US20020176640A1 - Double row ball bearing - Google Patents
Double row ball bearing Download PDFInfo
- Publication number
- US20020176640A1 US20020176640A1 US09/557,611 US55761100A US2002176640A1 US 20020176640 A1 US20020176640 A1 US 20020176640A1 US 55761100 A US55761100 A US 55761100A US 2002176640 A1 US2002176640 A1 US 2002176640A1
- Authority
- US
- United States
- Prior art keywords
- raceway
- ball
- race
- outer race
- inner race
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 23
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C19/00—Bearings with rolling contact, for exclusively rotary movement
- F16C19/02—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows
- F16C19/14—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load
- F16C19/18—Bearings with rolling contact, for exclusively rotary movement with bearing balls essentially of the same size in one or more circular rows for both radial and axial load with two or more rows of balls
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16C—SHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
- F16C43/00—Assembling bearings
- F16C43/04—Assembling rolling-contact bearings
- F16C43/06—Placing rolling bodies in cages or bearings
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49636—Process for making bearing or component thereof
- Y10T29/49643—Rotary bearing
- Y10T29/49679—Anti-friction bearing or component thereof
- Y10T29/49682—Assembling of race and rolling anti-friction members
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49636—Process for making bearing or component thereof
- Y10T29/49643—Rotary bearing
- Y10T29/49679—Anti-friction bearing or component thereof
- Y10T29/49691—Cage making
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49636—Process for making bearing or component thereof
- Y10T29/49696—Mounting
Definitions
- the present invention relates a double row ball bearing in which a first ball row is fitted into one of two rows of raceways respectively formed by an inner race and an outer race before the outer race is mounted onto the inner race and, after the outer race is mounted onto the inner race, a second ball row is fitted into the other raceway in a state where the axes of the inner and outer races are inclined with respect to each other.
- a unit bearing 60 with a flange As shown in FIGS. 3 and 4, into one 63 (that is, the raceway 63 which is located near the flange and, in FIG. 3, is situated on the left side) of two rows of raceways 63 and 64 respectively formed by an inner race 61 and an outer race 62 , there are fitted a plurality of balls 65 and a retainer 66 before the outer race 62 is mounted onto the inner race 61 , and, into the other raceway 64 (the raceway 64 which is located distant from the flange and, in FIG. 3, is situated on the right side), there are fitted a smaller number of balls 67 than the number of the balls 65 and a retainer (not shown) after the outer race 62 is mounted onto the inner race 61 .
- the number of the balls 67 to be fitted into the other raceway 64 is smaller than the number of the balls 65 to be fitted into one raceway 63 . After then, the balls 67 are distributed equally within the other raceway 64 and the retainer is inserted into the other raceway 64 .
- the inside diameter of the end portion (shown on the left side in FIG. 5) of the raceway groove 75 of an outer race 74 forming one raceway 71 into which a large number of balls 73 are to be fitted is set larger than the inside diameters of the remaining portions of the raceway groove 75 by 5% or more of the diameter of the balls.
- a clearance G is defined between the ball-fitting-direction forward side (in FIG. 6, the lower side) edge portion 83 a of the raceway groove 83 of the inner race 80 forming the other raceway 82 and the ball-fitting-direction forward side edge portion 84 a of the raceway groove 84 of the outer race 81 forming the other raceway 82 , in a state where the axes of an inner race 80 and an outer race 81 are inclined with respect to each other after the outer race 81 is mounted onto the inner race 80 .
- the maximum value of the clearance G is larger than the diameter H of the respective balls 85 to be fitted into the other raceway 82 . Due to this, the respective balls 85 are easy to swerve away from the other raceway 82 . Therefore, there exists a problem that it takes much labor and time to incorporate the balls into the bearing, which in turn increases the cost of the bearing.
- the present invention aims at solving the above problem found in the above-cited conventional double row ball bearings. Accordingly, it is an object of the invention to provide a double row ball bearing which, when, in a state where the axes of inner and outer races are inclined with respect to each other after the outer race is mounted onto the inner race, balls belonging to a ball row including a smaller number of balls are fitted into the other raceway, can secure a good operation efficiency to thereby be able to reduce the cost thereof.
- a double row ball bearing comprising:
- an inner race having first and second inner race raceways respectively formed on the outer peripheral surface thereof;
- an outer race having first and second outer race raceways respectively formed on the inner peripheral surface thereof and corresponding to the first and second inner race raceways of the inner race, the outer race being to be mounted onto the inner race;
- first and second raceways respectively formed between the inner race and the outer race mounted on the inner race by the mutually corresponding inner race raceways and outer race raceways of the inner and outer races;
- a first ball row composed of a plurality of balls rollably fittable into the first raceway before the outer race is mounted onto the inner race;
- a second ball row composed of balls smaller in number than the first ball row rollably fittable into the second raceway after the outer race is mounted onto the inner race;
- a dimension along the radial direction of the outer race between the bottom portion of the second outer race raceway of the outer race forming the second raceway and the ball-fitting-direction forward side edge portion of the second outer race raceway may be equal to or larger than 20% of the diameter of the respective balls belonging to the second ball row.
- the maximum value of the clearance between the ball-fitting-direction rearward side edge portion of the second inner race raceway of the inner race forming the second raceway and the ball-fitting-direction rearward side edge portion of the second outer race raceway of the outer race forming the second raceway is larger than the diameter of the respective balls belonging to the second ball row.
- the maximum value of a clearance between the ball-fitting-direction forward side edge portion of the second inner race raceway of the inner race forming the second raceway and the ball-fitting-direction forward side edge portion of the second outer race raceway of the outer race forming the second raceway is smaller than the diameter of the respective balls belonging to the second ball row.
- the balls belonging to the second ball row can be respectively fitted smoothly into the second raceway while they are positively prevented from swerving from the second raceway.
- FIG. 1 is a schematic section view of a first embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other;
- FIG. 2 is a schematic section view of a second embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other;
- FIG. 3 is a section view of a unit bearing with a flange which is a conventional double row ball bearing, in which the axes of inner and outer races are inclined with respect to each other;
- FIG. 4 is a section view of the unit bearing with a flange taken along the line E shown in FIG. 3, in which balls are fitted into the other raceway thereof;
- FIG. 5 is a section view of a double row angular ball bearing which is a conventional double row ball bearing, in which the axes of inner and outer races are inclined with respect to each other; and,
- FIG. 6 is a section view of a conventional double row ball bearing, in which the axes of inner and outer races are inclined with respect to each other.
- FIG. 1 is a schematic section view of a first embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other.
- FIG. 1 in the case of a double row ball bearing 10 to be applied to, for example, a water pump, in assembling it, into a first raceway 40 (shown on the lower side in FIG. 1) which is formed by a rotary shaft 20 (which is hereinafter referred to as an inner race 20 ) serving as an inner race of the bearing and an outer race 30 , there are fitted a first ball row 41 and a retainer 43 before the outer race 30 is mounted onto the inner race 20 . Further, in a state where the axes of the inner race 20 and outer race 30 are inclined with respect to each other (a state shown in FIG. 1) after the outer race 30 is mounted onto the inner race 20 , a second ball row composed of balls smaller in number than the first ball row and a retainer (not shown) are fitted into a second raceway 44 (shown on the upper side in FIG. 1).
- the inner race 20 which serves as a rotary shaft, is formed substantially in a cylindrical shape and is structured such that, as shown in FIG. 1, a first inner race raceway 21 and a second inner race raceway 22 are respectively formed in an annular shape extending along the peripheral direction of the outer peripheral surface of the inner race 20 and having a substantially semicircular section.
- the outer race 30 is formed substantially in a tubular shape, and, in such a manner that the inner race 20 is fitted with the interior portion of the outer race 30 , the outer race 30 is mounted onto the outer periphery of the inner race 20 .
- a first outer race raceway 31 and a second outer race raceway 32 which are shown in FIG. 1 and correspond to the first and second inner race raceways 21 and 22 of the inner race 20 , are respectively formed in an annular shape extending along the peripheral direction of the inner peripheral surface of the outer race 30 and are also disposed opposed to the first and second inner race raceways 21 and 22 of the inner race 20 , while the section of each of the raceways 31 and 32 has a substantially semicircular shape.
- the intermediate portion of the inner peripheral surface of the outer race 30 which is located between the first and second outer race raceways 31 and 32 of the outer race 30 , is composed of two peripheral surfaces 33 and 34 having different inside diameters, while the peripheral surface 33 located near the second outer race raceway 32 of the outer race 30 (which is hereinafter referred to as the upper side peripheral surface 33 ) has an inside diameter A which is set smaller than the inside diameter B of the peripheral surface 34 located near the first outer race raceway 31 of the outer race 30 .
- first and second raceways 40 and 44 are respectively formed between the inner race 20 and the outer race 30 mounted on the inner race 20 by the mutually corresponding first and second inner race raceways 21 , 22 and first and second outer race raceways 31 , 32 .
- the maximum value of a clearance C between the ball-fitting-direction rearward side (in FIG. 1, the upper side) edge portion 22 a of the second inner race raceway 22 of the inner race 20 and the ball-fitting-direction rearward side edge portion 32 a of the second outer race raceway 32 of the outer race 30 is larger than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
- the maximum value of a clearance D between the second outer race raceway 32 edge portion 32 a on the upper side peripheral surface 33 of the outer race 30 and the ball-fitting-direction forward side (in FIG. 1, the lower side) edge portion 22 b of the second inner race raceway 22 of the inner race 20 is smaller than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
- a dimension E along the radial direction of the outer race 30 between the upper side peripheral surface 33 of the outer race 30 and the bottom portion of the second outer race raceway 32 of the outer race 30 may be equal to or larger than 20% of the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
- FIG. 2 is a schematic section view of a second embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other.
- the intermediate portion of the inner peripheral surface of an outer race 51 which is located between the first and second outer race raceways 52 and 53 of the outer race 51 , is composed of a single peripheral surface 54 having a uniform inside diameter F.
- a dimension E along the radial direction of the outer race 51 between the present peripheral surface 54 and the bottom portion of the second outer race raceway 53 of the outer race 51 may be equal to or larger than 20% of the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
- the maximum value of the clearance C between the ball-fitting-direction rearward side (in FIGS. 1 and 2, the upper side) edge portion 22 a of the second inner race raceway 22 of the inner race 20 and the ball-fitting-direction rearward side edge portion ( 32 a , 53 a ) of the second outer race raceway ( 32 , 53 ) of the outer race ( 30 , 51 ) is larger than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
- the maximum value of the clearance D between the ball-fitting-direction forward side (in FIG. 1, the lower side) edge portion 22 b of the second inner race raceway 22 of the inner race 20 and the second outer race raceway 32 , 53 edge portion ( 32 b , 53 b ) of the upper side peripheral surface 33 (first embodiment) or peripheral surface 54 (second embodiment) of the outer race 30 , 51 is smaller than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
- the dimension E along the radial direction of the outer race 30 , 51 between the upper side peripheral surface 33 (first embodiment) or peripheral surface 54 (second embodiment) of the outer race 30 , 51 and the bottom portion of the second outer race raceway 32 , 53 of the outer race 30 , 51 may be equal to or larger than 20% of the diameter H (see FIG. 6) of the respective balls belonging to the second ball row.
Landscapes
- Engineering & Computer Science (AREA)
- General Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Rolling Contact Bearings (AREA)
Abstract
In a state where the axes of an inner race 20 and an outer race 30 are inclined with respect to each other, the maximum value of a clearance between the ball-fitting-direction rearward side edge portion of the second inner race raceway 22 of the inner race 20 and the ball-fitting-direction rearward side edge portion of the second outer race raceway 32 of the outer race 30 is larger than the diameter of the respective balls belonging to the second ball row. Also, the maximum value of a clearance between the ball-fitting-direction forward side edge portion of the second inner race raceway 22 of the inner race 20 and the second outer race raceway 32 edge portion on the upper side peripheral surface 33 of the outer race 30 is smaller than the diameter of the respective balls belonging to the second ball row.
Description
- 1. Field of the Invention
- The present invention relates a double row ball bearing in which a first ball row is fitted into one of two rows of raceways respectively formed by an inner race and an outer race before the outer race is mounted onto the inner race and, after the outer race is mounted onto the inner race, a second ball row is fitted into the other raceway in a state where the axes of the inner and outer races are inclined with respect to each other.
- 2. Description of the Related Art
- Conventionally, as a double row ball bearing, in Japanese Patent Unexamined Publication No. 57-6125 of Showa, there is disclosed a unit bearing60 with a flange. As shown in FIGS. 3 and 4, into one 63 (that is, the
raceway 63 which is located near the flange and, in FIG. 3, is situated on the left side) of two rows ofraceways inner race 61 and anouter race 62, there are fitted a plurality ofballs 65 and aretainer 66 before theouter race 62 is mounted onto theinner race 61, and, into the other raceway 64 (theraceway 64 which is located distant from the flange and, in FIG. 3, is situated on the right side), there are fitted a smaller number ofballs 67 than the number of theballs 65 and a retainer (not shown) after theouter race 62 is mounted onto theinner race 61. - In other words, in the unit bearing60 with a flange, at first, after the
balls 65 andretainer 66 are fitted into oneraceway 63, theouter race 62 is mounted onto theinner race 61. Next, the respective axes of theinner race 61 andouter race 62 are inclined with respect to each other to thereby produce such a state as shown in FIG. 3, so that, between theinner race 61 andouter race 62, there is formed such a crescent-shaped clearance 68 as shown in FIG. 4. And, through this crescent-shaped clearance 68, theballs 67 are fitted into theother raceway 64. Here, the number of theballs 67 to be fitted into theother raceway 64 is smaller than the number of theballs 65 to be fitted into oneraceway 63. After then, theballs 67 are distributed equally within theother raceway 64 and the retainer is inserted into theother raceway 64. - Also, referring to FIG. 5, in Japanese Patent Unexamined Publication No. 57-69112 of Showa, there is disclosed a double row angular ball bearing70 in which the above-mentioned crescent-shaped clearance 68 (see FIG. 4) is formed in a larger size and the number of balls to be fitted into the
other raceway 72 is thereby increased. - That is, in the double row angular ball bearing70, the inside diameter of the end portion (shown on the left side in FIG. 5) of the
raceway groove 75 of anouter race 74 forming oneraceway 71 into which a large number ofballs 73 are to be fitted is set larger than the inside diameters of the remaining portions of theraceway groove 75 by 5% or more of the diameter of the balls. - However, in both of the above-mentioned conventional double
row ball bearings outer races inner races balls 67 are fitted into theother raceways inner races outer races balls 67 are easy to swerve from theother raceways - In other words, referring to FIG. 6, a clearance G is defined between the ball-fitting-direction forward side (in FIG. 6, the lower side)
edge portion 83 a of theraceway groove 83 of theinner race 80 forming theother raceway 82 and the ball-fitting-direction forwardside edge portion 84 a of theraceway groove 84 of theouter race 81 forming theother raceway 82, in a state where the axes of aninner race 80 and anouter race 81 are inclined with respect to each other after theouter race 81 is mounted onto theinner race 80. Then, the maximum value of the clearance G is larger than the diameter H of therespective balls 85 to be fitted into theother raceway 82. Due to this, therespective balls 85 are easy to swerve away from theother raceway 82. Therefore, there exists a problem that it takes much labor and time to incorporate the balls into the bearing, which in turn increases the cost of the bearing. - The present invention aims at solving the above problem found in the above-cited conventional double row ball bearings. Accordingly, it is an object of the invention to provide a double row ball bearing which, when, in a state where the axes of inner and outer races are inclined with respect to each other after the outer race is mounted onto the inner race, balls belonging to a ball row including a smaller number of balls are fitted into the other raceway, can secure a good operation efficiency to thereby be able to reduce the cost thereof.
- In attaining the above object, according to the invention, there is provided a double row ball bearing comprising:
- an inner race having first and second inner race raceways respectively formed on the outer peripheral surface thereof;
- an outer race having first and second outer race raceways respectively formed on the inner peripheral surface thereof and corresponding to the first and second inner race raceways of the inner race, the outer race being to be mounted onto the inner race;
- first and second raceways respectively formed between the inner race and the outer race mounted on the inner race by the mutually corresponding inner race raceways and outer race raceways of the inner and outer races;
- a first ball row composed of a plurality of balls rollably fittable into the first raceway before the outer race is mounted onto the inner race;
- a retainer insertable into the first raceway together with the first ball row;
- a second ball row composed of balls smaller in number than the first ball row rollably fittable into the second raceway after the outer race is mounted onto the inner race; and,
- a retainer insertable into the second raceway together with the second ball row,
- wherein, when the balls belonging to the second ball row are respectively fitted into the second raceway, in a state where the axes of the inner and outer races are inclined with respect to each other, the maximum value of a clearance between the ball-fitting-direction rearward side edge portion of the second inner race raceway of the inner race forming the second raceway and the ball-fitting-direction rearward side edge portion of the second outer race raceway of the outer race forming the second raceway is larger than the diameter of the respective balls belonging to the second ball row, and the maximum value of a clearance between the ball-fitting-direction forward side edge portion of the second inner race raceway of the inner race forming the second raceway and the ball-fitting-direction forward side edge portion of the second outer race raceway of the outer race forming the second raceway is smaller than the diameter of the respective balls belonging to the second ball row.
- Also, preferably, a dimension along the radial direction of the outer race between the bottom portion of the second outer race raceway of the outer race forming the second raceway and the ball-fitting-direction forward side edge portion of the second outer race raceway may be equal to or larger than 20% of the diameter of the respective balls belonging to the second ball row.
- In a double row ball bearing according to the invention, in assembling thereof, after the balls belonging to the first ball row are respectively fitted into the first raceway, in a state where the axes of the inner and outer races are inclined with respect to each other, the balls belonging to the second ball row are respectively fitted into the second raceway.
- When fitting the balls belonging to the second ball row into the second raceway, in a state where the axes of the inner and outer races are inclined with respect to each other, the maximum value of the clearance between the ball-fitting-direction rearward side edge portion of the second inner race raceway of the inner race forming the second raceway and the ball-fitting-direction rearward side edge portion of the second outer race raceway of the outer race forming the second raceway is larger than the diameter of the respective balls belonging to the second ball row.
- Also, the maximum value of a clearance between the ball-fitting-direction forward side edge portion of the second inner race raceway of the inner race forming the second raceway and the ball-fitting-direction forward side edge portion of the second outer race raceway of the outer race forming the second raceway is smaller than the diameter of the respective balls belonging to the second ball row.
- Therefore, the balls belonging to the second ball row can be respectively fitted smoothly into the second raceway while they are positively prevented from swerving from the second raceway.
- FIG. 1 is a schematic section view of a first embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other;
- FIG. 2 is a schematic section view of a second embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other;
- FIG. 3 is a section view of a unit bearing with a flange which is a conventional double row ball bearing, in which the axes of inner and outer races are inclined with respect to each other;
- FIG. 4 is a section view of the unit bearing with a flange taken along the line E shown in FIG. 3, in which balls are fitted into the other raceway thereof;
- FIG. 5 is a section view of a double row angular ball bearing which is a conventional double row ball bearing, in which the axes of inner and outer races are inclined with respect to each other; and,
- FIG. 6 is a section view of a conventional double row ball bearing, in which the axes of inner and outer races are inclined with respect to each other.
- Now, description will be given below in detail of the present invention by means of the preferred embodiments shown in the accompanying drawings.
- FIG. 1 is a schematic section view of a first embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other.
- In FIG. 1, in the case of a double
row ball bearing 10 to be applied to, for example, a water pump, in assembling it, into a first raceway 40 (shown on the lower side in FIG. 1) which is formed by a rotary shaft 20 (which is hereinafter referred to as an inner race 20) serving as an inner race of the bearing and anouter race 30, there are fitted afirst ball row 41 and aretainer 43 before theouter race 30 is mounted onto theinner race 20. Further, in a state where the axes of theinner race 20 andouter race 30 are inclined with respect to each other (a state shown in FIG. 1) after theouter race 30 is mounted onto theinner race 20, a second ball row composed of balls smaller in number than the first ball row and a retainer (not shown) are fitted into a second raceway 44 (shown on the upper side in FIG. 1). - The
inner race 20, which serves as a rotary shaft, is formed substantially in a cylindrical shape and is structured such that, as shown in FIG. 1, a firstinner race raceway 21 and a secondinner race raceway 22 are respectively formed in an annular shape extending along the peripheral direction of the outer peripheral surface of theinner race 20 and having a substantially semicircular section. - The
outer race 30 is formed substantially in a tubular shape, and, in such a manner that theinner race 20 is fitted with the interior portion of theouter race 30, theouter race 30 is mounted onto the outer periphery of theinner race 20. In theouter race 30, a firstouter race raceway 31 and a secondouter race raceway 32, which are shown in FIG. 1 and correspond to the first and secondinner race raceways inner race 20, are respectively formed in an annular shape extending along the peripheral direction of the inner peripheral surface of theouter race 30 and are also disposed opposed to the first and secondinner race raceways inner race 20, while the section of each of theraceways - The intermediate portion of the inner peripheral surface of the
outer race 30, which is located between the first and secondouter race raceways outer race 30, is composed of twoperipheral surfaces peripheral surface 33 located near the secondouter race raceway 32 of the outer race 30 (which is hereinafter referred to as the upper side peripheral surface 33) has an inside diameter A which is set smaller than the inside diameter B of theperipheral surface 34 located near the firstouter race raceway 31 of theouter race 30. - In FIG. 1, the first and
second raceways inner race 20 and theouter race 30 mounted on theinner race 20 by the mutually corresponding first and secondinner race raceways outer race raceways - Into the
first raceway 40 shown in FIG. 1, before theouter race 30 is mounted onto theinner race 20, there are rotatably fitted a plurality ofballs 42 belonging to thefirst ball row 41 and also there is incorporated theretainer 43 together with thefirst ball row 41. - Into the
second raceway 40 shown in FIG. 1, after theouter race 30 is mounted onto theinner race 20, in a such state as shown in FIG. 1 where the axes of theinner race 20 andouter race 30 are inclined with respect to each other, there are fitted a plurality of balls (not shown) belonging to the second ball row composed of balls smaller in number than thefirst ball row 41 and also there is incorporated the retainer together with the second ball row. - In the state shown in FIG. 1 where the axes of the
inner race 20 andouter race 30 are inclined with respect to each other, the maximum value of a clearance C between the ball-fitting-direction rearward side (in FIG. 1, the upper side) edge portion 22 a of the secondinner race raceway 22 of theinner race 20 and the ball-fitting-direction rearwardside edge portion 32 a of the secondouter race raceway 32 of theouter race 30 is larger than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row. - Also, the maximum value of a clearance D between the second
outer race raceway 32edge portion 32 a on the upper sideperipheral surface 33 of theouter race 30 and the ball-fitting-direction forward side (in FIG. 1, the lower side) edge portion 22 b of the secondinner race raceway 22 of theinner race 20 is smaller than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row. - Also, preferably, a dimension E along the radial direction of the
outer race 30 between the upper sideperipheral surface 33 of theouter race 30 and the bottom portion of the secondouter race raceway 32 of theouter race 30 may be equal to or larger than 20% of the diameter H (see FIG. 6) of the respective balls belonging to the second ball row. - Now, description will be given below of the operation of the present embodiment.
- To assemble the double row ball bearing10, after the
respective balls 42 belonging to thefirst ball row 41 are fitted into thefirst raceway 40, in the state shown in FIG. 1 where the axes of theinner race 20 andouter race 30 are inclined with respect to each other, the respective balls belonging to the second ball row are fitted into thesecond raceway 44. - When the respective balls belonging to the second ball row are fitted into the
second raceway 44 in the sate shown in FIG. 1 where the axes of theinner race 20 andouter race 30 inclined with respect to each other, the maximum value of the clearance C is set larger than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row and the maximum value of the clearance D is set smaller than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row. Thus, the balls belonging to the second ball row can be respectively fitted into thesecond raceway 44 smoothly while the balls are prevented from swerving forwardly (in FIG. 1, downwardly) in the ball-fitting direction from thesecond raceway 44. - Now, FIG. 2 is a schematic section view of a second embodiment of a double row ball bearing according to the invention, in which the axes of inner and outer races are inclined with respect to each other.
- In a double
row ball bearing 50 according to the second embodiment of the invention, the intermediate portion of the inner peripheral surface of anouter race 51, which is located between the first and secondouter race raceways outer race 51, is composed of a singleperipheral surface 54 having a uniform inside diameter F. Also, preferably, a dimension E along the radial direction of theouter race 51 between the presentperipheral surface 54 and the bottom portion of the secondouter race raceway 53 of theouter race 51 may be equal to or larger than 20% of the diameter H (see FIG. 6) of the respective balls belonging to the second ball row. - The remaining portions of the structure and operation of the second embodiment are similar to those in the previously described first embodiment.
- As described above, according to the above-mentioned respective embodiments, in the state shown in FIGS. 1 and 2 where the axes of the
inner race 20 and outer race (30, 51) are inclined with respect to each other, the maximum value of the clearance C between the ball-fitting-direction rearward side (in FIGS. 1 and 2, the upper side) edge portion 22 a of the secondinner race raceway 22 of theinner race 20 and the ball-fitting-direction rearward side edge portion (32 a, 53 a) of the second outer race raceway (32, 53) of the outer race (30, 51) is larger than the diameter H (see FIG. 6) of the respective balls belonging to the second ball row. Also, the maximum value of the clearance D between the ball-fitting-direction forward side (in FIG. 1, the lower side) edge portion 22 b of the secondinner race raceway 22 of theinner race 20 and the secondouter race raceway outer race outer race outer race outer race raceway outer race - Therefore, when the respective balls belonging to the second ball row are fitted into the
second raceway 44 in the state shown in FIGS. 1 and 2 where the axes of theinner race 20 andouter race outer race inner race 20, the balls belonging to the second ball row can be respectively fitted into thesecond raceway 44 smoothly while the balls are prevented from swerving from thesecond raceway 44 in the downward direction in FIGS. 1 and 2. This can secure a good assembling operation efficiency as well as can reduce the cost of the double row ball bearing. Also, when the balls are fitted into the second raceway, preferably, theouter race
Claims (4)
1. A double row ball bearing comprising:
an inner race defining first and second inner race raceways respectively formed on the outer peripheral surface thereof;
an outer race defining first and second outer race raceways respectively formed on the inner peripheral surface thereof and corresponding to said first and second inner race raceways of said inner race, said outer race being to be mounted onto said inner race;
first and second raceways respectively defined between said inner race and said outer race mounted on said inner race by said mutually corresponding inner race raceways and outer race raceways of said inner race and said outer race;
a first ball row including a plurality of balls being rollably fittable into said first raceway before said outer race is mounted onto said inner race;
a first retainer inserted into said first raceway together with said first ball row;
a second ball row including a plurality of balls rollably fittable into said second raceway after said outer race is mounted onto said inner race; and,
a second retainer inserted into said second raceway together with said second ball row,
wherein, when said balls of said second ball row are respectively fitted into said second raceway in a state where the axes of said inner race and said outer race are inclined with respect to each other, the maximum value of a first clearance between a ball-fitting-direction rearward side edge portion of said second inner race raceway of said inner race forming said second raceway and a ball-fitting-direction rearward side edge portion of said second outer race raceway of said outer race forming said second raceway is larger than the outer diameter of said each ball of said second ball row, and the maximum value of a second clearance between a ball-fitting-direction forward side edge portion of said second inner race raceway of said inner race forming said second raceway and a ball-fitting-direction forward side edge portion of said second outer race raceway of said outer race forming said second raceway is smaller than the outer diameter of said each ball of said second ball row.
2. The double row ball bearing according to claim 1 , wherein a dimension along the radial direction of said outer race between a bottom portion of said second outer race raceway of said outer race and the ball-fitting-direction forward side edge portion of said second race raceway is equal to or larger than 20% of the outer diameter of said ball of said second ball row.
3. The double row ball bearing according to claim 1 , wherein said balls of said second ball row have the same outer diameter as that of said balls of said first ball row.
4. The double row ball bearing according to claim 1 , wherein said balls of said second ball row are smaller in number than that of said first ball row.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/681,112 US6981325B2 (en) | 1999-04-30 | 2003-10-09 | Double row ball bearing |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JPHEI.11-124507 | 1999-04-30 | ||
JP11124507A JP2000314428A (en) | 1999-04-30 | 1999-04-30 | Double row ball bearing |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/681,112 Division US6981325B2 (en) | 1999-04-30 | 2003-10-09 | Double row ball bearing |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020176640A1 true US20020176640A1 (en) | 2002-11-28 |
Family
ID=14887208
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/557,611 Abandoned US20020176640A1 (en) | 1999-04-30 | 2000-04-25 | Double row ball bearing |
US10/681,112 Expired - Fee Related US6981325B2 (en) | 1999-04-30 | 2003-10-09 | Double row ball bearing |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/681,112 Expired - Fee Related US6981325B2 (en) | 1999-04-30 | 2003-10-09 | Double row ball bearing |
Country Status (2)
Country | Link |
---|---|
US (2) | US20020176640A1 (en) |
JP (1) | JP2000314428A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9841058B2 (en) | 2015-04-29 | 2017-12-12 | Aktiebolaget Skf | Assembly procedure of a bearing unit—hub flange |
US9903417B2 (en) | 2015-04-29 | 2018-02-27 | Aktiebolaget Skf | Assembly procedure of a bearing unit—HUB flange |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6742933B2 (en) * | 2002-10-17 | 2004-06-01 | Nsk Corporation | Bearing and method of assembling the bearing |
FR2958357B1 (en) * | 2010-04-06 | 2012-08-10 | Snr Roulements Sa | METHOD OF ASSEMBLING A BEARING BEARING, BEARING BEARING SO ASSEMBLED AND ASSEMBLING A VEHICLE WHEEL BY MEANS OF SUCH BEARING. |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR960486A (en) * | 1947-03-26 | 1950-04-20 | ||
US2633627A (en) * | 1951-01-31 | 1953-04-07 | Jack & Heintz Prec Ind Inc | Method of assembling bearing elements |
US3532401A (en) * | 1968-05-10 | 1970-10-06 | Barden Corp | Preloaded double row ball bearing and method of making the same |
JPS5610516U (en) | 1979-07-05 | 1981-01-29 | ||
JPS576125A (en) | 1980-06-13 | 1982-01-13 | Nachi Fujikoshi Corp | Flanged using bearing and is assembly method |
JPS5769112A (en) | 1980-10-17 | 1982-04-27 | Nachi Fujikoshi Corp | Double row angular contact ball bearing integrating inner and outer rings |
DE4229027A1 (en) | 1992-09-01 | 1994-03-03 | Novibra Gmbh | Doubling frame - has spindle bearing lubricating system which facilitates ball bearing assembly |
US5556209A (en) * | 1992-10-06 | 1996-09-17 | Minebea Kabushiki-Kaisha | Double-row ball bearing |
US5491893A (en) * | 1994-10-21 | 1996-02-20 | General Motors Corporation | Assembly method for two row ball bearing with integral, angular contact pathways |
US5800069A (en) * | 1995-07-07 | 1998-09-01 | Obara; Rikuro | Compound bearing assembly |
US5984528A (en) * | 1998-07-01 | 1999-11-16 | Shimano Inc. | Bearing assembly for bicycle parts |
-
1999
- 1999-04-30 JP JP11124507A patent/JP2000314428A/en not_active Withdrawn
-
2000
- 2000-04-25 US US09/557,611 patent/US20020176640A1/en not_active Abandoned
-
2003
- 2003-10-09 US US10/681,112 patent/US6981325B2/en not_active Expired - Fee Related
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9841058B2 (en) | 2015-04-29 | 2017-12-12 | Aktiebolaget Skf | Assembly procedure of a bearing unit—hub flange |
US9903417B2 (en) | 2015-04-29 | 2018-02-27 | Aktiebolaget Skf | Assembly procedure of a bearing unit—HUB flange |
Also Published As
Publication number | Publication date |
---|---|
US6981325B2 (en) | 2006-01-03 |
JP2000314428A (en) | 2000-11-14 |
US20040068872A1 (en) | 2004-04-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7320550B2 (en) | Tapered roller bearing | |
US6273614B1 (en) | Rolling and bearing comprising a temperature compensating insert | |
US7832943B2 (en) | Cage for roller bearing | |
WO2005019666A3 (en) | Self-aligning antifriction bearing and cage for said self-aligning antifriction bearing | |
US5906441A (en) | Resin made cage for an angular ball bearing | |
US6783279B2 (en) | Angular contact ball-bearing cage with lubricant pockets | |
US20090080825A1 (en) | Angular contact ball bearing | |
US5918895A (en) | Headset assembly for a bicycle | |
US20040096132A1 (en) | Radial self-aligning rolling bearing | |
US6981325B2 (en) | Double row ball bearing | |
US6015238A (en) | Rolling bearing for rotary movements | |
US5655844A (en) | Rolling bearing unit | |
JP2003294033A (en) | Double-row rolling bearing and assembling method therefor | |
US6200038B1 (en) | Cage for rigid ball bearing and associated ball bearing | |
JP4411831B2 (en) | Assembly for double row ball bearing and assembly method of apparatus using the assembly | |
JP2006200677A (en) | Thrust ball bearing | |
JP2005061508A (en) | Angular contact ball bearing | |
JP3655386B2 (en) | Angular contact ball bearings | |
JPH076523U (en) | Crown type synthetic resin cage for miniature ball bearings | |
JP2523874Y2 (en) | Angular contact ball bearings | |
JP2003343553A (en) | Double row cone roller bearing with aligning ring | |
JP2001214930A (en) | Interval body for ball bearing | |
US20070058894A1 (en) | Rolling bearing apparatus | |
JPH0735808B2 (en) | Needle roller bearings | |
GB2318840A (en) | Ball bearing |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NSK LTD, JAPAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:YANO, SHUICHI;REEL/FRAME:011014/0208 Effective date: 20000519 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |