US20020153452A1 - Multi-mode tiltrotor nacelle control system with integrated envelope protection - Google Patents
Multi-mode tiltrotor nacelle control system with integrated envelope protection Download PDFInfo
- Publication number
- US20020153452A1 US20020153452A1 US10/130,646 US13064602A US2002153452A1 US 20020153452 A1 US20020153452 A1 US 20020153452A1 US 13064602 A US13064602 A US 13064602A US 2002153452 A1 US2002153452 A1 US 2002153452A1
- Authority
- US
- United States
- Prior art keywords
- tiltrotor
- thumbwheel
- detent position
- nacelle
- assembly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000033001 locomotion Effects 0.000 claims abstract description 25
- 230000004913 activation Effects 0.000 claims abstract description 14
- RZVHIXYEVGDQDX-UHFFFAOYSA-N 9,10-anthraquinone Chemical compound C1=CC=C2C(=O)C3=CC=CC=C3C(=O)C2=C1 RZVHIXYEVGDQDX-UHFFFAOYSA-N 0.000 claims description 21
- 238000012423 maintenance Methods 0.000 claims description 12
- 238000000034 method Methods 0.000 claims description 9
- 230000003213 activating effect Effects 0.000 claims description 3
- 230000004044 response Effects 0.000 claims description 3
- 230000008878 coupling Effects 0.000 claims 3
- 238000010168 coupling process Methods 0.000 claims 3
- 238000005859 coupling reaction Methods 0.000 claims 3
- 238000006243 chemical reaction Methods 0.000 description 39
- 230000006870 function Effects 0.000 description 18
- 238000013459 approach Methods 0.000 description 8
- 230000008901 benefit Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 102100029459 Apelin Human genes 0.000 description 3
- 101000771523 Homo sapiens Apelin Proteins 0.000 description 3
- 230000009977 dual effect Effects 0.000 description 3
- 230000003466 anti-cipated effect Effects 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000116 mitigating effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 239000003381 stabilizer Substances 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C13/00—Control systems or transmitting systems for actuating flying-control surfaces, lift-increasing flaps, air brakes, or spoilers
- B64C13/24—Transmitting means
- B64C13/38—Transmitting means with power amplification
- B64C13/50—Transmitting means with power amplification using electrical energy
- B64C13/503—Fly-by-Wire
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C27/00—Rotorcraft; Rotors peculiar thereto
- B64C27/54—Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement
- B64C27/56—Mechanisms for controlling blade adjustment or movement relative to rotor head, e.g. lag-lead movement characterised by the control initiating means, e.g. manually actuated
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B64—AIRCRAFT; AVIATION; COSMONAUTICS
- B64C—AEROPLANES; HELICOPTERS
- B64C29/00—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft
- B64C29/0008—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded
- B64C29/0016—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers
- B64C29/0033—Aircraft capable of landing or taking-off vertically, e.g. vertical take-off and landing [VTOL] aircraft having its flight directional axis horizontal when grounded the lift during taking-off being created by free or ducted propellers or by blowers the propellers being tiltable relative to the fuselage
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/08—Control of attitude, i.e. control of roll, pitch, or yaw
- G05D1/0808—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
- G05D1/0858—Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft specially adapted for vertical take-off of aircraft
Definitions
- the present invention relates to aircraft control systems.
- the present invention to relates to a nacelle control system in a tiltrotor aircraft.
- tiltrotor aircraft Although there have been great strides in tiltrotor aircraft technology, many shortcomings remain.
- Conventional tiltrotor aircraft have the following shortcomings: (1) it is possible for an inattentive pilot to operate the tiltrotor aircraft outside its nacelle angle-speed flight envelope; (2) there is no automated nacelle control, or means for switching between manual and automated control modes; (3) there are no preprogrammed nacelle angle indicators in the flight control computers; (4) fault detection for electrical failures and back-up switching for mechanical faults are inadequate; and (5) there is no automatic engagement of a maintenance mode.
- Such operational guidelines and regulations may include certain standards and procedures, such as terminal area procedures for tiltrotor aircraft. No efforts have been made to mechanize the control of tiltrotor nacelles in anticipation of such standards and procedures be implemented.
- the above objects are achieved by providing a multi-mode tiltrotor nacelle control system with integrated envelope protection having three modes of operation: an automatic mode, a semi-automatic mode, and a maintenance mode.
- the nacelle control system of the present invention includes a power lever thumbwheel with which the pilot can switch between the various modes of operation. There is triple redundancy in the nacelle control system in that switches are disposed on the pilot's power lever, the co-pilot's power lever, and the flight control panel.
- the present invention reduces pilot workload associated with the fourth primary control for tiltrotor aircraft, i.e. nacelle rotation, by providing semi-automatic nacelle control and automatic mode switching.
- flight safety is improved by protecting the pilot from operating the aircraft outside its nacelle angle-speed flight envelope.
- the present invention improves pilot situational awareness by providing pre-programmed nacelle angle detents and cockpit indications consistent with the nacelle rate inhibit logic in the FCC's.
- the present invention improves the reliability of nacelle conversion systems by utilizing redundant, simple switches, providing in-line fault detection for electrical failures, and providing back-up switches to protect against mechanical faults.
- the present invention improves the safety of maintenance operation by automatically engaging a maintenance mode that utilizes slower nacelle rotation rates.
- the present invention provides the following advantages: (1) high reliability for a tiltrotor nacelle conversion system; (2) mitigation of safety hazards associated with tiltrotor flight envelope exceedance; (3) reduction in flight crew workload to permit single pilot tiltrotor operations; (4) easy pilot access to maximum conversion rate for a power-off, e.g. dual engine failure, re-conversion maneuver; and (5) a mechanized means for complying with anticipated standards and procedures for the control of tiltrotor aircraft.
- FIG. 1 is a perspective view of a tilt rotor aircraft having a multi-mode tiltrotor nacelle control system with integrated envelope protection according to the present invention.
- FIG. 2 is a perspective view of power lever grip with nacelle control thumbwheel for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 3 is a schematic of the thumbwheel switch for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 4 is a schematic of the flight control panel with backup nacelle control switch for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 5 is schematic of the nacelle conversion envelope protection for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 6 is a schematic of the control law for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 7 is a tabular representation of typical inputs for the nacelle control functions of the control law for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 8 is a tabular representation of typical outputs for the nacelle control functions of the control law for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- Tilt rotor aircraft 11 having a multi-mode tiltrotor nacelle control system with integrated envelope protection 13 according to the present invention is illustrated.
- Tilt rotor aircraft 11 comprises the following airframe components: a fuselage 15 , a tail section 17 coupled to the aft portion of fuselage 15 , a horizontal stabilizer 19 carried by tail section 17 , a left wing member 21 a coupled to fuselage 15 , a right wing member 21 b coupled to fuselage 15 , a left engine nacelle 23 a pivotally coupled to left wing member 21 a, a right engine nacelle 23 b pivotally coupled to right wing member 21 b, a left engine and proprotor gear box (not shown) carried by left engine nacelle 23 a, a right engine and proprotor gear box (not shown) carried by right engine nacelle 23 b, a left proprotor 25 a coupled to left engine and proprotor gear box, and a right proprotor
- Tilt rotor aircraft 11 can operate in either an airplane mode, in which aircraft 11 flies like a fixed wing aircraft, or in a helicopter mode, in which aircraft 11 can take off, fly, land, and hover like a helicopter or other rotary wing aircraft. In FIG. 1, tilt rotor aircraft 11 is shown in the airplane mode.
- Thumbwheel 53 preferably has a knurled edge 61 that protrudes above a grip surface 63 .
- Thumbwheel 53 is spring biased in a selected position, but may be rotated by the pilot in a forward direction indicated of arrow A, or in an aft direction indicated by arrow B.
- Tiltrotor aircraft 11 includes at least two such power lever grips 51 : one coupled to a pilot's power lever 55 , and another coupled to the co-pilot's power lever (not shown, but similar to pilot's power lever 55 ).
- Power levers 55 are analogous to the collective in helicopters and the throttle in fixed wing aircraft.
- Power lever grip 51 may include switches 57 , buttons 59 , and other control mechanisms for controlling various aircraft functions and maneuvers. It should be understood that power lever grip 51 may be integral with power lever 55 .
- thumbwheel 53 may have different configurations, such as a sliding knob, a joystick, or any other suitable electronic input device.
- Thumbwheel 53 is preferably spring loaded by a conventional spring mechanism (not shown) to provide at least four detent positions: a first detent 71 , a second detent 73 , a third detent 75 , and a fourth detent 77 .
- thumbwheel 53 has a forward hardstop position 79 and an aft hardstop position 81 . Thumbwheel 53 is prevented from rotating in the forward direction beyond forward hardstop 79 , and is prevented from rotating in the aft direction beyond aft hardstop 81 .
- First detent 71 also referred to as “nacelle control off detent,” is the default detent and is positioned about 90° up from grip surface 63 of power lever grip 51 .
- First detent 71 is the default detent because thumbwheel 53 is spring biased to return to first detent 71 when released by the pilot.
- Second detent 73 also referred to as the “nacelle down detent,” is positioned about 15° forward from first detent 71 .
- Forward hardstop is positioned about 5° forward from second detent 73 .
- Third detent 75 also referred to as “nacelle up detent,” is positioned about 15° aft from first detent 71 .
- Fourth detent 77 also referred to as “emergency up detent,” is positioned about 10° aft from third detent 75 .
- Aft hardstop 81 is positioned about 5° aft from fourth detent 77 .
- the total rotation of thumbwheel 53 from forward hardstop 79 to aft hardstop 81 is about 50°.
- Nacelle control system 13 has three modes of operation: (1) a semi-automatic nacelle control mode; (2) a fixed rate command mode; and (3) a maintenance control mode.
- Automatic mode switching is provided via a Flight Control Computer (FCC) algorithm 301 (see FIG. 6) to switch among the three modes of operation.
- FCC Flight Control Computer
- thumbwheel 53 returns to first detent 71 when released by the pilot.
- thumbwheel 53 allows the pilot to command nacelles 23 a and 23 b (see FIG. 1) to rotate to fixed, pre-defined nacelle reference angles of 75°, 60°, and 0°, as measured up from full airplane mode.
- thumbwheel 53 if thumbwheel 53 is held at, or approaches second detent 73 , then nacelles 23 a and 23 b rotate forward to the next available nacelle reference angle; and if thumbwheel 53 is held at, or approaches, third detent 75 , then nacelles 23 a and 23 b rotate aft to the next available nacelle reference angle.
- thumbwheel 53 is held at, or approaches fourth detent 77 , then nacelles 23 a and 23 b rotate aft to the full aft angle of 95°.
- the fixed rate command mode is automatically engaged when nacelle angle a is sensed to be in helicopter mode range.
- downward nacelle rotation occurs at a fixed rate when thumbwheel 53 is held at, or approaches, second detent 73
- upward nacelle rotation occurs at a fixed rate when thumbwheel 53 is held at, or approaches, third detent 73 .
- the maintenance mode is automatically engaged when FCC's detect that aircraft 11 is in a maintenance condition, which is determined by reading triply redundant weight-on-wheels switches (not shown) on each of three landing gear (not shown), and by monitoring the proprotor speed from triplex tachometers (not shown) located in the left and right proprotor gear boxes.
- a maintenance condition which is determined by reading triply redundant weight-on-wheels switches (not shown) on each of three landing gear (not shown), and by monitoring the proprotor speed from triplex tachometers (not shown) located in the left and right proprotor gear boxes.
- downward nacelle rotation occurs at a fixed, slow rate when thumbwheel 53 is held at, or approaches, second detent 73
- upward nacelle rotation occurs at a fixed, slow rate when thumbwheel 53 is held at, or approaches, third detent 73 .
- any number of detents may be utilized on thumbwheel 53 to provide movement of nacelles 23 a and 23 b in various directions or to various pre-selected positions
- FIG. 4 there are three redundant sources in the cockpit of aircraft 11 for activating nacelle control system 13 : (1) pilot power lever thumbwheel 53 ; (2) copilot power lever thumbwheel (not shown); and (3) a backup switch 201 disposed on a flight control panel 203 disposed in an overhead console (not shown).
- Backup switch 201 includes an “OFF” position 205 , an “APLN” position 207 , and a “HELO” position 209 .
- backup switch 201 When backup switch 201 is in the “OFF” position, no rotation of nacelles 23 a and 23 b is commanded.
- backup switch 201 When backup switch 201 is moved into the “HELO” position, nacelles 23 a and 23 b rotate aft to the next nacelle reference angle.
- nacelles 23 a and 23 b rotate forward to the next nacelle reference angle.
- indicia “OFF,” “HELO,” and “APLN” may be interchanged with any other appropriate visual indicia.
- Nacelle control system 13 is a triple redundant system. Thumbwheel 53 on pilot's power lever 55 and the thumbwheel on the co-pilot's power lever provide the first two activation sources of nacelle control system 13 .
- Backup switch 201 provides the third activation source of nacelle control system 13 .
- the redundant sources for activating nacelle control system 13 allow for pilot/copilot crew coordination, allow for single pilot operation, and allow for nacelle control system 13 to be operational in the event of failure of two of the activation sources. The inputs for the three sources are combined in an “OR” logic by the FCC's for all of the sources that are determined to not have failed.
- FIG. 5 a graph 301 having a horizontal axis which represents equivalent airspeed in knots and a vertical axis which represents nacelle angle in degrees in illustrated.
- An operational conversion corridor 303 in graph 301 represents the safe operating envelope in which aircraft 11 may be operated. Operational conversion corridor 303 is defined and predetermined in the structural design criteria of aircraft 11 . Nacelle control system 13 protects the pilot from operating aircraft 11 outside of operational conversion corridor 303 .
- the nacelle rotation rate is automatically slowed down if the airspeed is approaching the upper envelope limit during an aft nacelle rotation, and the nacelle rotation rate is automatically slowed down if the airspeed is approaching the lower envelope limit during a forward nacelle rotation.
- This feature is disabled by the FCC's if aircraft 11 is detected to be in a power-off re-conversion state.
- the nacelle rate command is automatically inhibited by the FCC's if aircraft 11 is detected to be at or beyond an airspeed limitation and the nacelle rate command is in the direction to aggravate the envelope violation.
- the upper and lower airspeed limitations are digitally transmitted from the FCC's to the flight displays to provide cockpit indications consistent with the nacelle rate command limitations.
- FIG. 6 a schematic of the control law 401 for nacelle control system 13 is illustrated. Movements of thumbwheel 53 are detected by a plurality of switches 403 , 405 , and 407 coupled to thumbwheel 53 .
- Switch 403 is operably associated with second detent 73
- switch 405 is operably associated with third detent 75
- switch 407 is operably associated with fourth detent 77 .
- Each switch 403 , 405 , and 407 has a triply redundant electrical interface to the three FCC's to maintain high system reliability and robustness to electrical faults.
- Switches 403 , 405 , and 407 pilot's thumbwheel 53 and the copilot's thumbwheel are arranged in a network that provides a voltage range of at least 1.5 Volts for each of the four detents 71 , 73 , 75 , and 77 .
- This voltage range allows switches 403 , 405 , and 407 to activate and initiate appropriate nacelle movement when thumbwheel 53 merely approaches detents 73 , 75 , and 77 , respectively.
- switches 403 , 405 , and 407 are not discreet; rather, switches 403 , 405 , and 407 are activated when thumbwheel 53 has been moved about halfway between the four detent positions 71 , 73 , 75 , and 77 .
- Another advantage of non-discreet, voltage range switches 403 , 405 , and 407 is that the FCC's can automatically detect electrical open and short failures and provide an appropriate maintenance alert message.
- a software algorithm using set/reset latches controls the nacelle detent commands.
- the pilot can reset the detent command at any point within the allowable operational conversion corridor 303 (see FIG. 5) by deflecting the switch in the opposite direction from the nacelle movement.
- a nacelle control function provides continuous control of nacelles 23 a and 23 b in or near the helicopter mode, i.e., 95° to 75°, at a fixed rate, and the semi-automatic nacelle reference angles of 75°, 60°, and 0° for converting nacelles 23 a and 23 b at pre-programmed rates from 75° to airplane mode.
- nacelles 23 a and 23 b stop at each nacelle reference angle and wait for another nacelle switch command to initiate further nacelle motion. Similar detents are pre-programmed for reconverting from the airplane mode, and operate until nacelles 23 a and 23 b are in the continuous control range around helicopter mode.
- This control operates such that commanding nacelles 23 a and 23 b in the direction opposite the current motion in the range between 75° and 0° will stop nacelles 23 a and 23 b at that point, except when close to a downstop assembly (not shown), when nacelles 23 a and 23 b will either transition to the downstop assembly or stop at a selected position above the downstop assembly.
- the downstop assembly comprises a striker and cradle assembly which ensures that nacelles 23 a and 23 b remain fixed in the airplane mode by maintaining a selected preload on wings 21 a and 21 b. This feature of a pre-programmed nacelle rate when approaching the airplane mode is compatible with the nacelle downstop assembly.
- the nacelle control function maintains adequate rotor aeroelastic stability margins at high airspeeds, and limits the force the nacelle actuation system (not shown) exerts against the downstop assembly.
- the nacelle control function provides a high-speed emergency re-conversion mode which overrides any detents. This function is used in the case of a dual engine failure in airplane mode, in order to minimize the transition time during re-conversion and limit the potential for excessive rotor speed droop.
- the nacelle control function includes conversion protection functions that are intended to assist the pilot in keeping aircraft 11 within operational conversion corridor 303 (see FIG. 5). With the loss of airspeed sensing, these conversion protection functions are lost, requiring additional pilot compensation to avoid exceeding the conversion corridor limits.
- the conversion protection function calculates conversion corridor speed limits as a function of upper and lower nacelle angle a for cockpit displays. In addition, the conversion protection function reduces the pre-programmed nacelle rates as the conversion corridor speed limit is approached, i.e., the upper speed limit while re-converting, or the lower speed limit while converting. Conversion corridor speed limit violation signals are generated and passed to the avionics system to activate cockpit aural tone warnings and warning displays when the upper or lower speed limits have been exceeded.
- the nacelle control laws are responsible for commanding nacelle angle to control the conversion actuators.
- the nacelle control laws include the following modules:
- the nacelle control logic module controls the moding between the semi-automatic nacelle control conditions: emergency re-conversion, go-to detent forward, and go-to detent aft.
- Semi-automatic nacelle control is provided to reduce pilot workload and standardize nacelle operation.
- the control law processing for the nacelle go-to detent modes is divided between CLN01 and CLN 05 modules.
- CLN01 enables the modes and CLN05 sets the go-to detent command.
- the moding logic in CLN01 is based on the selected discrete input from thumbwheel 53 , the aircraft flight condition, and the nacelle angle command setting.
- the go-to detent modes are disabled when the control laws detect that nacelles 23 a and 23 b have arrived at the next nacelle reference angle.
- emergency re-conversion mode is latched, provided airspeed is less than 180 knots, to minimize pilot workload during an emergency power-off re-conversion.
- the condition of the emergency re-conversion set/reset latch is initialized based on cross-channel data to avoid force fight conditions in the conversion actuators.
- the nacelle detent and trim rate command module computes the detent and trim rate values that are used by the nacelle command modules.
- the detent setting is determined by comparing the pre-programmed nacelle reference angles of 0°, 60°, and 75°, with the current nacelle angle command value and by looking at the direction of the nacelle rate command.
- the nacelle angle command value is used in lieu of the sensed nacelle angle to prevent overshoots caused by system tolerances.
- a tolerance value of about 0.16° is added to the comparator threshold to prevent timing discrepancies from adversely affecting the nacelle reference angle computation.
- module CLN02 performs logic processing for the HPDU Unlock Discrete that is used by Redundancy Management to control the conversion actuators.
- the HPDU Unlock Discrete is set when nacelles 23 a and 23 b are commanded off-the-downstop, and it is reset when the nacelle angle command reaches about 5°.
- nacelle control is based on a fixed-rate control law which command +/ ⁇ 8° per second nacelle rate based on the selected nacelle controller discrete input.
- a constant nacelle rate of 3° per second is used as nacelles 23 a and 23 b are commanded between detents for nacelle angles a less than 75°.
- the rate is set at +/ ⁇ 2 degrees per second when aircraft 11 is determined to be in the maintenance mode.
- the nacelle command module produces an integrated nacelle angle command that drives the conversion actuator servo-loops.
- the nacelle angle command switches between the nacelle trim rate command or the nacelle reference angle command based upon mode logic.
- the nacelle angle command integrator is initialized based on cross channel data.
- a discrete is computed that indicates when the nacelle angle command as arrived at its detent setting. This discrete is used to create a crew alert to indicate that the aircraft is operating at a non-reference nacelle angle.
- the nacelle command limiting module provides a conversion protection function.
- the selected control law airspeed is compared against operational conversion corridor 303 boundaries to determine rate limits on the nacelle angle command. If the aircraft is approaching the upper speed boundary, limits are placed on aft nacelle rate. Similarly, if the aircraft is approaching the lower speed boundary, limits are placed on forward nacelle rate. The limits prevent the nacelle angle command from causing aircraft 11 to exceed the speed operating limits.
- the nacelle go-to detent logic module applies inhibits to the pilot's capability to stop nacelle angle a between nacelle reference angles.
- the nacelle angle rate command stops if the control laws receive an input from thumbwheel 53 in the opposite direction of the nacelle motion.
- nacelles command will not hold its current value in response to a pilot stop command. Instead, the nacelles will be commanded to either 20° or 0° depending on the direction of the stop command.
- Typical inputs for the nacelle control laws are set forth in table 501 of FIG. 7, and typical outputs for the nacelle control laws are set forth in table 601 of FIG. 8.
- the nacelle angle control provides positive crew control of nacelle angle a and provides continuous control in or near helicopter mode, i.e. 95° to 75°, at a fixed rate.
- the capability to command conversion rates of ⁇ 8° per second for any nacelle position between 75° and 95° is provided in order to ensure satisfactory performance for one engine inoperative fly-away.
- the nacelle manual trim control provides the capability to set any nacelle angle ⁇ between 75° and 95° in a smooth and predictable manner.
- the nacelle rate command smoothly sets to zero upon returning thumbwheel 53 to first detent 71 at any nacelle angle ⁇ between 75° and 95°, and the nacelle rate command smoothly sets to zero as nacelles 23 a and 23 b reach the up-stop at the nacelle angle a of 95°.
- the nacelle angle control provides semi-automatic reference nacelle angles of 75 °, 60 °, ⁇ 2 ° for converting at pre-programmed fixed rates.
- the fixed rate nacelle command to the nacelle actuators is initiated in a smooth manner.
- the nacelle angle control smoothly commands nacelles 23 a and 23 b such that nacelles 23 a and 23 b stop at nacelle reference angle and wait for another nacelle switch command to initiate further nacelle motion.
- the nacelle angle control provides a high-speed, preferably 8° per second, emergency re-convert mode that over-rides the nacelle reference angles.
- An emergency re-convert function only requires a single action of the discrete emergency re-convert switch signal to command nacelles 23 a and 23 b all the way to a nacelle angle a of 95° unless inhibited by conversion protection.
- the nacelle angle control is such that commanding nacelles 23 a and 23 b in the direction opposite to current motion during any semi-automatic mode, including emergency re-convert, between nacelle angles ⁇ of 20° and 75° stops nacelles 23 a and 23 b at that point; and is such that commanding nacelles 23 a and 23 b in the direction opposite to current motion between the downstop and 20° moves nacelles 23 a and 23 b automatically to the downstop or 20° according to the direction of the command from thumbwheel 53 .
- Moving backup switch 201 to the “OFF” position disables the control law logic that prevents the pilot from stopping nacelles 23 a and 23 b within 20° of the downstop.
- the nacelle angle control changes the command nacelle angle at a nacelle rate schedule selected to give satisfactory handling qualities for conversion and re-conversion.
- the nacelle angle control limits nacelle angle ⁇ to greater than about 60° when aircraft 11 is on the ground and prop rotors 25 a and 25 b are turning.
- the nacelle angle control provides bang-bang nacelle rate control at 2° per second when aircraft 11 is on the ground and prop rotors 25 a and 25 b are not turning, or when the RPM is low.
- the rate of change of the nacelle position command is reduced to 1° per second within 2° of the downstop.
- the nacelle angle control holds the commanded nacelle angle if RPM is at the airplane mode setting and the command has not been initiated to change RPM to helicopter mode setting.
- the nacelle angle control initializes the commanded nacelle angle to the average sensed nacelle angle upon receipt of a discrete nacelle angle command signal from redundancy management processing.
- the nacelle angle control holds the commanded nacelle angle upon receipt of a discrete nacelle angle command “HOLD” signal from redundancy management processing.
- the nacelle angle control initializes the GO-TO-DETENT set/reset latches based on cross channel data if the cross channel data is valid.
- a discrete HPDU Unlock signal is set HIGH when nacelles 23 a and 23 b have been commanded off the downstop and the RPM is at the helicopter mode setting.
- the HPDU Unlock signal is reset when nacelles 23 a and 23 b are sufficiently off the downstop or a go-forward nacelle input is commanded.
- the nacelle angle control commands the nacelle servo-loop to 2 milliamps immediately following release of the downstop brakes.
- the nacelle angle control should computes discrete inputs to indicate when the nacelles are transitioning forward or aft, or are at a nacelle reference angle.
- the nacelle angle control computes a discrete signal to indicate when nacelles 23 a and 23 b have been stopped at a non-reference angle position.
- the present invention provides the following advantages over the prior art: (1) high reliability for a tiltrotor nacelle conversion system; (2) mitigation of safety hazards associated with tiltrotor flight envelope exceedance; (3) reduction in flight crew workload to permit single pilot tiltrotor operations; (4) easy pilot access to maximum conversion rate for a power-off, e.g. dual engine failure, re-conversion maneuver; and (5) a mechanized means for complying with anticipated standards and procedures for the control of tiltrotor aircraft.
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Automation & Control Theory (AREA)
- Mechanical Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Wind Motors (AREA)
- Mechanical Control Devices (AREA)
- Electric Propulsion And Braking For Vehicles (AREA)
- Control Of Turbines (AREA)
Abstract
Description
- The present invention relates to aircraft control systems. In particular, the present invention to relates to a nacelle control system in a tiltrotor aircraft.
- Flying a tiltrotor aircraft is a complicated and demanding task. The pilot must be aware of many things going on at once. In particular, the pilot must be aware of the ever-changing operating conditions of the aircraft and all of its systems. To do this, the pilot must scan multiple control panels and gauges to determine the operating condition of the many systems of the aircraft. Failure by the pilot to carefully monitor these systems can lead to serious problems. Because flying a tiltrotor aircraft is such a demanding task, designers are constantly considering ways to reduce pilot workload.
- Although there have been great strides in tiltrotor aircraft technology, many shortcomings remain. Conventional tiltrotor aircraft have the following shortcomings: (1) it is possible for an inattentive pilot to operate the tiltrotor aircraft outside its nacelle angle-speed flight envelope; (2) there is no automated nacelle control, or means for switching between manual and automated control modes; (3) there are no preprogrammed nacelle angle indicators in the flight control computers; (4) fault detection for electrical failures and back-up switching for mechanical faults are inadequate; and (5) there is no automatic engagement of a maintenance mode.
- In addition, as tiltrotor aircraft become more widely available for civil use, it is likely that certain operational guidelines and regulations will be implemented. Such operational guidelines and regulations may include certain standards and procedures, such as terminal area procedures for tiltrotor aircraft. No efforts have been made to mechanize the control of tiltrotor nacelles in anticipation of such standards and procedures be implemented.
- There is a need for a multi-mode tiltrotor nacelle control system with integrated envelope protection.
- Therefore, it is an object of the present invention to provide a multi-mode tiltrotor nacelle control system with integrated envelope protection.
- The above objects are achieved by providing a multi-mode tiltrotor nacelle control system with integrated envelope protection having three modes of operation: an automatic mode, a semi-automatic mode, and a maintenance mode. The nacelle control system of the present invention includes a power lever thumbwheel with which the pilot can switch between the various modes of operation. There is triple redundancy in the nacelle control system in that switches are disposed on the pilot's power lever, the co-pilot's power lever, and the flight control panel.
- The present invention reduces pilot workload associated with the fourth primary control for tiltrotor aircraft, i.e. nacelle rotation, by providing semi-automatic nacelle control and automatic mode switching. With the present invention, flight safety is improved by protecting the pilot from operating the aircraft outside its nacelle angle-speed flight envelope. In addition, the present invention improves pilot situational awareness by providing pre-programmed nacelle angle detents and cockpit indications consistent with the nacelle rate inhibit logic in the FCC's. Also, the present invention improves the reliability of nacelle conversion systems by utilizing redundant, simple switches, providing in-line fault detection for electrical failures, and providing back-up switches to protect against mechanical faults. Furthermore, the present invention improves the safety of maintenance operation by automatically engaging a maintenance mode that utilizes slower nacelle rotation rates.
- The present invention provides the following advantages: (1) high reliability for a tiltrotor nacelle conversion system; (2) mitigation of safety hazards associated with tiltrotor flight envelope exceedance; (3) reduction in flight crew workload to permit single pilot tiltrotor operations; (4) easy pilot access to maximum conversion rate for a power-off, e.g. dual engine failure, re-conversion maneuver; and (5) a mechanized means for complying with anticipated standards and procedures for the control of tiltrotor aircraft. The above objects and advantages, as well as others, will be evident from the following detailed description of the present invention.
- FIG. 1 is a perspective view of a tilt rotor aircraft having a multi-mode tiltrotor nacelle control system with integrated envelope protection according to the present invention.
- FIG. 2 is a perspective view of power lever grip with nacelle control thumbwheel for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 3 is a schematic of the thumbwheel switch for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 4 is a schematic of the flight control panel with backup nacelle control switch for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 5 is schematic of the nacelle conversion envelope protection for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 6 is a schematic of the control law for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 7 is a tabular representation of typical inputs for the nacelle control functions of the control law for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- FIG. 8 is a tabular representation of typical outputs for the nacelle control functions of the control law for the multi-mode tiltrotor nacelle control system with integrated envelope protection of the present invention.
- Referring to FIG. 1 in the drawings, a
tilt rotor aircraft 11 having a multi-mode tiltrotor nacelle control system with integratedenvelope protection 13 according to the present invention is illustrated.Tilt rotor aircraft 11 comprises the following airframe components: afuselage 15, atail section 17 coupled to the aft portion offuselage 15, ahorizontal stabilizer 19 carried bytail section 17, aleft wing member 21 a coupled tofuselage 15, aright wing member 21 b coupled tofuselage 15, aleft engine nacelle 23 a pivotally coupled toleft wing member 21 a, aright engine nacelle 23 b pivotally coupled toright wing member 21 b, a left engine and proprotor gear box (not shown) carried byleft engine nacelle 23 a, a right engine and proprotor gear box (not shown) carried byright engine nacelle 23 b, a left proprotor 25 a coupled to left engine and proprotor gear box, and aright proprotor 25 b coupled to right engine and proprotor gear box. The combination of each engine nacelle, engine, proprotor gear box, proprotor, and other power transmission components operably associated withnacelles Tilt rotor aircraft 11 can operate in either an airplane mode, in whichaircraft 11 flies like a fixed wing aircraft, or in a helicopter mode, in whichaircraft 11 can take off, fly, land, and hover like a helicopter or other rotary wing aircraft. In FIG. 1,tilt rotor aircraft 11 is shown in the airplane mode. - Referring now to FIG. 2 in the drawings, a
power lever grip 51 withnacelle control thumbwheel 53 according to the present invention is illustrated. Thumbwheel 53 preferably has aknurled edge 61 that protrudes above agrip surface 63. Thumbwheel 53 is spring biased in a selected position, but may be rotated by the pilot in a forward direction indicated of arrow A, or in an aft direction indicated by arrow B. Tiltrotoraircraft 11 includes at least two such power lever grips 51: one coupled to a pilot'spower lever 55, and another coupled to the co-pilot's power lever (not shown, but similar to pilot's power lever 55).Power levers 55 are analogous to the collective in helicopters and the throttle in fixed wing aircraft.Power lever grip 51 may includeswitches 57,buttons 59, and other control mechanisms for controlling various aircraft functions and maneuvers. It should be understood thatpower lever grip 51 may be integral withpower lever 55. In addition, it should be understood thatthumbwheel 53 may have different configurations, such as a sliding knob, a joystick, or any other suitable electronic input device. - Referring now to FIG. 3 in the drawings, a schematic of
thumbwheel 53 is illustrated. Thumbwheel 53 is preferably spring loaded by a conventional spring mechanism (not shown) to provide at least four detent positions: afirst detent 71, asecond detent 73, a third detent 75, and afourth detent 77. In addition, thumbwheel 53 has aforward hardstop position 79 and anaft hardstop position 81. Thumbwheel 53 is prevented from rotating in the forward direction beyondforward hardstop 79, and is prevented from rotating in the aft direction beyondaft hardstop 81. First detent 71, also referred to as “nacelle control off detent,” is the default detent and is positioned about 90° up fromgrip surface 63 ofpower lever grip 51. First detent 71 is the default detent because thumbwheel 53 is spring biased to return to first detent 71 when released by the pilot.Second detent 73, also referred to as the “nacelle down detent,” is positioned about 15° forward from first detent 71. Forward hardstop is positioned about 5° forward from second detent 73.Third detent 75, also referred to as “nacelle up detent,” is positioned about 15° aft from first detent 71.Fourth detent 77, also referred to as “emergency up detent,” is positioned about 10° aft from third detent 75.Aft hardstop 81 is positioned about 5° aft fromfourth detent 77. Thus, the total rotation ofthumbwheel 53 fromforward hardstop 79 toaft hardstop 81 is about 50°. -
Nacelle control system 13 has three modes of operation: (1) a semi-automatic nacelle control mode; (2) a fixed rate command mode; and (3) a maintenance control mode. Automatic mode switching is provided via a Flight Control Computer (FCC) algorithm 301 (see FIG. 6) to switch among the three modes of operation. In all three modes of operation, thumbwheel 53 returns to first detent 71 when released by the pilot. - In the semi-automatic nacelle control mode,
thumbwheel 53 allows the pilot to commandnacelles thumbwheel 53 is held at, or approachessecond detent 73, then nacelles 23 a and 23 b rotate forward to the next available nacelle reference angle; and ifthumbwheel 53 is held at, or approaches,third detent 75, then nacelles 23 a and 23 b rotate aft to the next available nacelle reference angle. In the semi-automatic nacelle control mode, ifthumbwheel 53 is held at, or approachesfourth detent 77, then nacelles 23 a and 23 b rotate aft to the full aft angle of 95°. - The fixed rate command mode is automatically engaged when nacelle angle a is sensed to be in helicopter mode range. When in the fixed rate command mode, downward nacelle rotation occurs at a fixed rate when
thumbwheel 53 is held at, or approaches,second detent 73, and upward nacelle rotation occurs at a fixed rate whenthumbwheel 53 is held at, or approaches,third detent 73. - The maintenance mode is automatically engaged when FCC's detect that
aircraft 11 is in a maintenance condition, which is determined by reading triply redundant weight-on-wheels switches (not shown) on each of three landing gear (not shown), and by monitoring the proprotor speed from triplex tachometers (not shown) located in the left and right proprotor gear boxes. When in maintenance mode, downward nacelle rotation occurs at a fixed, slow rate whenthumbwheel 53 is held at, or approaches,second detent 73, and upward nacelle rotation occurs at a fixed, slow rate whenthumbwheel 53 is held at, or approaches,third detent 73. It should be understood that any number of detents may be utilized onthumbwheel 53 to provide movement ofnacelles - Referring now to FIG. 4 in the drawings, there are three redundant sources in the cockpit of
aircraft 11 for activating nacelle control system 13: (1) pilotpower lever thumbwheel 53; (2) copilot power lever thumbwheel (not shown); and (3) abackup switch 201 disposed on aflight control panel 203 disposed in an overhead console (not shown).Backup switch 201 includes an “OFF”position 205, an “APLN”position 207, and a “HELO”position 209. Whenbackup switch 201 is in the “OFF” position, no rotation ofnacelles backup switch 201 is moved into the “HELO” position, nacelles 23 a and 23 b rotate aft to the next nacelle reference angle. Whenbackup switch 201 is moved into the “APLN” position, nacelles 23 a and 23 b rotate forward to the next nacelle reference angle. It should be understood that the indicia “OFF,” “HELO,” and “APLN” may be interchanged with any other appropriate visual indicia. -
Nacelle control system 13 is a triple redundant system.Thumbwheel 53 on pilot'spower lever 55 and the thumbwheel on the co-pilot's power lever provide the first two activation sources ofnacelle control system 13.Backup switch 201 provides the third activation source ofnacelle control system 13. The redundant sources for activatingnacelle control system 13 allow for pilot/copilot crew coordination, allow for single pilot operation, and allow fornacelle control system 13 to be operational in the event of failure of two of the activation sources. The inputs for the three sources are combined in an “OR” logic by the FCC's for all of the sources that are determined to not have failed. - Referring now to FIG. 5 in the drawings, a
graph 301 having a horizontal axis which represents equivalent airspeed in knots and a vertical axis which represents nacelle angle in degrees in illustrated. Anoperational conversion corridor 303 ingraph 301 represents the safe operating envelope in whichaircraft 11 may be operated.Operational conversion corridor 303 is defined and predetermined in the structural design criteria ofaircraft 11.Nacelle control system 13 protects the pilot from operatingaircraft 11 outside ofoperational conversion corridor 303. - According to the preferred embodiment of the present invention, the nacelle rotation rate is automatically slowed down if the airspeed is approaching the upper envelope limit during an aft nacelle rotation, and the nacelle rotation rate is automatically slowed down if the airspeed is approaching the lower envelope limit during a forward nacelle rotation. This feature is disabled by the FCC's if
aircraft 11 is detected to be in a power-off re-conversion state. The nacelle rate command is automatically inhibited by the FCC's ifaircraft 11 is detected to be at or beyond an airspeed limitation and the nacelle rate command is in the direction to aggravate the envelope violation. The upper and lower airspeed limitations are digitally transmitted from the FCC's to the flight displays to provide cockpit indications consistent with the nacelle rate command limitations. - Referring now to FIG. 6 in the drawings, a schematic of the control law401 for
nacelle control system 13 is illustrated. Movements ofthumbwheel 53 are detected by a plurality ofswitches thumbwheel 53.Switch 403 is operably associated withsecond detent 73,switch 405 is operably associated withthird detent 75, and switch 407 is operably associated withfourth detent 77. Eachswitch Switches thumbwheel 53 and the copilot's thumbwheel are arranged in a network that provides a voltage range of at least 1.5 Volts for each of the fourdetents switches thumbwheel 53 merely approachesdetents thumbwheel 53 has been moved about halfway between the fourdetent positions - A software algorithm using set/reset latches controls the nacelle detent commands. During nacelle activation, the pilot can reset the detent command at any point within the allowable operational conversion corridor303 (see FIG. 5) by deflecting the switch in the opposite direction from the nacelle movement.
- A nacelle control function provides continuous control of
nacelles nacelles nacelles nacelles commanding nacelles nacelles nacelles nacelles wings - In addition to these normal operating characteristics, the nacelle control function provides a high-speed emergency re-conversion mode which overrides any detents. This function is used in the case of a dual engine failure in airplane mode, in order to minimize the transition time during re-conversion and limit the potential for excessive rotor speed droop.
- The nacelle control function includes conversion protection functions that are intended to assist the pilot in keeping
aircraft 11 within operational conversion corridor 303 (see FIG. 5). With the loss of airspeed sensing, these conversion protection functions are lost, requiring additional pilot compensation to avoid exceeding the conversion corridor limits. The conversion protection function calculates conversion corridor speed limits as a function of upper and lower nacelle angle a for cockpit displays. In addition, the conversion protection function reduces the pre-programmed nacelle rates as the conversion corridor speed limit is approached, i.e., the upper speed limit while re-converting, or the lower speed limit while converting. Conversion corridor speed limit violation signals are generated and passed to the avionics system to activate cockpit aural tone warnings and warning displays when the upper or lower speed limits have been exceeded. - The nacelle control laws are responsible for commanding nacelle angle to control the conversion actuators. The nacelle control laws include the following modules:
- a. CLN01_NACLOGIC—nacelle control logic;
- b. CLN02_NACDETENT—nacelle detent and trim rate command;
- c. CLN03_NACCMD—nacelle command;
- d. CLN04_NACLIM—nacelle command limiting; and
- e. CLN05_GOTODET—nacelle go to detent logic.
- The following is a description of each of the above modules:
- The nacelle control logic module controls the moding between the semi-automatic nacelle control conditions: emergency re-conversion, go-to detent forward, and go-to detent aft. Semi-automatic nacelle control is provided to reduce pilot workload and standardize nacelle operation. The control law processing for the nacelle go-to detent modes is divided between CLN01 and CLN05 modules. CLN01 enables the modes and CLN05 sets the go-to detent command. The moding logic in CLN01 is based on the selected discrete input from
thumbwheel 53, the aircraft flight condition, and the nacelle angle command setting. The go-to detent modes are disabled when the control laws detect thatnacelles - The nacelle detent and trim rate command module computes the detent and trim rate values that are used by the nacelle command modules. The detent setting is determined by comparing the pre-programmed nacelle reference angles of 0°, 60°, and 75°, with the current nacelle angle command value and by looking at the direction of the nacelle rate command. The nacelle angle command value is used in lieu of the sensed nacelle angle to prevent overshoots caused by system tolerances. A tolerance value of about 0.16° is added to the comparator threshold to prevent timing discrepancies from adversely affecting the nacelle reference angle computation. In addition, module CLN02 performs logic processing for the HPDU Unlock Discrete that is used by Redundancy Management to control the conversion actuators. The HPDU Unlock Discrete is set when
nacelles - When
nacelles nacelles aircraft 11 is determined to be in the maintenance mode. - The nacelle command module produces an integrated nacelle angle command that drives the conversion actuator servo-loops. The nacelle angle command switches between the nacelle trim rate command or the nacelle reference angle command based upon mode logic. The nacelle angle command integrator is initialized based on cross channel data. In addition, a discrete is computed that indicates when the nacelle angle command as arrived at its detent setting. This discrete is used to create a crew alert to indicate that the aircraft is operating at a non-reference nacelle angle.
- The nacelle command limiting module provides a conversion protection function. The selected control law airspeed is compared against
operational conversion corridor 303 boundaries to determine rate limits on the nacelle angle command. If the aircraft is approaching the upper speed boundary, limits are placed on aft nacelle rate. Similarly, if the aircraft is approaching the lower speed boundary, limits are placed on forward nacelle rate. The limits prevent the nacelle angle command from causingaircraft 11 to exceed the speed operating limits. - The nacelle go-to detent logic module applies inhibits to the pilot's capability to stop nacelle angle a between nacelle reference angles. For nacelle angles between about 20° and 75°, the nacelle angle rate command stops if the control laws receive an input from
thumbwheel 53 in the opposite direction of the nacelle motion. When the nacelle angle a is within about 20° of the downstop, nacelles command will not hold its current value in response to a pilot stop command. Instead, the nacelles will be commanded to either 20° or 0° depending on the direction of the stop command. - Typical inputs for the nacelle control laws are set forth in table501 of FIG. 7, and typical outputs for the nacelle control laws are set forth in table 601 of FIG. 8.
- The following are preferred FCC requirements for the nacelle control functions of
nacelle control system 13. - The nacelle angle control provides positive crew control of nacelle angle a and provides continuous control in or near helicopter mode, i.e. 95° to 75°, at a fixed rate. The capability to command conversion rates of ±8° per second for any nacelle position between 75° and 95° is provided in order to ensure satisfactory performance for one engine inoperative fly-away.
- The nacelle manual trim control provides the capability to set any nacelle angle α between 75° and 95° in a smooth and predictable manner. The nacelle rate command smoothly sets to zero upon returning
thumbwheel 53 tofirst detent 71 at any nacelle angle α between 75° and 95°, and the nacelle rate command smoothly sets to zero asnacelles - The nacelle angle control provides semi-automatic reference nacelle angles of75°, 60°, −2° for converting at pre-programmed fixed rates. The fixed rate nacelle command to the nacelle actuators is initiated in a smooth manner. The nacelle angle control smoothly commands
nacelles nacelles nacelles - The nacelle angle control is such that
commanding nacelles stops nacelles commanding nacelles moves nacelles thumbwheel 53. - Moving backup switch201 (see FIG. 4) to the “OFF” position disables the control law logic that prevents the pilot from stopping
nacelles - The nacelle angle control limits nacelle angle α to greater than about 60° when
aircraft 11 is on the ground and proprotors 25 a and 25 b are turning. The nacelle angle control provides bang-bang nacelle rate control at 2° per second whenaircraft 11 is on the ground and proprotors 25 a and 25 b are not turning, or when the RPM is low. During conversion to the downstop, the rate of change of the nacelle position command is reduced to 1° per second within 2° of the downstop. The nacelle angle control holds the commanded nacelle angle if RPM is at the airplane mode setting and the command has not been initiated to change RPM to helicopter mode setting. - The nacelle angle control initializes the commanded nacelle angle to the average sensed nacelle angle upon receipt of a discrete nacelle angle command signal from redundancy management processing. The nacelle angle control holds the commanded nacelle angle upon receipt of a discrete nacelle angle command “HOLD” signal from redundancy management processing. The nacelle angle control initializes the GO-TO-DETENT set/reset latches based on cross channel data if the cross channel data is valid.
- A discrete HPDU Unlock signal is set HIGH when
nacelles nacelles nacelles - The present invention provides the following advantages over the prior art: (1) high reliability for a tiltrotor nacelle conversion system; (2) mitigation of safety hazards associated with tiltrotor flight envelope exceedance; (3) reduction in flight crew workload to permit single pilot tiltrotor operations; (4) easy pilot access to maximum conversion rate for a power-off, e.g. dual engine failure, re-conversion maneuver; and (5) a mechanized means for complying with anticipated standards and procedures for the control of tiltrotor aircraft.
- Although the present invention is shown in a limited number of forms, it is not limited to just these forms, but is amenable to various changes and modifications without departing from the spirit thereof.
Claims (20)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/130,646 US6644588B2 (en) | 2000-05-16 | 2001-05-16 | Multi-mode tiltrotor nacelle control system with integrated envelope protection |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US20449900P | 2000-05-16 | 2000-05-16 | |
US10/130,646 US6644588B2 (en) | 2000-05-16 | 2001-05-16 | Multi-mode tiltrotor nacelle control system with integrated envelope protection |
PCT/US2001/015719 WO2001087706A1 (en) | 2000-05-16 | 2001-05-16 | Multi-mode tiltrotor nacelle control system with integrated envelope protection |
Publications (2)
Publication Number | Publication Date |
---|---|
US20020153452A1 true US20020153452A1 (en) | 2002-10-24 |
US6644588B2 US6644588B2 (en) | 2003-11-11 |
Family
ID=22758157
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US10/130,646 Expired - Lifetime US6644588B2 (en) | 2000-05-16 | 2001-05-16 | Multi-mode tiltrotor nacelle control system with integrated envelope protection |
Country Status (7)
Country | Link |
---|---|
US (1) | US6644588B2 (en) |
EP (1) | EP1282555B1 (en) |
JP (1) | JP2003533404A (en) |
KR (1) | KR100748567B1 (en) |
CA (1) | CA2392734C (en) |
DE (2) | DE60142830D1 (en) |
WO (1) | WO2001087706A1 (en) |
Cited By (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6719244B1 (en) * | 2003-02-03 | 2004-04-13 | Gary Robert Gress | VTOL aircraft control using opposed tilting of its dual propellers or fans |
WO2004101358A3 (en) * | 2003-05-06 | 2005-02-03 | Bell Helicopter Textron Inc | Method and apparatus for preventing adverse effects of vortex ring state |
US20090283644A1 (en) * | 2008-05-15 | 2009-11-19 | Stichting Nationaal Luchten Ruimtevaart Laboratorium | Control lever assembly for a tilt-rotor aircraft |
JP2012505792A (en) * | 2008-10-20 | 2012-03-08 | ジョン,スチョル | Aircraft system capable of running on the ground |
WO2013015765A1 (en) * | 2011-07-22 | 2013-01-31 | Bell Helicopter Textron Inc. | Aft-loading aircraft with-twin t-tail assembly |
CN104590557A (en) * | 2015-02-05 | 2015-05-06 | 中电科(德阳广汉)特种飞机系统工程有限公司 | Flight control method and device of multi-rotor and fixed wing composite aircraft |
US10845823B2 (en) | 2018-12-19 | 2020-11-24 | Joby Aero, Inc. | Vehicle navigation system |
US10974827B2 (en) | 2018-05-10 | 2021-04-13 | Joby Aero, Inc. | Electric tiltrotor aircraft |
US10983534B2 (en) * | 2018-12-07 | 2021-04-20 | Joby Aero, Inc. | Aircraft control system and method |
CN113120227A (en) * | 2019-12-31 | 2021-07-16 | 贝尔德事隆公司 | System and method for preventing vortex ring state |
US11230384B2 (en) | 2019-04-23 | 2022-01-25 | Joby Aero, Inc. | Vehicle cabin thermal management system and method |
US11323214B2 (en) | 2018-09-17 | 2022-05-03 | Joby Aero, Inc. | Aircraft control system |
US11407510B2 (en) | 2018-12-07 | 2022-08-09 | Joby Aero, Inc. | Rotary airfoil and design therefore |
US11479146B2 (en) | 2019-04-23 | 2022-10-25 | Joby Aero, Inc. | Battery thermal management system and method |
US11597532B2 (en) | 2018-07-02 | 2023-03-07 | Joby Aero, Inc. | System and method for airspeed determination |
US11673649B2 (en) | 2020-06-05 | 2023-06-13 | Joby Aero, Inc. | Aircraft control system and method |
WO2024140284A1 (en) * | 2022-12-28 | 2024-07-04 | 亿航智能设备(广州)有限公司 | Multi-rotor airspeed envelope protection method and device, and computer readable storage medium |
US12269580B2 (en) | 2023-05-30 | 2025-04-08 | Archer Aviation Inc. | Systems and methods for aircraft load alleviation |
Families Citing this family (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2003232763A1 (en) * | 2002-05-14 | 2003-11-11 | Flosbach, Hans-Jurgen | Wind turbine with sheath |
FR2871438B1 (en) * | 2004-06-10 | 2006-08-04 | Eurocopter France | METHOD FOR ADJUSTING AT LEAST ONE DEFICIENT ROTOR OF A GIRAVION |
RU2008103327A (en) * | 2005-06-30 | 2009-08-10 | Белл Хеликоптер Текстрон Инк. (Us) | EXTENDABLE TURBULIZER |
US7571879B2 (en) * | 2006-09-22 | 2009-08-11 | Bell Helicopter Textron Inc. | Automatic conversion system for tiltrotor aircraft |
KR100856688B1 (en) * | 2007-04-11 | 2008-09-04 | 한국항공우주연구원 | Envelope protection controller and tilt rotor aircraft |
KR20100026130A (en) * | 2008-08-29 | 2010-03-10 | 임채호 | Taking off and landing airplane using variable rotary wings |
US20110180673A1 (en) * | 2008-10-04 | 2011-07-28 | Chaeho Lim | Taking off and landing airplane using variable rotary wings |
FR2941754B1 (en) * | 2009-01-30 | 2011-01-14 | Eurocopter France | GAME RETRACTABLE COUPLING, ROTOR AND ROTATING SAIL AIRCRAFT |
CN101837195B (en) * | 2010-01-21 | 2012-02-08 | 罗之洪 | Model airplane with vertical takeoff and landing |
IL222053A (en) * | 2012-09-23 | 2016-11-30 | Israel Aerospace Ind Ltd | System, method and computer program product for maneuvering an air vehicle |
WO2014144001A2 (en) | 2013-03-15 | 2014-09-18 | Terrafugia, Inc. | Combined flying/driving vehicle with vertical takeoff and fixed-wing cruise capabilities |
US9377784B2 (en) | 2014-07-25 | 2016-06-28 | The Boeing Company | Adaptable automatic nacelle conversion for tilt rotor aircraft |
US9126677B1 (en) | 2014-10-16 | 2015-09-08 | Sydney Robert Curtis | Universal multi-role aircraft protocol |
FR3034750B1 (en) | 2015-04-13 | 2017-12-08 | Airbus Helicopters | SYSTEM FOR CONTROLLING A ROTOR OF GIRAVION, GIRAVION EQUIPPED WITH SUCH A SYSTEM AND METHOD OF CONTROLLING THE SAME |
US10035583B2 (en) * | 2015-10-23 | 2018-07-31 | The Boeing Company | Rotorcraft controls and rotorcraft including such rotorcraft controls |
CN105480416A (en) * | 2016-01-18 | 2016-04-13 | 南京信息工程大学 | Unmanned aerial vehicle with tilted rotors |
US11067164B2 (en) | 2016-04-15 | 2021-07-20 | Terrafugia, Inc. | Electronic gear shifter assembly for a dual-mode flying and driving vehicle |
US11383851B2 (en) * | 2016-10-06 | 2022-07-12 | Textron Innovations Inc. | Tiltrotor control |
US11731772B2 (en) | 2017-03-02 | 2023-08-22 | Textron Innovations Inc. | Hybrid propulsion drive train system for tiltrotor aircraft |
JP7418738B2 (en) * | 2020-01-17 | 2024-01-22 | 国立研究開発法人宇宙航空研究開発機構 | Configuration transition control device, vertical takeoff and landing aircraft, configuration transition control method and program |
US11518497B2 (en) | 2020-07-15 | 2022-12-06 | Beta Air, Llc | Hover and thrust control assembly for dual-mode aircraft |
US11560225B2 (en) * | 2020-07-15 | 2023-01-24 | Beta Air, Llc | Hover and thrust control assembly for dual-mode aircraft |
US12012205B2 (en) | 2021-12-23 | 2024-06-18 | Textron Innovations Inc. | Automatic rotor tilt control |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3404852A (en) * | 1966-08-24 | 1968-10-08 | Bell Aerospace Corp | Trailing rotor convertiplane |
GB1322169A (en) * | 1969-07-23 | 1973-07-04 | Kisovec A V | Convertiplanes |
US4500398A (en) * | 1984-06-20 | 1985-02-19 | The United States Of America As Represented By The Secretary Of The Interior | Production of lead from sulfides |
US4979698A (en) * | 1988-07-07 | 1990-12-25 | Paul Lederman | Rotor system for winged aircraft |
US5000398A (en) * | 1988-10-25 | 1991-03-19 | Rashev Michael S | Flying multi-purpose aircraft carrier and method of V/STOL assisted flight |
US5054716A (en) * | 1989-10-16 | 1991-10-08 | Bell Helicopter Textron Inc. | Drive system for tiltrotor aircraft |
US5823468A (en) * | 1995-10-24 | 1998-10-20 | Bothe; Hans-Jurgen | Hybrid aircraft |
-
2001
- 2001-05-16 EP EP01935546A patent/EP1282555B1/en not_active Expired - Lifetime
- 2001-05-16 DE DE60142830T patent/DE60142830D1/en not_active Expired - Lifetime
- 2001-05-16 KR KR1020027007946A patent/KR100748567B1/en not_active Expired - Lifetime
- 2001-05-16 JP JP2001584118A patent/JP2003533404A/en active Pending
- 2001-05-16 US US10/130,646 patent/US6644588B2/en not_active Expired - Lifetime
- 2001-05-16 DE DE1282555T patent/DE1282555T1/en active Pending
- 2001-05-16 WO PCT/US2001/015719 patent/WO2001087706A1/en active Application Filing
- 2001-05-16 CA CA002392734A patent/CA2392734C/en not_active Expired - Lifetime
Cited By (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6719244B1 (en) * | 2003-02-03 | 2004-04-13 | Gary Robert Gress | VTOL aircraft control using opposed tilting of its dual propellers or fans |
WO2004101358A3 (en) * | 2003-05-06 | 2005-02-03 | Bell Helicopter Textron Inc | Method and apparatus for preventing adverse effects of vortex ring state |
US20060006279A1 (en) * | 2003-05-06 | 2006-01-12 | Bell Helicopter Textron Inc. | Control system for rotorcraft for preventing the vortex ring state |
US7004426B2 (en) | 2003-05-06 | 2006-02-28 | Bell Helicopter Textron Inc. | Control system for rotorcraft for preventing the vortex ring state |
CN100430296C (en) * | 2003-05-06 | 2008-11-05 | 贝尔直升机泰克斯特龙公司 | Method and apparatus for preventing adverse effects of vortex ring state |
US8272599B2 (en) * | 2008-05-15 | 2012-09-25 | Stichting Nationaal Lucht-En Ruimtevaart Laboratorium | Control lever assembly for a tilt-rotor aircraft |
US20090283644A1 (en) * | 2008-05-15 | 2009-11-19 | Stichting Nationaal Luchten Ruimtevaart Laboratorium | Control lever assembly for a tilt-rotor aircraft |
JP2012505792A (en) * | 2008-10-20 | 2012-03-08 | ジョン,スチョル | Aircraft system capable of running on the ground |
US9446844B2 (en) | 2008-10-20 | 2016-09-20 | Soo Cheol Jung | Aircraft system that enables ground traveling |
WO2013015765A1 (en) * | 2011-07-22 | 2013-01-31 | Bell Helicopter Textron Inc. | Aft-loading aircraft with-twin t-tail assembly |
US9162748B2 (en) | 2011-07-22 | 2015-10-20 | Textron Innovations Inc. | Aft-loading aircraft with twin T-tail assembly |
CN104590557A (en) * | 2015-02-05 | 2015-05-06 | 中电科(德阳广汉)特种飞机系统工程有限公司 | Flight control method and device of multi-rotor and fixed wing composite aircraft |
US10974827B2 (en) | 2018-05-10 | 2021-04-13 | Joby Aero, Inc. | Electric tiltrotor aircraft |
US11597532B2 (en) | 2018-07-02 | 2023-03-07 | Joby Aero, Inc. | System and method for airspeed determination |
US11323214B2 (en) | 2018-09-17 | 2022-05-03 | Joby Aero, Inc. | Aircraft control system |
US20210294355A1 (en) * | 2018-12-07 | 2021-09-23 | Joby Aero, Inc. | Aircraft control system and method |
US11940816B2 (en) * | 2018-12-07 | 2024-03-26 | Joby Aero, Inc. | Aircraft control system and method |
US10983534B2 (en) * | 2018-12-07 | 2021-04-20 | Joby Aero, Inc. | Aircraft control system and method |
US11407510B2 (en) | 2018-12-07 | 2022-08-09 | Joby Aero, Inc. | Rotary airfoil and design therefore |
EP3891067B1 (en) | 2018-12-07 | 2024-01-17 | Joby Aero, Inc. | Aircraft control system and method |
US10845823B2 (en) | 2018-12-19 | 2020-11-24 | Joby Aero, Inc. | Vehicle navigation system |
US11747830B2 (en) | 2018-12-19 | 2023-09-05 | Joby Aero, Inc. | Vehicle navigation system |
US11479146B2 (en) | 2019-04-23 | 2022-10-25 | Joby Aero, Inc. | Battery thermal management system and method |
US11548407B2 (en) | 2019-04-23 | 2023-01-10 | Joby Aero, Inc. | Battery thermal management system and method |
US11794905B2 (en) | 2019-04-23 | 2023-10-24 | Joby Aero, Inc. | Vehicle cabin thermal management system and method |
US11230384B2 (en) | 2019-04-23 | 2022-01-25 | Joby Aero, Inc. | Vehicle cabin thermal management system and method |
US12269603B2 (en) | 2019-04-23 | 2025-04-08 | Joby Aero, Inc. | Vehicle cabin thermal management system and method |
CN113120227A (en) * | 2019-12-31 | 2021-07-16 | 贝尔德事隆公司 | System and method for preventing vortex ring state |
US11673649B2 (en) | 2020-06-05 | 2023-06-13 | Joby Aero, Inc. | Aircraft control system and method |
US12269579B2 (en) | 2020-06-05 | 2025-04-08 | Joby Aero, Inc. | Aircraft control system and method |
WO2024140284A1 (en) * | 2022-12-28 | 2024-07-04 | 亿航智能设备(广州)有限公司 | Multi-rotor airspeed envelope protection method and device, and computer readable storage medium |
US12269580B2 (en) | 2023-05-30 | 2025-04-08 | Archer Aviation Inc. | Systems and methods for aircraft load alleviation |
Also Published As
Publication number | Publication date |
---|---|
DE60142830D1 (en) | 2010-09-30 |
EP1282555A4 (en) | 2008-02-27 |
DE1282555T1 (en) | 2003-09-18 |
JP2003533404A (en) | 2003-11-11 |
KR20030004310A (en) | 2003-01-14 |
US6644588B2 (en) | 2003-11-11 |
KR100748567B1 (en) | 2007-08-13 |
EP1282555B1 (en) | 2010-08-18 |
WO2001087706A1 (en) | 2001-11-22 |
CA2392734C (en) | 2009-01-20 |
EP1282555A1 (en) | 2003-02-12 |
CA2392734A1 (en) | 2001-11-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6644588B2 (en) | Multi-mode tiltrotor nacelle control system with integrated envelope protection | |
EP1301835B1 (en) | Flight control module with integrated spoiler actuator control electronics | |
US6695264B2 (en) | Power lever tactile cueing system | |
EP2072395B1 (en) | Limited authority and full authority mode fly-by-wire flight control surface actuation control system | |
US8935015B2 (en) | Flight control system with alternate control path | |
EP0606469B1 (en) | Aircraft flight control system | |
US9377784B2 (en) | Adaptable automatic nacelle conversion for tilt rotor aircraft | |
EP0573106B1 (en) | Multiaxis redundant fly-by-wire primary flight control system | |
US20170300065A1 (en) | Automatic recovery systems and methods for unmanned aircraft systems | |
WO1994003854A9 (en) | Failsafe digital bus to analog protocol converter system | |
WO2002006116A9 (en) | A method for controlling actuators on a vehicle | |
US11117653B2 (en) | System and method for tactile cueing through rotorcraft pilot controls using variable friction and force gradient | |
EP3569497B1 (en) | System and method for tactile cueing through rotorcraft pilot controls using variable friction and force gradient | |
EP3036158B1 (en) | Automated rotating tail rotor control | |
CN113401333B (en) | High-lift system of airplane and slat operation instruction determination method for high-lift system | |
EP1282554B1 (en) | Power lever tactile cueing system and method | |
EP1781538B1 (en) | Aircraft flight control surface actuation system communication architecture | |
Popp et al. | C-17 flight control systems software design | |
Flapper et al. | L-1011 flight control system | |
Ford et al. | Helicopter Handling Qualities |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCF | Information on status: patent grant |
Free format text: PATENTED CASE |
|
AS | Assignment |
Owner name: BELL HELICOPTER RHODE ISLAND, INC., RHODE ISLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BELL HELICOPTER TEXTRON, INC.;REEL/FRAME:016283/0427 Effective date: 20031103 Owner name: TEXTRON IPMP L.P., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BELL HELLCOPTER MICHIGAN, INC.;REEL/FRAME:016283/0404 Effective date: 20010401 Owner name: TEXTRON INNOVATIONS, INC., RHODE ISLAND Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BELL HELICOPTER RHODE ISLAND, INC.;REEL/FRAME:016283/0494 Effective date: 20031103 Owner name: BELL HELICOPTER MICHIGAN, INC., MICHIGAN Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:BELL HELICOPTER TEXTRON, INC.;REEL/FRAME:016283/0439 Effective date: 20010401 |
|
FPAY | Fee payment |
Year of fee payment: 4 |
|
FPAY | Fee payment |
Year of fee payment: 8 |
|
FPAY | Fee payment |
Year of fee payment: 12 |