US20020156236A1 - Binding sites for phosphotyrosine binding domains - Google Patents
Binding sites for phosphotyrosine binding domains Download PDFInfo
- Publication number
- US20020156236A1 US20020156236A1 US09/894,967 US89496701A US2002156236A1 US 20020156236 A1 US20020156236 A1 US 20020156236A1 US 89496701 A US89496701 A US 89496701A US 2002156236 A1 US2002156236 A1 US 2002156236A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- pafspafdnl
- group
- protein
- amino acids
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 230000027455 binding Effects 0.000 title claims abstract description 70
- DCWXELXMIBXGTH-UHFFFAOYSA-N phosphotyrosine Chemical compound OC(=O)C(N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-UHFFFAOYSA-N 0.000 title claims abstract description 26
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 243
- 150000001413 amino acids Chemical class 0.000 claims abstract description 60
- 238000000034 method Methods 0.000 claims abstract description 50
- 108090000623 proteins and genes Proteins 0.000 claims description 122
- 102000004169 proteins and genes Human genes 0.000 claims description 119
- 150000001875 compounds Chemical class 0.000 claims description 38
- 230000003993 interaction Effects 0.000 claims description 27
- 239000003446 ligand Substances 0.000 claims description 27
- 239000007787 solid Substances 0.000 claims description 24
- 238000012360 testing method Methods 0.000 claims description 24
- 239000000203 mixture Substances 0.000 claims description 23
- 239000000556 agonist Substances 0.000 claims description 19
- 239000005557 antagonist Substances 0.000 claims description 18
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 claims description 14
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 claims description 14
- 208000035475 disorder Diseases 0.000 claims description 13
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 claims description 11
- 230000002401 inhibitory effect Effects 0.000 claims description 8
- 230000002062 proliferating effect Effects 0.000 claims description 8
- 206010028980 Neoplasm Diseases 0.000 claims description 7
- 208000026310 Breast neoplasm Diseases 0.000 claims description 6
- 201000011510 cancer Diseases 0.000 claims description 6
- XOZMVGJVSFVJGA-VIFPVBQESA-N (2s)-3-phenyl-2-(phosphonomethylamino)propanoic acid Chemical compound OP(=O)(O)CN[C@H](C(=O)O)CC1=CC=CC=C1 XOZMVGJVSFVJGA-VIFPVBQESA-N 0.000 claims description 4
- 206010006187 Breast cancer Diseases 0.000 claims description 4
- 239000003937 drug carrier Substances 0.000 claims description 4
- 201000001320 Atherosclerosis Diseases 0.000 claims description 3
- 208000012659 Joint disease Diseases 0.000 claims description 3
- 201000004681 Psoriasis Diseases 0.000 claims description 3
- 230000002757 inflammatory effect Effects 0.000 claims description 3
- 238000005406 washing Methods 0.000 claims description 2
- 102000004196 processed proteins & peptides Human genes 0.000 abstract description 113
- 238000012216 screening Methods 0.000 abstract description 18
- 230000001225 therapeutic effect Effects 0.000 abstract description 10
- 101000752225 Xenopus laevis Low density lipoprotein receptor adapter protein 1-A Proteins 0.000 abstract description 3
- 102100033073 Polypyrimidine tract-binding protein 1 Human genes 0.000 description 135
- 235000018102 proteins Nutrition 0.000 description 97
- 235000001014 amino acid Nutrition 0.000 description 43
- 229940024606 amino acid Drugs 0.000 description 42
- 210000004027 cell Anatomy 0.000 description 27
- 229920001184 polypeptide Polymers 0.000 description 23
- 102000037865 fusion proteins Human genes 0.000 description 15
- 108020001507 fusion proteins Proteins 0.000 description 15
- 239000003102 growth factor Substances 0.000 description 13
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 12
- 235000002374 tyrosine Nutrition 0.000 description 11
- 230000000694 effects Effects 0.000 description 10
- 230000005764 inhibitory process Effects 0.000 description 10
- 239000000816 peptidomimetic Substances 0.000 description 10
- 238000011282 treatment Methods 0.000 description 10
- 102000014400 SH2 domains Human genes 0.000 description 9
- 108050003452 SH2 domains Proteins 0.000 description 9
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 8
- 239000006166 lysate Substances 0.000 description 8
- 230000037361 pathway Effects 0.000 description 8
- 125000001493 tyrosinyl group Chemical group [H]OC1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 description 8
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 7
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 7
- 230000004913 activation Effects 0.000 description 7
- 230000000903 blocking effect Effects 0.000 description 7
- 239000000872 buffer Substances 0.000 description 7
- DCWXELXMIBXGTH-QMMMGPOBSA-N phosphonotyrosine Chemical group OC(=O)[C@@H](N)CC1=CC=C(OP(O)(O)=O)C=C1 DCWXELXMIBXGTH-QMMMGPOBSA-N 0.000 description 7
- 239000000047 product Substances 0.000 description 7
- 102000004190 Enzymes Human genes 0.000 description 6
- 108090000790 Enzymes Proteins 0.000 description 6
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 6
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 6
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 6
- 108010001441 Phosphopeptides Proteins 0.000 description 6
- 102000004022 Protein-Tyrosine Kinases Human genes 0.000 description 6
- 108090000412 Protein-Tyrosine Kinases Proteins 0.000 description 6
- 230000004071 biological effect Effects 0.000 description 6
- 230000005754 cellular signaling Effects 0.000 description 6
- 239000003814 drug Substances 0.000 description 6
- 229940088598 enzyme Drugs 0.000 description 6
- 238000009396 hybridization Methods 0.000 description 6
- 238000000338 in vitro Methods 0.000 description 6
- 230000000144 pharmacologic effect Effects 0.000 description 6
- 230000019491 signal transduction Effects 0.000 description 6
- 102100030086 Receptor tyrosine-protein kinase erbB-2 Human genes 0.000 description 5
- 230000020411 cell activation Effects 0.000 description 5
- 238000001727 in vivo Methods 0.000 description 5
- 230000002018 overexpression Effects 0.000 description 5
- 102000005962 receptors Human genes 0.000 description 5
- 108020003175 receptors Proteins 0.000 description 5
- 230000004044 response Effects 0.000 description 5
- 239000000523 sample Substances 0.000 description 5
- 230000011664 signaling Effects 0.000 description 5
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 4
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 4
- KDXKERNSBIXSRK-YFKPBYRVSA-N L-lysine Chemical compound NCCCC[C@H](N)C(O)=O KDXKERNSBIXSRK-YFKPBYRVSA-N 0.000 description 4
- TWRXJAOTZQYOKJ-UHFFFAOYSA-L Magnesium chloride Chemical compound [Mg+2].[Cl-].[Cl-] TWRXJAOTZQYOKJ-UHFFFAOYSA-L 0.000 description 4
- 101710100968 Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 4
- 239000004480 active ingredient Substances 0.000 description 4
- 238000003556 assay Methods 0.000 description 4
- -1 cofactor Substances 0.000 description 4
- 230000001419 dependent effect Effects 0.000 description 4
- 229940079593 drug Drugs 0.000 description 4
- 238000002474 experimental method Methods 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000004927 fusion Effects 0.000 description 4
- 230000035772 mutation Effects 0.000 description 4
- 239000008188 pellet Substances 0.000 description 4
- 230000026731 phosphorylation Effects 0.000 description 4
- 238000006366 phosphorylation reaction Methods 0.000 description 4
- 238000011321 prophylaxis Methods 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- 102000034285 signal transducing proteins Human genes 0.000 description 4
- 108091006024 signal transducing proteins Proteins 0.000 description 4
- 230000000638 stimulation Effects 0.000 description 4
- 238000006467 substitution reaction Methods 0.000 description 4
- 238000003786 synthesis reaction Methods 0.000 description 4
- 102000002260 Alkaline Phosphatase Human genes 0.000 description 3
- 108020004774 Alkaline Phosphatase Proteins 0.000 description 3
- 108091035707 Consensus sequence Proteins 0.000 description 3
- 150000008574 D-amino acids Chemical class 0.000 description 3
- 102000001301 EGF receptor Human genes 0.000 description 3
- 108060006698 EGF receptor Proteins 0.000 description 3
- 239000000020 Nitrocellulose Substances 0.000 description 3
- 108700020796 Oncogene Proteins 0.000 description 3
- 108091008606 PDGF receptors Proteins 0.000 description 3
- 102000004160 Phosphoric Monoester Hydrolases Human genes 0.000 description 3
- 108090000608 Phosphoric Monoester Hydrolases Proteins 0.000 description 3
- 102000011653 Platelet-Derived Growth Factor Receptors Human genes 0.000 description 3
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 3
- 108010090804 Streptavidin Proteins 0.000 description 3
- 125000003275 alpha amino acid group Chemical group 0.000 description 3
- 230000035578 autophosphorylation Effects 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 3
- 125000004057 biotinyl group Chemical group [H]N1C(=O)N([H])[C@]2([H])[C@@]([H])(SC([H])([H])[C@]12[H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C(*)=O 0.000 description 3
- 239000000969 carrier Substances 0.000 description 3
- 230000010261 cell growth Effects 0.000 description 3
- 230000001413 cellular effect Effects 0.000 description 3
- 239000001913 cellulose Substances 0.000 description 3
- 229920002678 cellulose Polymers 0.000 description 3
- 239000003153 chemical reaction reagent Substances 0.000 description 3
- 239000002299 complementary DNA Substances 0.000 description 3
- 229920001577 copolymer Polymers 0.000 description 3
- 230000001086 cytosolic effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000002255 enzymatic effect Effects 0.000 description 3
- 238000001400 expression cloning Methods 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 238000002372 labelling Methods 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 239000012528 membrane Substances 0.000 description 3
- 230000002297 mitogenic effect Effects 0.000 description 3
- 238000010369 molecular cloning Methods 0.000 description 3
- 239000013642 negative control Substances 0.000 description 3
- 229920001220 nitrocellulos Polymers 0.000 description 3
- 239000008194 pharmaceutical composition Substances 0.000 description 3
- 125000002467 phosphate group Chemical group [H]OP(=O)(O[H])O[*] 0.000 description 3
- 239000013641 positive control Substances 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 238000012552 review Methods 0.000 description 3
- 241000894007 species Species 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- MYRTYDVEIRVNKP-UHFFFAOYSA-N 1,2-Divinylbenzene Chemical compound C=CC1=CC=CC=C1C=C MYRTYDVEIRVNKP-UHFFFAOYSA-N 0.000 description 2
- 208000036832 Adenocarcinoma of ovary Diseases 0.000 description 2
- 206010052747 Adenocarcinoma pancreas Diseases 0.000 description 2
- 229920000936 Agarose Polymers 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- 102100026189 Beta-galactosidase Human genes 0.000 description 2
- 102000004127 Cytokines Human genes 0.000 description 2
- 108090000695 Cytokines Proteins 0.000 description 2
- 206010061968 Gastric neoplasm Diseases 0.000 description 2
- 102000009465 Growth Factor Receptors Human genes 0.000 description 2
- 108010009202 Growth Factor Receptors Proteins 0.000 description 2
- 101710154606 Hemagglutinin Proteins 0.000 description 2
- 108010001336 Horseradish Peroxidase Proteins 0.000 description 2
- PMMYEEVYMWASQN-DMTCNVIQSA-N Hydroxyproline Chemical compound O[C@H]1CN[C@H](C(O)=O)C1 PMMYEEVYMWASQN-DMTCNVIQSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- 108060001084 Luciferase Proteins 0.000 description 2
- 239000005089 Luciferase Substances 0.000 description 2
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 2
- 101710202709 Middle T antigen Proteins 0.000 description 2
- 101710093908 Outer capsid protein VP4 Proteins 0.000 description 2
- 101710135467 Outer capsid protein sigma-1 Proteins 0.000 description 2
- 206010061328 Ovarian epithelial cancer Diseases 0.000 description 2
- 229910018828 PO3H2 Inorganic materials 0.000 description 2
- 239000002033 PVDF binder Substances 0.000 description 2
- 241001505332 Polyomavirus sp. Species 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 101710176177 Protein A56 Proteins 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 125000000613 asparagine group Chemical group N[C@@H](CC(N)=O)C(=O)* 0.000 description 2
- 210000003719 b-lymphocyte Anatomy 0.000 description 2
- 239000011324 bead Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 108010005774 beta-Galactosidase Proteins 0.000 description 2
- 201000008275 breast carcinoma Diseases 0.000 description 2
- 230000024245 cell differentiation Effects 0.000 description 2
- 230000004663 cell proliferation Effects 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 210000001072 colon Anatomy 0.000 description 2
- 201000010897 colon adenocarcinoma Diseases 0.000 description 2
- 239000000470 constituent Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- PMMYEEVYMWASQN-UHFFFAOYSA-N dl-hydroxyproline Natural products OC1C[NH2+]C(C([O-])=O)C1 PMMYEEVYMWASQN-UHFFFAOYSA-N 0.000 description 2
- 239000000499 gel Substances 0.000 description 2
- 230000014509 gene expression Effects 0.000 description 2
- 239000000185 hemagglutinin Substances 0.000 description 2
- 238000004128 high performance liquid chromatography Methods 0.000 description 2
- 229960002591 hydroxyproline Drugs 0.000 description 2
- 125000001841 imino group Chemical group [H]N=* 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 239000012133 immunoprecipitate Substances 0.000 description 2
- 238000010348 incorporation Methods 0.000 description 2
- 206010022000 influenza Diseases 0.000 description 2
- 239000004615 ingredient Substances 0.000 description 2
- 239000003112 inhibitor Substances 0.000 description 2
- NOESYZHRGYRDHS-UHFFFAOYSA-N insulin Chemical compound N1C(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(NC(=O)CN)C(C)CC)CSSCC(C(NC(CO)C(=O)NC(CC(C)C)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CCC(N)=O)C(=O)NC(CC(C)C)C(=O)NC(CCC(O)=O)C(=O)NC(CC(N)=O)C(=O)NC(CC=2C=CC(O)=CC=2)C(=O)NC(CSSCC(NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2C=CC(O)=CC=2)NC(=O)C(CC(C)C)NC(=O)C(C)NC(=O)C(CCC(O)=O)NC(=O)C(C(C)C)NC(=O)C(CC(C)C)NC(=O)C(CC=2NC=NC=2)NC(=O)C(CO)NC(=O)CNC2=O)C(=O)NCC(=O)NC(CCC(O)=O)C(=O)NC(CCCNC(N)=N)C(=O)NCC(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC=CC=3)C(=O)NC(CC=3C=CC(O)=CC=3)C(=O)NC(C(C)O)C(=O)N3C(CCC3)C(=O)NC(CCCCN)C(=O)NC(C)C(O)=O)C(=O)NC(CC(N)=O)C(O)=O)=O)NC(=O)C(C(C)CC)NC(=O)C(CO)NC(=O)C(C(C)O)NC(=O)C1CSSCC2NC(=O)C(CC(C)C)NC(=O)C(NC(=O)C(CCC(N)=O)NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(N)CC=1C=CC=CC=1)C(C)C)CC1=CN=CN1 NOESYZHRGYRDHS-UHFFFAOYSA-N 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- 238000007918 intramuscular administration Methods 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- 238000001990 intravenous administration Methods 0.000 description 2
- JVTAAEKCZFNVCJ-UHFFFAOYSA-N lactic acid Chemical compound CC(O)C(O)=O JVTAAEKCZFNVCJ-UHFFFAOYSA-N 0.000 description 2
- 201000005249 lung adenocarcinoma Diseases 0.000 description 2
- 229910001629 magnesium chloride Inorganic materials 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000003550 marker Substances 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 238000000302 molecular modelling Methods 0.000 description 2
- 230000002611 ovarian Effects 0.000 description 2
- 208000013371 ovarian adenocarcinoma Diseases 0.000 description 2
- 201000006588 ovary adenocarcinoma Diseases 0.000 description 2
- 201000002094 pancreatic adenocarcinoma Diseases 0.000 description 2
- BZQFBWGGLXLEPQ-REOHCLBHSA-N phosphoserine Chemical compound OC(=O)[C@@H](N)COP(O)(O)=O BZQFBWGGLXLEPQ-REOHCLBHSA-N 0.000 description 2
- 229920002223 polystyrene Polymers 0.000 description 2
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 230000002797 proteolythic effect Effects 0.000 description 2
- 230000001105 regulatory effect Effects 0.000 description 2
- 210000002966 serum Anatomy 0.000 description 2
- 239000011780 sodium chloride Substances 0.000 description 2
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 2
- 125000006850 spacer group Chemical group 0.000 description 2
- 238000010561 standard procedure Methods 0.000 description 2
- 239000000758 substrate Substances 0.000 description 2
- 238000013518 transcription Methods 0.000 description 2
- 230000035897 transcription Effects 0.000 description 2
- 230000009466 transformation Effects 0.000 description 2
- 230000001131 transforming effect Effects 0.000 description 2
- IHIXIJGXTJIKRB-UHFFFAOYSA-N trisodium vanadate Chemical compound [Na+].[Na+].[Na+].[O-][V]([O-])([O-])=O IHIXIJGXTJIKRB-UHFFFAOYSA-N 0.000 description 2
- 108091005990 tyrosine-phosphorylated proteins Proteins 0.000 description 2
- 241000701447 unidentified baculovirus Species 0.000 description 2
- QKNYBSVHEMOAJP-UHFFFAOYSA-N 2-amino-2-(hydroxymethyl)propane-1,3-diol;hydron;chloride Chemical compound Cl.OCC(N)(CO)CO QKNYBSVHEMOAJP-UHFFFAOYSA-N 0.000 description 1
- BRMWTNUJHUMWMS-UHFFFAOYSA-N 3-Methylhistidine Natural products CN1C=NC(CC(N)C(O)=O)=C1 BRMWTNUJHUMWMS-UHFFFAOYSA-N 0.000 description 1
- XZKIHKMTEMTJQX-UHFFFAOYSA-N 4-Nitrophenyl Phosphate Chemical compound OP(O)(=O)OC1=CC=C([N+]([O-])=O)C=C1 XZKIHKMTEMTJQX-UHFFFAOYSA-N 0.000 description 1
- 229940117976 5-hydroxylysine Drugs 0.000 description 1
- 102000007698 Alcohol dehydrogenase Human genes 0.000 description 1
- 108010021809 Alcohol dehydrogenase Proteins 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- 108090001008 Avidin Proteins 0.000 description 1
- 241000894006 Bacteria Species 0.000 description 1
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 1
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 1
- 102000014914 Carrier Proteins Human genes 0.000 description 1
- 102000000844 Cell Surface Receptors Human genes 0.000 description 1
- 108010001857 Cell Surface Receptors Proteins 0.000 description 1
- 102000008186 Collagen Human genes 0.000 description 1
- 108010035532 Collagen Proteins 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- KDXKERNSBIXSRK-RXMQYKEDSA-N D-lysine Chemical compound NCCCC[C@@H](N)C(O)=O KDXKERNSBIXSRK-RXMQYKEDSA-N 0.000 description 1
- 230000004544 DNA amplification Effects 0.000 description 1
- 229920002307 Dextran Polymers 0.000 description 1
- 108090000204 Dipeptidase 1 Proteins 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 241000233866 Fungi Species 0.000 description 1
- KOSRFJWDECSPRO-WDSKDSINSA-N Glu-Glu Chemical compound OC(=O)CC[C@H](N)C(=O)N[C@@H](CCC(O)=O)C(O)=O KOSRFJWDECSPRO-WDSKDSINSA-N 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- 239000004471 Glycine Substances 0.000 description 1
- 108090000288 Glycoproteins Proteins 0.000 description 1
- 102000003886 Glycoproteins Human genes 0.000 description 1
- 101001012157 Homo sapiens Receptor tyrosine-protein kinase erbB-2 Proteins 0.000 description 1
- 206010062016 Immunosuppression Diseases 0.000 description 1
- 102000004877 Insulin Human genes 0.000 description 1
- 108090001061 Insulin Proteins 0.000 description 1
- 102100037852 Insulin-like growth factor I Human genes 0.000 description 1
- 102000004889 Interleukin-6 Human genes 0.000 description 1
- 108090001005 Interleukin-6 Proteins 0.000 description 1
- 235000019766 L-Lysine Nutrition 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- 150000008575 L-amino acids Chemical class 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 102100032352 Leukemia inhibitory factor Human genes 0.000 description 1
- 239000004472 Lysine Substances 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 241001465754 Metazoa Species 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- DTERQYGMUDWYAZ-ZETCQYMHSA-N N(6)-acetyl-L-lysine Chemical compound CC(=O)NCCCC[C@H]([NH3+])C([O-])=O DTERQYGMUDWYAZ-ZETCQYMHSA-N 0.000 description 1
- NTNWOCRCBQPEKQ-YFKPBYRVSA-N N(omega)-methyl-L-arginine Chemical compound CN=C(N)NCCC[C@H](N)C(O)=O NTNWOCRCBQPEKQ-YFKPBYRVSA-N 0.000 description 1
- JDHILDINMRGULE-LURJTMIESA-N N(pros)-methyl-L-histidine Chemical compound CN1C=NC=C1C[C@H](N)C(O)=O JDHILDINMRGULE-LURJTMIESA-N 0.000 description 1
- JJIHLJJYMXLCOY-BYPYZUCNSA-N N-acetyl-L-serine Chemical compound CC(=O)N[C@@H](CO)C(O)=O JJIHLJJYMXLCOY-BYPYZUCNSA-N 0.000 description 1
- PYUSHNKNPOHWEZ-YFKPBYRVSA-N N-formyl-L-methionine Chemical compound CSCC[C@@H](C(O)=O)NC=O PYUSHNKNPOHWEZ-YFKPBYRVSA-N 0.000 description 1
- 208000008636 Neoplastic Processes Diseases 0.000 description 1
- 108010025020 Nerve Growth Factor Proteins 0.000 description 1
- 102000007072 Nerve Growth Factors Human genes 0.000 description 1
- 206010029260 Neuroblastoma Diseases 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- BZQFBWGGLXLEPQ-UHFFFAOYSA-N O-phosphoryl-L-serine Natural products OC(=O)C(N)COP(O)(O)=O BZQFBWGGLXLEPQ-UHFFFAOYSA-N 0.000 description 1
- GKZIWHRNKRBEOH-HOTGVXAUSA-N Phe-Phe Chemical compound C([C@H]([NH3+])C(=O)N[C@@H](CC=1C=CC=CC=1)C([O-])=O)C1=CC=CC=C1 GKZIWHRNKRBEOH-HOTGVXAUSA-N 0.000 description 1
- 102000045595 Phosphoprotein Phosphatases Human genes 0.000 description 1
- 108700019535 Phosphoprotein Phosphatases Proteins 0.000 description 1
- 102000007982 Phosphoproteins Human genes 0.000 description 1
- 108010089430 Phosphoproteins Proteins 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- 102000001253 Protein Kinase Human genes 0.000 description 1
- 102000002727 Protein Tyrosine Phosphatase Human genes 0.000 description 1
- 108700020978 Proto-Oncogene Proteins 0.000 description 1
- 102000052575 Proto-Oncogene Human genes 0.000 description 1
- 101100408135 Pseudomonas aeruginosa (strain ATCC 15692 / DSM 22644 / CIP 104116 / JCM 14847 / LMG 12228 / 1C / PRS 101 / PAO1) phnA gene Proteins 0.000 description 1
- 102000004278 Receptor Protein-Tyrosine Kinases Human genes 0.000 description 1
- 108090000873 Receptor Protein-Tyrosine Kinases Proteins 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 239000012507 Sephadex™ Substances 0.000 description 1
- 229920002684 Sepharose Polymers 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 208000005718 Stomach Neoplasms Diseases 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- 206010052779 Transplant rejections Diseases 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000002835 absorbance Methods 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 208000009956 adenocarcinoma Diseases 0.000 description 1
- 239000000443 aerosol Substances 0.000 description 1
- 238000001042 affinity chromatography Methods 0.000 description 1
- 238000001261 affinity purification Methods 0.000 description 1
- 238000003450 affinity purification method Methods 0.000 description 1
- 230000001270 agonistic effect Effects 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 208000026935 allergic disease Diseases 0.000 description 1
- 102000004139 alpha-Amylases Human genes 0.000 description 1
- 108090000637 alpha-Amylases Proteins 0.000 description 1
- KOSRFJWDECSPRO-UHFFFAOYSA-N alpha-L-glutamyl-L-glutamic acid Natural products OC(=O)CCC(N)C(=O)NC(CCC(O)=O)C(O)=O KOSRFJWDECSPRO-UHFFFAOYSA-N 0.000 description 1
- 229940024171 alpha-amylase Drugs 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 125000003368 amide group Chemical group 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 230000003321 amplification Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 238000002399 angioplasty Methods 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000003042 antagnostic effect Effects 0.000 description 1
- 230000001028 anti-proliverative effect Effects 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 238000000376 autoradiography Methods 0.000 description 1
- 230000001580 bacterial effect Effects 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 102000006635 beta-lactamase Human genes 0.000 description 1
- 108091008324 binding proteins Proteins 0.000 description 1
- 239000012620 biological material Substances 0.000 description 1
- 230000037396 body weight Effects 0.000 description 1
- 229940098773 bovine serum albumin Drugs 0.000 description 1
- 239000006172 buffering agent Substances 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 239000001768 carboxy methyl cellulose Substances 0.000 description 1
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 1
- UHBYWPGGCSDKFX-UHFFFAOYSA-N carboxyglutamic acid Chemical compound OC(=O)C(N)CC(C(O)=O)C(O)=O UHBYWPGGCSDKFX-UHFFFAOYSA-N 0.000 description 1
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 1
- 239000003183 carcinogenic agent Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 239000013592 cell lysate Substances 0.000 description 1
- 210000000170 cell membrane Anatomy 0.000 description 1
- 230000019522 cellular metabolic process Effects 0.000 description 1
- 235000010980 cellulose Nutrition 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000003776 cleavage reaction Methods 0.000 description 1
- 229920001436 collagen Polymers 0.000 description 1
- 238000004737 colorimetric analysis Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000000356 contaminant Substances 0.000 description 1
- 238000013270 controlled release Methods 0.000 description 1
- 230000001276 controlling effect Effects 0.000 description 1
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 1
- 230000003413 degradative effect Effects 0.000 description 1
- 238000012217 deletion Methods 0.000 description 1
- 230000037430 deletion Effects 0.000 description 1
- YSMODUONRAFBET-UHFFFAOYSA-N delta-DL-hydroxylysine Natural products NCC(O)CCC(N)C(O)=O YSMODUONRAFBET-UHFFFAOYSA-N 0.000 description 1
- 230000030609 dephosphorylation Effects 0.000 description 1
- 238000006209 dephosphorylation reaction Methods 0.000 description 1
- 230000002074 deregulated effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 229950006137 dexfosfoserine Drugs 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 102000038379 digestive enzymes Human genes 0.000 description 1
- 108091007734 digestive enzymes Proteins 0.000 description 1
- 229940042399 direct acting antivirals protease inhibitors Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 229940000406 drug candidate Drugs 0.000 description 1
- 238000012377 drug delivery Methods 0.000 description 1
- 238000009510 drug design Methods 0.000 description 1
- 239000012636 effector Substances 0.000 description 1
- 238000010828 elution Methods 0.000 description 1
- 210000001671 embryonic stem cell Anatomy 0.000 description 1
- 108700020302 erbB-2 Genes Proteins 0.000 description 1
- YSMODUONRAFBET-UHNVWZDZSA-N erythro-5-hydroxy-L-lysine Chemical compound NC[C@H](O)CC[C@H](N)C(O)=O YSMODUONRAFBET-UHNVWZDZSA-N 0.000 description 1
- DEFVIWRASFVYLL-UHFFFAOYSA-N ethylene glycol bis(2-aminoethyl)tetraacetic acid Chemical compound OC(=O)CN(CC(O)=O)CCOCCOCCN(CC(O)=O)CC(O)=O DEFVIWRASFVYLL-UHFFFAOYSA-N 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 210000002950 fibroblast Anatomy 0.000 description 1
- 239000000796 flavoring agent Substances 0.000 description 1
- 235000019634 flavors Nutrition 0.000 description 1
- MHMNJMPURVTYEJ-UHFFFAOYSA-N fluorescein-5-isothiocyanate Chemical compound O1C(=O)C2=CC(N=C=S)=CC=C2C21C1=CC=C(O)C=C1OC1=CC(O)=CC=C21 MHMNJMPURVTYEJ-UHFFFAOYSA-N 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 235000003599 food sweetener Nutrition 0.000 description 1
- 206010017758 gastric cancer Diseases 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000008103 glucose Substances 0.000 description 1
- 235000001727 glucose Nutrition 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Chemical group 0.000 description 1
- 108010055341 glutamyl-glutamic acid Proteins 0.000 description 1
- 230000013595 glycosylation Effects 0.000 description 1
- 238000006206 glycosylation reaction Methods 0.000 description 1
- 230000036541 health Effects 0.000 description 1
- 206010073071 hepatocellular carcinoma Diseases 0.000 description 1
- 210000003630 histaminocyte Anatomy 0.000 description 1
- 229940088597 hormone Drugs 0.000 description 1
- 239000005556 hormone Substances 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 229940125396 insulin Drugs 0.000 description 1
- 102000006495 integrins Human genes 0.000 description 1
- 108010044426 integrins Proteins 0.000 description 1
- 239000000543 intermediate Substances 0.000 description 1
- 239000003456 ion exchange resin Substances 0.000 description 1
- 229920003303 ion-exchange polymer Polymers 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 235000014655 lactic acid Nutrition 0.000 description 1
- 239000004310 lactic acid Substances 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 229910052747 lanthanoid Inorganic materials 0.000 description 1
- 150000002602 lanthanoids Chemical class 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000001613 neoplastic effect Effects 0.000 description 1
- 102000037979 non-receptor tyrosine kinases Human genes 0.000 description 1
- 108091008046 non-receptor tyrosine kinases Proteins 0.000 description 1
- 230000036963 noncompetitive effect Effects 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 238000003199 nucleic acid amplification method Methods 0.000 description 1
- 238000001216 nucleic acid method Methods 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- QNDVLZJODHBUFM-WFXQOWMNSA-N okadaic acid Chemical compound C([C@H](O1)[C@H](C)/C=C/[C@H]2CC[C@@]3(CC[C@H]4O[C@@H](C([C@@H](O)[C@@H]4O3)=C)[C@@H](O)C[C@H](C)[C@@H]3[C@@H](CC[C@@]4(OCCCC4)O3)C)O2)C(C)=C[C@]21O[C@H](C[C@@](C)(O)C(O)=O)CC[C@H]2O QNDVLZJODHBUFM-WFXQOWMNSA-N 0.000 description 1
- VEFJHAYOIAAXEU-UHFFFAOYSA-N okadaic acid Natural products CC(CC(O)C1OC2CCC3(CCC(O3)C=CC(C)C4CC(=CC5(OC(CC(C)(O)C(=O)O)CCC5O)O4)C)OC2C(O)C1C)C6OC7(CCCCO7)CCC6C VEFJHAYOIAAXEU-UHFFFAOYSA-N 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 239000004031 partial agonist Substances 0.000 description 1
- 239000000137 peptide hydrolase inhibitor Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 108010073025 phenylalanylphenylalanine Proteins 0.000 description 1
- 230000004962 physiological condition Effects 0.000 description 1
- 230000035790 physiological processes and functions Effects 0.000 description 1
- 239000002985 plastic film Substances 0.000 description 1
- 229920006255 plastic film Polymers 0.000 description 1
- 230000004481 post-translational protein modification Effects 0.000 description 1
- 230000003334 potential effect Effects 0.000 description 1
- 230000000069 prophylactic effect Effects 0.000 description 1
- 108060006633 protein kinase Proteins 0.000 description 1
- 108020000494 protein-tyrosine phosphatase Proteins 0.000 description 1
- 230000004850 protein–protein interaction Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000011347 resin Substances 0.000 description 1
- 229920005989 resin Polymers 0.000 description 1
- PYWVYCXTNDRMGF-UHFFFAOYSA-N rhodamine B Chemical compound [Cl-].C=12C=CC(=[N+](CC)CC)C=C2OC2=CC(N(CC)CC)=CC=C2C=1C1=CC=CC=C1C(O)=O PYWVYCXTNDRMGF-UHFFFAOYSA-N 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 230000007017 scission Effects 0.000 description 1
- 238000007423 screening assay Methods 0.000 description 1
- 101150012554 shc gene Proteins 0.000 description 1
- 150000003384 small molecules Chemical class 0.000 description 1
- 239000008247 solid mixture Substances 0.000 description 1
- 239000007790 solid phase Substances 0.000 description 1
- 230000009870 specific binding Effects 0.000 description 1
- 102000009076 src-Family Kinases Human genes 0.000 description 1
- 108010087686 src-Family Kinases Proteins 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 201000011549 stomach cancer Diseases 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000003765 sweetening agent Substances 0.000 description 1
- 238000010189 synthetic method Methods 0.000 description 1
- 230000009897 systematic effect Effects 0.000 description 1
- 239000000454 talc Substances 0.000 description 1
- 235000012222 talc Nutrition 0.000 description 1
- 229910052623 talc Inorganic materials 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 210000001685 thyroid gland Anatomy 0.000 description 1
- 230000000699 topical effect Effects 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 238000013519 translation Methods 0.000 description 1
- 101150044170 trpE gene Proteins 0.000 description 1
- 230000005740 tumor formation Effects 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
- 239000011592 zinc chloride Substances 0.000 description 1
- JIAARYAFYJHUJI-UHFFFAOYSA-L zinc dichloride Chemical compound [Cl-].[Cl-].[Zn+2] JIAARYAFYJHUJI-UHFFFAOYSA-L 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
- G01N33/6803—General methods of protein analysis not limited to specific proteins or families of proteins
- G01N33/6842—Proteomic analysis of subsets of protein mixtures with reduced complexity, e.g. membrane proteins, phosphoproteins, organelle proteins
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/435—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
- C07K14/705—Receptors; Cell surface antigens; Cell surface determinants
- C07K14/71—Receptors; Cell surface antigens; Cell surface determinants for growth factors; for growth regulators
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/68—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/435—Assays involving biological materials from specific organisms or of a specific nature from animals; from humans
- G01N2333/705—Assays involving receptors, cell surface antigens or cell surface determinants
- G01N2333/71—Assays involving receptors, cell surface antigens or cell surface determinants for growth factors; for growth regulators
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S530/00—Chemistry: natural resins or derivatives; peptides or proteins; lignins or reaction products thereof
- Y10S530/81—Carrier - bound or immobilized peptides or proteins and the preparation thereof, e.g. biological cell or cell fragment as carrier
Definitions
- the present invention generally provides peptides that comprise a recognition sequence motif for phosphotyrosine binding proteins.
- the present invention provides peptides which comprise a core sequence of amino acids, and analogs thereof, which are recognized and bound by the PTB phosphotyrosine binding domain. Also provided are methods of using the peptides of the invention in diagnostic, screening and therapeutic applications.
- Receptor signaling pathways are the subject of widespread research efforts. A better understanding of these signaling pathways will lead to the design of new and more effective drugs in the treatment of many diseases.
- growth factor and related receptor signaling pathways are the growth factor and related receptor signaling pathways and their role in cell growth and differentiation. Binding of a particular growth factor to its receptor on the cell plasma membrane can stimulate a wide variety of biochemical responses, including changes in ion fluxes, activation of various kinases, alteration of cell shape, transcription of various genes and modulation of enzymatic activities in cellular metabolism.
- a receptor upon binding an external ligand, may undergo auto-phosphorylation of specific tyrosine residues, and/or may phosphorylate other proteins. This tyrosine phosphorylation creates binding sites for cytoplasmic signaling proteins which have specific domains that recognize the phosphorylated tyrosine and adjacent residues. Once bound, these signaling proteins may in turn be activated. The activated signaling proteins then may effect downstream processes. Pawson and Gish, Cell 71:359-362 (1992).
- Src Homologous, or “SH2” domains are amino acid sequences that are similar to a 100-residue, non-catalytic region of the Src tyrosine kinase and are present in various signaling molecules. Sadowski et al., Mol. Cell. Biol. 6, 4396 (1986). SH2 domains are functional protein motifs that bind tyrosine-phosphorylated targets by recognizing phosphotyrosine and specific adjacent residues. J. A. Escobedo et al., Mol. Cell. Biol. 11, 1125 (1991); L. C. Cantley et al. Cell 64, 281 (1991); T. Pawson and G. D.
- SHC which stands for SH2
- Collagen encodes a transforming protein, expressed as 46- and 52-kD proteins that are tyrosine phosphorylated in response to a number of growth factors, e.g., PDGF, EGF and FGF, and have been implicated as mediators of signaling from growth factor receptor and non-receptor tyrosine kinases to Ras.
- SH2 domains are not the only phosphotyrosine binding mediators of such pathways.
- PTBI phosphotyrosine binding domain
- SHC protein SHC protein
- This PTB domain was reported to specifically bind the tyrosine phosphorylated version of a target protein, which target protein was phosphorylated upon cell activation/stimulation, e.g., anti-IgM stimulated B cells, IL-6 stimulated HepG2 hepatoma cells, LIF stimulated CCE embryonic stem cells.
- the amino acid sequence of this domain is unlike that of any member of the known SH2 domain family. Therefore, although the nature of phosphotyrosine binding by the PTB domain is similar to that of the SH2 domain, functionally, and mechanistically, the two are very different.
- the present invention generally provides substantially pure peptides which are capable of binding a PTB domain, wherein the peptide is from 5 to 100 amino acids in length, and comprises a core sequence of amino acids NX 3 X 1 X 2 X 4 ; where X 1 is selected from the group consisting of Y, pY or an analog thereof, E, T, D, Q, A and F; X 2 is selected from pY or an analog thereof, and Y, provided that at least one of X 1 and X 2 is pY, or an analog thereof; X 3 is selected from the group consisting of L and A; and X 4 is selected from the group consisting of W, L, S, F and Q.
- At least one of X 1 and X 2 will be an analog of phosphotyrosine, and said analog is (phosphonomethyl)-phenylalanine.
- the peptides are from 6 to 100 amino acids in length, and comprise a core sequence of amino acids X 5 NX 3 X 1 X 2 X 4 , wherein X 5 is selected from the group consisting of D, S, E and A.
- X 2 will be pY.
- the peptides will be from 6 to 100 amino acids in length, and comprise a core sequence of amino acids selected from the group consisting of DNX 3 X 1 pYX 4 and ENX 3 X 1 pYX 4 , where X 4 is selected from the group consisting of W and F.
- Especially preferred peptides will be from 12 to 100 amino acids in length, and which comprise a core sequence of amino acids selected from the group consisting of: AFDNLY(pY)WDQNS; AFDNL(pY)YWDQNS; and AFDNL(pY)(pY)WDQNS.
- peptides which are from 21 to 100 amino acids in length and which comprise a core sequence of amino acids selected from the group consisting of:
- the present invention provides substantially pure peptides which are capable of binding a PTB domain, wherein the peptides are from 21 to about 100 amino acids in length and which comprise a core sequence of amino acids selected from the group consisting of AFGGAVENPE(pY)LAPRAGTASQ and EGTPTAENPE(pY)LGLDVPV.
- the present invention provides compositions which comprise the peptides of the present invention and pharmaceutically acceptable carriers.
- the present invention provides a method of determining whether a protein comprises a PTB domain.
- the method comprises the steps of contacting the protein with a peptide of the present invention, and determining whether the peptide binds to the protein.
- the binding of the peptide to the protein is indicative that the protein comprises a PTB domain.
- the protein is attached to a solid support prior to contacting the protein with the peptide of the present invention, and the peptide used in the contacting step further comprises a detectable group fused to the peptide.
- the determining step then comprises assaying for the presence of the detectable group.
- the peptide of the invention will be attached to a solid support prior to contacting the protein with the peptide of the invention.
- the present invention provides a method of determining whether a test compound is an agonist or antagonist of a PTB domain/phosphorylated ligand interaction.
- the method comprises the steps of incubating the test compound with a protein comprising a PTB domain, and a peptide of the invention, determining the amount of protein bound to the peptide during the incubating step, and comparing the amount of protein bound to the peptide during the incubating step to an amount of protein bound to the peptide in the absence of the test compound.
- the increase or decrease in the amount of protein bound to the peptide in the presence of the test compound will be indicative that the test compound is an agonist or antagonist of PTB domain/phosphorylated ligand interaction, respectively.
- a method of inhibiting the binding of a PTB domain-containing protein to a tyrosine phosphorylated target comprising contacting the PTB domain-containing protein with an effective amount of the peptide of the invention.
- the tyrosine phosphorylated target is c-erbB2.
- the PTB domain-containing protein is SHC.
- Also provided by the present invention is a method of obtaining substantially pure PTB domain-containing protein from a mixture of different proteins.
- the method comprises the steps of providing a peptide of the present invention bound to a solid support.
- the mixture of different proteins is contacted with the peptide bound to the solid support whereby the PTB domain-containing protein is bound to the peptide.
- the solid support is washed to remove unbound proteins, and substantially pure PTB domain-containing protein is then eluted from the solid support.
- the present invention provides a method of treating a patient suffering from a proliferative cell disorder.
- the method comprises administering to the patient an effective amount of the peptide of the present invention.
- the proliferative cell disorder is selected from the group consisting of atherosclerosis, inflammatory joint disease, psoriasis, restinosis and cancer.
- the proliferative cell disorder is cancer, and more preferably, breast cancer.
- FIG. 1 shows proteins expressed from a ⁇ gt11 cDNA library, immobilized on filters, phosphorylated in vitro using recombinant PDGF receptor kinase, followed by hybridization with 32 P-labeled PTB domain. Shown is a positive (clone 39.1) and representative negative plaque purified by successive rounds of screening, then transferred to a filter. Quadrants of the filter were treated as indicated prior to hybridization with 32 P-labeled PTB domain.
- FIG. 2 shows the association of c-erbB2 with the PTB domain.
- Panel A shows GST-PTB and GST-(1-45) (residues 1-45 of SHC, containing no PTB domain) fusion proteins, tagged with the influenza hemagglutinin (IHA) epitope, and incubated with lysate of SKBR3 cells (containing c-erbB2) or with buffer.
- Anti-IHA immunoprecipitates of each were separately blotted with anti-c-erbB2 (“erbB-2 blot”) and anti-IHA 12CA5 antibodies (“IHA blot”). Also shown are blots of immunoprecipitates using preimmune serum and anti-SHC serum.
- Panel B shows a blot of IHA tagged GST-PTB, incubated with SKBR3 lysate in the presence or absence of the indicated peptides derived from c-erbB2 (upper blot), and with varied concentrations of the peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG (“pY1221/pY1222”) (lower blot).
- Panel C shows a blot of IHA tagged GST-PTB, incubated with SKBR3 lysate in the presence of 500 nM of the indicated pY substituted peptides.
- FIG. 3 is a bar graph showing the effects of various conditions upon PTB domain/phosphopeptide binding.
- IHA tagged GST-PTB domain fusion protein was incubated in the presence of the following biotinylated peptides: PAFSPAFDNLYYWDQNSSEQG (“b-unphos.”); PAFSPAFDNL(pY)(pY)WDQNSSEQG (“b-phos.”), alone and in the presence of 100 ⁇ non-biotinylated, unphosphorylated and phosphorylated peptide (“100 ⁇ unphos.” and “100 ⁇ phos.”, respectively); PAFSPAFDQL(pY)(pY)WDQNSSEQG (“b-N1219Q”); and PAFSPAFDDL(pY)(pY)WDQNSSEQG (“b-N1219D”). Specific binding was detected using streptavidin-coupled alkaline phosphatase. Also shown is the level of binding by b-phos. and b-unphos
- the present invention generally provides peptides which comprise a sequence motif which is recognized and bound by phosphotyrosine binding proteins. More particularly, the peptides of the present invention are recognized and bound by proteins which comprise a PTB domain.
- These peptides, or their analogs may generally be used in blocking or inhibiting PTB domain/phosphorylated ligand interactions, both in vitro and in vivo.
- the peptides of the present invention can be useful as antagonists of PTB domain/phosphorylated ligand interaction, for controlling or inhibiting cell signalling pathways which rely on these PTB domain/phosphorylated ligand interactions, i.e.,.growth factor dependent activation or stimulation of cells, and growth factor initiated mitogenesis.
- the peptides of the present invention can also be useful as affinity ligands or probes, in the identification, purification, and/or characterization of PTB domain containing proteins, or, alternatively, as target peptides in screening for agonists or antagonists of PTB domain/phosphorylated ligand interaction.
- amino acid residues as used herein are: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr.
- Phosphotyrosine is denoted by pY, and (phosphonomethyl)phenylalanine is denoted by Pmp.
- Stereoisomers e.g., D-amino acids
- conventional amino acids unnatural amino acids such as ⁇ , ⁇ -disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the present invention.
- Examples of unconventional or unnatural amino acids include amino acids well known in the art, but which are not included in the twenty conventional amino acids, such as: 4-hydroxyproline, ⁇ -carboxyglutamate, ⁇ -N,N,N-trimethyllysine, ⁇ -N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ⁇ -N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline).
- the lefthand direction is the amino terminal direction and the righthand direction is the carboxy-terminal direction, in accordance with standard usage and convention.
- analog refers to compounds which are generally structurally similar to the compound of which they are an analog, or “parent” compound. Generally analogs will retain certain characteristics of the parent compound, e.g., biological or pharmacological activity, while lacking other, less desirable characteristics, e.g., antigenicity, proteolytic instability, toxicity, and the like.
- analog generally refers to polypeptides which are comprised of a segment of about at least 3 amino acids that has substantial identity to at least a portion of a PTB domain-binding peptide, and which has at least one of the following properties: (1) specifically binds to the PTB domain, and (2) affects or blocks a PTB domain-containing protein mediated phenotype.
- analog peptides comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally-occurring sequence.
- Analogs typically are at least 5 amino acids long, preferably at least 20 amino acids long or longer, most usually being as long as a minimal length binding/recognition sequence identified by methods for identifying PTB domain-binding peptides. Some analogs may lack substantial biological activity but may still be employed for various uses, such as for raising antibodies to predetermined epitopes, as an immunological reagent to detect and/or purify reactive antibodies by affinity chromatography, or as a competitive or noncompetitive agonist, antagonist, or partial agonist of PTB domain function.
- peptide and “polypeptide” refer to macromolecules which comprise a multiplicity of amino or imino acids (or their equivalents) in peptide linkage, wherein said peptides may comprise or lack post-translational modifications (e..g., glycosylation, cleavage, phosphorylation, side-chain derivation, and the like).
- post-translational modifications e.g., glycosylation, cleavage, phosphorylation, side-chain derivation, and the like.
- label refers to incorporation of a detectable marker, e.g., by incorporation of a radiolabeled amino acid or attachment of biotinyl moieties to a polypeptide, wherein the attached biotinyl moieties can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods).
- marked avidin e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods.
- Various methods of labeling polypeptides and glycoproteins are known in the art and may be used.
- labels for polypeptides include, but are not limited to, the following: radioisotopes (e.g., 3 H, 14 C, 35 S, 125 I, 131 I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, ⁇ -galactosidase, luciferase, alkaline phosphatase), biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags).
- labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
- substantially pure means that the particular peptide is the predominant species present (i.e., on a weight/volume percentage, it is the most abundant single species within the composition), and preferably a substantially purified fraction is a composition wherein the peptide comprises at least about 50 percent (w/v) of all macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 to 90 percent of all protein present in the composition. Most preferably, the peptide is purified to essential homogeneity (contaminant proteins cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single protein species.
- the PTB domain was originally identified as a 186-residue segment of the signaling protein SHC which binds specifically to the tyrosine-phosphorylated form of an unidentified 145 kDa protein in response to many growth factors, but which is structurally dissimilar to members of the SH2 domain family. See, Kavanaugh and Williams, Science (1994) 266:1862-1865.
- the proteins on filters were then phosphorylated in vitro with recombinant tyrosine kinases, washed, incubated with 32 P-labeled PTB domain protein derived from SHC as a probe, and autoradiography was performed. A clone was identified which bound the PTB domain probe only when subjected to phosphorylation conditions prior to hybridization (FIG. 1).
- the positive clone was identified as corresponding to amino acids 1086 to 1255 of c-erbB2/c-neu/HER2 protein, a tyrosine kinase receptor proto-oncogene (See FIG. 1).
- This region of c-erbB2 contains seven tyrosines, five of which have been shown to be autophosphorylation sites. Hazan, et al., Cell Growth Differ (1990) 1:3-7, Segatto, et al., New Biol. (1990) 2:187-195, Akiyama, et al., Mol. Cell. Biol. (1991) 11:833-842.
- PTB domain binds to c-erbB2 which had been autophosphorylated in vivo
- PTB domain was incubated with lysate from SKBR3 human breast carcinoma cells, which contain overexpressed and autophosphorylated c-erbB2.
- C-erbB2 from these cells specifically associated with GST-PTB domain fusion protein, but not with GST fusion protein containing SHC residues 1-45, which lie outside of the PTB domain (FIG. 2A, left panel, see also, Kavanaugh and Williams, Science (1994) 266:1862-1865).
- dephosphorylation of the c-erbB2 from SKBR3 cells with tyrosine-specific phosphatases completely eliminated binding to the PTB domain.
- Peptides derived from the c-erbB2 sequence were synthesized, substituting phosphotyrosine for each of the seven tyrosines in the c-erbB2 sequence. These peptides were tested for their ability to compete with c-erbB2 from SKBR3 lysate for binding to PTB domain. The peptides tested and their respective IC 50 values, are listed in Table 1. The IC 50 is the concentration of peptide required to inhibit 50% of normal binding of PTB to c-erbB2.
- the peptides PAFSPAFDNL(pY)(pY)WDQNSSEQG, AFDNLY(pY)WDQNS, AFGGAVENPE(pY)LAPRAGTASQ and EGTPTAENPE(pY)LGLDVPV showed relatively strong inhibition of PTB domain/c-erbB2 binding with approximate IC 50 s of 50 nM, 30 nM, 1 ⁇ M and 1 ⁇ M, respectively.
- NXXpY a common PTB recognition sequence, NXXpY is indicated, and more particularly, the motifs NPXpY and NLXpY. These sequence motifs appear to be conserved in a variety of signalling proteins, and are present in the peptides which show the greatest affinity for the PTB domain.
- peptides were prepared based upon the lead peptide derived from the c-erbB2 protein, PAFSPAFDNL(pY) (pY)WDQNSSEQG (“pY1221/pY1222”). These peptides were then tested for their ability to block PTB domain/c-erbB2 binding. The peptides and binding results are shown in Table 3, below.
- PAFSPAFDNLYYWDQNSSEQG (“unphos”) >30 ⁇ N PAFSPAFDNL (pS) (pS) WDQNSSEQG (“ser phos”) >30 ⁇ M PAFSPAFDNLEEWDQNSSEQG (“glu-glu”) >30 ⁇ M PAFSPAFDNLFFWDQNSSEQG (“phe-phe”) >30 ⁇ M AFDNL (pY) (pY) WDQNS (“pY1221/pY1222 short”) 30 nM AFDNL (pY) YWDQNS (“pY1221/Y1222”) 1 ⁇ M AFDNLY (pY) WDQNS (“Y1221/pY1222”) 30 nM DSWDQNQLFS (pY) (pY) SFAPEGPAN (scrambled 1) >30 ⁇ M DSW (pY) SQNQLFDSFAPEG (pY) PAN (scrambled
- Peptides in which phosphotyrosine was substituted with phosphoserine or glutamic acid did not compete with c-erbB2 for PTB domain binding (See, also FIG. 2, Panel C).
- PTB domain PTB domain-containing protein
- the PTB domain was immunoprecipitated and the washed pellet assayed for the presence of bound peptide with streptavidin-coupled alkaline phosphatase.
- PTB domain was able to bind directly to phosphorylated peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG (“pY1221/pY1222”), but did not bind to unphosphorylated peptide (See FIG. 3).
- PTB domain did not bind to phosphorylated peptides containing conservative point mutations at the asparagine in the ninth position.
- the specificity of this sequence for PTB domain was shown by the inability of the SH2 domain of SHC to bind phosphorylated peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG. Additionally, this peptide also blocks association of the SHC PTB domain in vitro with pp145, a previously identified target of the SHC protein, derived from activated B cells. See, Kavanaugh and Williams, supra.
- the peptides of the present invention generally comprise a core sequence which corresponds to a PTB recognition sequence motif.
- This general PTB recognition sequence motif can be readily identified from the above described data.
- the peptides will comprise the sequence motif NX 3 X 1 X 2 X 4 , where X 1 is Y, pY or an analog thereof, E, T, D, A, F or Q; X 2 is pY or an analog thereof, or Y, provided that at least one of X 1 and X 2 are pY, or an analog thereof;
- X 3 can be any natural or unnatural amino acid, but is preferably L or A;
- X 4 is W, F, L, S or Q.
- this sequence motif may be present as its own peptide, or may be a core of a longer sequence.
- the peptides of the present invention will comprise the above motif as a portion or a whole of a peptide of from 5 to about 100 amino acids in length.
- the peptides will be from about 6 to about 100 amino acids in length, preferably the peptides will be from about 12 to about 100 amino acids in length, more preferably from about 12 to about 50 amino acids in length, and most preferably, from about 21 to about 50 amino acids in length.
- the peptides are characterized by the core sequence of amino acids X 5 NX 3 X 1 X 2 X 4 , where X 1 , X 2 , X 3 and X 4 are as described above, and X 5 can be any natural or unnatural amino acid, but is preferably D, E, S or A. Still more preferred are peptides which comprise the core sequence of amino acids DNX 3 X 1 pYX 4 and ENX 3 X 1 pYX 4 . The most preferred peptides will generally comprise one of the following core sequences of amino acids:
- polypeptides of the present invention may be used as isolated polypeptides, or may exist as fusion proteins.
- a “fusion protein” generally refers to a composite protein made up of two or more separate, proteins which are normally not fused together as a single protein.
- a fusion protein may comprise a fusion of two or more similar and homologous sequences, provided these sequences are not normally fused together. Fusion proteins will generally be made by either recombinant nucleic acid methods, i.e., as a result of transcription and translation of a gene fusion comprising a segment encoding a peptide of the invention and a segment which encodes one or more heterologous proteins, or by chemical synthesis methods well known in the art.
- polypeptides may be free in solution or may be covalently attached to a solid support.
- Support bound polypeptides may be particularly useful in, e.g., screening and purification applications.
- Suitable solid supports include those generally well known in the art, e.g., cellulose, agarose, polystyrene, divinylbenzene and the like. Many suitable solid supports are commercially available from, e.g., Sigma Chemical Co., St Louis, Mo., or Pharmacia, Uppsala, Sweden, and come prepared for immediate coupling of affinity ligands.
- fusion proteins may be prepared to exhibit a combination of properties or activities of the derivative proteins.
- Typical fusion proteins may include a PTB domain-binding peptide fused to a reporter polypeptide, e.g., a substrate, cofactor, inhibitor, affinity ligand, antibody binding epitope tag, or an enzyme which is capable of being assayed.
- a reporter polypeptide e.g., a substrate, cofactor, inhibitor, affinity ligand, antibody binding epitope tag, or an enzyme which is capable of being assayed.
- the peptides of the present invention may act as an affinity ligand to direct the activity of the fused protein directly to tyrosine phosphorylated proteins. In the case of a reporter peptide/PTB domain-binding peptide fusion, this allows the presence and or location of PTB domain containing proteins to be easily determined.
- Typical fusion partners can include bacterial ⁇ -galactosidase, trpE, protein A, ⁇ -lactamase, ⁇ -amylase, alcohol dehydrogenase and yeast a-mating factor. See, e.g., Godowski et al., Science 241:812-816 (1988).
- the peptides of the present invention may be prepared by a variety of means, e.g., recombinant or synthetic methods.
- techniques for recombinant production of proteins are described, for example, in Sambrook et al., Molecular Cloning: A Laboratory Manual (2nd ed.) Vols. 1-3, Cold Spring Harbor Laboratory, (1989).
- Techniques for the synthesis of polypeptides are generally described in Merrifield J. Amer. Chem. Soc. 85:2149-2456 (1963), Atherton et al., Solid Phase Peptide Synthesis: A Practical Approach , IRL Press, Oxford (1989), and Merrifield, Science 232:341-347 (1986).
- peptidomimetics of the PTB domain-binding peptides are also provided.
- Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compounds are termed “peptide mimetics” or “peptidomimetics” (Fauchere, J. (1986) Adv. Drug Res. 15:29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem. 30: 1229) and are usually developed with the aid of computerized molecular modeling.
- Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect.
- peptidomimetics are structurally similar to a paradigm peptide (i.e., a peptide that has a biological or pharmacological activity), such as naturally-occurring PTB domain-binding polypeptide, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH 2 NH—, —CH 2 S—, —CH 2 —CH 2 —, —CH ⁇ CH— (cis and trans), —COCH 2 —, —CH(OH)CH 2 —, and —CH 2 SO—, by methods known in the art and further described in the following references: Spatola, A.
- Peptide mimetics may have significant advantages over peptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others.
- Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling.
- Such non-interfering positions generally are positions that do not form direct contacts with the macromolecules(s) (e.g., PTB domains) to which the peptidomimetic binds to produce the therapeutic effect.
- Derivitization (e.g., labelling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic.
- peptidomimetics of PTB domain-binding peptides will bind to the PTB domain with high affinity and possess detectable biological activity (i.e, are agonistic or antagonistic to one or more PTB domain-mediated phenotypic changes).
- the phosphotyrosine (pY) group within the above described peptides can be substituted with an analog of phosphotyrosine which possesses a phosphate group which is nonhydrolyzable, e.g by tyrosine phosphatases.
- an analog of phosphotyrosine which possesses a phosphate group which is nonhydrolyzable, e.g by tyrosine phosphatases.
- a nonhydrolyzable phosphotyrosine analog allows the peptides of the invention to retain binding and/or inhibitory activity for longer periods of time, in the presence of agents which may remove the phosphate group from the phosphotyrosine, e.g., tyrosine phosphatases, thereby allowing for more effective inhibition and reduced effective amounts, among other benefits.
- Pmp phosphonomethylphenylalanine
- Pmp is a phosphotyrosine analog in which the >C—O—PO 3 H 2 group of pY has been replaced by >C—CH 2 —PO 3 H 2 . Inclusion of this analog within sequences recognized by other phosphotyrosine binding domains yields comparable binding as with their phosphotyrosine-containing counterparts. See, Domchek, et al., Biochem. (1992) 31:9865-9870.
- the peptides of the present invention which comprise a core sequence NX 3 X 1 X 2 X 4 , where X 1 , X 2 , X 3 and X 4 are as previously described, the phosphotyrosine residues in X 1 and/or X 2 are substituted with Pmp.
- D-amino acid of the same type may also be used to generate more stable peptides.
- D-amino acids are generally denoted by the lower case abbreviation for the corresponding L-amino acid.
- constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch (1992) Ann. Rev. Biochem. 61:387; for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
- the peptides of the present invention may be particularly useful as affinity ligands which are capable of binding proteins that comprise a PTB domain. Further, phosphotyrosine recognition and binding is a common mediator in cellular signaling and cellular functioning. Accordingly, the polypeptides of the present invention may find a variety of uses in diagnostic, screening and therapeutic applications related to these areas.
- the peptides of the present invention may generally be useful in methods for identifying proteins which comprise PTB domains. These methods may allow for the identification of proteins which are specifically involved in signaling pathways, such as cell activation following the binding of a ligand to a cell surface receptor. Specifically, these methods are useful in identifying downstream signals following growth factor, hormone, antibody and cytokine activation of cells. In particular, because of their specificity, the peptides of the present invention may generally be used as probes for identifying PTB domain-containing proteins.
- the peptides of the present invention may be used to determine whether a particular protein comprises a PTB domain. Determination of whether a protein comprises a PTB domain may be carried out by a variety of means. For example, in some instances, it may be useful to immobilize the protein to be tested upon a solid support, e.g., a microtiter well, or nitrocellulose membrane. After blocking the remaining groups on the support, the protein to be tested may be exposed to an appropriate amount of the labelled peptide, as described herein. Detection of the label bound to the test protein indicates that the protein contains a PTB domain.
- the gel may be electroblotted onto an appropriate solid support, e.g., a nitrocellulose or PVDF membrane. Remaining unbound regions of the membrane may then be blocked with an appropriate inert protein, e.g., bovine serum albumin, or unphosphorylated peptide.
- an appropriate inert protein e.g., bovine serum albumin, or unphosphorylated peptide.
- the blot is then contacted with a peptide of the invention to which has been coupled a detectable group, e.g., a radiolabel or enzyme. Radiographs of the blot may be compared to simultaneously run, stained SDS-PAGE gels, and the label bound proteins may be identified.
- the peptides of the present invention may also be useful in the purification of proteins which comprise a PTB domain, from a mixture of different proteins.
- Affinity purification of PTB domain-containing proteins may be carried out using general affinity purification methods well known in the art.
- a peptide of the present invention may be attached to a suitable solid support, as described above.
- the mixture of proteins may then be contacted with the peptide bound to the solid support, such that the peptide selectively binds the PTB domain-containing proteins present within the mixture of proteins.
- the bound protein can then be washed to eliminate unbound proteins.
- substantially pure PTB domain-containing protein may be eluted from the solid support by generally known elution protocols, e.g., washing with an excess of phosphotyrosine, which will compete with the binding of PTB to the target peptide.
- the peptides of the present invention may also be used as probes in screening for compounds which may be agonists or antagonists of that binding, and more particularly, the cell signaling pathways which lead up to, and include, the binding of PTB domain to its phosphorylated ligand, e.g., SHC/c-erbB2 interactions, middle T antigen/SHC interactions, Trk/SHC interactions, and the like.
- phosphorylated ligand e.g., SHC/c-erbB2 interactions, middle T antigen/SHC interactions, Trk/SHC interactions, and the like.
- An agonist, antagonist, or test compound may be a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials such as bacteria, plants, fungi, or animal cells or tissues. Test compounds may be evaluated for potential activity as agonists or antagonists of pathways which lead up to, and include the PTB domain/phosphorylated ligand interaction. Thus, an agonist or antagonist may directly affect PTB domain/phosphorylated ligand interaction, or alternatively, may act upon an upstream event in the pathway, whereby the level of PTB domain/phosphorylated ligand interaction is affected.
- an “agonist” of the pathway will enhance the level of PTB domain/phosphorylated ligand interaction, while an “antagonist” will diminish the level of that interaction.
- the terms “agonist” and “antagonist”, as used herein, do not imply a particular mechanism of function.
- the polypeptides of the present invention may be used as a model in vitro system for determining whether a test compound is an agonist or antagonist of the binding of the PTB domain to its target recognition sequence motif.
- a test compound is an agonist or antagonist of the binding of the PTB domain to its target recognition sequence motif.
- Such a system permits the screening of a large number of potential drugs, or drug candidates, for the ability to enhance or inhibit PTB domain/phosphorylated ligand interactions, and resulting associated downstream events.
- the screening methods comprise providing a polypeptide which contains a PTB domain, and a peptide of the present invention, whereby the protein and peptide form a complex.
- the complex may then be incubated with a test compound. Binding between the PTB domain and the peptide may then be determined. An increase or decrease in the level of binding between the PTB domain-containing protein and the peptide of the invention in response to a particular compound would indicate that the test compound is an agonist or antagonist of that binding, respectively.
- the duration and conditions of preincubation will generally vary depending upon the compound being tested. Further, other reaction conditions of the preincubation, e.g., pH and salt concentration, will generally correspond to the conditions which are most effective for PTB domain binding to the peptide. Accordingly, these conditions will likely reflect the conditions normal to the particular cell-line from which the PTB domain was derived.
- the peptides of the invention, or the PTB domain may be covalently attached or linked to a detectable group, or label, to facilitate screening and detection.
- detectable groups, or labels are generally well known in the art.
- a detectable group may be a radiolabel, such as, 125 I, 32 P or 35 S, or a fluorescent or chemiluminescent group.
- the detectable group may be a substrate, cofactor, inhibitor, affinity ligand, antibody binding epitope tag, or an enzyme which is capable of being assayed. Suitable enzymes include, e.g., horseradish peroxidase, luciferase, or other readily assayable enzymes.
- These enzyme groups may be attached to the peptide by chemical means or expressed recombinantly, as a fusion protein, by methods well known in the art.
- peptide or PTB domain-containing protein immobilized upon a solid support, to facilitate screening of test compounds.
- suitable solid supports include agarose, cellulose, dextran, SephadexTM, SepharoseTM, carboxymethyl cellulose, polystyrene, filter paper, nitrocellulose, ion exchange resins, plastic films, glass beads, polyaminemethylvinylether maleic acid copolymer, amino acid copolymer, ethylene-maleic acid copolymer, nylon, silk, etc.
- the support may be in the form of, e.g., a test tube, microtiter plate, resins, beads, test strips, or the like.
- the coupling of the peptide or PTB domain-containing protein with the particular solid support may be carried out by methods well known in the art.
- a PTB domain-containing protein may be coupled to the wells of a microtiter plate.
- the test compound may then be added to the well of the microtiter plate to preincubate with the PTB domain-containing protein.
- the peptide of the invention, to which a detectable group has been attached, may then be added to the microtiter well. Following sufficient incubation, the wells may be rinsed, and binding of the peptide to the PTB domain may be assessed, e.g., by assaying for the presence of residual detectable groups.
- the screening assay format may be set up in either direction, i.e., either the peptide or the PTB domain-containing protein may be bound to the support, while the other is labeled. The level of binding may then be compared to suitable positive and negative controls. Alternatively, by providing the polypeptide containing the PTB domain, and/or the peptide in known concentrations, one can assay for free, or unbound PTB domain and/or peptide, and by negative implication, determine the level of PTB domain/peptide complex which is formed.
- the amount or concentration of agonist/antagonist added will, when known, vary depending on the compound, but will generally range from about 10 pM to 100 ⁇ M. Typically, a range of concentrations will be used. In the case of uncharacterized test compounds it may not be possible, and it is not necessary, to determine the concentration of agonist/antagonist.
- controls include negative controls and positive controls.
- negative controls can include incubation of cells with inert compounds (i.e., compounds known not to have agonist activity) or in the absence of added compounds.
- Positive controls can include incubation with compounds known to have agonist activity (e.g., the natural ligand).
- Logically, similar (though complementary) controls can be included in assays for antagonist activity, as will be apparent to one of ordinary skill in the art of biology, as will various additional controls. The description of controls is meant to be illustrative and in no way limiting.
- the peptides of the present invention may be useful in modelling small molecules which interfere with PTB binding in vivo.
- the structure of the PTB domain recognition sequence motif, as described herein may be applied in generating synthetic analogs and mimics of the PTB domain recognition sequence. Synthetic elements may be pieced together based upon their analogy to the structural and chemical aspects of the PTB recognition sequence motif. Such mimics and analogs may be used in blocking or inhibiting specific aspects of the cell signaling pathways, e.g., growth factor activation, and may therefore be useful as therapeutic treatments according to the methods described herein.
- polypeptides of the present invention may also be used in therapeutic applications for the treatment of human or non-human mammalian patients.
- PTB domain-containing proteins have been shown to bind proteins which are phosphorylated in response to the activation of a cell by various growth factors. See Kavanaugh and Williams, supra. Accordingly, the polypeptides of the present invention may be used to inhibit or block the interaction of PTB domain-containing proteins with their phosphorylated ligands by competing with those ligands.
- the peptides of the present invention can be used to block or inhibit growth factor dependent activation or stimulation of cells, or more specifically, inhibit or block growth factor initiated mitogenesis.
- These methods may generally be used in the treatment of a variety of proliferative cell disorders, or in screening compounds effective for such treatment.
- “Proliferative cell disorder” refers generally to disorders which are characterized by excessive stimulation or activation of the mitogenic signaling pathways resulting in excessive or abnormal cell growth and/or differentiation. Specific disorders include, e.g., atherosclerosis, inflammatory joint diseases, psoriasis, restinosis following angioplasty, and cancer.
- the methods and compositions of the present invention may be particularly useful in the case of cancers where there are deregulated tyrosine kinases, such as thyroid, breast carcinoma, stomach cancer and neuroblastoma.
- the methods and compositions may be useful as a prophylactic treatment, or in screening for compounds effective in prophylactic treatments.
- prophylactic treatments will generally be administered to inhibit or block “normal” cell proliferation, for example, in immunosuppression to prevent graft rejection, and to alleviate allergic responses involving mast cell activation.
- the peptides of the present invention are be used to block or inhibit the interaction between PTB domain containing proteins and the product of the c-erbB2 oncogene. More specifically, the peptides can be used to block or inhibit the interaction between the SHC protein and c-erbB2.
- c-erbB2 Gene amplification of c-erbB2 is known to result in overexpression of the c-erbB2 product in a variety of adenocarcinomas, and a number of studies link this overexpression to the neoplastic process.
- c-erbB2 amplification has been described as being associated with human gastric tumor, non-small cell lung, colon, ovarian and pancreatic adenocarcinomas.
- Overexpression of c-erbB2 product has also been found in a significant percentage of breast carcinomas. For a review of c-erbB2, see Dougall, et al., Oncogene (1994) 9:2109-2123.
- c-erbB2/PTB domain interaction can be useful in the treatment of disorders which result from the overexpression of the c-erbB2 gene product, including, e.g., human gastric tumor, non-small cell lung, colon, ovarian and pancreatic adenocarcinomas, as well as breast carcinomas.
- a polypeptide of the present invention generally in combination with a pharmaceutically acceptable carrier.
- peptidomimetics of the present invention may also be effective in blocking growth factor dependent activation of cells, or PTB domain/c-erbB2 interaction.
- synthetic analogs to the PTB domain recognition motif as described herein may also be applied in the treatment methods described.
- the quantities of reagents necessary for effective therapy also referred to herein as an “effective amount,” or “therapeutically effective amount,” will depend upon many different factors, including means of administration, target site, physiological state of the patient and other medicants administered. Thus, treatment doses will need to be titrated to optimize safety and efficacy. Typically, dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Generally, therapeutically effective amounts of the peptides of the present invention will be from about 0.0001 to about 100 mg/kg, and more usually, from about 0.001 to about 0.1 mg/kg of the host's body weight.
- compositions or formulations comprise the peptides and/or analogs of the invention in a therapeutically or pharmaceutically effective dose together with one or more pharmaceutically or therapeutically acceptable carriers and optionally other ingredients, e.g., other therapeutic ingredients, or additional constituents which may be required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like.
- additional constituents of the pharmaceutical compositions may include those generally known in the art for the various administration methods used, e.g., oral forms may contain flavorants, sweeteners and the like.
- nontoxic solid carriers may be used which include, e.g., pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate and the like.
- pharmaceutical grades e.g., pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate and the like.
- Various considerations are described, e.g., in Gilman et al. (eds) (1990) GOODMAN AND GILMAN'S: THE PHARMACOLOGICAL BASES OF THERAPEUTICS, 8th Ed., Pergamon Press; NOVEL DRUG DELIVERY SYSTEMS, 2nd Ed., Norris (ed.) Marcel Dekker Inc. (1989), and REMINGTON'S PHARMACEUTICAL SCIENCES.
- compositions for administration are also discussed in the above references, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, and others.
- Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the MERCK INDEX, Merck & Co., Rahway, N.J. See, also, BIOREVERSIBLE CARRIERS IN DRUG DESIGN, THEORY AND APPLICATION, Roche (ed.), Pergamon Press, (1987).
- the active ingredient may be subject to degradative environments, for example, proteolytic digestive enzymes.
- Liposomal formulations are well known in the art, and are discussed in, e.g., REMINGTON'S PHARMACEUTICAL SCIENCES, supra.
- Administration may also be carried out by way of a controlled release composition or device, whereby a slow release of the active ingredient allows continuous administration over a longer period of time.
- Sf9 cells expressing residues 526 to 1067 of mouse PDGF receptor cytoplasmic domain (tyrosine kinase) in recombinant baculovirus were prepared and lysed as described by Kavanaugh and Williams, Science (1994) 266:1862-1865, and Collawn, et al., (1990) Cell 63:1061-1072.
- 1.1 ⁇ 10 6 plaques of an oligo-dT primed Balb/c 3T3 fibroblast cDNA ⁇ gt11 library were plated and transferred to IPTG-impregnated PVDF filters using standard techniques. See, Sambrook, et al.
- Influenza hemagglutinin (IHA) tagged GST-PTB domain fusion proteins were expressed from recombinant baculovirus in sf9 cells.
- Sf9 cells or confluent SKBR3 cells were lysed in 2 ⁇ hybridization buffer containing protease inhibitors and 1 mM sodium orthovanadate, as described in Kavanaugh and Williams, Science (1994) 266:1862-1865.
- GST-PTB domain Approximately 100 ng of GST-PTB domain was incubated with 1 ⁇ g of total SKBR3 lysate protein in 1 ⁇ hybridization buffer for 30 minutes at 4° C., immunoprecipitated with 2 ⁇ g of 12CA5 and protein-A sepharose, and the pellets washed 3 to 5 times prior to immunoblot analysis with anti c-neu/c-erbB2 antibodies. The results are shown in FIG. 2A. Equal amounts of GST-PTB domain protein were immunoprecipitated as determined by immunoblotting with 12CA5.
- IHA-tagged GST-PTB fusion protein was incubated with SKBR3 lysate as described above, in the presence and absence of the peptides pY1112, pY1127, pY1139, pY1196, pY1221/pY1222 and pY1248.
- the mixture was immunoprecipitated with 12CA5, and immunoblotted with anti-c-neu/c-erbB2 antibodies. These results are shown in FIG. 2B.
- PTB domain was pre-incubated with the indicated concentrations of peptide for 30 minutes at 4° C. prior to adding SKBR3 cell lysate.
- Peptides were biotinylated during synthesis and HPLC purified. 100 ng of GST-PTB domain or GST-SH2 domain fusion protein were incubated in 1 ⁇ hybridization buffer with 500 nM biotinylated phosphopeptide for 1 hour at 4° C., immunoprecipitated as described in Example 2, above, washed once, and the pellets incubated with 0.25 units of streptavidin-alkaline phosphatase for 5 minutes at 4° C.
- the pellets were washed twice more, incubated for 3 minutes at room temperature with 1 mg/ml p-nitrophenylphosphate in 100 mM glycine, pH 10.1, 1 mM ZnCl 2 and 1 mM MgCl 2 .
- the absorbance was measured at 405 nm.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Molecular Biology (AREA)
- Immunology (AREA)
- Hematology (AREA)
- Physics & Mathematics (AREA)
- Urology & Nephrology (AREA)
- Biomedical Technology (AREA)
- General Health & Medical Sciences (AREA)
- Medicinal Chemistry (AREA)
- Cell Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biochemistry (AREA)
- Biophysics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Pathology (AREA)
- Bioinformatics & Computational Biology (AREA)
- Analytical Chemistry (AREA)
- Microbiology (AREA)
- Biotechnology (AREA)
- General Physics & Mathematics (AREA)
- Food Science & Technology (AREA)
- Organic Chemistry (AREA)
- Zoology (AREA)
- Gastroenterology & Hepatology (AREA)
- Genetics & Genomics (AREA)
- Toxicology (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention generally provides peptides that comprise a recognition sequence motif for phosphotyrosine binding proteins. In particular, the present invention provides peptides which comprise a core sequence of amino acids, and analogs thereof, which are recognized and bound by the PTB (phosphotyrosine binding) domain. Also provided are methods of using the peptides of the invention in diagnostic, screening and therapeutic applications.
Description
- [0001] This invention was made with Government support under Grant Nos. K11 HL02410 and R01-HL32898, awarded by the National Institutes of Health. The Government has certain rights in this invention.
- The present invention generally provides peptides that comprise a recognition sequence motif for phosphotyrosine binding proteins. In particular, the present invention provides peptides which comprise a core sequence of amino acids, and analogs thereof, which are recognized and bound by the PTB phosphotyrosine binding domain. Also provided are methods of using the peptides of the invention in diagnostic, screening and therapeutic applications.
- Receptor signaling pathways are the subject of widespread research efforts. A better understanding of these signaling pathways will lead to the design of new and more effective drugs in the treatment of many diseases. Of particular interest are the growth factor and related receptor signaling pathways and their role in cell growth and differentiation. Binding of a particular growth factor to its receptor on the cell plasma membrane can stimulate a wide variety of biochemical responses, including changes in ion fluxes, activation of various kinases, alteration of cell shape, transcription of various genes and modulation of enzymatic activities in cellular metabolism.
- In particular, upon binding an external ligand, a receptor may undergo auto-phosphorylation of specific tyrosine residues, and/or may phosphorylate other proteins. This tyrosine phosphorylation creates binding sites for cytoplasmic signaling proteins which have specific domains that recognize the phosphorylated tyrosine and adjacent residues. Once bound, these signaling proteins may in turn be activated. The activated signaling proteins then may effect downstream processes. Pawson and Gish,Cell 71:359-362 (1992).
- Src Homologous, or “SH2” domains are amino acid sequences that are similar to a 100-residue, non-catalytic region of the Src tyrosine kinase and are present in various signaling molecules. Sadowski et al.,Mol. Cell. Biol. 6, 4396 (1986). SH2 domains are functional protein motifs that bind tyrosine-phosphorylated targets by recognizing phosphotyrosine and specific adjacent residues. J. A. Escobedo et al., Mol. Cell. Biol. 11, 1125 (1991); L. C. Cantley et al. Cell 64, 281 (1991); T. Pawson and G. D. Gish Cell 71, 359 (1992); S. Zhou et al. Cell 72, 767 (1993); G. Waksman, S. E. Shoelson, N. Pant, D. Cowburn, J. Kuriyan Cell 72, 779 (1993). Activation of tyrosine kinases by growth factors, cytokines, and oncogenic agents therefore serves as a switch for assembling SH2 domain-containing proteins with their tyrosine-phosphorylated targets in signaling complexes, in which downstream effectors are activated.
- The use of phosphotyrosine binding domains, including SH2 domains, has been discussed in methods for identifying targets of tyrosine kinases in cells, and thus identifying intermediates in cell signaling pathways. See, PCT Patent Application No. WO 92/13001, to Schlessinger et al.
- The specific use of SH2 domains and subdomains in affecting the SH2/phosphorylated ligand regulatory scheme, or screening for compounds which affect SH2 binding in this regulatory scheme, has been previously described. See, U.S. Pat. No. 5,352,660 to A. J. Pawson. The use of these domains in assaying for the presence of SH2 binding phosphoproteins has also been described.
- Specific SH2 containing proteins include the products of the SHC gene. The SHC (which stands for SH2, Collagen) gene encodes a transforming protein, expressed as 46- and 52-kD proteins that are tyrosine phosphorylated in response to a number of growth factors, e.g., PDGF, EGF and FGF, and have been implicated as mediators of signaling from growth factor receptor and non-receptor tyrosine kinases to Ras. G. Pelicci et al.Cell 70, 93-104 (1992); M. Rozakis-Adcock et al. Nature, 360:689 (1992).
- Thus, a great deal of attention has been directed toward studying these SH2 domains and their role in cell signaling pathways. However, SH2 domains, and the proteins which comprise them, are not the only phosphotyrosine binding mediators of such pathways.
- A new phosphotyrosine binding (“PTBI”) domain has been identified within the sequence of the SHC protein. See, Kavanaugh and Williams,Science (1994) 266:1862-1865. This PTB domain was reported to specifically bind the tyrosine phosphorylated version of a target protein, which target protein was phosphorylated upon cell activation/stimulation, e.g., anti-IgM stimulated B cells, IL-6 stimulated HepG2 hepatoma cells, LIF stimulated CCE embryonic stem cells. The amino acid sequence of this domain is unlike that of any member of the known SH2 domain family. Therefore, although the nature of phosphotyrosine binding by the PTB domain is similar to that of the SH2 domain, functionally, and mechanistically, the two are very different.
- The study of these cell signaling pathways, and the ability to control them requires identification and characterization of proteins which contain phosphotyrosine binding domains and the protein sequences to which they bind. The present invention meets these and other needs.
- The present invention generally provides substantially pure peptides which are capable of binding a PTB domain, wherein the peptide is from 5 to 100 amino acids in length, and comprises a core sequence of amino acids NX3X1X2X4; where X1 is selected from the group consisting of Y, pY or an analog thereof, E, T, D, Q, A and F; X2 is selected from pY or an analog thereof, and Y, provided that at least one of X1 and X2 is pY, or an analog thereof; X3 is selected from the group consisting of L and A; and X4 is selected from the group consisting of W, L, S, F and Q. In a preferred embodiment, at least one of X1 and X2 will be an analog of phosphotyrosine, and said analog is (phosphonomethyl)-phenylalanine. In preferred aspects, the peptides are from 6 to 100 amino acids in length, and comprise a core sequence of amino acids X5NX3X1X2X4, wherein X5 is selected from the group consisting of D, S, E and A. In still more preferred peptides, X2 will be pY. In particularly preferred embodiments, the peptides will be from 6 to 100 amino acids in length, and comprise a core sequence of amino acids selected from the group consisting of DNX3X1pYX4 and ENX3X1pYX4, where X4 is selected from the group consisting of W and F.
- Especially preferred peptides will be from 12 to 100 amino acids in length, and which comprise a core sequence of amino acids selected from the group consisting of: AFDNLY(pY)WDQNS; AFDNL(pY)YWDQNS; and AFDNL(pY)(pY)WDQNS. As preferred, are peptides which are from 21 to 100 amino acids in length and which comprise a core sequence of amino acids selected from the group consisting of:
- PAFSPAFDNLY(pY)WDQNSSEQG; PAFSPAFDNL(pY)YWDQNSSEQG; PAFSPAFDNL(pY)(pY)WDQNSSEQG; PAFSPAADNLY(pY)WDQNSSEQG; PAFSPAADNL(pY) YWDQNSSEQG; PAFSPAADNL(pY)(pY)WDQNSSEQG; PAFSPAFANLY (pY) WDQNSSEQG; PAFSPAFANL (pY) YWDQNSSEQG; PAFSPAFANL(pY)(pY)WDQNSSEQG; PAFSPAFSNLY (pY)WDQSSEQG; PAFSPAFSNL(pY)YWDQNSSEQG; PAFSPAFSNL(pY)(pY)WDQNSSEQG; PAFSPAFDNAY(pY)WDQNSSEQG; PAFSPAFDNA(pY)YWDQNSSEQG; PAFSPAFDNA(pY)(pY)WDQNSSEQG; PAFSPAFDNLA(pY)WDQNSSEQG; PAFSPAFDNLF (pY)WDQNSSEQG; PAFSPAFDNLY(pY)FDQNSSEQG; PAFSPAFDNL(pY)YFDQNSSEQG; PAFSPAFDNL(pY)(pY)FDQNSSEQG; PAFSPAFDNLY(pY)WAQNSSEQG; PAFSPAFDNL(pY)YWAQNSSEQG; PAFSPAFDNL(pY)(pY)WAQNSSEQG; PAFSPAFDNLY(pY)WDANSSEQG; PAFSPAFDNL (pY)YWDANSSEQG; PAFSPAFDNL (pY)(pY)WDANSSEQG; PAFSPAFDNLY(pY) WDNNSSEQG; PAFSPAFDNL(pY) YWDNNSSEQG; PAFSPAFDNL(pY)(pY)WDNNSSEQG; PAFSPAFDNLY(pY)WDDNSSEQG; PAFSPAFDNL(pY) YWDDNSSEQG; PAFSPAFDNL(pY)(pY)WDDNSSEQG; PAFSPAFDNLY(pY) WDQASSEQG; PAFSPAFDNL(pY) YWDQASSEQG; PAFSPAFDNL(pY)(pY)WDQASSEQG; PAFSPAFDNLY(pY)WDQNASEQG; PAFSPAFDNL(pY)YWDQNASEQG; and PAFSPAFDNL(pY)(pY)WDQNASEQG.
- In an alternate embodiment, the present invention provides substantially pure peptides which are capable of binding a PTB domain, wherein the peptides are from 21 to about 100 amino acids in length and which comprise a core sequence of amino acids selected from the group consisting of AFGGAVENPE(pY)LAPRAGTASQ and EGTPTAENPE(pY)LGLDVPV.
- In a further embodiment, the present invention provides compositions which comprise the peptides of the present invention and pharmaceutically acceptable carriers.
- In another embodiment, the present invention provides a method of determining whether a protein comprises a PTB domain. The method comprises the steps of contacting the protein with a peptide of the present invention, and determining whether the peptide binds to the protein. The binding of the peptide to the protein is indicative that the protein comprises a PTB domain. In preferred aspects, the protein is attached to a solid support prior to contacting the protein with the peptide of the present invention, and the peptide used in the contacting step further comprises a detectable group fused to the peptide. The determining step then comprises assaying for the presence of the detectable group. Alternatively, the peptide of the invention will be attached to a solid support prior to contacting the protein with the peptide of the invention.
- In an additional embodiment, the present invention provides a method of determining whether a test compound is an agonist or antagonist of a PTB domain/phosphorylated ligand interaction. The method comprises the steps of incubating the test compound with a protein comprising a PTB domain, and a peptide of the invention, determining the amount of protein bound to the peptide during the incubating step, and comparing the amount of protein bound to the peptide during the incubating step to an amount of protein bound to the peptide in the absence of the test compound. The increase or decrease in the amount of protein bound to the peptide in the presence of the test compound will be indicative that the test compound is an agonist or antagonist of PTB domain/phosphorylated ligand interaction, respectively.
- In yet another embodiment of the present invention is provided a method of inhibiting the binding of a PTB domain-containing protein to a tyrosine phosphorylated target, comprising contacting the PTB domain-containing protein with an effective amount of the peptide of the invention. In a preferred aspect, the tyrosine phosphorylated target is c-erbB2. In another preferred aspect, the PTB domain-containing protein is SHC.
- Also provided by the present invention, is a method of obtaining substantially pure PTB domain-containing protein from a mixture of different proteins. The method comprises the steps of providing a peptide of the present invention bound to a solid support. The mixture of different proteins is contacted with the peptide bound to the solid support whereby the PTB domain-containing protein is bound to the peptide. The solid support is washed to remove unbound proteins, and substantially pure PTB domain-containing protein is then eluted from the solid support.
- In an additional embodiment, the present invention provides a method of treating a patient suffering from a proliferative cell disorder. The method comprises administering to the patient an effective amount of the peptide of the present invention. Typically, the proliferative cell disorder is selected from the group consisting of atherosclerosis, inflammatory joint disease, psoriasis, restinosis and cancer. Preferably, the proliferative cell disorder is cancer, and more preferably, breast cancer.
- FIG. 1 shows proteins expressed from a λ gt11 cDNA library, immobilized on filters, phosphorylated in vitro using recombinant PDGF receptor kinase, followed by hybridization with32P-labeled PTB domain. Shown is a positive (clone 39.1) and representative negative plaque purified by successive rounds of screening, then transferred to a filter. Quadrants of the filter were treated as indicated prior to hybridization with 32P-labeled PTB domain.
- FIG. 2 shows the association of c-erbB2 with the PTB domain. Panel A shows GST-PTB and GST-(1-45) (residues 1-45 of SHC, containing no PTB domain) fusion proteins, tagged with the influenza hemagglutinin (IHA) epitope, and incubated with lysate of SKBR3 cells (containing c-erbB2) or with buffer. Anti-IHA immunoprecipitates of each were separately blotted with anti-c-erbB2 (“erbB-2 blot”) and anti-IHA 12CA5 antibodies (“IHA blot”). Also shown are blots of immunoprecipitates using preimmune serum and anti-SHC serum. Panel B shows a blot of IHA tagged GST-PTB, incubated with SKBR3 lysate in the presence or absence of the indicated peptides derived from c-erbB2 (upper blot), and with varied concentrations of the peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG (“pY1221/pY1222”) (lower blot). Panel C shows a blot of IHA tagged GST-PTB, incubated with SKBR3 lysate in the presence of 500 nM of the indicated pY substituted peptides.
- FIG. 3 is a bar graph showing the effects of various conditions upon PTB domain/phosphopeptide binding. IHA tagged GST-PTB domain fusion protein was incubated in the presence of the following biotinylated peptides: PAFSPAFDNLYYWDQNSSEQG (“b-unphos.”); PAFSPAFDNL(pY)(pY)WDQNSSEQG (“b-phos.”), alone and in the presence of 100×non-biotinylated, unphosphorylated and phosphorylated peptide (“100×unphos.” and “100×phos.”, respectively); PAFSPAFDQL(pY)(pY)WDQNSSEQG (“b-N1219Q”); and PAFSPAFDDL(pY)(pY)WDQNSSEQG (“b-N1219D”). Specific binding was detected using streptavidin-coupled alkaline phosphatase. Also shown is the level of binding by b-phos. and b-unphos. to an SH2 phosphotyrosine binding domain.
- The present invention generally provides peptides which comprise a sequence motif which is recognized and bound by phosphotyrosine binding proteins. More particularly, the peptides of the present invention are recognized and bound by proteins which comprise a PTB domain.
- These peptides, or their analogs, may generally be used in blocking or inhibiting PTB domain/phosphorylated ligand interactions, both in vitro and in vivo. As a result, the peptides of the present invention can be useful as antagonists of PTB domain/phosphorylated ligand interaction, for controlling or inhibiting cell signalling pathways which rely on these PTB domain/phosphorylated ligand interactions, i.e.,.growth factor dependent activation or stimulation of cells, and growth factor initiated mitogenesis. The peptides of the present invention can also be useful as affinity ligands or probes, in the identification, purification, and/or characterization of PTB domain containing proteins, or, alternatively, as target peptides in screening for agonists or antagonists of PTB domain/phosphorylated ligand interaction.
- I. Definitions
- As used herein, the twenty conventional, or natural amino acids and their abbreviations follow conventional usage (Immunology—A Synthesis, 2nd Edition, E. S. Golub and D. R. Gren, Eds., Sinauer Associates, Sunderland, Mass. (1991)). Specifically, abbreviations for the amino acid residues as used herein are: A, Ala; C, Cys; D, Asp; E, Glu; F, Phe; G, Gly; H, His; I, Ile; K, Lys; L, Leu; M, Met; N, Asn; P, Pro; Q, Gln; R, Arg; S, Ser; T, Thr; V, Val; W, Trp; Y, Tyr. Phosphotyrosine is denoted by pY, and (phosphonomethyl)phenylalanine is denoted by Pmp.
- Stereoisomers (e.g., D-amino acids) of the twenty conventional amino acids, unnatural amino acids such as α,α-disubstituted amino acids, N-alkyl amino acids, lactic acid, and other unconventional amino acids may also be suitable components for polypeptides of the present invention. Examples of unconventional or unnatural amino acids include amino acids well known in the art, but which are not included in the twenty conventional amino acids, such as: 4-hydroxyproline, γ-carboxyglutamate, ε-N,N,N-trimethyllysine, ε-N-acetyllysine, O-phosphoserine, N-acetylserine, N-formylmethionine, 3-methylhistidine, 5-hydroxylysine, ω-N-methylarginine, and other similar amino acids and imino acids (e.g., 4-hydroxyproline). In the polypeptide notation used herein, the lefthand direction is the amino terminal direction and the righthand direction is the carboxy-terminal direction, in accordance with standard usage and convention.
- The term “analog” as used herein refers to compounds which are generally structurally similar to the compound of which they are an analog, or “parent” compound. Generally analogs will retain certain characteristics of the parent compound, e.g., biological or pharmacological activity, while lacking other, less desirable characteristics, e.g., antigenicity, proteolytic instability, toxicity, and the like. As applied to polypeptides, the term “analog” generally refers to polypeptides which are comprised of a segment of about at least 3 amino acids that has substantial identity to at least a portion of a PTB domain-binding peptide, and which has at least one of the following properties: (1) specifically binds to the PTB domain, and (2) affects or blocks a PTB domain-containing protein mediated phenotype. Typically, analog peptides comprise a conservative amino acid substitution (or addition or deletion) with respect to the naturally-occurring sequence. Analogs typically are at least 5 amino acids long, preferably at least 20 amino acids long or longer, most usually being as long as a minimal length binding/recognition sequence identified by methods for identifying PTB domain-binding peptides. Some analogs may lack substantial biological activity but may still be employed for various uses, such as for raising antibodies to predetermined epitopes, as an immunological reagent to detect and/or purify reactive antibodies by affinity chromatography, or as a competitive or noncompetitive agonist, antagonist, or partial agonist of PTB domain function.
- As used herein, the term “peptide” and “polypeptide” refer to macromolecules which comprise a multiplicity of amino or imino acids (or their equivalents) in peptide linkage, wherein said peptides may comprise or lack post-translational modifications (e..g., glycosylation, cleavage, phosphorylation, side-chain derivation, and the like).
- As used herein, the terms “label” or “labeled” refer to incorporation of a detectable marker, e.g., by incorporation of a radiolabeled amino acid or attachment of biotinyl moieties to a polypeptide, wherein the attached biotinyl moieties can be detected by marked avidin (e.g., streptavidin containing a fluorescent marker or enzymatic activity that can be detected by optical or colorimetric methods). Various methods of labeling polypeptides and glycoproteins are known in the art and may be used. Examples of labels for polypeptides include, but are not limited to, the following: radioisotopes (e.g.,3H, 14C, 35S, 125I, 131I), fluorescent labels (e.g., FITC, rhodamine, lanthanide phosphors), enzymatic labels (e.g., horseradish peroxidase, β-galactosidase, luciferase, alkaline phosphatase), biotinyl groups, predetermined polypeptide epitopes recognized by a secondary reporter (e.g., leucine zipper pair sequences, binding sites for secondary antibodies, metal binding domains, epitope tags). In some embodiments, labels are attached by spacer arms of various lengths to reduce potential steric hindrance.
- As used herein, “substantially pure” means that the particular peptide is the predominant species present (i.e., on a weight/volume percentage, it is the most abundant single species within the composition), and preferably a substantially purified fraction is a composition wherein the peptide comprises at least about 50 percent (w/v) of all macromolecular species present. Generally, a substantially pure composition will comprise more than about 80 to 90 percent of all protein present in the composition. Most preferably, the peptide is purified to essential homogeneity (contaminant proteins cannot be detected in the composition by conventional detection methods) wherein the composition consists essentially of a single protein species.
- II. Identification of Peptides
- The PTB domain was originally identified as a 186-residue segment of the signaling protein SHC which binds specifically to the tyrosine-phosphorylated form of an unidentified 145 kDa protein in response to many growth factors, but which is structurally dissimilar to members of the SH2 domain family. See, Kavanaugh and Williams,Science (1994) 266:1862-1865.
- To determine the targets to which PTB domains bind, a method of screening a library of tyrosine phosphorylated proteins was developed. Standard expression cloning systems are generally unsuitable, because they do not permit screening for phosphorylation-dependent protein-protein interactions. An expression cloning approach which allowed identification of proteins which bound PTB domain only when tyrosine-phosphorylated, was developed. Standard methods were used to express proteins from a λ gt11 cDNA library and immobilize them on filters. See, e.g., Sambrook, et al., Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, 2nd ed. 1989). The proteins on filters were then phosphorylated in vitro with recombinant tyrosine kinases, washed, incubated with32P-labeled PTB domain protein derived from SHC as a probe, and autoradiography was performed. A clone was identified which bound the PTB domain probe only when subjected to phosphorylation conditions prior to hybridization (FIG. 1).
- The positive clone was identified as corresponding to amino acids 1086 to 1255 of c-erbB2/c-neu/HER2 protein, a tyrosine kinase receptor proto-oncogene (See FIG. 1). This region of c-erbB2 contains seven tyrosines, five of which have been shown to be autophosphorylation sites. Hazan, et al.,Cell Growth Differ (1990) 1:3-7, Segatto, et al., New Biol. (1990) 2:187-195, Akiyama, et al., Mol. Cell. Biol. (1991) 11:833-842.
- To verify that the PTB domain binds to c-erbB2 which had been autophosphorylated in vivo, PTB domain was incubated with lysate from SKBR3 human breast carcinoma cells, which contain overexpressed and autophosphorylated c-erbB2. C-erbB2 from these cells specifically associated with GST-PTB domain fusion protein, but not with GST fusion protein containing SHC residues 1-45, which lie outside of the PTB domain (FIG. 2A, left panel, see also, Kavanaugh and Williams,Science (1994) 266:1862-1865). Further, dephosphorylation of the c-erbB2 from SKBR3 cells with tyrosine-specific phosphatases completely eliminated binding to the PTB domain. Taken together, these data demonstrate that the PTB domain specifically associates with the tyrosine-phosphorylated form of c-erbB2. C-erbB2 associates with SHC in vivo (FIG. 2A, right panel) through a mechanism which requires c-erbB2 autophosphorylation at these sites. Segatto, et al., Oncogene (1993) 8:2105-2112. Therefore, c-erbB2 is also an apparent target of the PTB domain in vivo.
- Peptides derived from the c-erbB2 sequence were synthesized, substituting phosphotyrosine for each of the seven tyrosines in the c-erbB2 sequence. These peptides were tested for their ability to compete with c-erbB2 from SKBR3 lysate for binding to PTB domain. The peptides tested and their respective IC50 values, are listed in Table 1. The IC50 is the concentration of peptide required to inhibit 50% of normal binding of PTB to c-erbB2.
TABLE 1 Apparent Inhibition Peptide Sequence (IC50) PAFSPAFDNL (pY) (pY) WDQNSSEQG 50 nM (“Y1221/pY1222”) AFDNLY (pY) WDQNS (“Y1221/pY1222”) 30 nM AFGGAVENPE (pY) LAPRAGTASQ ((“pY1196”) 1 μM EGTPTAENPE (pY) LGLDVPV (“pY1248”) 1 μM APLACSPQPE (pY) VNQPEVRPQS (“pY1139”) >100 μM SPHDLSPLQR (pY) SEDPTLPL (“pY1112”) >100 μM TLPLPPETDG (pY) VAPLACSPQ (pY1127”) >100 μM - The peptides PAFSPAFDNL(pY)(pY)WDQNSSEQG, AFDNLY(pY)WDQNS, AFGGAVENPE(pY)LAPRAGTASQ and EGTPTAENPE(pY)LGLDVPV showed relatively strong inhibition of PTB domain/c-erbB2 binding with approximate IC50s of 50 nM, 30 nM, 1 μM and 1 μM, respectively. The phosphopeptides SPHDLSPLQR(pY)SEDPTLP, APLACSPQPE(pY)VNQPEVRPQS and TLPLPPETDG(pY)VAPLACSPQ, on the other hand appeared to be ineffective.
- Comparison of the sequences of the c-erbB2 derived peptides which were able to bind PTB indicated a common sequence motif of NXX(pY). Furthermore, a similar sequence motif is also found in a number of other signalling proteins associated with cell proliferation, including polyomavirus middle T antigen, the principal transforming protein of the polyomavirus (Campbell, et al.,Proc. Nat'l Acad. Sci. U.S.A. (1994) 91:6344-6348); Trk tyrosine kinase, associated with signal transduction from nerve growth factors (Obermeier, et al., J. Biol. Chem. (1993) 268(31):22963-22966); the EGF receptor (Okabayashi, et al., J. Biol. Chem. (1994) 269(28):18674-18678); erbB3, a member of the Type-I (EGF receptor related) family of growth factor receptors (Prigent and Gullick, EMBO J. (1994) 13(12):2831-2841); mouse CD3 epsilon chain, integrins and the insulin and IGF receptors. A number of these proteins have been reported to associate with the SHC protein, and the specific sequence motifs are shown in Table 2, below.
TABLE 2 Protein Peptide Sequence Middle T Ag. LLSNPT (pY) SVMR erbB3 AFDNPD (pY) WHSRLF Trk IENPQ (pY) FSDA EGF Receptor SLDNPD (pY) QQDFF - From the above data, a common PTB recognition sequence, NXXpY is indicated, and more particularly, the motifs NPXpY and NLXpY. These sequence motifs appear to be conserved in a variety of signalling proteins, and are present in the peptides which show the greatest affinity for the PTB domain.
- To further characterize the nature of PTB domain binding, peptides were prepared based upon the lead peptide derived from the c-erbB2 protein, PAFSPAFDNL(pY) (pY)WDQNSSEQG (“pY1221/pY1222”). These peptides were then tested for their ability to block PTB domain/c-erbB2 binding. The peptides and binding results are shown in Table 3, below.
TABLE 3 Affinity Peptide (IC50) PAFSPAFDNLYYWDQNSSEQG (“unphos”) >30 μN PAFSPAFDNL (pS) (pS) WDQNSSEQG (“ser phos”) >30 μM PAFSPAFDNLEEWDQNSSEQG (“glu-glu”) >30 μM PAFSPAFDNLFFWDQNSSEQG (“phe-phe”) >30 μM AFDNL (pY) (pY) WDQNS (“pY1221/pY1222 short”) 30 nM AFDNL (pY) YWDQNS (“pY1221/Y1222”) 1 μM AFDNLY (pY) WDQNS (“Y1221/pY1222”) 30 nM DSWDQNQLFS (pY) (pY) SFAPEGPAN (scrambled 1) >30 μM DSW (pY) SQNQLFDSFAPEG (pY) PAN (scrambled 2) >30 μM - Peptides in which phosphotyrosine was substituted with phosphoserine or glutamic acid did not compete with c-erbB2 for PTB domain binding (See, also FIG. 2, Panel C). Phosphorylated peptide or “phosphopeptide”, PAFSPAFDNL(pY)(pY)WDQNSSEQG, which had been dephosphorylated with tyrosine-specific phosphatases, also was unable to block the PTB domain/c-erbB2 interaction. This data demonstrates that the PTB domain specifically recognizes the phosphotyrosine residue.
- The above data indicate that the mere presence of phosphotyrosine alone may not be the only determinant of effective PTB domain binding and competition. The truncated peptide AFDNLY(pY)WDQNS, which contained a single phosphotyrosine in the second tyrosine position, had an IC50 approximately equal to that of the double-phosphorylated peptide AFDNL(pY)(pY)WDQNS (See, FIG. 2, Panel C). However, the peptide AFDNL(pY)YWDQNS, phosphorylated at only the first tyrosine residue, was 30-fold less effective in competition. While this latter peptide still shows strong inhibition of PTB domain/c-erbB2 interaction, it appears that the PTB domain binds preferentially to phosphotyrosine in the second position. Further, scrambled peptides, which contained the phosphotyrosine residues but a rearranged primary sequence, failed to compete for binding. These data demonstrate that PTB not only binds phosphotyrosine, but also recognizes a range of specific adjacent amino acids.
- Accordingly, to determine which residues in the peptide PAFSPAFDNLY(pY)WDQNSSEQG were important for binding to the PTB domain, a series of peptides containing point mutations in the sequence were prepared and tested for inhibition of PTB domain/c-erbB2 binding. The results are shown in Table 4, below. The substituted residues are underlined. Relative inhibition scales denote IC50 values of 50-500 nM (“+++”), 500 nM to 5 μM (“++”) 5 to 50 μM (“+”) and >50 μM (“−”).
TABLE 4 Peptide Inhibition PAFSPAADNLY (pY) WDQNSSEQG ++ PAFSPAFANLY (pY) WDQNSSEQG + PAFSPAFSNLY (pY) WDQNSSEQG + PAFSPAFDALY (pY) WDQNSSEQG − PAFSPAFDQLY (pY) WDQNSSEQG − PAFSPAFDDLY (pY) WDQNSSEQG − PAFSPAFDNAY (pY) WDQNSSEQG ++ PAFSPAFDNLAY (pY) WDQNSSEQG ++ PAFSPAFDNLFY (pY) WDQNSSEQG ++ PAFSPAFDNLY (pY) ADQNSSEQG − PAFSPAFDNLY (pY) FDQNSSEQG ++ PAFSPAFDNLY (pY) WAQNSSEQG +++ PAFSPAFDNLY (pY) WDANSSEQG ++ PAFSPAFDNLY (pY) WDNNSSEQG ++ PAFSPAFDNLY (pY) WDDNSSEQG ++ PAFSPAFDNLY (pY) WDQASSEQG ++ PAFSPAFDNLY (pY) WDQNASEQG ++ - From the above data, it can be seen that substitution of the asparagine in the 9th position can have a negative effect on PTB binding. Replacement of aspartic acid in the 8th position also impaired the peptides blocking ability, however this specific residue was not required for competition. Replacement of tryptophan in the 13th position with phenylalanine generally resulted in little loss of affinity, although substitution of this tryptophan with alanine resulted in reduced affinity. This suggests that large hydrophobic or aromatic residues at this position may confer higher affinity. Mutations outside of the central motif DNLY(pY)W generally resulted in only moderate losses in the affinity of the peptide.
- To demonstrate directly that the phosphopeptides bind to the PTB domain, biotinylated peptides were incubated with PTB domain-containing protein (“PTB domain”). The PTB domain was immunoprecipitated and the washed pellet assayed for the presence of bound peptide with streptavidin-coupled alkaline phosphatase. PTB domain was able to bind directly to phosphorylated peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG (“pY1221/pY1222”), but did not bind to unphosphorylated peptide (See FIG. 3). Further, PTB domain did not bind to phosphorylated peptides containing conservative point mutations at the asparagine in the ninth position. The specificity of this sequence for PTB domain was shown by the inability of the SH2 domain of SHC to bind phosphorylated peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG. Additionally, this peptide also blocks association of the SHC PTB domain in vitro with pp145, a previously identified target of the SHC protein, derived from activated B cells. See, Kavanaugh and Williams, supra.
- III. Peptides of the Invention
- The peptides of the present invention generally comprise a core sequence which corresponds to a PTB recognition sequence motif. This general PTB recognition sequence motif can be readily identified from the above described data. Typically, the peptides will comprise the sequence motif NX3X1X2X4, where X1 is Y, pY or an analog thereof, E, T, D, A, F or Q; X2 is pY or an analog thereof, or Y, provided that at least one of X1 and X2 are pY, or an analog thereof; X3 can be any natural or unnatural amino acid, but is preferably L or A; X4 is W, F, L, S or Q. Generally, this sequence motif may be present as its own peptide, or may be a core of a longer sequence. Generally, the peptides of the present invention will comprise the above motif as a portion or a whole of a peptide of from 5 to about 100 amino acids in length. Typically, the peptides will be from about 6 to about 100 amino acids in length, preferably the peptides will be from about 12 to about 100 amino acids in length, more preferably from about 12 to about 50 amino acids in length, and most preferably, from about 21 to about 50 amino acids in length.
- In particularly preferred aspects of the present invention, the peptides are characterized by the core sequence of amino acids X5NX3X1X2X4, where X1, X2, X3 and X4 are as described above, and X5 can be any natural or unnatural amino acid, but is preferably D, E, S or A. Still more preferred are peptides which comprise the core sequence of amino acids DNX3X1pYX4 and ENX3X1pYX4. The most preferred peptides will generally comprise one of the following core sequences of amino acids:
- PAFSPAFDNLY(pY)WDQNSSEQG; PAFSPAFDNL(pY)YWDQNSSEQG; PAFSPAFDNL (pY) (pY) WDQNSSEQG; AFDNLY (pY) WDQNS; AFDNL (pY) YWDQNS; AFDNL (pY) (pY) WDQNS; PAFSPAADNLY (pY) WDQNSSEQG; PAFSPAADNL(pY)YWDQNSSEQG; PAFSPAADNL(pY)(pY)WDQNSSEQG; PAFSPAFANLY(pY)WDQNSSEQG; PAFSPAFANL(pY)YWDQNSSEQG; PAFSPAFANL(pY)(pY)WDQNSSEQG; PAFSPAFSNLY(pY)WDQNSSEQG; PAFSPAFSNL(pY)YWDQNSSEQG; PAFSPAFSNL(pY)(pY)WDQNSSEQG; PAFSPAFDNAY(pY)WDQNSSEQG; PAFSPAFDNA(pY)YWDQNSSEQG; PAFSPAFDNA(pY)(pY)WDQNSSEQG; PAFSPAFDNLA(pY)WDQNSSEQG; PAFSPAFDNLF(pY)WDQNSSEQG; PAFSPAFDNLY(pY)FDQNSSEQG; PAFSPAFDNL(pY)YFDQNSSEQG; PAFSPAFDNL(pY)(pY)FDQNSSEQG; PAFSPAFDNLY(pY)WAQNSSEQG; PAFSPAFDNL(pY)YWAQNSSEQG; PAFSPAFDNL(pY)(pY)WAQNSSEQG; PAFSPAFDNLY(pY)WDANSSEQG; PAFSPAFDNL(pY)YWDANSSEQG; PAFSPAFDNL(pY)(pY)WDANSSEQG; PAFSPAFDNLY(pY)WDNNSSEQG; PAFSPAFDNL(pY)YWDNNSSEQG; PAFSPAFDNL(pY)(pY)WDNNSSEQG; PAFSPAFDNLY(pY)WDDNSSEQG; PAFSPAFDNL(pY)YWDDNSSEQG; PAFSPAFDNL(pY)(pY)WDDNSSEQG; PAFSPAFDNLY(pY)WDQASSEQG; PAFSPAFDNL(pY)YWDQASSEQG; PAFSPAFDNL(pY)(pY)WDQASSEQG; PAFSPAFDNLY(pY)WDQNASEQG; PAFSPAFDNL(pY)YWDQNASEQG; PAFSPAFDNL(pY)(pY)WDQNASEQG; AFGGAVENPE(pY)LAPRAGTASQ and EGTPTAENPE(pY)LGLDVPV.
- Also included within the present invention are truncated versions of the above described peptides, as well as peptides which are modified at the carboxy and/or amino terminals, e.g., amidated or acetylated, respectively.
- The polypeptides of the present invention may be used as isolated polypeptides, or may exist as fusion proteins. A “fusion protein” generally refers to a composite protein made up of two or more separate, proteins which are normally not fused together as a single protein. Thus, a fusion protein may comprise a fusion of two or more similar and homologous sequences, provided these sequences are not normally fused together. Fusion proteins will generally be made by either recombinant nucleic acid methods, i.e., as a result of transcription and translation of a gene fusion comprising a segment encoding a peptide of the invention and a segment which encodes one or more heterologous proteins, or by chemical synthesis methods well known in the art.
- Additionally, the polypeptides may be free in solution or may be covalently attached to a solid support. Support bound polypeptides may be particularly useful in, e.g., screening and purification applications. Suitable solid supports include those generally well known in the art, e.g., cellulose, agarose, polystyrene, divinylbenzene and the like. Many suitable solid supports are commercially available from, e.g., Sigma Chemical Co., St Louis, Mo., or Pharmacia, Uppsala, Sweden, and come prepared for immediate coupling of affinity ligands.
- These fusion proteins may be prepared to exhibit a combination of properties or activities of the derivative proteins. Typical fusion proteins may include a PTB domain-binding peptide fused to a reporter polypeptide, e.g., a substrate, cofactor, inhibitor, affinity ligand, antibody binding epitope tag, or an enzyme which is capable of being assayed. Because of their ability to recognize and bind PTB domains within a protein, the peptides of the present invention may act as an affinity ligand to direct the activity of the fused protein directly to tyrosine phosphorylated proteins. In the case of a reporter peptide/PTB domain-binding peptide fusion, this allows the presence and or location of PTB domain containing proteins to be easily determined. Typical fusion partners can include bacterial β-galactosidase, trpE, protein A, β-lactamase, α-amylase, alcohol dehydrogenase and yeast a-mating factor. See, e.g., Godowski et al.,Science 241:812-816 (1988).
- The peptides of the present invention may be prepared by a variety of means, e.g., recombinant or synthetic methods. In general, techniques for recombinant production of proteins are described, for example, in Sambrook et al.,Molecular Cloning: A Laboratory Manual (2nd ed.) Vols. 1-3, Cold Spring Harbor Laboratory, (1989). Techniques for the synthesis of polypeptides are generally described in Merrifield J. Amer. Chem. Soc. 85:2149-2456 (1963), Atherton et al., Solid Phase Peptide Synthesis: A Practical Approach, IRL Press, Oxford (1989), and Merrifield, Science 232:341-347 (1986).
- In addition to the above peptides which consist only of naturally-occurring amino acids, peptidomimetics of the PTB domain-binding peptides are also provided. Peptide analogs are commonly used in the pharmaceutical industry as non-peptide drugs with properties analogous to those of the template peptide. These types of non-peptide compounds are termed “peptide mimetics” or “peptidomimetics” (Fauchere, J. (1986)Adv. Drug Res. 15:29; Veber and Freidinger (1985) TINS p.392; and Evans et al. (1987) J. Med. Chem. 30: 1229) and are usually developed with the aid of computerized molecular modeling. Peptide mimetics that are structurally similar to therapeutically useful peptides may be used to produce an equivalent therapeutic or prophylactic effect. Generally, peptidomimetics are structurally similar to a paradigm peptide (i.e., a peptide that has a biological or pharmacological activity), such as naturally-occurring PTB domain-binding polypeptide, but have one or more peptide linkages optionally replaced by a linkage selected from the group consisting of: —CH2NH—, —CH2S—, —CH2—CH2—, —CH═CH— (cis and trans), —COCH2—, —CH(OH)CH2—, and —CH2SO—, by methods known in the art and further described in the following references: Spatola, A. F. in “Chemistry and Biochemistry of Amino Acids, Peptides, and Proteins,” B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983); Spatola, A. F., Vega Data (March 1983), Vol. 1, Issue 3, “Peptide Backbone Modifications” (general review); Morley, J. S., Trends Pharm Sci. (1980) pp. 463-468 (general review); Hudson, D. et al., Int J Pept Prot Res. (1979) 14:177-185 (—CH2NH—, CH2CH2—); Spatola, A. F. et al., Life Sci. (1986) 38:1243-1249 (—CH2—S); Hann, M. M., J Chem Soc Perkin Trans I (1982) 307-314 (—CH—CH—, cis and trans); Almquist, R. G. et al., J Med Chem (1980) 23:1392-1398 (—COCH2—); Jennings-White, C. et al., Tetrahedron Lett. (1982) 23:2533 (—COCH2—); Szelke, M. et al., European Appln. EP 45665 (1982) CA: 97:39405 (1982) (—CH(OH)CH2—); Holladay, M. W. et al., Tetrahedron Lett. (1983) 24:4401-4404 (—C(OH)CH2—); and Hruby, V. J., Life Sci. (1982) 31:189-199 (—CH2—S—).
- Peptide mimetics may have significant advantages over peptide embodiments, including, for example: more economical production, greater chemical stability, enhanced pharmacological properties (half-life, absorption, potency, efficacy, etc.), altered specificity (e.g., a broad-spectrum of biological activities), reduced antigenicity, and others. Labeling of peptidomimetics usually involves covalent attachment of one or more labels, directly or through a spacer (e.g., an amide group), to non-interfering position(s) on the peptidomimetic that are predicted by quantitative structure-activity data and/or molecular modeling. Such non-interfering positions generally are positions that do not form direct contacts with the macromolecules(s) (e.g., PTB domains) to which the peptidomimetic binds to produce the therapeutic effect. Derivitization (e.g., labelling) of peptidomimetics should not substantially interfere with the desired biological or pharmacological activity of the peptidomimetic. Generally, peptidomimetics of PTB domain-binding peptides will bind to the PTB domain with high affinity and possess detectable biological activity (i.e, are agonistic or antagonistic to one or more PTB domain-mediated phenotypic changes).
- In a preferred aspect of the present invention, the phosphotyrosine (pY) group within the above described peptides can be substituted with an analog of phosphotyrosine which possesses a phosphate group which is nonhydrolyzable, e.g by tyrosine phosphatases. Inclusion of a nonhydrolyzable phosphotyrosine analog allows the peptides of the invention to retain binding and/or inhibitory activity for longer periods of time, in the presence of agents which may remove the phosphate group from the phosphotyrosine, e.g., tyrosine phosphatases, thereby allowing for more effective inhibition and reduced effective amounts, among other benefits. Examples of phosphotyrosine analogs having nonhydrolyzable phosphate groups include, e.g., (phosphonomethyl)phenylalanine (“Pmp”). Pmp is a phosphotyrosine analog in which the >C—O—PO3H2 group of pY has been replaced by >C—CH2—PO3H2. Inclusion of this analog within sequences recognized by other phosphotyrosine binding domains yields comparable binding as with their phosphotyrosine-containing counterparts. See, Domchek, et al., Biochem. (1992) 31:9865-9870. Thus, in an aspect of the present invention, the peptides of the present invention which comprise a core sequence NX3X1X2X4, where X1, X2, X3 and X4 are as previously described, the phosphotyrosine residues in X1 and/or X2 are substituted with Pmp.
- Systematic substitution of one or more amino acids of a consensus sequence with a D-amino acid of the same type (e.g., D-lysine in place of L-lysine) may also be used to generate more stable peptides. D-amino acids are generally denoted by the lower case abbreviation for the corresponding L-amino acid. In addition, constrained peptides comprising a consensus sequence or a substantially identical consensus sequence variation may be generated by methods known in the art (Rizo and Gierasch (1992)Ann. Rev. Biochem. 61:387; for example, by adding internal cysteine residues capable of forming intramolecular disulfide bridges which cyclize the peptide.
- VI. Methods of Use
- In general, the peptides of the present invention may be particularly useful as affinity ligands which are capable of binding proteins that comprise a PTB domain. Further, phosphotyrosine recognition and binding is a common mediator in cellular signaling and cellular functioning. Accordingly, the polypeptides of the present invention may find a variety of uses in diagnostic, screening and therapeutic applications related to these areas.
- A. Diagnostics and Screening
- In diagnostic applications, for example, the peptides of the present invention may generally be useful in methods for identifying proteins which comprise PTB domains. These methods may allow for the identification of proteins which are specifically involved in signaling pathways, such as cell activation following the binding of a ligand to a cell surface receptor. Specifically, these methods are useful in identifying downstream signals following growth factor, hormone, antibody and cytokine activation of cells. In particular, because of their specificity, the peptides of the present invention may generally be used as probes for identifying PTB domain-containing proteins.
- Therefore, in one aspect, the peptides of the present invention may be used to determine whether a particular protein comprises a PTB domain. Determination of whether a protein comprises a PTB domain may be carried out by a variety of means. For example, in some instances, it may be useful to immobilize the protein to be tested upon a solid support, e.g., a microtiter well, or nitrocellulose membrane. After blocking the remaining groups on the support, the protein to be tested may be exposed to an appropriate amount of the labelled peptide, as described herein. Detection of the label bound to the test protein indicates that the protein contains a PTB domain. As a specific example, following SDS-PAGE, the gel may be electroblotted onto an appropriate solid support, e.g., a nitrocellulose or PVDF membrane. Remaining unbound regions of the membrane may then be blocked with an appropriate inert protein, e.g., bovine serum albumin, or unphosphorylated peptide. Following buffer rinses, the blot is then contacted with a peptide of the invention to which has been coupled a detectable group, e.g., a radiolabel or enzyme. Radiographs of the blot may be compared to simultaneously run, stained SDS-PAGE gels, and the label bound proteins may be identified.
- Additionally, as an affinity ligand, the peptides of the present invention may also be useful in the purification of proteins which comprise a PTB domain, from a mixture of different proteins. Affinity purification of PTB domain-containing proteins may be carried out using general affinity purification methods well known in the art. For example, a peptide of the present invention may be attached to a suitable solid support, as described above.
- The mixture of proteins may then be contacted with the peptide bound to the solid support, such that the peptide selectively binds the PTB domain-containing proteins present within the mixture of proteins. The bound protein can then be washed to eliminate unbound proteins. Finally, substantially pure PTB domain-containing protein may be eluted from the solid support by generally known elution protocols, e.g., washing with an excess of phosphotyrosine, which will compete with the binding of PTB to the target peptide.
- As a target of PTB domain binding, the peptides of the present invention may also be used as probes in screening for compounds which may be agonists or antagonists of that binding, and more particularly, the cell signaling pathways which lead up to, and include, the binding of PTB domain to its phosphorylated ligand, e.g., SHC/c-erbB2 interactions, middle T antigen/SHC interactions, Trk/SHC interactions, and the like.
- An agonist, antagonist, or test compound may be a chemical compound, a mixture of chemical compounds, a biological macromolecule, or an extract made from biological materials such as bacteria, plants, fungi, or animal cells or tissues. Test compounds may be evaluated for potential activity as agonists or antagonists of pathways which lead up to, and include the PTB domain/phosphorylated ligand interaction. Thus, an agonist or antagonist may directly affect PTB domain/phosphorylated ligand interaction, or alternatively, may act upon an upstream event in the pathway, whereby the level of PTB domain/phosphorylated ligand interaction is affected.
- Thus, an “agonist” of the pathway will enhance the level of PTB domain/phosphorylated ligand interaction, while an “antagonist” will diminish the level of that interaction. The terms “agonist” and “antagonist”, as used herein, do not imply a particular mechanism of function.
- In screening embodiments, the polypeptides of the present invention may be used as a model in vitro system for determining whether a test compound is an agonist or antagonist of the binding of the PTB domain to its target recognition sequence motif. Such a system permits the screening of a large number of potential drugs, or drug candidates, for the ability to enhance or inhibit PTB domain/phosphorylated ligand interactions, and resulting associated downstream events.
- The screening methods comprise providing a polypeptide which contains a PTB domain, and a peptide of the present invention, whereby the protein and peptide form a complex. The complex may then be incubated with a test compound. Binding between the PTB domain and the peptide may then be determined. An increase or decrease in the level of binding between the PTB domain-containing protein and the peptide of the invention in response to a particular compound would indicate that the test compound is an agonist or antagonist of that binding, respectively. In some cases, it may be desirable to preincubate the PTB domain-containing protein, or the peptide of the invention with the test compound, prior to introduction of the peptide of the invention. The duration and conditions of preincubation will generally vary depending upon the compound being tested. Further, other reaction conditions of the preincubation, e.g., pH and salt concentration, will generally correspond to the conditions which are most effective for PTB domain binding to the peptide. Accordingly, these conditions will likely reflect the conditions normal to the particular cell-line from which the PTB domain was derived.
- For many of the methods described herein, the peptides of the invention, or the PTB domain, may be covalently attached or linked to a detectable group, or label, to facilitate screening and detection. Useful detectable groups, or labels, are generally well known in the art. For example, a detectable group may be a radiolabel, such as,125I, 32P or 35S, or a fluorescent or chemiluminescent group. Alternatively, the detectable group may be a substrate, cofactor, inhibitor, affinity ligand, antibody binding epitope tag, or an enzyme which is capable of being assayed. Suitable enzymes include, e.g., horseradish peroxidase, luciferase, or other readily assayable enzymes. These enzyme groups may be attached to the peptide by chemical means or expressed recombinantly, as a fusion protein, by methods well known in the art.
- It may also be desirable to provide the peptide or PTB domain-containing protein immobilized upon a solid support, to facilitate screening of test compounds. Examples of suitable solid supports include agarose, cellulose, dextran, Sephadex™, Sepharose™, carboxymethyl cellulose, polystyrene, filter paper, nitrocellulose, ion exchange resins, plastic films, glass beads, polyaminemethylvinylether maleic acid copolymer, amino acid copolymer, ethylene-maleic acid copolymer, nylon, silk, etc. The support may be in the form of, e.g., a test tube, microtiter plate, resins, beads, test strips, or the like. The coupling of the peptide or PTB domain-containing protein with the particular solid support may be carried out by methods well known in the art.
- As a specific example, a PTB domain-containing protein may be coupled to the wells of a microtiter plate. The test compound may then be added to the well of the microtiter plate to preincubate with the PTB domain-containing protein. The peptide of the invention, to which a detectable group has been attached, may then be added to the microtiter well. Following sufficient incubation, the wells may be rinsed, and binding of the peptide to the PTB domain may be assessed, e.g., by assaying for the presence of residual detectable groups. Those of skill in the art will recognize that the screening assay format may be set up in either direction, i.e., either the peptide or the PTB domain-containing protein may be bound to the support, while the other is labeled. The level of binding may then be compared to suitable positive and negative controls. Alternatively, by providing the polypeptide containing the PTB domain, and/or the peptide in known concentrations, one can assay for free, or unbound PTB domain and/or peptide, and by negative implication, determine the level of PTB domain/peptide complex which is formed.
- The amount or concentration of agonist/antagonist added will, when known, vary depending on the compound, but will generally range from about 10 pM to 100 μM. Typically, a range of concentrations will be used. In the case of uncharacterized test compounds it may not be possible, and it is not necessary, to determine the concentration of agonist/antagonist.
- It will also be desirable to include various experimental controls in the above assay. Examples of appropriate controls include negative controls and positive controls. In testing for agonist activity, negative controls can include incubation of cells with inert compounds (i.e., compounds known not to have agonist activity) or in the absence of added compounds. Positive controls can include incubation with compounds known to have agonist activity (e.g., the natural ligand). Logically, similar (though complementary) controls can be included in assays for antagonist activity, as will be apparent to one of ordinary skill in the art of biology, as will various additional controls. The description of controls is meant to be illustrative and in no way limiting.
- In an alternative embodiment, the peptides of the present invention may be useful in modelling small molecules which interfere with PTB binding in vivo. In particular, the structure of the PTB domain recognition sequence motif, as described herein, may be applied in generating synthetic analogs and mimics of the PTB domain recognition sequence. Synthetic elements may be pieced together based upon their analogy to the structural and chemical aspects of the PTB recognition sequence motif. Such mimics and analogs may be used in blocking or inhibiting specific aspects of the cell signaling pathways, e.g., growth factor activation, and may therefore be useful as therapeutic treatments according to the methods described herein.
- B. Therapeutic Applications
- In addition to the above described uses, the polypeptides of the present invention, or analogs thereof, may also be used in therapeutic applications for the treatment of human or non-human mammalian patients.
- PTB domain-containing proteins have been shown to bind proteins which are phosphorylated in response to the activation of a cell by various growth factors. See Kavanaugh and Williams, supra. Accordingly, the polypeptides of the present invention may be used to inhibit or block the interaction of PTB domain-containing proteins with their phosphorylated ligands by competing with those ligands.
- In particular, the peptides of the present invention can be used to block or inhibit growth factor dependent activation or stimulation of cells, or more specifically, inhibit or block growth factor initiated mitogenesis. These methods may generally be used in the treatment of a variety of proliferative cell disorders, or in screening compounds effective for such treatment. “Proliferative cell disorder” refers generally to disorders which are characterized by excessive stimulation or activation of the mitogenic signaling pathways resulting in excessive or abnormal cell growth and/or differentiation. Specific disorders include, e.g., atherosclerosis, inflammatory joint diseases, psoriasis, restinosis following angioplasty, and cancer. The methods and compositions of the present invention may be particularly useful in the case of cancers where there are deregulated tyrosine kinases, such as thyroid, breast carcinoma, stomach cancer and neuroblastoma. Alternatively, the methods and compositions may be useful as a prophylactic treatment, or in screening for compounds effective in prophylactic treatments. Such prophylactic treatments will generally be administered to inhibit or block “normal” cell proliferation, for example, in immunosuppression to prevent graft rejection, and to alleviate allergic responses involving mast cell activation.
- In a particularly preferred aspect, the peptides of the present invention are be used to block or inhibit the interaction between PTB domain containing proteins and the product of the c-erbB2 oncogene. More specifically, the peptides can be used to block or inhibit the interaction between the SHC protein and c-erbB2.
- Gene amplification of c-erbB2 is known to result in overexpression of the c-erbB2 product in a variety of adenocarcinomas, and a number of studies link this overexpression to the neoplastic process. c-erbB2 amplification has been described as being associated with human gastric tumor, non-small cell lung, colon, ovarian and pancreatic adenocarcinomas. Overexpression of c-erbB2 product has also been found in a significant percentage of breast carcinomas. For a review of c-erbB2, see Dougall, et al.,Oncogene (1994) 9:2109-2123.
- Studies have demonstrated the relationship between c-erbB2 overexpression and cellular transformation, using monoclonal antibodies. Antibodies to the c-erbB2 protein, as well as its murine homolog, have proven effective in inhibiting tumor formation, or otherwise shown antiproliferative effects. These studies indicate that the continued expression of the c-erbB2 product is necessary for the maintenance of the neoplastic phenotype in c-erbB2 transformed cells, and that expression of the c-erbB2 product can be functionally linked to cellular transformation. Dougall, et al. Further, studies indicate that several critical tyrosine residues within the c-erbB2 protein are important for conveying the mitogenic signals of the c-erbB2 protein. The peptides of the present invention are particularly useful in blocking these phosphotyrosine mediated mitogenic signals.
- The use of the peptides of the invention in methods for inhibiting or blocking c-erbB2/PTB domain interaction can be useful in the treatment of disorders which result from the overexpression of the c-erbB2 gene product, including, e.g., human gastric tumor, non-small cell lung, colon, ovarian and pancreatic adenocarcinomas, as well as breast carcinomas. Typically, such treatment will comprise administering to a patient suffering from one of the above disorders, an effective amount of a polypeptide of the present invention, generally in combination with a pharmaceutically acceptable carrier.
- It will also be appreciated by those of skill in the art, that peptidomimetics of the present invention may also be effective in blocking growth factor dependent activation of cells, or PTB domain/c-erbB2 interaction. Specifically, synthetic analogs to the PTB domain recognition motif as described herein, may also be applied in the treatment methods described.
- The quantities of reagents necessary for effective therapy, also referred to herein as an “effective amount,” or “therapeutically effective amount,” will depend upon many different factors, including means of administration, target site, physiological state of the patient and other medicants administered. Thus, treatment doses will need to be titrated to optimize safety and efficacy. Typically, dosages used in vitro may provide useful guidance in the amounts useful for in situ administration of these reagents. Animal testing of effective doses for treatment of particular disorders will provide further predictive indication of human dosage. Generally, therapeutically effective amounts of the peptides of the present invention will be from about 0.0001 to about 100 mg/kg, and more usually, from about 0.001 to about 0.1 mg/kg of the host's body weight. Various considerations are described, e.g., in Gilman et al., (Eds.),Goodman and Gilman's: The Pharmacological Basis of Therapeutics, (8th ed. 1990), Pergamon Press, and Remington's Pharmaceutical Sciences (7th ed. 1985) Mack Publishing Co., Easton, Pa. Methods of administration, also discussed in the above references, include, e.g., oral, intravenous, intraperitoneal or intramuscular administration, and local administration, including topical, transdermal diffusion and aerosol administration, for therapeutic, and/or prophylactic treatment.
- While it is possible to administer the active ingredient alone, it is preferable to present it as part of a pharmaceutical composition or formulation. These formulations comprise the peptides and/or analogs of the invention in a therapeutically or pharmaceutically effective dose together with one or more pharmaceutically or therapeutically acceptable carriers and optionally other ingredients, e.g., other therapeutic ingredients, or additional constituents which may be required to approximate physiological conditions, such as pH adjusting and buffering agents, tonicity adjusting agents, wetting agents and the like. Additional constituents of the pharmaceutical compositions may include those generally known in the art for the various administration methods used, e.g., oral forms may contain flavorants, sweeteners and the like. For solid compositions, conventional nontoxic solid carriers may be used which include, e.g., pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharin, talcum, cellulose, glucose, sucrose, magnesium carbonate and the like. Various considerations are described, e.g., in Gilman et al. (eds) (1990) GOODMAN AND GILMAN'S: THE PHARMACOLOGICAL BASES OF THERAPEUTICS, 8th Ed., Pergamon Press; NOVEL DRUG DELIVERY SYSTEMS, 2nd Ed., Norris (ed.) Marcel Dekker Inc. (1989), and REMINGTON'S PHARMACEUTICAL SCIENCES.
- Methods for administration are also discussed in the above references, e.g., for oral, intravenous, intraperitoneal, or intramuscular administration, and others. Pharmaceutically acceptable carriers will include water, saline, buffers, and other compounds described, e.g., in the MERCK INDEX, Merck & Co., Rahway, N.J. See, also, BIOREVERSIBLE CARRIERS IN DRUG DESIGN, THEORY AND APPLICATION, Roche (ed.), Pergamon Press, (1987). For some methods of administration, e.g., oral, it may be desirable to provide the active ingredient in a liposomal formulation. This is particularly desirable where the active ingredient may be subject to degradative environments, for example, proteolytic digestive enzymes. Liposomal formulations are well known in the art, and are discussed in, e.g., REMINGTON'S PHARMACEUTICAL SCIENCES, supra. Administration may also be carried out by way of a controlled release composition or device, whereby a slow release of the active ingredient allows continuous administration over a longer period of time.
- The present invention is further illustrated by the following examples. These examples are merely to illustrate aspects of the present invention and are not intended as limitations of this invention.
- Sf9 cells expressing residues 526 to 1067 of mouse PDGF receptor cytoplasmic domain (tyrosine kinase) in recombinant baculovirus were prepared and lysed as described by Kavanaugh and Williams,Science (1994) 266:1862-1865, and Collawn, et al., (1990) Cell 63:1061-1072. 1.1×106 plaques of an oligo-dT primed Balb/c 3T3 fibroblast cDNA λ gt11 library were plated and transferred to IPTG-impregnated PVDF filters using standard techniques. See, Sambrook, et al. Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory Press, New York, 2nd ed., 1989). The filters were blocked in TBSTM, 5% BSA (20 mM Tris-HCl, pH 7.4, 137 mM NaCl, 10 mM MgCl2 and 0.1% Triton X-100) and then incubated in TBSTM containing one fifth volume PDGF receptor cytoplasmic domain lysate, 250 μM ATP and 1 mM sodium orthovanadate at room temperature for 30 minutes. The filters were washed and incubated with 32P-labeled GST-PTB domain fusion protein as described in Kavanaugh and Williams, supra.
- Influenza hemagglutinin (IHA) tagged GST-PTB domain fusion proteins were expressed from recombinant baculovirus in sf9 cells. Sf9 cells or confluent SKBR3 cells were lysed in 2×hybridization buffer containing protease inhibitors and 1 mM sodium orthovanadate, as described in Kavanaugh and Williams,Science (1994) 266:1862-1865. Approximately 100 ng of GST-PTB domain was incubated with 1 μg of total SKBR3 lysate protein in 1×hybridization buffer for 30 minutes at 4° C., immunoprecipitated with 2 μg of 12CA5 and protein-A sepharose, and the pellets washed 3 to 5 times prior to immunoblot analysis with anti c-neu/c-erbB2 antibodies. The results are shown in FIG. 2A. Equal amounts of GST-PTB domain protein were immunoprecipitated as determined by immunoblotting with 12CA5.
- IHA-tagged GST-PTB fusion protein was incubated with SKBR3 lysate as described above, in the presence and absence of the peptides pY1112, pY1127, pY1139, pY1196, pY1221/pY1222 and pY1248. The mixture was immunoprecipitated with 12CA5, and immunoblotted with anti-c-neu/c-erbB2 antibodies. These results are shown in FIG. 2B. PTB domain was pre-incubated with the indicated concentrations of peptide for 30 minutes at 4° C. prior to adding SKBR3 cell lysate. This experiment was repeated with varying concentrations of the peptide pY1221/pY1222 and the results are shown in FIG. 2B, lower blot. Substantial inhibition is shown at as low as 50 nM peptide concentration. This experiment was also repeated using the peptides shown in Table 3, and the results are shown in FIG. 2C. Of the peptides tested, peptides pY1221/pY1222 and Y1221/pY1222 appear to completely block PTB/c-erbB2 interaction, whereas peptide pY1221/Y1222 showed some inhibition of this interaction. In the experiments involving serine-phosphorylated peptides, 1 μM okadaic acid and 1 mM EGTA were included in the buffers. Peptides were synthesized as described by Escobedo, et al.,Mol. Cell. Biol. (1991) 11:1125-1132, and HPLC purified. In this latter experiment, 300 nM peptides were used.
- Peptides were biotinylated during synthesis and HPLC purified. 100 ng of GST-PTB domain or GST-SH2 domain fusion protein were incubated in 1×hybridization buffer with 500 nM biotinylated phosphopeptide for 1 hour at 4° C., immunoprecipitated as described in Example 2, above, washed once, and the pellets incubated with 0.25 units of streptavidin-alkaline phosphatase for 5 minutes at 4° C. The pellets were washed twice more, incubated for 3 minutes at room temperature with 1 mg/ml p-nitrophenylphosphate in 100 mM glycine, pH 10.1, 1 mM ZnCl2 and 1 mM MgCl2. The absorbance was measured at 405 nm.
- The direct binding of the phosphorylated peptide PAFSPAFDNL(pY)(pY)WDQNSSEQG (“b-phos.”) to the PTB domain is shown in FIG. 3. This peptide bound the PTB domain both in the presence and absence of a 100×concentration of unphosphorylated, non-biotinylated peptide. PTB binding was inhibited in the presence of 100×concentration of phosphorylated peptide, which competed for the PTB domain. Unphosphorylated, biotinylated peptide did not bind the PTB domain. Neither the phosphorylated nor unphosphorylated form of this peptide were able to specifically bind to an SH2 domain.
- The peptides PAFSPAFDQL(pY)(pY)WDQNSSEQG (“b-N1219Q”) and PAFSPAFDDL(pY)(pY)WDQNSSEQG (“b-N1219D”) which carried point mutations in the asparagine residue in the ninth position, also show substantially reduced binding to the PTB domain in these assays (FIG. 3).
- While the foregoing invention has been described in some detail for purposes of clarity and understanding, it will be clear to one skilled in the art from a reading of this disclosure that various changes in form and detail can be made without departing from the true scope of the invention. All publications and patent documents cited in this application are incorporated by reference in their entirety for all purposes to the same extent as if each individual publication or patent document were so individually denoted.
Claims (21)
1. A substantially pure peptide which is capable of binding a PTB domain, wherein the peptide is from 5 to 100 amino acids in length, and comprises a core sequence of amino acids NX3X1X2X4;
wherein X1 is selected from the group consisting of Y, pY or an analog thereof, E, T, D, Q, A and F;
X2 is selected from pY or an analog thereof, and Y, provided that at least one of X1 and X2 is pY, or an analog thereof;
X3 is selected from the group consisting of L and A; and
X4 is selected from the group consisting of W, L, S, F and Q.
2. The peptide as recited in claim 1 , wherein the peptide is from 6 to 100 amino acids in length, and comprises a core sequence of amino acids X5NX3X1X2X4, wherein X5 is selected from the group consisting of D, S, E and A.
3. The peptide as recited in claim 2 , wherein X2 is pY.
4. The peptide as recited in claim 3 , wherein the peptide is from 6 to 100 amino acids in length, and comprises a core sequence of amino acids selected from the group consisting of DNX3X1pYX4 and ENX3X1pYX4, where X4 is selected from the group consisting of W and F.
5. The peptide as recited in claim 2 , wherein the peptide is from 12 to 100 amino acids in length, and comprises a core sequence of amino acids selected from the group consisting of AFDNLY(pY)WDQNS, AFDNL(pY)YWDQNS and AFDNL(pY)(pY)WDQNS.
6. The peptide as recited in claim 2 , wherein the peptide is from 21 to 100 amino acids in length, and comprises a core sequence of amino acids selected from the group consisting of: PAFSPAFDNLY(pY)WDQNSSEQG; PAFSPAFDNL(pY)YWDQNSSEQG; PAFSPAFDNL(pY)(pY)WDQNSSEQG; PAFSPAADNLY(pY)WDQNSSEQG; PAFSPAADNL(pY)YWDQNSSEQG; PAFSPAADNL(pY)(pY)WDQNSSEQG; PAFSPAFANLY(pY)WDQNSSEQG; PAFSPAFANL(pY)YWDQNSSEQG; PAFSPAFANL(pY)(pY)WDQNSSEQG; PAFSPAFSNLY(pY)WDQNSSEQG; PAFSPAFSNL(pY)YWDQNSSEQG; PAFSPAFSNL(pY)(pY)WDQNSSEQG; PAFSPAFDNAY(pY)WDQNSSEQG; PAFSPAFDNA(pY)YWDQNSSEQG; PAFSPAFDNA(pY)(pY)WDQNSSEQG; PAFSPAFDNLA(pY)WDQNSSEQG; PAFSPAFDNLF(pY)WDQNSSEQG; PAFSPAFDNLY(pY)FDQNSSEQG; PAFSPAFDNL(pY)YFDQNSSEQG; PAFSPAFDNL(pY)(pY)FDQNSSEQG; PAFSPAFDNLY(pY)WAQNSSEQG; PAFSPAFDNL(pY)YWAQNSSEQG; PAFSPAFDNL(pY)(pY)WAQNSSEQG; PAFSPAFDNLY(pY)WDANSSEQG; PAFSPAFDNL(pY)YWDANSSEQG; PAFSPAFDNL(pY)(pY)WDANSSEQG; PAFSPAFDNLY(pY)WDNNSSEQG; PAFSPAFDNL(pY)YWDNNSSEQG; PAFSPAFDNL(pY)(pY)WDNNSSEQG; PAFSPAFDNLY (pY)WDDNSSEQG; PAFSPAFDNL(pY)YWDDNSSEQG; PAFSPAFDNL(pY)(pY)WDDNSSEQG; PAFSPAFDNLY(pY)WDQASSEQG; PAFSPAFDNL(pY)YWDQASSEQG; PAFSPAFDNL(pY)(pY)WDQASSEQG; PAFSPAFDNLY(pY)WDQNASEQG; PAFSPAFDNL (pY)YWDQNASEQG; and PAFSPAFDNL(pY)(pY)WDQNASEQG.
7. The peptide as recited in claim 1 , wherein at least one of X1 and X2 is an analog of phosphotyrosine, and said analog is (phosphonomethyl)phenylalanine.
8. A substantially pure peptide which is capable of binding a PTB domain, wherein the peptide is from 21 to about 100 amino acids in length and which comprises a core sequence of amino acids selected from the group consisting of AFGGAVENPE(pY)LAPRAGTASQ and EGTPTAENPE(pY)LGLDVPV.
9. A composition comprising a peptide as recited in claim 1 , and a pharmaceutically acceptable carrier.
10. A method of determining whether a protein comprises a PTB domain, comprising the steps of:
contacting the protein with a peptide, which peptide is from 5 to 100 amino acids in length and comprises a core sequence of amino acids NX3X1X2X4, wherein X1 is selected from the group consisting of Y, pY, E, T, D, Q, A and F; X2 is selected from pY and Y, provided that at least one of X1 and X2 is pY; X3 is selected from the group consisting of L and A; and X4 is selected from the group consisting of W, L, S, F and Q; and
determining whether the peptide binds to the protein during said contacting step, where the binding of the peptide to the protein is indicative that the protein comprises a PTB domain.
11. The method as recited in claim 10 , wherein prior to said contacting step, the protein is attached to a solid support;
the peptide used in said contacting step further comprises a detectable group fused to the peptide; and
said determining step comprises assaying for the presence of the detectable group.
12. The method as recited in claim 10 , wherein prior to said contacting step, the peptide is attached to a solid support.
13. A method of determining whether a test compound is an agonist or antagonist of a PTB/phosphorylated ligand interaction, comprising the steps of:
incubating the test compound with a protein comprising a PTB domain and a peptide, which peptide is from 5 to 100 amino acids in length and which comprises a core amino acid sequence NX3X1X2X4, wherein X1 is selected from the group consisting of Y, pY, E, T, D, Q, A and F; X2 is selected from pY and Y, provided that at least one of X1 and X2 is pY; X3 is selected from the group consisting of L and A; and X4 is selected from the group consisting of W, L, S, F and Q; and
determining the amount of protein bound to the peptide during said incubating step; and
comparing the amount of protein bound to the peptide during said incubating step to an amount of protein bound to the peptide in the absence of the test compound, the increase or decrease in the amount of protein bound to the peptide in the presence of the test compound being indicative that the test compound is an agonist or antagonist of PTB domain/phosphorylated ligand interaction, respectively.
14. A method of inhibiting the binding of a PTB domain-containing protein to a tyrosine phosphorylated target, comprising contacting the PTB domain-containing protein with an effective amount of the peptide of claim 1 .
15. The method as recited in claim 14 , wherein the tyrosine phosphorylated target is c-erbB2.
16. The method as recited claim 15 , wherein the PTB domain-containing protein is SHC.
17. A method of obtaining substantially pure PTB-domain-containing protein from a mixture of different proteins, comprising the steps of:
providing a peptide which is from 5 to 100 amino acids in length, and which comprises a core amino acid sequence NX3X1X2X4, wherein X1 is selected from the group consisting of Y, pY, E, T, D, Q, A and F; X2 is selected from pY and Y, provided that at least one of X1 and X2 is pY; X3 is selected from the group consisting of L and A; and X4 is selected from the group consisting of W, L, S, F and Q; bound to a solid support;
contacting the mixture of different proteins with the peptide bound to the solid support whereby the PTB domain-containing protein is bound to the peptide;
washing the solid support to remove unbound proteins; and
eluting substantially pure PTB-domain-containing protein from the solid support.
18. A method of treating a patient suffering from a proliferative cell disorder, comprising administering to the patient an effective amount of the peptide recited in claim 1 .
19. The method as recited in claim 18 , wherein the proliferative cell disorder is selected from the group consisting of atherosclerosis, inflammatory joint disease, psoriasis, restinosis and cancer.
20. The method as recited in claim 19 , wherein the proliferative cell disorder is cancer.
21. The method as recited in claim 20, wherein the cancer is breast cancer.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/894,967 US20020156236A1 (en) | 1995-04-14 | 2001-06-27 | Binding sites for phosphotyrosine binding domains |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/423,646 US6280964B1 (en) | 1995-04-14 | 1995-04-14 | Binding sites for phosphotyrosine binding domains |
US09/894,967 US20020156236A1 (en) | 1995-04-14 | 2001-06-27 | Binding sites for phosphotyrosine binding domains |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/423,646 Continuation US6280964B1 (en) | 1995-04-14 | 1995-04-14 | Binding sites for phosphotyrosine binding domains |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020156236A1 true US20020156236A1 (en) | 2002-10-24 |
Family
ID=23679669
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/423,646 Expired - Fee Related US6280964B1 (en) | 1995-04-14 | 1995-04-14 | Binding sites for phosphotyrosine binding domains |
US09/894,967 Abandoned US20020156236A1 (en) | 1995-04-14 | 2001-06-27 | Binding sites for phosphotyrosine binding domains |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US08/423,646 Expired - Fee Related US6280964B1 (en) | 1995-04-14 | 1995-04-14 | Binding sites for phosphotyrosine binding domains |
Country Status (2)
Country | Link |
---|---|
US (2) | US6280964B1 (en) |
WO (1) | WO1996032411A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040157279A1 (en) * | 2001-04-10 | 2004-08-12 | Peter Nollau | Methods of analysis and labeling of protein-protein interactions |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1997015318A1 (en) * | 1995-10-27 | 1997-05-01 | Mount Sinai Hospital Corporation | Peptide inhibitors of a phosphotyrosine-binding domain containing protein |
US6028053A (en) * | 1995-10-27 | 2000-02-22 | Mount Sinai Hospital Corporation | Peptide inhibitors of a phosphotyrosine-binding domain containing protein |
EP0882128A1 (en) * | 1996-02-23 | 1998-12-09 | Ariad Pharmaceuticals, Inc. | Cell-based assay |
US6723694B1 (en) | 1997-05-21 | 2004-04-20 | The Children's Medical Center Corp. | Short peptides which selectively modulate intracellular signalling |
EP1115847A1 (en) | 1998-09-25 | 2001-07-18 | Children's Medical Center Corporation | Short peptides which selectively modulate the activity of protein kinases |
FR2787793B1 (en) * | 1998-12-24 | 2001-03-23 | Inst Nat Sante Rech Med | PSEUDOPEPTIDE COMPOUNDS HAVING INHIBITORY ACTIVITY WITH RESPECT TO TYROSINE KINASE ACTIVATED PROTEINS AND PHARMACEUTICAL COMPOSITIONS CONTAINING THE SAME |
ATE496139T1 (en) * | 2001-03-09 | 2011-02-15 | Boston Probes Inc | METHODS, KITS AND COMPOSITIONS RELATING TO COMBINATION OLIGOMERS |
US6465196B1 (en) * | 2001-03-13 | 2002-10-15 | Board Of Regents, The University Of Texas System | Drug screen for identifying an agent that modulates low density lipoprotein receptor adaptin-ligand binding |
WO2003027328A2 (en) | 2001-09-24 | 2003-04-03 | Boston Probes, Inc. | Methods, kits and compositions pertaining to the suppression of detectable probe binding to randomly distributed repeat sequences in genomic nucleic acid |
WO2003080857A2 (en) * | 2002-03-21 | 2003-10-02 | Boston Probes,Inc. | Pna oligomers, oligomers sets, methods and kits pertaining to the detection of bacillus anthracis |
US20030211509A1 (en) * | 2002-03-26 | 2003-11-13 | Wiley Steven R. | TNF-delta ligand and uses thereof |
JP2006507798A (en) * | 2002-05-17 | 2006-03-09 | アプレラ コーポレイション | PNA probes, probe sets, methods and kits for determination of Listeria |
CA2495895A1 (en) | 2002-09-08 | 2004-03-18 | Applera Corporation | Methods, compositions and libraries pertaining pna dimer and pna oligomer synthesis |
PT1606409E (en) * | 2003-03-19 | 2010-12-20 | Biogen Idec Inc | Nogo receptor binding protein |
DK1776136T3 (en) | 2004-06-24 | 2012-12-03 | Biogen Idec Inc | Treatment of conditions involving demyelination |
WO2007008547A2 (en) | 2005-07-08 | 2007-01-18 | Biogen Idec Ma Inc. | Sp35 antibodies and uses thereof |
WO2007064882A2 (en) | 2005-12-02 | 2007-06-07 | Biogen Idec Ma Inc. | Treatment of conditions involving demyelination |
US8128926B2 (en) | 2007-01-09 | 2012-03-06 | Biogen Idec Ma Inc. | Sp35 antibodies and uses thereof |
DK2982695T3 (en) * | 2008-07-09 | 2019-05-13 | Biogen Ma Inc | COMPOSITIONS CONCERNING ANTIBODIES AGAINST LINGO OR FRAGMENTS THEREOF |
JP5739807B2 (en) * | 2008-08-18 | 2015-06-24 | ディスカヴァーエックス コーポレイション | Receptor tyrosine kinase assay |
CA2873623C (en) | 2012-05-14 | 2021-11-09 | Biogen Idec Ma Inc. | Lingo-2 antagonists for treatment of conditions involving motor neurons |
US10435467B2 (en) | 2015-01-08 | 2019-10-08 | Biogen Ma Inc. | LINGO-1 antagonists and uses for treatment of demyelinating disorders |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352660A (en) * | 1991-10-31 | 1994-10-04 | Mount Sinai Hospital Corporation | Method for assaying for a substance that affects a SH2-phosphorylated ligand regulatory system |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
ATE187772T1 (en) | 1991-01-18 | 2000-01-15 | Univ New York | CDNS CLONING METHOD FOR RECEPTOR TYROSINE KINASE TARGET PROTEIN AND HGRB PROTEINS |
AU5136093A (en) | 1992-09-25 | 1994-04-26 | Warner-Lambert Company | Peptide antagonists of sh2 binding and therapeutic uses thereof |
US5744313A (en) * | 1994-12-09 | 1998-04-28 | The Regents Of The University Of California | Assay employing novel protein domain which binds tyrosine phosphorylated proteins |
-
1995
- 1995-04-14 US US08/423,646 patent/US6280964B1/en not_active Expired - Fee Related
-
1996
- 1996-04-02 WO PCT/US1996/004491 patent/WO1996032411A1/en active Application Filing
-
2001
- 2001-06-27 US US09/894,967 patent/US20020156236A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5352660A (en) * | 1991-10-31 | 1994-10-04 | Mount Sinai Hospital Corporation | Method for assaying for a substance that affects a SH2-phosphorylated ligand regulatory system |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20040157279A1 (en) * | 2001-04-10 | 2004-08-12 | Peter Nollau | Methods of analysis and labeling of protein-protein interactions |
US7846746B2 (en) * | 2001-04-10 | 2010-12-07 | Children's Medical Center Corporation | Methods of analysis and labeling of protein-protein interactions |
Also Published As
Publication number | Publication date |
---|---|
US6280964B1 (en) | 2001-08-28 |
WO1996032411A1 (en) | 1996-10-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6280964B1 (en) | Binding sites for phosphotyrosine binding domains | |
RU2146262C1 (en) | Peptides, method of their synthesis, pharmaceutical composition and method of its preparing | |
Matsuoka et al. | Activation of cyclin-dependent kinase 4 (cdk4) by mouse MO15-associated kinase | |
JP4205165B2 (en) | Methods and means for inhibition of Cdk4 activity | |
CA2351893A1 (en) | Peptides that modulate the interaction of b class ephrins and pdz domains | |
US5744313A (en) | Assay employing novel protein domain which binds tyrosine phosphorylated proteins | |
Scott | Dissection of protein kinase and phosphatase targeting interactions | |
US5463023A (en) | Composition for inhibition of intracellular transcription | |
US6077686A (en) | Shc proteins | |
WO2000052173A2 (en) | Cloned human sphingosine kinase homologues | |
Stolzenberger et al. | Specific inhibition of interleukin‐4‐dependent Stat6 activation by an intracellularly delivered peptide | |
US6207393B1 (en) | Inhibition of intracellular signal transduction by 14-3-3-binding peptides | |
US6296848B1 (en) | GRB2 associating polypeptides and nucleic acids encoding therefor | |
JPH09505730A (en) | Methods and compositions for treating BCR-ABL associated leukemia and other cell proliferative disorders | |
WO1997019101A9 (en) | Novel grb2 associating polypeptides and nucleic acids encoding therefor | |
US6045797A (en) | Treatment or diagnosis of diseases or conditions associated with a BLM domain | |
CA2494577A1 (en) | Mk2 interacting proteins | |
US20040072319A1 (en) | Molecules that modulate ubiquintin-dependent proteolysis and methods for identifying same | |
JP2002186490A (en) | Human platelet-derived growth factor receptor | |
US5807989A (en) | Methods for treatment or diagnosis of diseases or disorders associated with an APB domain | |
EP0797662A1 (en) | Methods for treatment or diagnosis of diseases or conditions associated with abnormal signal transduction | |
WO2004016646A2 (en) | Peptide modulators of tumour specific pyruvate kinase subtype m2 (m2-pk) | |
EP0525054A1 (en) | Modified heparin binding growth factors |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |
|
AS | Assignment |
Owner name: NIH-DEITR, MARYLAND Free format text: CONFIRMATORY LICENSE;ASSIGNOR:UNIVERSITY OF CALIFORNIA, SAN FRANCISCO;REEL/FRAME:039469/0468 Effective date: 20160817 |