US20020170672A1 - Method and apparatus for improved substrate handling - Google Patents
Method and apparatus for improved substrate handling Download PDFInfo
- Publication number
- US20020170672A1 US20020170672A1 US10/193,605 US19360502A US2002170672A1 US 20020170672 A1 US20020170672 A1 US 20020170672A1 US 19360502 A US19360502 A US 19360502A US 2002170672 A1 US2002170672 A1 US 2002170672A1
- Authority
- US
- United States
- Prior art keywords
- substrate
- chamber
- transfer chamber
- handler
- sealable
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 347
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000012545 processing Methods 0.000 claims description 72
- 238000012546 transfer Methods 0.000 claims description 51
- 238000005086 pumping Methods 0.000 claims description 2
- 238000010438 heat treatment Methods 0.000 description 35
- 238000001816 cooling Methods 0.000 description 33
- 239000007789 gas Substances 0.000 description 25
- 235000012431 wafers Nutrition 0.000 description 14
- 239000002245 particle Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000008878 coupling Effects 0.000 description 6
- 238000010168 coupling process Methods 0.000 description 6
- 238000005859 coupling reaction Methods 0.000 description 6
- 238000004519 manufacturing process Methods 0.000 description 5
- 230000007246 mechanism Effects 0.000 description 5
- 239000000284 extract Substances 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 239000004065 semiconductor Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 239000012809 cooling fluid Substances 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 229910052757 nitrogen Inorganic materials 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- LYCAIKOWRPUZTN-UHFFFAOYSA-N Ethylene glycol Chemical compound OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 2
- 238000000137 annealing Methods 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 230000005415 magnetization Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000010926 purge Methods 0.000 description 2
- 239000003507 refrigerant Substances 0.000 description 2
- 210000000707 wrist Anatomy 0.000 description 2
- 101100107923 Vitis labrusca AMAT gene Proteins 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 230000008030 elimination Effects 0.000 description 1
- 238000003379 elimination reaction Methods 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000010348 incorporation Methods 0.000 description 1
- 238000005339 levitation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052756 noble gas Inorganic materials 0.000 description 1
- 230000001590 oxidative effect Effects 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000013022 venting Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67763—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations the wafers being stored in a carrier, involving loading and unloading
- H01L21/67766—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67103—Apparatus for thermal treatment mainly by conduction
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67098—Apparatus for thermal treatment
- H01L21/67109—Apparatus for thermal treatment mainly by convection
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67126—Apparatus for sealing, encapsulating, glassing, decapsulating or the like
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67155—Apparatus for manufacturing or treating in a plurality of work-stations
- H01L21/67196—Apparatus for manufacturing or treating in a plurality of work-stations characterized by the construction of the transfer chamber
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67742—Mechanical parts of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67739—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber
- H01L21/67745—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations into and out of processing chamber characterized by movements or sequence of movements of transfer devices
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68764—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by a movable susceptor, stage or support, others than those only rotating on their own vertical axis, e.g. susceptors on a rotating caroussel
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68771—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by supporting more than one semiconductor substrate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68785—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68792—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the construction of the shaft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
- Y10S414/137—Associated with semiconductor wafer handling including means for charging or discharging wafer cassette
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S414/00—Material or article handling
- Y10S414/135—Associated with semiconductor wafer handling
- Y10S414/139—Associated with semiconductor wafer handling including wafer charging or discharging means for vacuum chamber
Definitions
- the present invention relates to substrate processing, and more particularly to a method and apparatus for improved substrate handling.
- a cluster tool typically includes a load lock chamber for introducing substrates (e.g., semiconductor wafers) into the tool and a central transfer chamber for moving substrates between the load lock chamber and a plurality of processing chambers and one or more cool down chambers mounted on the transfer chamber.
- substrates e.g., semiconductor wafers
- a central transfer chamber for moving substrates between the load lock chamber and a plurality of processing chambers and one or more cool down chambers mounted on the transfer chamber.
- a single blade or a double blade robot is located within the transfer chamber to move substrates between the load lock chamber, the processing chambers, the cool down chamber(s) and then back to the load lock chamber.
- Exemplary cluster tools, robots and substrate handling methods are described in U.S. Pat. Nos. 4,951,601 and 5,292,393, both of which are incorporated herein by reference in their entirety.
- a typical substrate handler arm capable of 360° rotation and extension is positioned inside the central transfer chamber.
- the substrate handler rotates to align its blade with a sealable slit (e.g., a slit valve) which connects the central transfer chamber to a load lock chamber (i.e., a load lock slit).
- the substrate handler extends through the load lock slit, picks up a substrate, retracts, rotates to position the substrate in front of a processing chamber slit (which connects the central transfer chamber with the processing chamber) and extends through the slit to place the substrate in the processing chamber.
- the wafer handler After the processing chamber finishes processing the substrate, the wafer handler extends through the processing chamber slit, picks up the substrate, retracts and rotates to position the substrate in front of a cool down chamber slit. The substrate handler again extends placing the substrate in the cool down chamber and then retracts therefrom. After substrate cooling is complete, the substrate handler extends through the cool down chamber slit, picks up the substrate and retracts through the cool down chamber slit in order to extract the substrate and carry the substrate to another processing chamber or return the substrate to the load lock chamber. While the substrate is processing or cooling, the substrate handler places and extracts other substrates from the remaining chambers (e.g., load lock, processing or cool down chambers) in the same manner. Thus, the substrate handler undergoes a complex pattern of rotations and extensions, requiring a mechanically complex and expensive substrate handler. Further, each substrate handler extension and rotation requires considerable operating space and may introduce reliability problems.
- One way to improve system efficiency is to provide a robot arm having the ability to handle two substrates at the same time.
- some equipment manufacturers have provided a robot arm in which two carrier blades are rotated about a pivot point at the robot wrist (e.g., via a motor and belt drive positioned at the substrate handler's wrist).
- a first substrate e.g., to be processed
- a second substrate e.g., previously processed
- the carrier blades are then rotated and the first stored substrate is placed as desired.
- Such a mechanism is rather complex and requires a massive arm assembly to support the weight of a carrier blade drive located at the end of an extendible robot arm.
- Embodiments of the present invention improve upon the “Carousel Wafer Transfer System” described in U.S. Pat. No. 6,287,386 from which this application is a continuation-in-part.
- Various embodiments of the invention provide aspects which enhance substrate heating and cooling efficiency, reduce substrate handler complexity, reduce contact between moving parts during substrate transfer operation (e.g., reducing particle generation associated therewith), improve substrate handling equipment reliability, and/or increase substrate throughput.
- the invention comprises a temperature adjustment plate located below a substrate carriage (such as the rotatable carousel described in U.S. Pat. No. 6,287,386) and configured such that a substrate may be transferred between the temperature adjustment plate and the substrate carriage, by lifting and lowering the substrate carriage above and below the top surface of the temperature adjustment plate.
- the temperature adjustment plate may be configured to heat and/or cool a substrate positioned thereon.
- the substrate carriage is magnetically coupled so as to rotate and/or lift and lower magnetically, thereby reducing particle generation via contact between moving parts (and potential chamber contamination therefrom).
- a substrate handler positioned below the substrate carriage is both magnetically coupled and magnetically levitated, providing further particle reduction.
- the magnetic levitation is preferably achieved via four radially disposed and vertically arranged magnet pairs having distance sensors for maintaining desired spacing therebetween.
- one substrate is heated/degassed on a first portion of a temperature adjustment plate in preparation for processing while a second substrate is processed, and a third processed substrate is cooled on a second portion of the temperature adjustment plate.
- FIG. 1 is a top plan view of a chamber containing a preferred substrate carriage and temperature adjustment plate
- FIG. 2A is a top plan view of the chamber of FIG. 1 showing a substrate handler in an extended position
- FIG. 2B is a top plan view of the chamber of FIG. 1 showing a substrate handler in a retracted position
- FIG. 3A is a side elevational view of a temperature adjustment plate configured for heating
- FIG. 3B is a side elevational view of a temperature adjustment plate configured for cooling
- FIG. 3C is a side elevational view of a temperature adjustment plate configured for both heating and cooling;
- FIG. 4A is a front elevational view showing a magnetically coupled substrate carrier in an elevated position
- FIG. 4B is a front elevational view showing a magnetically coupled substrate carrier in a lowered position
- FIG. 5A is a front elevational view of the chamber of FIG. 1, containing a preferred magnetically levitated and magnetically coupled substrate handler;
- FIG. 5B is a side elevational view of the chamber of FIG. 1, containing the preferred magnetically levitated and magnetically coupled substrate handler of FIG. 5A.
- FIG. 1 is a top plan view of a chamber 11 containing a preferred substrate carriage 13 and temperature adjustment plate 15 .
- a central shaft 17 is fixedly coupled to the temperature adjustment plate 15 and extends therefrom through a center region of the substrate carriage 13 .
- the central shaft 17 is not in contact with the center region of the substrate carriage 13 , but rather is coupled to the substrate carriage 13 via a motor (motor 57 in FIGS. 4A and 4B) as described further below with reference to FIGS. 4A and 4B.
- the substrate carriage 13 comprises three equally spaced branches 19 a - c which extend radially outward from the center region of the substrate carriage 13 .
- Each branch 19 a - c comprises a pair of substrate supports 21 a - b which face outwardly (i.e., away from each other) therefrom.
- the branches 19 a - c are preferably machined from the same piece of material or may be made of two or more separate parts connected together using bolts, screws or other connectors including welding, such that they rotate and/or elevate together as a unit.
- the branches 19 a - c and the substrate supports 21 a (e.g., of a first branch 19 a ) and 21 b (e.g., of a second branch 19 b ) are configured so as to define a plurality of substrate seats 23 a - c each of which supports a substrate (not shown) by its edge.
- a passage is maintained for a substrate handler blade 24 a of a substrate handler 24 (shown in FIGS. 2A and 2B) to pass therethrough during substrate handoffs between the substrate carriage 13 and the substrate handler blade 24 a , as described further below.
- the substrate supports 21 a - b are preferably made of a ceramic such as alumina, quartz or any other hard material which is compatible with semiconductor substrates and does not produce particles or scratch a substrate during contact therewith.
- the substrate supports 21 a - b are attached to the bottom of the branches 19 a - c , such that the substrate carriage 13 may lower the substrate supports 21 a - b below the top surface of the temperature adjustment plate 15 , and below the substrate handler blade 24 a , thus transferring a substrate supported by a substrate seat 23 a - c to the temperature adjustment plate 15 and/or to the substrate handler blade 24 a , while the remainder of the substrate carriage 13 (i.e., the branches 19 a - c ) remains above and does not contact either the temperature adjustment plate 15 and/or the substrate handler blade 24 a .
- a preferred mechanism for lifting and lowering the substrate supports 21 a - b (and the substrate carriage 13 ) is described below with reference to FIGS. 4A and 4B
- the temperature adjustment plate 15 is configured to simultaneously support two substrates (not shown), when the substrate carriage 13 lowers the substrate supports 21 a - b to an elevation below the top surface of the temperature adjustment plate 15 .
- the temperature adjustment plate 15 is preferably coextensive with the substrates placed thereon.
- the temperature adjustment plate 15 comprises four notches 25 a - d placed to receive the substrate supports 21 a - b .
- the temperature adjustment plate 15 also comprises a cut out region 26 in which the substrate handler 24 (FIGS. 2A and 2B) may be housed. As best understood with reference to FIGS. 2A and 2B, the cut out region 26 is configured to provide sufficient space for the substrate handler 24 to extend and retract.
- the chamber 11 has two sealable slits 27 a - b (e.g., conventional slit valves) positioned on opposite walls of the chamber 11 .
- the first slit 27 a is disposed to receive substrates from a substrate handler (not shown) which travels among a plurality of transfer chambers (not shown) configured such as transfer chamber 11 , and the second slit 27 b is coupled to a processing chamber 29 , as described in detail in co-pending U.S. Provisional Patent Application Serial No. 60/187,133, filed Mar. 6, 2000 (AMAT No. 4026), the entire disclosure of which is incorporated herein by this reference.
- the processing chamber 29 is coupled to the slit 27 b opposite the substrate handler 24 , such that the substrate handler blade 24 a travels in a straight line (e.g., along a single axis) to place and extract substrates within and from the processing chamber 29 , as further described with reference to FIGS. 2A and 2B.
- FIG. 2A is a top plan view of the chamber 11 of FIG. 1, showing the substrate handler 24 in an extended position
- FIG. 2B is a top plan view of the chamber 11 of FIG. 1 showing the substrate handler 24 in a retracted position
- the exemplary substrate handler 24 of FIGS. 2 A-B may be analogized to a human arm having an elbow 24 b which extends outwardly when the arm retracts. Such extendable arm type substrate handlers are conventionally employed in semiconductor fabrication and their specific configuration is well known in the art. Accordingly the notch 26 located in the temperature adjustment plate 15 is sized and shaped to accommodate the substrate handler 24 's elbow 24 b during substrate handler retraction, as shown in FIG. 2B.
- the substrate handler 24 preferably includes a wafer gripping mechanism (not shown) as described in U.S. Pat. No. 6,287,386 which stabilizes and centers a substrate supported by the blade 24 a.
- FIG. 3A is a side elevational view of a temperature adjustment plate 15 a configured for heating (i.e., a heat plate 15 a ) that may be employed as the temperature adjustment plate 15 .
- the heating plate 15 a has a resistive heating element 31 disposed therein.
- the heating plate 15 a may comprise any conventional heated substrate support (e.g., a stainless steel substrate support) having a temperature range sufficient for the heating process to be performed (typically about 150-600° C. for most annealing applications).
- a substrate (e.g., a semiconductor wafer) may be placed directly on the heating plate 15 a (e.g., via the substrate carriage 13 ); or optionally, on a plurality of pins 32 (preferably 3-6 pins, most preferably three pins 32 a - c per substrate as shown in FIGS. 2A and 2B) which extend from the heating plate 15 a , so as to facilitate gas flow along the backside of the substrate and so as to reduce contact between the substrate and the heating plate 15 a (thereby reducing particle generation by such contact).
- the heating plate 15 a of FIG. 3A includes two sets of pins 32 a - c for supporting two substrates. Short pin heights facilitate heat transfer from the heating plate 15 a to a substrate (not shown) positioned thereon; preferably the pins 32 a - c are between 0.005-0.02 inches in height.
- the heating plate 15 a preferably is larger than the diameter of the substrate being heated (e.g., such that the heating plate extends about an inch beyond the diameter of each substrate positioned thereon).
- the heating plate 15 a heats a substrate primarily by conduction (e.g., either direct contact conduction if a substrate touches the heating plate 15 a or conduction through a dry gas such as nitrogen disposed between the heating plate 15 a and a substrate when the substrate rests on the pins 32 a - c ).
- a convective heating component also may be employed if gas is flowed along the backside of the substrate during heating.
- the heating plate 15 a may require an elevated edge (not shown) or an electrostatic chuck (as is known in the art) so as to prevent substrate movement due to such backside gas flow.
- the chamber 11 preferably has a small volume to allow for rapid evacuation of the chamber (described below) and to reduce process gas consumption.
- a gas inlet 33 couples an inert dry gas source 35 (such as a noble gas or nitrogen, preferably 100% N 2 having fewer than a few parts per million of O 2 therein, or 4% or less of H 2 diluted in N 2 and having fewer than a few parts per million of O 2 therein) to the chamber 11 .
- the gas emitted from the dry gas source 35 may be further “dried” via a getter or cold trap (not shown) within the gas inlet 33 .
- a gas outlet 37 couples the chamber 11 to a vacuum pump 39 which, in operation, pumps gas from the chamber 11 .
- the chamber 11 can be periodically or continuously purged with inert gas to remove particles and desorbed gasses from the chamber 11 .
- the rate at which the inert gas flows into the chamber 11 is controlled via a needle valve or flow controller 40 (e.g., a mass flow controller) operatively coupled along the gas inlet 33 .
- the vacuum pump 39 comprises a rough-pump, such as a dry pump, having a pumping speed of between about 1-50 liters/sec for rapid evacuation of the chamber 11 .
- the gas outlet 37 comprises an isolation valve 41 , such as a pneumatic roughing port valve, operatively coupled to the vacuum pump 39 so as to control the gas flow rate from the chamber 11 and preferably further comprises a chamber exhaust valve 43 for use during chamber purging.
- a rough pump is capable of evacuating a chamber to a pressure of a few milliTorr or higher
- a rough pump alone may be employed for applications wherein the chamber 11 is not evacuated below a pressure of a few milliTorr (e.g., when the chamber 11 is vented to atmospheric pressure with a non-oxidizing gas such as nitrogen prior to loading a substrate therein or when a substrate is transferred from the chamber 11 to a processing chamber 29 that employs pressures of a few milliTorr or higher).
- a high vacuum pump such as a cryopump also may be employed to allow substrate transfer between a high vacuum processing chamber and the chamber 11 (e.g., in a chamber configured such as that described in U.S. Pat. No. 6,287,386, which does not employ a temperature adjustment plate 15 , or in a chamber wherein the temperature adjustment plate 15 is positioned so as to allow substrate transfer to and from additional processing chambers).
- the chamber 11 may be purged at atmospheric pressure by flowing dry gas from the dry gas source 35 into the chamber 11 with the chamber exhaust valve 43 open, may be single-evacuation purged by evacuating the chamber 11 to a predetermined vacuum level via the pump 39 (by opening the isolation valve 41 coupled therebetween) and then back filling the chamber 11 with dry gas from the dry gas source 35 , or may be cycle purged by repeatedly evacuating the chamber 11 to a predetermined vacuum level and then back filling the chamber 11 with dry gas from the dry gas source 35 to further reduce contamination levels beyond those achievable by atmospheric pressure or single evacuation purging.
- a predetermined contamination level e.g., so that less than 10 parts per million of O 2 reside in the chamber 11
- the chamber 11 may be purged at atmospheric pressure by flowing dry gas from the dry gas source 35 into the chamber 11 with the chamber exhaust valve 43 open, may be single-evacuation purged by evacuating the chamber 11 to a predetermined vacuum level via the pump 39 (by opening the isolation valve 41 coupled therebetween)
- FIG. 3B is a side elevational view of a temperature adjustment plate 15 b configured for substrate cooling (i.e., a cooling plate 15 b ) that may be employed as the temperature adjustment plate 15 for the chamber 11 .
- a cooling plate 15 b configured for substrate cooling
- the substrate is placed on the cooling plate 15 b via the substrate carriage 13 , and water or a refrigerant (e.g., a 50% de-ionized water, 50% glycol solution having a freezing point below that of pure water) is flowed through channels 44 in the cooling plate 15 b .
- a refrigerant e.g., a 50% de-ionized water, 50% glycol solution having a freezing point below that of pure water
- an aluminum cooling plate may be cooled to about 5 to 25° C. by a cooling fluid supplied thereto from a cooling fluid source 45 via a pump 47 .
- the cooling plate 15 b preferably also employs a diffuser design as is known in the art, having up to ten thousand 0.02-0.1 inch diameter holes therein (not shown).
- the holes allow gas to flow through the cooling plate 15 b (e.g., from the dry gas source 35 ) and to be cooled by the cooling plate 15 b so as to improve cooling of a substrate positioned thereon (e.g., by cooling a backside of the substrate).
- the cooling plate 15 b may require an elevated edge (not shown) or an electrostatic chuck (as is known in the art) so as to prevent substrate movement due to such backside gas flow.
- the walls of the chamber 11 may be the water or refrigerant cooled as well to further enhance substrate cooling.
- FIG. 3C is a top plan view of a temperature adjustment plate 15 c configured for both heating and cooling, where a first substrate location (identified by reference numeral 15 a ′) is configured for substrate heating as described with reference to FIG. 3A; and a second substrate location (identified by reference numeral 15 b ′) is configured for substrate cooling as described with reference to FIG. 3B.
- the two substrate locations 15 a ′, 15 b ′ may be part of an integral plate, or may comprise two physically separated plates preferably with a distance of at least one inch therebetween.
- the inventive chamber 11 comprises relatively inexpensive components (e.g., the rotatable substrate carriage 13 and the substrate handler 24 (preferably adapted only for transferring a substrate along a straight line (i.e., a linear substrate handler) such as between the chamber 11 and a processing chamber)). Heating and/or cooling is economically performed with reduced footprint and increased throughput as the need for substrate transfer time to a separate heating and/or cooling module is eliminated.
- a controller C FIG.
- the various chamber components e.g., to the temperature adjustment plate 15 , to the flow controller 40 , to the isolation valve 41 , to the chamber exhaust valve 43 , to the cooling fluid source 45 , to the heating element 31 , to the substrate handler 24 , to the motor 57 , etc.
- the various chamber components e.g., to the temperature adjustment plate 15 , to the flow controller 40 , to the isolation valve 41 , to the chamber exhaust valve 43 , to the cooling fluid source 45 , to the heating element 31 , to the substrate handler 24 , to the motor 57 , etc.
- FIGS. 4A and 4B are front cross-sectional views of the preferred substrate carriage 13 in an elevated position and in a lowered position, respectively. As described below, the preferred substrate carriage 13 employs magnetic coupling.
- the central shaft 17 extends upwardly through an aperture 47 in a top surface 11 a of the chamber 11 .
- a first bellows 49 seals the aperture 47 to an enclosure wall 50 , positioned above the chamber 11 .
- the enclosure wall 50 encloses an internal magnet support 53 which is fixedly coupled to, or integrally formed with the substrate carriage 13 , such that the internal magnet support 53 and the substrate carriage 13 move together as a unit.
- a plurality of internal magnets 51 a - n are coupled to the internal magnet support 53 and are spaced from and are magnetically coupled to a plurality of external magnets 55 a - n (only external magnets 55 a and 55 b are shown).
- the internal and external magnets 51 a - n , 55 a - n preferably are permanent magnets having a number and spacing sufficient to allow the internal magnets 51 a - n (and the substrate carriage 13 coupled thereto) to rotate when the external magnets 55 a - n are rotated, and to elevate (i.e., lift or lower) when the external magnets 55 a - n are elevated.
- the internal magnets 51 a - n and four external magnets 55 a - n are equally spaced, although other numbers of magnets and other magnet spacings may be employed depending on such factors as magnet strength, the material that separates the internal and external magnets (e.g., the material used for the enclosure wall 50 ), the torque exerted on the external magnets during rotation, etc.
- a motor 57 is coupled to the external magnets 55 an, to the central shaft 17 via a slideable connection 59 (e.g., a guide rail connection) so as to slide vertically along the central shaft 17 , and to the internal magnet support 53 via a plurality of bearings 61 a - n .
- a slideable connection 59 e.g., a guide rail connection
- the motor 57 preferably comprises both a rotational motor portion 57 a for providing rotational motion to the external magnets 55 a - n (and thus to the internal magnets 51 a - n and to the substrate carriage 13 ) and a linear motor portion 57 b for translating the external magnets 55 a - n (and thus the internal magnets 51 a - n and the substrate carriage 13 ) relative to the central shaft 17 (as described below).
- Both the motor 57 and the central shaft 17 are coupled to a supporting structure 63 (e.g. an equipment chassis, or any other support structure).
- a second bellows 65 seals the chamber 11 from particles/contaminants generated by the slideable connection 59 which exists between the motor 57 and the central shaft 17 .
- the rotational motor portion 57 a of the motor 57 is energized (e.g., by applying AC or DC power thereto as is known in the art) so as to exert rotational force on the external magnets 55 a - n (e.g., via a rotor 64 of the rotational motor portion 57 a ). Due to magnetic coupling between the internal and external magnets 51 a - n , 55 a - n , as the external magnets 55 a - n rotate under the applied rotational force, the internal magnets 51 a - n and the substrate carriage 13 coupled thereto also rotate.
- the bearings 61 a - n allow the internal magnet support 53 to rotate freely relative to the stationary portions of the motor 57 .
- the substrate carriage 13 (which is fixedly coupled to the internal magnet support 53 ) thereby is rotated, and may be rotated 360° if the rotational motor portion 57 a is energized for a sufficient time period.
- the linear motor portion 57 b of the motor 57 is employed to translate the substrate carriage 13 relative to the central shaft 17 .
- the linear motor portion 57 b of the motor 57 is energized so that a translating portion 67 (e.g., a motor shaft) of the linear motor portion 57 b is extended.
- the motor 57 (with the exception of the translating portion 67 ) slides along the slideable connection 59 toward the temperature adjustment plate 15 , translating the external magnets 55 a - n , the internal magnets 51 a - n and the substrate carriage 13 (each of which are coupled either directly or via bearings to the motor 57 ) toward the temperature adjustment plate 15 .
- the substrate carriage 13 thereby is lowered.
- a controller 69 (or the controller C of FIG. 1) is coupled to the motor 57 and is programmed to control the operation/timing of the raising, lowering and rotating functions of the substrate carriage 13 described above.
- FIGS. 5A and 5B are a front elevational view and a side elevational view, respectively, of the chamber 11 , employing a preferred magnetically levitated and magnetically coupled substrate handler 71 , rather than the substrate handler 24 of FIGS. 2A and 2B.
- the substrate handler 71 comprises a blade 73 mounted on a first end of a shaft 75 , and a disk 77 mounted on a second end of the shaft 75 .
- the disk 77 is configured to support four vertically arranged and radially disposed magnets 79 a - d (e.g., four magnets approximately equally spaced about the disk 77 as shown).
- the magnets 79 a - d preferably comprise electromagnets. As shown in FIGS.
- the shaft 75 extends through an elongated opening 81 located in the bottom wall of the transfer chamber 11 .
- the opening 81 extends from the temperature adjustment plate 15 toward the processing chamber 29 a distance sufficient to place the substrate handler 71 beneath one of the substrate seats 23 a - c of the substrate carriage 13 when the substrate handler 71 is in a retracted position, and sufficient to place the blade 73 of the substrate handler 71 above a substrate support (not shown) located within the processing chamber 29 .
- the substrate handler 21 may transport a substrate between the substrate carriage 13 and a processing chamber 29 .
- An external channel wall 83 is sealed to (or may be integrally formed with) the chamber 11 and is coextensive with the opening 81 .
- the external channel wall 83 is preferably configured to allow magnetic coupling therethrough.
- the substrate handler 71 is disposed such that the disk 77 is contained within the external channel wall 83 , and such that the shaft 75 extends through the elongated opening 81 into the chamber 11 a distance sufficient to place the blade 73 at the same elevation as a top surface 82 of the temperature adjustment plate 15 .
- a rail 85 extends along the length of the external chamber wall 83 .
- a bracket 87 having four external magnets 89 a - d (e.g., magnets) is mounted to the rail 85 and is coupled to a motor 91 such that the motor 91 drives the bracket 87 forward and backward along the rail 85 .
- the external magnets 89 a - d are vertically arranged and are radially disposed along the inner surface of the bracket 87 so as to be adjacent the outer surface of the external channel wall 83 and so as to magnetically couple to the internal magnets 79 a - d .
- a distance sensor 93 a - d is positioned adjacent each internal/external magnet pair so as to sense the distance therebetween.
- the sensors 93 a - d , the external magnets 89 a - d and the motor 91 are each coupled to a controller 94 (or to the controller C of FIG. 1), and the controller is adapted to independently adjust the magnetization level of the external magnets 89 a - d (e.g., by adjusting the current supplied to each magnet 89 a - d ) so as to maintain equal spacing between the magnet pairs, and thus to maintain the robot blade 73 in a level position.
- the substrate carriage 13 positions a substrate (not shown) above the blade 73 of the substrate handler 71 .
- the substrate carriage 13 then lowers such that the blade 73 passes through the substrate seat 23 lifting the substrate therefrom.
- the slit 27 b that separates the chamber 11 and the processing chamber 29 also is opened.
- the motor 91 is energized so as to move the bracket 87 along the rail 85 toward the processing chamber 29 at a speed which will maintain magnetic coupling between the internal magnets 79 a - d and the external magnets 89 a - d .
- the distance sensors 93 a - d measure the distance between the internal magnets 79 a - d and the external magnets 89 a - d . These distance measurements are continually supplied to the controller 94 which is adapted to adjust the magnetization levels of the external magnets 89 a - d so as to maintain equal spacing between the various internal and external magnet pairs. The controller 94 also adjusts the speed at which the motor 91 moves the bracket 87 along the rail 85 , reducing the speed if the distance sensors 93 a - d detect the bracket 87 is moving too quickly to maintain sufficient magnetic coupling between the internal and external magnet pairs.
- the motor 91 is deenergized.
- a substrate lifting mechanism such as a plurality of lift pins or a wafer lift hoop elevate from the substrate support, lifting the substrate from the blade 73 .
- the motor 91 is then energized causing the bracket 87 to move backward toward the substrate carriage 13 .
- the slit 27 b closes and processing begins within the processing chamber 29 .
- the substrate handler 71 remains in position next to the slit 27 b until processing within the processing chamber 29 is complete.
- the substrate handler 71 travels forward in the manner described above to extract the substrate from the processing chamber 29 . While the substrate handler 71 is within the processing chamber 29 , the substrate carriage 13 lowers to a position below the elevation of the substrate handler's blade 73 . The substrate handler 71 then retracts carrying the substrate into position above the substrate carriage 13 . The substrate carriage 13 elevates lifting the substrate from the substrate handler's blade 73 , and simultaneously lifting any substrates positioned on the temperature adjustment plate 15 therefrom.
- the substrate carriage 13 rotates carrying the substrate retrieved from the processing chamber 29 (the “first” processed substrate) to a position above the temperature adjustment plate 15 and carrying one of the substrates lifted from the temperature adjustment plate 15 into position above the substrate handler 71 .
- the substrate carriage 13 then lowers transferring the substrates from the substrate carriage 13 to the temperature adjustment plate 15 and to the substrate handler 71 .
- a second substrate is then loaded into the processing chamber 29 as described above and, depending on the configuration of the temperature adjustment plate 15 , the first processed substrate is either cooled on the temperature adjustment plate 15 , heated by the temperature adjustment plate 15 (e.g., as an annealing step) or immediately extracted therefrom by a front-end loader robot (not shown).
- the front-end loader robot places a new “third” substrate on a first side of the temperature adjustment plate 15 and extracts the first processed substrate from the second side of the temperature adjustment plate 15 .
- a substrate may be degassed via the temperature adjustment plate 15 prior to entry into the processing chamber 29 , and/or cooled, annealed or annealed and cooled by the temperature adjustment plate 15 after processing within the processing chamber 29 .
- an additional advantage of the inventive substrate handling apparatus described herein is that various components (e.g., the temperature adjustment plate 15 , the substrate carriage 13 , the substrate handler 24 , the magnetically levitated and magnetically coupled substrate handler 71 , etc.) are each coupled either directly or indirectly to only one surface of the chamber 11 (e.g., a bottom surface 11 b as shown in FIGS. 4A and 4B). Accordingly, as the walls of the chamber 11 deflect during evacuation or venting of the chamber 11 (e.g., due to the generation or elimination of a large pressure differential between the interior and exterior environments of the chamber 11 ) substrate transfer is unaffected as all substrate handling and/or supporting components are identically affected by such deflections.
- various components e.g., the temperature adjustment plate 15 , the substrate carriage 13 , the substrate handler 24 , the magnetically levitated and magnetically coupled substrate handler 71 , etc.
- substrate carriages and substrate handlers which are both magnetically coupled and magnetically levitated are preferred, substrate carriages and substrate handlers which are not magnetically coupled or magnetically levitated may be employed.
- substrate handlers preferably adapted only for transferring a substrate along a straight line (a linear substrate handler)
- other types of substrate handlers may be employed.
- the inventive magnetically coupled and magnetically levitated substrate handler may be employed within a transfer chamber such as that described in U.S. Pat. No. 6,287,386 which requires the substrate handler to transport substrates between the substrate carriage and various processing or load lock chambers.
- the inventive magnetically coupled substrate carriage may be employed in other transfer chamber's such as those described in U.S. Pat. No. 6,287,386, as may the temperature adjustment plate.
- the concept of heating or cooling a substrate via a heating and/or cooling mechanism contained within a transfer chamber may be employed within other chambers, and is not to be limited to the specific chambers described herein.
- the cooling plate may be located above the substrate carriage. To transfer a wafer to such a cooling plate an empty slot of the substrate carriage is positioned below the cooling plate, the substrate carriage then elevates to a position above the cooling plate. The carousel rotates so as to position a wafer above the cooling plate and then lowers the wafer onto the cooling plate.
- An inventive indexing pod door opener may eliminate the need for a separate front end robot.
- the pod door opener is provided with vacuum pump/vent capability so that the pod door may operate as a load lock.
- the substrate carriage chamber's robot may directly extract wafers from the pod door opener.
- the substrate carriage chamber's robot stroke need not be lengthened because the chamber is designed such that the robot can load/unload wafers from processing chambers, and loading/unloading from one or more processing chambers requires the same stroke as does loading and unloading wafers from the pod door opener.
- the pod door opener may index vertically to eliminate the need for the pod door receiver to move the pod door vertically to allow access to wafers contained within the pod, and to eliminate the need for the loading/unloading robot to index vertically.
- numerous chambers configured in accordance with the invention may be coupled via passthrough tunnels and may allow creation of a stage vacuum system and/or a transfer chamber than is not exposed atmosphere.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Robotics (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
Abstract
A method and apparatus are provided for substrate handling. In a first aspect, a temperature adjustment plate is located below a substrate carriage and is configured such that a substrate may be transferred between the temperature adjustment plate and the substrate carriage by lifting and lowering the substrate carriage above and below the top surface of the temperature adjustment plate. The temperature adjustment plate may be configured to heat and/or cool a substrate positioned thereon. Numerous other aspects are provided.
Description
- This application is a division of U.S. patent application Ser. No. 09/538,013, filed Mar. 29, 2000, which is a continuation-in-part of U.S. patent application Ser. No. 09/332,207, filed Jun. 12, 1999 (now U.S. Pat. No. 6,287,386) which is a continuation of U.S. patent application Ser. No. 08/869,111, filed Jun. 4, 1997 (now U.S. Pat. No. 5,951,770), all of which are hereby incorporated by reference herein in their entirety.
- The present invention relates to substrate processing, and more particularly to a method and apparatus for improved substrate handling.
- Cluster tools are commonly used in the fabrication of integrated circuits. A cluster tool typically includes a load lock chamber for introducing substrates (e.g., semiconductor wafers) into the tool and a central transfer chamber for moving substrates between the load lock chamber and a plurality of processing chambers and one or more cool down chambers mounted on the transfer chamber. Typically, either a single blade or a double blade robot is located within the transfer chamber to move substrates between the load lock chamber, the processing chambers, the cool down chamber(s) and then back to the load lock chamber. Exemplary cluster tools, robots and substrate handling methods are described in U.S. Pat. Nos. 4,951,601 and 5,292,393, both of which are incorporated herein by reference in their entirety.
- Within a cluster tool a typical substrate handler arm capable of 360° rotation and extension is positioned inside the central transfer chamber. In operation the substrate handler rotates to align its blade with a sealable slit (e.g., a slit valve) which connects the central transfer chamber to a load lock chamber (i.e., a load lock slit). The substrate handler extends through the load lock slit, picks up a substrate, retracts, rotates to position the substrate in front of a processing chamber slit (which connects the central transfer chamber with the processing chamber) and extends through the slit to place the substrate in the processing chamber. After the processing chamber finishes processing the substrate, the wafer handler extends through the processing chamber slit, picks up the substrate, retracts and rotates to position the substrate in front of a cool down chamber slit. The substrate handler again extends placing the substrate in the cool down chamber and then retracts therefrom. After substrate cooling is complete, the substrate handler extends through the cool down chamber slit, picks up the substrate and retracts through the cool down chamber slit in order to extract the substrate and carry the substrate to another processing chamber or return the substrate to the load lock chamber. While the substrate is processing or cooling, the substrate handler places and extracts other substrates from the remaining chambers (e.g., load lock, processing or cool down chambers) in the same manner. Thus, the substrate handler undergoes a complex pattern of rotations and extensions, requiring a mechanically complex and expensive substrate handler. Further, each substrate handler extension and rotation requires considerable operating space and may introduce reliability problems.
- One way to improve system efficiency is to provide a robot arm having the ability to handle two substrates at the same time. Thus, some equipment manufacturers have provided a robot arm in which two carrier blades are rotated about a pivot point at the robot wrist (e.g., via a motor and belt drive positioned at the substrate handler's wrist). Thus, a first substrate (e.g., to be processed) may be stored on one blade while the other blade picks up a second substrate (e.g., previously processed). The carrier blades are then rotated and the first stored substrate is placed as desired. Such a mechanism is rather complex and requires a massive arm assembly to support the weight of a carrier blade drive located at the end of an extendible robot arm. For example, three drives are usually required for a system incorporating such a robot arm: one drive to rotate the arm, one drive to extend the arm, and one drive to rotate the carrier blades. Any improvement in throughput provided by such a multiple carrier robot comes at a price of increased equipment/manufacturing cost, increased weight and power consumption, and increased complexity and, thus, reduced reliability and serviceability.
- Another approach places two robot arms coaxially about a common pivot point. Each such robot arm operates independently of the other and improved throughput can be obtained through the increased handling capacity of the system. However, it is not simple to provide two robot arms for independent operation about a common axis. Thus, multiple drives must be provided, again increasing manufacture/equipment costs and complexity while reducing reliability.
- The various processes which are performed on the various substrates, may require different processing times. Therefore, some substrates may remain in a chamber for a short period of time after processing is completed before they are moved into a subsequent processing chamber because the subsequent processing chamber is still processing another substrate. This causes a substrate back log and decreases system throughput.
- In addition to varying processing times, another factor which affects throughput is the need to cool individual substrates following processing. Specifically, the number of movements a substrate handler must make in order to process numerous substrates increases significantly when the substrates must be transferred to one or more cool down chambers following each processing step. Additionally, incorporation of one or more cool down chambers reduces the number of positions on the transfer chamber where a processing chamber may be positioned. Fewer processing chambers can result in lower system throughput and can increase the cost of each wafer processed.
- Therefore, there remains a need for a method and apparatus for improved substrate handling module which can increase substrate throughput while preferably providing substrate cooling.
- Embodiments of the present invention improve upon the “Carousel Wafer Transfer System” described in U.S. Pat. No. 6,287,386 from which this application is a continuation-in-part. Various embodiments of the invention provide aspects which enhance substrate heating and cooling efficiency, reduce substrate handler complexity, reduce contact between moving parts during substrate transfer operation (e.g., reducing particle generation associated therewith), improve substrate handling equipment reliability, and/or increase substrate throughput.
- In a first aspect, the invention comprises a temperature adjustment plate located below a substrate carriage (such as the rotatable carousel described in U.S. Pat. No. 6,287,386) and configured such that a substrate may be transferred between the temperature adjustment plate and the substrate carriage, by lifting and lowering the substrate carriage above and below the top surface of the temperature adjustment plate. The temperature adjustment plate may be configured to heat and/or cool a substrate positioned thereon.
- In a second aspect, the substrate carriage is magnetically coupled so as to rotate and/or lift and lower magnetically, thereby reducing particle generation via contact between moving parts (and potential chamber contamination therefrom).
- In a third aspect, a substrate handler positioned below the substrate carriage is both magnetically coupled and magnetically levitated, providing further particle reduction. The magnetic levitation is preferably achieved via four radially disposed and vertically arranged magnet pairs having distance sensors for maintaining desired spacing therebetween.
- In a preferred embodiment, one substrate is heated/degassed on a first portion of a temperature adjustment plate in preparation for processing while a second substrate is processed, and a third processed substrate is cooled on a second portion of the temperature adjustment plate. An advantage of this arrangement is that the chamber containing the substrate carriage requires only a small volume of operating space, and may be quickly pumped to vacuum pressure. Thus, certain embodiments need not employ a separate load lock chamber.
- Other features and advantages of the present invention will become more fully apparent from the following detailed description of the preferred embodiments, the appended claims and the accompanying drawings.
- FIG. 1 is a top plan view of a chamber containing a preferred substrate carriage and temperature adjustment plate;
- FIG. 2A is a top plan view of the chamber of FIG. 1 showing a substrate handler in an extended position;
- FIG. 2B is a top plan view of the chamber of FIG. 1 showing a substrate handler in a retracted position;
- FIG. 3A is a side elevational view of a temperature adjustment plate configured for heating;
- FIG. 3B is a side elevational view of a temperature adjustment plate configured for cooling;
- FIG. 3C is a side elevational view of a temperature adjustment plate configured for both heating and cooling;
- FIG. 4A is a front elevational view showing a magnetically coupled substrate carrier in an elevated position;
- FIG. 4B is a front elevational view showing a magnetically coupled substrate carrier in a lowered position;
- FIG. 5A is a front elevational view of the chamber of FIG. 1, containing a preferred magnetically levitated and magnetically coupled substrate handler; and
- FIG. 5B is a side elevational view of the chamber of FIG. 1, containing the preferred magnetically levitated and magnetically coupled substrate handler of FIG. 5A.
- FIG. 1 is a top plan view of a
chamber 11 containing apreferred substrate carriage 13 andtemperature adjustment plate 15. Acentral shaft 17 is fixedly coupled to thetemperature adjustment plate 15 and extends therefrom through a center region of thesubstrate carriage 13. Preferably thecentral shaft 17 is not in contact with the center region of thesubstrate carriage 13, but rather is coupled to thesubstrate carriage 13 via a motor (motor 57 in FIGS. 4A and 4B) as described further below with reference to FIGS. 4A and 4B. Thesubstrate carriage 13 comprises three equally spacedbranches 19 a-c which extend radially outward from the center region of thesubstrate carriage 13. Eachbranch 19 a-c comprises a pair of substrate supports 21 a-b which face outwardly (i.e., away from each other) therefrom. Thebranches 19 a-c are preferably machined from the same piece of material or may be made of two or more separate parts connected together using bolts, screws or other connectors including welding, such that they rotate and/or elevate together as a unit. Thebranches 19 a-c and the substrate supports 21 a (e.g., of afirst branch 19 a) and 21 b (e.g., of asecond branch 19 b) are configured so as to define a plurality of substrate seats 23 a-c each of which supports a substrate (not shown) by its edge. By placing a substrate (not shown) on a pair of substrate supports 21 a-b secured to adjacent branches (e.g.,branches branches branches substrate handler blade 24 a of a substrate handler 24 (shown in FIGS. 2A and 2B) to pass therethrough during substrate handoffs between thesubstrate carriage 13 and thesubstrate handler blade 24 a, as described further below. - The substrate supports21 a-b are preferably made of a ceramic such as alumina, quartz or any other hard material which is compatible with semiconductor substrates and does not produce particles or scratch a substrate during contact therewith. The substrate supports 21 a-b are attached to the bottom of the
branches 19 a-c, such that thesubstrate carriage 13 may lower the substrate supports 21 a-b below the top surface of thetemperature adjustment plate 15, and below thesubstrate handler blade 24 a, thus transferring a substrate supported by a substrate seat 23 a-c to thetemperature adjustment plate 15 and/or to thesubstrate handler blade 24 a, while the remainder of the substrate carriage 13 (i.e., thebranches 19 a-c) remains above and does not contact either thetemperature adjustment plate 15 and/or thesubstrate handler blade 24 a. A preferred mechanism for lifting and lowering the substrate supports 21 a-b (and the substrate carriage 13) is described below with reference to FIGS. 4A and 4B. - The
temperature adjustment plate 15 is configured to simultaneously support two substrates (not shown), when thesubstrate carriage 13 lowers the substrate supports 21 a-b to an elevation below the top surface of thetemperature adjustment plate 15. In order to achieve uniform heating or cooling across the entire substrate surface, thetemperature adjustment plate 15 is preferably coextensive with the substrates placed thereon. Thus, in order to allow the substrate supports 21 a-b to lower to an elevation below that of the top surface of thetemperature adjustment plate 15, thetemperature adjustment plate 15 comprises four notches 25 a-d placed to receive the substrate supports 21 a-b. Preferably thetemperature adjustment plate 15 also comprises a cut outregion 26 in which the substrate handler 24 (FIGS. 2A and 2B) may be housed. As best understood with reference to FIGS. 2A and 2B, the cut outregion 26 is configured to provide sufficient space for thesubstrate handler 24 to extend and retract. - Preferably the
chamber 11 has two sealable slits 27 a-b (e.g., conventional slit valves) positioned on opposite walls of thechamber 11. Preferably the first slit 27 a is disposed to receive substrates from a substrate handler (not shown) which travels among a plurality of transfer chambers (not shown) configured such astransfer chamber 11, and thesecond slit 27 b is coupled to aprocessing chamber 29, as described in detail in co-pending U.S. Provisional Patent Application Serial No. 60/187,133, filed Mar. 6, 2000 (AMAT No. 4026), the entire disclosure of which is incorporated herein by this reference. Theprocessing chamber 29 is coupled to theslit 27 b opposite thesubstrate handler 24, such that thesubstrate handler blade 24 a travels in a straight line (e.g., along a single axis) to place and extract substrates within and from theprocessing chamber 29, as further described with reference to FIGS. 2A and 2B. - FIG. 2A is a top plan view of the
chamber 11 of FIG. 1, showing thesubstrate handler 24 in an extended position, and FIG. 2B is a top plan view of thechamber 11 of FIG. 1 showing thesubstrate handler 24 in a retracted position. Theexemplary substrate handler 24 of FIGS. 2A-B may be analogized to a human arm having anelbow 24 b which extends outwardly when the arm retracts. Such extendable arm type substrate handlers are conventionally employed in semiconductor fabrication and their specific configuration is well known in the art. Accordingly thenotch 26 located in thetemperature adjustment plate 15 is sized and shaped to accommodate thesubstrate handler 24'selbow 24 b during substrate handler retraction, as shown in FIG. 2B. Thesubstrate handler 24 preferably includes a wafer gripping mechanism (not shown) as described in U.S. Pat. No. 6,287,386 which stabilizes and centers a substrate supported by theblade 24 a. - FIG. 3A is a side elevational view of a
temperature adjustment plate 15 a configured for heating (i.e., aheat plate 15 a) that may be employed as thetemperature adjustment plate 15. Theheating plate 15 a has a resistive heating element 31 disposed therein. Theheating plate 15 a may comprise any conventional heated substrate support (e.g., a stainless steel substrate support) having a temperature range sufficient for the heating process to be performed (typically about 150-600° C. for most annealing applications). A substrate (e.g., a semiconductor wafer) may be placed directly on theheating plate 15 a (e.g., via the substrate carriage 13); or optionally, on a plurality of pins 32 (preferably 3-6 pins, most preferably three pins 32 a-c per substrate as shown in FIGS. 2A and 2B) which extend from theheating plate 15 a, so as to facilitate gas flow along the backside of the substrate and so as to reduce contact between the substrate and theheating plate 15 a (thereby reducing particle generation by such contact). Theheating plate 15 a of FIG. 3A includes two sets of pins 32 a-c for supporting two substrates. Short pin heights facilitate heat transfer from theheating plate 15 a to a substrate (not shown) positioned thereon; preferably the pins 32 a-c are between 0.005-0.02 inches in height. - To improve substrate temperature uniformity during heating, the
heating plate 15 a preferably is larger than the diameter of the substrate being heated (e.g., such that the heating plate extends about an inch beyond the diameter of each substrate positioned thereon). Theheating plate 15 a heats a substrate primarily by conduction (e.g., either direct contact conduction if a substrate touches theheating plate 15 a or conduction through a dry gas such as nitrogen disposed between theheating plate 15 a and a substrate when the substrate rests on the pins 32 a-c). A convective heating component also may be employed if gas is flowed along the backside of the substrate during heating. However, theheating plate 15 a may require an elevated edge (not shown) or an electrostatic chuck (as is known in the art) so as to prevent substrate movement due to such backside gas flow. - The
chamber 11 preferably has a small volume to allow for rapid evacuation of the chamber (described below) and to reduce process gas consumption. As shown in FIG. 1, agas inlet 33 couples an inert dry gas source 35 (such as a noble gas or nitrogen, preferably 100% N2 having fewer than a few parts per million of O2therein, or 4% or less of H2 diluted in N2 and having fewer than a few parts per million of O2 therein) to thechamber 11. The gas emitted from thedry gas source 35 may be further “dried” via a getter or cold trap (not shown) within thegas inlet 33. Agas outlet 37 couples thechamber 11 to avacuum pump 39 which, in operation, pumps gas from thechamber 11. Thus thechamber 11 can be periodically or continuously purged with inert gas to remove particles and desorbed gasses from thechamber 11. - The rate at which the inert gas flows into the
chamber 11 is controlled via a needle valve or flow controller 40 (e.g., a mass flow controller) operatively coupled along thegas inlet 33. Preferably, thevacuum pump 39 comprises a rough-pump, such as a dry pump, having a pumping speed of between about 1-50 liters/sec for rapid evacuation of thechamber 11. Thegas outlet 37 comprises anisolation valve 41, such as a pneumatic roughing port valve, operatively coupled to thevacuum pump 39 so as to control the gas flow rate from thechamber 11 and preferably further comprises achamber exhaust valve 43 for use during chamber purging. Because a rough pump is capable of evacuating a chamber to a pressure of a few milliTorr or higher, a rough pump alone may be employed for applications wherein thechamber 11 is not evacuated below a pressure of a few milliTorr (e.g., when thechamber 11 is vented to atmospheric pressure with a non-oxidizing gas such as nitrogen prior to loading a substrate therein or when a substrate is transferred from thechamber 11 to aprocessing chamber 29 that employs pressures of a few milliTorr or higher). However, for applications that require pressures below a few milliTorr (e.g., pressures which cannot be obtained with a rough pump alone), a high vacuum pump (not shown) such as a cryopump also may be employed to allow substrate transfer between a high vacuum processing chamber and the chamber 11 (e.g., in a chamber configured such as that described in U.S. Pat. No. 6,287,386, which does not employ atemperature adjustment plate 15, or in a chamber wherein thetemperature adjustment plate 15 is positioned so as to allow substrate transfer to and from additional processing chambers). - To pre-condition the
chamber 11 to a predetermined contamination level (e.g., so that less than 10 parts per million of O2 reside in the chamber 11) thechamber 11 may be purged at atmospheric pressure by flowing dry gas from thedry gas source 35 into thechamber 11 with thechamber exhaust valve 43 open, may be single-evacuation purged by evacuating thechamber 11 to a predetermined vacuum level via the pump 39 (by opening theisolation valve 41 coupled therebetween) and then back filling thechamber 11 with dry gas from thedry gas source 35, or may be cycle purged by repeatedly evacuating thechamber 11 to a predetermined vacuum level and then back filling thechamber 11 with dry gas from thedry gas source 35 to further reduce contamination levels beyond those achievable by atmospheric pressure or single evacuation purging. - FIG. 3B is a side elevational view of a
temperature adjustment plate 15 b configured for substrate cooling (i.e., a coolingplate 15 b) that may be employed as thetemperature adjustment plate 15 for thechamber 11. Specifically, to affect rapid cooling of a substrate following substrate heating within theprocessing chamber 29 the substrate is placed on thecooling plate 15 b via thesubstrate carriage 13, and water or a refrigerant (e.g., a 50% de-ionized water, 50% glycol solution having a freezing point below that of pure water) is flowed throughchannels 44 in thecooling plate 15 b. For example, an aluminum cooling plate may be cooled to about 5 to 25° C. by a cooling fluid supplied thereto from a coolingfluid source 45 via apump 47. - The
cooling plate 15 b preferably also employs a diffuser design as is known in the art, having up to ten thousand 0.02-0.1 inch diameter holes therein (not shown). The holes allow gas to flow through the coolingplate 15 b (e.g., from the dry gas source 35) and to be cooled by the coolingplate 15 b so as to improve cooling of a substrate positioned thereon (e.g., by cooling a backside of the substrate). Like theheating plate 15 a thecooling plate 15 b may require an elevated edge (not shown) or an electrostatic chuck (as is known in the art) so as to prevent substrate movement due to such backside gas flow. The walls of thechamber 11 may be the water or refrigerant cooled as well to further enhance substrate cooling. - FIG. 3C is a top plan view of a
temperature adjustment plate 15 c configured for both heating and cooling, where a first substrate location (identified byreference numeral 15 a′) is configured for substrate heating as described with reference to FIG. 3A; and a second substrate location (identified byreference numeral 15 b′) is configured for substrate cooling as described with reference to FIG. 3B. The twosubstrate locations 15 a′, 15 b′ may be part of an integral plate, or may comprise two physically separated plates preferably with a distance of at least one inch therebetween. - Regardless of the specific
temperature adjustment plate 15 a-c which theinventive chamber 11 employs, theinventive chamber 11 comprises relatively inexpensive components (e.g., therotatable substrate carriage 13 and the substrate handler 24 (preferably adapted only for transferring a substrate along a straight line (i.e., a linear substrate handler) such as between thechamber 11 and a processing chamber)). Heating and/or cooling is economically performed with reduced footprint and increased throughput as the need for substrate transfer time to a separate heating and/or cooling module is eliminated. A controller C (FIG. 1) is coupled to the various chamber components (e.g., to thetemperature adjustment plate 15, to theflow controller 40, to theisolation valve 41, to thechamber exhaust valve 43, to the coolingfluid source 45, to the heating element 31, to thesubstrate handler 24, to themotor 57, etc.) and is programmed so as to cause theinventive chamber 11 to perform the inventive method described below. - FIGS. 4A and 4B are front cross-sectional views of the
preferred substrate carriage 13 in an elevated position and in a lowered position, respectively. As described below, thepreferred substrate carriage 13 employs magnetic coupling. - With reference to FIGS. 4A and 4B, the
central shaft 17 extends upwardly through anaperture 47 in atop surface 11 a of thechamber 11. A first bellows 49 seals theaperture 47 to anenclosure wall 50, positioned above thechamber 11. Theenclosure wall 50 encloses aninternal magnet support 53 which is fixedly coupled to, or integrally formed with thesubstrate carriage 13, such that theinternal magnet support 53 and thesubstrate carriage 13 move together as a unit. - As shown in FIGS. 4A and 4B, a plurality of internal magnets51 a-n (only
internal magnets internal magnet support 53 and are spaced from and are magnetically coupled to a plurality of external magnets 55 a-n (onlyexternal magnets substrate carriage 13 coupled thereto) to rotate when the external magnets 55 a-n are rotated, and to elevate (i.e., lift or lower) when the external magnets 55 a-n are elevated. Preferably there are four internal magnets 51 a-n and four external magnets 55 a-n, each equally spaced, although other numbers of magnets and other magnet spacings may be employed depending on such factors as magnet strength, the material that separates the internal and external magnets (e.g., the material used for the enclosure wall 50), the torque exerted on the external magnets during rotation, etc. - A
motor 57 is coupled to the external magnets 55an, to thecentral shaft 17 via a slideable connection 59 (e.g., a guide rail connection) so as to slide vertically along thecentral shaft 17, and to theinternal magnet support 53 via a plurality of bearings 61 a-n. Themotor 57 preferably comprises both arotational motor portion 57 a for providing rotational motion to the external magnets 55 a-n (and thus to the internal magnets 51 a-n and to the substrate carriage 13) and alinear motor portion 57 b for translating the external magnets 55 a-n (and thus the internal magnets 51 a-n and the substrate carriage 13) relative to the central shaft 17 (as described below). Both themotor 57 and thecentral shaft 17 are coupled to a supporting structure 63 (e.g. an equipment chassis, or any other support structure). A second bellows 65 seals thechamber 11 from particles/contaminants generated by theslideable connection 59 which exists between themotor 57 and thecentral shaft 17. - In operation, to rotate the
substrate carriage 13, therotational motor portion 57 a of themotor 57 is energized (e.g., by applying AC or DC power thereto as is known in the art) so as to exert rotational force on the external magnets 55 a-n (e.g., via arotor 64 of therotational motor portion 57 a). Due to magnetic coupling between the internal and external magnets 51 a-n, 55 a-n, as the external magnets 55 a-n rotate under the applied rotational force, the internal magnets 51 a-n and thesubstrate carriage 13 coupled thereto also rotate. The bearings 61 a-n allow theinternal magnet support 53 to rotate freely relative to the stationary portions of themotor 57. The substrate carriage 13 (which is fixedly coupled to the internal magnet support 53) thereby is rotated, and may be rotated 360° if therotational motor portion 57 a is energized for a sufficient time period. - To raise and lower the
substrate carriage 13, thelinear motor portion 57 b of themotor 57 is employed to translate thesubstrate carriage 13 relative to thecentral shaft 17. For example, to lower thesubstrate carriage 13 from its raised position (FIG. 4A) to its lowered position (FIG. 4B) wherein the pair of substrate supports 21 a-b extend below a top surface of thetemperature adjustment plate 15, thelinear motor portion 57 b of themotor 57 is energized so that a translating portion 67 (e.g., a motor shaft) of thelinear motor portion 57 b is extended. As the translatingportion 67 extends, due to contact with thestationary structure 63, the remainder of themotor 57 is pushed away from thestationary structure 63 while thecentral shaft 17 remains stationary. In this manner, the motor 57 (with the exception of the translating portion 67) slides along theslideable connection 59 toward thetemperature adjustment plate 15, translating the external magnets 55 a-n, the internal magnets 51 a-n and the substrate carriage 13 (each of which are coupled either directly or via bearings to the motor 57) toward thetemperature adjustment plate 15. Thesubstrate carriage 13 thereby is lowered. - To raise the
substrate carriage 13 from its lowered position (FIG. 4B) to its raised position (FIG. 4A) wherein the pair of substrate supports 21 a-b are above the top surface of thetemperature adjustment plate 15, the translatingportion 67 is retracted. In response thereto, the remainder of themotor 57, and the external magnets 55 a-n, the internal magnets 51 a-n and thesubstrate carriage 13 coupled thereto, translate away from thetemperature adjustment plate 15. Thesubstrate carriage 13 thereby is raised (FIG. 4A). Preferably, a controller 69 (or the controller C of FIG. 1) is coupled to themotor 57 and is programmed to control the operation/timing of the raising, lowering and rotating functions of thesubstrate carriage 13 described above. - FIGS. 5A and 5B are a front elevational view and a side elevational view, respectively, of the
chamber 11, employing a preferred magnetically levitated and magnetically coupledsubstrate handler 71, rather than thesubstrate handler 24 of FIGS. 2A and 2B. Thesubstrate handler 71 comprises ablade 73 mounted on a first end of ashaft 75, and adisk 77 mounted on a second end of theshaft 75. Thedisk 77 is configured to support four vertically arranged and radially disposed magnets 79 a-d (e.g., four magnets approximately equally spaced about thedisk 77 as shown). The magnets 79 a-d preferably comprise electromagnets. As shown in FIGS. 5A and 5B theshaft 75 extends through anelongated opening 81 located in the bottom wall of thetransfer chamber 11. Theopening 81 extends from thetemperature adjustment plate 15 toward the processing chamber 29 a distance sufficient to place thesubstrate handler 71 beneath one of the substrate seats 23 a-c of thesubstrate carriage 13 when thesubstrate handler 71 is in a retracted position, and sufficient to place theblade 73 of thesubstrate handler 71 above a substrate support (not shown) located within theprocessing chamber 29. Thus the substrate handler 21 may transport a substrate between thesubstrate carriage 13 and aprocessing chamber 29. - An
external channel wall 83 is sealed to (or may be integrally formed with) thechamber 11 and is coextensive with theopening 81. Theexternal channel wall 83 is preferably configured to allow magnetic coupling therethrough. Thesubstrate handler 71 is disposed such that thedisk 77 is contained within theexternal channel wall 83, and such that theshaft 75 extends through theelongated opening 81 into thechamber 11 a distance sufficient to place theblade 73 at the same elevation as atop surface 82 of thetemperature adjustment plate 15. - A
rail 85 extends along the length of theexternal chamber wall 83. Abracket 87 having four external magnets 89 a-d (e.g., magnets) is mounted to therail 85 and is coupled to amotor 91 such that themotor 91 drives thebracket 87 forward and backward along therail 85. The external magnets 89 a-d are vertically arranged and are radially disposed along the inner surface of thebracket 87 so as to be adjacent the outer surface of theexternal channel wall 83 and so as to magnetically couple to the internal magnets 79 a-d. A distance sensor 93 a-d is positioned adjacent each internal/external magnet pair so as to sense the distance therebetween. The sensors 93 a-d, the external magnets 89 a-d and themotor 91 are each coupled to a controller 94 (or to the controller C of FIG. 1), and the controller is adapted to independently adjust the magnetization level of the external magnets 89 a-d (e.g., by adjusting the current supplied to each magnet 89 a-d) so as to maintain equal spacing between the magnet pairs, and thus to maintain therobot blade 73 in a level position. - In operation, to transfer a substrate between the
substrate carriage 13 and theprocessing chamber 29, thesubstrate carriage 13 positions a substrate (not shown) above theblade 73 of thesubstrate handler 71. Thesubstrate carriage 13 then lowers such that theblade 73 passes through the substrate seat 23 lifting the substrate therefrom. Theslit 27 b that separates thechamber 11 and theprocessing chamber 29 also is opened. Thereafter themotor 91 is energized so as to move thebracket 87 along therail 85 toward theprocessing chamber 29 at a speed which will maintain magnetic coupling between the internal magnets 79 a-d and the external magnets 89 a-d. As thebracket 87 moves along therail 85 the distance sensors 93 a-d measure the distance between the internal magnets 79 a-d and the external magnets 89 a-d. These distance measurements are continually supplied to thecontroller 94 which is adapted to adjust the magnetization levels of the external magnets 89 a-d so as to maintain equal spacing between the various internal and external magnet pairs. Thecontroller 94 also adjusts the speed at which themotor 91 moves thebracket 87 along therail 85, reducing the speed if the distance sensors 93 a-d detect thebracket 87 is moving too quickly to maintain sufficient magnetic coupling between the internal and external magnet pairs. After thesubstrate handler 71 has traveled a sufficient distance such that theblade 73 is positioned above a substrate support (not shown) located within theprocessing chamber 29, themotor 91 is deenergized. A substrate lifting mechanism (not shown) such as a plurality of lift pins or a wafer lift hoop elevate from the substrate support, lifting the substrate from theblade 73. Themotor 91 is then energized causing thebracket 87 to move backward toward thesubstrate carriage 13. When theblade 73 has clearedslit 27 b, theslit 27 b closes and processing begins within theprocessing chamber 29. Thesubstrate handler 71 remains in position next to theslit 27 b until processing within theprocessing chamber 29 is complete. - After processing within the
processing chamber 29 is complete thesubstrate handler 71 travels forward in the manner described above to extract the substrate from theprocessing chamber 29. While thesubstrate handler 71 is within theprocessing chamber 29, thesubstrate carriage 13 lowers to a position below the elevation of the substrate handler'sblade 73. Thesubstrate handler 71 then retracts carrying the substrate into position above thesubstrate carriage 13. Thesubstrate carriage 13 elevates lifting the substrate from the substrate handler'sblade 73, and simultaneously lifting any substrates positioned on thetemperature adjustment plate 15 therefrom. Thesubstrate carriage 13 rotates carrying the substrate retrieved from the processing chamber 29 (the “first” processed substrate) to a position above thetemperature adjustment plate 15 and carrying one of the substrates lifted from thetemperature adjustment plate 15 into position above thesubstrate handler 71. Thesubstrate carriage 13 then lowers transferring the substrates from thesubstrate carriage 13 to thetemperature adjustment plate 15 and to thesubstrate handler 71. A second substrate is then loaded into theprocessing chamber 29 as described above and, depending on the configuration of thetemperature adjustment plate 15, the first processed substrate is either cooled on thetemperature adjustment plate 15, heated by the temperature adjustment plate 15 (e.g., as an annealing step) or immediately extracted therefrom by a front-end loader robot (not shown). The front-end loader robot places a new “third” substrate on a first side of thetemperature adjustment plate 15 and extracts the first processed substrate from the second side of thetemperature adjustment plate 15. It will be understood by those of ordinary skill in the art that the sequence of substrate heating, cooling and processing may vary according to the requirements of the fabrication process being performed. For example, a substrate may be degassed via thetemperature adjustment plate 15 prior to entry into theprocessing chamber 29, and/or cooled, annealed or annealed and cooled by thetemperature adjustment plate 15 after processing within theprocessing chamber 29. - Note that an additional advantage of the inventive substrate handling apparatus described herein is that various components (e.g., the
temperature adjustment plate 15, thesubstrate carriage 13, thesubstrate handler 24, the magnetically levitated and magnetically coupledsubstrate handler 71, etc.) are each coupled either directly or indirectly to only one surface of the chamber 11 (e.g., abottom surface 11 b as shown in FIGS. 4A and 4B). Accordingly, as the walls of thechamber 11 deflect during evacuation or venting of the chamber 11 (e.g., due to the generation or elimination of a large pressure differential between the interior and exterior environments of the chamber 11) substrate transfer is unaffected as all substrate handling and/or supporting components are identically affected by such deflections. - The foregoing description discloses only the preferred embodiments of the invention, modifications of the above disclosed apparatus and method which fall within the scope of the invention will be readily apparent to those of ordinary skill in the art. For instance, other methods of heating a substrate may be employed, such as employing a heat lamp positioned along the top surface of the
chamber 11 to aid in heating of a substrate positioned on thetemperature adjustment plate 15 or of a substrate supported by thesubstrate carriage 13. The specific shape of the various chamber components, the coupling therebetween, the number of substrates to be supported by thetemperature adjustment plate 15 and/or thesubstrate carriage 13 may vary as may the number ofprocessing chambers 29 coupled to thechamber 11. Although a magnetically coupled substrate carriage and a substrate handler which is both magnetically coupled and magnetically levitated are preferred, substrate carriages and substrate handlers which are not magnetically coupled or magnetically levitated may be employed. Finally, although the invention is most advantageously employed with a substrate handler preferably adapted only for transferring a substrate along a straight line (a linear substrate handler), other types of substrate handlers may be employed. In fact, the inventive magnetically coupled and magnetically levitated substrate handler may be employed within a transfer chamber such as that described in U.S. Pat. No. 6,287,386 which requires the substrate handler to transport substrates between the substrate carriage and various processing or load lock chambers. The inventive magnetically coupled substrate carriage may be employed in other transfer chamber's such as those described in U.S. Pat. No. 6,287,386, as may the temperature adjustment plate. The concept of heating or cooling a substrate via a heating and/or cooling mechanism contained within a transfer chamber, may be employed within other chambers, and is not to be limited to the specific chambers described herein. - Further modifications may be advantageously made to the chamber. For instance, the cooling plate may be located above the substrate carriage. To transfer a wafer to such a cooling plate an empty slot of the substrate carriage is positioned below the cooling plate, the substrate carriage then elevates to a position above the cooling plate. The carousel rotates so as to position a wafer above the cooling plate and then lowers the wafer onto the cooling plate.
- An inventive indexing pod door opener may eliminate the need for a separate front end robot. Preferably the pod door opener is provided with vacuum pump/vent capability so that the pod door may operate as a load lock. The substrate carriage chamber's robot may directly extract wafers from the pod door opener. The substrate carriage chamber's robot stroke need not be lengthened because the chamber is designed such that the robot can load/unload wafers from processing chambers, and loading/unloading from one or more processing chambers requires the same stroke as does loading and unloading wafers from the pod door opener. Further, the pod door opener may index vertically to eliminate the need for the pod door receiver to move the pod door vertically to allow access to wafers contained within the pod, and to eliminate the need for the loading/unloading robot to index vertically. Finally, numerous chambers configured in accordance with the invention may be coupled via passthrough tunnels and may allow creation of a stage vacuum system and/or a transfer chamber than is not exposed atmosphere.
- Accordingly, while the present invention has been disclosed in connection with the preferred embodiments thereof, it should be understood that other embodiments may fall within the spirit and scope of the invention, as defined by the following claims.
Claims (19)
1. A method of transferring a substrate to a vacuum processing chamber comprising:
placing a substrate within a transfer chamber;
adjusting the temperature of the substrate while the substrate is within the transfer chamber; and
transferring the substrate from the transfer chamber to a vacuum processing chamber via a substrate handler positioned within the transfer chamber.
2. The method of claim 1 wherein adjusting the temperature of the substrate comprises placing the substrate on a temperature adjustment plate.
3. The method of claim 1 further comprising storing at least a first substrate and adjusting the temperature of the first substrate while a second substrate is being processed within the vacuum processing chamber.
4. A method of transferring a substrate to a vacuum processing chamber comprising:
placing a substrate within a transfer chamber;
employing a temperature adjustment plate to adjust the temperature of the substrate while the substrate is within the transfer chamber; and
transferring the substrate from the transfer chamber to a vacuum processing chamber via a substrate handler positioned within the transfer chamber.
5. The method of claim 4 wherein adjusting the temperature of the substrate comprises placing the substrate on the temperature adjustment plate.
6. The method of claim 4 further comprising storing at least a first substrate and adjusting the temperature of the first substrate while a second substrate is being processed within the vacuum processing chamber.
7. A vacuum processing tool comprising:
one or more vacuum processing chambers;
a sealable transfer chamber adapted to pump and vent between vacuum and atmospheric pressure;
a substrate handler contained within the sealable transfer chamber; and
a controller, coupled to the sealable transfer chamber, programmed to pump and vent the sealable transfer chamber between vacuum and atmospheric pressure, each time a substrate is loaded into or out of the processing tool.
8. The apparatus of claim 7 wherein the substrate handler is magnetically coupled.
9. The apparatus of claim 7 wherein the sealable transfer chamber comprises a rotatable substrate storage member that operates in a plane above the substrate handler; and
wherein the substrate storage member and the substrate handler are adapted such that relative motion therebetween transfers a substrate between the substrate handler and the substrate storage member.
10. The apparatus of claim 9 wherein the substrate handler comprises a blade for supporting a substrate; and
the substrate storage member comprises a plurality of opposed substrate supports which define a passage through which the substrate handler blade may pass.
11. The apparatus of claim 9 wherein the substrate storage member and the substrate handler are both supported by a first wall of the sealable transfer chamber such that the substrate storage member and the substrate handler both move if the first wall deflects.
12. The apparatus of claim 11 further comprising a temperature adjustment plate adapted to support a substrate thereon; wherein the substrate storage member and the temperature adjustment plate are adapted such that relative motion therebetween transfers a substrate between the substrate storage member and the temperature adjustment plate, and wherein the temperature adjustment plate is supported by the first wall of the sealable transfer chamber.
13. A method comprising:
placing a substrate within a load lock/transfer chamber;
pumping the load lock/transfer chamber to a desired vacuum level;
opening a sealable slit that connects the load lock/transfer chamber to a vacuum processing chamber;
transferring the substrate through the sealable slit into the vacuum processing chamber via a substrate handler contained within the load lock/transfer chamber.
14. The method of claim 13 wherein transferring the substrate comprises transferring the substrate along a straight line from the load lock/transfer chamber to the processing chamber.
15. The method of claim 13 wherein placing a substrate within the load lock/transfer chamber comprises placing two substrates within the load lock/transfer chamber; and
further comprising storing one of the two substrates within the load lock/transfer chamber while processing the other within the vacuum processing chamber.
16. The method of claim 15 wherein placing the two substrates within the load lock/transfer chamber comprises placing the two substrates on a rotatable substrate carriage having two horizontally adjacent storage locations; and
further comprising transferring a substrate to the substrate handler via positioning a storage location above the substrate handler, and changing the elevation of the substrate carriage relative to the substrate handler.
17. The method of claim 16 wherein transferring the substrate into the vacuum processing chamber comprises transferring the substrate along a straight line from the load lock/transfer chamber to the vacuum processing chamber.
18. A transfer chamber comprising:
a sealable chamber having a main portion and a smaller outwardly extending portion;
a rotatable substrate carriage contained within the sealable chamber, the rotatable substrate support having:
at least one substrate storage location positioned within the main portion of the sealable chamber;
an internal magnet supporting portion that extends from a central region of the rotatable substrate carriage into the outwardly extending portion of the sealable chamber;
at least one internal magnet attached to the internal magnet supporting portion that is contained in the outwardly extending portion of the sealable chamber;
at least one external magnet positioned outside the outwardly extending portion of the sealable chamber and magnetically coupled to the at least one internal magnet; and
a motor coupled to the at least one external magnet and adapted to rotate the external magnet about the outwardly extending portion of the sealable chamber so as to cause the rotatable substrate support to rotate.
19. The apparatus of claim 18 wherein the motor is further adapted to lift and lower the external magnet so as to cause the rotatable substrate support to lift and lower.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/193,605 US20020170672A1 (en) | 1997-06-04 | 2002-07-11 | Method and apparatus for improved substrate handling |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/869,111 US5951770A (en) | 1997-06-04 | 1997-06-04 | Carousel wafer transfer system |
US09/332,207 US6287386B1 (en) | 1997-06-04 | 1999-06-12 | Carousel wafer transfer system |
US09/538,013 US6468353B1 (en) | 1997-06-04 | 2000-03-29 | Method and apparatus for improved substrate handling |
US10/193,605 US20020170672A1 (en) | 1997-06-04 | 2002-07-11 | Method and apparatus for improved substrate handling |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/538,013 Division US6468353B1 (en) | 1997-06-04 | 2000-03-29 | Method and apparatus for improved substrate handling |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020170672A1 true US20020170672A1 (en) | 2002-11-21 |
Family
ID=46276720
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/538,013 Expired - Fee Related US6468353B1 (en) | 1997-06-04 | 2000-03-29 | Method and apparatus for improved substrate handling |
US10/193,605 Abandoned US20020170672A1 (en) | 1997-06-04 | 2002-07-11 | Method and apparatus for improved substrate handling |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/538,013 Expired - Fee Related US6468353B1 (en) | 1997-06-04 | 2000-03-29 | Method and apparatus for improved substrate handling |
Country Status (1)
Country | Link |
---|---|
US (2) | US6468353B1 (en) |
Cited By (19)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040182315A1 (en) * | 2003-03-17 | 2004-09-23 | Tokyo Electron Limited | Reduced maintenance chemical oxide removal (COR) processing system |
US20050072716A1 (en) * | 2001-07-15 | 2005-04-07 | Efrain Quiles | Processing system |
NL1028907C2 (en) * | 2005-04-29 | 2006-10-31 | Fico Bv | Method and device for supplying and removing carriers with electronic components. |
US20070141748A1 (en) * | 2005-12-20 | 2007-06-21 | Applied Materials, Inc. | Extended mainframe designs for semiconductor device manufacturing equipment |
US20080121277A1 (en) * | 2004-02-19 | 2008-05-29 | Robinson Matthew R | High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles |
US20090108544A1 (en) * | 2007-10-26 | 2009-04-30 | Applied Materials, Inc. | Methods and apparatus for sealing a slit valve door |
US20100313939A1 (en) * | 2009-06-12 | 2010-12-16 | Miasole | Systems methods and apparatuses for magnetic processing of solar modules |
US20100317141A1 (en) * | 2009-06-12 | 2010-12-16 | Miasole | Systems, methods and apparatuses for magnetic processing of solar modules |
US9355876B2 (en) | 2013-03-15 | 2016-05-31 | Applied Materials, Inc. | Process load lock apparatus, lift assemblies, electronic device processing systems, and methods of processing substrates in load lock locations |
US9524889B2 (en) | 2013-03-15 | 2016-12-20 | Applied Materials, Inc. | Processing systems and apparatus adapted to process substrates in electronic device manufacturing |
US10119191B2 (en) | 2016-06-08 | 2018-11-06 | Applied Materials, Inc. | High flow gas diffuser assemblies, systems, and methods |
US10361099B2 (en) | 2017-06-23 | 2019-07-23 | Applied Materials, Inc. | Systems and methods of gap calibration via direct component contact in electronic device manufacturing systems |
US10684159B2 (en) | 2016-06-27 | 2020-06-16 | Applied Materials, Inc. | Methods, systems, and apparatus for mass flow verification based on choked flow |
US10847391B2 (en) | 2013-03-12 | 2020-11-24 | Applied Materials, Inc. | Semiconductor device manufacturing platform with single and twinned processing chambers |
US10971381B2 (en) | 2013-11-04 | 2021-04-06 | Applied Materials, Inc. | Transfer chambers with an increased number of sides, semiconductor device manufacturing processing tools, and processing methods |
US11107709B2 (en) | 2019-01-30 | 2021-08-31 | Applied Materials, Inc. | Temperature-controllable process chambers, electronic device processing systems, and manufacturing methods |
CN114753000A (en) * | 2022-04-15 | 2022-07-15 | 季华实验室 | Substrate loading device and feeding and discharging system of epitaxial furnace |
CN114975210A (en) * | 2022-07-27 | 2022-08-30 | 江苏邑文微电子科技有限公司 | Wafer heating transfer device and chemical vapor deposition equipment |
US20230046060A1 (en) * | 2021-08-12 | 2023-02-16 | Samsung Electronics Co., Ltd. | Substrate rotating apparatus, substrate processing system including the same, and substrate processing method using the same |
Families Citing this family (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3535457B2 (en) * | 2000-09-11 | 2004-06-07 | 東京エレクトロン株式会社 | Substrate heat treatment equipment |
US6461085B1 (en) * | 2001-03-16 | 2002-10-08 | Toda Citron Technologies, Inc. | Sputter pallet loader |
DE10113898A1 (en) * | 2001-03-21 | 2002-09-26 | Kammann Maschf Werner | Device for feeding and / or removing magazines filled with objects |
US7474934B2 (en) * | 2004-07-12 | 2009-01-06 | Applied Materials, Inc. | Methods and apparatus for enhancing electronic device manufacturing throughput |
US7551265B2 (en) | 2004-10-01 | 2009-06-23 | Nikon Corporation | Contact material and system for ultra-clean applications |
US7798764B2 (en) | 2005-12-22 | 2010-09-21 | Applied Materials, Inc. | Substrate processing sequence in a cartesian robot cluster tool |
US7371022B2 (en) | 2004-12-22 | 2008-05-13 | Sokudo Co., Ltd. | Developer endpoint detection in a track lithography system |
US20060236941A1 (en) * | 2005-04-20 | 2006-10-26 | Applied Materials, Inc. | Passive wafer support for particle free wafer acceleration |
US20060251499A1 (en) * | 2005-05-09 | 2006-11-09 | Lunday Andrew P | Linear substrate delivery system with intermediate carousel |
US9524896B2 (en) * | 2006-09-19 | 2016-12-20 | Brooks Automation Inc. | Apparatus and methods for transporting and processing substrates |
US7901539B2 (en) * | 2006-09-19 | 2011-03-08 | Intevac, Inc. | Apparatus and methods for transporting and processing substrates |
US8293066B2 (en) * | 2006-09-19 | 2012-10-23 | Brooks Automation, Inc. | Apparatus and methods for transporting and processing substrates |
US8419341B2 (en) | 2006-09-19 | 2013-04-16 | Brooks Automation, Inc. | Linear vacuum robot with Z motion and articulated arm |
TWI488247B (en) * | 2008-11-12 | 2015-06-11 | Intevac Inc | Apparatus and method for transporting and processing substrates |
TWI394224B (en) * | 2009-02-24 | 2013-04-21 | Intevac Inc | Apparatus and methods for transporting and processing substrates |
WO2011001178A1 (en) * | 2009-06-30 | 2011-01-06 | Roylan Developments Limited | Apparatus for purging containers for storing sensitive materials |
US9435025B2 (en) | 2013-09-25 | 2016-09-06 | Applied Materials, Inc. | Gas apparatus, systems, and methods for chamber ports |
KR102161685B1 (en) | 2013-09-26 | 2020-10-05 | 어플라이드 머티어리얼스, 인코포레이티드 | Mixed-platform apparatus, systems, and methods for substrate processing |
US20150090295A1 (en) | 2013-09-28 | 2015-04-02 | Applied Materials, Inc. | Apparatus and methods for a mask inverter |
CN105580107B (en) | 2013-09-30 | 2019-02-19 | 应用材料公司 | Transfer chamber gas cleaning plant, electronic equipment processing system and purification method |
KR102686315B1 (en) | 2013-11-13 | 2024-07-19 | 브룩스 오토메이션 인코퍼레이티드 | Sealed robot drive |
US10348172B2 (en) | 2013-11-13 | 2019-07-09 | Brooks Automation, Inc. | Sealed switched reluctance motor |
TWI695447B (en) | 2013-11-13 | 2020-06-01 | 布魯克斯自動機械公司 | Transport apparatus |
KR20220000416A (en) | 2013-11-13 | 2022-01-03 | 브룩스 오토메이션 인코퍼레이티드 | Method and apparatus for brushless electrical machine control |
JP6826044B2 (en) | 2015-04-20 | 2021-02-03 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Buffer chamber wafer heating mechanism and support robot |
US10520371B2 (en) | 2015-10-22 | 2019-12-31 | Applied Materials, Inc. | Optical fiber temperature sensors, temperature monitoring apparatus, and manufacturing methods |
US11802340B2 (en) * | 2016-12-12 | 2023-10-31 | Applied Materials, Inc. | UHV in-situ cryo-cool chamber |
EP3419049A1 (en) * | 2017-06-22 | 2018-12-26 | Meyer Burger (Germany) GmbH | Heatable wafer-supporting member, and machining method |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4664578A (en) * | 1982-09-17 | 1987-05-12 | Hitachi, Ltd. | Semiconductor substrate transport system |
US4776744A (en) * | 1985-09-09 | 1988-10-11 | Applied Materials, Inc. | Systems and methods for wafer handling in semiconductor process equipment |
US4944650A (en) * | 1987-11-02 | 1990-07-31 | Mitsubishi Kinzoku Kabushiki Kaisha | Apparatus for detecting and centering wafer |
US4951601A (en) * | 1986-12-19 | 1990-08-28 | Applied Materials, Inc. | Multi-chamber integrated process system |
US4971512A (en) * | 1987-12-18 | 1990-11-20 | Korea Electronics And Telecommunications Research Institute | Transport device for wafers of variable diameter |
US5002010A (en) * | 1989-10-18 | 1991-03-26 | Varian Associates, Inc. | Vacuum vessel |
US5091217A (en) * | 1989-05-22 | 1992-02-25 | Advanced Semiconductor Materials, Inc. | Method for processing wafers in a multi station common chamber reactor |
US5133635A (en) * | 1990-03-05 | 1992-07-28 | Tet Techno Investment Trust Settlement | Method and apparatus for holding and conveying platelike substrates |
US5302209A (en) * | 1991-02-15 | 1994-04-12 | Semiconductor Process Laboratory Co., Ltd. | Apparatus for manufacturing semiconductor device |
US5516732A (en) * | 1992-12-04 | 1996-05-14 | Sony Corporation | Wafer processing machine vacuum front end method and apparatus |
US5818137A (en) * | 1995-10-26 | 1998-10-06 | Satcon Technology, Inc. | Integrated magnetic levitation and rotation system |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5863348A (en) | 1993-12-22 | 1999-01-26 | International Business Machines Corporation | Programmable method for cleaning semiconductor elements |
JPH09115985A (en) * | 1995-10-24 | 1997-05-02 | Toshiba Mach Co Ltd | Wafer transfer chamber and preheating method for wafer |
US5879461A (en) * | 1997-04-21 | 1999-03-09 | Brooks Automation, Inc. | Metered gas control in a substrate processing apparatus |
US5951770A (en) | 1997-06-04 | 1999-09-14 | Applied Materials, Inc. | Carousel wafer transfer system |
US6312525B1 (en) * | 1997-07-11 | 2001-11-06 | Applied Materials, Inc. | Modular architecture for semiconductor wafer fabrication equipment |
US6086676A (en) * | 1997-07-11 | 2000-07-11 | Applied Materials, Inc. | Programmable electrical interlock system for a vacuum processing system |
US6000227A (en) * | 1997-09-24 | 1999-12-14 | Applied Materials, Inc. | Wafer cooling in a transfer chamber of a vacuum processing system |
JP4014059B2 (en) * | 1997-12-29 | 2007-11-28 | 株式会社アルバック | Single wafer vacuum processing equipment |
US6162299A (en) * | 1998-07-10 | 2000-12-19 | Asm America, Inc. | Multi-position load lock chamber |
-
2000
- 2000-03-29 US US09/538,013 patent/US6468353B1/en not_active Expired - Fee Related
-
2002
- 2002-07-11 US US10/193,605 patent/US20020170672A1/en not_active Abandoned
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4664578A (en) * | 1982-09-17 | 1987-05-12 | Hitachi, Ltd. | Semiconductor substrate transport system |
US4776744A (en) * | 1985-09-09 | 1988-10-11 | Applied Materials, Inc. | Systems and methods for wafer handling in semiconductor process equipment |
US4951601A (en) * | 1986-12-19 | 1990-08-28 | Applied Materials, Inc. | Multi-chamber integrated process system |
US4944650A (en) * | 1987-11-02 | 1990-07-31 | Mitsubishi Kinzoku Kabushiki Kaisha | Apparatus for detecting and centering wafer |
US4971512A (en) * | 1987-12-18 | 1990-11-20 | Korea Electronics And Telecommunications Research Institute | Transport device for wafers of variable diameter |
US5091217A (en) * | 1989-05-22 | 1992-02-25 | Advanced Semiconductor Materials, Inc. | Method for processing wafers in a multi station common chamber reactor |
US5002010A (en) * | 1989-10-18 | 1991-03-26 | Varian Associates, Inc. | Vacuum vessel |
US5133635A (en) * | 1990-03-05 | 1992-07-28 | Tet Techno Investment Trust Settlement | Method and apparatus for holding and conveying platelike substrates |
US5302209A (en) * | 1991-02-15 | 1994-04-12 | Semiconductor Process Laboratory Co., Ltd. | Apparatus for manufacturing semiconductor device |
US5516732A (en) * | 1992-12-04 | 1996-05-14 | Sony Corporation | Wafer processing machine vacuum front end method and apparatus |
US5818137A (en) * | 1995-10-26 | 1998-10-06 | Satcon Technology, Inc. | Integrated magnetic levitation and rotation system |
Cited By (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20050072716A1 (en) * | 2001-07-15 | 2005-04-07 | Efrain Quiles | Processing system |
US8796589B2 (en) | 2001-07-15 | 2014-08-05 | Applied Materials, Inc. | Processing system with the dual end-effector handling |
US10665476B2 (en) | 2001-07-15 | 2020-05-26 | Applied Materials, Inc. | Substrate processing system, valve assembly, and processing method |
US20090226633A1 (en) * | 2003-03-17 | 2009-09-10 | Tokyo Electron Limited | Reduced Maintenance Chemical Oxide Removal (COR) Processing System |
US8409399B2 (en) | 2003-03-17 | 2013-04-02 | Tokyo Electron Limited | Reduced maintenance chemical oxide removal (COR) processing system |
US20040182315A1 (en) * | 2003-03-17 | 2004-09-23 | Tokyo Electron Limited | Reduced maintenance chemical oxide removal (COR) processing system |
US8623448B2 (en) | 2004-02-19 | 2014-01-07 | Nanosolar, Inc. | High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles |
US20080121277A1 (en) * | 2004-02-19 | 2008-05-29 | Robinson Matthew R | High-throughput printing of semiconductor precursor layer from chalcogenide microflake particles |
WO2007001179A2 (en) * | 2005-04-29 | 2007-01-04 | Fico B.V. | Method and device for supplying and discharging carriers with electronic components |
WO2007001179A3 (en) * | 2005-04-29 | 2007-08-16 | Fico Bv | Method and device for supplying and discharging carriers with electronic components |
TWI453847B (en) * | 2005-04-29 | 2014-09-21 | Besi Netherlands Bv | Method and device for supplying and discharging carriers with electronic components |
NL1028907C2 (en) * | 2005-04-29 | 2006-10-31 | Fico Bv | Method and device for supplying and removing carriers with electronic components. |
US7720655B2 (en) | 2005-12-20 | 2010-05-18 | Applied Materials, Inc. | Extended mainframe designs for semiconductor device manufacturing equipment |
US20070141748A1 (en) * | 2005-12-20 | 2007-06-21 | Applied Materials, Inc. | Extended mainframe designs for semiconductor device manufacturing equipment |
US8991785B2 (en) | 2007-10-26 | 2015-03-31 | Applied Materials, Inc. | Methods and apparatus for sealing a slit valve door |
US20090108544A1 (en) * | 2007-10-26 | 2009-04-30 | Applied Materials, Inc. | Methods and apparatus for sealing a slit valve door |
US20100317141A1 (en) * | 2009-06-12 | 2010-12-16 | Miasole | Systems, methods and apparatuses for magnetic processing of solar modules |
US8888869B2 (en) | 2009-06-12 | 2014-11-18 | Hanergy Holding Group Ltd. | Systems, methods and apparatuses for magnetic processing of solar modules |
US20100313939A1 (en) * | 2009-06-12 | 2010-12-16 | Miasole | Systems methods and apparatuses for magnetic processing of solar modules |
US9105778B2 (en) | 2009-06-12 | 2015-08-11 | Apollo Precision (Kunming) Yuanhong Limited | Systems methods and apparatuses for magnetic processing of solar modules |
US8062384B2 (en) * | 2009-06-12 | 2011-11-22 | Miasole | Systems, methods and apparatuses for magnetic processing of solar modules |
US10847391B2 (en) | 2013-03-12 | 2020-11-24 | Applied Materials, Inc. | Semiconductor device manufacturing platform with single and twinned processing chambers |
US9355876B2 (en) | 2013-03-15 | 2016-05-31 | Applied Materials, Inc. | Process load lock apparatus, lift assemblies, electronic device processing systems, and methods of processing substrates in load lock locations |
US9524889B2 (en) | 2013-03-15 | 2016-12-20 | Applied Materials, Inc. | Processing systems and apparatus adapted to process substrates in electronic device manufacturing |
US10971381B2 (en) | 2013-11-04 | 2021-04-06 | Applied Materials, Inc. | Transfer chambers with an increased number of sides, semiconductor device manufacturing processing tools, and processing methods |
US11087998B2 (en) | 2013-11-04 | 2021-08-10 | Applied Materials, Inc. | Transfer chambers with an increased number of sides, semiconductor device manufacturing processing tools, and processing methods |
US10119191B2 (en) | 2016-06-08 | 2018-11-06 | Applied Materials, Inc. | High flow gas diffuser assemblies, systems, and methods |
US10684159B2 (en) | 2016-06-27 | 2020-06-16 | Applied Materials, Inc. | Methods, systems, and apparatus for mass flow verification based on choked flow |
US11519773B2 (en) | 2016-06-27 | 2022-12-06 | Applied Materials, Inc. | Methods, systems, and apparatus for mass flow verification based on choked flow |
US10916451B2 (en) | 2017-06-23 | 2021-02-09 | Applied Materials, Inc. | Systems and methods of gap calibration via direct component contact in electronic device manufacturing systems |
US10361099B2 (en) | 2017-06-23 | 2019-07-23 | Applied Materials, Inc. | Systems and methods of gap calibration via direct component contact in electronic device manufacturing systems |
US11107709B2 (en) | 2019-01-30 | 2021-08-31 | Applied Materials, Inc. | Temperature-controllable process chambers, electronic device processing systems, and manufacturing methods |
US11837478B2 (en) | 2019-01-30 | 2023-12-05 | Applied Materials, Inc. | Temperature-controllable process chambers, electronic device processing systems, and manufacturing methods |
US20230046060A1 (en) * | 2021-08-12 | 2023-02-16 | Samsung Electronics Co., Ltd. | Substrate rotating apparatus, substrate processing system including the same, and substrate processing method using the same |
CN114753000A (en) * | 2022-04-15 | 2022-07-15 | 季华实验室 | Substrate loading device and feeding and discharging system of epitaxial furnace |
CN114975210A (en) * | 2022-07-27 | 2022-08-30 | 江苏邑文微电子科技有限公司 | Wafer heating transfer device and chemical vapor deposition equipment |
Also Published As
Publication number | Publication date |
---|---|
US6468353B1 (en) | 2002-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6468353B1 (en) | Method and apparatus for improved substrate handling | |
US6575737B1 (en) | Method and apparatus for improved substrate handling | |
US6276072B1 (en) | Method and apparatus for heating and cooling substrates | |
KR20010020944A (en) | Load-lock with external staging area | |
US5697749A (en) | Wafer processing apparatus | |
US6860965B1 (en) | High throughput architecture for semiconductor processing | |
US6042623A (en) | Two-wafer loadlock wafer processing apparatus and loading and unloading method therefor | |
EP0584076B1 (en) | Semiconductor wafer processing module | |
KR102616427B1 (en) | Ambient controlled transfer module and process system | |
JPS6332931A (en) | Plasma etching system | |
WO2003009346A2 (en) | Processing system | |
JPH0629369A (en) | Wafer treatment station | |
JPS63252439A (en) | Integrated processing system of multichamber | |
KR20030032034A (en) | Double dual slot load lock for process equipment | |
US20010041121A1 (en) | Single chamber vacuum processing tool | |
WO2005113853A1 (en) | Methods and apparatuses for transferring articles through a load lock chamber under vacuum | |
EP0228901A2 (en) | Wafer transfer apparatus | |
JP2000323549A (en) | Vacuum processing apparatus | |
KR20090002417U (en) | Double dual slot load lock for process equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |