US20020165406A1 - Methods of synthesizing acylanilides including bicalutamide and derivatives thereof - Google Patents
Methods of synthesizing acylanilides including bicalutamide and derivatives thereof Download PDFInfo
- Publication number
- US20020165406A1 US20020165406A1 US09/847,229 US84722901A US2002165406A1 US 20020165406 A1 US20020165406 A1 US 20020165406A1 US 84722901 A US84722901 A US 84722901A US 2002165406 A1 US2002165406 A1 US 2002165406A1
- Authority
- US
- United States
- Prior art keywords
- compound
- formula
- carbon atoms
- substituted
- acylanilide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 93
- 230000002194 synthesizing effect Effects 0.000 title claims abstract description 17
- LKJPYSCBVHEWIU-KRWDZBQOSA-N (R)-bicalutamide Chemical compound C([C@@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-KRWDZBQOSA-N 0.000 title claims description 34
- 229960000997 bicalutamide Drugs 0.000 title claims description 33
- 150000001875 compounds Chemical class 0.000 claims abstract description 157
- 125000000217 alkyl group Chemical group 0.000 claims description 43
- 125000004432 carbon atom Chemical group C* 0.000 claims description 42
- -1 cyano, carbamoyl Chemical group 0.000 claims description 41
- 150000001266 acyl halides Chemical class 0.000 claims description 15
- 229910052739 hydrogen Chemical group 0.000 claims description 15
- 239000001257 hydrogen Chemical group 0.000 claims description 15
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 15
- 230000002140 halogenating effect Effects 0.000 claims description 14
- LMBFAGIMSUYTBN-MPZNNTNKSA-N teixobactin Chemical compound C([C@H](C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H](CCC(N)=O)C(=O)N[C@H]([C@@H](C)CC)C(=O)N[C@@H]([C@@H](C)CC)C(=O)N[C@@H](CO)C(=O)N[C@H]1C(N[C@@H](C)C(=O)N[C@@H](C[C@@H]2NC(=N)NC2)C(=O)N[C@H](C(=O)O[C@H]1C)[C@@H](C)CC)=O)NC)C1=CC=CC=C1 LMBFAGIMSUYTBN-MPZNNTNKSA-N 0.000 claims description 14
- 150000001732 carboxylic acid derivatives Chemical class 0.000 claims description 13
- 125000004093 cyano group Chemical group *C#N 0.000 claims description 13
- 125000004644 alkyl sulfinyl group Chemical group 0.000 claims description 12
- 125000004390 alkyl sulfonyl group Chemical group 0.000 claims description 12
- 125000004414 alkyl thio group Chemical group 0.000 claims description 12
- 125000005010 perfluoroalkyl group Chemical group 0.000 claims description 12
- 125000003545 alkoxy group Chemical group 0.000 claims description 11
- 229910052736 halogen Chemical group 0.000 claims description 11
- 150000002367 halogens Chemical group 0.000 claims description 11
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical group [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 claims description 10
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 10
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 10
- 229910052717 sulfur Chemical group 0.000 claims description 10
- 239000011593 sulfur Chemical group 0.000 claims description 10
- FYSNRJHAOHDILO-UHFFFAOYSA-N thionyl chloride Chemical compound ClS(Cl)=O FYSNRJHAOHDILO-UHFFFAOYSA-N 0.000 claims description 10
- 125000001589 carboacyl group Chemical group 0.000 claims description 9
- 125000001188 haloalkyl group Chemical group 0.000 claims description 9
- 125000000623 heterocyclic group Chemical group 0.000 claims description 9
- 125000003170 phenylsulfonyl group Chemical group C1(=CC=CC=C1)S(=O)(=O)* 0.000 claims description 9
- 125000000475 sulfinyl group Chemical group [*:2]S([*:1])=O 0.000 claims description 9
- 125000000472 sulfonyl group Chemical group *S(*)(=O)=O 0.000 claims description 9
- MZRVEZGGRBJDDB-UHFFFAOYSA-N N-Butyllithium Chemical compound [Li]CCCC MZRVEZGGRBJDDB-UHFFFAOYSA-N 0.000 claims description 8
- 125000001309 chloro group Chemical group Cl* 0.000 claims description 8
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 claims description 8
- 150000002902 organometallic compounds Chemical class 0.000 claims description 8
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 claims description 8
- 229920001774 Perfluoroether Chemical group 0.000 claims description 7
- 125000002947 alkylene group Chemical group 0.000 claims description 7
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical group [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 7
- 229910052760 oxygen Inorganic materials 0.000 claims description 7
- 239000001301 oxygen Substances 0.000 claims description 7
- 125000001424 substituent group Chemical group 0.000 claims description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical group N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 6
- 229920006395 saturated elastomer Polymers 0.000 claims description 6
- 125000001246 bromo group Chemical group Br* 0.000 claims description 5
- 125000001153 fluoro group Chemical group F* 0.000 claims description 5
- 125000001841 imino group Chemical group [H]N=* 0.000 claims description 5
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical group [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 4
- 125000003342 alkenyl group Chemical group 0.000 claims description 4
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 125000002768 hydroxyalkyl group Chemical group 0.000 claims description 4
- 125000002346 iodo group Chemical group I* 0.000 claims description 4
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 claims description 4
- HFRXJVQOXRXOPP-UHFFFAOYSA-N thionyl bromide Chemical compound BrS(Br)=O HFRXJVQOXRXOPP-UHFFFAOYSA-N 0.000 claims description 4
- 125000005118 N-alkylcarbamoyl group Chemical group 0.000 claims description 3
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 3
- 125000005277 alkyl imino group Chemical group 0.000 claims description 3
- 125000005605 benzo group Chemical group 0.000 claims description 3
- 125000005842 heteroatom Chemical group 0.000 claims description 3
- 125000001624 naphthyl group Chemical group 0.000 claims description 3
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 125000001820 oxy group Chemical group [*:1]O[*:2] 0.000 claims description 3
- 239000008194 pharmaceutical composition Substances 0.000 claims description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 claims description 3
- 125000001255 4-fluorophenyl group Chemical group [H]C1=C([H])C(*)=C([H])C([H])=C1F 0.000 claims description 2
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 2
- 125000000446 sulfanediyl group Chemical group *S* 0.000 claims 2
- 150000002431 hydrogen Chemical class 0.000 claims 1
- 239000000203 mixture Substances 0.000 description 37
- PAYRUJLWNCNPSJ-UHFFFAOYSA-N Aniline Chemical compound NC1=CC=CC=C1 PAYRUJLWNCNPSJ-UHFFFAOYSA-N 0.000 description 24
- 0 [1*]C(=O)C(=O)O Chemical compound [1*]C(=O)C(=O)O 0.000 description 22
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 16
- 238000009472 formulation Methods 0.000 description 16
- 150000003839 salts Chemical class 0.000 description 15
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 11
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 9
- 239000002904 solvent Substances 0.000 description 9
- 239000000543 intermediate Substances 0.000 description 8
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 8
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 7
- 230000015572 biosynthetic process Effects 0.000 description 7
- 238000007796 conventional method Methods 0.000 description 7
- 239000000243 solution Substances 0.000 description 7
- 238000003786 synthesis reaction Methods 0.000 description 7
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 6
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 6
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- LCTONWCANYUPML-UHFFFAOYSA-N Pyruvic acid Chemical compound CC(=O)C(O)=O LCTONWCANYUPML-UHFFFAOYSA-N 0.000 description 6
- 239000007788 liquid Substances 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 5
- 238000006243 chemical reaction Methods 0.000 description 5
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 5
- 239000007858 starting material Substances 0.000 description 5
- CSNNHWWHGAXBCP-UHFFFAOYSA-L Magnesium sulfate Chemical compound [Mg+2].[O-][S+2]([O-])([O-])[O-] CSNNHWWHGAXBCP-UHFFFAOYSA-L 0.000 description 4
- LKJPYSCBVHEWIU-UHFFFAOYSA-N N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methylpropanamide Chemical compound C=1C=C(C#N)C(C(F)(F)F)=CC=1NC(=O)C(O)(C)CS(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-UHFFFAOYSA-N 0.000 description 4
- 239000008187 granular material Substances 0.000 description 4
- 239000004615 ingredient Substances 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- RFFLAFLAYFXFSW-UHFFFAOYSA-N 1,2-dichlorobenzene Chemical compound ClC1=CC=CC=C1Cl RFFLAFLAYFXFSW-UHFFFAOYSA-N 0.000 description 3
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 3
- DPJHZJGAGIWXTD-UHFFFAOYSA-N 1-fluoro-4-methylsulfonylbenzene Chemical compound CS(=O)(=O)C1=CC=C(F)C=C1 DPJHZJGAGIWXTD-UHFFFAOYSA-N 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- MUBZPKHOEPUJKR-UHFFFAOYSA-N Oxalic acid Chemical compound OC(=O)C(O)=O MUBZPKHOEPUJKR-UHFFFAOYSA-N 0.000 description 3
- 206010060862 Prostate cancer Diseases 0.000 description 3
- 208000000236 Prostatic Neoplasms Diseases 0.000 description 3
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 3
- 239000002585 base Substances 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 3
- 238000004128 high performance liquid chromatography Methods 0.000 description 3
- 238000002347 injection Methods 0.000 description 3
- 239000007924 injection Substances 0.000 description 3
- 239000003956 nonsteroidal anti androgen Substances 0.000 description 3
- 125000001501 propionyl group Chemical group O=C([*])C([H])([H])C([H])([H])[H] 0.000 description 3
- 238000000926 separation method Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 239000000725 suspension Substances 0.000 description 3
- 239000003826 tablet Substances 0.000 description 3
- 230000000699 topical effect Effects 0.000 description 3
- 238000004293 19F NMR spectroscopy Methods 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- 125000003903 2-propenyl group Chemical group [H]C([*])([H])C([H])=C([H])[H] 0.000 description 2
- 241000220479 Acacia Species 0.000 description 2
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 2
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 2
- ONIBWKKTOPOVIA-SCSAIBSYSA-N D-Proline Chemical compound OC(=O)[C@H]1CCCN1 ONIBWKKTOPOVIA-SCSAIBSYSA-N 0.000 description 2
- 229930182820 D-proline Natural products 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 2
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 2
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical compound Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 2
- 235000010643 Leucaena leucocephala Nutrition 0.000 description 2
- AFVFQIVMOAPDHO-UHFFFAOYSA-N Methanesulfonic acid Chemical compound CS(O)(=O)=O AFVFQIVMOAPDHO-UHFFFAOYSA-N 0.000 description 2
- BZLVMXJERCGZMT-UHFFFAOYSA-N Methyl tert-butyl ether Chemical compound COC(C)(C)C BZLVMXJERCGZMT-UHFFFAOYSA-N 0.000 description 2
- OFBQJSOFQDEBGM-UHFFFAOYSA-N Pentane Chemical compound CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 2
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 2
- 229930006000 Sucrose Natural products 0.000 description 2
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 2
- SZCDUOGTNCRSCX-UHFFFAOYSA-N [C-]#[N+]C1=C(C(F)(F)F)C=C(N)C=C1 Chemical compound [C-]#[N+]C1=C(C(F)(F)F)C=C(N)C=C1 SZCDUOGTNCRSCX-UHFFFAOYSA-N 0.000 description 2
- DUAIRYNFTJMQKE-UHFFFAOYSA-N [C-]#[N+]C1=C(C(F)(F)F)C=C(NC(=O)C(C)=O)C=C1 Chemical compound [C-]#[N+]C1=C(C(F)(F)F)C=C(NC(=O)C(C)=O)C=C1 DUAIRYNFTJMQKE-UHFFFAOYSA-N 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 239000000010 aprotic solvent Substances 0.000 description 2
- 238000011914 asymmetric synthesis Methods 0.000 description 2
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 2
- 125000001164 benzothiazolyl group Chemical group S1C(=NC2=C1C=CC=C2)* 0.000 description 2
- 239000011230 binding agent Substances 0.000 description 2
- 239000008280 blood Substances 0.000 description 2
- 210000004369 blood Anatomy 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 238000004587 chromatography analysis Methods 0.000 description 2
- 238000002425 crystallisation Methods 0.000 description 2
- 230000008025 crystallization Effects 0.000 description 2
- NNBZCPXTIHJBJL-UHFFFAOYSA-N decalin Chemical compound C1CCCC2CCCCC21 NNBZCPXTIHJBJL-UHFFFAOYSA-N 0.000 description 2
- 239000002552 dosage form Substances 0.000 description 2
- 239000003995 emulsifying agent Substances 0.000 description 2
- 125000002883 imidazolyl group Chemical group 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- ZCSHNCUQKCANBX-UHFFFAOYSA-N lithium diisopropylamide Chemical compound [Li+].CC(C)[N-]C(C)C ZCSHNCUQKCANBX-UHFFFAOYSA-N 0.000 description 2
- 239000007937 lozenge Substances 0.000 description 2
- 229910052943 magnesium sulfate Inorganic materials 0.000 description 2
- 125000004170 methylsulfonyl group Chemical group [H]C([H])([H])S(*)(=O)=O 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 239000012044 organic layer Substances 0.000 description 2
- 230000000144 pharmacologic effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011574 phosphorus Substances 0.000 description 2
- 238000002360 preparation method Methods 0.000 description 2
- 125000004076 pyridyl group Chemical group 0.000 description 2
- 125000000714 pyrimidinyl group Chemical group 0.000 description 2
- 229940107700 pyruvic acid Drugs 0.000 description 2
- 238000002390 rotary evaporation Methods 0.000 description 2
- 238000007493 shaping process Methods 0.000 description 2
- 238000010898 silica gel chromatography Methods 0.000 description 2
- 210000003491 skin Anatomy 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- HPALAKNZSZLMCH-UHFFFAOYSA-M sodium;chloride;hydrate Chemical class O.[Na+].[Cl-] HPALAKNZSZLMCH-UHFFFAOYSA-M 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000126 substance Substances 0.000 description 2
- 239000005720 sucrose Substances 0.000 description 2
- 238000001308 synthesis method Methods 0.000 description 2
- 238000010189 synthetic method Methods 0.000 description 2
- 125000001113 thiadiazolyl group Chemical group 0.000 description 2
- 125000000335 thiazolyl group Chemical group 0.000 description 2
- 125000001544 thienyl group Chemical group 0.000 description 2
- JOXIMZWYDAKGHI-UHFFFAOYSA-N toluene-4-sulfonic acid Chemical compound CC1=CC=C(S(O)(=O)=O)C=C1 JOXIMZWYDAKGHI-UHFFFAOYSA-N 0.000 description 2
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 2
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 2
- LKJPYSCBVHEWIU-QGZVFWFLSA-N (S)-bicalutamide Chemical compound C([C@](O)(C)C(=O)NC=1C=C(C(C#N)=CC=1)C(F)(F)F)S(=O)(=O)C1=CC=C(F)C=C1 LKJPYSCBVHEWIU-QGZVFWFLSA-N 0.000 description 1
- BJEPYKJPYRNKOW-REOHCLBHSA-N (S)-malic acid Chemical compound OC(=O)[C@@H](O)CC(O)=O BJEPYKJPYRNKOW-REOHCLBHSA-N 0.000 description 1
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 description 1
- 238000001644 13C nuclear magnetic resonance spectroscopy Methods 0.000 description 1
- NXHFPNVCAZMTSG-UHFFFAOYSA-N 2-hydroxy-n-phenylpropanamide Chemical class CC(O)C(=O)NC1=CC=CC=C1 NXHFPNVCAZMTSG-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- 125000004105 2-pyridyl group Chemical group N1=C([*])C([H])=C([H])C([H])=C1[H] 0.000 description 1
- BMYNFMYTOJXKLE-UHFFFAOYSA-N 3-azaniumyl-2-hydroxypropanoate Chemical compound NCC(O)C(O)=O BMYNFMYTOJXKLE-UHFFFAOYSA-N 0.000 description 1
- PMDYLCUKSLBUHO-UHFFFAOYSA-N 4-amino-2-(trifluoromethyl)benzonitrile Chemical compound NC1=CC=C(C#N)C(C(F)(F)F)=C1 PMDYLCUKSLBUHO-UHFFFAOYSA-N 0.000 description 1
- 241000416162 Astragalus gummifer Species 0.000 description 1
- 239000005711 Benzoic acid Substances 0.000 description 1
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 1
- IMJCWKLPXCAGCG-UHFFFAOYSA-N CFF.[C-]#[N+]C1=C(F)C=C(NC(=O)C(C)(O)CS(=O)(=O)C2=CC=C(F)C=C2)C=C1 Chemical compound CFF.[C-]#[N+]C1=C(F)C=C(NC(=O)C(C)(O)CS(=O)(=O)C2=CC=C(F)C=C2)C=C1 IMJCWKLPXCAGCG-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 1
- FEWJPZIEWOKRBE-JCYAYHJZSA-N Dextrotartaric acid Chemical compound OC(=O)[C@H](O)[C@@H](O)C(O)=O FEWJPZIEWOKRBE-JCYAYHJZSA-N 0.000 description 1
- XBPCUCUWBYBCDP-UHFFFAOYSA-N Dicyclohexylamine Chemical compound C1CCCCC1NC1CCCCC1 XBPCUCUWBYBCDP-UHFFFAOYSA-N 0.000 description 1
- 108010010803 Gelatin Proteins 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 1
- 229930182821 L-proline Natural products 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 1
- PHSPJQZRQAJPPF-UHFFFAOYSA-N N-alpha-Methylhistamine Chemical compound CNCCC1=CN=CN1 PHSPJQZRQAJPPF-UHFFFAOYSA-N 0.000 description 1
- MBBZMMPHUWSWHV-BDVNFPICSA-N N-methylglucamine Chemical compound CNC[C@H](O)[C@@H](O)[C@H](O)[C@H](O)CO MBBZMMPHUWSWHV-BDVNFPICSA-N 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- FZRKAZHKEDOPNN-UHFFFAOYSA-N Nitric oxide anion Chemical compound O=[N-] FZRKAZHKEDOPNN-UHFFFAOYSA-N 0.000 description 1
- 229920002230 Pectic acid Polymers 0.000 description 1
- YGYAWVDWMABLBF-UHFFFAOYSA-N Phosgene Chemical compound ClC(Cl)=O YGYAWVDWMABLBF-UHFFFAOYSA-N 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical class [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- KDYFGRWQOYBRFD-UHFFFAOYSA-N Succinic acid Natural products OC(=O)CCC(O)=O KDYFGRWQOYBRFD-UHFFFAOYSA-N 0.000 description 1
- FEWJPZIEWOKRBE-UHFFFAOYSA-N Tartaric acid Natural products [H+].[H+].[O-]C(=O)C(O)C(O)C([O-])=O FEWJPZIEWOKRBE-UHFFFAOYSA-N 0.000 description 1
- 229920001615 Tragacanth Polymers 0.000 description 1
- 239000007983 Tris buffer Substances 0.000 description 1
- 235000011054 acetic acid Nutrition 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 239000004480 active ingredient Substances 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 1
- IYABWNGZIDDRAK-UHFFFAOYSA-N allene Chemical group C=C=C IYABWNGZIDDRAK-UHFFFAOYSA-N 0.000 description 1
- BJEPYKJPYRNKOW-UHFFFAOYSA-N alpha-hydroxysuccinic acid Natural products OC(=O)C(O)CC(O)=O BJEPYKJPYRNKOW-UHFFFAOYSA-N 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 150000003863 ammonium salts Chemical class 0.000 description 1
- 239000003098 androgen Substances 0.000 description 1
- 150000001450 anions Chemical class 0.000 description 1
- 230000002280 anti-androgenic effect Effects 0.000 description 1
- 239000000051 antiandrogen Substances 0.000 description 1
- 229940030495 antiandrogen sex hormone and modulator of the genital system Drugs 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 235000006708 antioxidants Nutrition 0.000 description 1
- 239000008365 aqueous carrier Substances 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 235000010323 ascorbic acid Nutrition 0.000 description 1
- 229960005070 ascorbic acid Drugs 0.000 description 1
- 239000011668 ascorbic acid Substances 0.000 description 1
- 125000003785 benzimidazolyl group Chemical group N1=C(NC2=C1C=CC=C2)* 0.000 description 1
- 125000004618 benzofuryl group Chemical group O1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 235000010233 benzoic acid Nutrition 0.000 description 1
- 229960004365 benzoic acid Drugs 0.000 description 1
- 125000004196 benzothienyl group Chemical group S1C(=CC2=C1C=CC=C2)* 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 1
- 229910052794 bromium Inorganic materials 0.000 description 1
- 239000000872 buffer Substances 0.000 description 1
- KDYFGRWQOYBRFD-NUQCWPJISA-N butanedioic acid Chemical compound O[14C](=O)CC[14C](O)=O KDYFGRWQOYBRFD-NUQCWPJISA-N 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000002775 capsule Substances 0.000 description 1
- 150000001721 carbon Chemical group 0.000 description 1
- 150000001722 carbon compounds Chemical class 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229940097647 casodex Drugs 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 229940110456 cocoa butter Drugs 0.000 description 1
- 235000019868 cocoa butter Nutrition 0.000 description 1
- 239000007891 compressed tablet Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 230000002939 deleterious effect Effects 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000003821 enantio-separation Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 239000003623 enhancer Substances 0.000 description 1
- 210000002615 epidermis Anatomy 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000000219 ethylidene group Chemical group [H]C(=[*])C([H])([H])[H] 0.000 description 1
- 238000001640 fractional crystallisation Methods 0.000 description 1
- 125000002541 furyl group Chemical group 0.000 description 1
- 239000000499 gel Substances 0.000 description 1
- 239000008273 gelatin Substances 0.000 description 1
- 229920000159 gelatin Polymers 0.000 description 1
- 235000019322 gelatine Nutrition 0.000 description 1
- 235000011852 gelatine desserts Nutrition 0.000 description 1
- 235000011187 glycerol Nutrition 0.000 description 1
- 150000004795 grignard reagents Chemical class 0.000 description 1
- 229940093915 gynecological organic acid Drugs 0.000 description 1
- 125000005059 halophenyl group Chemical group 0.000 description 1
- GNOIPBMMFNIUFM-UHFFFAOYSA-N hexamethylphosphoric triamide Chemical compound CN(C)P(=O)(N(C)C)N(C)C GNOIPBMMFNIUFM-UHFFFAOYSA-N 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 125000001041 indolyl group Chemical group 0.000 description 1
- 239000003701 inert diluent Substances 0.000 description 1
- 238000007918 intramuscular administration Methods 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- PNDPGZBMCMUPRI-UHFFFAOYSA-N iodine Chemical compound II PNDPGZBMCMUPRI-UHFFFAOYSA-N 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 125000005956 isoquinolyl group Chemical group 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 229960000448 lactic acid Drugs 0.000 description 1
- 238000004811 liquid chromatography Methods 0.000 description 1
- YNESATAKKCNGOF-UHFFFAOYSA-N lithium bis(trimethylsilyl)amide Chemical compound [Li+].C[Si](C)(C)[N-][Si](C)(C)C YNESATAKKCNGOF-UHFFFAOYSA-N 0.000 description 1
- 239000006210 lotion Substances 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000001630 malic acid Substances 0.000 description 1
- 235000011090 malic acid Nutrition 0.000 description 1
- 229940099690 malic acid Drugs 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229940098779 methanesulfonic acid Drugs 0.000 description 1
- 125000000956 methoxy group Chemical group [H]C([H])([H])O* 0.000 description 1
- 125000002816 methylsulfanyl group Chemical group [H]C([H])([H])S[*] 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000007932 molded tablet Substances 0.000 description 1
- KSMBAOCZDHBYCQ-UHFFFAOYSA-N n-[4-cyano-3-(trifluoromethyl)phenyl]-2-oxopropanamide Chemical compound CC(=O)C(=O)NC1=CC=C(C#N)C(C(F)(F)F)=C1 KSMBAOCZDHBYCQ-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- YZMHQCWXYHARLS-UHFFFAOYSA-N naphthalene-1,2-disulfonic acid Chemical compound C1=CC=CC2=C(S(O)(=O)=O)C(S(=O)(=O)O)=CC=C21 YZMHQCWXYHARLS-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 239000007764 o/w emulsion Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 235000006408 oxalic acid Nutrition 0.000 description 1
- 229940116315 oxalic acid Drugs 0.000 description 1
- 238000007911 parenteral administration Methods 0.000 description 1
- 239000006072 paste Substances 0.000 description 1
- 235000010603 pastilles Nutrition 0.000 description 1
- 235000019271 petrolatum Nutrition 0.000 description 1
- 239000003208 petroleum Substances 0.000 description 1
- WTJKGGKOPKCXLL-RRHRGVEJSA-N phosphatidylcholine Chemical group CCCCCCCCCCCCCCCC(=O)OC[C@H](COP([O-])(=O)OCC[N+](C)(C)C)OC(=O)CCCCCCCC=CCCCCCCCC WTJKGGKOPKCXLL-RRHRGVEJSA-N 0.000 description 1
- PZHNNJXWQYFUTD-UHFFFAOYSA-N phosphorus triiodide Chemical compound IP(I)I PZHNNJXWQYFUTD-UHFFFAOYSA-N 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 239000010318 polygalacturonic acid Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- QLNJFJADRCOGBJ-UHFFFAOYSA-N propionamide Chemical compound CCC(N)=O QLNJFJADRCOGBJ-UHFFFAOYSA-N 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 125000000168 pyrrolyl group Chemical group 0.000 description 1
- 125000005493 quinolyl group Chemical group 0.000 description 1
- 239000011541 reaction mixture Substances 0.000 description 1
- 238000010992 reflux Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 238000005556 structure-activity relationship Methods 0.000 description 1
- 238000007920 subcutaneous administration Methods 0.000 description 1
- 239000000829 suppository Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000375 suspending agent Substances 0.000 description 1
- 239000011975 tartaric acid Substances 0.000 description 1
- 235000002906 tartaric acid Nutrition 0.000 description 1
- 229960001367 tartaric acid Drugs 0.000 description 1
- CXWXQJXEFPUFDZ-UHFFFAOYSA-N tetralin Chemical compound C1=CC=C2CCCCC2=C1 CXWXQJXEFPUFDZ-UHFFFAOYSA-N 0.000 description 1
- 125000000437 thiazol-2-yl group Chemical group [H]C1=C([H])N=C(*)S1 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- 230000002110 toxicologic effect Effects 0.000 description 1
- 231100000759 toxicological effect Toxicity 0.000 description 1
- 235000010487 tragacanth Nutrition 0.000 description 1
- 239000000196 tragacanth Substances 0.000 description 1
- 229940116362 tragacanth Drugs 0.000 description 1
- 125000001425 triazolyl group Chemical group 0.000 description 1
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 1
- 239000007762 w/o emulsion Substances 0.000 description 1
- 239000008215 water for injection Substances 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C253/00—Preparation of carboxylic acid nitriles
- C07C253/30—Preparation of carboxylic acid nitriles by reactions not involving the formation of cyano groups
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P35/00—Antineoplastic agents
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C315/00—Preparation of sulfones; Preparation of sulfoxides
- C07C315/04—Preparation of sulfones; Preparation of sulfoxides by reactions not involving the formation of sulfone or sulfoxide groups
Definitions
- the present invention relates to methods of synthesizing organic compounds, and more particularly to methods of synthesizing pharmaceutical compounds and their derivatives.
- Androgen deprivation is a common treatment for persons with prostate cancer.
- Various non-steroidal antiandrogens are known for use in the treatment of prostate cancer.
- bicalutamide is often used in the treatment of prostate cancer.
- Bicalutamide is commercially available as Casodex® (bicalutamide) from AstraZeneca Pharmaceuticals.
- bicalutamide N-[4-cyano-3-(trifluoromethyl)phenyl]-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-propanamide (+ ⁇ ).
- the structural formula of bicalutamide is:
- the ⁇ -carbon atom in the propanamide is a chiral carbon.
- bicalutamide is an optically active compound.
- Such optically active compounds exist as a pair of stereoisomers that are identical with the notable exception that they are non-superimposable mirror images of one another.
- a specific stereoisomer, such as the R isomer, may be referred to as an enantiomer.
- a mixture of R and S enantiomers may be referred to as a racemic mixture.
- U.S. Pat. No. 5,985,868 to Gray proposes synthesizing racemic mixtures of bicalutamide using methods as described in U.S. Pat. No. 4,636,505 to Tucker, and obtaining the ( ⁇ ) isomer of bicalutamide by resolution of the enantiomers of bicalutamide or of intermediates thereto using fractional crystallization or chromatography of diastereomeric esters of chiral acids.
- Gray notes that other standard methods of resolution such as simple crystallization and chromatographic resolution can also be used.
- Embodiments of the present invention provide improved methods for synthesizing acylanilides, particularly bicalutamide and/or its functional derivatives.
- Methods according to embodiments of the present invention may provide a racemic mixture of bicalutamide using commercially available reagents in fewer steps than the conventional methods described above, which may reduce the overall synthesis time by more than 50 percent compared to these methods.
- Methods according to embodiments of the present invention may result in yields greater than 50 percent, 60 percent, 70 percent or more.
- methods according to embodiments of the present invention may be performed at or near room temperature. These reaction conditions may provide an energy savings when compared to the conventional methods described above, which involve, for example, refluxing conditions and cooling to 5° C.
- acylanilide such as bicalutamide or its functional derivatives.
- the methods include contacting a compound having the structure of Formula I:
- R 1 is substituted or unsubstituted alkyl or haloalkyl
- R 2 is cyano, carbamoyl, nitro, fluoro, chloro, bromo, iodo, or hydrogen; or alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl, or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms; or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being susbstituted or unsubstituted;
- R 3 is cyano, carbamoyl, nitro, fluoro, chloro, bromo or iodo; or alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms; or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being substituted or unsubstituted; and
- R 4 is hydrogen or halogen
- the compound of Formula I is most preferably pyruvic acid.
- R 5 is substituted or unsubstituted alkyl having up to 6 carbon atoms
- R 6 is a direct link, or substituted or unsubstituted alkyl having up to 6 carbon atoms
- R 7 is alkyl, alkenyl, hydroxyalkyl or cycloalkyl each being substituted or unsubstituted and having up to 6 carbons; or R 7 is phenyl which bears one, two or three substituents independently selected from hydrogen, halogen, nitro, carboxy, carbamoyl and cyano, and alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl, perfluoroalkylsulfonyl, alkoxycarbonyl and N-alkylcarbamoyl each of up to 4 carbon atoms, and phenyl, phenylthio, phenylsulfinyl and phenylsulfonyl; or R 7 is naph
- X 1 is oxygen, sulfur, sulfinyl (—SO—), sulfonyl (—SO 2 —), imino (—NH—) or alkylimino (—NR 8 —) where R 8 is alkyl having up to 6 carbon atoms;
- the acylanilide is most preferably bicalutamide or a functional derivative thereof. While methods according to embodiments of the present invention generally yield acylanilide compositions having both R and S enantiomers in substantially equal quantities, embodiments of the present invention resolve these acylanilide compositions (e.g., bicalutamide products) to provide compositions comprising more than about 60 percent R enantiomer.
- Methods according to embodiments of the present invention provide a more efficient synthesis route for acylanilides, particularly bicalutamide and/or its functional derivatives. Methods of the present invention may reduce the number of steps as well as the overall synthesis time compared to conventional methods of synthesizing bicalutamide. Moreover, methods of the present invention may provide an overall yield that is greater than 50 percent and preferably even greater than 70 percent, which is higher than the overall yield provided by conventional methods of synthesizing bicalutamide. Furthermore, as methods of the present invention may be performed at or near room temperature, these methods may provide an energy savings when compared to conventional methods of synthesizing bicalutamide.
- the term “functional derivative” is used to describe a derivative of a parent compound that has the same or substantially similar pharmacological activity as the parent compound.
- the term “between” should be interpreted to include the end-points.
- the term “up to” should be interpreted to include the upper limit.
- Methods of synthesizing an acylanilide according to embodiments of the present invention include contacting a compound having the structure of Formula I:
- R 1 is substituted or unsubstituted alkyl or haloalkyl.
- R 1 is preferably substituted or unsubstituted alkyl having up to 4 carbon atoms.
- R 1 is preferably substituted or unsubstituted alkyl having 1 or 2 carbon atoms.
- R 1 is more preferably unsubstituted alkyl having 1 or 2 carbon atoms, and is most preferably methyl.
- R 2 is cyano, carbamoyl, nitro, fluoro, chloro, bromo, iodo, or hydrogen; or alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl, or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms (e.g., methylthio, ethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoromethyl, trifluoromethylthio, trifluoromethylsulfinyl or trifluoromethylsulfonyl); or phenyl, phenylthio, phenylsulfinyl or
- R 2 is preferably selected from the group consisting of cyano, nitro, chloro, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl and perfluoroalkylsulfonyl. R 2 is most preferably cyano.
- R 3 is cyano, carbamoyl, nitro, fluoro, chloro, bromo or iodo; or alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms (e.g., methylthio, ethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoromethyl, trifluoromethylthio, trifluoromethylsulfinyl or trifluoromethylsulfonyl); or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being substituted or un
- R 3 is preferably selected from the group consisting of perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl and perfluoroalkylsulfonyl each having up to 4 carbon atoms.
- R 3 is more preferably perfluoroalkyl having 1 or 2 carbon atoms.
- R 3 is most preferably trifluoromethyl.
- R 4 is hydrogen or halogen.
- R 4 is preferably fluoro, chloro, bromo or iodo.
- R 4 is preferably hydrogen.
- the compound of Formula I is contacted with the compound of Formula II in the presence of a carboxylic acid halogenating compound.
- the carboxylic acid halogenating compound may be various compounds as will be understood by those skilled in the art including, but not limited to, thionyl halides (e.g., thionyl chloride and thionyl bromide), phosphorus trihalides (e.g., phosphorus tribromide and phosphorus triiodide), phosphorus pentahalides, oxalyl halides, or phosgene.
- the carboxylic acid halogenating compound is preferably thionyl chloride or thionyl bromide.
- the ratio on a molar basis of the carboxylic acid halogenating compound to the compound of Formula I is preferably between about 1:3 and about 3:1, more preferably between about 1:2 and about 2:1, and most preferably about 1:1.
- the compound of Formula I is preferably activated by (reacts with) the carboxylic acid halogenating compound to provide an acyl halide. While the acyl halide is preferably formed in situ (i.e., in the presence of the compound of Formula II), it is to be understood that the compound of Formula I may be activated by the carboxylic acid halogenating compound to provide the acyl halide in a first step, followed by the step of contacting the acyl halide with the compound of Formula II.
- the acyl halide reacts with the compound of Formula II to provide the compound of Formula III.
- the ratio on a molar basis of the compound of Formula II to acyl halide is preferably between about 1:4 and about 1:12. More preferably, the ratio is between about 1:6 and about 1:10. Most preferably, the ratio is between about 1:7 and about 1:9. Applicants have unexpectedly found that using these preferred ratios of the compound of Formula II to acyl halide may result in yields of the compound of Formula III that are greater than about 70 percent.
- the step of contacting the compound of Formula I with the compound of Formula II may be carried out at various temperatures, as will be understood by those skilled in the art. This step is preferably carried out at a temperature between about ⁇ 5° C. and about 40° C., is more preferably carried out at a temperature between about 20° C. and about 30° C., and is most preferably carried out at about room temperature. Performing this step within the preferred ranges may result in a yield of the compound of Formula III that is greater than 70 percent. Additionally, these preferred temperatures may result in synthesis methods that require less energy than conventional methods, resulting in reduced costs.
- the step of contacting the compound of Formula I with the compound of Formula II may be carried out in the presence of various solvents, as will be understood by those skilled in the art.
- the solvent is an aprotic solvent such as, for example, N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), dimethyl sulfoxide, hexamethylphosphoric triamide, tetrahydrofuran (THF), dioxane, diethyl ether, methyl t-butyl ether (MTBE), toluene, benzene, hexane, pentane, N-methylpyrollidinone, tetrahydronaphthalene, decahydronaphthalene, dimethoxyethane, methylene chloride, chloroform, 1,2-dichlorobenzene, 1,3-dimethyl-2-imidazolidinone, or a mixture thereof.
- the solvent is DMA or
- yields of the compound of Formula III are preferably greater than about 70 percent, more preferably greater than about 75 percent, and most preferably greater than about 80 percent.
- the compound of Formula III may be treated under various conditions to provide an acylanilide according to the present invention.
- the compound of Formula III is contacted with a compound having the structure of Formula IV:
- the compound of Formula III is addition reacted with the compound of Formula IV under conditions sufficient to provide the acylanilide.
- the acylanilide preferably has a hydroxyl moiety at its ⁇ position (i.e., at a carbon atom adjacent to the carbonyl group). More preferably, the acylanilide has the structure of Formula V:
- R 5 is substituted or unsubstituted alkyl (alkylene) having up to 6 carbon atoms.
- R 5 preferably is an unsubstituted alkyl (alkylene) having 1, 2 or 3 carbon atoms.
- R 5 is more preferably an unsubstituted alkyl (alkylene) having 1 or 2 carbon atoms.
- R 5 is methyl (methylene).
- R 6 is a direct link, or substituted or unsubstituted alkylene having up to 6 carbon atoms.
- R 6 is a direct link or an unsubstituted alkylene having 1, 2 or 3 carbon atoms. More preferably, R 6 is a direct link or an unsubstituted alkylene having 1 or 2 carbon atoms. Most preferably, R 6 is a direct link.
- R 7 is alkyl, alkenyl, hydroxyalkyl or cycloalkyl each being substituted or unsubstituted and having up to 6 carbons (e.g., methyl, ethyl, n-propyl, isopropyl, n-butyl, allyl, 2-methylprop-2-enyl, 2-hydroxyethyl, cyclopentyl or cyclohexyl); or R 7 is phenyl which bears one, two or three substituents independently selected from hydrogen, halogen, nitro, carboxy, carbamoyl and cyano, and alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl, perfluoroalkylsulfonyl,
- X 1 is oxygen, sulfur, sulfinyl (—SO—), sulfonyl (—SO 2 —), imino (—NH—) or alkylimino (—NR 8 —) where R 8 is alkyl having up to 6 carbon atoms.
- X 1 is preferably sulfur, sulfinyl (—SO—), sulfonyl (—SO 2 —), imino (—NH—).
- X 1 is more preferably sulfur, sulfinyl (—SO—), or sulfonyl (—SO 2 —).
- the compound of Formula IV is addition reacted with the compound of Formula III to provide the acylanilide of Formula V by contacting the compound of Formula IV with an organometallic compound to provide an intermediate compound, and contacting the intermediate compound with the compound of Formula III to provide the acylanilide of Formula V.
- the organometallic compound which is capable of deprotonating the compound of Formula IV, may be various organometallic compounds as will be understood by those skilled in the art including, but not limited to, Grignard reagents, alkyllithium, lithium diisopropylamide, lithium hexamethyl disilazide, or a mixture thereof.
- the organometallic compound is preferably alkyllithium and is more preferably butyllithium.
- the intermediate compound is preferably contacted with the compound of Formula III by slowly adding the compound of Formula III (e.g., dropwise) to a solution containing the intermediate compound.
- the ratio on a molar basis of the compound of Formula HI to intermediate compound is preferably between about 1:2 and about 1:10, and is more preferably between about 1:2 and about 1:5. Controlling the rate at which the compound of Formula III is added to within the preferred ranges and/or ensuring that the ratio of the compound of Formula III to intermediate compound is within the preferred ranges may result in yields of the acylanilide that are higher than those obtained using conventional synthesis methods.
- the step of contacting the compound of Formula III with the compound of Formula IV may be carried out at various temperatures, as will be understood by those skilled in the art. However, this step is preferably carried out at a temperature between about ⁇ 5° C. and about 40° C., is more preferably carried out at a temperature between about 20° C. and about 30° C., and is most preferably carried out at about room temperature. Applicants have unexpectedly found that this reaction may be carried out at these preferred temperatures while still obtaining a yield of acylanilide that is greater than about 85 percent. These preferred temperatures may require less energy than conventional methods, resulting in reduced costs.
- the step of contacting the compound of Formula III with the compound of Formula IV may be carried out in the presence of various solvents, as will be understood by those skilled in the art.
- the solvent is an aprotic solvent such as, for example, tetrahydrofuran (THF), dioxane, ether, dimethoxyethane, dichloromethane, benzene or a mixture thereof. More preferably, the solvent is THF, dioxane or ether, and most preferably the solvent is THF.
- yields of the acylanilide derived from the compound of Formula III are preferably greater than 80 percent, more preferably greater than about 85 percent, and most preferably greater than about 90 percent.
- the overall yield of the acylanilide is preferably greater than 50 percent, is more preferably greater than 60 percent and is most preferably greater than 70 percent.
- the overall yield is the yield that is calculated by multiplying the yield of each individual step in the synthetic procedure.
- Preferred acylanilides that may be synthesized according to embodiments of methods of the present invention have the structure of Formula V above wherein R 1 is methyl or trifluoromethyl, R 2 is cyano, nitro, trifluoromethyl, chloro, methyl or methoxy, R 3 is cyano, nitro, trifluoromethyl or chloro, R 4 is hydrogen, R 5 is methylene, ethylene or ethylidene, R 6 is a direct link or methylene, R 7 is alkyl, alkenyl, hydroxyalkyl or cycloalkyl each having up to 6 carbon atoms, or phenyl which is unsubstituted or which bears one fluoro, chloro, cyano, nitro, methoxy or methylthio substituent, or thienyl, imidazolyl, thiazolyl, benzothiazolyl, thiadiazolyl, pyridyl or pyrimidinyl which is unsub
- acylanilides that may be synthesized according to embodiments of methods of the present invention have the structure of Formula V above wherein R 1 is methyl, R 2 is cyano or nitro, R 3 is trifluoromethyl, R 4 is hydrogen, R 5 is methylene, R 6 a direct link, R 7 is alkyl having up to 3 carbon atoms, preferably ethyl, or is allyl, phenyl, p-fluorphenyl, thiazol-2-yl, 4-methylthiazol-2-yl, 5-methyl-1,3,4-thiadiazol-2-yl or 2-pyridyl, and X 1 is sulfur, sulfonyl or sulfinyl.
- acylanilides are preferably synthesized according to embodiments of methods of the present invention: 3-chloro-4-cyano-N-((2-hydroxy-2-methyl-3-ethylthio)propionyl)aniline; 3-chloro-4-cyano-N-((2-hydroxy-2-methyl-3-ethylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-phenylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-ethylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-phenylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-phenylsulfonyl)propionyl)
- bicalutamide is synthesized according to methods of the present invention.
- the reaction conditions e.g., temperature, compound ratios, solvents, etc.
- the compound of Formula VIII is treated under conditions sufficient to provide bicalutamide.
- the compound of Formula VIII is contacted with a compound having the structure of Formula IX:
- the ( ⁇ ) isomer of bicalutamide may be obtained by resolution of the enantiomers of racemic bicalutamide.
- standard methods of resolution known to those skilled in the art include simple crystallization and chromatographic resolution. (See, for example, G. Subramanian, A Practical Approach to Chiral Separations by Liquid Chromatography, John Wiley & Sons, 1994; Thomas E. Beesley, Raymond P. W. Scott, Chiral Chromatography, John Wiley & Son Ltd., 1999; Satinder Ahuja, Chiral Separations: Applications and Technology, American Chemical Society, 1996); E. L.
- HPLC high pressure liquid chromatography
- Optically active compounds have the ability to rotate the plane of polarized light.
- the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center(s).
- the prefixes “d” and “1” or (+) and ( ⁇ ) are used to denote the optical rotation of the compound (i.e., the direction in which a plane of polarized light is rotated by the optically active compound).
- the “1” or ( ⁇ ) prefix indicates that the compound is levorotatory (i.e., rotates the plane of polarized light to the left or counterclockwise) while the “d” or (+) prefix means that the compound is dextrarotatory (i.e., rotates the plane of polarized light to the right or clockwise).
- the sign of optical rotation, ( ⁇ ) and (+), is not related to the absolute configuration of the molecule, R and S.
- the R and S components of the racemic mixture prepared according to the synthetic method of the invention are separated to provide compositions having a majority of R or a majority of S enantiomer.
- the R and S components of the racemic mixture prepared according to the synthetic method of the invention are separated to provide compositions comprising greater than 75 percent R or S, more preferably greater than 90 percent R or S, and still more preferably greater than 99 percent R or S.
- the separated compositions have substantially all R enantiomer or substantially all S enantiomer.
- the R form is preferred as the more active of the two enantiomers.
- Acylanilides synthesized by the methods disclosed herein can be prepared in the form of their pharmaceutically acceptable salts.
- Pharmaceutically acceptable salts are salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects. Examples of such salts are (a) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; and salts formed with organic acids such as, for example, acetic acid, oxalic acid, lactic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; (b) salts formed from elemental anions such as chlorine, bromine, and iodine, and (c) salts derived from bases, such as ammonium salts,
- acylanilides synthesized by the methods described above may be formulated for administration in a pharmaceutical carrier in accordance with known techniques. See, e.g., Remington, The Science And Practice of Pharmacy (9 th Ed. 1995).
- the acylanilide (and/or the physiologically acceptable salts thereof) is typically admixed with, inter alia, an acceptable carrier.
- the carrier must, of course, be acceptable in the sense of being compatible with any other ingredients in the formulation and must not be deleterious to the patient.
- the carrier may be a solid or a liquid, or both, and is preferably formulated with the compound as a unit-dose formulation, for example, a tablet, which may contain from 0.01 or 0.5 percent to 95 percent or 99 percent by weight of the acylanilide.
- acylanilides synthesized by the methods described above may be incorporated in the formulations of the invention, which may be prepared by any of the well known techniques of pharmacy consisting essentially of admixing the components, optionally including one or more accessory ingredients.
- the formulations of the invention include those suitable for oral, rectal, topical, buccal (e.g., sub-lingual), vaginal, parenteral (e.g., subcutaneous, intramuscular, intradermal, or intravenous), topical (i.e., both skin and mucosal surfaces, including airway surfaces) and transdermal administration, although the most suitable route in any given case will depend on the nature and severity of the condition being treated and on the nature of the particular acylanilide which is being used.
- Formulations suitable for oral administration may be presented in discrete units, such as capsules, cachets, lozenges, or tables, each containing a predetermined amount of the acylanilide; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion.
- Such formulations may be prepared by any suitable method of pharmacy which includes the step of bringing into association the acylanilide and a suitable carrier (which may contain one or more accessory ingredients as noted above).
- the formulations of the invention are prepared by uniformly and intimately admixing the acylanilide with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the resulting mixture.
- a tablet may be prepared by compressing or molding a powder or granules containing the acylanilide, optionally with one or more accessory ingredients.
- Compressed tablets may be prepared by compressing, in a suitable machine, the compound in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent, and/or surface active/dispersing agent(s).
- Molded tablets may be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid binder.
- Formulations suitable for buccal (sub-lingual) administration include lozenges comprising the acylanilide in a flavoured base, usually sucrose and acacia or tragacanth; and pastilles comprising the compound in an inert base such as gelatin and glycerin or sucrose and acacia.
- Formulations of the present invention suitable for parenteral administration comprise sterile aqueous and non-aqueous injection solutions of the acylanilide, which preparations are preferably isotonic with the blood of the intended recipient. These preparations may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient.
- Aqueous and non-aqueous sterile suspensions may include suspending agents and thickening agents.
- the formulations may be presented in unit ⁇ dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or water-for-injection immediately prior to use.
- sterile liquid carrier for example, saline or water-for-injection immediately prior to use.
- Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described.
- an injectable, stable, sterile composition comprising a compound of Formula (1), or a salt thereof, in a unit dosage form in a sealed container.
- the compound or salt is provided in the form of a lyophilizate which is capable of being reconstituted with a suitable pharmaceutically acceptable carrier to form a liquid composition suitable for injection thereof into a subject.
- the unit dosage form typically comprises from about 10 mg to about 10 grams of the compound or salt.
- a sufficient amount of emulsifying agent which is physiologically acceptable may be employed in sufficient quantity to emulsify the compound or salt in an aqueous carrier.
- emulsifying agent is phosphatidyl choline.
- Formulations suitable for rectal administration are preferably presented as unit dose suppositories. These may be prepared by admixing the acylanilide with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture.
- Formulations suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil.
- Carriers which may be used include petroleum jelly, lanoline, polyethylene glycols, alcohols, transdermal enhancers, and combinations of two or more thereof.
- Formulations suitable for transdermal administration may be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Formulations suitable for transdermal administration may also be delivered by iontophoresis (see, for example, Pharmaceutical Research 3 (6):318 (1986)) and typically take the form of an optionally buffered aqueous solution of the acylanilide. Suitable formulations comprise citrate or bis ⁇ tris buffer (pH 6) or ethanol/water and contain from 0.1 to 0.2M active ingredient.
- Butyllithium (13.0 mmol) was added to a stirring solution of 4-fluorophenyl methyl sulfone (2.49 g; 14.3 mmol) in 13 mL of dry THF at room temperature. After 1 hr, a solution of the keto-amide (1.11 g; 4.34 mmol) prepared above in Example 1 in 40 mL of dry THF was added slowly to the stirring reaction. After 20 minutes, the reaction was brought to a neutral pH with IM HCI. The contents were diluted with ethyl acetate and extracted with IM HCI and saturated brine. The organic layer was dried with MgSO 4 and concentrated by rotary evaporation.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Public Health (AREA)
- Medicinal Chemistry (AREA)
- Pharmacology & Pharmacy (AREA)
- General Chemical & Material Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- Veterinary Medicine (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
- Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
- Medicinal Preparation (AREA)
- Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)
- Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)
Abstract
Description
- The present invention relates to methods of synthesizing organic compounds, and more particularly to methods of synthesizing pharmaceutical compounds and their derivatives.
- Androgen deprivation is a common treatment for persons with prostate cancer. Various non-steroidal antiandrogens are known for use in the treatment of prostate cancer. For example, bicalutamide is often used in the treatment of prostate cancer. Bicalutamide is commercially available as Casodex® (bicalutamide) from AstraZeneca Pharmaceuticals.
-
- The β-carbon atom in the propanamide is a chiral carbon. As a result, bicalutamide is an optically active compound.
- Such optically active compounds exist as a pair of stereoisomers that are identical with the notable exception that they are non-superimposable mirror images of one another. A specific stereoisomer, such as the R isomer, may be referred to as an enantiomer. A mixture of R and S enantiomers may be referred to as a racemic mixture.
- U.S. Pat. No. 4,636,505 to Tucker proposes various methods of synthesizing racemic mixtures of bicalutamide and/or its derivatives.
- In Tucker et al.,Nonsteroidal Antiandrogens. Synthesis and Structure-Activity Relationships of 3-Substituted Derivatives of 2-Hydroxypropionanilides, 31 J. MED. CHEM. 954-959 (1988), the authors propose two general synthetic routes, Scheme I and Scheme II, that may be used to prepare acylanilides.
- U.S. Pat. No. 5,985,868 to Gray proposes synthesizing racemic mixtures of bicalutamide using methods as described in U.S. Pat. No. 4,636,505 to Tucker, and obtaining the (−) isomer of bicalutamide by resolution of the enantiomers of bicalutamide or of intermediates thereto using fractional crystallization or chromatography of diastereomeric esters of chiral acids. Gray notes that other standard methods of resolution such as simple crystallization and chromatographic resolution can also be used.
- In Howard Tucker et al.,Resolution of the Nonsteroidal Antiandrogen 4′-Cyano-3-[(4-fluorophenyl)sulfonyl]-2-hydroxy-2-methyl-3′-(trifluoromethyl)-propioanilide and the Determination of the Absolute Configuration of the Active Enantiomer, 31 J. MED. CHEM. 885-887 (1988), the authors propose an asymmetric synthesis of (S)-bicalutamide using the N-methacrylamide of (S)-proline as a starting material. The authors state that this approach is not suitable for the general synthesis of the active enantiomers of analogous anti-androgens, which would require the inaccessible and expensive (R)-proline as a starting material.
- U.S. Pat. No. 6,019,957 to Miller et al. proposes an asymmetric synthesis of (R)-bicalutamide using (R)-proline as a starting material.
- It would be desirable to provide more effective methods for synthesizing bicalutamide and/or its derivatives and/or intermediates.
- Embodiments of the present invention provide improved methods for synthesizing acylanilides, particularly bicalutamide and/or its functional derivatives. Methods according to embodiments of the present invention may provide a racemic mixture of bicalutamide using commercially available reagents in fewer steps than the conventional methods described above, which may reduce the overall synthesis time by more than 50 percent compared to these methods. Methods according to embodiments of the present invention may result in yields greater than 50 percent, 60 percent, 70 percent or more. Moreover, methods according to embodiments of the present invention may be performed at or near room temperature. These reaction conditions may provide an energy savings when compared to the conventional methods described above, which involve, for example, refluxing conditions and cooling to 5° C.
-
- wherein
- R1 is substituted or unsubstituted alkyl or haloalkyl;
-
- wherein
- R2 is cyano, carbamoyl, nitro, fluoro, chloro, bromo, iodo, or hydrogen; or alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl, or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms; or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being susbstituted or unsubstituted;
- R3 is cyano, carbamoyl, nitro, fluoro, chloro, bromo or iodo; or alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms; or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being substituted or unsubstituted; and
- R4 is hydrogen or halogen;
-
- and treating the compound of Formula III under conditions sufficient to provide an acylanilide. The compound of Formula I is most preferably pyruvic acid.
- In embodiments of the present invention, the compound of Formula III is addition reacted with a compound having the structure of Formula IV:
- R5—X1—R6—R7 Formula IV
- wherein
- R5 is substituted or unsubstituted alkyl having up to 6 carbon atoms;
- R6 is a direct link, or substituted or unsubstituted alkyl having up to 6 carbon atoms;
- R7 is alkyl, alkenyl, hydroxyalkyl or cycloalkyl each being substituted or unsubstituted and having up to 6 carbons; or R7 is phenyl which bears one, two or three substituents independently selected from hydrogen, halogen, nitro, carboxy, carbamoyl and cyano, and alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl, perfluoroalkylsulfonyl, alkoxycarbonyl and N-alkylcarbamoyl each of up to 4 carbon atoms, and phenyl, phenylthio, phenylsulfinyl and phenylsulfonyl; or R7 is naphthyl; or R7 is a 5- or 6-membered saturated or unsaturated heterocyclic which contains one, two or three heteroatoms selected from oxygen, nitrogen and sulfur, which heterocyclic may be a single ring or may be fused to a benzo-ring, and which heterocyclic is unsubstituted or bears one or two halogen, cyano or amino, or alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl each of up to 4 carbon atoms, or oxy or hydroxy substituents, or which if sufficiently saturated may bear one or two oxo substituents; and
- X1 is oxygen, sulfur, sulfinyl (—SO—), sulfonyl (—SO2—), imino (—NH—) or alkylimino (—NR8—) where R8 is alkyl having up to 6 carbon atoms;
-
- The acylanilide is most preferably bicalutamide or a functional derivative thereof. While methods according to embodiments of the present invention generally yield acylanilide compositions having both R and S enantiomers in substantially equal quantities, embodiments of the present invention resolve these acylanilide compositions (e.g., bicalutamide products) to provide compositions comprising more than about 60 percent R enantiomer.
- Methods according to embodiments of the present invention provide a more efficient synthesis route for acylanilides, particularly bicalutamide and/or its functional derivatives. Methods of the present invention may reduce the number of steps as well as the overall synthesis time compared to conventional methods of synthesizing bicalutamide. Moreover, methods of the present invention may provide an overall yield that is greater than 50 percent and preferably even greater than 70 percent, which is higher than the overall yield provided by conventional methods of synthesizing bicalutamide. Furthermore, as methods of the present invention may be performed at or near room temperature, these methods may provide an energy savings when compared to conventional methods of synthesizing bicalutamide.
- The invention will now be described with respect to preferred embodiments described herein. It should be appreciated however that these embodiments are for the purpose of illustrating the invention, and are not to be construed as limiting the scope of the invention as defined by the claims.
- As used herein, the term “functional derivative” is used to describe a derivative of a parent compound that has the same or substantially similar pharmacological activity as the parent compound.
- As used herein, the term “between” should be interpreted to include the end-points. The term “up to” should be interpreted to include the upper limit.
-
-
-
- and treating the compound of Formula III under conditions sufficient to provide an acylanilide, wherein the substituents R1-R4 are as described below.
- R1 is substituted or unsubstituted alkyl or haloalkyl. R1 is preferably substituted or unsubstituted alkyl having up to 4 carbon atoms. R1 is preferably substituted or unsubstituted alkyl having 1 or 2 carbon atoms. R1 is more preferably unsubstituted alkyl having 1 or 2 carbon atoms, and is most preferably methyl.
- R2 is cyano, carbamoyl, nitro, fluoro, chloro, bromo, iodo, or hydrogen; or alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl, or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms (e.g., methylthio, ethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoromethyl, trifluoromethylthio, trifluoromethylsulfinyl or trifluoromethylsulfonyl); or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being susbstituted or unsubstituted. R2 is preferably selected from the group consisting of cyano, nitro, chloro, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl and perfluoroalkylsulfonyl. R2 is most preferably cyano.
- R3 is cyano, carbamoyl, nitro, fluoro, chloro, bromo or iodo; or alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkylthio, perfluoroalkylsulfinyl or perfluoroalkylsulfonyl each being substituted or unsubstituted and having up to 4 carbon atoms (e.g., methylthio, ethylthio, methylsulfinyl, methylsulfonyl, trifluoromethyl, pentafluoromethyl, trifluoromethylthio, trifluoromethylsulfinyl or trifluoromethylsulfonyl); or phenyl, phenylthio, phenylsulfinyl or phenylsulfonyl each being substituted or unsubstituted. R3 is preferably selected from the group consisting of perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl and perfluoroalkylsulfonyl each having up to 4 carbon atoms. R3 is more preferably perfluoroalkyl having 1 or 2 carbon atoms. R3 is most preferably trifluoromethyl.
- R4 is hydrogen or halogen. When R4 is halogen, R4 is preferably fluoro, chloro, bromo or iodo. R4 is preferably hydrogen.
- In a preferred embodiment, the compound of Formula I is contacted with the compound of Formula II in the presence of a carboxylic acid halogenating compound. The carboxylic acid halogenating compound may be various compounds as will be understood by those skilled in the art including, but not limited to, thionyl halides (e.g., thionyl chloride and thionyl bromide), phosphorus trihalides (e.g., phosphorus tribromide and phosphorus triiodide), phosphorus pentahalides, oxalyl halides, or phosgene. The carboxylic acid halogenating compound is preferably thionyl chloride or thionyl bromide. The ratio on a molar basis of the carboxylic acid halogenating compound to the compound of Formula I is preferably between about 1:3 and about 3:1, more preferably between about 1:2 and about 2:1, and most preferably about 1:1. The compound of Formula I is preferably activated by (reacts with) the carboxylic acid halogenating compound to provide an acyl halide. While the acyl halide is preferably formed in situ (i.e., in the presence of the compound of Formula II), it is to be understood that the compound of Formula I may be activated by the carboxylic acid halogenating compound to provide the acyl halide in a first step, followed by the step of contacting the acyl halide with the compound of Formula II.
- In a preferred embodiment, the acyl halide reacts with the compound of Formula II to provide the compound of Formula III. The ratio on a molar basis of the compound of Formula II to acyl halide is preferably between about 1:4 and about 1:12. More preferably, the ratio is between about 1:6 and about 1:10. Most preferably, the ratio is between about 1:7 and about 1:9. Applicants have unexpectedly found that using these preferred ratios of the compound of Formula II to acyl halide may result in yields of the compound of Formula III that are greater than about 70 percent.
- The step of contacting the compound of Formula I with the compound of Formula II may be carried out at various temperatures, as will be understood by those skilled in the art. This step is preferably carried out at a temperature between about −5° C. and about 40° C., is more preferably carried out at a temperature between about 20° C. and about 30° C., and is most preferably carried out at about room temperature. Performing this step within the preferred ranges may result in a yield of the compound of Formula III that is greater than 70 percent. Additionally, these preferred temperatures may result in synthesis methods that require less energy than conventional methods, resulting in reduced costs.
- The step of contacting the compound of Formula I with the compound of Formula II may be carried out in the presence of various solvents, as will be understood by those skilled in the art. Preferably, the solvent is an aprotic solvent such as, for example, N,N-dimethylacetamide (DMA), N,N-dimethylformamide (DMF), dimethyl sulfoxide, hexamethylphosphoric triamide, tetrahydrofuran (THF), dioxane, diethyl ether, methyl t-butyl ether (MTBE), toluene, benzene, hexane, pentane, N-methylpyrollidinone, tetrahydronaphthalene, decahydronaphthalene, dimethoxyethane, methylene chloride, chloroform, 1,2-dichlorobenzene, 1,3-dimethyl-2-imidazolidinone, or a mixture thereof. More preferably, the solvent is DMA or DMF, and most preferably the solvent is DMA.
- According to embodiments of the present invention, yields of the compound of Formula III are preferably greater than about 70 percent, more preferably greater than about 75 percent, and most preferably greater than about 80 percent.
- The compound of Formula III may be treated under various conditions to provide an acylanilide according to the present invention. In a preferred embodiment, the compound of Formula III is contacted with a compound having the structure of Formula IV:
- R5—X1—R6—R7 Formula IV
- under conditions sufficient to provide an acylanilide. Preferably, the compound of Formula III is addition reacted with the compound of Formula IV under conditions sufficient to provide the acylanilide. The acylanilide preferably has a hydroxyl moiety at its β position (i.e., at a carbon atom adjacent to the carbonyl group). More preferably, the acylanilide has the structure of Formula V:
- wherein the substituents R1-R4 are as described above, and wherein the substituents R5-R7 and X1 are described as follows.
- R5 is substituted or unsubstituted alkyl (alkylene) having up to 6 carbon atoms. R5 preferably is an unsubstituted alkyl (alkylene) having 1, 2 or 3 carbon atoms. R5 is more preferably an unsubstituted alkyl (alkylene) having 1 or 2 carbon atoms. Most preferably, R5 is methyl (methylene).
- R6 is a direct link, or substituted or unsubstituted alkylene having up to 6 carbon atoms. Preferably, R6 is a direct link or an unsubstituted alkylene having 1, 2 or 3 carbon atoms. More preferably, R6 is a direct link or an unsubstituted alkylene having 1 or 2 carbon atoms. Most preferably, R6 is a direct link.
- R7 is alkyl, alkenyl, hydroxyalkyl or cycloalkyl each being substituted or unsubstituted and having up to 6 carbons (e.g., methyl, ethyl, n-propyl, isopropyl, n-butyl, allyl, 2-methylprop-2-enyl, 2-hydroxyethyl, cyclopentyl or cyclohexyl); or R7 is phenyl which bears one, two or three substituents independently selected from hydrogen, halogen, nitro, carboxy, carbamoyl and cyano, and alkyl, alkoxy, alkanoyl, alkylthio, alkylsulfinyl, alkylsulfonyl, perfluoroalkyl, perfluoroalkoxy, perfluoroalkylthio, perfluoroalkylsulfinyl, perfluoroalkylsulfonyl, alkoxycarbonyl and N-alkylcarbamoyl each of up to 4 carbon atoms and phenyl, phenylthio, phenylsulfinyl and phenylsulfonyl; or R7is naphthyl; or R7 is a 5- or 6-membered saturated or unsaturated heterocyclic which contains one, two or three heteroatoms selected from oxygen, nitrogen and sulfur, which heterocyclic may be a single ring or may be fused to a benzo-ring, and which heterocyclic is unsubstituted or bears one or two halogen, cyano or amino, or alkyl, alkoxy, alkylthio, alkylsulfinyl or alkylsulfonyl each of up to 4 carbon atoms, or oxy or hydroxy substituents, or which if sufficiently saturated may bear one or two oxo substituents (e.g., furyl, thienyl, pyrrolyl, pyridyl, imidazolyl, thiazolyl, pyrimidinyl, thiadiazolyl, triazolyl, benzimidazolyl, benzothiazolyl, indolyl, benzothienyl, benzofuryl, quinolyl, isoquinolyl or 1,2-dihydro-2-oxoquinolyl). R7 is preferably phenyl which bears one, two or three substituents independently selected from hydrogen and halogen. More preferably, R7 is halophenyl. Most preferably, R7 is 4-fluorophenyl.
- X1 is oxygen, sulfur, sulfinyl (—SO—), sulfonyl (—SO2—), imino (—NH—) or alkylimino (—NR8—) where R8 is alkyl having up to 6 carbon atoms. X1 is preferably sulfur, sulfinyl (—SO—), sulfonyl (—SO2—), imino (—NH—). X1 is more preferably sulfur, sulfinyl (—SO—), or sulfonyl (—SO2—).
- In a preferred embodiment, the compound of Formula IV is addition reacted with the compound of Formula III to provide the acylanilide of Formula V by contacting the compound of Formula IV with an organometallic compound to provide an intermediate compound, and contacting the intermediate compound with the compound of Formula III to provide the acylanilide of Formula V. The organometallic compound, which is capable of deprotonating the compound of Formula IV, may be various organometallic compounds as will be understood by those skilled in the art including, but not limited to, Grignard reagents, alkyllithium, lithium diisopropylamide, lithium hexamethyl disilazide, or a mixture thereof. The organometallic compound is preferably alkyllithium and is more preferably butyllithium. The intermediate compound is preferably contacted with the compound of Formula III by slowly adding the compound of Formula III (e.g., dropwise) to a solution containing the intermediate compound. The ratio on a molar basis of the compound of Formula HI to intermediate compound is preferably between about 1:2 and about 1:10, and is more preferably between about 1:2 and about 1:5. Controlling the rate at which the compound of Formula III is added to within the preferred ranges and/or ensuring that the ratio of the compound of Formula III to intermediate compound is within the preferred ranges may result in yields of the acylanilide that are higher than those obtained using conventional synthesis methods.
- The step of contacting the compound of Formula III with the compound of Formula IV may be carried out at various temperatures, as will be understood by those skilled in the art. However, this step is preferably carried out at a temperature between about −5° C. and about 40° C., is more preferably carried out at a temperature between about 20° C. and about 30° C., and is most preferably carried out at about room temperature. Applicants have unexpectedly found that this reaction may be carried out at these preferred temperatures while still obtaining a yield of acylanilide that is greater than about 85 percent. These preferred temperatures may require less energy than conventional methods, resulting in reduced costs.
- The step of contacting the compound of Formula III with the compound of Formula IV may be carried out in the presence of various solvents, as will be understood by those skilled in the art. Preferably, the solvent is an aprotic solvent such as, for example, tetrahydrofuran (THF), dioxane, ether, dimethoxyethane, dichloromethane, benzene or a mixture thereof. More preferably, the solvent is THF, dioxane or ether, and most preferably the solvent is THF.
- According to embodiments of the present invention, yields of the acylanilide derived from the compound of Formula III are preferably greater than 80 percent, more preferably greater than about 85 percent, and most preferably greater than about 90 percent.
- According to embodiments of the present invention, the overall yield of the acylanilide is preferably greater than 50 percent, is more preferably greater than 60 percent and is most preferably greater than 70 percent. As used herein, the overall yield is the yield that is calculated by multiplying the yield of each individual step in the synthetic procedure.
- Preferred acylanilides that may be synthesized according to embodiments of methods of the present invention have the structure of Formula V above wherein R1 is methyl or trifluoromethyl, R2 is cyano, nitro, trifluoromethyl, chloro, methyl or methoxy, R3 is cyano, nitro, trifluoromethyl or chloro, R4 is hydrogen, R5 is methylene, ethylene or ethylidene, R6 is a direct link or methylene, R7 is alkyl, alkenyl, hydroxyalkyl or cycloalkyl each having up to 6 carbon atoms, or phenyl which is unsubstituted or which bears one fluoro, chloro, cyano, nitro, methoxy or methylthio substituent, or thienyl, imidazolyl, thiazolyl, benzothiazolyl, thiadiazolyl, pyridyl or pyrimidinyl which is unsubstituted or which bears one chloro, bromo or methyl substituent, and X1 is oxygen, sulfur, sulfinyl, sulfonyl, imino or methylimino.
- Particularly preferred acylanilides that may be synthesized according to embodiments of methods of the present invention have the structure of Formula V above wherein R1 is methyl, R2 is cyano or nitro, R3 is trifluoromethyl, R4 is hydrogen, R5 is methylene, R6 a direct link, R7 is alkyl having up to 3 carbon atoms, preferably ethyl, or is allyl, phenyl, p-fluorphenyl, thiazol-2-yl, 4-methylthiazol-2-yl, 5-methyl-1,3,4-thiadiazol-2-yl or 2-pyridyl, and X1 is sulfur, sulfonyl or sulfinyl.
- The following acylanilides are preferably synthesized according to embodiments of methods of the present invention: 3-chloro-4-cyano-N-((2-hydroxy-2-methyl-3-ethylthio)propionyl)aniline; 3-chloro-4-cyano-N-((2-hydroxy-2-methyl-3-ethylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-phenylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-ethylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-phenylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-ethylsulfonyl)propionyl)aniline; 3-chloro-4-nitro-N-((2-hydroxy-2-methyl-3-phenylthio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-(thiazol-2yl)thio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-allylthio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-(p-fluorophenyl)thio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-(pyrid-2ylthio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-(5-methyl-1,3,4thiadiazol-2-ylthio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-(4-methylthiazol-2-ylthio)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methyl-3-(pyrid-2-ynsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-nitro-N-((2-hydroxy-2-methy-3-(p-fluorophenylsulfonyl)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-(thiazol-2-ylthio)propionyl)aniline; 3-trifluoromethyl -4-cyano-N-((2hydroxy-2-methyl-3-(pyrid-2-ylthio)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-methylthiopropionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy 2-methyl-3-(p-fluorophenylthio)propionyl)aniline; 3-trifluoromethyl-4-cyano-N-((2-hydroxy-2-methyl-3-(p-fluorophenylsulfonyl)propionyl)aniline.
- In a particularly preferred embodiment, bicalutamide is synthesized according to methods of the present invention. The reaction conditions (e.g., temperature, compound ratios, solvents, etc.) are as described above and will not be further described. According to this particularly preferred embodiment, a compound having the structure of Formula VI:
-
-
-
- under conditions sufficient to provide bicalutamide. Typically, the compound of Formula VIII is addition reacted with a compound having the structure of Formula IX.
- As discussed in U.S. Pat. No. 5,985,868, to Gray, the (−) isomer of bicalutamide may be obtained by resolution of the enantiomers of racemic bicalutamide. Examples of standard methods of resolution known to those skilled in the art include simple crystallization and chromatographic resolution. (See, for example, G. Subramanian,A Practical Approach to Chiral Separations by Liquid Chromatography, John Wiley & Sons, 1994; Thomas E. Beesley, Raymond P. W. Scott, Chiral Chromatography, John Wiley & Son Ltd., 1999; Satinder Ahuja, Chiral Separations: Applications and Technology, American Chemical Society, 1996); E. L. Eliel, Stereochemistry of Carbon Compounds, McGraw Hill (1962); and Wilen and Lochmuller, “Tables of Resolving Agents,” J chromatography 113, 283-302 (1975)). In a preferred method, a racemic mixture is separated using high pressure liquid chromatography (HPLC) (see Krstulovic, A. M., ed. Chiral Separations by HPLC: Applications to Pharmacological Compounds, Halsted Press, 1989).
- Optically active compounds have the ability to rotate the plane of polarized light. In describing an optically active compound, the prefixes D and L or R and S are used to denote the absolute configuration of the molecule about its chiral center(s). The prefixes “d” and “1” or (+) and (−) are used to denote the optical rotation of the compound (i.e., the direction in which a plane of polarized light is rotated by the optically active compound). The “1” or (−) prefix indicates that the compound is levorotatory (i.e., rotates the plane of polarized light to the left or counterclockwise) while the “d” or (+) prefix means that the compound is dextrarotatory (i.e., rotates the plane of polarized light to the right or clockwise). The sign of optical rotation, (−) and (+), is not related to the absolute configuration of the molecule, R and S.
- Thus, in a further aspect of the invention, the R and S components of the racemic mixture prepared according to the synthetic method of the invention are separated to provide compositions having a majority of R or a majority of S enantiomer. In a preferred aspect of the invention, the R and S components of the racemic mixture prepared according to the synthetic method of the invention are separated to provide compositions comprising greater than 75 percent R or S, more preferably greater than 90 percent R or S, and still more preferably greater than 99 percent R or S. In a highly preferred embodiment, the separated compositions have substantially all R enantiomer or substantially all S enantiomer. The R form is preferred as the more active of the two enantiomers.
- Acylanilides synthesized by the methods disclosed herein can be prepared in the form of their pharmaceutically acceptable salts. Pharmaceutically acceptable salts are salts that retain the desired biological activity of the parent compound and do not impart undesired toxicological effects. Examples of such salts are (a) acid addition salts formed with inorganic acids, for example hydrochloric acid, hydrobromic acid, sulfuric acid, phosphoric acid, nitric acid and the like; and salts formed with organic acids such as, for example, acetic acid, oxalic acid, lactic acid, tartaric acid, succinic acid, malic acid, ascorbic acid, benzoic acid, methanesulfonic acid, p-toluenesulfonic acid, naphthalenedisulfonic acid, polygalacturonic acid, and the like; (b) salts formed from elemental anions such as chlorine, bromine, and iodine, and (c) salts derived from bases, such as ammonium salts, alkali metal salts such as those of sodium and potassium, alkaline earth metal salts such as those of calcium and magnesium, and salts with organic bases such as dicyclohexylamine and N-methyl-D-glucamine.
- Acylanilides synthesized by the methods described above may be formulated for administration in a pharmaceutical carrier in accordance with known techniques. See, e.g., Remington,The Science And Practice of Pharmacy (9th Ed. 1995). In the manufacture of a pharmaceutical formulation according to the invention, the acylanilide (and/or the physiologically acceptable salts thereof) is typically admixed with, inter alia, an acceptable carrier. The carrier must, of course, be acceptable in the sense of being compatible with any other ingredients in the formulation and must not be deleterious to the patient. The carrier may be a solid or a liquid, or both, and is preferably formulated with the compound as a unit-dose formulation, for example, a tablet, which may contain from 0.01 or 0.5 percent to 95 percent or 99 percent by weight of the acylanilide. One or more acylanilides synthesized by the methods described above may be incorporated in the formulations of the invention, which may be prepared by any of the well known techniques of pharmacy consisting essentially of admixing the components, optionally including one or more accessory ingredients.
- The formulations of the invention include those suitable for oral, rectal, topical, buccal (e.g., sub-lingual), vaginal, parenteral (e.g., subcutaneous, intramuscular, intradermal, or intravenous), topical (i.e., both skin and mucosal surfaces, including airway surfaces) and transdermal administration, although the most suitable route in any given case will depend on the nature and severity of the condition being treated and on the nature of the particular acylanilide which is being used.
- Formulations suitable for oral administration may be presented in discrete units, such as capsules, cachets, lozenges, or tables, each containing a predetermined amount of the acylanilide; as a powder or granules; as a solution or a suspension in an aqueous or non-aqueous liquid; or as an oil-in-water or water-in-oil emulsion. Such formulations may be prepared by any suitable method of pharmacy which includes the step of bringing into association the acylanilide and a suitable carrier (which may contain one or more accessory ingredients as noted above). In general, the formulations of the invention are prepared by uniformly and intimately admixing the acylanilide with a liquid or finely divided solid carrier, or both, and then, if necessary, shaping the resulting mixture. For example, a tablet may be prepared by compressing or molding a powder or granules containing the acylanilide, optionally with one or more accessory ingredients. Compressed tablets may be prepared by compressing, in a suitable machine, the compound in a free-flowing form, such as a powder or granules optionally mixed with a binder, lubricant, inert diluent, and/or surface active/dispersing agent(s). Molded tablets may be made by molding, in a suitable machine, the powdered compound moistened with an inert liquid binder.
- Formulations suitable for buccal (sub-lingual) administration include lozenges comprising the acylanilide in a flavoured base, usually sucrose and acacia or tragacanth; and pastilles comprising the compound in an inert base such as gelatin and glycerin or sucrose and acacia.
- Formulations of the present invention suitable for parenteral administration comprise sterile aqueous and non-aqueous injection solutions of the acylanilide, which preparations are preferably isotonic with the blood of the intended recipient. These preparations may contain anti-oxidants, buffers, bacteriostats and solutes which render the formulation isotonic with the blood of the intended recipient. Aqueous and non-aqueous sterile suspensions may include suspending agents and thickening agents. The formulations may be presented in unit\dose or multi-dose containers, for example sealed ampoules and vials, and may be stored in a freeze-dried (lyophilized) condition requiring only the addition of the sterile liquid carrier, for example, saline or water-for-injection immediately prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powders, granules and tablets of the kind previously described. For example, in one aspect of the present invention, there is provided an injectable, stable, sterile composition comprising a compound of Formula (1), or a salt thereof, in a unit dosage form in a sealed container. The compound or salt is provided in the form of a lyophilizate which is capable of being reconstituted with a suitable pharmaceutically acceptable carrier to form a liquid composition suitable for injection thereof into a subject. The unit dosage form typically comprises from about 10 mg to about 10 grams of the compound or salt. When the compound or salt is substantially water-insoluble, a sufficient amount of emulsifying agent which is physiologically acceptable may be employed in sufficient quantity to emulsify the compound or salt in an aqueous carrier. One such useful emulsifying agent is phosphatidyl choline.
- Formulations suitable for rectal administration are preferably presented as unit dose suppositories. These may be prepared by admixing the acylanilide with one or more conventional solid carriers, for example, cocoa butter, and then shaping the resulting mixture.
- Formulations suitable for topical application to the skin preferably take the form of an ointment, cream, lotion, paste, gel, spray, aerosol, or oil. Carriers which may be used include petroleum jelly, lanoline, polyethylene glycols, alcohols, transdermal enhancers, and combinations of two or more thereof.
- Formulations suitable for transdermal administration may be presented as discrete patches adapted to remain in intimate contact with the epidermis of the recipient for a prolonged period of time. Formulations suitable for transdermal administration may also be delivered by iontophoresis (see, for example,Pharmaceutical Research 3 (6):318 (1986)) and typically take the form of an optionally buffered aqueous solution of the acylanilide. Suitable formulations comprise citrate or bis\tris buffer (pH 6) or ethanol/water and contain from 0.1 to 0.2M active ingredient.
- All starting materials used in the procedures described herein are either commercially available or can be prepared by methods known in the art using commercially available starting materials.
- The present invention will now be described with reference to the following examples. It should be appreciated that these examples are for the purposes of illustrating aspects of the present invention, and do not limit the scope of the invention as defined by the claims.
- Pyruvic acid (3.0 mL; 43 mmol) and thionyl chloride (3.1 mL; 43 mmol) were added simultaneously via syringes to a stirring solution of 4-cyano-3-trifluoromethyl-aniline (1.00 g; 5.38 mmol) in 20 mL of dry DMA at room temperature. After 10 minutes, the reaction mixture was diluted with ether and extracted 3 times with saturated NaHCO3 and 4 times with cold saturated brine. The organic layer was dried with MgSO4 and concentrated by rotary evaporation. The product was purified by silica gel chromatography (ethyl acetate/hexanes [1/1]). Yield 1.11 g (81%); mp 147-148° C.; MS (FAB+) 257 (M+1); 1H NMR δ9.12 (s, 1H), 8.15 (s, 1H), 8.01 (d, J=8.5), 7.84 (d, J=8.5, 1H), 2.59 (s, 3H); 13C NMR δ 195.66, 157.71, 140.29, 135.90, 134.2, 122.01, 121.85, 117.44, 115.12, 105.55, 23.92; 19F NMR δ −62.76. IR: 3330, 3112, 3065, 1719, 1540. UV: λmax 214, 248, 288. Anal. Calculated for C11H7F3N202: C, 51.57; H, 2.75; N, 10.94 Found: C, 51.69; H, 2.81; N, 10.86.
- Butyllithium (13.0 mmol) was added to a stirring solution of 4-fluorophenyl methyl sulfone (2.49 g; 14.3 mmol) in 13 mL of dry THF at room temperature. After 1 hr, a solution of the keto-amide (1.11 g; 4.34 mmol) prepared above in Example 1 in 40 mL of dry THF was added slowly to the stirring reaction. After 20 minutes, the reaction was brought to a neutral pH with IM HCI. The contents were diluted with ethyl acetate and extracted with IM HCI and saturated brine. The organic layer was dried with MgSO4 and concentrated by rotary evaporation. After purification by silica gel chromatography (CH2C12/ethyl acetate [4/1]), the product was crystallized from ethyl acetate-petroleum ether. Yield 1.67 g (90%); mp 187° C.; MS (FAB+) 431 (M+1), 453 (M+Na); 1H NMR δ 9.08 (s, 1H), 7.98 (a, 1H), 7.87-7.92 (m, 2H), 7.79-7.78 (m, 2H), 7.15-7.20 (m, 2H), 5.04 (s, 1H), 3.97 (d, J=14.5, 1H), 3.49 (d, J=14.5, 1H), 1.62 (s, 3H); 19F NMR δ −62.74, −101.49. IR: 3432, 3338, 3106, 2921, 1699, 1586, 1525. UV: λmax 216, 270. Anal. Calculated for C18H14F4N2O4S: C, 50.23; H, 3.28; N, 6.51. Found: C, 50.35; H, 3.16; N, 6.35.
- In the specification, there has been disclosed typical preferred embodiments of the invention and, although specific terms are employed, they are used in a generic and descriptive sense only and not for purposes of limitation, the scope of the invention being set forth in the following claims.
Claims (58)
Priority Applications (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/847,229 US6479692B1 (en) | 2001-05-02 | 2001-05-02 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
PCT/US2002/013591 WO2002088070A1 (en) | 2001-05-02 | 2002-05-02 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
EP02734091A EP1383735B1 (en) | 2001-05-02 | 2002-05-02 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
CA2444244A CA2444244C (en) | 2001-05-02 | 2002-05-02 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
JP2002585374A JP4358518B2 (en) | 2001-05-02 | 2002-05-02 | Methods for synthesizing acylanilides containing bicalutamide and their derivatives |
US10/268,155 US6812362B2 (en) | 2001-05-02 | 2002-10-10 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/847,229 US6479692B1 (en) | 2001-05-02 | 2001-05-02 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/268,155 Division US6812362B2 (en) | 2001-05-02 | 2002-10-10 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020165406A1 true US20020165406A1 (en) | 2002-11-07 |
US6479692B1 US6479692B1 (en) | 2002-11-12 |
Family
ID=25300124
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/847,229 Expired - Lifetime US6479692B1 (en) | 2001-05-02 | 2001-05-02 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
US10/268,155 Expired - Lifetime US6812362B2 (en) | 2001-05-02 | 2002-10-10 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/268,155 Expired - Lifetime US6812362B2 (en) | 2001-05-02 | 2002-10-10 | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
Country Status (5)
Country | Link |
---|---|
US (2) | US6479692B1 (en) |
EP (1) | EP1383735B1 (en) |
JP (1) | JP4358518B2 (en) |
CA (1) | CA2444244C (en) |
WO (1) | WO2002088070A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005060603A3 (en) * | 2003-12-10 | 2005-12-01 | Nitromed Inc | Nitric oxide releasing pyruvate compounds, compositions and methods of use |
US20080177109A1 (en) * | 2005-03-29 | 2008-07-24 | Usv Limited | Novel Process for Preparation of Bicalutamide |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
IT1303671B1 (en) * | 1998-07-28 | 2001-02-23 | Nicox Sa | SALTS OF NITRIC ACID WITH ACTIVE DRUGS IN THE TREATMENT OF DISEASES OF THE RESPIRATORY SYSTEM |
US6479692B1 (en) * | 2001-05-02 | 2002-11-12 | Nobex Corporation | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
US7102026B2 (en) * | 2001-06-13 | 2006-09-05 | Teva Gyógyszergyár Zártkörüen Müködö Részvénytársaság | Process for preparing and isolating rac-bicalutamide and its intermediates |
PT1462442E (en) | 2001-12-13 | 2009-10-09 | Sumitomo Chemical Co | Crystals of bicalutamide and process for their production |
US20040063782A1 (en) * | 2002-09-27 | 2004-04-01 | Westheim Raymond J.H. | Bicalutamide forms |
AU2003209667A1 (en) * | 2003-02-21 | 2004-09-09 | Hetero Drugs Limited | Bicalutamide polymorphs |
US6743819B1 (en) * | 2003-03-24 | 2004-06-01 | E. I. Du Ponte De Nemours And Company | Production of 5-methyl-N-aryl-2-pyrrolidone and 5-methyl-N-cycloalkyl-2-pyrrolidone by reductive amination of levulinic acid with aryl amines |
JO2625B1 (en) * | 2003-06-24 | 2011-11-01 | ميرك شارب اند دوم كوربوريشن | Phosphoric acid salt of a dipeptidyl peptidase-IV inhibitor |
MXPA06000807A (en) | 2003-07-23 | 2006-08-23 | Novartis Ag | Use of calcitonin in osteoarthritis. |
PE20051096A1 (en) | 2004-02-04 | 2006-01-23 | Novartis Ag | SALT FORMS OF 4- (4-METHYLPIPERAZIN-1-ILMETHYL) -N- [4-METHYL-3- (4-PYRIDIN-3-IL) PYRIMIDIN-2-ILAMINO) PHENYL] -BENZAMIDE |
WO2006069098A1 (en) * | 2004-12-22 | 2006-06-29 | Elan Pharma International Ltd. | Nanoparticulate bicalutamide formulations |
US9643065B2 (en) | 2005-05-10 | 2017-05-09 | Nike, Inc. | Golf clubs and golf club heads |
CA2513356A1 (en) * | 2005-07-26 | 2007-01-26 | Apotex Pharmachem Inc. | Process for production of bicalutamide |
US20080255048A1 (en) | 2005-11-17 | 2008-10-16 | Moise Azria | Pharmaceutical Composition |
WO2008013791A2 (en) * | 2006-07-24 | 2008-01-31 | University Of Delaware | Pan-antagonists for the androgen receptor and androgen receptor mutants associated with anti-androgen withdrawal |
US20090076158A1 (en) * | 2007-09-13 | 2009-03-19 | Protia, Llc | Deuterium-enriched bicalutamide |
NZ600010A (en) * | 2007-10-24 | 2013-11-29 | Generics Uk Ltd | Novel crystalline forms of bosentan, processes for their preparation and uses thereof |
AU2009211159B2 (en) | 2008-02-08 | 2013-02-07 | Generics [Uk] Limited | Process for preparing bosentan |
EP2252298A4 (en) * | 2008-02-15 | 2011-05-18 | Univ Texas | COMPOSITIONS AND METHODS FOR THE TREATMENT OF LUNG CANCER |
WO2010061210A1 (en) | 2008-11-03 | 2010-06-03 | Generics [Uk] Limited | Hplc method for the analysis of bosentan and related substances and use of these substances as reference standards and markers |
WO2011008543A2 (en) * | 2009-06-29 | 2011-01-20 | University Of Delaware | Pan-antagonists for the androgen receptor and androgen receptor mutants associated with anti-androgen withdrawal |
US8895772B2 (en) | 2010-09-29 | 2014-11-25 | Shilpa Medicare Limited | Process for preparing bicalutamide |
HUE058726T2 (en) * | 2014-08-11 | 2022-09-28 | Sun Pharmaceutical Ind Ltd | New nilotinib salts and their polymorphs |
Family Cites Families (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4420639C1 (en) | 1973-09-11 | 2001-08-21 | Beecham Group Ltd | Aromatic compounds |
US5389613A (en) | 1979-09-21 | 1995-02-14 | Roussel Uclaf | Method of treating prostate adenocarcinoma, prostate benign hypertrophia and endometriosis |
FR2465486A1 (en) | 1979-09-21 | 1981-03-27 | Roussel Uclaf | NEW APPLICATION USING LH-RH OR AGONISTS |
EP0100172B1 (en) | 1982-07-23 | 1987-08-12 | Imperial Chemical Industries Plc | Amide derivatives |
US5994362A (en) | 1992-03-11 | 1999-11-30 | Merck & Co., Inc. | Method of treatment for prostatic cancer |
PL308473A1 (en) | 1992-10-21 | 1995-08-07 | Pfizer | Enabntiomeric cis-3-(4,6-dihydoxychroman-3-yl methyl)bezoic acids |
JPH09508125A (en) | 1994-01-21 | 1997-08-19 | セプラコー,インコーポレイテッド | Method and composition for the treatment of androgen dependent diseases using optically pure R-(-)-casodex |
US5777134A (en) | 1995-10-26 | 1998-07-07 | Merck & Co., Inc. | 4-oxa and 4-thia steriods |
US6071957A (en) * | 1996-11-27 | 2000-06-06 | The University Of Tennessee Research Corporation | Irreversible non-steroidal antagonist compound and its use in the treatment of prostate cancer |
WO1998055153A1 (en) | 1997-06-04 | 1998-12-10 | The University Of Tennessee Research Corporation | Non-steroidal radiolabeled agonist/antagonist compounds and their use in prostate cancer imaging |
US6479692B1 (en) * | 2001-05-02 | 2002-11-12 | Nobex Corporation | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof |
-
2001
- 2001-05-02 US US09/847,229 patent/US6479692B1/en not_active Expired - Lifetime
-
2002
- 2002-05-02 WO PCT/US2002/013591 patent/WO2002088070A1/en active Search and Examination
- 2002-05-02 EP EP02734091A patent/EP1383735B1/en not_active Expired - Lifetime
- 2002-05-02 JP JP2002585374A patent/JP4358518B2/en not_active Expired - Fee Related
- 2002-05-02 CA CA2444244A patent/CA2444244C/en not_active Expired - Fee Related
- 2002-10-10 US US10/268,155 patent/US6812362B2/en not_active Expired - Lifetime
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005060603A3 (en) * | 2003-12-10 | 2005-12-01 | Nitromed Inc | Nitric oxide releasing pyruvate compounds, compositions and methods of use |
US20080287407A1 (en) * | 2003-12-10 | 2008-11-20 | Nitromed, Inc. | Nitric Oxide Releasing Pyruvate Compounds, Compositions and Methods of Use |
US20080177109A1 (en) * | 2005-03-29 | 2008-07-24 | Usv Limited | Novel Process for Preparation of Bicalutamide |
Also Published As
Publication number | Publication date |
---|---|
JP2004529159A (en) | 2004-09-24 |
CA2444244C (en) | 2010-07-13 |
EP1383735A4 (en) | 2006-01-11 |
EP1383735A1 (en) | 2004-01-28 |
WO2002088070A1 (en) | 2002-11-07 |
US20030045742A1 (en) | 2003-03-06 |
EP1383735B1 (en) | 2012-08-15 |
US6812362B2 (en) | 2004-11-02 |
US6479692B1 (en) | 2002-11-12 |
CA2444244A1 (en) | 2002-11-07 |
JP4358518B2 (en) | 2009-11-04 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6812362B2 (en) | Methods of synthesizing acylanilides including bicalutamide and derivatives thereof | |
US7022869B2 (en) | Methods of asymmetrically synthesizing enantiomers of casodex, its derivatives and intermediates thereof | |
RU2425825C2 (en) | Amidoacetonitrile derivatives, pharmaceutical compositions containing said derivatives and use thereof in preparing medicinal agent | |
US20020086902A1 (en) | Process for the preparation of N-(substituted phenyl)-3-alkyl-,aryl- and heteroarylsulfonyl-2-hydroxy-2-alkyl-and haloalkylpropanamide compounds | |
HUP9901937A2 (en) | Process for producing racemic and r-(-)- and s-(+)-n-[4-cyano-3-(trifluoromethyl)-phenyl]-3-[(4-fluorophenyl)-sulfonyl]-2-hydroxy-2-methyl-propanecarboxamide | |
JP4838924B2 (en) | Process for producing 2-chloro-5-chloromethylthiazole | |
JP2005526049A (en) | Preparation of benzisoxazole methanesulfonyl chloride and its method of amidation to form zonisamide | |
RU2370488C2 (en) | Inhibitors of matrix metalloproteinases | |
JP4322621B2 (en) | Process for producing 4'-cyano-3-[(4-fluorophenyl) sulfonyl] -2-hydroxy-2-methyl-3'-trifluoromethylpropionanilide | |
Haroutounian et al. | Aromatic fluorination by silver-ion promoted decomposition of aryl diazo sulfides: efficient utilization of substoichiometric levels of fluoride ion | |
JPH0789955A (en) | Process for producing 2-substituted benzo [b] thiophene | |
JP2008534575A (en) | A new process for the preparation of bicalutamide | |
JP3495072B2 (en) | Method for producing 1,2-benzisothiazol-3-ones | |
WO2017215110A1 (en) | Synthetic method for asymmetrical thioether | |
JP3942686B2 (en) | α- (Acylimino) -benzylsulfoxide or α- (acylimino) -benzylsulfones | |
JP2005041854A (en) | Optically active N- (2-substituted-3-halopropionyl) amino acids and method for producing the same, and method for producing optically active N- (2-substituted-3-acylthiopropionyl) amino acids using the same | |
CN103232373B (en) | Chiral sulfur-containing compound with hexafluoroisopropyl ester based structure as well as synthetic method and application of compound | |
JP2000053638A (en) | Method for producing trifluoromethylthiomethylbenzene derivative | |
JPH0672987A (en) | Production of methanesulfonyl fluoride derivative | |
JPH07330745A (en) | Production of isothiazolone derivative | |
JPH08325210A (en) | Dicyclic methane derivative and its production | |
JP2000226378A (en) | N-cyanoimino heterocyclic compound and method for producing the same | |
JPH0128742B2 (en) | ||
JP2000143616A (en) | Production of aromatic sulfur compound | |
JP2003238543A (en) | Method for producing (Z) -2-aminothiazole compound |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: NOBEX CORPORATION, NORTH CAROLINA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EKWURIBE, NNOCHIRI NKEM;JAMES JR., KENNETH D.;REEL/FRAME:013168/0406 Effective date: 20020628 |
|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
CC | Certificate of correction | ||
AS | Assignment |
Owner name: BIOCON LIMITED,INDIA Free format text: SECURITY AGREEMENT;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017649/0280 Effective date: 20051201 Owner name: BIOCON LIMITED, INDIA Free format text: SECURITY AGREEMENT;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017649/0280 Effective date: 20051201 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
AS | Assignment |
Owner name: BIOCON LIMITED,INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017555/0904 Effective date: 20060417 Owner name: BIOCON LIMITED, INDIA Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:NOBEX CORPORATION;REEL/FRAME:017555/0904 Effective date: 20060417 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |