022-06-07 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
USRE50041E1 (en) | 2015-08-20 | 2024-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus |
Families Citing this family (142)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4352474B2 (en) * | 1998-07-23 | 2009-10-28 | 凸版印刷株式会社 | Method for manufacturing organic electroluminescence display element |
JP3548839B2 (en) * | 1998-10-23 | 2004-07-28 | 三星エスディアイ株式会社 | Organic electroluminescent device using hole transporting luminescent material |
GB9910901D0 (en) | 1999-05-12 | 1999-07-07 | Univ Durham | Light emitting diode with improved efficiency |
JP2001051272A (en) | 1999-08-11 | 2001-02-23 | Semiconductor Energy Lab Co Ltd | Front light and electronic appliance |
JP2004014529A (en) * | 1999-12-08 | 2004-01-15 | Nec Corp | Organic el element |
JP3503579B2 (en) * | 1999-12-08 | 2004-03-08 | 日本電気株式会社 | Organic EL device and manufacturing method thereof |
TW516164B (en) * | 2000-04-21 | 2003-01-01 | Semiconductor Energy Lab | Self-light emitting device and electrical appliance using the same |
JP4053260B2 (en) | 2000-10-18 | 2008-02-27 | シャープ株式会社 | Organic electroluminescence display element |
TW527848B (en) | 2000-10-25 | 2003-04-11 | Matsushita Electric Ind Co Ltd | Light-emitting element and display device and lighting device utilizing thereof |
JP2003036969A (en) * | 2000-10-25 | 2003-02-07 | Matsushita Electric Ind Co Ltd | Light emitting element, and display unit and illumination device using the same |
JP4539940B2 (en) * | 2000-10-30 | 2010-09-08 | 大日本印刷株式会社 | Electroluminescent device |
US6717359B2 (en) * | 2001-01-29 | 2004-04-06 | Semiconductor Energy Laboratory Co., Ltd. | Light emitting device and manufacturing method thereof |
JP2008186815A (en) * | 2001-03-23 | 2008-08-14 | Mitsubishi Chemicals Corp | Thin film type illuminant and method for producing the same |
JP4361226B2 (en) * | 2001-04-16 | 2009-11-11 | セイコーエプソン株式会社 | Light emitting element |
TWI257828B (en) | 2001-05-31 | 2006-07-01 | Seiko Epson Corp | EL device, EL display, EL illumination apparatus, liquid crystal apparatus using the EL illumination apparatus and electronic apparatus |
US6664730B2 (en) * | 2001-07-09 | 2003-12-16 | Universal Display Corporation | Electrode structure of el device |
KR100437886B1 (en) * | 2001-09-25 | 2004-06-30 | 한국과학기술원 | High extraction efficiency photonic crystal organic light emitting device |
JP2003115377A (en) * | 2001-10-03 | 2003-04-18 | Nec Corp | Light emitting device, method of manufacturing the same, and display device using the same |
US6903379B2 (en) * | 2001-11-16 | 2005-06-07 | Gelcore Llc | GaN based LED lighting extraction efficiency using digital diffractive phase grating |
US6833667B2 (en) | 2002-02-27 | 2004-12-21 | Matsushita Electric Industrial Co., Ltd. | Organic electroluminescence element and image forming apparatus or portable terminal unit using thereof |
KR100581850B1 (en) | 2002-02-27 | 2006-05-22 | 삼성에스디아이 주식회사 | Organic electroluminescent display and manufacturing method |
US6888613B2 (en) * | 2002-03-01 | 2005-05-03 | Hewlett-Packard Development Company, L.P. | Diffractive focusing using multiple selectively light opaque elements |
JP2003308968A (en) * | 2002-04-12 | 2003-10-31 | Rohm Co Ltd | Electroluminescent element and method of manufacturing the same |
US7329611B2 (en) | 2002-04-11 | 2008-02-12 | Nec Corporation | Method for forming finely-structured parts, finely-structured parts formed thereby, and product using such finely-structured part |
KR20050027983A (en) * | 2002-05-08 | 2005-03-21 | 제오럭스 코포레이션 | Display devices using feedback enhanced light emitting diode |
US6946677B2 (en) * | 2002-06-14 | 2005-09-20 | Nokia Corporation | Pre-patterned substrate for organic thin film transistor structures and circuits and related method for making same |
US6670772B1 (en) * | 2002-06-27 | 2003-12-30 | Eastman Kodak Company | Organic light emitting diode display with surface plasmon outcoupling |
US7038373B2 (en) * | 2002-07-16 | 2006-05-02 | Eastman Kodak Company | Organic light emitting diode display |
KR100865622B1 (en) * | 2002-08-26 | 2008-10-27 | 삼성전자주식회사 | Formation method of photonic crystal structure for improving brightness of display |
KR20040025383A (en) | 2002-09-19 | 2004-03-24 | 삼성에스디아이 주식회사 | Organic electro luminescence display device and manufacturing of the same |
US6965197B2 (en) * | 2002-10-01 | 2005-11-15 | Eastman Kodak Company | Organic light-emitting device having enhanced light extraction efficiency |
US6831407B2 (en) * | 2002-10-15 | 2004-12-14 | Eastman Kodak Company | Oled device having improved light output |
JP4350996B2 (en) | 2002-11-26 | 2009-10-28 | 日東電工株式会社 | Organic electroluminescence device, surface light source and display device |
NL1022269C2 (en) * | 2002-12-24 | 2004-06-25 | Otb Group Bv | Method for manufacturing an organic electroluminescent display device, substrate for use in such a method, as well as an organic electroluminescent display device obtained with the method. |
KR100908234B1 (en) * | 2003-02-13 | 2009-07-20 | 삼성모바일디스플레이주식회사 | EL display device and manufacturing method thereof |
JP2004273122A (en) * | 2003-03-04 | 2004-09-30 | Abel Systems Inc | Surface light emitting device |
KR100563046B1 (en) | 2003-03-06 | 2006-03-24 | 삼성에스디아이 주식회사 | Organic electroluminescent display |
CN1781339A (en) | 2003-03-25 | 2006-05-31 | 国立大学法人京都大学 | Light-emitting element and organic electroluminescent element |
JP4822243B2 (en) * | 2003-03-25 | 2011-11-24 | 国立大学法人京都大学 | LIGHT EMITTING ELEMENT AND ORGANIC ELECTROLUMINESCENT LIGHT EMITTING ELEMENT |
US7030555B2 (en) | 2003-04-04 | 2006-04-18 | Nitto Denko Corporation | Organic electroluminescence device, planar light source and display device using the same |
US20040217702A1 (en) * | 2003-05-02 | 2004-11-04 | Garner Sean M. | Light extraction designs for organic light emitting diodes |
EP1947910B1 (en) | 2003-05-08 | 2009-08-05 | Samsung Mobile Display Co., Ltd. | Method of manufacturing a substrate for organic electroluminescent device |
GB2403023A (en) * | 2003-06-20 | 2004-12-22 | Sharp Kk | Organic light emitting device |
KR100546652B1 (en) * | 2003-06-30 | 2006-01-26 | 엘지전자 주식회사 | Organic EL element |
US7126270B2 (en) * | 2003-06-30 | 2006-10-24 | Semiconductor Energy Laboratory Co., Ltd. | Reflector for a light emitting device |
JP2005050708A (en) * | 2003-07-29 | 2005-02-24 | Samsung Sdi Co Ltd | Optical element substrate, organic electroluminescence element, and organic electroluminescence display device |
JP2005063839A (en) * | 2003-08-13 | 2005-03-10 | Toshiba Matsushita Display Technology Co Ltd | Optical device and organic EL display device |
JP2005063838A (en) | 2003-08-13 | 2005-03-10 | Toshiba Matsushita Display Technology Co Ltd | Optical device and organic EL display device |
TW200515836A (en) * | 2003-10-22 | 2005-05-01 | Hannstar Display Corp | Organic electroluminescent element |
KR100563059B1 (en) | 2003-11-28 | 2006-03-24 | 삼성에스디아이 주식회사 | Organic electroluminescent display device and laser thermal transfer donor film used in the manufacture thereof |
CN1638585A (en) * | 2003-12-26 | 2005-07-13 | 日东电工株式会社 | Electroluminescence device, planar light source and display using the same |
JP4968703B2 (en) * | 2004-03-03 | 2012-07-04 | ローム株式会社 | Organic light emitting device |
JP5005164B2 (en) | 2004-03-03 | 2012-08-22 | 株式会社ジャパンディスプレイイースト | LIGHT EMITTING ELEMENT, LIGHT EMITTING DISPLAY DEVICE AND LIGHTING DEVICE |
EP1759428B1 (en) * | 2004-06-14 | 2016-05-18 | Philips Intellectual Property & Standards GmbH | Led with improved light emission profile |
US7682656B2 (en) * | 2004-06-14 | 2010-03-23 | Agruim Inc. | Process and apparatus for producing a coated product |
TWI285772B (en) * | 2004-06-18 | 2007-08-21 | Innolux Display Corp | A light guide plate and a backlight module using the same |
KR100615234B1 (en) | 2004-08-03 | 2006-08-25 | 삼성에스디아이 주식회사 | Inorganic electroluminescent display and manufacturing method thereof |
US7540978B2 (en) | 2004-08-05 | 2009-06-02 | Novaled Ag | Use of an organic matrix material for producing an organic semiconductor material, organic semiconductor material and electronic component |
DE102004042461A1 (en) * | 2004-08-31 | 2006-03-30 | Novaled Gmbh | Top-emitting, electroluminescent device with frequency conversion centers |
JP4511440B2 (en) | 2004-10-05 | 2010-07-28 | 三星モバイルディスプレイ株式會社 | ORGANIC LIGHT EMITTING ELEMENT AND METHOD FOR PRODUCING ORGANIC LIGHT EMITTING ELEMENT |
DE602004006275T2 (en) | 2004-10-07 | 2007-12-20 | Novaled Ag | Method for doping a semiconductor material with cesium |
JP2006114432A (en) * | 2004-10-18 | 2006-04-27 | Konica Minolta Holdings Inc | Surface light emitting device |
JP2006128011A (en) * | 2004-10-29 | 2006-05-18 | Konica Minolta Holdings Inc | Surface light emitting device |
KR100683693B1 (en) | 2004-11-10 | 2007-02-15 | 삼성에스디아이 주식회사 | Light emitting device |
KR100730121B1 (en) | 2004-11-29 | 2007-06-19 | 삼성에스디아이 주식회사 | Organic electroluminescent device and manufacturing method thereof |
JP4253302B2 (en) | 2005-01-06 | 2009-04-08 | 株式会社東芝 | Organic electroluminescence device and method for producing the same |
KR20060081190A (en) * | 2005-01-07 | 2006-07-12 | 삼성에스디아이 주식회사 | EL device and method for manufacturing same |
US8134291B2 (en) | 2005-01-07 | 2012-03-13 | Samsung Mobile Display Co., Ltd. | Electroluminescent device and method for preparing the same |
JP4410123B2 (en) * | 2005-02-10 | 2010-02-03 | 株式会社東芝 | Organic EL display |
JP2006236655A (en) * | 2005-02-23 | 2006-09-07 | Konica Minolta Holdings Inc | Organic electroluminescent device |
JP4517910B2 (en) * | 2005-03-24 | 2010-08-04 | コニカミノルタホールディングス株式会社 | ORGANIC ELECTROLUMINESCENCE ELEMENT AND LIGHTING DEVICE AND DISPLAY DEVICE PROVIDED WITH SAME |
US20060226429A1 (en) * | 2005-04-08 | 2006-10-12 | Sigalas Mihail M | Method and apparatus for directional organic light emitting diodes |
DE502005009415D1 (en) * | 2005-05-27 | 2010-05-27 | Novaled Ag | Transparent organic light emitting diode |
EP2045843B1 (en) * | 2005-06-01 | 2012-08-01 | Novaled AG | Light-emitting component with an electrode assembly |
EP1753048B1 (en) | 2005-08-11 | 2008-08-20 | Novaled AG | Method of making a top-emitting element and its use |
KR101109195B1 (en) * | 2005-12-19 | 2012-01-30 | 삼성전자주식회사 | 3D structure light emitting device and manufacturing method thereof |
USRE44831E1 (en) | 2006-01-05 | 2014-04-08 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, display, and illuminating device |
EP1808909A1 (en) * | 2006-01-11 | 2007-07-18 | Novaled AG | Electroluminescent light-emitting device |
WO2007114244A1 (en) | 2006-03-30 | 2007-10-11 | Konica Minolta Holdings, Inc. | Organic electroluminescent device, illuminating device and display device |
JPWO2007119473A1 (en) | 2006-03-30 | 2009-08-27 | コニカミノルタホールディングス株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT, METHOD FOR PRODUCING ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE, AND DISPLAY DEVICE |
JP4905105B2 (en) * | 2006-04-28 | 2012-03-28 | 株式会社豊田自動織機 | Display device |
KR100786469B1 (en) | 2006-06-09 | 2007-12-17 | 삼성에스디아이 주식회사 | Organic light emitting device and its manufacturing method |
WO2008032557A1 (en) | 2006-09-12 | 2008-03-20 | Konica Minolta Holdings, Inc. | Organic electroluminescence element, and illuminating device and display device provided with the organic electroluminescence element |
JP2008108439A (en) | 2006-10-23 | 2008-05-08 | Nec Lighting Ltd | Electroluminescent device and electroluminescent panel |
EP2437326A3 (en) | 2006-12-13 | 2013-11-13 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, display device and lighting device |
US8179034B2 (en) | 2007-07-13 | 2012-05-15 | 3M Innovative Properties Company | Light extraction film for organic light emitting diode display and lighting devices |
WO2009064020A1 (en) * | 2007-11-14 | 2009-05-22 | Canon Kabushiki Kaisha | Light emitting device |
WO2009064019A1 (en) * | 2007-11-14 | 2009-05-22 | Canon Kabushiki Kaisha | Light-emitting apparatus |
JP5284036B2 (en) * | 2007-11-14 | 2013-09-11 | キヤノン株式会社 | Light emitting device |
US20100270058A1 (en) * | 2007-12-14 | 2010-10-28 | 3M Innovative Properties Company | Methods for making electronic devices |
US20090152533A1 (en) * | 2007-12-17 | 2009-06-18 | Winston Kong Chan | Increasing the external efficiency of light emitting diodes |
TW200929593A (en) * | 2007-12-20 | 2009-07-01 | Nat Univ Tsing Hua | Light source with reflective pattern structure |
JP5057076B2 (en) * | 2008-03-03 | 2012-10-24 | 大日本印刷株式会社 | Light extraction structure from light emitting element |
JP5214284B2 (en) | 2008-03-10 | 2013-06-19 | 株式会社東芝 | Light extraction layer for light emitting device, and organic electroluminescence element using the same |
JP2009259792A (en) * | 2008-03-26 | 2009-11-05 | Fujifilm Corp | Organic el display device |
EP2460866B1 (en) | 2008-05-13 | 2019-12-11 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, display device and lighting device |
JP5288967B2 (en) | 2008-09-22 | 2013-09-11 | ユー・ディー・シー アイルランド リミテッド | LIGHT EMITTING ELEMENT, MANUFACTURING METHOD THEREOF, AND DISPLAY HAVING THE LIGHT EMITTING ELEMENT |
KR100970482B1 (en) * | 2008-12-04 | 2010-07-16 | 삼성전자주식회사 | Organic light emitting device and manufacturing method |
US7957621B2 (en) | 2008-12-17 | 2011-06-07 | 3M Innovative Properties Company | Light extraction film with nanoparticle coatings |
EP2383815B1 (en) | 2009-01-28 | 2014-07-30 | Konica Minolta Holdings, Inc. | Organic electroluminescent element, display device, and illumination device |
JP2010182449A (en) | 2009-02-03 | 2010-08-19 | Fujifilm Corp | Organic electroluminescent display device |
WO2010090077A1 (en) | 2009-02-06 | 2010-08-12 | コニカミノルタホールディングス株式会社 | Organic electroluminescent element, and illumination device and display device each comprising the element |
US8686630B2 (en) | 2009-02-09 | 2014-04-01 | Konica Minolta Holdings, Inc. | Organic electroluminescence element and illumination device using the same |
JP5118659B2 (en) * | 2009-02-24 | 2013-01-16 | パナソニック株式会社 | Light emitting element |
JP2010230714A (en) * | 2009-03-25 | 2010-10-14 | Fujifilm Corp | Optical sheet and method for manufacturing the same |
JP5266130B2 (en) * | 2009-03-31 | 2013-08-21 | 富士フイルム株式会社 | Light emitting element |
WO2011004639A1 (en) | 2009-07-07 | 2011-01-13 | コニカミノルタホールディングス株式会社 | Organic electroluminescent element, novel compound, lighting device and display device |
US8987711B2 (en) | 2009-11-19 | 2015-03-24 | Konica Minolta Holdings, Inc. | Organic electroluminescence element, method for producing organic electroluminescence element, and illumination device using organic electroluminescence element |
JP2011154051A (en) * | 2010-01-25 | 2011-08-11 | Dainippon Printing Co Ltd | Hologram sheet |
JP2011154050A (en) * | 2010-01-25 | 2011-08-11 | Dainippon Printing Co Ltd | Hologram sheet |
JP2011222421A (en) * | 2010-04-13 | 2011-11-04 | Asahi Kasei E-Materials Corp | Light-emitting device |
EP2579683B1 (en) * | 2010-06-04 | 2020-06-03 | Konica Minolta, Inc. | Illumination apparatus |
JP2011257651A (en) | 2010-06-10 | 2011-12-22 | Canon Inc | Light emitting substrate and image display device having the same |
JP2012054040A (en) | 2010-08-31 | 2012-03-15 | Nitto Denko Corp | Organic electroluminescent light-emitting device |
JP5887936B2 (en) | 2010-09-30 | 2016-03-16 | 三菱レイヨン株式会社 | Mold, light extraction substrate for surface light emitter, surface light emitter, protective plate for solar cell, and thin film solar cell |
JP5733973B2 (en) * | 2010-12-20 | 2015-06-10 | キヤノン株式会社 | Light emitting element |
US9923154B2 (en) | 2011-02-16 | 2018-03-20 | Konica Minolta, Inc. | Organic electroluminescent element, lighting device, and display device |
US20140027751A1 (en) | 2011-04-07 | 2014-01-30 | Konica Minolta, Inc. | Organic electroluminescent element anf lighting device |
US20140103321A1 (en) | 2011-05-10 | 2014-04-17 | Konica Minolta, Inc. | Phosphorescent organic electroluminescent element and lighting device |
TWI577523B (en) | 2011-06-17 | 2017-04-11 | 三菱麗陽股份有限公司 | Mold having an uneven structure on its surface, optical article, and manufacturing method thereof, transparent base material for surface light emitter, and surface light emitter |
JP5742586B2 (en) | 2011-08-25 | 2015-07-01 | コニカミノルタ株式会社 | Organic electroluminescence element, lighting device and display device |
TWI470814B (en) * | 2011-10-25 | 2015-01-21 | Au Optronics Corp | Solar cell |
JP5895507B2 (en) * | 2011-12-19 | 2016-03-30 | 大日本印刷株式会社 | Optical element and light emitting element and organic electroluminescence element using the same |
JP5978843B2 (en) | 2012-02-02 | 2016-08-24 | コニカミノルタ株式会社 | Iridium complex compound, organic electroluminescence device material, organic electroluminescence device, lighting device and display device |
KR20140138886A (en) | 2012-04-13 | 2014-12-04 | 아사히 가세이 이-매터리얼즈 가부시키가이샤 | Light extraction body for semiconductor light-emitting element, and light-emitting element |
JP5880274B2 (en) | 2012-05-21 | 2016-03-08 | コニカミノルタ株式会社 | Organic electroluminescence element, lighting device and display device |
JP5849867B2 (en) | 2012-06-21 | 2016-02-03 | コニカミノルタ株式会社 | Organic electroluminescence element, display device and lighting device |
JP5889730B2 (en) | 2012-06-27 | 2016-03-22 | Lumiotec株式会社 | Organic electroluminescent device and lighting device |
EP2884552B1 (en) | 2012-08-07 | 2021-05-19 | Konica Minolta, Inc. | Organic electroluminescent element, lighting device and display device |
WO2014038456A1 (en) | 2012-09-04 | 2014-03-13 | コニカミノルタ株式会社 | Organic electroluminescent element, lighting device and display device |
JP5395942B2 (en) * | 2012-10-15 | 2014-01-22 | パナソニック株式会社 | Light emitting element |
EP2930763B1 (en) | 2012-12-10 | 2020-07-29 | Konica Minolta, Inc. | Organic electroluminescence element, illumination device and display device |
JP6428267B2 (en) | 2012-12-10 | 2018-11-28 | コニカミノルタ株式会社 | ORGANIC ELECTROLUMINESCENT ELEMENT MATERIAL, ORGANIC ELECTROLUMINESCENT ELEMENT, LIGHTING DEVICE AND DISPLAY DEVICE |
CN105144846B (en) | 2013-03-13 | 2017-04-12 | 松下知识产权经营株式会社 | Organic electroluminescent element and lighting device using same |
KR20150121107A (en) | 2013-03-29 | 2015-10-28 | 코니카 미놀타 가부시키가이샤 | Isomer-mixture metal complex composition, organic electroluminescent element, illuminator, and display device |
KR101798308B1 (en) | 2013-03-29 | 2017-11-15 | 코니카 미놀타 가부시키가이샤 | Organic electroluminescent element, and lighting device and display device which are provided with same |
EP2980876B1 (en) | 2013-03-29 | 2019-05-08 | Konica Minolta, Inc. | Organic electroluminescent element, lighting device and display device |
US9324965B2 (en) * | 2014-04-22 | 2016-04-26 | Avago Technologies General Ip (Singapore) Pte. Ltd. | Method and system for an organic light emitting diode structure |
JP6600129B2 (en) * | 2014-07-09 | 2019-10-30 | 大日本印刷株式会社 | Image display device |
JP5831654B1 (en) | 2015-02-13 | 2015-12-09 | コニカミノルタ株式会社 | Aromatic heterocycle derivative, organic electroluminescence device using the same, illumination device and display device |
JP2016201257A (en) | 2015-04-10 | 2016-12-01 | 株式会社ジャパンディスプレイ | Method of manufacturing display device |
JP6788314B2 (en) | 2016-01-06 | 2020-11-25 | コニカミノルタ株式会社 | Organic electroluminescence element, manufacturing method of organic electroluminescence element, display device and lighting device |
Family Cites Families (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0766856B2 (en) | 1986-01-24 | 1995-07-19 | 株式会社小松製作所 | Thin film EL device |
JPS6354184A (en) | 1986-08-26 | 1988-03-08 | 日建産業株式会社 | Tape liner |
JP2670572B2 (en) | 1987-06-18 | 1997-10-29 | 株式会社小松製作所 | Thin film EL element |
JPH01220394A (en) | 1988-02-29 | 1989-09-04 | Hitachi Ltd | High brightness EL element |
JP2659595B2 (en) | 1989-10-18 | 1997-09-30 | 株式会社テック | Edge emitting EL device |
JP3133095B2 (en) | 1990-04-25 | 2001-02-05 | 兆岐 史 | Gastrointestinal sclerosis agent |
JPH05264972A (en) * | 1992-03-18 | 1993-10-15 | Canon Inc | Display element and display device |
US6052164A (en) | 1993-03-01 | 2000-04-18 | 3M Innovative Properties Company | Electroluminescent display with brightness enhancement |
JP3220884B2 (en) | 1993-07-08 | 2001-10-22 | セイコーエプソン株式会社 | Display device |
JP2931211B2 (en) | 1994-09-13 | 1999-08-09 | 出光興産株式会社 | Organic EL device |
JP3584575B2 (en) | 1995-10-13 | 2004-11-04 | ソニー株式会社 | Optical element |
EP1367424B1 (en) * | 1995-11-01 | 2007-01-31 | Matsushita Electric Industrial Co., Ltd. | Optical modulator including microlenses for input and output beam |
US5705285A (en) * | 1996-09-03 | 1998-01-06 | Motorola, Inc. | Multicolored organic electroluminescent display |
JP4073510B2 (en) | 1996-12-13 | 2008-04-09 | 出光興産株式会社 | Organic EL light emitting device |
JP3374035B2 (en) | 1997-03-21 | 2003-02-04 | 三洋電機株式会社 | Organic electroluminescence device |
-
1998
- 1998-03-27 JP JP10081860A patent/JP2991183B2/en not_active Expired - Fee Related
-
1999
- 1999-03-24 US US09/275,409 patent/US6476550B1/en not_active Expired - Lifetime
Cited By (68)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8754577B2 (en) | 1999-12-15 | 2014-06-17 | Semiconductor Energy Laboratory Co., Ltd. | EL display device |
US20110210661A1 (en) * | 1999-12-15 | 2011-09-01 | Semiconductor Energy Laboratory Co., Ltd. | El display device |
US20060286889A1 (en) * | 1999-12-15 | 2006-12-21 | Semiconductor Energy Laboratory Co., Ltd. | EL display device |
US20040056592A1 (en) * | 2002-09-25 | 2004-03-25 | Fuji Photo Film Co., Ltd. | Light-emitting element |
US7699482B2 (en) | 2002-09-25 | 2010-04-20 | Fujifilm Corporation | Light-emitting element |
US20050077820A1 (en) * | 2003-05-22 | 2005-04-14 | Yasuharu Onishi | Electroluminescent display device |
EP1480281A3 (en) * | 2003-05-22 | 2007-08-08 | Samsung SDI Co., Ltd. | Electroluminescent display device |
US7619357B2 (en) | 2003-05-22 | 2009-11-17 | Samsung Mobile Display Co., Ltd. | Electroluminescent display device |
US20060006778A1 (en) * | 2004-06-26 | 2006-01-12 | Joon-Gu Lee | Organic electroluminescent display device and method for manufacturing the same |
US7696687B2 (en) * | 2004-06-26 | 2010-04-13 | Samsung Mobile Display Co., Ltd. | Organic electroluminescent display device with nano-porous layer |
US7800301B2 (en) | 2004-09-06 | 2010-09-21 | Fujifilm Corporation | Organic electroluminescent device comprising a prism structure |
US20060049749A1 (en) * | 2004-09-06 | 2006-03-09 | Fuji Photo Film Co., Ltd. | Organic electroluminescent device |
US7402939B2 (en) * | 2004-09-28 | 2008-07-22 | Toshiba Matsushita Display Technology Co., Ltd. | Organic EL display |
US20060066230A1 (en) * | 2004-09-28 | 2006-03-30 | Hirofumi Kubota | Organic EL display |
US20100118522A1 (en) * | 2007-05-02 | 2010-05-13 | Koninklijke Philips Electronics N.V. | Light emitting device using oled panels in folded or deployed configuration |
CN102393541A (en) * | 2007-11-13 | 2012-03-28 | 松下电器产业株式会社 | Sheet and light-emitting device |
US8529114B2 (en) | 2007-11-13 | 2013-09-10 | Panasonic Corporation | Sheet and light emitting device |
US8304788B2 (en) * | 2007-11-14 | 2012-11-06 | Canon Kabushiki Kaisha | Display apparatus and method of producing same |
US8232572B2 (en) | 2007-11-14 | 2012-07-31 | Canon Kabushiki Kaisha | Light emitting device |
US20110101386A1 (en) * | 2007-11-14 | 2011-05-05 | Canon Kabushiki Kaisha | Display apparatus and method of producing same |
US20090160317A1 (en) * | 2007-12-21 | 2009-06-25 | Herschel Clement Burstyn | Increasing the external efficiency of organic light emitting diodes utilizing a diffraction grating |
US20110180823A1 (en) * | 2008-09-22 | 2011-07-28 | Yoshihisa Usami | Light-emitting device, production method therefor, and display containing the same |
CN102257651A (en) * | 2008-12-19 | 2011-11-23 | 皇家飞利浦电子股份有限公司 | Transparent organic light emitting diode |
US20110133624A1 (en) * | 2008-12-26 | 2011-06-09 | Wakabayashi Shin-Ichi | Sheet and light emitting apparatus |
US8227966B2 (en) | 2008-12-26 | 2012-07-24 | Panasonic Corporation | Sheet and light emitting apparatus |
US8475004B2 (en) | 2009-05-12 | 2013-07-02 | Panasonic Corporation | Optical sheet, light-emitting device, and method for manufacturing optical sheet |
US8733983B2 (en) | 2009-05-12 | 2014-05-27 | Panasonic Corporation | Sheet and light-emitting device |
CN102405424A (en) * | 2009-05-12 | 2012-04-04 | 松下电器产业株式会社 | Sheet and light-emitting device |
US20110090697A1 (en) * | 2009-05-12 | 2011-04-21 | Jyunpei Matsuzaki | Sheet and light emitting device |
US20110080738A1 (en) * | 2009-05-12 | 2011-04-07 | Wakabayashi Shin-Ichi | Optical sheet, light-emitting device, and method for manufacturing optical sheet |
US8430539B2 (en) | 2009-05-12 | 2013-04-30 | Panasonic Corporation | Sheet and light emitting device |
US20110080737A1 (en) * | 2009-05-12 | 2011-04-07 | Seiji Nishiwaki | Sheet, light emitting device, and method for producing the sheet |
US8491160B2 (en) | 2009-05-12 | 2013-07-23 | Panasonic Corporation | Sheet, light emitting device, and method for producing the sheet |
US20100289038A1 (en) * | 2009-05-13 | 2010-11-18 | Canon Kabushiki Kaisha | Display apparatus |
US8482194B2 (en) | 2009-05-13 | 2013-07-09 | Canon Kabushiki Kaisha | Display apparatus having a circular polarizer |
US8283857B2 (en) | 2009-07-28 | 2012-10-09 | Canon Kabushiki Kaisha | Image display apparatus |
US20110025201A1 (en) * | 2009-07-28 | 2011-02-03 | Canon Kabushiki Kaisha | Image display apparatus |
US20120228647A1 (en) * | 2009-08-25 | 2012-09-13 | Sumitomo Chemical Company, Limited | Organic electroluminescent element |
US8294639B2 (en) | 2009-12-25 | 2012-10-23 | Canon Kabushiki Kaisha | Display unit |
US20110156991A1 (en) * | 2009-12-25 | 2011-06-30 | Canon Kabushiki Kaisha | Display unit |
US8669559B2 (en) | 2010-04-12 | 2014-03-11 | Canon Kabushiki Kaisha | Image display apparatus and image display apparatus manufacturing method |
US20140347609A1 (en) * | 2011-03-31 | 2014-11-27 | Chi Mei Materials Technology Corporation | Display apparatus and liquid crystal display device |
US9194545B2 (en) | 2011-09-07 | 2015-11-24 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting device and light sheet |
US9620740B2 (en) | 2012-10-11 | 2017-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Organic electroluminescence element and lighting device |
US9595648B2 (en) | 2013-04-12 | 2017-03-14 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device |
US9647240B2 (en) | 2013-05-21 | 2017-05-09 | Panasonic Intellectual Property Management Co., Ltd. | Light emitting apparatus |
JP2015005494A (en) * | 2013-05-22 | 2015-01-08 | パナソニックIpマネジメント株式会社 | Light extraction substrate of organic el illumination |
US9515239B2 (en) | 2014-02-28 | 2016-12-06 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device and light-emitting apparatus |
US10012780B2 (en) | 2014-02-28 | 2018-07-03 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US9618697B2 (en) | 2014-02-28 | 2017-04-11 | Panasonic Intellectual Property Management Co., Ltd. | Light directional angle control for light-emitting device and light-emitting apparatus |
US9880336B2 (en) | 2014-02-28 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US9518215B2 (en) | 2014-02-28 | 2016-12-13 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device and light-emitting apparatus |
US9890912B2 (en) | 2014-02-28 | 2018-02-13 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
CN103928635A (en) * | 2014-04-18 | 2014-07-16 | 上海和辉光电有限公司 | OLED device anode structure |
WO2016144779A1 (en) * | 2015-03-06 | 2016-09-15 | Massachusetts Institute Of Technology | Systems, methods, and apparatus for radiation detection |
US9810578B2 (en) | 2015-03-06 | 2017-11-07 | Massachusetts Institute Of Technology | Systems, methods, and apparatus for radiation detection |
US10031276B2 (en) | 2015-03-13 | 2018-07-24 | Panasonic Intellectual Property Management Co., Ltd. | Display apparatus including photoluminescent layer |
US10113712B2 (en) | 2015-03-13 | 2018-10-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US10182702B2 (en) | 2015-03-13 | 2019-01-22 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
USRE49093E1 (en) | 2015-03-13 | 2022-06-07 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
US9899577B2 (en) | 2015-06-08 | 2018-02-20 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus including photoluminescent layer |
US10115874B2 (en) | 2015-06-08 | 2018-10-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device including photoluminescent layer |
US9882100B2 (en) | 2015-08-20 | 2018-01-30 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device having surface structure for limiting directional angle of light |
US10359155B2 (en) | 2015-08-20 | 2019-07-23 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus |
USRE50041E1 (en) | 2015-08-20 | 2024-07-16 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting apparatus |
US10094522B2 (en) | 2016-03-30 | 2018-10-09 | Panasonic Intellectual Property Management Co., Ltd. | Light-emitting device having photoluminescent layer |
US20210408424A1 (en) * | 2020-11-05 | 2021-12-30 | Anhui University | Perovskite light-emitting diode with adjustable light field |
US11758748B2 (en) * | 2020-11-05 | 2023-09-12 | Anhui University | Perovskite light-emitting diode with adjustable light field |
Also Published As
Publication number | Publication date |
---|---|
JP2991183B2 (en) | 1999-12-20 |
JPH11283751A (en) | 1999-10-15 |
US6476550B1 (en) | 2002-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6476550B1 (en) | Organic Electroluminescent device with a defraction grading and luminescent layer | |
US7619357B2 (en) | Electroluminescent display device | |
US6396208B1 (en) | Organic electroluminescent device and its manufacturing process | |
US6280861B1 (en) | Organic EL device | |
JP4226835B2 (en) | LIGHT EMITTING ELEMENT, ITS MANUFACTURING METHOD, AND DISPLAY DEVICE USING THE SAME | |
KR101094736B1 (en) | Tuned Microcavity Color OLD Display | |
KR100495703B1 (en) | Light emitting device and manufacturing method thereof and display used this light emitting device | |
US6771018B2 (en) | Light-emitting device and display device employing electroluminescence with no light leakage and improved light extraction efficiency | |
KR20050037390A (en) | Organic electroluminescent device | |
JPH088061A (en) | Layer structure of light emitting device and flat panel display including the same | |
KR20040070102A (en) | Color oled display with improved emission | |
JP2947250B2 (en) | Organic electroluminescence device and method of manufacturing the same | |
JP2848386B1 (en) | Organic electroluminescence device and method of manufacturing the same | |
US6921627B2 (en) | Organic electroluminescent device with self-aligned insulating fillers and method for manufacturing the same | |
JP4303031B2 (en) | Method for manufacturing substrate for organic electroluminescence device | |
JP2004335301A (en) | Method of manufacturing substrate for organic electroluminescence element | |
JP4382388B2 (en) | SUBSTRATE FOR ORGANIC ELECTROLUMINESCENT DEVICE AND ORGANIC ELECTROLUMINESCENT DEVICE USING THE SAME |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NEC CORPORATION, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:ODA, ATSUSHI;ISHIKAWA, HITOSHI;TOGUCHI, SATORU;REEL/FRAME:009861/0489 Effective date: 19990319 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: SAMSUNG SDI CO., LTD., KOREA, REPUBLIC OF Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NEC CORPORATION;REEL/FRAME:015147/0586 Effective date: 20040315 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: SAMSUNG MOBILE DISPLAY CO., LTD., KOREA, REPUBLIC Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG SDI CO., LTD.;REEL/FRAME:022024/0026 Effective date: 20081212 Owner name: SAMSUNG MOBILE DISPLAY CO., LTD.,KOREA, REPUBLIC O Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:SAMSUNG SDI CO., LTD.;REEL/FRAME:022024/0026 Effective date: 20081212 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
AS | Assignment |
Owner name: SAMSUNG DISPLAY CO., LTD., KOREA, REPUBLIC OF Free format text: MERGER;ASSIGNOR:SAMSUNG MOBILE DISPLAY CO., LTD.;REEL/FRAME:028870/0596 Effective date: 20120702 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: PAYER NUMBER DE-ASSIGNED (ORIGINAL EVENT CODE: RMPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
FPAY | Fee payment |
Year of fee payment: 12 |