US20020170901A1 - Equipotential fault tolerant integrated circuit heater - Google Patents
Equipotential fault tolerant integrated circuit heater Download PDFInfo
- Publication number
- US20020170901A1 US20020170901A1 US09/860,872 US86087201A US2002170901A1 US 20020170901 A1 US20020170901 A1 US 20020170901A1 US 86087201 A US86087201 A US 86087201A US 2002170901 A1 US2002170901 A1 US 2002170901A1
- Authority
- US
- United States
- Prior art keywords
- heater
- electric heaters
- conductor
- substrate
- heaters
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000758 substrate Substances 0.000 claims abstract description 108
- 239000004065 semiconductor Substances 0.000 claims abstract description 58
- 239000004020 conductor Substances 0.000 claims description 198
- 229910052751 metal Inorganic materials 0.000 claims description 16
- 239000002184 metal Substances 0.000 claims description 16
- 239000000463 material Substances 0.000 claims description 13
- 238000009877 rendering Methods 0.000 claims description 2
- 230000003313 weakening effect Effects 0.000 claims 1
- 229910000679 solder Inorganic materials 0.000 abstract description 30
- 239000000853 adhesive Substances 0.000 abstract description 24
- 230000001070 adhesive effect Effects 0.000 abstract description 23
- 238000004519 manufacturing process Methods 0.000 abstract description 12
- 230000006870 function Effects 0.000 description 10
- 238000000034 method Methods 0.000 description 10
- 238000010438 heat treatment Methods 0.000 description 6
- 239000000919 ceramic Substances 0.000 description 5
- 238000013461 design Methods 0.000 description 5
- 230000001965 increasing effect Effects 0.000 description 5
- 229920001187 thermosetting polymer Polymers 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000000694 effects Effects 0.000 description 4
- 238000012360 testing method Methods 0.000 description 4
- 229920001169 thermoplastic Polymers 0.000 description 4
- 239000004416 thermosoftening plastic Substances 0.000 description 4
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 4
- 229910052721 tungsten Inorganic materials 0.000 description 4
- 239000010937 tungsten Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 229910010293 ceramic material Inorganic materials 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000013011 mating Effects 0.000 description 3
- 238000001465 metallisation Methods 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 239000003870 refractory metal Substances 0.000 description 3
- 238000005476 soldering Methods 0.000 description 3
- 230000009477 glass transition Effects 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 2
- FRWYFWZENXDZMU-UHFFFAOYSA-N 2-iodoquinoline Chemical compound C1=CC=CC2=NC(I)=CC=C21 FRWYFWZENXDZMU-UHFFFAOYSA-N 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 241001604129 Polydactylus Species 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- WYTGDNHDOZPMIW-RCBQFDQVSA-N alstonine Natural products C1=CC2=C3C=CC=CC3=NC2=C2N1C[C@H]1[C@H](C)OC=C(C(=O)OC)[C@H]1C2 WYTGDNHDOZPMIW-RCBQFDQVSA-N 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- LTPBRCUWZOMYOC-UHFFFAOYSA-N beryllium oxide Inorganic materials O=[Be] LTPBRCUWZOMYOC-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 230000000254 damaging effect Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000032798 delamination Effects 0.000 description 1
- 239000003989 dielectric material Substances 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 230000005496 eutectics Effects 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical group [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 239000010931 gold Substances 0.000 description 1
- 239000011261 inert gas Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 238000004377 microelectronic Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
- 239000000615 nonconductor Substances 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 230000008439 repair process Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 238000012956 testing procedure Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K7/00—Constructional details common to different types of electric apparatus
- H05K7/20—Modifications to facilitate cooling, ventilating, or heating
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/34—Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
- H01L23/345—Arrangements for heating
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0201—Thermal arrangements, e.g. for cooling, heating or preventing overheating
- H05K1/0212—Printed circuits or mounted components having integral heating means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/4805—Shape
- H01L2224/4809—Loop shape
- H01L2224/48091—Arched
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2224/00—Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
- H01L2224/01—Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
- H01L2224/42—Wire connectors; Manufacturing methods related thereto
- H01L2224/47—Structure, shape, material or disposition of the wire connectors after the connecting process
- H01L2224/48—Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
- H01L2224/481—Disposition
- H01L2224/48151—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
- H01L2224/48221—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
- H01L2224/48225—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
- H01L2224/48227—Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation connecting the wire to a bond pad of the item
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/15—Details of package parts other than the semiconductor or other solid state devices to be connected
- H01L2924/151—Die mounting substrate
- H01L2924/153—Connection portion
- H01L2924/1531—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface
- H01L2924/15311—Connection portion the connection portion being formed only on the surface of the substrate opposite to the die mounting surface being a ball array, e.g. BGA
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/03—Use of materials for the substrate
- H05K1/0306—Inorganic insulating substrates, e.g. ceramic, glass
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/14—Structural association of two or more printed circuits
- H05K1/141—One or more single auxiliary printed circuits mounted on a main printed circuit, e.g. modules, adapters
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/16—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor
- H05K1/167—Printed circuits incorporating printed electric components, e.g. printed resistor, capacitor, inductor incorporating printed resistors
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09218—Conductive traces
- H05K2201/09263—Meander
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2201/00—Indexing scheme relating to printed circuits covered by H05K1/00
- H05K2201/09—Shape and layout
- H05K2201/09209—Shape and layout details of conductors
- H05K2201/09654—Shape and layout details of conductors covering at least two types of conductors provided for in H05K2201/09218 - H05K2201/095
- H05K2201/09681—Mesh conductors, e.g. as a ground plane
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/11—Treatments characterised by their effect, e.g. heating, cooling, roughening
- H05K2203/1115—Resistance heating, e.g. by current through the PCB conductors or through a metallic mask
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K2203/00—Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
- H05K2203/17—Post-manufacturing processes
- H05K2203/176—Removing, replacing or disconnecting component; Easily removable component
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/30—Assembling printed circuits with electric components, e.g. with resistor
- H05K3/32—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
- H05K3/34—Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by soldering
- H05K3/3494—Heating methods for reflowing of solder
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/36—Assembling printed circuits with other printed circuits
- H05K3/368—Assembling printed circuits with other printed circuits parallel to each other
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K3/00—Apparatus or processes for manufacturing printed circuits
- H05K3/46—Manufacturing multilayer circuits
- H05K3/4611—Manufacturing multilayer circuits by laminating two or more circuit boards
- H05K3/4626—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials
- H05K3/4629—Manufacturing multilayer circuits by laminating two or more circuit boards characterised by the insulating layers or materials laminating inorganic sheets comprising printed circuits, e.g. green ceramic sheets
Definitions
- This invention relates to reworkable electronic semiconductor components, including multi-chip modules (“MCMs”), that incorporate electrical heaters integrally within the component structure to produce the heat necessary to soften or weaken the bond of the component to the printed wiring board to which the component is attach, allowing removal of the component from a printed wiring board for rework. More particularly, the invention relates to a new heater structure for the electronic semiconductor component that is fault tolerant to current-interrupting breaks as may be formed or produced in any of the heaters. The invention is applicable to substrate-to-printed wiring board attachments that employ adhesive bonds, such as found in the thermoset adhesive lead type components, or that employ reflow solder bonds, such as found in ball grid array lead-less type components.
- the present invention improves upon the invention of Berkely et al presented in U.S. Pat. No. 6,031,729, granted Feb. 29, 2000 entitled “Integral Heater for Reworking MCMS and Other Semiconductor Components” (hereafter the “Berkely et al '729 patent”) assigned to TRW Inc., the assignee of the present invention.
- the invention improves upon electrical heater systems as may be applied in other ways than presented in the foregoing patent by incorporating circuits that provide fault tolerance to current-interrupting breaks in the electric heaters of an electric heater system for an electronic component that avoids disruption of heating.
- MCMs Multi-Chip Modules
- an MCM contains two or more semiconductor die or chips, as variously termed, and ancillary electrical components, assembled in a single enclosed package, that together comprise an electronic circuit function.
- the semiconductor chips contain the micro-miniature integrated circuits, such as processors, amplifiers, memory, and the like.
- the semiconductor chips and components are supported on a common base, consisting of an integral multi-layer printed wiring structure, referred to as the substrate.
- the substrate is formed of ceramic, an electrical insulator that is rigid, allows for plated-on conductors of the finest widths and spacing with the greatest accuracy and is able to maintain a hermetic seal.
- Metallic conductors printed on various layers of the substrate, and metallic vias through the layers, serve to electrically connect the semiconductor chips to each other and to the external interfaces of the MCMs.
- the foregoing elements are contained together in a single enclosed four-sided package, often hermetically sealed, that serves as a protective housing for the semiconductor chips and associated components.
- the ceramic substrate being hermetic, serves as the bottom wall to the module.
- a metal wall, or seal ring is brazed to the substrate around the perimeter, encompassing the components and a lid welded to the top surface of this seal ring hermetically seals the components inside.
- a number of electrical contacts or leads extend out the four sides of the MCM to provide external electrical input-output connections to the MCM.
- MCMs are generally installed upon a printed wiring board, much larger in area than an MCM, that contains the electrical interconnections between the MCMs and other components thereon.
- the larger wiring board is typically constructed of a material such as glass-epoxy or glass-polyimide, a less expensive and lower quality material than the ceramic of the substrate.
- MCMs are typically bonded to the printed wiring boards. Bonding enhances thermal conductivity to the MCM, and isolates mechanical loads from the input-output connections of the MCM, which promotes longer product life.
- a variety of adhesives, such as thermosetting epoxies or thermoplastics, and solder are available to provide the bonding.
- a layer of thermally sensitive adhesive is applied to either the underside surface of the MCM, or directly to the surface of the printed wiring board at the location to which that component is to be placed.
- the board With the MCMs and all other components for that circuit board properly positioned, the board is then placed in an oven and the temperature raised to cure or reflow the adhesive, attaching the MCMs and other components in place. When removed from the oven and cooled down to room temperature the MCMs are firmly attached to the printed wiring board.
- solder is another known thermally sensitive adhesive material used to fasten parts together.
- a second known technique for fastening the MCM to the circuit board is the solder ball grid array.
- the electrical leads are instead formed by electrical vias extending through the multiple layers of substrate to the underside surface of the MCM package. At the underside the terminal end of those vias typically appear by design arranged in regular rows and columns. Minute solder balls or solder columns, different geometry's for the dab of solder collectively referred to herein as solder balls, are formed at the terminal ends of those vias on the underside of the substrate.
- the MCM package In assembly, the MCM package is placed upon the printed wiring board, the latter of which contains solder pads that mate with the solder balls on the MCM package and the temperature is raised above the solder eutectic at which the solder reflows. When cooled, the solder solidifies and provides a firm mechanical connection that fastens the MCM package to the printed wiring board as well as completing the electrical connections to printed circuitry on that wiring board.
- the foregoing connection apparatus and technique is well known.
- That electronic semiconductor assembly is then mounted onto the printed circuit board.
- the electrical leads from the assembly substrate are soldered to the mating solder pads on the printed circuit board, or, should the substrate instead employ a solder ball grid array, the solder balls are soldered to the mating solder pads formed on the printed circuit board.
- one multi-layer printed circuit board is mounted atop another printed circuit board.
- the dimension critical wire bonding of the electrical leads to the chips thus, is accomplished on the ceramic substrate.
- Interconnect to the printed circuit board is accomplished by soldering the electrical leads from the substrate to mating pads on the conventional circuit board.
- Heat was employed to assemble each of the foregoing electronic components; and heat is the means that was typically used to remove an MCM or other thermally bonded unit from the printed wiring board.
- the Berkely et al '729 patent describes a new structure by means of which heat may be uniformly applied to the underside of the substrate sufficient to permit detachment of the MCM from the printed wiring board without damage.
- the reworkable MCM presented in the Berkely et al '729 patent includes electric heater elements formed in a metallized pattern typically printed on the bottom most internal layer of the multi-layer substrate of the MCM; in effect to form an integral heater assembly.
- a dedicated bottom layer to the multi-layer substrate contains a number of printed and fired-on resistive conductors, suitably arranged in a pattern, such as a serpentine pattern, each of which serves as a heater.
- the multiple heaters effectively covers the surface of the bottom layer with heat; and the heat is conducted to the adhesive bond to the printed wiring board.
- the Berkely et al '729 patent also discloses a preferred embodiment in which the electrical conductors and supporting layer that forms the heater (or heaters) are formed of the same conductor and substrate materials used in the other layers of the multi-layer substrate, such as aluminum oxide and tungsten, respectively, permitting convenient manufacture of the heater as part of a conventional substrate fabrication process.
- each heater in the MCM described in the Berkely et al '729 patent are connected electrically in parallel between elongate conductors along a pair of opposed sides of the substrate, as example, along the front and rear sides of the substrate; and each heater is formed of a fine line of metal.
- each heater forms a serpentine-like pattern in between the two sides. A large number of such heaters cover the area of the substrate, thirteen in one example of the '792 patent. As one realizes, if the heater wire of an individual heater in the foregoing structure is broken, that heater cannot conduct electrical current.
- a current-interrupting break could be produced during fabrication processing of the substrate layers, as example, should a piece of dust lodge on the substrate during plating.
- a second possibility for creating a break is due to mishandling during assembly of the MCM. As example, should an assembler inadvertently scratch the substrate on another solid and scrape or cut through a heater line.
- a third possibility occurs during rework of the MCM, should the technician raise the voltage applied to the heaters to a level that results in too high a current through a heater lead, one or more of the heaters may overheat and, like a fuse, burn out, producing a break in the line. Unless the break is large enough to visually observe, it can only be found by testing.
- a principal object of the present invention is to provide a reworkable MCM or other electronic semiconductor component that employs an integral heating system for permitting detachment of the component from a printed wiring board with a heater system that is fault tolerant.
- Another object of the invention is to eliminate the necessity for testing of the integrity of heaters contained in a reworkable electronic component so as to reduce production cost without detracting from the effectiveness of the heaters, even though one or more of the heaters contains a break.
- the invention incorporates fault tolerance within the integral electric heaters of a reworkable electronic semiconductor component, such as a reworkable multi-chip module, to increase production yield and longevity of the rework feature.
- Components of the foregoing kind contain a multi-layer substrate to bond to a printed wiring board, and, for rework, the component includes a plurality of electric heaters arranged side by side on a bottom layer of the substrate. When energized with current, the heaters generate sufficient heat to weaken the adhesive or solder bond to the printed wiring board without delaminating the layers of the substrate, allowing the electronic semiconductor component to be pulled away from the printed wiring board for rework.
- Additional circuitry specifically a series of buses, is included to automatically route heater current around, that is, bypass any current-interrupting break (or breaks) as may form in any of the electric heaters rendering the heaters tolerant to that kind of fault.
- FIG. 1 is a perspective view of an MCM that incorporates the invention
- FIG. 2 is a top view of a circuit board containing a number of the MCMs of FIG. 1;
- FIG. 3 is a side view of the circuit board assembly of FIG. 2;
- FIG. 4 is a partial side section of the MCM substrate drawn in larger scale
- FIG. 5 is a top view of the top most layer of the MCM substrate used in the MCM of FIG. 1, showing a typical layout of signal and power conductors;
- FIG. 6 is a top view of an intermediate layer of the MCM substrate containing electrical vias which interconnect the surface conductor layer of FIG. 5 to the conductors defining the heaters heater pattern of FIG. 7;
- FIG. 7 is a top view of the bottom most internal layer of the MCM substrate used in the MCM of FIG. 1, showing the conductive heater pattern;
- FIG. 8 is a pictorial view of a portion of the heater and FIG. 9 is the same pictorial view with a broken heater, both of which are used in connection with the explanation of the operation of the invention;
- FIG. 10 is a bottom view of an alternative embodiment of the invention used in a semiconductor component that employs a ball grid array
- FIG. 11 is a side view of FIG. 10.
- FIG. 12 is a top view of FIG. 10.
- FIG. 1 illustrates one example of a Multi-chip Module (“MCM”) 1 in a top perspective view, with the module lid 3 partially cut away.
- MCM Multi-chip Module
- a plurality of semiconductor dice or chips 7 are mounted at various locations upon a dielectric multi-layer substrate 9 , and a plurality of small electrical components 11 , only two of which are labeled, are also mounted to the substrate 9 .
- the semiconductor chips are not encased.
- the various junctions and metal traces exposed on the top surface of the semiconductor chips are very small in relative size and are not readily visible, nor illustrated in the figure.
- a wall or ring 13 of metal or ceramic material borders the periphery of substrate 9 , and is bonded in place on the substrate, suitably by brazing.
- the wall serves to raise and support the lid 3 above the height of the confined semiconductor chips 7 .
- a large number of metal traces printed on and in the substrate 9 not illustrated, define various power and signal paths, that interconnect the various semiconductor chips 7 within the module and/or provide electrical connections therefrom to external leads 14 to the module, extending in rows from the module's four sides.
- the view of the foregoing MCM in FIG. 1 is the same in appearance as the prior reworkable MCM, containing the same electronic circuit function and features described in the Berkely et al '729 patent, since the physical differences required by incorporation of the invention are not visible from this view.
- the MCM includes a fault tolerant embedded heater system that is not visible in this figure. One approach for applying power to the embedded heater is illustrated. Leads 14 a and 14 b on ends of the row of leads on the right side of the figure, and leads 14 c and 14 d on the ends of the rows on the left side, are provided exclusively for supplying current to the heater circuit.
- the foregoing leads are wider than the other leads in the respective rows, hence are capable of carrying greater levels of current than the more narrow leads, and are required to conduct the relatively large current required by the internal heater (or heaters), not illustrated in the figure.
- the MCM is fastened to a larger printed wiring board on which the MCM along with other MCMs and components forms a larger electronic system.
- a larger printed wiring board on which the MCM along with other MCMs and components forms a larger electronic system.
- Such an assembly is pictorially represented in FIG. 2, wherein eight such MCMs 1 a through 1 h are secured to one side of a printed wiring board 8 , As represented in a side view in FIG. 3, printed wiring board 8 may contain like numbers of MCMs on its opposite surface as well, such as illustrated by MCMs 2 a and 2 b.
- the MCMs bottom surface is bonded to the printed wiring board 8 .
- Bonding may be accomplished with a thermoset or thermoplastic adhesive, as represented to exaggerated scale at 15 in FIG. 3, or with solder in the case of a Ball-Grid Array (BGA), later herein described in connection with FIG. 9.
- BGA Ball-Grid Array
- a metal filled adhesive may be preferred for thermal or electrical reasons.
- FIG. 4 An enlarged not-to-scale partial section of substrate 9 in MCM 1 is presented in FIG. 4 to which reference is made.
- the substrate is a laminate containing multiple layers formed of a dielectric material, such as aluminum oxide, aluminum nitride or beryllium oxide materials, including a bottom most layer 17 , an upper most layer 19 , and one or more intermediate layers 21 , 23 and 25 .
- a plurality of electrical vias 27 extend through the multiple layers of the substrate to form a part of the electrical path between contacts 29 on the upper surface and conductors on lower layers 17 and 25 . Additional metal vias may be included there between as desired the sole function of which is to conduct heat away from the semiconductor die.
- Conductor 31 located on the bottom layer of the substrate, serves as one of the terminals to the embedded heater, later herein described in connection with FIG. 7.
- FIG. 5 is a layout view of the surface of upper most layer 19 of substrate 9 drawn in larger scale, illustrating the conductor layout on that substrate layer.
- the wide rectangular frame or loop 35 is recognized as the metallized pad onto which the seal-ring 13 , illustrated in FIG. 1, is brazed in typical practice.
- a large number of very small sized metallized pads 36 , 37 , 38 , and 39 evenly spaced in rows on the top, bottom, left and right sides in the figure, are recognized as the pads onto which the leads 14 , illustrated in FIG. 1, are bonded or brazed.
- Four larger metallized pads or conductors 26 , 28 , 29 and 30 are located at each of the four corners, extending along the upper and lower edges of the layer. The latter conductors serve as the contacts or terminals for the electric heater illustrated in FIG. 7, later herein described.
- FIG. 6 partially illustrates a layout of an intermediate layer 21 of substrate 9 , intermediate to the upper most and bottom most layers.
- the sets of small dots 41 - 44 at the four corners represent electrical vias that extend through the layer. These electrical vias connect each of the conductors 26 , 28 , 29 and 30 to the heater metallization pattern upon bottom layer 17 of the substrate illustrated in FIG. 7.
- the plurality of vias clustered at each corner of the layer in FIG. 6 are necessary to carry the required current level for the heater system, which is orders of magnitude greater than that carried by a typical power or signal via in normal circuit operation.
- a like set of conductive dots is present in the additional intermediate substrate layers 23 and 25 (FIG. 4).
- each additional intermediate layer would contain a like structure of vias 41 - 44 , to extend the electrical connection between the surface pads and the heater circuit on the bottom layer 17 through those additional layers.
- FIG. 7 is a layout of the bottom most internal conductor pattern, printed on bottom layer 17 of substrate 9 that defines the fault tolerant heater system integrated within the MCM.
- a wide straight printed-on conductor 32 extends along the upper edge of the layer and a second wide straight printed-on metal conductor 31 extends along the lower edge of the layer, the pair of which serve as the electric terminals to the heater.
- the conductors 31 and 32 are connected to an external source of electric current, not illustrated, via terminals 14 a - 14 d to the MCM, earlier illustrated in FIG. 1, and the vias, earlier described.
- the wiring pattern is seen to be unusual in geometry and difficult to describe in words.
- One approach to this description is to speak to the complicated pattern in terms of two sets of conductors.
- the first set is those conductors, which extend in a serpentine pattern from the top to the bottom in the figure, here referred to as heater conductors, such as numbered 45 through 50 .
- the second set is the short lengths that extend laterally in the figure, called buses, such as buses numbered 51 a - 51 I, 53 a - 53 h and so on.
- the latter buses connect locations on one serpentine shaped heater conductor to a corresponding location on an adjacent serpentine shaped heater conductor. It should be understood that all of the conductors on this layer are formed at the same time during fabrication of the layers of the substrate. Even so the conductors are treated and discussed separately so that the functions of each section of foregoing conductor and operation of the invention is better understood.
- an even numbered plurality of printed-on conductors specifically six, 45 through 50 , the heaters, each of which extends between the upper and lower edges of the layer.
- Each of those conductors is configured, in this example, in a serpentine pattern of seventeen laterally extending loops over the distance between conductors 31 and 32 .
- conducting current each of those serpentine shaped conductors serves as an electric heater.
- the first of those conductors 45 extends up from conductor 31 on the bottom left side of the figure, loops first in one direction, to the right in the figure, and then reverses direction, the second direction, to the left in the figure.
- the pattern of the conductor continues and repeats with additional such extensions and loops until the end of the conductor joins the laterally extending conductor 32 .
- the second of those heater conductors 46 extends from the bottom of the figure up a short distance and first loops in the second direction, to the left in the figure, and then reverses direction, the first direction, to the right in the figure. the conductor continues extending in those loops from the bottom of the layer in the figure to the top at laterally extending conductor 32 .
- Each of the foregoing heater conductors 45 - 50 is identical in length, width and thickness.
- the geometry of each of the odd numbered conductors is identical and that of the even numbered conductors is identical.
- the geometry of the even numbered conductors is seen to be the mirror image of the odd numbered conductors.
- the upper end of each of the conductors connects to conductor 32 by which those ends are placed electrically in common.
- the opposite lower ends of those conductors are attached to conductor 31 placing the opposite ends of the conductors electrically in common.
- the individual printed-on serpentine conductors of the plurality each of which serves as an individual heater, collectively define one larger size electric heater.
- bus bar 51 a connects the first side of the first loop in conductor 45 , viewed from the side nearest conductor 31 at the lower edge, to the first side of the confronting (first) loop in adjacent conductor 46 .
- Bus bar 51 b connects the same locations on the third loop in conductors 45 and 46 , 51 c the fifth loop therein and so on.
- bus bar 53 a connects the first side of the second loop in conductor 46 and the corresponding side of the confronting (e.g. second) loop in conductor 47 .
- Bus bar 53 b connects the first side of the fourth loop in conductor 46 and the corresponding side of the confronting (e.g. fourth) loop in conductor 47 ;
- bus bar 53 c connects the first sides of the sixth loop of those conductors; and so on.
- Bus bar 55 a connects the first side of the first loop in conductor 47 to the first side of the confronting (first) loop in adjacent conductor 47 .
- Bus bar 55 b connects the same locations on the third loop in conductors 47 and 48 , 55 c the fifth loop therein and so on.
- the bus bar connections between the loops of the fourth and fifth conductors, 48 and 49 follow that prescribed previously for the bus bar connections between the second and third conductors 46 and 47 .
- first side of the second loop in conductor 48 is connected by bus bar 57 a to the first side of the confronting second loop in conductor 49 ; bus bar 57 b to the first side of the fourth loop in conductor 48 and the first side of the fourth loop in conductor 49 ; bus bar 57 c to the sixth loop in those conductors and so on.
- the pattern of bus bar connections between the fifth and sixth conductors 49 and 50 repeats those of the first and second conductors and those for the third and fourth conductors.
- the buses are all the same in thickness, width and length; and are of the same width, thickness and material as the heater conductors 45 - 50 .
- the die or chip is attached to the substrate using a thermally stable microelectronics adhesive.
- a thermally stable microelectronics adhesive In the inert-gas environment typical of a hermetic package, such adhesives remain stable to temperatures in excess of 200° C.
- many commercially available thermoplastic and thermosetting adhesives used for attaching components to circuit boards have glass-transition temperatures (i.e., softening temperatures) well below 200° C. The latter temperatures are readily attainable through use of the described MCM heater. Once above its glass-transition temperature (Tg), the adhesive securing the MCM or like component to the circuit board will yield under mechanical load and the removal of the MCM from the circuit board proceeds readily. No load is applied to the adhesive used to secure the die or dice to the substrate, and while this adhesive may soften at the removal temperature, it will harden upon removing the heat source from the MCM.
- Typical component removal temperatures less than 200° C., also have no damaging effect on the substrate construction itself, as typical Multi-Chip and single-chip module substrates are fabricated from ceramic materials which have been laminated and sintered together at temperatures in excess of 1000° C., forming a monolithic structure impervious to moderately elevated rework temperatures.
- one polarity of the source of current is connected to the leads 14 a and 14 b in the MCM illustrated in FIG. 1; and the opposite polarity source is connected to leads 14 c and 14 d .
- Current flows via contacts 14 a and 14 b into the MCM, into contacts 29 and 30 , illustrated in FIG. 5, and from those contacts, flows down through the vertically extending electrical vias, including vias 41 and 42 , through the multiple intermediate layers of substrate 9 , to one end of the heater metalization pattern on the bottom most substrate layer, and across the pattern.
- the current flows through the vertically extending vias, including vias 41 and 42 on the opposite side of the intermediate layers, up to contacts 26 and 28 , FIG. 5, on the upper surface of the substrate. From the latter contacts the current flows in parallel out leads 14 c and 14 d , and back to the opposite polarity terminal of the current source.
- the heater-dedicated leads 14 a - 14 d may be omitted, in which case an electrical circuit would be completed by soldering, clipping, or conductive-adhesive attaching discrete wires from the current source to the substrate heater contacts 26 , 28 , 29 and 30 .
- traces being resistive in character, produce an I 2 R loss, generating heat. That heat passes through the bottom layer and into the adhesive material bonding the substrate 9 to the circuit board 8 .
- the circuit board ultimately conducts the heat away from the adhesive to the environment.
- FIG. 8 illustrates a small portion of the bottom layer of the substrate, heater conductors 45 and 46 of two adjacent heaters and bus bars 51 a and 51 b connected between a side of the confronting loops formed in the heater conductors.
- the voltage at the left side of bus bar 51 a is the voltage drop produced in sections L1 and L2 of heater conductor 45 and is equal to I ⁇ (resistivity) ⁇ (L1+L2).
- the voltage at the right end of bus bar 51 a is also equal to I ⁇ (resistivity) ⁇ (L1+L2).
- the voltage across the bus bar 51 a is the difference of the foregoing two voltages, namely zero. With no voltage appearing across the bus bar 51 a , no current is able to flow.
- bus 51 b the voltage at each end of bus 51 b is the voltage drop created by the current, I, multiplied by the length of the portion of conductor 45 (and 46 respectively) from the point of connection to conductor 31 and the resistivity of the conductor. That voltage drop is only a fraction of the source voltage +V. Accordingly, with the heaters properly functioning the included bus bars have no effect. on the functioning of the circuit and perform no function.
- FIG. 9 illustrates a break 60 in a loop in heater conductor 46 . That formed discontinuity prevents current from flowing through the loop, a current disrupting break. Absent buses 51 a and 51 b the voltage at the juncture (and all along the upper portion of conductor 46 would rise to the source voltage, +V, while the bottom portion of the broken heater conductor would be at ground potential. And with normal current flow in heater conductor 45 , the voltage at the location along conductor 45 at which bus 51 b is positioned is the sum of the IR drops in the portion of conductor 45 between bus 51 b and conductor 31 .
- bus 51 b With buses 51 a and 51 b connected in place, and break 60 present, the voltage at the right side of bus 51 b would start to rise. In so doing the voltage at the right side of bus 51 b is greater than that at the left side, creating a voltage difference. Accordingly, current flows from conductor 46 through bus 51 b and into the adjacent heater conductor 45 , contributing to an increased current in a small section of that conductor.
- bus 51 a Because of break 60 , one end of bus 51 a is at ground potential (or as otherwise stated, at a lower potential than the normal voltage drop across sections L1 and L2 of heater conductor 45 . With the increased current through conductor 45 , that voltage drop would tend to increase from the static state. The foregoing produces a higher voltage on the left side of bus 51 a than on the right, resulting in a potential difference. Accordingly current will flow from the left to the right through bus 51 a , back into the lower section of the broken heater conductor 46 , and thence to ground. Current also continues to flow through the remainder of heater conductor 45 and thence to ground also, a parallel path. The relative portions of the current is inversely related to the relative resistance of the two paths (L1+L2) and [L1+L2+bus 51 a length].
- Each parallel heater, including the bus bars, is constructed of a resistive material, preferably having a range of resistivity of (and including) 0.01 ohms-per-square to 1.0 ohms-per-square.
- An example of metals of the former resistivity is gold or copper of a thickness of 20,000 Angstroms.
- An example of a metal of the latter resistivity is that which is used in the preferred embodiment, Tungsten of about 1,200 Angstroms thickness.
- the aspect ratio conductor trace length to width ratio of each element is from 50 to 500 so that each heating element is able to generate one to five watts of power with a five volt supply.
- the total power and target temperature may be adjusted by increasing or decreasing the supply potential.
- a five ohm resistive parallel interconnected heater traces that are one inch in length and 10 mils wide spaced 50 mils apart should with a five volt supply should provide 20 watts of heating power in a one square inch area.
- refractory metals such as tungsten are used as the main constituent of the ink which is printed-on to form the printed conductors, the conductive traces for the interconnections on each of the substrate layers and the buses.
- Tungsten is compatible with the high firing temperatures inherent in substrate fabrication.
- These refractory metal conductors naturally lend themselves to the formation of heating element structures and do not require any special materials or process changes in the standard HTCC substrate fabrication technique.
- the resistivity of the conductor metalization is such that practical resistances for heater elements can be tailored through simple geometrical manipulation of the artwork pattern used to form the heater element.
- the integral heater system of the Berkely '729 patent and, hence, the fault tolerant heater system of the present invention may be used with other thermally sensitive fastening materials, such as solder.
- MCMs and other electronics components may be connected to a printed wiring board using an array of solder balls.
- BGAs Ball Grid Arrays
- Such Ball Grid Arrays (“BGAs”) well known in the electronics art, employ small solder spheres or, sometimes columns, as the mechanical and electrical connection between the circuit board and the component, in lieu of extending electrical leads 14 employed in the embodiment of FIG.
- the illustration of FIG. 10, not drawn to scale, provides a bottom view of such an alternative embodiment of the MCM of FIG. 1, constructed using a BGA for the electrical and mechanical connections.
- the elements in this figure are denominated by the same number primed as was used to identify the corresponding element in the prior embodiment.
- the bottom side of the bottom layer 17 ′ of substrate 9 ′ contains the solder balls 50 , which are typically arranged in rows and columns. Those solder balls are attached to the ends of various electrical vias of conventional structure, not illustrated, that extend through the bottom substrate layer and one or more of the substrates multiple layers to extend electrical paths to the appropriate electrical circuit and/or semiconductor chips affixed to the substrates upper surface.
- the individual heaters 62 A- 62 K are straight lines in geometry and extend between the laterally extending between upper conductor 32 ′ and the laterally extending lower conductor 31 ′. Those lines are evenly spaced across the area of the substrate.
- the bar busses are also evenly spaced.
- the geometry of the interconnecting buses are aligned to also form straight lines. Those bus lines are oriented perpendicular to the lines of the heater wires with each bar bus intersecting and contacting each of the heaters.
- Both the bar busses and the heaters are formed of identical metal and are the same in width and thickness so as to possess identical resistivity characteristics. In appearance the array of conductors forms a large multi-cell grid and resembles a wire mesh screen.
- electrical vias 27 ′ extend from pads 42 ′ and 29 ′ on the upper surface of top layer 19 ′ of the substrate, through all intermediate layers of the substrate, to the respective termini 31 ′ and 32 ′ of the heater element on the upper surface of bottom layer 17 ′.
- semiconductor chips 7 ′ are attached to the upper surface of the top layer 19 ′ of substrate 9 ′ and the electrical interfaces from those chips are wire bonded to appropriate pads on the substrates upper surface.
- the semiconductor chips or dies 7 ′ are attached to the upper surface of the top layer 19 ′ of substrate 9 ′ and the electrical leads from those dies or chips are wire bonded to appropriate solder pads, not illustrated, on the substrates upper surface, the same as with the embodiment of FIG. 1.
- solder pads Through those solder pads various electrical paths are completed through and about the substrate and to the electrical vias that terminate at the various solder balls, as necessitated by the particular circuit functions for the semiconductor chips, the details of such conventional structure not being necessary to the understanding of the invention and are not be further described.
- FIG. 7 contains six heater wires 45 - 50 that extend between the upper power supply bus 32 and the bottom power supply bus 31 .
- the number of rows of buses 51 a , etc. differs by one from the number in the adjacent row.
- the first row of buses that interconnect heater wires 45 and 46 contains nine parallel buses 51 a - 51 i .
- the second row of buses that interconnect heater wires 46 and 47 contains eight parallel buses 53 a - 53 h .
- the foregoing numbers of buses is repeated in the third, fourth and fifth rows as is evident from inspection of the figure.
- the layout is symmetrical about the center.
- the quantity of buses included in the foregoing arrangement is divided into groups of buses. That parsing amongst the groups of buses is uneven to the extent that the groups of buses in the odd-numbered rows, counting from the left, contain one more bus than the quantity of buses in the groups of buses located in the even numbered rows.
- the corresponding groups of buses in the embodiment of FIG. 9, to which brief reference is again made contain the same number of buses.
- FIG. 7 is the more complicated wiring pattern
- the individual heaters are formed of a serial arrangement or column of closed conductor loops and the sides of the column are in contact.
- Each closed conductor loop contains at least one side (or portion of at least one side) in common with the next closed conductor loop in the column.
- each column of loops extends from conductors 32 and 31 , the latter of which serve as a side to the upper and lower end loops, respectively.
- the first closed loop forms a “+” or cross in shape.
- the remaining loops in the column are of the same size “T” shape as those closed loops in the first column.
- each of the closed loops at the upper and lower ends contains a side formed by the respective adjacent transverse conductors 32 and 31 , respectively.
- All of the intermediate closed loops in this second column are identical in size and are of the T-shape, and each shares a one side or a portion thereof with the preceding closed loop in the column and shares another side or a portion thereof with the succeeding closed loop in the column.
- the line of closed conductor loops in the third and fifth columns are identical in size and shape to those closed conductor loops of the first column, and the line of closed conductor loops in the fourth column (and any other even numbered column) is identical to the line of closed conductor loops in the second column.
- the closed loops in the columns share a side with a closed loop in an adjacent column.
- the closed loops in the end columns, the first and the fifth in the foregoing embodiment each share a side or sides with one or two closed loops in the adjacent column.
- the closed conductor loops in each of the other columns, intermediate the first and the fifth column share a side or sides with one or two closed conductor loops of a column to one side, and share another side or sides with one or two closed conductor loops of a column to the other side of the column.
- the heater structure of FIG. 10 is more regular in shape and less complex.
- the closed conductor loops are all square in shape and are arranged in seven columns. Each column of closed loops is straight sided.
- each closed conductor loop has a side in common with another closed conductor loop in the column.
- the intermediate ones of the closed conductor loops in the column contain one side that is shared with a preceding closed conductor loop in the column and another opposed side that is shared with a succeeding closed conductor loop in the column.
- Each closed conductor loop in each column contains still another side that is shared with a closed conductor loop of an adjacent column.
- Each closed conductor loop in one of the intermediate columns shares another side with a closed conductor loop in the column to the left and shares an opposite side with a closed conductor loop on the right.
- the conductor pattern may be of complex or simple in design and may be reproduced in various designs and be described in many different ways all of which come within the scope of the invention.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Power Engineering (AREA)
- Thermal Sciences (AREA)
- Electric Connection Of Electric Components To Printed Circuits (AREA)
Abstract
Description
- This invention relates to reworkable electronic semiconductor components, including multi-chip modules (“MCMs”), that incorporate electrical heaters integrally within the component structure to produce the heat necessary to soften or weaken the bond of the component to the printed wiring board to which the component is attach, allowing removal of the component from a printed wiring board for rework. More particularly, the invention relates to a new heater structure for the electronic semiconductor component that is fault tolerant to current-interrupting breaks as may be formed or produced in any of the heaters. The invention is applicable to substrate-to-printed wiring board attachments that employ adhesive bonds, such as found in the thermoset adhesive lead type components, or that employ reflow solder bonds, such as found in ball grid array lead-less type components.
- The present invention improves upon the invention of Berkely et al presented in U.S. Pat. No. 6,031,729, granted Feb. 29, 2000 entitled “Integral Heater for Reworking MCMS and Other Semiconductor Components” (hereafter the “Berkely et al '729 patent”) assigned to TRW Inc., the assignee of the present invention. In a broader aspect, the invention improves upon electrical heater systems as may be applied in other ways than presented in the foregoing patent by incorporating circuits that provide fault tolerance to current-interrupting breaks in the electric heaters of an electric heater system for an electronic component that avoids disruption of heating.
- A principal application of the present invention is with reworkable Multi-Chip Modules, such as described in the cited Berkley et al '729 patent. Multi-Chip Modules (“MCMs”) perform a variety of electronic functions, and are finding increasing use in sophisticated electronic applications, particularly airborne and space-borne application. By definition, an MCM contains two or more semiconductor die or chips, as variously termed, and ancillary electrical components, assembled in a single enclosed package, that together comprise an electronic circuit function. The semiconductor chips contain the micro-miniature integrated circuits, such as processors, amplifiers, memory, and the like.
- In one type of MCM structure, the semiconductor chips and components are supported on a common base, consisting of an integral multi-layer printed wiring structure, referred to as the substrate. Often that substrate is formed of ceramic, an electrical insulator that is rigid, allows for plated-on conductors of the finest widths and spacing with the greatest accuracy and is able to maintain a hermetic seal. Metallic conductors printed on various layers of the substrate, and metallic vias through the layers, serve to electrically connect the semiconductor chips to each other and to the external interfaces of the MCMs.
- The foregoing elements are contained together in a single enclosed four-sided package, often hermetically sealed, that serves as a protective housing for the semiconductor chips and associated components. The ceramic substrate, being hermetic, serves as the bottom wall to the module. A metal wall, or seal ring, is brazed to the substrate around the perimeter, encompassing the components and a lid welded to the top surface of this seal ring hermetically seals the components inside. A number of electrical contacts or leads extend out the four sides of the MCM to provide external electrical input-output connections to the MCM.
- In practice MCMs are generally installed upon a printed wiring board, much larger in area than an MCM, that contains the electrical interconnections between the MCMs and other components thereon. The larger wiring board is typically constructed of a material such as glass-epoxy or glass-polyimide, a less expensive and lower quality material than the ceramic of the substrate. For airborne and space applications, MCMs are typically bonded to the printed wiring boards. Bonding enhances thermal conductivity to the MCM, and isolates mechanical loads from the input-output connections of the MCM, which promotes longer product life. A variety of adhesives, such as thermosetting epoxies or thermoplastics, and solder are available to provide the bonding.
- To bond the MCM in place, as example, a layer of thermally sensitive adhesive is applied to either the underside surface of the MCM, or directly to the surface of the printed wiring board at the location to which that component is to be placed. With the MCMs and all other components for that circuit board properly positioned, the board is then placed in an oven and the temperature raised to cure or reflow the adhesive, attaching the MCMs and other components in place. When removed from the oven and cooled down to room temperature the MCMs are firmly attached to the printed wiring board.
- Solder is another known thermally sensitive adhesive material used to fasten parts together. A second known technique for fastening the MCM to the circuit board is the solder ball grid array. Instead of incorporating electrical leads extending from the side of the MCM package and using a separate adhesive for fastening the MCM to the circuit board, as in the foregoing structure, the electrical leads are instead formed by electrical vias extending through the multiple layers of substrate to the underside surface of the MCM package. At the underside the terminal end of those vias typically appear by design arranged in regular rows and columns. Minute solder balls or solder columns, different geometry's for the dab of solder collectively referred to herein as solder balls, are formed at the terminal ends of those vias on the underside of the substrate.
- In assembly, the MCM package is placed upon the printed wiring board, the latter of which contains solder pads that mate with the solder balls on the MCM package and the temperature is raised above the solder eutectic at which the solder reflows. When cooled, the solder solidifies and provides a firm mechanical connection that fastens the MCM package to the printed wiring board as well as completing the electrical connections to printed circuitry on that wiring board. The foregoing connection apparatus and technique is well known.
- If failed components were detected during subsequent electrical testing of the assembled board, the failed components needed to be removed from the printed wiring board for repair or replacement. The problem in reworking MCM's, whether fastened to the circuit board by regular adhesives or with a solder ball grid array, is recognized as endemic to other large size electronic semiconductor components as well, even those that contain only a single physically large semiconductor chip. As those skilled in the art recognize, the more modern semiconductor chips are growing in physical size as more and more circuit functions are expected to be packed within a single die even in commercial devices, such as cellular telephones. As a consequence large numbers of very fine closely spaced wires are required to interface to the semiconductor die. Because the wires must all extend into the die they are necessarily physically small in width and must be packed closely together, typically one mil in diameter separated by a two mil space. However, conventional printed circuit board technology typically provides semiconductor die interface connections with no less than a four mil separation.
- To resolve the apparent physical incompatibility in spacing requirements, the approach taken has been to mount the semiconductor chip onto an intermediate “interposer” substrate, which is often formed of ceramic material. The printed wiring formed on the substrate fans out from the microscopic spacing at the location of the semiconductor die or chip to the wider spacing and wider wiring required by the conventional printed circuit board.
- That electronic semiconductor assembly is then mounted onto the printed circuit board. The electrical leads from the assembly substrate are soldered to the mating solder pads on the printed circuit board, or, should the substrate instead employ a solder ball grid array, the solder balls are soldered to the mating solder pads formed on the printed circuit board. As in the case of the earlier described MCMs, in the foregoing arrangement, viewed in a generic sense, one multi-layer printed circuit board is mounted atop another printed circuit board. The dimension critical wire bonding of the electrical leads to the chips, thus, is accomplished on the ceramic substrate. Interconnect to the printed circuit board is accomplished by soldering the electrical leads from the substrate to mating pads on the conventional circuit board. With such an interposer or intermediate substrate, in retrospect, one recognizes the parallel between the foregoing structure and that of the MCM, earlier described.
- Heat was employed to assemble each of the foregoing electronic components; and heat is the means that was typically used to remove an MCM or other thermally bonded unit from the printed wiring board. The difficulty and problems encountered in removing MCM's from the printed wiring board for rework, particularly in large size MCM's, those over 1.5 inch in a dimension, using traditional techniques, such as application of a heat gun, is described at some length in the Berkley '792 patent to which the interested reader may make reference and need not be here repeated.
- The Berkely et al '729 patent describes a new structure by means of which heat may be uniformly applied to the underside of the substrate sufficient to permit detachment of the MCM from the printed wiring board without damage. The reworkable MCM presented in the Berkely et al '729 patent includes electric heater elements formed in a metallized pattern typically printed on the bottom most internal layer of the multi-layer substrate of the MCM; in effect to form an integral heater assembly. In addition to the multiple layers of the substrate that contains the printed-on metal interconnections for the semiconductors and input-output connections of the MCM, a dedicated bottom layer to the multi-layer substrate contains a number of printed and fired-on resistive conductors, suitably arranged in a pattern, such as a serpentine pattern, each of which serves as a heater. When current is passed through the heater, the resulting I2R losses in the conductor of the heater is evoked as heat. Together, the multiple heaters effectively covers the surface of the bottom layer with heat; and the heat is conducted to the adhesive bond to the printed wiring board. By design, the heat produced is sufficient to weaken the bond between the substrate of the MCM and the printed wiring board, but is insufficient to cause delamination of the multiple layers of the substrate.
- The Berkely et al '729 patent also discloses a preferred embodiment in which the electrical conductors and supporting layer that forms the heater (or heaters) are formed of the same conductor and substrate materials used in the other layers of the multi-layer substrate, such as aluminum oxide and tungsten, respectively, permitting convenient manufacture of the heater as part of a conventional substrate fabrication process.
- By incorporating within the structure of the electronic semiconductor components a heater that facilitates removal of that component from its installed adhesive-bonded position on a printed wiring board in the event of a semiconductor component failure, individual electronic semiconductor components may be expeditiously and efficiently removed and replaced. Any necessity for discarding the entire printed wiring board, along with other good electronic components, is avoided, eliminating the expensive procedure of building the entire circuit board assembly anew.
- The individual heaters in the MCM described in the Berkely et al '729 patent are connected electrically in parallel between elongate conductors along a pair of opposed sides of the substrate, as example, along the front and rear sides of the substrate; and each heater is formed of a fine line of metal. In one embodiment, each heater forms a serpentine-like pattern in between the two sides. A large number of such heaters cover the area of the substrate, thirteen in one example of the '792 patent. As one realizes, if the heater wire of an individual heater in the foregoing structure is broken, that heater cannot conduct electrical current. Since the heat produced by the heater wire is produced by the I2R loss, being unable to conduct current, no heat can be produced; and that produces a heating discontinuity in the substrate that could wholly or partially negate the advantage of the embodiment of the Berkely et al '729 patent.
- A current-interrupting break could be produced during fabrication processing of the substrate layers, as example, should a piece of dust lodge on the substrate during plating. A second possibility for creating a break is due to mishandling during assembly of the MCM. As example, should an assembler inadvertently scratch the substrate on another solid and scrape or cut through a heater line. A third possibility occurs during rework of the MCM, should the technician raise the voltage applied to the heaters to a level that results in too high a current through a heater lead, one or more of the heaters may overheat and, like a fuse, burn out, producing a break in the line. Unless the break is large enough to visually observe, it can only be found by testing. For consistency it would be necessary to electrically test each substrate produced, and that testing procedure takes time and effectively raises the production costs. Irrespective of the underlying reason for a current-interrupting break in a heater, the availability of some means to automatically “patch up” the break or effectively minimize the effect of a break in a heater as would give the MCM a fault tolerant characteristic, and would be of benefit to and improve upon the foregoing combination.
- Accordingly, a principal object of the present invention is to provide a reworkable MCM or other electronic semiconductor component that employs an integral heating system for permitting detachment of the component from a printed wiring board with a heater system that is fault tolerant.
- And another object of the invention is to eliminate the necessity for testing of the integrity of heaters contained in a reworkable electronic component so as to reduce production cost without detracting from the effectiveness of the heaters, even though one or more of the heaters contains a break.
- In accordance with the foregoing objects, the invention incorporates fault tolerance within the integral electric heaters of a reworkable electronic semiconductor component, such as a reworkable multi-chip module, to increase production yield and longevity of the rework feature. Components of the foregoing kind contain a multi-layer substrate to bond to a printed wiring board, and, for rework, the component includes a plurality of electric heaters arranged side by side on a bottom layer of the substrate. When energized with current, the heaters generate sufficient heat to weaken the adhesive or solder bond to the printed wiring board without delaminating the layers of the substrate, allowing the electronic semiconductor component to be pulled away from the printed wiring board for rework. Additional circuitry, specifically a series of buses, is included to automatically route heater current around, that is, bypass any current-interrupting break (or breaks) as may form in any of the electric heaters rendering the heaters tolerant to that kind of fault.
- The foregoing and additional objects and advantages of the invention together with the structure characteristic thereof, which was only briefly summarized in the foregoing passages, will become more apparent to those skilled in the art upon reading the detailed description of a preferred embodiment of the invention, which follows in this specification, taken together with the illustrations thereof presented in the accompanying drawings.
- In the drawings:
- FIG. 1 is a perspective view of an MCM that incorporates the invention;
- FIG. 2 is a top view of a circuit board containing a number of the MCMs of FIG. 1;
- FIG. 3 is a side view of the circuit board assembly of FIG. 2;
- FIG. 4 is a partial side section of the MCM substrate drawn in larger scale;
- FIG. 5 is a top view of the top most layer of the MCM substrate used in the MCM of FIG. 1, showing a typical layout of signal and power conductors;
- FIG. 6 is a top view of an intermediate layer of the MCM substrate containing electrical vias which interconnect the surface conductor layer of FIG. 5 to the conductors defining the heaters heater pattern of FIG. 7;
- FIG. 7 is a top view of the bottom most internal layer of the MCM substrate used in the MCM of FIG. 1, showing the conductive heater pattern;
- FIG. 8 is a pictorial view of a portion of the heater and FIG. 9 is the same pictorial view with a broken heater, both of which are used in connection with the explanation of the operation of the invention;
- FIG. 10 is a bottom view of an alternative embodiment of the invention used in a semiconductor component that employs a ball grid array;
- FIG. 11 is a side view of FIG. 10; and
- FIG. 12 is a top view of FIG. 10.
- The invention is described in connection with a Multi-Chip Module. Reference is made to FIG. 1, which illustrates one example of a Multi-chip Module (“MCM”)1 in a top perspective view, with the module lid 3 partially cut away. A plurality of semiconductor dice or
chips 7, only three of which are labeled, are mounted at various locations upon a dielectricmulti-layer substrate 9, and a plurality of smallelectrical components 11, only two of which are labeled, are also mounted to thesubstrate 9. The semiconductor chips are not encased. The various junctions and metal traces exposed on the top surface of the semiconductor chips are very small in relative size and are not readily visible, nor illustrated in the figure. - A wall or
ring 13 of metal or ceramic material borders the periphery ofsubstrate 9, and is bonded in place on the substrate, suitably by brazing. The wall serves to raise and support the lid 3 above the height of the confinedsemiconductor chips 7. A large number of metal traces printed on and in thesubstrate 9, not illustrated, define various power and signal paths, that interconnect thevarious semiconductor chips 7 within the module and/or provide electrical connections therefrom toexternal leads 14 to the module, extending in rows from the module's four sides. - Even though no particular electronic circuit has been illustrated in the foregoing figures, it should be understood that the present invention is not directed to any particular electronic circuit, or semiconductor package. Hence any illustration or description of the details of any such electronic circuit or package would only serve to introduce unnecessary complexity to the present description and would not aid one to understand the invention. Accordingly, other than to note the presence of such elements in a practical module, such elements are neither illustrated or described in detail.
- The view of the foregoing MCM in FIG. 1 is the same in appearance as the prior reworkable MCM, containing the same electronic circuit function and features described in the Berkely et al '729 patent, since the physical differences required by incorporation of the invention are not visible from this view. The MCM includes a fault tolerant embedded heater system that is not visible in this figure. One approach for applying power to the embedded heater is illustrated. Leads14 a and 14 b on ends of the row of leads on the right side of the figure, and leads 14 c and 14 d on the ends of the rows on the left side, are provided exclusively for supplying current to the heater circuit.
- The foregoing leads are wider than the other leads in the respective rows, hence are capable of carrying greater levels of current than the more narrow leads, and are required to conduct the relatively large current required by the internal heater (or heaters), not illustrated in the figure. Alternatively, one might instead use a number of the more narrow leads, electrically connected in parallel, to carry the heater current; or one may omit the leads dedicated to the heater entirely, and make connection to the heater circuit by soldering wires directly to the top surface pads only when it becomes necessary to utilize the heater circuit for rework.
- For operation, the MCM is fastened to a larger printed wiring board on which the MCM along with other MCMs and components forms a larger electronic system. Such an assembly is pictorially represented in FIG. 2, wherein eight
such MCMs 1 a through 1 h are secured to one side of a printedwiring board 8, As represented in a side view in FIG. 3, printedwiring board 8 may contain like numbers of MCMs on its opposite surface as well, such as illustrated byMCMs - As is the conventional practice for MCMs, the MCMs bottom surface is bonded to the printed
wiring board 8. Bonding may be accomplished with a thermoset or thermoplastic adhesive, as represented to exaggerated scale at 15 in FIG. 3, or with solder in the case of a Ball-Grid Array (BGA), later herein described in connection with FIG. 9. A metal filled adhesive may be preferred for thermal or electrical reasons. - An enlarged not-to-scale partial section of
substrate 9 inMCM 1 is presented in FIG. 4 to which reference is made. The substrate is a laminate containing multiple layers formed of a dielectric material, such as aluminum oxide, aluminum nitride or beryllium oxide materials, including a bottommost layer 17, an uppermost layer 19, and one or moreintermediate layers electrical vias 27 extend through the multiple layers of the substrate to form a part of the electrical path betweencontacts 29 on the upper surface and conductors onlower layers Conductor 31, located on the bottom layer of the substrate, serves as one of the terminals to the embedded heater, later herein described in connection with FIG. 7. - FIG. 5 is a layout view of the surface of upper
most layer 19 ofsubstrate 9 drawn in larger scale, illustrating the conductor layout on that substrate layer. The wide rectangular frame orloop 35 is recognized as the metallized pad onto which the seal-ring 13, illustrated in FIG. 1, is brazed in typical practice. A large number of very smallsized metallized pads conductors - FIG. 6 partially illustrates a layout of an
intermediate layer 21 ofsubstrate 9, intermediate to the upper most and bottom most layers. The sets of small dots 41-44 at the four corners represent electrical vias that extend through the layer. These electrical vias connect each of theconductors bottom layer 17 of the substrate illustrated in FIG. 7. The plurality of vias clustered at each corner of the layer in FIG. 6 are necessary to carry the required current level for the heater system, which is orders of magnitude greater than that carried by a typical power or signal via in normal circuit operation. A like set of conductive dots is present in the additional intermediate substrate layers 23 and 25 (FIG. 4). Many more like vias, not illustrated, would also be present across the layer, which serve to interconnect other pads on the surface with conductor lines printed on the intermediate layer, also not illustrated. These latter vias and printed-on lines comprise the various power and signal paths for the normal MCM circuit operation. Being unique to the particular circuit application of the MCM and not necessary to an understanding of the invention, those additional paths are not illustrated or described in detail. - Should the
substrate 9 contain more than the three layers illustrated in the laminate, each additional intermediate layer would contain a like structure of vias 41-44, to extend the electrical connection between the surface pads and the heater circuit on thebottom layer 17 through those additional layers. - Reference is made to FIG. 7, which is a layout of the bottom most internal conductor pattern, printed on
bottom layer 17 ofsubstrate 9 that defines the fault tolerant heater system integrated within the MCM. A wide straight printed-onconductor 32 extends along the upper edge of the layer and a second wide straight printed-onmetal conductor 31 extends along the lower edge of the layer, the pair of which serve as the electric terminals to the heater. In operation, theconductors terminals 14 a-14 d to the MCM, earlier illustrated in FIG. 1, and the vias, earlier described. - Apart from the two foregoing conductors the wiring pattern is seen to be unusual in geometry and difficult to describe in words. One approach to this description is to speak to the complicated pattern in terms of two sets of conductors. The first set is those conductors, which extend in a serpentine pattern from the top to the bottom in the figure, here referred to as heater conductors, such as numbered45 through 50. The second set is the short lengths that extend laterally in the figure, called buses, such as buses numbered 51 a-51I, 53 a-53 h and so on. The latter buses connect locations on one serpentine shaped heater conductor to a corresponding location on an adjacent serpentine shaped heater conductor. It should be understood that all of the conductors on this layer are formed at the same time during fabrication of the layers of the substrate. Even so the conductors are treated and discussed separately so that the functions of each section of foregoing conductor and operation of the invention is better understood.
- In this layout, an even numbered plurality of printed-on conductors, specifically six,45 through 50, the heaters, each of which extends between the upper and lower edges of the layer. Each of those conductors is configured, in this example, in a serpentine pattern of seventeen laterally extending loops over the distance between
conductors conductors 45, as counted from the left side of the figure, (and the third, fifth and all other odd numbered conductors) extends up fromconductor 31 on the bottom left side of the figure, loops first in one direction, to the right in the figure, and then reverses direction, the second direction, to the left in the figure. The pattern of the conductor continues and repeats with additional such extensions and loops until the end of the conductor joins the laterally extendingconductor 32. - The second of those heater conductors46 (and the fourth, sixth and all other even numbered conductors) extends from the bottom of the figure up a short distance and first loops in the second direction, to the left in the figure, and then reverses direction, the first direction, to the right in the figure. the conductor continues extending in those loops from the bottom of the layer in the figure to the top at laterally extending
conductor 32. - Each of the foregoing heater conductors45-50 is identical in length, width and thickness. The geometry of each of the odd numbered conductors is identical and that of the even numbered conductors is identical. The geometry of the even numbered conductors is seen to be the mirror image of the odd numbered conductors. The upper end of each of the conductors connects to
conductor 32 by which those ends are placed electrically in common. The opposite lower ends of those conductors are attached toconductor 31 placing the opposite ends of the conductors electrically in common. It should be recognized that the individual printed-on serpentine conductors of the plurality, each of which serves as an individual heater, collectively define one larger size electric heater. - One side of alternate loops of one conductor is connected by a conductor, here referred to as a bus bar, to the corresponding side of the confronting loop in the next adjacent heater conductor. Thus
bus bar 51 a connects the first side of the first loop inconductor 45, viewed from the side nearestconductor 31 at the lower edge, to the first side of the confronting (first) loop inadjacent conductor 46.Bus bar 51 b connects the same locations on the third loop inconductors - Reference is next made to the bus bar interconnections between the
second conductor 46 and the next adjacent conductor to the right, thethird conductor 47. In thisbus bar 53 a connects the first side of the second loop inconductor 46 and the corresponding side of the confronting (e.g. second) loop inconductor 47.Bus bar 53 b connects the first side of the fourth loop inconductor 46 and the corresponding side of the confronting (e.g. fourth) loop inconductor 47;bus bar 53 c connects the first sides of the sixth loop of those conductors; and so on. - The foregoing pattern repeats with the bus bars connecting loops of the third and
fourth conductors Bus bar 55 a connects the first side of the first loop inconductor 47 to the first side of the confronting (first) loop inadjacent conductor 47.Bus bar 55 b connects the same locations on the third loop inconductors third conductors conductor 48 is connected bybus bar 57 a to the first side of the confronting second loop inconductor 49;bus bar 57 b to the first side of the fourth loop inconductor 48 and the first side of the fourth loop inconductor 49;bus bar 57 c to the sixth loop in those conductors and so on. The pattern of bus bar connections between the fifth andsixth conductors - In assembling the semiconductor die to the substrate during manufacture of the
MCM 1, the die or chip is attached to the substrate using a thermally stable microelectronics adhesive. In the inert-gas environment typical of a hermetic package, such adhesives remain stable to temperatures in excess of 200° C. On the other hand, many commercially available thermoplastic and thermosetting adhesives used for attaching components to circuit boards have glass-transition temperatures (i.e., softening temperatures) well below 200° C. The latter temperatures are readily attainable through use of the described MCM heater. Once above its glass-transition temperature (Tg), the adhesive securing the MCM or like component to the circuit board will yield under mechanical load and the removal of the MCM from the circuit board proceeds readily. No load is applied to the adhesive used to secure the die or dice to the substrate, and while this adhesive may soften at the removal temperature, it will harden upon removing the heat source from the MCM. - Typical component removal temperatures, less than 200° C., also have no damaging effect on the substrate construction itself, as typical Multi-Chip and single-chip module substrates are fabricated from ceramic materials which have been laminated and sintered together at temperatures in excess of 1000° C., forming a monolithic structure impervious to moderately elevated rework temperatures.
- For rework of the foregoing MCM, one polarity of the source of current, not illustrated, is connected to the
leads contacts contacts vias substrate 9, to one end of the heater metalization pattern on the bottom most substrate layer, and across the pattern. From there the current flows through the vertically extending vias, includingvias contacts leads 14 a-14 d may be omitted, in which case an electrical circuit would be completed by soldering, clipping, or conductive-adhesive attaching discrete wires from the current source to thesubstrate heater contacts - The refractory metal conductors (“traces”), being resistive in character, produce an I2R loss, generating heat. That heat passes through the bottom layer and into the adhesive material bonding the
substrate 9 to thecircuit board 8. The circuit board ultimately conducts the heat away from the adhesive to the environment. - With a source of voltage connected across
conductors - The foregoing is better understood by making reference to FIG. 8, which illustrates a small portion of the bottom layer of the substrate,
heater conductors bus bars heater conductors bus bar 51 a is the voltage drop produced in sections L1 and L2 ofheater conductor 45 and is equal to I×ρ (resistivity)×(L1+L2). The voltage at the right end ofbus bar 51 a is also equal to I×ρ (resistivity)×(L1+L2). Thus in accordance with ordinary DC network analysis, the voltage across thebus bar 51 a is the difference of the foregoing two voltages, namely zero. With no voltage appearing across thebus bar 51 a, no current is able to flow. The same situation is true forbus 51 b. In each case the voltage at each end ofbus 51 b is the voltage drop created by the current, I, multiplied by the length of the portion of conductor 45 (and 46 respectively) from the point of connection toconductor 31 and the resistivity of the conductor. That voltage drop is only a fraction of the source voltage +V. Accordingly, with the heaters properly functioning the included bus bars have no effect. on the functioning of the circuit and perform no function. - The operation changes should a break occur in a heater conductor. Reference is made to FIG. 9 which illustrates a
break 60 in a loop inheater conductor 46. That formed discontinuity prevents current from flowing through the loop, a current disrupting break.Absent buses conductor 46 would rise to the source voltage, +V, while the bottom portion of the broken heater conductor would be at ground potential. And with normal current flow inheater conductor 45, the voltage at the location alongconductor 45 at whichbus 51 b is positioned is the sum of the IR drops in the portion ofconductor 45 betweenbus 51 b andconductor 31. - With
buses bus 51 b would start to rise. In so doing the voltage at the right side ofbus 51 b is greater than that at the left side, creating a voltage difference. Accordingly, current flows fromconductor 46 throughbus 51 b and into theadjacent heater conductor 45, contributing to an increased current in a small section of that conductor. - Because of
break 60, one end ofbus 51 a is at ground potential (or as otherwise stated, at a lower potential than the normal voltage drop across sections L1 and L2 ofheater conductor 45. With the increased current throughconductor 45, that voltage drop would tend to increase from the static state. The foregoing produces a higher voltage on the left side ofbus 51 a than on the right, resulting in a potential difference. Accordingly current will flow from the left to the right throughbus 51 a, back into the lower section of thebroken heater conductor 46, and thence to ground. Current also continues to flow through the remainder ofheater conductor 45 and thence to ground also, a parallel path. The relative portions of the current is inversely related to the relative resistance of the two paths (L1+L2) and [L1+L2+bus 51 a length]. - Effectively, a current path is formed around
break 60 bybuses - Further, with increased current flow through the short section of
heater conductor 45, greater heat is generated in the associated loop; and with current flow throughbuses absent break 60, could carry no current, the buses now also generate some I2R loses and create heat. Although the heat generated in the section of the break is not quite the same as normal, the heat is almost uniform and serves the desired function in the vicinity of the break. Effectively thus the foregoing bus structure automatically corrects a break and renders the semiconductor component heater system fault tolerant. - Each parallel heater, including the bus bars, is constructed of a resistive material, preferably having a range of resistivity of (and including) 0.01 ohms-per-square to 1.0 ohms-per-square. An example of metals of the former resistivity is gold or copper of a thickness of 20,000 Angstroms. An example of a metal of the latter resistivity is that which is used in the preferred embodiment, Tungsten of about 1,200 Angstroms thickness. The aspect ratio conductor trace length to width ratio of each element is from 50 to 500 so that each heating element is able to generate one to five watts of power with a five volt supply. The total power and target temperature may be adjusted by increasing or decreasing the supply potential.
- A five ohm resistive parallel interconnected heater traces that are one inch in length and 10 mils wide spaced 50 mils apart should with a five volt supply should provide 20 watts of heating power in a one square inch area.
- In one conventional type of MCM substrate construction, known as High Temperature Co-fired Ceramic (HTCC), refractory metals such as tungsten are used as the main constituent of the ink which is printed-on to form the printed conductors, the conductive traces for the interconnections on each of the substrate layers and the buses. Tungsten is compatible with the high firing temperatures inherent in substrate fabrication. These refractory metal conductors naturally lend themselves to the formation of heating element structures and do not require any special materials or process changes in the standard HTCC substrate fabrication technique. Moreover, the resistivity of the conductor metalization is such that practical resistances for heater elements can be tailored through simple geometrical manipulation of the artwork pattern used to form the heater element.
- This same approach for incorporating the heater element is applicable to any HTCC component substrate, for instance, certain types of single-chip Quad-Flat Pack or Ball Grid Array packages. Embedding equivalent heaters in non-HTCC type components is possible, as later herein discussed, but, for practical reasons those structures may require the incorporation of additional materials or processes outside the normal fabrication procedure.
- The foregoing embodiment of the invention was described in connection with MCMs and thermoset (eg. epoxy) or thermoplastic adhesive for bonding to the printed wiring board. However, it should be appreciated that nothing in the design precludes the use of the invention with other types of adhesives and/or other electronic components, all of which is understood to be within the scope of the present invention. The foregoing emphasis on MCMs and epoxy merely illustrates a preferred embodiment of the invention and its application.
- As earlier noted, the integral heater system of the Berkely '729 patent and, hence, the fault tolerant heater system of the present invention may be used with other thermally sensitive fastening materials, such as solder. MCMs and other electronics components may be connected to a printed wiring board using an array of solder balls. Such Ball Grid Arrays (“BGAs”), well known in the electronics art, employ small solder spheres or, sometimes columns, as the mechanical and electrical connection between the circuit board and the component, in lieu of extending
electrical leads 14 employed in the embodiment of FIG. - As example, the illustration of FIG. 10, not drawn to scale, provides a bottom view of such an alternative embodiment of the MCM of FIG. 1, constructed using a BGA for the electrical and mechanical connections. For convenience the elements in this figure are denominated by the same number primed as was used to identify the corresponding element in the prior embodiment. In such an alternative structure, the bottom side of the
bottom layer 17′ ofsubstrate 9′ contains thesolder balls 50, which are typically arranged in rows and columns. Those solder balls are attached to the ends of various electrical vias of conventional structure, not illustrated, that extend through the bottom substrate layer and one or more of the substrates multiple layers to extend electrical paths to the appropriate electrical circuit and/or semiconductor chips affixed to the substrates upper surface. - In this embodiment the individual heaters62A-62K are straight lines in geometry and extend between the laterally extending between
upper conductor 32′ and the laterally extendinglower conductor 31′. Those lines are evenly spaced across the area of the substrate. The bar busses are also evenly spaced. The geometry of the interconnecting buses are aligned to also form straight lines. Those bus lines are oriented perpendicular to the lines of the heater wires with each bar bus intersecting and contacting each of the heaters. Both the bar busses and the heaters are formed of identical metal and are the same in width and thickness so as to possess identical resistivity characteristics. In appearance the array of conductors forms a large multi-cell grid and resembles a wire mesh screen. - As illustrated in the side view of FIG. 11 and the top view of FIG. 12, to which reference is made,
electrical vias 27′ extend frompads 42′ and 29′ on the upper surface oftop layer 19′ of the substrate, through all intermediate layers of the substrate, to therespective termini 31′ and 32′ of the heater element on the upper surface ofbottom layer 17′. Like the embodiment of FIG. 1,semiconductor chips 7′ are attached to the upper surface of thetop layer 19′ ofsubstrate 9′ and the electrical interfaces from those chips are wire bonded to appropriate pads on the substrates upper surface. Electrical paths between the various pads, and from the pads to the solder balls on the bottom of the substrate, are completed with metallic traces printed on the substrates various internal layers, and with vias through the layers, as necessitated by the particular circuit function. The details of such conventional interconnect structure, not being necessary to an understanding of the invention, are not further described. - As illustrated in the side view of FIG. 11, the semiconductor chips or dies7′ are attached to the upper surface of the
top layer 19′ ofsubstrate 9′ and the electrical leads from those dies or chips are wire bonded to appropriate solder pads, not illustrated, on the substrates upper surface, the same as with the embodiment of FIG. 1. Through those solder pads various electrical paths are completed through and about the substrate and to the electrical vias that terminate at the various solder balls, as necessitated by the particular circuit functions for the semiconductor chips, the details of such conventional structure not being necessary to the understanding of the invention and are not be further described. - The embodiment of FIG. 7, to which reference is again made, contains six heater wires45-50 that extend between the upper
power supply bus 32 and the bottompower supply bus 31. However, the number of rows ofbuses 51 a, etc. differs by one from the number in the adjacent row. From the left, the first row of buses thatinterconnect heater wires interconnect heater wires - Broadly speaking, it may be stated that the quantity of buses included in the foregoing arrangement is divided into groups of buses. That parsing amongst the groups of buses is uneven to the extent that the groups of buses in the odd-numbered rows, counting from the left, contain one more bus than the quantity of buses in the groups of buses located in the even numbered rows. In contrast, the corresponding groups of buses in the embodiment of FIG. 9, to which brief reference is again made, contain the same number of buses.
- Although the foregoing heater structure was explained in terms of heater conductors and interconnecting buses, inspection of FIGS. 7 and 10 shows that the conductor patterns may also be described in alternative language. Referring first to FIG. 7, which is the more complicated wiring pattern, it is seen that the individual heaters are formed of a serial arrangement or column of closed conductor loops and the sides of the column are in contact. Each closed conductor loop contains at least one side (or portion of at least one side) in common with the next closed conductor loop in the column. And each column of loops extends from
conductors - As example, consider the closed conductor loop formed at the upper end of
conductors conductor 32 serves as a side to the end loop. Another closed loop forming an identical “T” shape is positioned immediately below the foregoing loop. A portion of the upper side of the foregoing intermediate closed loops is shared in common with the foregoing loop at the upper end of the column. All of the intermediate closed loops in this first column are identical in size and are of the T-shape, and each shares a one side or a portion thereof with the preceding closed loop in the column and shares another side or a portion thereof with the succeeding closed loop in the column. The closed loop at the lower end of the column (containingbus 51 a) is rectangular in shape, and one wall thereof is formed by thelower conductor 31. - In the next adjacent column of closed loops, the first closed loop forms a “+” or cross in shape. The remaining loops in the column are of the same size “T” shape as those closed loops in the first column. As in the first column each of the closed loops at the upper and lower ends contains a side formed by the respective adjacent
transverse conductors - The line of closed conductor loops in the third and fifth columns (and any other odd numbered column) are identical in size and shape to those closed conductor loops of the first column, and the line of closed conductor loops in the fourth column (and any other even numbered column) is identical to the line of closed conductor loops in the second column.
- In addition it is seen that the closed loops in the columns share a side with a closed loop in an adjacent column. The closed loops in the end columns, the first and the fifth in the foregoing embodiment, each share a side or sides with one or two closed loops in the adjacent column. The closed conductor loops in each of the other columns, intermediate the first and the fifth column, share a side or sides with one or two closed conductor loops of a column to one side, and share another side or sides with one or two closed conductor loops of a column to the other side of the column.
- The heater structure of FIG. 10 is more regular in shape and less complex. In this embodiment the closed conductor loops are all square in shape and are arranged in seven columns. Each column of closed loops is straight sided.
- As in the prior embodiment, each closed conductor loop has a side in common with another closed conductor loop in the column. The intermediate ones of the closed conductor loops in the column contain one side that is shared with a preceding closed conductor loop in the column and another opposed side that is shared with a succeeding closed conductor loop in the column. Each closed conductor loop in each column contains still another side that is shared with a closed conductor loop of an adjacent column. Each closed conductor loop in one of the intermediate columns shares another side with a closed conductor loop in the column to the left and shares an opposite side with a closed conductor loop on the right.
- As one appreciates from an understanding of the invention, the conductor pattern may be of complex or simple in design and may be reproduced in various designs and be described in many different ways all of which come within the scope of the invention.
- It is believed that the foregoing description of the preferred embodiments of the invention is sufficient in detail to enable one skilled in the art to make and use the invention. However, it is expressly understood that the detail of the elements presented for the foregoing purpose is not intended to limit the scope of the invention, in as much as equivalents to those elements and other modifications thereof, all of which come within the scope of the invention, will become apparent to those skilled in the art upon reading this specification. Thus, the invention is to be broadly construed within the full scope of the appended claims.
Claims (16)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/860,872 US6492620B1 (en) | 2001-05-18 | 2001-05-18 | Equipotential fault tolerant integrated circuit heater |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/860,872 US6492620B1 (en) | 2001-05-18 | 2001-05-18 | Equipotential fault tolerant integrated circuit heater |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020170901A1 true US20020170901A1 (en) | 2002-11-21 |
US6492620B1 US6492620B1 (en) | 2002-12-10 |
Family
ID=25334241
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/860,872 Expired - Fee Related US6492620B1 (en) | 2001-05-18 | 2001-05-18 | Equipotential fault tolerant integrated circuit heater |
Country Status (1)
Country | Link |
---|---|
US (1) | US6492620B1 (en) |
Cited By (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040159945A1 (en) * | 2001-12-21 | 2004-08-19 | Intel Corporation | Underfill process for flip-chip device |
US20060200965A1 (en) * | 2005-03-08 | 2006-09-14 | International Business Machines Corporation | Electrical wiring design for module removal and replacement from organic board |
US20080105670A1 (en) * | 2005-01-24 | 2008-05-08 | Markus Wolfel | Printed Circuit Board or Card Comprising a Heating Wire |
US7474540B1 (en) * | 2008-01-10 | 2009-01-06 | International Business Machines Corporation | Silicon carrier including an integrated heater for die rework and wafer probe |
US20150090478A1 (en) * | 2013-09-30 | 2015-04-02 | Joseph Ambrose Wolf | Silver thick film paste hermetically sealed by surface thin film multilayer |
US20150373886A1 (en) * | 2011-10-18 | 2015-12-24 | Integrated Microwave Corporation | Integral heater assembly and method for host board of electronic package assembly |
WO2017040967A1 (en) * | 2015-09-04 | 2017-03-09 | Octavo Systems Llc | Improved system using system in package components |
US10204890B2 (en) | 2014-08-14 | 2019-02-12 | Octavo Systems Llc | Substrate for system in package (SIP) devices |
US10470294B2 (en) | 2017-05-01 | 2019-11-05 | Octavo Systems Llc | Reduction of passive components in system-in-package devices |
US10714430B2 (en) | 2017-07-21 | 2020-07-14 | Octavo Systems Llc | EMI shield for molded packages |
US11032910B2 (en) | 2017-05-01 | 2021-06-08 | Octavo Systems Llc | System-in-Package device ball map and layout optimization |
CN113258228A (en) * | 2021-06-29 | 2021-08-13 | 成都市克莱微波科技有限公司 | Multichannel amplitude-phase consistent microwave assembly |
US11416050B2 (en) | 2017-05-08 | 2022-08-16 | Octavo Systems Llc | Component communications in system-in-package systems |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6908025B2 (en) * | 2003-06-26 | 2005-06-21 | Internatioanl Business Machines Corporation | Preparing MCM hat for removal |
US20050184463A1 (en) * | 2004-02-20 | 2005-08-25 | Zine-Eddine Boutaghou | Establishing a housing seal using a flex assembly |
FR2912029B1 (en) * | 2007-01-31 | 2010-10-22 | Hispano Suiza Sa | ELECTRONIC BOARD INCORPORATING A HEATING RESISTANCE. |
EP2257127A1 (en) * | 2009-05-29 | 2010-12-01 | Koninklijke Philips Electronics N.V. | Method for data path creation in a modular lighting system |
US8217671B2 (en) * | 2009-06-26 | 2012-07-10 | International Business Machines Corporation | Parallel array architecture for constant current electro-migration stress testing |
US8462462B1 (en) | 2011-10-20 | 2013-06-11 | Western Digital (Fremont), Llc | Localized heating for flip chip bonding |
US20170179066A1 (en) * | 2015-12-18 | 2017-06-22 | Russell S. Aoki | Bulk solder removal on processor packaging |
US11867746B2 (en) | 2021-09-14 | 2024-01-09 | Hamilton Sundstrand Corporation | Failure detection system for integrated circuit components |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5881181A (en) * | 1981-11-06 | 1983-05-16 | Matsushita Electric Ind Co Ltd | Heat-sensitive recording head |
US5164037A (en) * | 1991-05-08 | 1992-11-17 | Hughes Aircraft Company | Apparatus for removing semiconductor devices from high density multichip modules |
US5541524A (en) * | 1991-08-23 | 1996-07-30 | Nchip, Inc. | Burn-in technologies for unpackaged integrated circuits |
US6728113B1 (en) * | 1993-06-24 | 2004-04-27 | Polychip, Inc. | Method and apparatus for non-conductively interconnecting integrated circuits |
US5654588A (en) * | 1993-07-23 | 1997-08-05 | Motorola Inc. | Apparatus for performing wafer-level testing of integrated circuits where the wafer uses a segmented conductive top-layer bus structure |
US6372534B1 (en) * | 1995-06-06 | 2002-04-16 | Lg. Philips Lcd Co., Ltd | Method of making a TFT array with photo-imageable insulating layer over address lines |
US6285558B1 (en) * | 1998-09-25 | 2001-09-04 | Intelect Communications, Inc. | Microprocessor subsystem module for PCB bottom-side BGA installation |
US6396706B1 (en) * | 1999-07-30 | 2002-05-28 | Credence Systems Corporation | Self-heating circuit board |
US6423939B1 (en) * | 2000-10-02 | 2002-07-23 | Agilent Technologies, Inc. | Micro soldering method and apparatus |
-
2001
- 2001-05-18 US US09/860,872 patent/US6492620B1/en not_active Expired - Fee Related
Cited By (21)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040159945A1 (en) * | 2001-12-21 | 2004-08-19 | Intel Corporation | Underfill process for flip-chip device |
US20080105670A1 (en) * | 2005-01-24 | 2008-05-08 | Markus Wolfel | Printed Circuit Board or Card Comprising a Heating Wire |
US8481897B2 (en) * | 2005-01-24 | 2013-07-09 | Jumatech, Gmbh | Printed circuit board or card comprising a heating wire |
US20060200965A1 (en) * | 2005-03-08 | 2006-09-14 | International Business Machines Corporation | Electrical wiring design for module removal and replacement from organic board |
US7234218B2 (en) | 2005-03-08 | 2007-06-26 | International Business Machines Corporation | Method for separating electronic component from organic board |
US7474540B1 (en) * | 2008-01-10 | 2009-01-06 | International Business Machines Corporation | Silicon carrier including an integrated heater for die rework and wafer probe |
US20090178275A1 (en) * | 2008-01-10 | 2009-07-16 | International Business Machines Corporation | Silicon Carrier Including An Integrated Heater For Die Rework And Wafer Probe |
US20150373886A1 (en) * | 2011-10-18 | 2015-12-24 | Integrated Microwave Corporation | Integral heater assembly and method for host board of electronic package assembly |
US9648740B2 (en) * | 2013-09-30 | 2017-05-09 | Honeywell Federal Manufacturing & Technologies, Llc | Ceramic substrate including thin film multilayer surface conductor |
US20150090478A1 (en) * | 2013-09-30 | 2015-04-02 | Joseph Ambrose Wolf | Silver thick film paste hermetically sealed by surface thin film multilayer |
US10204890B2 (en) | 2014-08-14 | 2019-02-12 | Octavo Systems Llc | Substrate for system in package (SIP) devices |
US10867979B2 (en) | 2014-08-14 | 2020-12-15 | Octavo Systems Llc | Circuit mounting structure and lead frame for system in package (SIP) devices |
WO2017040967A1 (en) * | 2015-09-04 | 2017-03-09 | Octavo Systems Llc | Improved system using system in package components |
CN108431932A (en) * | 2015-09-04 | 2018-08-21 | 欧克特沃系统有限责任公司 | Use the improved system of the system in package parts |
US11171126B2 (en) | 2015-09-04 | 2021-11-09 | Octavo Systems Llc | Configurable substrate and systems |
US10470294B2 (en) | 2017-05-01 | 2019-11-05 | Octavo Systems Llc | Reduction of passive components in system-in-package devices |
US11032910B2 (en) | 2017-05-01 | 2021-06-08 | Octavo Systems Llc | System-in-Package device ball map and layout optimization |
US11416050B2 (en) | 2017-05-08 | 2022-08-16 | Octavo Systems Llc | Component communications in system-in-package systems |
US10714430B2 (en) | 2017-07-21 | 2020-07-14 | Octavo Systems Llc | EMI shield for molded packages |
US11302648B2 (en) | 2017-07-21 | 2022-04-12 | Octavo Systems Llc | EMI shield for molded packages |
CN113258228A (en) * | 2021-06-29 | 2021-08-13 | 成都市克莱微波科技有限公司 | Multichannel amplitude-phase consistent microwave assembly |
Also Published As
Publication number | Publication date |
---|---|
US6492620B1 (en) | 2002-12-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6492620B1 (en) | Equipotential fault tolerant integrated circuit heater | |
US6031729A (en) | Integral heater for reworking MCMS and other semiconductor components | |
US6133626A (en) | Three dimensional packaging configuration for multi-chip module assembly | |
US6888240B2 (en) | High performance, low cost microelectronic circuit package with interposer | |
US5798564A (en) | Multiple chip module apparatus having dual sided substrate | |
JP2559954B2 (en) | Stepped multi-layer interconnection device | |
KR100628286B1 (en) | Electronic module with canopy carrier | |
KR100386995B1 (en) | Semiconductor device and its wiring method | |
EP0863548A2 (en) | Mounting assembly of integrated circuit device and method for production thereof | |
JP3925615B2 (en) | Semiconductor module | |
JPH09283695A (en) | Semiconductor mounting structure | |
JPH04229645A (en) | Package module for electronic circuit | |
US3555364A (en) | Microelectronic modules and assemblies | |
US20070169342A1 (en) | Connection pad layouts | |
US6034437A (en) | Semiconductor device having a matrix of bonding pads | |
US6437436B2 (en) | Integrated circuit chip package with test points | |
JP3413147B2 (en) | Multi-line grid array package | |
JPH11260999A (en) | Stacked semiconductor device module with reduced noise | |
EP0521720A1 (en) | Heat-dissipating multi-layer circuit board | |
US6038135A (en) | Wiring board and semiconductor device | |
JPH11163489A (en) | Mounting structure of electronic component | |
JPH08162767A (en) | Mounting structure for ball grid array | |
US20240047316A1 (en) | Jump-fusing and tailored pcb system for loop inductance reduction | |
US20250006685A1 (en) | Semiconductor packages with multiple types of conductive components | |
WO2008117213A2 (en) | An assembly of at least two printed circuit boards and a method of assembling at least two printed circuit boards |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: TRW INC., CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:LAU, JAMES C.;REEL/FRAME:011830/0127 Effective date: 20010517 |
|
AS | Assignment |
Owner name: NORTHROP GRUMMAN CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRW, INC. N/K/A NORTHROP GRUMMAN SPACE AND MISSION SYSTEMS CORPORATION, AN OHIO CORPORATION;REEL/FRAME:013751/0849 Effective date: 20030122 Owner name: NORTHROP GRUMMAN CORPORATION,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:TRW, INC. N/K/A NORTHROP GRUMMAN SPACE AND MISSION SYSTEMS CORPORATION, AN OHIO CORPORATION;REEL/FRAME:013751/0849 Effective date: 20030122 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FEPP | Fee payment procedure |
Free format text: PAYOR NUMBER ASSIGNED (ORIGINAL EVENT CODE: ASPN); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
AS | Assignment |
Owner name: NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP.,CAL Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN CORPORTION;REEL/FRAME:023699/0551 Effective date: 20091125 Owner name: NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP., CA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN CORPORTION;REEL/FRAME:023699/0551 Effective date: 20091125 |
|
AS | Assignment |
Owner name: NORTHROP GRUMMAN SYSTEMS CORPORATION,CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP.;REEL/FRAME:023915/0446 Effective date: 20091210 Owner name: NORTHROP GRUMMAN SYSTEMS CORPORATION, CALIFORNIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NORTHROP GRUMMAN SPACE & MISSION SYSTEMS CORP.;REEL/FRAME:023915/0446 Effective date: 20091210 |
|
REMI | Maintenance fee reminder mailed | ||
LAPS | Lapse for failure to pay maintenance fees | ||
LAPS | Lapse for failure to pay maintenance fees |
Free format text: PATENT EXPIRED FOR FAILURE TO PAY MAINTENANCE FEES (ORIGINAL EVENT CODE: EXP.); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |
|
STCH | Information on status: patent discontinuation |
Free format text: PATENT EXPIRED DUE TO NONPAYMENT OF MAINTENANCE FEES UNDER 37 CFR 1.362 |
|
FP | Lapsed due to failure to pay maintenance fee |
Effective date: 20101210 |
|
REFU | Refund |
Free format text: REFUND - SURCHARGE, PETITION TO ACCEPT PYMT AFTER EXP, UNINTENTIONAL (ORIGINAL EVENT CODE: R1558); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY Free format text: REFUND - PAYMENT OF MAINTENANCE FEE, 8TH YEAR, LARGE ENTITY (ORIGINAL EVENT CODE: R1552); ENTITY STATUS OF PATENT OWNER: LARGE ENTITY |