US20020151678A1 - Prophylaxis and therapy of acquired immunodeficiency syndrome - Google Patents
Prophylaxis and therapy of acquired immunodeficiency syndrome Download PDFInfo
- Publication number
- US20020151678A1 US20020151678A1 US09/911,838 US91183801A US2002151678A1 US 20020151678 A1 US20020151678 A1 US 20020151678A1 US 91183801 A US91183801 A US 91183801A US 2002151678 A1 US2002151678 A1 US 2002151678A1
- Authority
- US
- United States
- Prior art keywords
- peptide
- terminus
- sequence
- amino
- hiv protein
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 208000030507 AIDS Diseases 0.000 title description 13
- 238000002560 therapeutic procedure Methods 0.000 title description 3
- 238000011321 prophylaxis Methods 0.000 title 1
- 108090000765 processed proteins & peptides Proteins 0.000 claims abstract description 335
- 108090000623 proteins and genes Proteins 0.000 claims abstract description 85
- 102000004169 proteins and genes Human genes 0.000 claims abstract description 83
- 239000000203 mixture Substances 0.000 claims abstract description 78
- 238000000034 method Methods 0.000 claims abstract description 46
- 241001465754 Metazoa Species 0.000 claims abstract description 39
- 230000007969 cellular immunity Effects 0.000 claims abstract description 12
- 230000001939 inductive effect Effects 0.000 claims abstract description 11
- 238000004519 manufacturing process Methods 0.000 claims abstract description 9
- 241000580858 Simian-Human immunodeficiency virus Species 0.000 claims abstract 31
- 102000004196 processed proteins & peptides Human genes 0.000 claims description 110
- 210000004027 cell Anatomy 0.000 claims description 92
- 235000018102 proteins Nutrition 0.000 claims description 79
- 210000001744 T-lymphocyte Anatomy 0.000 claims description 75
- 210000001151 cytotoxic T lymphocyte Anatomy 0.000 claims description 35
- 101710090322 Truncated surface protein Proteins 0.000 claims description 31
- 125000000539 amino acid group Chemical group 0.000 claims description 30
- 230000003053 immunization Effects 0.000 claims description 27
- 210000004899 c-terminal region Anatomy 0.000 claims description 19
- 101800001690 Transmembrane protein gp41 Proteins 0.000 claims description 17
- 239000000693 micelle Substances 0.000 claims description 16
- 125000003588 lysine group Chemical group [H]N([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])(N([H])[H])C(*)=O 0.000 claims description 14
- 101710091045 Envelope protein Proteins 0.000 claims description 12
- 101710188315 Protein X Proteins 0.000 claims description 12
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 claims description 11
- 230000002147 killing effect Effects 0.000 claims description 10
- 235000014113 dietary fatty acids Nutrition 0.000 claims description 9
- 229930195729 fatty acid Natural products 0.000 claims description 9
- 239000000194 fatty acid Substances 0.000 claims description 9
- 150000004665 fatty acids Chemical class 0.000 claims description 9
- 101800001707 Spacer peptide Proteins 0.000 claims description 8
- 239000007795 chemical reaction product Substances 0.000 claims description 8
- 239000002131 composite material Substances 0.000 claims description 8
- 229920001184 polypeptide Polymers 0.000 claims description 8
- 230000006044 T cell activation Effects 0.000 claims description 7
- IPCSVZSSVZVIGE-UHFFFAOYSA-N hexadecanoic acid Chemical compound CCCCCCCCCCCCCCCC(O)=O IPCSVZSSVZVIGE-UHFFFAOYSA-N 0.000 claims description 6
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 6
- 125000006850 spacer group Chemical group 0.000 claims description 4
- 235000021314 Palmitic acid Nutrition 0.000 claims description 3
- WQEPLUUGTLDZJY-UHFFFAOYSA-N n-Pentadecanoic acid Natural products CCCCCCCCCCCCCCC(O)=O WQEPLUUGTLDZJY-UHFFFAOYSA-N 0.000 claims description 3
- 238000006243 chemical reaction Methods 0.000 claims description 2
- 102100021696 Syncytin-1 Human genes 0.000 claims 5
- ISHNZELVUVPCHY-ZETCQYMHSA-N Lys-Gly-Gly Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)NCC(O)=O ISHNZELVUVPCHY-ZETCQYMHSA-N 0.000 claims 1
- 241000725303 Human immunodeficiency virus Species 0.000 description 67
- 241000699670 Mus sp. Species 0.000 description 39
- 241000700605 Viruses Species 0.000 description 35
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 25
- 108091007433 antigens Proteins 0.000 description 21
- 239000000427 antigen Substances 0.000 description 20
- 102000036639 antigens Human genes 0.000 description 20
- 229920000642 polymer Polymers 0.000 description 19
- 230000005875 antibody response Effects 0.000 description 17
- 150000001413 amino acids Chemical class 0.000 description 16
- 230000002788 anti-peptide Effects 0.000 description 16
- 229940024606 amino acid Drugs 0.000 description 15
- 235000001014 amino acid Nutrition 0.000 description 14
- 238000002649 immunization Methods 0.000 description 14
- 210000003719 b-lymphocyte Anatomy 0.000 description 13
- 241000699666 Mus <mouse, genus> Species 0.000 description 12
- 238000000338 in vitro Methods 0.000 description 12
- 230000005867 T cell response Effects 0.000 description 11
- 230000003612 virological effect Effects 0.000 description 11
- 239000002671 adjuvant Substances 0.000 description 10
- 102100034349 Integrase Human genes 0.000 description 9
- 238000003556 assay Methods 0.000 description 9
- 150000003839 salts Chemical group 0.000 description 9
- 235000018417 cysteine Nutrition 0.000 description 8
- 238000010348 incorporation Methods 0.000 description 8
- 208000015181 infectious disease Diseases 0.000 description 8
- 238000002347 injection Methods 0.000 description 8
- 239000007924 injection Substances 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- 230000004044 response Effects 0.000 description 8
- 238000012360 testing method Methods 0.000 description 8
- 229960005486 vaccine Drugs 0.000 description 8
- 108010048209 Human Immunodeficiency Virus Proteins Proteins 0.000 description 7
- 108010052285 Membrane Proteins Proteins 0.000 description 7
- 238000001727 in vivo Methods 0.000 description 7
- 101710132601 Capsid protein Proteins 0.000 description 6
- 108010067390 Viral Proteins Proteins 0.000 description 6
- 238000004590 computer program Methods 0.000 description 6
- 239000002054 inoculum Substances 0.000 description 6
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 5
- 230000024932 T cell mediated immunity Effects 0.000 description 5
- 230000015572 biosynthetic process Effects 0.000 description 5
- 201000010099 disease Diseases 0.000 description 5
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 5
- 239000012636 effector Substances 0.000 description 5
- 230000000694 effects Effects 0.000 description 5
- 239000012894 fetal calf serum Substances 0.000 description 5
- 210000002443 helper t lymphocyte Anatomy 0.000 description 5
- 210000000987 immune system Anatomy 0.000 description 5
- 230000002163 immunogen Effects 0.000 description 5
- 230000004936 stimulating effect Effects 0.000 description 5
- 238000003786 synthesis reaction Methods 0.000 description 5
- 241000283707 Capra Species 0.000 description 4
- 241000282412 Homo Species 0.000 description 4
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 description 4
- 241000124008 Mammalia Species 0.000 description 4
- 239000012980 RPMI-1640 medium Substances 0.000 description 4
- 102400000368 Surface protein Human genes 0.000 description 4
- 230000006052 T cell proliferation Effects 0.000 description 4
- 238000013459 approach Methods 0.000 description 4
- 230000036755 cellular response Effects 0.000 description 4
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 description 4
- -1 for example Chemical class 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000028993 immune response Effects 0.000 description 4
- 239000000546 pharmaceutical excipient Substances 0.000 description 4
- 241001430294 unidentified retrovirus Species 0.000 description 4
- 238000011725 BALB/c mouse Methods 0.000 description 3
- 210000004366 CD4-positive T-lymphocyte Anatomy 0.000 description 3
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 3
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 3
- KRHYYFGTRYWZRS-UHFFFAOYSA-N Fluorane Chemical compound F KRHYYFGTRYWZRS-UHFFFAOYSA-N 0.000 description 3
- WSFSSNUMVMOOMR-UHFFFAOYSA-N Formaldehyde Chemical compound O=C WSFSSNUMVMOOMR-UHFFFAOYSA-N 0.000 description 3
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 3
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 3
- 239000004472 Lysine Substances 0.000 description 3
- 102000018697 Membrane Proteins Human genes 0.000 description 3
- 241000282579 Pan Species 0.000 description 3
- 206010058874 Viraemia Diseases 0.000 description 3
- 108020000999 Viral RNA Proteins 0.000 description 3
- 230000004913 activation Effects 0.000 description 3
- 239000004480 active ingredient Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000012736 aqueous medium Substances 0.000 description 3
- 230000004663 cell proliferation Effects 0.000 description 3
- 239000003795 chemical substances by application Substances 0.000 description 3
- 108700004026 gag Genes Proteins 0.000 description 3
- 101150098622 gag gene Proteins 0.000 description 3
- 230000036039 immunity Effects 0.000 description 3
- 230000001965 increasing effect Effects 0.000 description 3
- 230000006698 induction Effects 0.000 description 3
- 230000002458 infectious effect Effects 0.000 description 3
- 238000009533 lab test Methods 0.000 description 3
- 210000001165 lymph node Anatomy 0.000 description 3
- 210000004698 lymphocyte Anatomy 0.000 description 3
- 238000012423 maintenance Methods 0.000 description 3
- 230000001404 mediated effect Effects 0.000 description 3
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 3
- 230000037452 priming Effects 0.000 description 3
- 230000035755 proliferation Effects 0.000 description 3
- 230000009696 proliferative response Effects 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- 210000002966 serum Anatomy 0.000 description 3
- 230000002269 spontaneous effect Effects 0.000 description 3
- 230000000638 stimulation Effects 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 239000000829 suppository Substances 0.000 description 3
- 238000011282 treatment Methods 0.000 description 3
- NHBKXEKEPDILRR-UHFFFAOYSA-N 2,3-bis(butanoylsulfanyl)propyl butanoate Chemical compound CCCC(=O)OCC(SC(=O)CCC)CSC(=O)CCC NHBKXEKEPDILRR-UHFFFAOYSA-N 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- 108010032595 Antibody Binding Sites Proteins 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- 108010069514 Cyclic Peptides Proteins 0.000 description 2
- 102000001189 Cyclic Peptides Human genes 0.000 description 2
- 108060003951 Immunoglobulin Proteins 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 2
- HNDVDQJCIGZPNO-YFKPBYRVSA-N L-histidine Chemical compound OC(=O)[C@@H](N)CC1=CN=CN1 HNDVDQJCIGZPNO-YFKPBYRVSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- 241000282577 Pan troglodytes Species 0.000 description 2
- 241000288906 Primates Species 0.000 description 2
- 102000002067 Protein Subunits Human genes 0.000 description 2
- 108010092799 RNA-directed DNA polymerase Proteins 0.000 description 2
- 239000012979 RPMI medium Substances 0.000 description 2
- 108020004511 Recombinant DNA Proteins 0.000 description 2
- IQFYYKKMVGJFEH-XLPZGREQSA-N Thymidine Chemical compound O=C1NC(=O)C(C)=CN1[C@@H]1O[C@H](CO)[C@@H](O)C1 IQFYYKKMVGJFEH-XLPZGREQSA-N 0.000 description 2
- 241000700618 Vaccinia virus Species 0.000 description 2
- 108010003533 Viral Envelope Proteins Proteins 0.000 description 2
- 239000002253 acid Substances 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 101150039027 ampH gene Proteins 0.000 description 2
- 230000000890 antigenic effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 238000001516 cell proliferation assay Methods 0.000 description 2
- 239000006285 cell suspension Substances 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 229960003067 cystine Drugs 0.000 description 2
- LOKCTEFSRHRXRJ-UHFFFAOYSA-I dipotassium trisodium dihydrogen phosphate hydrogen phosphate dichloride Chemical compound P(=O)(O)(O)[O-].[K+].P(=O)(O)([O-])[O-].[Na+].[Na+].[Cl-].[K+].[Cl-].[Na+] LOKCTEFSRHRXRJ-UHFFFAOYSA-I 0.000 description 2
- 231100000676 disease causative agent Toxicity 0.000 description 2
- 125000003630 glycyl group Chemical group [H]N([H])C([H])([H])C(*)=O 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000000652 homosexual effect Effects 0.000 description 2
- 238000003119 immunoblot Methods 0.000 description 2
- 102000018358 immunoglobulin Human genes 0.000 description 2
- 230000016784 immunoglobulin production Effects 0.000 description 2
- 238000007912 intraperitoneal administration Methods 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 230000021633 leukocyte mediated immunity Effects 0.000 description 2
- HQKMJHAJHXVSDF-UHFFFAOYSA-L magnesium stearate Chemical compound [Mg+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O HQKMJHAJHXVSDF-UHFFFAOYSA-L 0.000 description 2
- 239000002609 medium Substances 0.000 description 2
- 108020004999 messenger RNA Proteins 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000002953 phosphate buffered saline Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000006239 protecting group Chemical group 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 230000010076 replication Effects 0.000 description 2
- 238000012216 screening Methods 0.000 description 2
- 239000007790 solid phase Substances 0.000 description 2
- 238000010532 solid phase synthesis reaction Methods 0.000 description 2
- 239000000243 solution Substances 0.000 description 2
- 210000004989 spleen cell Anatomy 0.000 description 2
- 238000007920 subcutaneous administration Methods 0.000 description 2
- ZMZDMBWJUHKJPS-UHFFFAOYSA-N thiocyanic acid Chemical compound SC#N ZMZDMBWJUHKJPS-UHFFFAOYSA-N 0.000 description 2
- GETQZCLCWQTVFV-UHFFFAOYSA-N trimethylamine Chemical compound CN(C)C GETQZCLCWQTVFV-UHFFFAOYSA-N 0.000 description 2
- 229960001005 tuberculin Drugs 0.000 description 2
- 210000000605 viral structure Anatomy 0.000 description 2
- 108091032973 (ribonucleotides)n+m Proteins 0.000 description 1
- GOJUJUVQIVIZAV-UHFFFAOYSA-N 2-amino-4,6-dichloropyrimidine-5-carbaldehyde Chemical compound NC1=NC(Cl)=C(C=O)C(Cl)=N1 GOJUJUVQIVIZAV-UHFFFAOYSA-N 0.000 description 1
- QCVGEOXPDFCNHA-UHFFFAOYSA-N 5,5-dimethyl-2,4-dioxo-1,3-oxazolidine-3-carboxamide Chemical compound CC1(C)OC(=O)N(C(N)=O)C1=O QCVGEOXPDFCNHA-UHFFFAOYSA-N 0.000 description 1
- 229940124718 AIDS vaccine Drugs 0.000 description 1
- GUBGYTABKSRVRQ-XLOQQCSPSA-N Alpha-Lactose Chemical compound O[C@@H]1[C@@H](O)[C@@H](O)[C@@H](CO)O[C@H]1O[C@@H]1[C@@H](CO)O[C@H](O)[C@H](O)[C@H]1O GUBGYTABKSRVRQ-XLOQQCSPSA-N 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-O Ammonium Chemical compound [NH4+] QGZKDVFQNNGYKY-UHFFFAOYSA-O 0.000 description 1
- ATRRKUHOCOJYRX-UHFFFAOYSA-N Ammonium bicarbonate Chemical compound [NH4+].OC([O-])=O ATRRKUHOCOJYRX-UHFFFAOYSA-N 0.000 description 1
- 229910000013 Ammonium bicarbonate Inorganic materials 0.000 description 1
- 239000004475 Arginine Substances 0.000 description 1
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 1
- DEDNNVGTHLILAL-UHFFFAOYSA-N CCCCCCCCCCCCCCCC(=O)NC(CC(=O)O)C(=O)CCCCCCCCCCCCCCC.[He] Chemical compound CCCCCCCCCCCCCCCC(=O)NC(CC(=O)O)C(=O)CCCCCCCCCCCCCCC.[He] DEDNNVGTHLILAL-UHFFFAOYSA-N 0.000 description 1
- 210000001266 CD8-positive T-lymphocyte Anatomy 0.000 description 1
- IVLHFLUDJXKNBI-UHFFFAOYSA-N CSSC(N)(SSC(N=[N+]=[N-])(SSC)C(=O)O)C(=O)O Chemical compound CSSC(N)(SSC(N=[N+]=[N-])(SSC)C(=O)O)C(=O)O IVLHFLUDJXKNBI-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 244000052363 Cynodon dactylon Species 0.000 description 1
- FBPFZTCFMRRESA-KVTDHHQDSA-N D-Mannitol Chemical compound OC[C@@H](O)[C@@H](O)[C@H](O)[C@H](O)CO FBPFZTCFMRRESA-KVTDHHQDSA-N 0.000 description 1
- 108020004414 DNA Proteins 0.000 description 1
- 102000053602 DNA Human genes 0.000 description 1
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 description 1
- 206010061818 Disease progression Diseases 0.000 description 1
- 238000012286 ELISA Assay Methods 0.000 description 1
- 102000002322 Egg Proteins Human genes 0.000 description 1
- 108010000912 Egg Proteins Proteins 0.000 description 1
- 241000508725 Elymus repens Species 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- 101710177291 Gag polyprotein Proteins 0.000 description 1
- 102400000321 Glucagon Human genes 0.000 description 1
- 108060003199 Glucagon Proteins 0.000 description 1
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 1
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 1
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 1
- 108010038826 HIV Envelope Protein gp160 Proteins 0.000 description 1
- 208000031886 HIV Infections Diseases 0.000 description 1
- 208000037357 HIV infectious disease Diseases 0.000 description 1
- 241000700721 Hepatitis B virus Species 0.000 description 1
- 208000037319 Hepatitis infectious Diseases 0.000 description 1
- 241001272567 Hominoidea Species 0.000 description 1
- OAKJQQAXSVQMHS-UHFFFAOYSA-N Hydrazine Chemical compound NN OAKJQQAXSVQMHS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 108700005091 Immunoglobulin Genes Proteins 0.000 description 1
- 102000006496 Immunoglobulin Heavy Chains Human genes 0.000 description 1
- 108010019476 Immunoglobulin Heavy Chains Proteins 0.000 description 1
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 1
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 1
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 1
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 1
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 1
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 1
- GUBGYTABKSRVRQ-QKKXKWKRSA-N Lactose Natural products OC[C@H]1O[C@@H](O[C@H]2[C@H](O)[C@@H](O)C(O)O[C@@H]2CO)[C@H](O)[C@@H](O)[C@H]1O GUBGYTABKSRVRQ-QKKXKWKRSA-N 0.000 description 1
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 1
- 241001490312 Lithops pseudotruncatella Species 0.000 description 1
- 208000008771 Lymphadenopathy Diseases 0.000 description 1
- 108700005092 MHC Class II Genes Proteins 0.000 description 1
- 241000282560 Macaca mulatta Species 0.000 description 1
- 229930195725 Mannitol Natural products 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 241001529936 Murinae Species 0.000 description 1
- 235000021360 Myristic acid Nutrition 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 125000000729 N-terminal amino-acid group Chemical group 0.000 description 1
- 206010028980 Neoplasm Diseases 0.000 description 1
- 241000283973 Oryctolagus cuniculus Species 0.000 description 1
- 235000021319 Palmitoleic acid Nutrition 0.000 description 1
- 241000282520 Papio Species 0.000 description 1
- 241001504519 Papio ursinus Species 0.000 description 1
- 108010033276 Peptide Fragments Proteins 0.000 description 1
- 102000007079 Peptide Fragments Human genes 0.000 description 1
- 102000003992 Peroxidases Human genes 0.000 description 1
- 108010047620 Phytohemagglutinins Proteins 0.000 description 1
- 240000004713 Pisum sativum Species 0.000 description 1
- 235000010582 Pisum sativum Nutrition 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 description 1
- 108010001267 Protein Subunits Proteins 0.000 description 1
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 1
- 235000008515 Setaria glauca Nutrition 0.000 description 1
- 235000001155 Setaria leucopila Nutrition 0.000 description 1
- 244000010062 Setaria pumila Species 0.000 description 1
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 1
- 240000002439 Sorghum halepense Species 0.000 description 1
- 229920002472 Starch Polymers 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 101710172711 Structural protein Proteins 0.000 description 1
- 230000037453 T cell priming Effects 0.000 description 1
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 1
- 239000004473 Threonine Substances 0.000 description 1
- 239000013504 Triton X-100 Substances 0.000 description 1
- 229920004890 Triton X-100 Polymers 0.000 description 1
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 1
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 1
- 108010015780 Viral Core Proteins Proteins 0.000 description 1
- 108020005202 Viral DNA Proteins 0.000 description 1
- 235000004279 alanine Nutrition 0.000 description 1
- 230000000172 allergic effect Effects 0.000 description 1
- 229940037003 alum Drugs 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 235000012538 ammonium bicarbonate Nutrition 0.000 description 1
- 239000001099 ammonium carbonate Substances 0.000 description 1
- 238000010171 animal model Methods 0.000 description 1
- 230000036436 anti-hiv Effects 0.000 description 1
- 230000009833 antibody interaction Effects 0.000 description 1
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 1
- 235000009582 asparagine Nutrition 0.000 description 1
- 229960001230 asparagine Drugs 0.000 description 1
- 235000003704 aspartic acid Nutrition 0.000 description 1
- 239000012298 atmosphere Substances 0.000 description 1
- 208000010668 atopic eczema Diseases 0.000 description 1
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 1
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 1
- 239000011230 binding agent Substances 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 239000010836 blood and blood product Substances 0.000 description 1
- 229940125691 blood product Drugs 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 201000011510 cancer Diseases 0.000 description 1
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 1
- 150000001732 carboxylic acid derivatives Chemical class 0.000 description 1
- 239000000969 carrier Substances 0.000 description 1
- 230000022534 cell killing Effects 0.000 description 1
- 230000005859 cell recognition Effects 0.000 description 1
- 230000001413 cellular effect Effects 0.000 description 1
- 230000008614 cellular interaction Effects 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 108091036078 conserved sequence Proteins 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- WZHCOOQXZCIUNC-UHFFFAOYSA-N cyclandelate Chemical compound C1C(C)(C)CC(C)CC1OC(=O)C(O)C1=CC=CC=C1 WZHCOOQXZCIUNC-UHFFFAOYSA-N 0.000 description 1
- 230000009089 cytolysis Effects 0.000 description 1
- 210000000805 cytoplasm Anatomy 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000003013 cytotoxicity Effects 0.000 description 1
- 231100000135 cytotoxicity Toxicity 0.000 description 1
- 230000002498 deadly effect Effects 0.000 description 1
- 230000034994 death Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 239000008121 dextrose Substances 0.000 description 1
- 230000005750 disease progression Effects 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 229940079593 drug Drugs 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 210000000969 egg white Anatomy 0.000 description 1
- 235000014103 egg white Nutrition 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 230000000763 evoking effect Effects 0.000 description 1
- 102000054766 genetic haplotypes Human genes 0.000 description 1
- MASNOZXLGMXCHN-ZLPAWPGGSA-N glucagon Chemical compound C([C@@H](C(=O)N[C@H](C(=O)N[C@@H](CCC(N)=O)C(=O)N[C@@H](CC=1C2=CC=CC=C2NC=1)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CCSC)C(=O)N[C@@H](CC(N)=O)C(=O)N[C@@H]([C@@H](C)O)C(O)=O)C(C)C)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CO)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CC(C)C)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CO)NC(=O)[C@H](CC=1C=CC(O)=CC=1)NC(=O)[C@H](CC(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](NC(=O)[C@H](CC=1C=CC=CC=1)NC(=O)[C@@H](NC(=O)CNC(=O)[C@H](CCC(N)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC=1NC=NC=1)[C@@H](C)O)[C@@H](C)O)C1=CC=CC=C1 MASNOZXLGMXCHN-ZLPAWPGGSA-N 0.000 description 1
- 229960004666 glucagon Drugs 0.000 description 1
- 235000013922 glutamic acid Nutrition 0.000 description 1
- 239000004220 glutamic acid Substances 0.000 description 1
- 125000000291 glutamic acid group Chemical group N[C@@H](CCC(O)=O)C(=O)* 0.000 description 1
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 1
- 150000002334 glycols Chemical class 0.000 description 1
- 208000005252 hepatitis A Diseases 0.000 description 1
- 208000002672 hepatitis B Diseases 0.000 description 1
- 239000004009 herbicide Substances 0.000 description 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000005660 hydrophilic surface Effects 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- 230000005661 hydrophobic surface Effects 0.000 description 1
- 150000004679 hydroxides Chemical class 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000008073 immune recognition Effects 0.000 description 1
- 230000005847 immunogenicity Effects 0.000 description 1
- 229940072221 immunoglobulins Drugs 0.000 description 1
- 230000006054 immunological memory Effects 0.000 description 1
- 230000036046 immunoreaction Effects 0.000 description 1
- 230000001506 immunosuppresive effect Effects 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 150000007529 inorganic bases Chemical class 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 230000004073 interleukin-2 production Effects 0.000 description 1
- 238000001990 intravenous administration Methods 0.000 description 1
- JJWLVOIRVHMVIS-UHFFFAOYSA-N isopropylamine Chemical compound CC(C)N JJWLVOIRVHMVIS-UHFFFAOYSA-N 0.000 description 1
- 239000008101 lactose Substances 0.000 description 1
- 125000001909 leucine group Chemical group [H]N(*)C(C(*)=O)C([H])([H])C(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 208000032839 leukemia Diseases 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 239000006193 liquid solution Substances 0.000 description 1
- 239000006194 liquid suspension Substances 0.000 description 1
- 208000018555 lymphatic system disease Diseases 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- ZLNQQNXFFQJAID-UHFFFAOYSA-L magnesium carbonate Chemical compound [Mg+2].[O-]C([O-])=O ZLNQQNXFFQJAID-UHFFFAOYSA-L 0.000 description 1
- 239000001095 magnesium carbonate Substances 0.000 description 1
- 229910000021 magnesium carbonate Inorganic materials 0.000 description 1
- 235000019359 magnesium stearate Nutrition 0.000 description 1
- 239000000594 mannitol Substances 0.000 description 1
- 235000010355 mannitol Nutrition 0.000 description 1
- 201000006512 mast cell neoplasm Diseases 0.000 description 1
- 208000006971 mastocytoma Diseases 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 210000003071 memory t lymphocyte Anatomy 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- QPJSUIGXIBEQAC-UHFFFAOYSA-N n-(2,4-dichloro-5-propan-2-yloxyphenyl)acetamide Chemical compound CC(C)OC1=CC(NC(C)=O)=C(Cl)C=C1Cl QPJSUIGXIBEQAC-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 235000021313 oleic acid Nutrition 0.000 description 1
- ZQPPMHVWECSIRJ-KTKRTIGZSA-N oleic acid group Chemical group C(CCCCCCC\C=C/CCCCCCCC)(=O)O ZQPPMHVWECSIRJ-KTKRTIGZSA-N 0.000 description 1
- 150000007524 organic acids Chemical class 0.000 description 1
- 235000005985 organic acids Nutrition 0.000 description 1
- 150000007530 organic bases Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- SECPZKHBENQXJG-FPLPWBNLSA-N palmitoleic acid group Chemical class C(CCCCCCC\C=C/CCCCCC)(=O)O SECPZKHBENQXJG-FPLPWBNLSA-N 0.000 description 1
- 108010026901 peptide 106 Proteins 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 229940023041 peptide vaccine Drugs 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 108040007629 peroxidase activity proteins Proteins 0.000 description 1
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 1
- 102000005681 phospholamban Human genes 0.000 description 1
- 108010059929 phospholamban Proteins 0.000 description 1
- 235000011007 phosphoric acid Nutrition 0.000 description 1
- 150000003016 phosphoric acids Chemical class 0.000 description 1
- 230000001885 phytohemagglutinin Effects 0.000 description 1
- 238000005554 pickling Methods 0.000 description 1
- 238000006116 polymerization reaction Methods 0.000 description 1
- 239000013641 positive control Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- MFDFERRIHVXMIY-UHFFFAOYSA-N procaine Chemical compound CCN(CC)CCOC(=O)C1=CC=C(N)C=C1 MFDFERRIHVXMIY-UHFFFAOYSA-N 0.000 description 1
- 229960004919 procaine Drugs 0.000 description 1
- 230000001681 protective effect Effects 0.000 description 1
- 108020001580 protein domains Proteins 0.000 description 1
- 229940023143 protein vaccine Drugs 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001105 regulatory effect Effects 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 239000012260 resinous material Substances 0.000 description 1
- 238000012552 review Methods 0.000 description 1
- CVHZOJJKTDOEJC-UHFFFAOYSA-N saccharin Chemical compound C1=CC=C2C(=O)NS(=O)(=O)C2=C1 CVHZOJJKTDOEJC-UHFFFAOYSA-N 0.000 description 1
- 238000013207 serial dilution Methods 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011780 sodium chloride Substances 0.000 description 1
- PXLIDIMHPNPGMH-UHFFFAOYSA-N sodium chromate Chemical compound [Na+].[Na+].[O-][Cr]([O-])(=O)=O PXLIDIMHPNPGMH-UHFFFAOYSA-N 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 210000000952 spleen Anatomy 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 235000019698 starch Nutrition 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000006228 supernatant Substances 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 208000024891 symptom Diseases 0.000 description 1
- 125000003396 thiol group Chemical group [H]S* 0.000 description 1
- 150000003626 triacylglycerols Chemical class 0.000 description 1
- YNJBWRMUSHSURL-UHFFFAOYSA-N trichloroacetic acid Chemical compound OC(=O)C(Cl)(Cl)Cl YNJBWRMUSHSURL-UHFFFAOYSA-N 0.000 description 1
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 1
- 238000002255 vaccination Methods 0.000 description 1
- 239000004474 valine Substances 0.000 description 1
- 238000009736 wetting Methods 0.000 description 1
- 239000000080 wetting agent Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
- G01N33/48—Biological material, e.g. blood, urine; Haemocytometers
- G01N33/50—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
- G01N33/5005—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells
- G01N33/5008—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics
- G01N33/5044—Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving human or animal cells for testing or evaluating the effect of chemical or biological compounds, e.g. drugs, cosmetics involving specific cell types
- G01N33/5047—Cells of the immune system
- G01N33/505—Cells of the immune system involving T-cells
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2740/00—Reverse transcribing RNA viruses
- C12N2740/00011—Details
- C12N2740/10011—Retroviridae
- C12N2740/16011—Human Immunodeficiency Virus, HIV
- C12N2740/16111—Human Immunodeficiency Virus, HIV concerning HIV env
- C12N2740/16122—New viral proteins or individual genes, new structural or functional aspects of known viral proteins or genes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2333/00—Assays involving biological materials from specific organisms or of a specific nature
- G01N2333/005—Assays involving biological materials from specific organisms or of a specific nature from viruses
- G01N2333/08—RNA viruses
- G01N2333/15—Retroviridae, e.g. bovine leukaemia virus, feline leukaemia virus, feline leukaemia virus, human T-cell leukaemia-lymphoma virus
- G01N2333/155—Lentiviridae, e.g. visna-maedi virus, equine infectious virus, FIV, SIV
- G01N2333/16—HIV-1, HIV-2
Definitions
- the present invention concerns a method to prevent or treat acquired immunodeficiency syndrome (AIDS) and involves a new and novel approach for making an immunizing composition or inoculum.
- the inoculum or composition comprises synthetic peptide multimer that exhibits certain T cell activating immunological characteristics of one or more proteins encoded by the viral causative agent of this disease.
- the causative agent, associated with AIDS has been identified as a group of closely related retroviruses commonly known as Human T Cell Lymphotrophic Virus-type III (HTLV-III), Lymphadenopathy Viruses (LAV), AIDS-Related Viruses (ARV), or more recently named Human Immunodeficiency Virus (HIV). These viruses will be collectively referred to herein for convenience as HIV.
- HTLV-III Human T Cell Lymphotrophic Virus-type III
- LAV Lymphadenopathy Viruses
- ARV AIDS-Related Viruses
- HIV Human Immunodeficiency Virus
- HIV has RNA as its genetic material.
- a viral enzyme known as reverse transcriptase copies the viral RNA into a double stranded DNA.
- the viral DNA migrates to the nucleus of the cell where it serves as a template for additional copies of viral RNA which can then be assembled into new viral particles.
- the viral RNA can also serve as messenger RNA for certain viral proteins [either the viral core proteins (known as p18, p24 and p13)] or the reverse transcriptase, or be “spliced” into specific viral messenger RNAs necessary to produce several other viral proteins including two glycosylated structural proteins known as gp41 and gp120 which are inserted in the outer membrane of the virus (Wain-Hobson et al., Cell 40:9, 1985).
- gp41 and gp120 two glycosylated structural proteins known as gp41 and gp120 which are inserted in the outer membrane of the virus.
- purified gp120 induces antibody in the goat, horse and rhesus monkey that neutralizes HIV in lab tests (Robey et al., Proc. Natl. Acad. Sci., USA 83:7023, 1986).
- Vaccines have been used for many years to prevent infections caused by agents such as viruses.
- the general approach has been to inject healthy individuals with, for example, a killed or modified virus preparation in order to prime the individual's immune systems to mount an assault on the infecting virus.
- Recent advances in recombinant DNA technology have allowed safer methods of vaccination that involve use of exposed viral components produced by microbial systems.
- the viral component for example a protein subunit, is administered as a vaccine in a suitable vehicle and/or an adjuvant. The latter stimulates the host's system in a way that improves the immune response to the viral subunit.
- Another potential method of making a vaccine is by using chemically synthesized peptide fragments of a viral protein subunit. This method has several advantages over the other methods of producing vaccines, including purity of the product, reproducibility and specificity of the immune response.
- mice [0009] A short peptide region within the surface protein of infectious Hepatitis B virus has been shown to elicit only a T cell response in mice (Milich et al., 1986). Specifically, a synthetic peptide, whose sequence is derived from amino acids numbered 120-132 located within the pre-S(2) domain of the Hepatitis B surface antigen gene, elicited a very strong T cell priming response to the peptide but stimulated only a very weak antibody response. In other words, mice mounted a poor antibody response to that peptide, but the T cells of immunized mice were efficiently primed (i.e. activated) to recognize that peptide as measured in T cell proliferation assays (Milich et al., 1986). The low level of the antibody produced by mice immunized with this peptide did not bind to the native viral surface antigen.
- the sequence of this T cell active peptide is:
- Amino terminal-MQWNSTTFHQTLQ-carboxy-terminal The single letter code for amino acids used throughout this application is: A, alanine; C cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; and Y, tyrosine.
- the present invention contemplates a peptide, a peptide multimer, an aqueous composition containing the peptide multimer and a method of using the composition.
- a peptide of the invention contains 7 to about 30 amino acid residues, and has a sequence that corresponds to a conserved domain of an HIV protein such as the gp160 envelope and core proteins.
- Preferred peptides have a sequence that corresponds to a portion of a conserved domain selected from the group consisting of the first, second, third and fifth conserved domains of the gp160 molecule.
- a peptide of the invention is generally used as a portion of a peptide multimer.
- Two specific classes of peptide multimers are disclosed.
- the amino-terminal residue of a peptide is peptide-bonded to a spacer peptide that contains an amino-terminal lysyl residue and one to about five amino acid residues such as glycyl residues to form a composite polypeptide.
- Those added residues of the spacer peptide do not interfere with the immunizing capacity of the multimer, nor with its capacity to form surfactant-like micelles in aqueous compositions.
- the alpha- and epsilon-amino groups of the amino-terminal lysyl residue are amidified with a C12-C 18 fatty acid such as palmitic acid to form the reaction product that is used.
- the di-amide so formed forms surfactant-like micellular multimers in an aqueous composition.
- a second class of multimer is a polymer having a before-described peptide as a repeating unit.
- each peptide is synthesized to contain a cysteine (Cys) residue at each of its amino- and carboxy-termini.
- the resulting di-cysteine-terminated (di-Cys) peptide is then oxidized to polymerize the di-Cys peptide monomers into a polymer or cyclic peptide multimer in which the peptide repeating units are linked by cystine (oxidized cysteine) residues.
- a peptide multimer of either class can contain one or a plurality of different peptide sequences.
- a before-described peptide of a multimer is an “active” peptide in that when used in a composition discussed below, the multimer can induce cell mediated immunity such as production of cytotoxic T cells.
- a multimer can also include an inactive peptide, for example to assist in dispersing the multimer in the aqueous medium.
- the lysyl-containing peptide spacer discussed before can be viewed as such an inactive peptide.
- the peptide multimer is utilized in an aqueous composition (inoculum). That composition contains water having a before-described multimer dispersed therein.
- the composition when used to immunize an immunocompetent host animal such as a mouse, has the capacity of inducing cell mediated immunity such as cytotoxic T cell activation to the native HIV protein corresponding in sequence to that of an active peptide of the multimer, but does not substantially induce production of antibodies that immunoreact with that corresponding native HIV protein.
- the composition thus contains an immunizing effective amount of a before-discussed multimeric peptide.
- an immunizing amount of an above composition containing an immunizing effective amount of an active peptide multimer is introduced into (administered to) an animal host such as a mouse or human to induce cellular immunity such as T cell immunity to a preselected native HIV protein without production of antibodies that immunoreact with that preselected native HIV protein.
- the preselected HIV protein is the HIV protein to which the active peptide corresponds in sequence.
- the immunized animal is then maintained to permit the immunity to be induced. This immunization can be repeated or boosted as desired.
- Another method aspect of this invention is a method of killing target cells that exhibit an HIV protein or a portion of an HIV protein on the cell surfaces.
- target cells that exhibit an HIV protein or a portion of an HIV protein on their cell surfaces such as HIV-infected T cells or leukocytes that are artificially made to express cell surface HIV proteins are contacted with a killing effective amount of cytotoxic T cells that have been activated using a before-described composition.
- the cell surface-exhibited HIV protein and the HIV protein to which an active peptide of the multimer corresponds in sequence are the same proteins, since the core protein and the two processed portions of the gp160 protein (the gp120 and gp41 envelope proteins) are the proteins normally found on HIV-infected cell surfaces. That contact is maintained for a time period sufficient for the cytotoxic T cells to kill the target cells.
- This method can be carried out in vitro or in vivo in the body of a host animal.
- FIG. 1 is a graph that illustrates the in vitro proliferation of popliteal lymph node (PLN) cells after in vivo immunization of Balbic mice with an aqueous composition containing an immunologically effective amount of a peptide multimer polymer of this invention prepared from each of peptides 61, 63, 65 and 67.
- Tuberculin purified protein derivative (PPD) was used as a control, as shown.
- a 3 H-thymidine ( 3 H-TdR) incorporation assay was used for these studies.
- the data are illustrated as a stimulation index, which is calculated as the fold increase in radioactivity counts in the presence of the peptide multimer antigen compared to background values where no antigen was added. Details of this study are discussed hereinafter.
- FIG. 2 is a graph that illustrates 3 H-TdR incorporation (T cell proliferation) of PLN cells after immunization of B6C3 F1 mice with an aqueous composition containing an immunologically effective amount of a peptide multimer polymer of this invention prepared from each of peptides 61, 63, 65 and 67. An unrelated peptide, PPD and gp160 were used as controls. The data are shown as the 3 H-TdR incorporation [delta ( ⁇ ) counts per minute (cpm)] obtained by subtracting radioactivity values in control wells without added antigen from those in wells with antigen. Details of this study and those of the studies of FIGS. 3 - 5 are discussed hereinafter.
- FIG. 3 is a graph similar to that of FIG. 2 except A.SWxBalb/c Fl mice were utilized as the animal hosts.
- FIG. 4 is a graph similar to that of FIG. 2 in which multimers prepared from peptides 103 through 117 (a through o, respectively) were used to immunize B6C3 F1 mice.
- FIG. 5 is a graph similar to that of FIG. 4 except that A.SWxBalb/c mice were again used as the animal hosts.
- FIG. 6 contains two panels of graphs that illustrate B6C3 F1 mouse PLN cell proliferation by 3 H-TdR incorporation as described before using varying concentrations of peptide multimer and gp120 as antigens.
- Panel A illustrates results for a peptide multimer polymer prepared from peptides 104
- Panel B illustrates results using a multimer prepared from peptide 106. PPD and unrelated peptide were used as controls.
- FIGS. 6 - 8 A further discussion relating to FIGS. 6 - 8 is found hereinafter.
- FIG. 7 contains two panels, and illustrates studies of PLN cell proliferation from B6C3 Fl mice using various concentrations of gp160 and peptide multimer polymers prepared from peptides 61 (Panel A) and 63 (Panel B) as antigens, with PPD, and an unrelated peptide as controls.
- FIG. 8 contains two panels, and illustrates studies of PLN cell proliferation from B6C3 F1 mice using various concentrations of gp120 and peptide multimer polymers prepared from peptides 65 (Panel A) and 111 (Panel B) as antigens, with PPD and an unrelated peptide as controls.
- the HIV agent is unique in that it infects cells involved in the immune response and can kill these cells.
- the host cell often involved is the T4 lymphocyte, a white blood cell that plays a central role in regulating the immune system.
- the virus binds to cell surface T4 + protein which is implicated in the mediation of efficient T cell-target cell interactions.
- T4 + lymphocytes interact with target cells expressing major histocompatibility (MHC) class II gene products.
- MHC major histocompatibility
- T4 and MHC genes are members of the immunoglobulin gene family (Maddon et al., Cell, 47:333, 1986).
- two regions of gp120 were found to share sequence homology with human immunoglobulin heavy chain constant regions (Maddon et al., Cell, 47:333, 1986).
- the present invention hinges to some extent upon the fact that gp120 has certain properties unique to human immunoglobulins. Furthermore, this similarity in structure may allow the virus to escape inactivation by antibody interaction. Still further, viral-antibody interaction may, in certain situations, increase the infectivity of the virus.
- the present invention contemplates that antibodies binding to the virus may not interfere with and in some cases may even increase the virus' inherent ability to infect the patient's lymphoid cells. Recently, retrovirus infectivity was shown to be increased by binding of anti-retrovirus antibodies (Legrain et al., J. Virol., 60:1141, 1986). Therefore, an AIDS vaccine that primes the individual's immune system to make antibodies to viral surface proteins may enhance the infectivity of an already deadly virus. What is needed then is to stimulate only the individual's T cell immunity (for example, cytotoxic T cells or CD8 + T cells) without involving an antibody response to viral proteins. Synthetic peptide immunogens can certainly achieve this result.
- a peptide useful herein consists essentially of no more than about 30, and more preferably about 10 to about 25, amino acid residues and has a sequence that corresponds to a portion of a conserved domain of an HIV protein such as the gp120 envelope, gp41 envelope and core proteins.
- the gp41 and gp120 envelope proteins are portions of the precurser gp160 envelope protein.
- gp160 protein it is therefore often convenient to refer to portions of the gp160 protein rather than the gp41 and gp120 molecules.
- particularly preferred peptides have sequences that correspond to sequences of the first, second, third and fifth conserved domains of gp160, with the fifth domain being in the gp41 portion of the processed gp160 protein.
- a useful peptide most preferably contains only those amino acid residues that are identical or homologous to (conservative substitutions for) residues present in a corresponding sequence of a conserved domain of an HIV protein.
- An additional number of residues of substantially any length can also be present at either or both termini of the peptide, up to a total of about 30 residence in a peptide.
- any additional residues must not interfere with the activity of the peptide, such as its ability to activate cytotoxic T cells and its substantial inability to induce production of antibodies that immunoreact with the corresponding native protein. Therefore, a peptide of this invention is said to “consist essentially” of an enumerated sequence.
- conservative substitutions such as one hydrophobic or polar residue for another at one or more of many positions in a peptide frequently does not alter the immunogenic characteristics of the peptide.
- an aspartic acid residue can be exchanged for a glutamic acid residue, or a leucine residue exchanged for an isoleucine.
- exchanges that destroy the amphipathic character of a peptide are excluded.
- a first step in preparation of a peptide of the present invention is to prepare a number of peptides containing 7 to about 30, and preferably about 10 to about 25, amino acid residues in length and having an amino acid sequence that corresponds to a conserved domain of an HIV protein. For example, a large portion of gp41 is conserved among the seven strains of HIV-sequenced to date (Modrow et al., J. Virol., 61:570, 1987).
- T cell epitopes were selected from a first conserved segment of gp120 (Modrow et al., J. Virol., 61:570-578) as illustrative examples. Their sequences are as follows the amino-terminus at the left and carboxy-terminus on the right, in standard manner:
- peptides are predicted T cell epitopes within a 100 amino acid stretch of conserved sequences near the amino terminus of the gp120 protein. A recent report indicated that this region is active in stimulating T cell immunity (Ahearne et al., III International Conference on AIDS, held in Washington, D.C., Jun. 1-5, 1987, abstract # M.10.3, page 8).
- Antigenic sites recognized by T cells have been reported to correlate with helical structures (either alpha helices or another type helix called a 310 helical structure). Such antigenic sites are also thought to be protein segments displaying a polar/apolar character, forming a stable amphipathic structure with separated hydrophobic and hydrophilic surfaces and/or protein segments displaying a marked change in hydrophilicity between the first-half and the second-half of a block of amino acids (differential amphipathic structures).
- the helical structures are identified by a consistent stretch of blocks of amino acids (each block being 6-7 residues in length) with angles (termed delta values) of 100° ⁇ 20° (alpha helix) or 120° ⁇ 15° (3 10 helical structure).
- Differential amphipathic structures are identified by peaks of differential hydrophilicity (See Table 1). For the purpose of selecting regions that are predicted to be poor antibody eliciting and/or binding sites, these structures should have negative mean hydrophilicity values. All of these values are listed below in Table 1 as the computer analysis of a conserved gp120 sequence (residues 35-137).
- Peptide number (1, above) which spans blocks 1-5 (6 amino acids per block) has delta values (termed ANGLE) consistent with a helical structure as predicted by both the Hopp/Woods computer program (block length of 6 amino acids) and the Kyte/Doolittle computer program (block length of 7 amino acids).
- Peptide number (2, above) which spans blocks 23-28 has a peak of differential hydrophilicity (a marked change in mean hydrophilicity between the first-half and second-half of a block of amino acids) that is predicted by both programs.
- Peptide number (3, above) which spans blocks 56-63 has delta values consistent with a helical structure (Kyte/Doolittle) and a peak of hydrophilicity (both programs).
- gag gene of HIV has revealed several T cell epitopes from within the core or gag gene of HIV (Coates et al., Nature, 326:549, 1987). These peptides are shown below, with their residue position numbers in the protein shown above each peptide.
- EGCRQIL 74 85 ELRSLYNTVAT 170 180 VIPMFSALSEG 199 206 AMQMLKET 298 305 YVDREYKT 333 342 KTILKALGPA 346 355 EMMTACQGV 367 375 AEAMSQVTN
- Such synthetic peptides are able to induce a cell-mediated response sufficient to destroy virus-infected cells bearing the corresponding HIV protein epitopes on their cell surfaces, or as suggested by the work Walker et al., (Science, 234:15631566, 1986) inhibit the growth of the virus.
- T cell active peptides it may be necessary to thoroughly cover the protein sequence in question.
- overlapping 15-amino acid peptides (15 mers) can be made (the second peptide overlaps with the C-terminal 5 amino acids of the first peptide, the third overlaps the second, etc.) across the complete conserved amino acid sequence of both gp120 and gp41.
- an exemplary peptide useful for preparing a multimer as discussed hereinafter includes an amino acid residue sequence whose formula corresponds to one of those shown below, from left to right and in the direction from amino-terminus to carboxy-terminus:
- a useful peptide having a sequence shown hereinabove is utilized without additional residues at either terminus, except for cysteine and lysine residues as are discussed hereinafter.
- Such a peptide has a sequence, as discussed before, that corresponds to a formula shown below:
- a preferred peptide includes a sequence, as discussed before, that corresponds to a formula shown below.
- a particularly preferred peptide except for the lysine and cysteine residues discussed hereinafter, corresponds to a formula shown below.
- the above new peptides can also be included in a longer peptide having a sequence of up to about 30 amino acid residues.
- a longer peptide consists essentially of an amino acid residue sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula shown below:
- peptides of the group described immediately above consist essentially of a sequence of up to about 30 amino acid residues, as shown before, represented by a formula shown below:
- a useful peptide is itself utilized in an aqueous composition or inoculum that contains dissolved or dispersed therein a multimeric form of the peptide.
- the peptide multimer is usually hereinafter referred to as being dispersed in water for greater ease of expression and since a solution can be viewed as the ultimate form of a dispersion.
- peptides elicit a T cell response but not a substantial antibody response, when introduced into an immunocompetent host animal, (a mammal) such as a laboratory mouse or rat, a goat, an ape such as chimpanzee or a human. Therefore, when suitably prepared, a peptide multimer composition of the present invention stimulates T cell immunity (e.g., cytotoxic T cells) without producing a substantial humoral antibody response.
- T cell immunity e.g., cytotoxic T cells
- the peptide multimer composition of the present invention primes T cells in a way that, when the infecting virus appears at a later date, memory T cells are activated to result in a cell-mediated immune response that destroys target cells that have the corresponding HIV protein or a portion thereof on their cell surfaces, and thereby the virus.
- an effective peptide multimer can in some cases induce a low to moderate level antibody response -and still be useful in an effective composition.
- the induced anti-peptide antibodies are incapable of recognizing or detecting the mature native protein such as gp160 to which the peptide of the multimer corresponds in sequence.
- the anti-peptide antibodies induced by the T cell active peptide must not be substantially capable of binding to the intact, infectious virus. It is well known that anti-peptide antibodies to certain regions of a given protein may not recognize the native protein (for example, see the work of Ho et al., J. Virol., 61:2024, 1987).
- composition or inoculum contains a before-described peptide in a multimeric form.
- exemplary of such multimers are surfactant-like micelles and polymers, examples of each of which are discussed hereinafter.
- each peptide is linked to a di-C 12 -C 18 fatty acid amide of a lysine-terminated peptide spacer such as a dipalmityl-lysyl-glycyl-glycyl sequence to serve as a carrier as described by T. P. Hopp (Mol. Immunol., 21:13, 1984).
- a lysine-terminated peptide spacer such as a dipalmityl-lysyl-glycyl-glycyl sequence to serve as a carrier as described by T. P. Hopp (Mol. Immunol., 21:13, 1984).
- Other useful C 12 -C 18 fatty acids include lauric, myristic, stearic, oleic and palmitoleic acids.
- the spacer peptide can contain one to about five additional residues.
- Substantially any amino acid residue can be utilized so long as it does not interfere with the T cell immunizing capacity of an aqueous composition containing the multimer or with the capacity of the di-amide reaction product to form surfacetant-like micelles in an aqueous composition.
- One to about three glycyl residues per spacer peptide are preferred.
- the before-described peptide and the amino-terminal lysyl residue-containing peptide spacer are peptide-bonded together, and can thus be viewed as a composite polypeptide.
- the useful diamide is thus a reaction product of the alpha- and epsilon-amino groups of the amino-terminal lysyl residue and two moles per composite polypeptide of the C 12 -C 18 fatty acid.
- the composite polypeptide can thus be prepared as a single sequence and amidified before or after removal from the resin, where solid phase synthesis is used, by conventional techniques.
- surfactant-like micelle is used herein to emphasize that, in an aqueous composition, the di-amidolysyl composite polypeptide appears to form micelles similar to those formed by surfactants and to distinguish such multimers from submicroscopic structural units of protoplasm built up from polymeric molecules that are also sometimes referred to as micelles.
- micelle is also sometimes used herein, and when so used-nas the same meaning as surfactant-like micelle.
- Another multimer form of a previously described peptide is a polymer having a plurality of peptide repeating units.
- a peptide containing two terminal cysteines as part of its natural sequence can be selected and synthesized.
- a peptide lacking such cysteines can be modified by the addition of one or two extra cysteines to the N- and C-terminal ends, respectively.
- the presence of two cysteines per peptide permits polymerization of the subunit peptide by air oxidation to form oxidized cysteine(cystine)-linked polymers and/or cyclic peptides.
- Such multimers enhance immune recognition of the peptide without the need of a carrier.
- the lysine-terminated spacer peptide can contain one to about five amino acid residues in addition to the lysyl residue, and the one or two added terminal cysteine residues are not included in counting the length of a peptide of the present invention.
- a peptide containing terminal cysteine residues is referred to as a di-cysteine-terminated peptide or more simply, a di-Cys peptide. Details for preparing polymers containing di-Cys peptide repeating units are provided hereinafter.
- a peptide multimer of a composition can contain more than one, active, T cell stimulating peptide as described previously.
- the inclusion of more than one such active peptide permits activation by more than a single T cell eptiope to a single HIV protein, as well as to a plurality of HIV proteins.
- Such inclusion of peptides of different sequences can also avoid non-response in the host animal that is immunized.
- a multimer can also include an inactive peptide; i.e., a peptide that does not induce T cell activation or antibodies that immunoreact with a native HIV protein, to enhance water dispersibility, for example.
- An aqueous composition (inoculum) of the present invention comprises an immunologically effective amount of a before-described peptide multimer dissolved or dispersed in a pharmaceutically acceptable aqueous medium.
- Such compositions are also referred to as inocula, as noted before.
- phrases “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human.
- compositions that contains an immunizing molecule such as a before-described peptide multimer as an active ingredient are well understood in the art.
- compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared.
- the preparation can also be emulsified.
- the active immunogenic peptide multimer is dissolved or dispersed in an excipient that is pharmaceutically acceptable and compatible with the active T cell immunogen as is well known.
- excipients are, for example, water, saline, phosphate buffered saline (PBS), dextrose, glycerol, ethanol, or the like and combinations thereof.
- the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents or adjuvants that enhance the effectiveness of the vaccine.
- composition is conventionally administered (introduced) parenterally, by injection, for example, intraperitoneally, intravenously, intradermally, subcutaneously or intramuscularly.
- Additional formulations that are suitable for other modes of administration include suppositories and, in some cases, oral formulations.
- suppositories traditional binders and carriers can include, for example, polyalkalene glycols or triglycerides; such suppositories can be formed from mixtures containing the active ingredient in the range of 0.5 percent to 10 percent, preferably 1-2 percent.
- Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and the like.
- a peptide multimer can be formulated into a composition in a neutral or salt form.
- Pharmaceutically acceptable salts include the acid addition salts (formed with the free amino groups of the peptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine, and the like.
- peptides and peptide multimers of this invention can form salts with fluosilicic acid. These salts are useful as mothproofing agents in accordance with the teachings of U.S. Pat. No. 1,915,334 and U.S. Pat. No. 2,075,359.
- the instant peptides and peptide multimers also form salts with thiocyanic acid which, in turn, can be condensed with formaldehyde to form resinous materials useful as pickling inhibitors in accordance with U.S. Pat. No. 2,425,320 and U.S. Pat. No. 2,606,155.
- Salts of the peptide and peptide multimers with trichloroacetic acid are useful as herbicides against Johnson grass, yellow foxtail, Bermuda grass, quack grass, and the like. Salts formed between ammonia and a carboxylic acid present in the peptides and peptide multimers of this invention can be used as a source of nitrogen for leguminous plants such as peas.
- a composition is administered in a manner compatible with the dosage formulation, and in such amount as is immunologically effective.
- immunologically effective amount is meant an amount of composition is used that contains an amount of a peptide multimer sufficient to induce cellular immunity in the host animal (mammal) such as by the induction of anti-HIV cytotoxic T cells. The presence of such cytotoxic T cells is assayed as discussed hereinafter.
- the quantity of multimer peptide and volume of composition to be administered depends on the host animal to be immunized, the capacity of the host animal's immune system to activate T cells, and the degree of protection desired. Precise amounts of active peptide multimer required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosage ranges are of the order of about 10 micrograms ( ⁇ g) to about 500 milligrams, preferably about 50 ⁇ g to about 1 mg, and more preferably about 100 micrograms of active ingredient peptide multimer per individual. A minimal volume of a composition required to disperse the immunizing amount of peptide multimer is typically utilized. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed in one or two week intervals by a subsequent injection or other administration.
- a composition can also include an adjuvant as part of the excipient.
- Adjuvants such as complete Freund's adjuvant (CFA), incomplete Freund's adjuvant (IFA) for use in laboratory host mammals are well known in the art, and are used illustratively herein.
- Pharmaceutically acceptable adjuvants such as alum can also be used.
- Typical mammals used in practicing a method of this invention include mice, rabbits, goats, primates, humans and the like.
- each peptide multimer preparation is first assayed in mice, for example, to screen for an appropriate T cell active peptide multimer.
- T cell active peptide multimers are assayed by injecting a before-described composition into mice, and then testing T cells recovered from the murine lymph nodes one to three weeks after inoculation with the peptide multimer-containing composition.
- the measurement of activation or priming of T cells is done by T cell proliferation tests and/or interleukin-2 production (Milich et al., J. Exp. Med., 164:532, 1986).
- T cell active peptides Two types should be found. The more prevalent group of peptides prime (activate) T cells that respond in test tube assays to only the peptide and not the corresponding native HIV surface protein. The second group of peptides prime T cells to respond to both the peptide and the native HIV protein. It is this latter group of peptides that induce protective immunity in the immunized host. A plurality of strains of mice that vary in their histocompatibility genes are used for these screenings. Peptides that have a broad response in the various MHC genotypes are selected for further study in primates, and finally humans. Exemplary assay procedures are found hereinafter.
- T cell active peptide multimers are also screened to identify those peptide multimers that lack B cell stimulatory activity. This is accomplished by injecting each peptide multimer into small immunocompetent animals (various strains of mice) to identify those peptides that fail to generate an antibody response to the native HIV protein to whose sequence the peptides correspond in part such as the gp120, gp41 or core proteins, for example. These animals should not produce anti-peptide antibodies that bind to (immunoreact with) the corresponding native viral protein.
- Those selected peptides that induce T cell activation, but do not induce an antibody response to their correlative or corresponding native protein are then assayed in baboons or other apes and monitored to confirm the lack of anti-peptide antibody production in baboon sera.
- mixtures of peptides are preferably employed in the multimer to provide a broad spectrum of coverage usually needed for an effective T cell activating composition.
- Peptide mixtures are then incorporated into a multimer-containing composition and assayed in a suitable animal that allows replication of the AIDS virus (e.g., chimpanzees) to test for priming of T cells.
- Peptides that are more active are used to immunize chimpanzees in a virus challenge study.
- a successful protection study prevents viremia without eliciting a significant humoral antibody response, but primes T cells for in vitro responses to the envelope antigens.
- the virus is then neutralized by cell mediated immunity.
- a composition containing a peptide multimer in an immunologically effective amount is thus obtained that can induce a killing effective amount of cytotoxic T cells.
- cytotoxic T cells are capable of killing target cells, when contacted in vitro or in vivo with such target cells like T lymphocytes or other cells such as P815 mouse cells (when the cytotoxic T cells are from a mouse; P815 mouse cells are available from Dr. Fernando Plata of the Pasteur Institute, Paris, France) that exhibit a corresponding HIV protein or a portion of such a protein on their cell surfaces.
- the anti-peptide antibodies must not be capable of recognizing (immunoreacting with) the native envelope proteins as measured, for example, either by immunoblotting procedures or by other immunoabsorbent (ELISA) tests. What is important in this particular response is that anti-peptide antibodies against a certain peptide sequence must not induce antibodies that bind to the infectious virus. Thus, in this case, T cell active peptides that raise low or moderate levels of anti-peptide antibodies are screened to identify those that fail to detect either intact virus preparations or viral surface proteins by immunoabsorbent tests (ELISA) and/or immunoblot procedures.
- ELISA immunoabsorbent tests
- a first method comprises the induction of T cell immunity to a preselected native HIV protein in a host animal such as a laboratory animal or a human as noted previously.
- a host animal such as a laboratory animal or a human as noted previously.
- an immunizing effective amount of a before-discussed active peptide multimer-containing composition is introduced into the host animal, and the host animal is maintained for a time period sufficient for the T cell immunity to develop.
- This immunization does not induce substantial production of antibodies that immunoreact with the preselected HIV protein.
- This immunization can be repeated or boosted from time to time as desired.
- the preselected HIV native protein is a protein to which an active peptide of the multimer corresponds in sequence.
- an active peptide multimer can include active peptides corresponding to different HIV proteins, and as a consequence, the above method can be used to induce T cell immunity to more than one HIV protein.
- T cells from the immunized host animal can be collected and assayed for their having immunity to the preselected HIV protein using an assay such as the proliferation assay discussed hereinafter.
- the immunized T cells prepared as discussed in the above method can be utilized in a method of killing target cells that exhibit an HIV protein or a portion thereof on their cell surfaces.
- such target cells are contacted with a killing effective amount of cytotoxic T cells that have been immunized with a before-discussed composition, as already discussed. That contact is maintained for a time period sufficient to kill the target cells.
- immunized T cells are obtained from an immunized host animal and are admixed and contacted with the target cells in an appropriate aqueous medium such as RPMI medium. The admixture is thereafter assayed for lysis of the target cells as by the 51 Cr assay discussed hereinafter.
- the target cells utilized can be HIV-infected cells that express and thereby exhibit HIV proteins such as core, gp120 and gp41 on their cell surfaces.
- the target cells can also be cells such as spenocytes that upon admixture with a peptide used in the multimer binds that peptide to its surface and thereby exhibits a portion of an HIV protein on its surface.
- Further target cells include P815 mouse mastocytoma cells (ATCC TIB64 that have been further transferred to express HIV proteins, and are available from Dr. Fernando Plata of the Pasteur Institute, Paris, France, as noted before.
- the target cells and immunized cytotoxic T cells are supplied by the immunized host animal; i.e., the host animal is infected with HIV, and HIV proteins or portions thereof are expressed on the surfaces of host cells such as T4 + cells.
- the host animal such as a chimpanzee or human expresses HIV proteins on cell surfaces, the animal is usually also viremic.
- a decrease in viremia of an infected host after immunization or the absence of viremia after immunization and infection provide assays for the above method.
- autologous or appropriately matched heterologous cytotoxic T cells are used.
- immunization as discussed previously can be sufficient.
- immunized T cells can be recovered as already discussed, cultured further in the presence of an immunizing peptide multimer to proliferate the cells, and then those proliferated cells can be re-introduced into the same host animal to augment the effect obtained by immunization alone.
- a donor is immunized with a previously discussed composition and the donor's immunized T cells collected.
- Immunized T cells from an appropriately matched donor e.g. a syngeneic donor, can be then introduced into an HIV-infected recipient as a passive immunization. Prior to the passive immunization, the matched donor cells can be proliferated as discussed above and then utilized.
- the maintenance time of contact between the target cells and effector cytotoxic T cells can vary from about an hour to days, depending on several parameters, most importantly being whether the method is carried out in vivo or in vitro.
- the maintenance time is the lifetime of the cytotoxic T cells, which can be days to weeks.
- maintenance times of one to about 10 hours, and preferably about 2 to about 5 hours are generally used.
- An important issue in considering the effectiveness of a peptide multimer or method of this invention is whether the cell-mediated immune system can function in a previously immunized individual when at a later time the immunized host animal is exposed to HIV which is infecting and altering the function of T4 helper cells.
- the research findings of Buller et al. (Nature, 328: 77, 1987)-provide evidence that is consistent with the hypothesis that a T cell active peptide can invoke a cell mediated response in the absence of T4 helper cells.
- Their work demonstrates that cytotoxic T cell responses can be induced in mice in the absence of T helper cells; the end result was that mice being studied recovered from a viral disease without T helper cells.
- a composition of this invention can thus be used to treat animal hosts that are already infected with HIV.
- the target for cell mediated immunity includes not only the virus but more importantly the virus-infected cell.
- Such infected cells have not only viral envelope proteins on their surfaces but possibly glycosylated core proteins (gag gene products) or their higher molecular weight precursors as well (Naso et al., J. Virol., 45:1200, 1983). Therefore, T cell active peptides from the gag gene of HIV as noted before are also selected, assayed and used for their affects on virus infected cells, as discussed above.
- T helper cell-independent cytotoxic T cell response described by Buller et al., bodes well for the use of T cell active peptide multimers in the therapy of AIDS.
- Such a peptide multimer or a multimer containing mixture of peptides can mount an effective cell-mediated immune response at a time when T4 cells are being infected and killed by the HIV. Since T8 cells are resistant to HIV infection, a peptide multimer can activate and prime T8 cytotoxic cells permitting a specific virus-killing response in the AIDS patient even though the virus may be infecting and altering the immune helper function of T4 cells.
- Synthetic peptides of 7 to about 30 amino acid residues in length were prepared corresponding to the selected conserved domains of the core and gp160 (gp12o and gp4l) molecules using the solid-phase technique of Merrifield described in J. Am. Chem. Soc. 85:2149-2154 (1963) using a modified Vega 250 automated peptide synthesizer or by the “bag” method described in Houghten, Proc. Natl. Acad. Sci, USA, 82:5131-5135 (1985).
- the t-butyloxycarbonyl (t-BOC) amino acid blocking groups and the hydrolysis of the peptide from the resin were carried out by hydrofluoric acid (HF) treatment at about zero degrees C for one hour.
- the peptide-containing mixture was then extracted with diethyl ether to remove non-peptide organic compounds and the synthesized peptides were extracted from the resin with acetic acid (25 percent w/v).
- peptides listed in TABLE 2 Two types of high molecular weight (multimeric) forms of the peptides listed in TABLE 2 were prepared.
- the principal form of multimer was a di-cysteine (di-Cys terminated) polymer in which a plurality of peptides were linked end-to-end by disulfide bonds. These di-cysteine polymers were produced by adding a cysteine residue to the termini of each peptide during synthesis.
- di-cysteine-terminated (di-Cys) peptides were then dissolved (10 mg/ml) in ammonium bicarbonate (0.1M) at room temperature (about 25 degrees C.) and stirred for about 16 hours to effect oxidation of the sulfhydryl groups to produce polymer forms of the peptides.
- the second type of high molecular weight form produced was a surfactant-like micelle formed by linkage of an amino-terminal lysine-containing spacer peptide (Lys-Gly-Gly-) to the peptide sequence to form a composite polypeptide, and then coupling a C 12 -C 18 fatty acid, such as palmitic acid, to both the alpha and epsilon amino groups by the method described in Hopp, Mol. Immunol. 21:13-16 (1984), which is incorporated herein by reference.
- the C 12 -C 18 fatty acid-containing peptides produced are then extracted in acetic acid (95 percent), and utilized to form large micelles in the aqueous composition that exhibit increased immunogenicity relative to the peptides.
- Di-Cys polymer multimers of all of the peptides listed in TABLE 2 were prepared.
- Aqueous peptide micelle multimers have been prepared of peptides designated 61, 63, 65 and 67, and are designated as peptides 62, 64, 66 and 68, respectively.
- Peptides designated 103 through 117 were utilized only in their di-Cys polymer multimeric forms.
- the high molecular weight, multimeric forms produced correspond to multiple copies of specific regions of gp120 and gp41 in HIV.
- the multimer forms will be designated by the peptide number from which it is composed - that is, peptide 61 refers to the di-Cys multimeric (polymeric) form of peptide 61 and peptide 66 refers to the aqueous micelle form of peptide 65, whereas peptide 103-117 refers to a polymeric multimer.
- Peptides 65 and 66 correspond to the region of gp120 that binds to the cell surface T 4 receptor.
- Peptides 63 and 64 correspond to a region near the amino-terminal portion of gp41 that represents a major immunodominant epitope seen by AIDS patients' serum.
- Aqueous compositions of the multimers i.e., the di-Cys peptide polymers and micelles produced in EXAMPLE 1 were assayed for their ability, or lack of ability to elicit an anti-peptide antibody response in BALB/c mice, an immunocompetent mouse strain.
- mice Groups of BALB/c mice (6-8-week-old females, 3 to 5 mice/group, Charles River Laboratories) were immunized by subcutaneous (s.c.) or intraperitoneal (i.p.) injection of a peptide multimer (100 ⁇ g/injection) in complete Freund's adjuvant (CFA) (1:1 ratio).
- CFA complete Freund's adjuvant
- Booster injections 50 pg of peptide multimer
- IFA incomplete Freund's adjuvant
- mice 3 or 5 mice/group were injected in the right hind footpad with a peptide polymer (100 ⁇ g/injection) in complete Freund's adjuvant (1:1).
- Peptides 61, 63, 65 and 67 were injected into B6C3 Fl mice (H-2 kxb (Charles River Laboratories) and A.SWxBALB/C F1 mice (H-2 sxd ) (Jackson Labs, Bar Harbor, ME). Draining popliteal lymph node (PLN) cells were harvested after ten (10) days, and cultured (2 ⁇ 10 5 cells/well) in 96-well microtiter plates in 0.2 ml of Click's medium [Click et al., Cellular Immunol.
- 3 H-thymidine 3 H-TdR
- 3 H-TdR 3 H-thymidine
- FIG. 1 illustrates the results for peptides 61, 63, 65, 67 in BALB/c mice, and those results are expressed as a stimulation index (SI) representing the fold increase in radioactivity counts in the presence of antigen compared to background values where no antigen was added.
- SI stimulation index
- PPD tuberculin purified protein derivative
- FIGS. 2 - 5 illustrate the peptide-specific 3 H-TdR incorporation for T cell responses (delta cpm) in mice with differing major histocompatibility (MHC) haplotypes, B6C3 F1 (C57B1/6 ⁇ C 3 H/HcJ) mice (FIGS. 2 and 4) and (A.SWxBALB/c) Fl mice (FIGS. 3 and 5), for all of the synthetic peptides.
- the 3 H-TdR incorporation values represent the difference between the radioactivity values obtained in wells containing antigen and in control wells without added antigen.
- the non-specific proliferation of PLN cells was determined by including an unrelated peptide in the assays, shown as a horizontal bar for each peptide.
- T cell proliferation measured by 3 H-TdR incorporation was also similarly assayed as a function of the T cell antigen concentration, using various amounts of native gp120 or gp160 as one control, and PPD as another control.
- PLN from B6C3 F1 mice were used in these studies.
- the results for peptides 104 and 105 versus gp120 are shown in FIGS. 6A and 6B, respectively; those for peptides 61 and 63 versus gp160 are shown in FIGS. 7A and 7B, respectively; and those for peptides 65 and 111 versus gp120 are shown in FIGS. 8A and 8B, respectively.
- mice Groups of 3 to 5 syngeneic female mice (6 to 8 weeks of age) are immunized by injection in an appropriate site with an aqueous composition containing an immunizing (cytotoxic T cell stimulating) amount of either of the before-discussed multimers, in a mixture with CF.A (1:1).
- immunizing cytotoxic T cell stimulating
- Ten (10) days after immunization, draining PLN cells and spleen lymphocytes are obtained and restimulated in vitro by culturing for six (6) days with the same synthetic peptide as immunogen.
- CTL cytotoxic T lymphocytes
- Target cells phytohemagglutinin-stimulated (PHA) blasts of syngeneic mouse spleen cells or P815 mouse cells expressing a corresponding HIV protein
- PHA phytohemagglutinin-stimulated
- the target cells samples are subsequently washed with RPMI 1640 medium containing 10 percent FCS and the appropriate peptide, and resuspended in RPMI 1640 with 10 percent FCS (2 ⁇ 10 5 cells/ml) and different concentrations of peptide.
- a 100 ⁇ l aliquot of each cell suspension is added to a well of a 96-well-U-bottom microtiter plate.
- E:T effector-to-target cell
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Immunology (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Cell Biology (AREA)
- Molecular Biology (AREA)
- Organic Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Hematology (AREA)
- Medicinal Chemistry (AREA)
- Urology & Nephrology (AREA)
- Tropical Medicine & Parasitology (AREA)
- Virology (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biotechnology (AREA)
- Toxicology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Food Science & Technology (AREA)
- Gastroenterology & Hepatology (AREA)
- Biophysics (AREA)
- Genetics & Genomics (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
Abstract
An active peptide consisting essentially of 7 to about 30 residence and having a sequence that corresponds to a conserved domain of an HIV protein is disclosed, as is a multimer containing that peptide, an aqueous composition containing the multimer and methods of using and making the same. The aqueous composition containing an immunologically effective amount of an active peptide multimer, when introduced into an immunocompetent host animal in an immunologically effective amount, is capable of inducing cellular immunity against the native HIV protein to which the active peptide of the multimer corresponds in sequence, but is not capable of inducing production of antibodies that immunoreact with that native HIV protein.
Description
- This is a continuation-in-part of co-pending application Ser. No. 07/090,646, filed Aug. 28, 1987, whose disclosures are incorporated by reference.
- The present invention concerns a method to prevent or treat acquired immunodeficiency syndrome (AIDS) and involves a new and novel approach for making an immunizing composition or inoculum. The inoculum or composition comprises synthetic peptide multimer that exhibits certain T cell activating immunological characteristics of one or more proteins encoded by the viral causative agent of this disease.
- AIDS was first recognized in the United States in 1981; the number of cases has been increasing at a dramatic pace since then. Since 1978 more than 2.4 million AIDS infections have been reported in the United States, alone (Rees, Nature, 326:343, 1987). Once significant immunosuppressive symptoms appear in an infected individual, the expected outcome of the infection is death. There is currently no known treatment that can indefinitely delay or prevent the fatal consequences of the disease. Although the disease first manifested itself in homosexual or bisexual males and intravenous drug abusers, it has now spread to others by means such as intimate sexual contact with or receipt of blood products from a carrier of the virus.
- The causative agent, associated with AIDS has been identified as a group of closely related retroviruses commonly known as Human T Cell Lymphotrophic Virus-type III (HTLV-III), Lymphadenopathy Viruses (LAV), AIDS-Related Viruses (ARV), or more recently named Human Immunodeficiency Virus (HIV). These viruses will be collectively referred to herein for convenience as HIV.
- Like other retroviruses, HIV has RNA as its genetic material. When the virus enters the host cell, a viral enzyme known as reverse transcriptase copies the viral RNA into a double stranded DNA. The viral DNA migrates to the nucleus of the cell where it serves as a template for additional copies of viral RNA which can then be assembled into new viral particles. The viral RNA can also serve as messenger RNA for certain viral proteins [either the viral core proteins (known as p18, p24 and p13)] or the reverse transcriptase, or be “spliced” into specific viral messenger RNAs necessary to produce several other viral proteins including two glycosylated structural proteins known as gp41 and gp120 which are inserted in the outer membrane of the virus (Wain-Hobson et al., Cell 40:9, 1985). A recent study has shown that purified gp120 induces antibody in the goat, horse and rhesus monkey that neutralizes HIV in lab tests (Robey et al., Proc. Natl. Acad. Sci., USA 83:7023, 1986).
- Vaccines have been used for many years to prevent infections caused by agents such as viruses. The general approach has been to inject healthy individuals with, for example, a killed or modified virus preparation in order to prime the individual's immune systems to mount an assault on the infecting virus. Recent advances in recombinant DNA technology have allowed safer methods of vaccination that involve use of exposed viral components produced by microbial systems. After sufficient purification, the viral component, for example a protein subunit, is administered as a vaccine in a suitable vehicle and/or an adjuvant. The latter stimulates the host's system in a way that improves the immune response to the viral subunit.
- Another potential method of making a vaccine is by using chemically synthesized peptide fragments of a viral protein subunit. This method has several advantages over the other methods of producing vaccines, including purity of the product, reproducibility and specificity of the immune response.
- Surface antigens of an infecting virus can elicit T cell and B cell responses. From the work of Milich and coworkers (Milich et al., J. Exp. Med. 164:532, 1986; Milich and McLachlan, Science, 234:1398, 1986) it is clear that some regions of a protein's peptide chain can possess either T cell or B cell epitopes. These epitopes are frequently distinct from each other and can comprise different peptide sequences. Other examples include the work of Maizel et al., (Eur. J. Immunol. 10:509, 1980) for hen egg-white lysozyme, and Senyk et al., (J. Exp. Med., 133:1294, 1971) for glucagon. Thus, short stretches of a protein sequence can elicit a T cell response but not a B cell response. A more complete review of these and other observations pertinent to this point is included in the work of Livingstone and Fathman (Ann. Rev. Immunol., 5:477, 1987).
- A short peptide region within the surface protein of infectious Hepatitis B virus has been shown to elicit only a T cell response in mice (Milich et al., 1986). Specifically, a synthetic peptide, whose sequence is derived from amino acids numbered 120-132 located within the pre-S(2) domain of the Hepatitis B surface antigen gene, elicited a very strong T cell priming response to the peptide but stimulated only a very weak antibody response. In other words, mice mounted a poor antibody response to that peptide, but the T cells of immunized mice were efficiently primed (i.e. activated) to recognize that peptide as measured in T cell proliferation assays (Milich et al., 1986). The low level of the antibody produced by mice immunized with this peptide did not bind to the native viral surface antigen. The sequence of this T cell active peptide is:
- Amino terminal-MQWNSTTFHQTLQ-carboxy-terminal. The single letter code for amino acids used throughout this application is: A, alanine; C cysteine; D, aspartic acid; E, glutamic acid; F, phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; W, tryptophan; and Y, tyrosine.
- In contrast to the above-described results, a second peptide sequence (amino acids 132-145) elicited a very weak T-cell response in mice (Milich et al., 1986). This second peptide did, however, efficiently bind antibody raised against it under conditions where a T cell epitope is provided.
- The sequence of the second or B cell active peptide is:
- Amino terminal-DPRVRGLYFPAGG-carboxy- terminal. Mice were also immunized with a longer peptide made up of both of the above-mentioned T- and B-active peptide sequences. In this case, high titers of antibody were produced against the B site peptide but not the T site peptide. The combination of both T- and B-sites within one peptide should stimulate both T and B cell responses, as measured by producing a specific antibody to the B cell epitope of the peptide chain. Synthetic peptide antigens may be constructed to produce two types of immune responses: T-cell only and T cell combined with a B cell response. Cellular immune responses provide a major mechanism for reducing the growth of virus-infected cells (Doherty et al., Adv. Cancer Res., 42:1, 1985). A report by Earl et al., (Science, 234:728, 1986) demonstrated T-lymphocyte priming and protection against the Friend virus (a retrovirus)-induced mouse leukemia by a viral surface protein vaccine. Direct evidence for the role of a subset of T-lymphocytes (OKT8/LEU2 positive) in suppressing HIV growth in vitro was recently obtained by Walker et al., (Science, 234:1563, 1986). This study further demonstrated that, after depletion of CD8+ T-lymphocytes from the blood of HIV-infected individuals, large quantities of HIV were isolated from peripheral blood mononuclear cells of four of seven asymptomatic, seropositive homosexual men who were initially virus-negative or had very low levels of virus. Thus, the CD8+ subset of T-lymphocytes may play a role in virus infected individuals to prevent HIV replication and disease progression.
- The present invention contemplates a peptide, a peptide multimer, an aqueous composition containing the peptide multimer and a method of using the composition.
- A peptide of the invention contains 7 to about 30 amino acid residues, and has a sequence that corresponds to a conserved domain of an HIV protein such as the gp160 envelope and core proteins. Preferred peptides have a sequence that corresponds to a portion of a conserved domain selected from the group consisting of the first, second, third and fifth conserved domains of the gp160 molecule.
- A peptide of the invention is generally used as a portion of a peptide multimer. Two specific classes of peptide multimers are disclosed. In one class, the amino-terminal residue of a peptide is peptide-bonded to a spacer peptide that contains an amino-terminal lysyl residue and one to about five amino acid residues such as glycyl residues to form a composite polypeptide. Those added residues of the spacer peptide do not interfere with the immunizing capacity of the multimer, nor with its capacity to form surfactant-like micelles in aqueous compositions. The alpha- and epsilon-amino groups of the amino-terminal lysyl residue are amidified with a C12-C18 fatty acid such as palmitic acid to form the reaction product that is used. The di-amide so formed forms surfactant-like micellular multimers in an aqueous composition.
- A second class of multimer is a polymer having a before-described peptide as a repeating unit. Here, each peptide is synthesized to contain a cysteine (Cys) residue at each of its amino- and carboxy-termini. The resulting di-cysteine-terminated (di-Cys) peptide is then oxidized to polymerize the di-Cys peptide monomers into a polymer or cyclic peptide multimer in which the peptide repeating units are linked by cystine (oxidized cysteine) residues.
- A peptide multimer of either class can contain one or a plurality of different peptide sequences. A before-described peptide of a multimer is an “active” peptide in that when used in a composition discussed below, the multimer can induce cell mediated immunity such as production of cytotoxic T cells. A multimer can also include an inactive peptide, for example to assist in dispersing the multimer in the aqueous medium. The lysyl-containing peptide spacer discussed before can be viewed as such an inactive peptide.
- The peptide multimer is utilized in an aqueous composition (inoculum). That composition contains water having a before-described multimer dispersed therein. The composition, when used to immunize an immunocompetent host animal such as a mouse, has the capacity of inducing cell mediated immunity such as cytotoxic T cell activation to the native HIV protein corresponding in sequence to that of an active peptide of the multimer, but does not substantially induce production of antibodies that immunoreact with that corresponding native HIV protein. The composition thus contains an immunizing effective amount of a before-discussed multimeric peptide.
- In one method aspect of the invention, an immunizing amount of an above composition containing an immunizing effective amount of an active peptide multimer is introduced into (administered to) an animal host such as a mouse or human to induce cellular immunity such as T cell immunity to a preselected native HIV protein without production of antibodies that immunoreact with that preselected native HIV protein. The preselected HIV protein is the HIV protein to which the active peptide corresponds in sequence. The immunized animal is then maintained to permit the immunity to be induced. This immunization can be repeated or boosted as desired.
- Another method aspect of this invention is a method of killing target cells that exhibit an HIV protein or a portion of an HIV protein on the cell surfaces. Here, target cells that exhibit an HIV protein or a portion of an HIV protein on their cell surfaces such as HIV-infected T cells or leukocytes that are artificially made to express cell surface HIV proteins are contacted with a killing effective amount of cytotoxic T cells that have been activated using a before-described composition. The cell surface-exhibited HIV protein and the HIV protein to which an active peptide of the multimer corresponds in sequence are the same proteins, since the core protein and the two processed portions of the gp160 protein (the gp120 and gp41 envelope proteins) are the proteins normally found on HIV-infected cell surfaces. That contact is maintained for a time period sufficient for the cytotoxic T cells to kill the target cells. This method can be carried out in vitro or in vivo in the body of a host animal.
- In the drawings forming a portion of this disclosure,
- FIG. 1 is a graph that illustrates the in vitro proliferation of popliteal lymph node (PLN) cells after in vivo immunization of Balbic mice with an aqueous composition containing an immunologically effective amount of a peptide multimer polymer of this invention prepared from each of
peptides - FIG. 2 is a graph that illustrates3H-TdR incorporation (T cell proliferation) of PLN cells after immunization of B6C3 F1 mice with an aqueous composition containing an immunologically effective amount of a peptide multimer polymer of this invention prepared from each of
peptides - FIG. 3 is a graph similar to that of FIG. 2 except A.SWxBalb/c Fl mice were utilized as the animal hosts.
- FIG. 4 is a graph similar to that of FIG. 2 in which multimers prepared from peptides 103 through 117 (a through o, respectively) were used to immunize B6C3 F1 mice.
- FIG. 5 is a graph similar to that of FIG. 4 except that A.SWxBalb/c mice were again used as the animal hosts.
- FIG. 6 contains two panels of graphs that illustrate B6C3 F1 mouse PLN cell proliferation by3H-TdR incorporation as described before using varying concentrations of peptide multimer and gp120 as antigens. Panel A illustrates results for a peptide multimer polymer prepared from
peptides 104, whereas Panel B illustrates results using a multimer prepared from peptide 106. PPD and unrelated peptide were used as controls. A further discussion relating to FIGS. 6-8 is found hereinafter. - FIG. 7 contains two panels, and illustrates studies of PLN cell proliferation from B6C3 Fl mice using various concentrations of gp160 and peptide multimer polymers prepared from peptides 61 (Panel A) and 63 (Panel B) as antigens, with PPD, and an unrelated peptide as controls.
- FIG. 8 contains two panels, and illustrates studies of PLN cell proliferation from B6C3 F1 mice using various concentrations of gp120 and peptide multimer polymers prepared from peptides 65 (Panel A) and 111 (Panel B) as antigens, with PPD and an unrelated peptide as controls.
- A. Overview
- The HIV agent is unique in that it infects cells involved in the immune response and can kill these cells. The host cell often involved is the T4 lymphocyte, a white blood cell that plays a central role in regulating the immune system. The virus binds to cell surface T4+ protein which is implicated in the mediation of efficient T cell-target cell interactions. T4+ lymphocytes interact with target cells expressing major histocompatibility (MHC) class II gene products.
- Both T4 and MHC genes are members of the immunoglobulin gene family (Maddon et al., Cell, 47:333, 1986). The observation that T4 interacts with the exterior HIV envelope protein, gp120, prompted a structural comparison of the viral protein to immunoglobulin proteins. Interestingly, two regions of gp120 were found to share sequence homology with human immunoglobulin heavy chain constant regions (Maddon et al., Cell, 47:333, 1986).
- Extrapolating from these observations, the present invention hinges to some extent upon the fact that gp120 has certain properties unique to human immunoglobulins. Furthermore, this similarity in structure may allow the virus to escape inactivation by antibody interaction. Still further, viral-antibody interaction may, in certain situations, increase the infectivity of the virus.
- For example, recent work suggests that AIDS patients can and do have antibodies that neutralize the virus, as determined by in vitro laboratory tests. Yet these same patients die of the disease.
- The present invention contemplates that antibodies binding to the virus may not interfere with and in some cases may even increase the virus' inherent ability to infect the patient's lymphoid cells. Recently, retrovirus infectivity was shown to be increased by binding of anti-retrovirus antibodies (Legrain et al., J. Virol., 60:1141, 1986). Therefore, an AIDS vaccine that primes the individual's immune system to make antibodies to viral surface proteins may enhance the infectivity of an already deadly virus. What is needed then is to stimulate only the individual's T cell immunity (for example, cytotoxic T cells or CD8+ T cells) without involving an antibody response to viral proteins. Synthetic peptide immunogens can certainly achieve this result.
- B. The Peptides
- A peptide useful herein consists essentially of no more than about 30, and more preferably about 10 to about 25, amino acid residues and has a sequence that corresponds to a portion of a conserved domain of an HIV protein such as the gp120 envelope, gp41 envelope and core proteins. The gp41 and gp120 envelope proteins are portions of the precurser gp160 envelope protein.
- It is therefore often convenient to refer to portions of the gp160 protein rather than the gp41 and gp120 molecules. Indeed, particularly preferred peptides have sequences that correspond to sequences of the first, second, third and fifth conserved domains of gp160, with the fifth domain being in the gp41 portion of the processed gp160 protein.
- A useful peptide most preferably contains only those amino acid residues that are identical or homologous to (conservative substitutions for) residues present in a corresponding sequence of a conserved domain of an HIV protein. An additional number of residues of substantially any length can also be present at either or both termini of the peptide, up to a total of about 30 residence in a peptide. However, any additional residues must not interfere with the activity of the peptide, such as its ability to activate cytotoxic T cells and its substantial inability to induce production of antibodies that immunoreact with the corresponding native protein. Therefore, a peptide of this invention is said to “consist essentially” of an enumerated sequence.
- The phrase “corresponds” as used herein means that an amino acid residue sequence has the same linear arrangement of the same amino acid residues as the sequence of the conserved HIV protein domain to which it “corresponds”. However, it is well-known in the art that substitutions for amino acid residues can be made that are equivalent immunogenically.
- In particular, conservative substitutions such as one hydrophobic or polar residue for another at one or more of many positions in a peptide frequently does not alter the immunogenic characteristics of the peptide. For example, an aspartic acid residue can be exchanged for a glutamic acid residue, or a leucine residue exchanged for an isoleucine. Thus, exchanges that destroy the amphipathic character of a peptide are excluded.
- A first step in preparation of a peptide of the present invention is to prepare a number of peptides containing 7 to about 30, and preferably about 10 to about 25, amino acid residues in length and having an amino acid sequence that corresponds to a conserved domain of an HIV protein. For example, a large portion of gp41 is conserved among the seven strains of HIV-sequenced to date (Modrow et al., J. Virol., 61:570, 1987).
- Computer programs have been developed that are useful in predicting T cell recognition sites and antibody binding sites within antigens (the latter known as B cell sites). Several computer programs can be used such as the De Lisi and Berzofsky program for T cell sites (Proc. Natl. Acad. Sci. USA, 82:7048, 1985), and for B cells—the Hopp and Woods program (J. Mol. Biol., 157:105, 1982) and the Sette et al., program (Mol. Immunol., 23:807, 1986. Short synthetic peptides were made from predicted T cell regions.
- Using the computer program of Sette et al., (1986) to analyze the linear sequence of the HIV envelope proteins, several proposed T cell epitopes were selected from a first conserved segment of gp120 (Modrow et al., J. Virol., 61:570-578) as illustrative examples. Their sequences are as follows the amino-terminus at the left and carboxy-terminus on the right, in standard manner:
- (1) CSAVEQLWVTVY;
- (2) TTLFCASDAKAY;
- (3) EVVLGNVTENFNM;
- (4) QMHEDIISLWDQS; and
- (5) QSLKPCVKLTPLC.
- These peptides are predicted T cell epitopes within a 100 amino acid stretch of conserved sequences near the amino terminus of the gp120 protein. A recent report indicated that this region is active in stimulating T cell immunity (Ahearne et al., III International Conference on AIDS, held in Washington, D.C., Jun. 1-5, 1987, abstract # M.10.3, page 8).
- Antigenic sites recognized by T cells have been reported to correlate with helical structures (either alpha helices or another type helix called a 310 helical structure). Such antigenic sites are also thought to be protein segments displaying a polar/apolar character, forming a stable amphipathic structure with separated hydrophobic and hydrophilic surfaces and/or protein segments displaying a marked change in hydrophilicity between the first-half and the second-half of a block of amino acids (differential amphipathic structures).
- In practice, using computer programs, the helical structures are identified by a consistent stretch of blocks of amino acids (each block being 6-7 residues in length) with angles (termed delta values) of 100°±20° (alpha helix) or 120°±15° (310 helical structure). Differential amphipathic structures are identified by peaks of differential hydrophilicity (See Table 1). For the purpose of selecting regions that are predicted to be poor antibody eliciting and/or binding sites, these structures should have negative mean hydrophilicity values. All of these values are listed below in Table 1 as the computer analysis of a conserved gp120 sequence (residues 35-137).
TABLE 1 ANALYSIS OF AN HIV-CONSERVED AMINO ACID SEQUENCE REGION SEQUENCE CSAVEQLWVTVYYGVPVWKEATTTLPCASDAKAYSTEVHNVWATHACVPTDPNPQEVVLGNVTENFNMWK NNMVEQMHEDIISLWDQSLKPCVKLTPLC BLOCK LENGTH 6 BLOCK LENGTH 7 HOPP/WOODS SCALE KYTE/DOOLITTLE SCALE MEAN HYDROPHILICITY = .0356494236 MEAN HYDROPHILICITY = .0292929294 MEAN DIFF. HYDR. = 4.72234043 MEAN DIFF. HYDR. = 5.527957 STANDARD DEV. = .41840836 STANDARD DEV. = .438292101 amphipathicity amphipathicity Block hydrophilicity peaks Block hydrophilicity peaks No. seq. mean diff. angle amph valve No. seq. mean diff. angle amph valve 1 CSAVEQ .08 2.9 130 5.2603542 1 CSAVEQL −.65 6.7 110 13.7622165 180 4.05713223 2 SAVEQL −.05 3.1 106 6.07139973 2 SAVEQLW −.16 5.8 106 12.8605401 3 AVEQLW .46 .8 118 8.61223123 3 AVEQLWV −.88 4.6 80 8.87890778 135 11.9637599 4 VEQLWV .3 1.6 134 9.74138842 4 VEQLWVT −.52 5.4 80 9.54449739 143 13.3879542 5 EQLWVT .48 .1 123 8.21074778 5 EQLHVTV −.52 10.9 91 8.24956064 180 13.2857142 6 QLWVTV −.27 5.2 84 3.68722078 6 QLWVTVY −.83 2.8 108 6.12546894 180 7.99999744 180 19.4205565 7 LWVTVY −.69 4.3 80 3.40803117 7 LWVTVYY 1.15 5.5 88 5.78042364 145 6.79202004 180 12.6571412 8 WVTVYY −.77 7.6 117 5.2587283 8 WVTVYYG −.55 5.6 80 3.90743985 180 5.99999683 180 10.9428538 9 VTVYYG −1.61 2.8 80 2.27261392 9 VTVYYGV −1.28 5.2 80 5.68423569 180 .999999507 112 7.47691013 180 12.4285601 10 TVYYGV −1.61 1.2 80 2.36217496 10 TVYYGVP −.45 0 100 10.0862161 180 .999999844 180 11.5428464 11 VYYGVP −1.54 3 80 1.85508868 11 VYYGVPV −1.15 5.2 111 9.23573655 144 1.91242888 180 13.4571299 12 YYGVPV −1.54 3.2 80 1.8054094 12 YYGVPVW −.42 4.7 80 2.88605369 144 1.85463866 180 11.7142808 13 YGVPVW −.59 7.3 113 4.82991766 13 YGVPVWK −.05 3.1 80 4.28917765 180 7.09999547 132 11.3842845 14 GVPVWK .29 8 80 3.46214163 14 GVPVWKE .27 10.5 80 5.05560131 122 5.65042609 118 7.81868378 180 10.6285662 15 VPVHKE 1.06 12.4 80 4.21156022 15 VPVWKEA −.05 12.4 80 6.62653296 180 6.39999629 112 9.64156172 180 12.2571317 16 PVWKEA 1.23 3.6 80 7.35037792 16 PVWKEAT .65 4.1 87 11.1679208 180 5.39999818 180 8.14285043 17 VWKEAT 1.16 2.8 80 7.51038801 17 VWKEATT .52 1 83 11.107197 166 5.0399882 180 7.02856624 18 WKEATT 1.35 10.7 80 3.91623012 18 WKEATTT 1.22 6.2 108 6.03090101 120 .300033045 180 3.89999705 19 KEATTT .71 6.7 80 3.87038548 19 KEATTTL .55 8 94 10.8301427 115 3.54324115 166 6.61371042 20 EATTTL −.09 4.7 108 4.84178659 20 EATTTLF −.4 8.3 95 8.81271666 180 4.89999533 180 7.39999914 21 ATTTF −1 3.4 80 2.02960213 21 ATTTLFC −1.26 8.7 80 5.55101217 112 1.81597681 180 4.74285394 180 .599999107 22 TTTLFC −1.09 4.1 80 2.54250479 22 TTTLFCA −1.26 9.2 80 4.52553122 136 1.39839332 180 3.65714207 23 TTLFCA −1.11 1.4 80 3.3632097 23 TTLFCAS −1.25 1.1 80 5.52825776 157 .332518758 130 5.40023235 24 TLTCAS −.99 3.5 80 3.32553457 24 TLFCASD −.85 8.4 80 3.87846076 147 1.80392438 119 7.0806631 180 5.94284743 25 LFCASD −.42 8.1 80 2.06205252 25 LFCASDA −1.21 11.6 80 4.08829296 122 4.25830797 115 6.42577424 180 2.49999907 180 4.99999328 26 FCASDA −.21 6.8 80 3.58038047 26 FCASDAK −.11 12.7 94 5.27711073 139 4.84654054 150 9.17980169 27 CASDAK .71 6.7 113 3.91223995 27 CASDAKA .04 3.8 80 3.77241193 180 6.69999644 123 7.36122555 180 10.9428509 28 ASDAKA .8 .8 80 2.28563281 28 ASDAKAY .58 .9 80 3.54848783 157 6.39032513 150 10.4603253 29 SDAKAY .5 2.6 80 3.2211804 29 SDAKAYS .95 2.2 80 .944789442 138 6.65130434 180 11.6571397 30 DAKAYS .5 8 80 3.01974827 30 DAKAYST .94 2.8 80 .97233936 136 6.39531508 180 11.2571407 31 AKAYST −.07 4.4 115 5.43528965 31 AKAYSTE .94 4.7 81 4.07367275 148 10.3211839 32 KAYSTE .51 2.7 80 6.27726053 32 KAYSTEV .6 3.4 81 8.27920693 144 6.09214551 146 13.1855076 33 AYSTFV −.24 3.6 80 4.62499407 33 AYSTEVH −.03 1.49 80 5.29178076 180 6.99999752 139 9.29903238 34 YSTEVH .51 7.9 105 5.1518362 34 YSTEVHN .72 4 117 9.71864323 180 11.4999928 35 STEVHN .93 .2 80 .963303906 35 STEVHNV −.06 6.2 128 12.8286227 180 8.99999872 36 TEVHNV .63 1.6 80 3.30736594 36 TEVHNVH −.05 .19 127 13.7231702 146 8.1502064 37 EVHNVW 1.26 3.4 134 10.0166439 37 EVHNVWA −.4 3.9 138 14.2893846 38 VHNVHA .68 1.3 131 9.91647749 38 VHNVWAT −.81 1 94 8.01966306 148 10.1210171 39 HNVWAT .86 .19 116 8.66449943 39 HNVWATH −.28 .4 88 4.30849285 180 11.8285674 40 NVWATH .86 1 123 8.65369771 40 NVWATHA −.46 1.8 84 5.89730511 161 10.5891462 41 VWATHA .75 1.69 133 9.64004539 41 VWATHAC −1.32 .29 80 2.72499528 133 4.94525044 180 7.48570996 42 WATHAC .83 0 112 8.84659018 42 WATHACV −1.32 8.3 87 3.62934111 149 5.91098659 43 ATHACV .01 6.1 80 6.1106703 43 ATHACVP −1.22 3.5 80 6.638677 180 4.899999 146 6.75061693 44 THACYP .09 5.6 80 5.55283546 44 THACVPT −.86 .29 80 6.79346425 180 5.39999851 135 5.22522407 45 HACVPT .1 4.4 80 5.17273346 45 HACVPTD −.46 10.6 80 5.70807306 180 5.39999715 180 7.8571393 46 ACYPTD −.07 5.6 80 2.90366341 46 ACVPTDP −.16 14.3 80 3.93828552 180 4.39999876 180 6.14285612 47 CVPTDP .01 5.1 80 3.3008536 47 CVPTDPN .59 13.7 98 6.06728507 158 3.98700801 180 7.3999986 48 VPTDPN .21 5.1 80 3.85549613 48 VPTDPNP 1.18 8.6 102 5.52642539 180 5.09999822 180 10.0857082 49 PTDPNP .46 2.4 88 3.38300557 49 PTDPNPQ 2.28 2.8 93 2.49422442 180 3.59999964 180 5.91428331 50 TOPNPQ .5 2.2 80 2.71846268 50 TDPNPQE 2.55 2.8 91 2.95517847 170 3.80175964 180 5.65714194 51 DPNPQE 1.06 0 80 4.14976691 51 DPNPQEV 1.85 5.8 90 7.87338593 142 4.8530168 144 9.90899754 52 PNPQEV .31 1.5 143 4.58159443 52 PNPQEVV .75 11.6 104 9.82802 180 1.05713855 53 NPQEVV .06 .4 100 4.89667866 53 NPQEVVL −.02 20.8 80 6.77921655 147 6.79771978 54 PQEVVL −.27 8 80 4.88563707 54 PQEVVLG −.46 16.2 80 10.712972 180 4.59999854 180 6.25713895 55 QEVVLG −.54 6.6 80 4.22460786 55 QEVVLGN −.19 2.7 80 13.0618563 136 4.03179431 133 7.43431692 56 EVVLGN −.54 3.2 80 4.7537475 56 EVVLGNV −1.29 4.6 80 14.8577324 143 5.23077801 148 12.1496517 57 VVLGNV −1.29 1.9 80 1.81938005 57 VVLGNVT −1.69 12.2 80 7.97331492 132 1.94924385 146 9.18636992 58 VLGNVT −1.11 3.2 80 1.36359393 58 VLGNVTE −.59 7.6 98 14.3811965 180 2.59999936 59 LGNVTE −.36 4.3 115 6.05358251 59 LGNVTEN .51 7.6 99 13.327365 180 1.89999906 60 GNVTEN −.02 5.7 80 3.07264158 60 GNVTENF .65 4.5 96 12.4977417 130 5.08870785 180 11.4571227 61 NVTENF −.17 2.4 95 6.95264042 61 NVTENFN 1.1 4.2 104 13.410322 180 .999997219 180 13.5999856 62 VTENFN −.17 3.2 94 6.87502696 62 VTENFNM .32 1.2 110 10.3891878 180 .99999923 180 13.4285586 63 TENFNM −.14 6.4 80 4.31543897 63 TENFNMW 1.05 5.2 80 3.03005257 128 5.52726887 145 9.71945235 64 ENFNMW .5 1.6 80 6.56133261 64 ENFNMWK 1.51 1.3 80 2.85710225 146 7.0171153 134 11.1247084 65 HFNMWK .5 7.2 80 4.83053688 65 NFNMWKN 1.51 4.1 80 3.36279834 147 5.17803036 180 10.6857106 66 FNMWKH .5 10.2 80 5.34455775 66 FNMWKNN 1.51 12.1 148 9.50267953 147 5.54090488 67 NMWKNN .94 1.09 84 6.47598203 67 NMWKNNM 1.64 2.6 80 10.3115109 147 8.85827898 68 MWKNNM .7 6 80 6.10042863 68 MWKHNMV .54 5.5 80 9.63372205 140 5.32945602 127 7.14594883 180 1.74284865 69 HKNNMV .66 9.2 80 2.50153618 69 WXNNMVE 1.31 10.9 80 11.0435161 120 4.27897212 141 7.54448264 180 .599996358 70 KNNMVE .6 3.2 80 5.58419524 70 KNNMVEQ 1.68 8.1 80 12.1178417 142 6.14937436 71 NNMVEQ .13 2.6 96 4.73472565 71 NNMVEQM .85 0 90 14.9537026 72 NMVEQM −.12 4.5 100 6.00883252 72 NMVEQMH .28 3.7 96 14.1948524 180 2.31428043 73 MVEQMH .51 2.7 115 9.19182903 73 MVEQMHE .28 3.7 97 14.4805622 180 4.1142807 74 VEQMHE 1.23 4 116 8.62558323 74 VEQMHED 1.05 3.7 94 14.283656 149 5.84410789 75 EQMHED 1.98 8.1 80 6.34436198 75 EQMHEDI 1.39 .1 91 12.326519 180 4.59999931 76 QMIEDI .31 3.9 80 12.6132845 76 QMHEDII .64 1.2 90 12.1656749 180 12.4999944 166 4.38843143 77 MHEDII −.89 16.7 80 14.797617 77 MHEDIIS .25 3.9 80 10.5667494 147 7.21621384 157 1.58692131 78 HEDIIS −.62 23.7 80 15.0471601 78 HEDIISL .02 11.3 114 9.62047164 141 7.85709809 180 5.08570813 79 EDIISL −1.59 7.5 81 15.6516936 79 EDISLW .18 7.3 118 9.13994576 180 2.09999728 180 5.31428206 80 DIISLW −1.52 12.9 80 12.6258975 80 DIISLWD .18 .69 80 2.75431712 140 13.6872029 123 11.6897921 180 1.31428269 81 IISLWD −1.52 18.3 80 4.8601113 81 IISLWDQ .18 10.7 100 7.92396483 124 10.62247 180 5.31428532 82 ISLWDQ −.32 15.1 80 6.41076427 82 ISLWDQS .55 12.6 80 6.14412544 164 9.73681878 180 7.05713941 83 SLMDQS .9 1.6 87 6.61515331 83 SLWDQSL .27 2.6 80 12.1215222 147 7.59794494 84 LWDQSL .55 5.9 80 6.51625779 84 LWDQSLK .71 .3 81 13.5587838 141 6.2593098 149 10.5987673 85 WDQSLK 1.35 5.1 80 5.92780332 85 WDQSLKP 1.48 6.2 89 9.49759941 151 5.29558905 180 7.48571071 86 DQSLKP .78 2.3 87 5.08496961 86 DQSLXPC 1 4.8 97 12.4768136 180 7.89999554 87 QSLKPC .11 3.3 122 5.20035816 87 QSLKPCV −.1 5.6 95 14.484075 159 5.67278754 88 SLKPCV −.17 4 89 4.72437198 88 SLKPCVX −.05 3.7 100 14.2863777 180 5.59999792 180 12.542844 89 LKPCVK .28 .7 97 7.84178318 89 LKPCVKL −.7 5.8 107 14.9608929 180 8.29999305 180 14.799984 90 KPCVKL .28 2.3 99 7.08316366 90 KPCVKLT −.06 2.2 107 11.1829906 180 8.29999385 180 12.4571346 91 PCVKLT −.29 3.3 132 5.51747666 91 PCVKLTP −.39 3.6 127 12.9245369 92 CVKLTP −.29 2.7 129 5.47302639 92 CVKLTPL −1.16 1.3 80 .824544342 133 13.7445971 93 VKLTPI. −.42 1.9 80 1.72145914 93 VKLTPLC −1.16 .6 80 2.17205276 138 6.86166129 132 12.8299583 94 KLTPLC −.34 3.6 124 5.85689593 - Five peptides were selected from within residues 35 through 137 of the gp120 surface protein of HIV.
- Peptide number (1, above) which spans blocks 1-5 (6 amino acids per block) has delta values (termed ANGLE) consistent with a helical structure as predicted by both the Hopp/Woods computer program (block length of 6 amino acids) and the Kyte/Doolittle computer program (block length of 7 amino acids).
- Peptide number (2, above) which spans blocks 23-28 has a peak of differential hydrophilicity (a marked change in mean hydrophilicity between the first-half and second-half of a block of amino acids) that is predicted by both programs.
- Peptide number (3, above) which spans blocks 56-63 has delta values consistent with a helical structure (Kyte/Doolittle) and a peak of hydrophilicity (both programs).
- Peptide number (4, above) which spans blocks 76-83 has a peak of differential hydrophilicity (both programs).
- Peptide number (5, above) which spans blocks 87-94 has delta values consistent with helical structures (both programs).
- All five of these peptides exhibit negative mean hydrophilicity values indicating that they are poor antibody binding sites.
- Five other conserved regions of the two HIV envelope proteins can be similarly analyzed and putative T cell-active peptides selected. These regions include residues 204-279 (C2 or conserved region 2), 415-458 (C3), 470-510 (C4), 511-616 (C5) and 654-745 (C6) (Modrow et al., J. Virology, 61:570,1987).
- Similar computer analysis of the gag gene of HIV has revealed several T cell epitopes from within the core or gag gene of HIV (Coates et al., Nature, 326:549, 1987). These peptides are shown below, with their residue position numbers in the protein shown above each peptide.
56 62 EGCRQIL 74 85 ELRSLYNTVAT 170 180 VIPMFSALSEG 199 206 AMQMLKET 298 305 YVDREYKT 333 342 KTILKALGPA 346 355 EMMTACQGV 367 375 AEAMSQVTN - Such synthetic peptides (either from the surface proteins or the core proteins) are able to induce a cell-mediated response sufficient to destroy virus-infected cells bearing the corresponding HIV protein epitopes on their cell surfaces, or as suggested by the work Walker et al., (Science, 234:15631566, 1986) inhibit the growth of the virus.
- As an alternate approach to identify T cell active peptides, it may be necessary to thoroughly cover the protein sequence in question. In this case, overlapping 15-amino acid peptides (15 mers) can be made (the second peptide overlaps with the C-
terminal 5 amino acids of the first peptide, the third overlaps the second, etc.) across the complete conserved amino acid sequence of both gp120 and gp41. - All of these peptides can be made, for example, by the solid phase Merrifield-type synthesis but can also be made by liquid phase synthesis or recombinant DNA-related methods known to those skilled in the relevant arts. A further description of the basic solid phase synthesis method, for example, can be found in the literature (i.e., M. Bodansky et al., Peptide Synthesis, John Wiley and Sons, Second Edition, 1976, as well as in other reference works known to those skilled in this type of chemistry. The so-called “bag” technique described in Houghten, Proc. Natl. Acad. Sci. USA, 82:5131-5135 (i985) is also useful. Appropriate protective groups usable in such synthesis and their abbreviations will be found in the above reference, as well as in J. F. W. McOmie, Protective Groups in Organic Chemistry, Plenum Press, New York, 1973).
- Several peptides were prepared using the before-described techniques. Illustrative peptides so prepared are discussed hereinafter.
- Of those peptides that can be so prepared, an exemplary peptide useful for preparing a multimer as discussed hereinafter includes an amino acid residue sequence whose formula corresponds to one of those shown below, from left to right and in the direction from amino-terminus to carboxy-terminus:
- -EQLWVTVYYGVPV-,
- -VYYGVPVWKEA-,
- -GVPVWKEATTLFC-,
- -AHKVWATHACV-,
- -CVPTNPVPQEVV-,
- -VLENVTENFNM-,
- -NNMVEQMHEDII-,
- -EQMHEDIISLWDQ-,
- -LWDQSLKPCVKLT-,
- -SLKPCVKLTPLC-,
- -SVITQACSKVSFE-,
- -FEPIPIHYCAFPGF-,
- -KKFNGTGPCTN-,
- -GTGPCTNVSTVQC-,
- -VQCTHGIRPVVSTQ-,
- -YLRDQQLLGIWGC-,
- -FLGFLGAAGSTMGAASLTLTVQANQ-,
- -CRIKQIINMWQGVGKAMYA-,
- -CRIKQIINMWQGVGKAMYAPPIGGQIRC-,
- -EGCRQIL-,
- -ELRSLYNTVAT-,
- -VIPMFSALSEG-,
- -AMQMLKET-,
- -YVDREYKT-,
- -KTILKALGPA-, and
- -EMMTACQGV-.
- In the list above, and elsewhere herein, hyphens at the amino- and carboxy-termini of a sequence are intended to imply that one or more additional amino acid residues can be present in a peptide sequence, as discussed before.
- Preferably, a useful peptide having a sequence shown hereinabove is utilized without additional residues at either terminus, except for cysteine and lysine residues as are discussed hereinafter. Such a peptide has a sequence, as discussed before, that corresponds to a formula shown below:
- EQLWVTVYYGVPV,
- VYYGVPVWKEA,
- GVPVWKEATTLFC,
- AHKVWATHACV,
- CVPTNPVPQEVV,
- VLENVTENFNM,
- NNMVEQMHEDII,
- EQMHEDIISLWDQ,
- LWDQSLKPCVKLT,
- SLKPCVKLTPLC,
- SVITQACSKVSFE,
- FEPIPIHYCAFPGF,
- KKFNGTGPCTN,
- GTGPCTNVSTVQC,
- VQCTHGIRPVVSTQ,
- YLRDQQLLGIWGC,
- FLGFLGAAGSTMGAASLTLTVQANQ,
- CRIKQIINMWQGVGKAMYA,
- CRIKQIINMWQGVGKAMYAPPIGGQIRC,
- EGCRQIL,
- ELRSLYNTVAT,
- VIPMFSALSEG,
- AMQMLKET,
- YVDREYKT,
- KTILKALGPA, and
- EMMTACQGV.
- A preferred peptide includes a sequence, as discussed before, that corresponds to a formula shown below.
- -LWDQSLKPCVKLT-,
- -GVPVWKEATTLFC-,
- -GTGPCTNVSTVQC-,
- -YLRDQQLLGIWQC-,
- -FLGFLGAAGSTMGAASLTLTVARQ-,
- -CRIKQIINMWQGVGKAMYA-,
- -EQLWVTVYYGVPV-,
- -VYYGVPVWKEA-, and
- -SVITQACSKVSFE-.
- A particularly preferred peptide, except for the lysine and cysteine residues discussed hereinafter, corresponds to a formula shown below.
- LWDQSLKPCVKLT,
- GVPVWKEATTLFC,
- GTGPCTNVSTVQC,
- YLRDQQLLGIWQC,
- FLGFLGAAGSTMGAASLTLTVARQ,
- CRIKQIINMWQGVGKAMYAPPIGGQIRC,
- EQLWVTVYYGVPV,
- VYYGVPVWKEA, and
- SVITQACSKVSFE.
- Some of the before-enumerated peptides have been disclosed in whole or in part by others as containing T cell epitopes. However, those disclosures did not teach or suggest the multimers that are discussed hereinafter.
- For example, Berzofsky et al., Nature, 334:706-708 (1988) and Cease et al., Proc. Natl. Acad. Sci. USA, 84:4249-4253 (1987) disclosed two peptides having the sequences, as shown before, that are represented by the formulas
- KQIINMWQGVGKAMYA, and
- HEDIISLWDQSLK
- that were said to stimulate T cells of mice immunized with the peptide or a recombinant molecule containing a large portion of the gp120 molecules as well as in humans who had previously been immunized with a recombinant vaccinia virus that expressed the HIV gp160 protein.
- Takahashi et al., Proc. Natl. Acad. Sci. USA, 85:3105-3109 (1988) prepared fifty-five peptides corresponding to much of the gp160 molecule of HIV, and studied the T cell stimulatory effect of those peptides on cells from mice immunized with a recombinant vaccinia virus that expressed gp160. Those workers found a single peptide from the gp120 sequence to be an immunodominant site for stimulation of cytotoxic T lymphocytes, and that that peptide overlapped a B cell epitope capable of evoking virus-neutralizing antibody responses in both animals and humans. That epitope was located at positions 308-322 of gp120 and was said by those workers to be a highly variable sequence among different isolates of HIV.
- Thus, being a B cell epitope and being highly variable in sequence, the immunodominant peptide of Takahashi et al. has little bearing here. Four additional peptides (positions 343-357, 637-651, 657-671 and 780-794) were also said to appear to marginally sensitize target cells.
- Of the preferred and particularly preferred peptides disclosed hereinbefore that are useful for preparation of the multimers discussed hereinafter, several are believed to be new, whereas others have been disclosed in whole or in part of others. Those new peptides are most preferred and consist essentially of a sequence, written from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula shown below:
- YLRDQQLLGIWGC,
- FLGFLGAAGSTMGAASLTLTVARQ,
- EQLWVTVYYGVPV,
- VYYGVPVWKEA,
- SVITQACSKVSFE,
- GVPVWKEATTLFC,
- AHKVWATHACV,
- CVPTNPVPQEVV,
- SLKPCVKLTPLC,
- FEPIPIHYCAFPGF,
- EGCRQIL,
- ELRSLYNTVAT,
- VIPMFSALSEG,
- AMQMLKET,
- YVDREYKT,
- KTILKALGPA, and
- EMMTACQGV.
- The above new peptides can also be included in a longer peptide having a sequence of up to about 30 amino acid residues. Such a longer peptide consists essentially of an amino acid residue sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula shown below:
- -YLRDQQLLGIWGC-,
- -FLGFLGAAGSTMGAASLTLTVARQ-,
- -EQLWVTVYYGVPV-,
- -VYYGVPVWKEA-,
- -SVITQACSKVSFE-,
- -GVPVWKEATTLFC-,
- -AHKVWATHACV-,
- -CVPTNPVPQEVV-,
- -SLKPCVKLTPLC-,
- -FEPIPIHYCAFPGF-,
- -EGCRQIL-,
- -ELRSLYNTVAT-,
- -VIPMFSALSEG-,
- -AMQMLKET-,
- -YVDREYKT-,
- -KTILKALGPA-, and
- -EMMTACQGV-.
- The most preferred peptides of the group described immediately above consist essentially of a sequence of up to about 30 amino acid residues, as shown before, represented by a formula shown below:
- -YLRDQQLLGIWGC-,
- -FLGFLGAAGSTMGAASLTLTVARQ-,
- -EQLWVTVYYGVPV-,
- -VYYGVPVWKEA-,
- -SVITQACSKVSFE-, and
- -GVPVWKEATTLFC-,
- C. The Multimer and Composition
- A useful peptide is itself utilized in an aqueous composition or inoculum that contains dissolved or dispersed therein a multimeric form of the peptide. The peptide multimer is usually hereinafter referred to as being dispersed in water for greater ease of expression and since a solution can be viewed as the ultimate form of a dispersion.
- These peptides elicit a T cell response but not a substantial antibody response, when introduced into an immunocompetent host animal, (a mammal) such as a laboratory mouse or rat, a goat, an ape such as chimpanzee or a human. Therefore, when suitably prepared, a peptide multimer composition of the present invention stimulates T cell immunity (e.g., cytotoxic T cells) without producing a substantial humoral antibody response. The peptide multimer composition of the present invention primes T cells in a way that, when the infecting virus appears at a later date, memory T cells are activated to result in a cell-mediated immune response that destroys target cells that have the corresponding HIV protein or a portion thereof on their cell surfaces, and thereby the virus.
- The activation of only T cells without an antibody response is important because it is believed that antibodies to most regions of the viral envelope protein may stimulate the infectivity of the virus. This latter point renders most viral surface envelope antigen preparations (e.g., intact gp120 and gp41 that contain both B- and T-cell epitopes) ineffective as vaccines. Barnes, Science, 236:255, (1987). The Barnes article reported that about 20 chimpanzees had been given various prototype vaccines (containing B- and T-cell epitopes) and some were challenged by injecting virus, but the results indicated that none of the vaccines prevented infection by infectious HIV. In contrast, this invention provides a suitable T cell response that produces cytotoxic T cells or other types of T cell responses that kill or otherwise neutralize target cells such as T lymphocytes that express an HIV protein or a portion of an HIV protein on the target cell surface.
- It should be emphasized that an effective peptide multimer can in some cases induce a low to moderate level antibody response -and still be useful in an effective composition. In this case, the induced anti-peptide antibodies are incapable of recognizing or detecting the mature native protein such as gp160 to which the peptide of the multimer corresponds in sequence. Thus, the anti-peptide antibodies induced by the T cell active peptide must not be substantially capable of binding to the intact, infectious virus. It is well known that anti-peptide antibodies to certain regions of a given protein may not recognize the native protein (for example, see the work of Ho et al., J. Virol., 61:2024, 1987).
- The use of synthetic peptides that are T cell active but that are not immunogenic for native virus (anti-peptide antibodies that are unable to detect or immunoreact with the virus particle) can have an added advantage in that inherent immunological memory should be superior for peptide vaccines of the present invention.
- The composition or inoculum contains a before-described peptide in a multimeric form. Exemplary of such multimers are surfactant-like micelles and polymers, examples of each of which are discussed hereinafter.
- In one type of multimer synthesis, the N-terminal end of each peptide is linked to a di-C12-C18 fatty acid amide of a lysine-terminated peptide spacer such as a dipalmityl-lysyl-glycyl-glycyl sequence to serve as a carrier as described by T. P. Hopp (Mol. Immunol., 21:13, 1984). Other useful C12-C18 fatty acids include lauric, myristic, stearic, oleic and palmitoleic acids.
-
- In addition to the amino-terminal lysyl residue, the spacer peptide can contain one to about five additional residues. Substantially any amino acid residue can be utilized so long as it does not interfere with the T cell immunizing capacity of an aqueous composition containing the multimer or with the capacity of the di-amide reaction product to form surfacetant-like micelles in an aqueous composition. One to about three glycyl residues per spacer peptide are preferred.
- The before-described peptide and the amino-terminal lysyl residue-containing peptide spacer are peptide-bonded together, and can thus be viewed as a composite polypeptide. The useful diamide is thus a reaction product of the alpha- and epsilon-amino groups of the amino-terminal lysyl residue and two moles per composite polypeptide of the C12-C18 fatty acid. The composite polypeptide can thus be prepared as a single sequence and amidified before or after removal from the resin, where solid phase synthesis is used, by conventional techniques.
- The phrase “surfactant-like micelle” is used herein to emphasize that, in an aqueous composition, the di-amidolysyl composite polypeptide appears to form micelles similar to those formed by surfactants and to distinguish such multimers from submicroscopic structural units of protoplasm built up from polymeric molecules that are also sometimes referred to as micelles. The word “micelle” is also sometimes used herein, and when so used-nas the same meaning as surfactant-like micelle.
- Another multimer form of a previously described peptide is a polymer having a plurality of peptide repeating units. In this case, a peptide containing two terminal cysteines as part of its natural sequence can be selected and synthesized. A peptide lacking such cysteines can be modified by the addition of one or two extra cysteines to the N- and C-terminal ends, respectively. The presence of two cysteines per peptide permits polymerization of the subunit peptide by air oxidation to form oxidized cysteine(cystine)-linked polymers and/or cyclic peptides. Such multimers enhance immune recognition of the peptide without the need of a carrier.
-
- The lysine-terminated spacer peptide can contain one to about five amino acid residues in addition to the lysyl residue, and the one or two added terminal cysteine residues are not included in counting the length of a peptide of the present invention. A peptide containing terminal cysteine residues is referred to as a di-cysteine-terminated peptide or more simply, a di-Cys peptide. Details for preparing polymers containing di-Cys peptide repeating units are provided hereinafter.
- It should also be noted that a peptide multimer of a composition can contain more than one, active, T cell stimulating peptide as described previously. The inclusion of more than one such active peptide permits activation by more than a single T cell eptiope to a single HIV protein, as well as to a plurality of HIV proteins. Such inclusion of peptides of different sequences can also avoid non-response in the host animal that is immunized. In addition, a multimer can also include an inactive peptide; i.e., a peptide that does not induce T cell activation or antibodies that immunoreact with a native HIV protein, to enhance water dispersibility, for example.
- An aqueous composition (inoculum) of the present invention comprises an immunologically effective amount of a before-described peptide multimer dissolved or dispersed in a pharmaceutically acceptable aqueous medium. Such compositions are also referred to as inocula, as noted before.
- The phrase “pharmaceutically acceptable” refers to molecular entities and compositions that do not produce an allergic or similar untoward reaction when administered to a human.
- The preparation of an aqueous composition that contains an immunizing molecule such as a before-described peptide multimer as an active ingredient is well understood in the art. Typically, such compositions are prepared as injectables, either as liquid solutions or suspensions; solid forms suitable for solution in, or suspension in, liquid prior to injection can also be prepared. The preparation can also be emulsified.
- The active immunogenic peptide multimer is dissolved or dispersed in an excipient that is pharmaceutically acceptable and compatible with the active T cell immunogen as is well known. Suitable excipients are, for example, water, saline, phosphate buffered saline (PBS), dextrose, glycerol, ethanol, or the like and combinations thereof. In addition, if desired, the composition can contain minor amounts of auxiliary substances such as wetting or emulsifying agents, pH buffering agents or adjuvants that enhance the effectiveness of the vaccine.
- The composition is conventionally administered (introduced) parenterally, by injection, for example, intraperitoneally, intravenously, intradermally, subcutaneously or intramuscularly. Additional formulations that are suitable for other modes of administration include suppositories and, in some cases, oral formulations. For suppositories, traditional binders and carriers can include, for example, polyalkalene glycols or triglycerides; such suppositories can be formed from mixtures containing the active ingredient in the range of 0.5 percent to 10 percent, preferably 1-2 percent. Oral formulations include such normally employed excipients as, for example, pharmaceutical grades of mannitol, lactose, starch, magnesium stearate, sodium saccharine, cellulose, magnesium carbonate and the like.
- A peptide multimer can be formulated into a composition in a neutral or salt form. Pharmaceutically acceptable salts, include the acid addition salts (formed with the free amino groups of the peptide) and which are formed with inorganic acids such as, for example, hydrochloric or phosphoric acids, or such organic acids as acetic, oxalic, tartaric, mandelic, and the like. Salts formed with the free carboxyl groups can also be derived from inorganic bases such as, for example, sodium, potassium, ammonium, calcium, or ferric hydroxides, and such organic bases as isopropylamine, trimethylamine, histidine, procaine, and the like.
- Similarly, peptides and peptide multimers of this invention can form salts with fluosilicic acid. These salts are useful as mothproofing agents in accordance with the teachings of U.S. Pat. No. 1,915,334 and U.S. Pat. No. 2,075,359. The instant peptides and peptide multimers also form salts with thiocyanic acid which, in turn, can be condensed with formaldehyde to form resinous materials useful as pickling inhibitors in accordance with U.S. Pat. No. 2,425,320 and U.S. Pat. No. 2,606,155. Salts of the peptide and peptide multimers with trichloroacetic acid are useful as herbicides against Johnson grass, yellow foxtail, Bermuda grass, quack grass, and the like. Salts formed between ammonia and a carboxylic acid present in the peptides and peptide multimers of this invention can be used as a source of nitrogen for leguminous plants such as peas.
- A composition is administered in a manner compatible with the dosage formulation, and in such amount as is immunologically effective. By “immunologically effective amount” is meant an amount of composition is used that contains an amount of a peptide multimer sufficient to induce cellular immunity in the host animal (mammal) such as by the induction of anti-HIV cytotoxic T cells. The presence of such cytotoxic T cells is assayed as discussed hereinafter.
- The quantity of multimer peptide and volume of composition to be administered depends on the host animal to be immunized, the capacity of the host animal's immune system to activate T cells, and the degree of protection desired. Precise amounts of active peptide multimer required to be administered depend on the judgment of the practitioner and are peculiar to each individual. However, suitable dosage ranges are of the order of about 10 micrograms (μg) to about 500 milligrams, preferably about 50 μg to about 1 mg, and more preferably about 100 micrograms of active ingredient peptide multimer per individual. A minimal volume of a composition required to disperse the immunizing amount of peptide multimer is typically utilized. Suitable regimes for initial administration and booster shots are also variable, but are typified by an initial administration followed in one or two week intervals by a subsequent injection or other administration.
- A composition can also include an adjuvant as part of the excipient. Adjuvants such as complete Freund's adjuvant (CFA), incomplete Freund's adjuvant (IFA) for use in laboratory host mammals are well known in the art, and are used illustratively herein. Pharmaceutically acceptable adjuvants such as alum can also be used.
- Typical mammals (host animals) used in practicing a method of this invention include mice, rabbits, goats, primates, humans and the like.
- In a usual screening procedure, each peptide multimer preparation is first assayed in mice, for example, to screen for an appropriate T cell active peptide multimer. T cell active peptide multimers are assayed by injecting a before-described composition into mice, and then testing T cells recovered from the murine lymph nodes one to three weeks after inoculation with the peptide multimer-containing composition. The measurement of activation or priming of T cells is done by T cell proliferation tests and/or interleukin-2 production (Milich et al., J. Exp. Med., 164:532, 1986).
- Two types of T cell active peptides should be found. The more prevalent group of peptides prime (activate) T cells that respond in test tube assays to only the peptide and not the corresponding native HIV surface protein. The second group of peptides prime T cells to respond to both the peptide and the native HIV protein. It is this latter group of peptides that induce protective immunity in the immunized host. A plurality of strains of mice that vary in their histocompatibility genes are used for these screenings. Peptides that have a broad response in the various MHC genotypes are selected for further study in primates, and finally humans. Exemplary assay procedures are found hereinafter.
- T cell active peptide multimers are also screened to identify those peptide multimers that lack B cell stimulatory activity. This is accomplished by injecting each peptide multimer into small immunocompetent animals (various strains of mice) to identify those peptides that fail to generate an antibody response to the native HIV protein to whose sequence the peptides correspond in part such as the gp120, gp41 or core proteins, for example. These animals should not produce anti-peptide antibodies that bind to (immunoreact with) the corresponding native viral protein. Those selected peptides that induce T cell activation, but do not induce an antibody response to their correlative or corresponding native protein are then assayed in baboons or other apes and monitored to confirm the lack of anti-peptide antibody production in baboon sera.
- At this stage, mixtures of peptides are preferably employed in the multimer to provide a broad spectrum of coverage usually needed for an effective T cell activating composition. Peptide mixtures are then incorporated into a multimer-containing composition and assayed in a suitable animal that allows replication of the AIDS virus (e.g., chimpanzees) to test for priming of T cells. Peptides that are more active are used to immunize chimpanzees in a virus challenge study. A successful protection study prevents viremia without eliciting a significant humoral antibody response, but primes T cells for in vitro responses to the envelope antigens. The virus is then neutralized by cell mediated immunity.
- A composition containing a peptide multimer in an immunologically effective amount is thus obtained that can induce a killing effective amount of cytotoxic T cells. Those cytotoxic T cells are capable of killing target cells, when contacted in vitro or in vivo with such target cells like T lymphocytes or other cells such as P815 mouse cells (when the cytotoxic T cells are from a mouse; P815 mouse cells are available from Dr. Fernando Plata of the Pasteur Institute, Paris, France) that exhibit a corresponding HIV protein or a portion of such a protein on their cell surfaces.
- As described before, it is not necessary to select a peptide that completely lacks the capability to raise anti-peptide antibodies. Where such antibodies are induced, the anti-peptide antibodies must not be capable of recognizing (immunoreacting with) the native envelope proteins as measured, for example, either by immunoblotting procedures or by other immunoabsorbent (ELISA) tests. What is important in this particular response is that anti-peptide antibodies against a certain peptide sequence must not induce antibodies that bind to the infectious virus. Thus, in this case, T cell active peptides that raise low or moderate levels of anti-peptide antibodies are screened to identify those that fail to detect either intact virus preparations or viral surface proteins by immunoabsorbent tests (ELISA) and/or immunoblot procedures.
- D. Methods
- Methods constitute yet another aspect of the present invention.
- A first method comprises the induction of T cell immunity to a preselected native HIV protein in a host animal such as a laboratory animal or a human as noted previously. Here an immunizing effective amount of a before-discussed active peptide multimer-containing composition is introduced into the host animal, and the host animal is maintained for a time period sufficient for the T cell immunity to develop. This immunization does not induce substantial production of antibodies that immunoreact with the preselected HIV protein. This immunization can be repeated or boosted from time to time as desired.
- The preselected HIV native protein is a protein to which an active peptide of the multimer corresponds in sequence. As already noted, an active peptide multimer can include active peptides corresponding to different HIV proteins, and as a consequence, the above method can be used to induce T cell immunity to more than one HIV protein.
- T cells from the immunized host animal can be collected and assayed for their having immunity to the preselected HIV protein using an assay such as the proliferation assay discussed hereinafter.
- The immunized T cells prepared as discussed in the above method can be utilized in a method of killing target cells that exhibit an HIV protein or a portion thereof on their cell surfaces. In this method, such target cells are contacted with a killing effective amount of cytotoxic T cells that have been immunized with a before-discussed composition, as already discussed. That contact is maintained for a time period sufficient to kill the target cells.
- The above method can be carried out in vitro or in vivo. For in vitro studies, immunized T cells are obtained from an immunized host animal and are admixed and contacted with the target cells in an appropriate aqueous medium such as RPMI medium. The admixture is thereafter assayed for lysis of the target cells as by the51Cr assay discussed hereinafter.
- The target cells utilized can be HIV-infected cells that express and thereby exhibit HIV proteins such as core, gp120 and gp41 on their cell surfaces. The target cells can also be cells such as spenocytes that upon admixture with a peptide used in the multimer binds that peptide to its surface and thereby exhibits a portion of an HIV protein on its surface. Further target cells include P815 mouse mastocytoma cells (ATCC TIB64 that have been further transferred to express HIV proteins, and are available from Dr. Fernando Plata of the Pasteur Institute, Paris, France, as noted before.
- In an in vivo aspect of the above method, the target cells and immunized cytotoxic T cells are supplied by the immunized host animal; i.e., the host animal is infected with HIV, and HIV proteins or portions thereof are expressed on the surfaces of host cells such as T4+ cells. Once a host animal such as a chimpanzee or human expresses HIV proteins on cell surfaces, the animal is usually also viremic. As a consequence, a decrease in viremia of an infected host after immunization or the absence of viremia after immunization and infection provide assays for the above method.
- In still another aspect of the above method, autologous or appropriately matched heterologous cytotoxic T cells are used. For autologous cells, immunization as discussed previously can be sufficient. However, immunized T cells can be recovered as already discussed, cultured further in the presence of an immunizing peptide multimer to proliferate the cells, and then those proliferated cells can be re-introduced into the same host animal to augment the effect obtained by immunization alone.
- For heterologous cells, a donor is immunized with a previously discussed composition and the donor's immunized T cells collected. Immunized T cells from an appropriately matched donor, e.g. a syngeneic donor, can be then introduced into an HIV-infected recipient as a passive immunization. Prior to the passive immunization, the matched donor cells can be proliferated as discussed above and then utilized.
- The maintenance time of contact between the target cells and effector cytotoxic T cells can vary from about an hour to days, depending on several parameters, most importantly being whether the method is carried out in vivo or in vitro. For in vivo methods, the maintenance time is the lifetime of the cytotoxic T cells, which can be days to weeks. For in vitro uses, maintenance times of one to about 10 hours, and preferably about 2 to about 5 hours are generally used.
- An important issue in considering the effectiveness of a peptide multimer or method of this invention is whether the cell-mediated immune system can function in a previously immunized individual when at a later time the immunized host animal is exposed to HIV which is infecting and altering the function of T4 helper cells. The research findings of Buller et al. (Nature, 328: 77, 1987)-provide evidence that is consistent with the hypothesis that a T cell active peptide can invoke a cell mediated response in the absence of T4 helper cells. Their work demonstrates that cytotoxic T cell responses can be induced in mice in the absence of T helper cells; the end result was that mice being studied recovered from a viral disease without T helper cells.
- Therapy for HIV-infected host animals such as people is also comtemplated by the present invention. A composition of this invention can thus be used to treat animal hosts that are already infected with HIV.
- In this particular situation, it is important to consider that the target for cell mediated immunity includes not only the virus but more importantly the virus-infected cell. Such infected cells have not only viral envelope proteins on their surfaces but possibly glycosylated core proteins (gag gene products) or their higher molecular weight precursors as well (Naso et al., J. Virol., 45:1200, 1983). Therefore, T cell active peptides from the gag gene of HIV as noted before are also selected, assayed and used for their affects on virus infected cells, as discussed above.
- The T helper cell-independent cytotoxic T cell response, described by Buller et al., bodes well for the use of T cell active peptide multimers in the therapy of AIDS. Such a peptide multimer or a multimer containing mixture of peptides can mount an effective cell-mediated immune response at a time when T4 cells are being infected and killed by the HIV. Since T8 cells are resistant to HIV infection, a peptide multimer can activate and prime T8 cytotoxic cells permitting a specific virus-killing response in the AIDS patient even though the virus may be infecting and altering the immune helper function of T4 cells.
- Studies of Walker et al., (Nature, 328: 345, 1987) have demonstrated the presence HIV-specific cytotoxic T cells in persons infected with HIV. These cytotoxic T cells were able to kill HIV antigen-containing B lymphocytes derived from the same patient in laboratory tests. Their study showed that a monoclonal antibody specific for cytotoxic T cells was able to inhibit the cell killing activity. These results support the immunization approach described herein, and may have important implications for the use of T-cell active peptides and their multimers in the treatment of AIDS patients.
- Synthetic peptides of 7 to about 30 amino acid residues in length were prepared corresponding to the selected conserved domains of the core and gp160 (gp12o and gp4l) molecules using the solid-phase technique of Merrifield described in J. Am. Chem. Soc. 85:2149-2154 (1963) using a modified Vega 250 automated peptide synthesizer or by the “bag” method described in Houghten, Proc. Natl. Acad. Sci, USA, 82:5131-5135 (1985). The t-butyloxycarbonyl (t-BOC) amino acid blocking groups and the hydrolysis of the peptide from the resin were carried out by hydrofluoric acid (HF) treatment at about zero degrees C for one hour. The peptide-containing mixture was then extracted with diethyl ether to remove non-peptide organic compounds and the synthesized peptides were extracted from the resin with acetic acid (25 percent w/v).
- Nineteen (19) synthetic peptides have been prepared that correspond to conserved domains of the gp120 molecule and the gp41 molecule by this procedure, and are listed in TABLE 2. The synthesized peptides correspond to designated conserved domains (regions) of gp160 in HIV as shown.
TABLE 2 AMINO ACID SEQUENCE OF SYNTHETIC PEPTIDES PEPTIDE LOCATION IN # AMINO ACID SEQUENCE1 HIV ENVELOPE2 103 39EQLWVTVYYGVPV51 GP160-CR-1 104 45VYYGVPVWKEA55 GP160-CR-1 105 48GVPVWKEATTLFC61 GP160-CR-1 106 72AHKVWATHACV82 GP160-CR-1 107 81CVPTNPVPQEVV92 GP160-CR-1 108 92VLENVTENFNM102 GP160-CR-1 109 105NNMVEQMHEDII116 GP160-CR-1 110 109EQMHEDIISLWDQ121 GP160-CR-1 111 118LWDQSLKPCVKLT131 GP160-CR-1 112 121SLKPCVKLTPLC133 GP160-CR-1 113 204SVITQACSKVSFE216 GP160-CR-2 114 215FEPIPIHYCAFPGF228 GP160-CR-2 115 236KKFNGTGPCTN246 GP160-CR-2 116 240GTGPCTNVSTVQC252 GP160-CR-2 117 250VQCTHGIRPVVSTQ263 GP160-CR-2 61 586YLRDQQLLGIWGC598 GP160-CR-5 63 519FLGFLGAAGSTMGAASL- GP160-CR-5 TLTVQANQ 54365 417CRIKQIINMWQGVGKAMYA435 GP160-CR-3 67 417CRIKQIINMWQGVGKAM- GP160-CR-3 YAPPIGGQIRC444 - Two types of high molecular weight (multimeric) forms of the peptides listed in TABLE 2 were prepared. The principal form of multimer was a di-cysteine (di-Cys terminated) polymer in which a plurality of peptides were linked end-to-end by disulfide bonds. These di-cysteine polymers were produced by adding a cysteine residue to the termini of each peptide during synthesis. The di-cysteine-terminated (di-Cys) peptides were then dissolved (10 mg/ml) in ammonium bicarbonate (0.1M) at room temperature (about 25 degrees C.) and stirred for about 16 hours to effect oxidation of the sulfhydryl groups to produce polymer forms of the peptides.
- The second type of high molecular weight form produced was a surfactant-like micelle formed by linkage of an amino-terminal lysine-containing spacer peptide (Lys-Gly-Gly-) to the peptide sequence to form a composite polypeptide, and then coupling a C12-C18 fatty acid, such as palmitic acid, to both the alpha and epsilon amino groups by the method described in Hopp, Mol. Immunol. 21:13-16 (1984), which is incorporated herein by reference. The C12-C18 fatty acid-containing peptides produced are then extracted in acetic acid (95 percent), and utilized to form large micelles in the aqueous composition that exhibit increased immunogenicity relative to the peptides.
- Di-Cys polymer multimers of all of the peptides listed in TABLE 2 were prepared. Aqueous peptide micelle multimers have been prepared of peptides designated 61, 63, 65 and 67, and are designated as peptides 62, 64, 66 and 68, respectively. Peptides designated 103 through 117 were utilized only in their di-Cys polymer multimeric forms.
- The high molecular weight, multimeric forms produced correspond to multiple copies of specific regions of gp120 and gp41 in HIV. For ease of designation, the multimer forms will be designated by the peptide number from which it is composed - that is,
peptide 61 refers to the di-Cys multimeric (polymeric) form ofpeptide 61 and peptide 66 refers to the aqueous micelle form ofpeptide 65, whereas peptide 103-117 refers to a polymeric multimer. -
Peptides 65 and 66 correspond to the region of gp120 that binds to the cell surface T4 receptor.Peptides 63 and 64 correspond to a region near the amino-terminal portion of gp41 that represents a major immunodominant epitope seen by AIDS patients' serum. - Aqueous compositions of the multimers; i.e., the di-Cys peptide polymers and micelles produced in EXAMPLE 1 were assayed for their ability, or lack of ability to elicit an anti-peptide antibody response in BALB/c mice, an immunocompetent mouse strain.
- Groups of BALB/c mice (6-8-week-old females, 3 to 5 mice/group, Charles River Laboratories) were immunized by subcutaneous (s.c.) or intraperitoneal (i.p.) injection of a peptide multimer (100 μg/injection) in complete Freund's adjuvant (CFA) (1:1 ratio). Booster injections (50 pg of peptide multimer) in incomplete Freund's adjuvant (IFA) (1:1) were given at 6 and 10 weeks after the initial immunization. Each mouse was bled from its retro-orbital plexus at two-week intervals and the serum was pooled for individual mice in each group.
- An ELISA assay was performed on each serum to detect the presence of anti-peptide antibodies utilizing peroxidase-conjugated goat anti-mouse IgG (obtained from Boehringer Mannheim Biochemicals, Indianapolis, Ind.) as the second antibody). Preliminary results for peptides 61-68 are shown in TABLE 3, whereas further refined results for
peptides - It was found that the high molecular weight forms of
peptides peptides - Some of the sera were further assayed for antibody response (reactivity) with native gp160, and the results, shown in TABLE 5, demonstrate that these peptides do not represent B cell epitopes since there was no immunoreaction with native gp160.
TABLE 3 ANTIBODY RESPONSE OF VARIOUS PEPTIDES IN BALB/C MICE ELISA Titer in Bleed 1 Peptide Pre- 1 Immune 1 2 3 4 5 6 7 8 61 1:40 1:400 1:100 1:100 1:100 1:100 1:400 1:200 1:400 62 1:20 1:100 1:100 1:100 1:100 1:100 1:200 1:100 1:100 63 1:40 1:80 1:20 1:40 1:320 1:80 1:80 1:320 1:5120 64 1:20 1:40 1:40 1:80 1:40 1:40 1:40 1:40 1:40 65 1:40 1:80 1:800 1:1 × 104 1:5 × 104 1:5 × 104 1:2 × 105 1:2 × 105 1:2 × 105 66 1:40 1:160 1:6 × 103 1:1 × 105 1:1 × 105 1:1 × 105 1:2 × 104 1:5 × 104 1:5 × 104 67 1:40 1:160 1:3 × 103 1:2 × 104 1:2 × 104 1:1 × 105 1:8 × 105 1:1 × 105 1:2 × 105 68 1:80 1:1600 1:1 × 104 1:1 × 104 1:1 × 105 1:1 × 105 1:4 × 105 1:4 × 105 1:4 × 105 -
TABLE 4 ANTIBODY RESPONSE OF VARIOUS PEPTIDES IN BALB/C MICE PEPTIDE ELISA TITER # 61 AA 586-598 1:400 #63 AA 519-543 1:5120 #65 AA 417-435 1:2 × 105 #67 AA 417-444 1:8 × 105 #103 AA 39-51 1:640 #104 AA 45-55 1:2000 #105 AA 48-61 1:5000 #106 AA 72-82 1:4 × 105 #107 AA 81-92 1:1 × 105 #108 AA 92-102 1:1 × 105 #109 AA 105-116 1:8 × 105 #110 AA 109-121 1:6 × 106 #111 AA 118-130 1:80 #112 AA 121-133 1:1 × 105 #113 AA 204-216 1:640 #114 AA 215-228 1:1 × 106 #115 AA 236-246 1:4 × 105 #116 AA 240-252 1:640 #117 AA 250-263 1:8 × 106 -
TABLE 5 T AND B CELL RESPONSES IN MICE TO HIV ENVELOPE GP160 DERIVED SYNTHETIC PEPTIDE IMMUNOGENS In Vitro Proliferation of PLN Cells from* Antipeptide Antibody Peptide B6C3F1 A · SW × Balb/c F1 Reactivity to** Immu- Analogous Analgous Analogous nogen Peptide GP 160 Peptide GP 160 Peptide GP 160 61 ++ + ++ ++ − − 63 ++ ++ ++ ++ ± − 65 ++ + ++++ ++ ++ − 67 ++ − ++++ ++ +++ − 103 + + +++ + − − 104 ++++ ++ ++ + ± − 105 ++++ +++ + − ± − 106 +++ + ++++ + ++ − 107 ++ ++ + + + − 108 + + + − + − 109 ++ ± ± + +++ − 110 ++ − ++ + ++++ − 111 + ++ ± − − − 112 + + + + + − 113 ++ + ++ + − − 114 ++ − ++ + ++++ − 115 ++ + ΔND ND ++ − 116 ++ − ND ND − − 117 +++ − ND ND ++++ − - The high molecular weight, multimeric di-Cys peptide polymeric forms of the peptides described in EXAMPLE 1 were assayed for their elicitation of a T cell proliferative response by the method described in Millich et al., J. Immunol. 134:4194-4203 (1985), incorporated herein by reference.
- Mice (3 or 5 mice/group) were injected in the right hind footpad with a peptide polymer (100 μg/injection) in complete Freund's adjuvant (1:1).
Peptides - FIG. 1 illustrates the results for
peptides - FIGS.2-5 illustrate the peptide-specific 3H-TdR incorporation for T cell responses (delta cpm) in mice with differing major histocompatibility (MHC) haplotypes, B6C3 F1 (C57B1/6×C3H/HcJ) mice (FIGS. 2 and 4) and (A.SWxBALB/c) Fl mice (FIGS. 3 and 5), for all of the synthetic peptides. The 3H-TdR incorporation values represent the difference between the radioactivity values obtained in wells containing antigen and in control wells without added antigen. The non-specific proliferation of PLN cells was determined by including an unrelated peptide in the assays, shown as a horizontal bar for each peptide.
- All of the assayed peptides exhibited good T cell proliferative responses in B6C3 F1 mice, whereas all of the assayed peptides, except
peptides - It was demonstrated by the results above and those described in EXAMPLE 2 that
peptides - T cell proliferation measured by3H-TdR incorporation, was also similarly assayed as a function of the T cell antigen concentration, using various amounts of native gp120 or gp160 as one control, and PPD as another control. PLN from B6C3 F1 mice were used in these studies. The results for
peptides peptides peptides - Groups of 3 to 5 syngeneic female mice (6 to 8 weeks of age) are immunized by injection in an appropriate site with an aqueous composition containing an immunizing (cytotoxic T cell stimulating) amount of either of the before-discussed multimers, in a mixture with CF.A (1:1). Ten (10) days after immunization, draining PLN cells and spleen lymphocytes are obtained and restimulated in vitro by culturing for six (6) days with the same synthetic peptide as immunogen.
- The presence of cytotoxic T lymphocytes (CTL) is determined by a 6-hour51Cr release assay as follows. The PLN and spleen cells are maintained for six days at 37 degrees C in RPMI 1640 medium containing 10 percent fetal calf serum (FCS) together with different concentrations of the appropriate test peptide multimer from the aqueous composition. These cells are designated as the effector cells, and are H-2d.
- Target cells [phytohemagglutinin-stimulated (PHA) blasts of syngeneic mouse spleen cells or P815 mouse cells expressing a corresponding HIV protein] (1×106/assay sample) are washed with serum-free RPMI 1640 medium three times and then admixed, contacted and maintained (incubated) at 37 degrees C. for about 1.5 to about 3 hours together with various concentrations of the test peptide and 300 μCi of sodium chromate (specific activity 200-500 μCi/mg of Cr, New England Nuclear, Boston, Mass.). The target cells samples are subsequently washed with RPMI 1640 medium containing 10 percent FCS and the appropriate peptide, and resuspended in RPMI 1640 with 10 percent FCS (2×105 cells/ml) and different concentrations of peptide. A 100 μl aliquot of each cell suspension is added to a well of a 96-well-U-bottom microtiter plate.
- A 100 μl aliquot of the appropriate effector cell suspension is added to each well and a twofold serial dilution made to obtain different effector-to-target cell (E:T) ratios. Control wells receive 0.1 ml of RPMI medium with 10 percent FCS alone in the absence of effector cells to obtain a value for spontaneous51Cr release, and receive 0.1 ml of 5 percent Triton X-100 detergent to obtain a value for total 51Cr release.
- The plates are incubated at 37 degrees C. for about 3 to about 4 hours, following which 100 μl of
-
- Changes may be made in the construction, operation and arrangement of the various parts, elements, steps and procedures described herein without departing from the concept and scope of the invention as defined in the following claims.
Claims (26)
1. A composition containing water having dispersed therein a peptide multimer comprising a plurality of active peptides each of which consists essentially of 7 to about 30 amino acid residues having a sequence that corresponds to a portion of a conserved domain of an HIV protein, said composition, when used to immunize an immunocompetent animal, having the capacity to induce cytotoxic T cell activation to the corresponding native HIV protein but being substantially free from inducing antibodies that immunoreact with said corresponding native HIV protein.
2. The composition according to claim 1 wherein the amino acid residue sequence of each of said active peptides corresponds to a portion of a conserved domain of an HIV protein selected from the group consisting of the core, gp41 envelope and gp120 envelope proteins.
3. The composition according to claim 2 wherein the sequence of each of said active peptides corresponds to a conserved domain selected from the group consisting of the first, second, third and fifth conserved domains of the gp160 envelope protein.
4. A composition containing water having dispersed therein a peptide multimer comprising a plurality of active peptides each of which consists essentially of 7 to about 30 amino acid residues having a sequence that corresponds to a conserved domain of an HIV protein selected from the group consisting of the first, second, third and fifth conserved domains of the HIV gp160 envelope protein, said peptide multimer containing said plurality of active peptides bonded together by oxidized cysteine residues at the termini of each of said active peptides or as a micelle formed from the reaction of a C12-C18 fatty acid and the alpha- and epsilon-amino groups of an amino-terminal lysyl residue of a peptide spacer containing one to about five amino acid residues in addition to said lysyl residue added to the amino-terminus of said active peptides, said composition, when used to immunize an immunocompetent animal, having the capacity to induce cytotoxic T cell activation to the corresponding native HIV protein but being substantially free from inducing antibodies that immunoreact with said corresponding native HIV protein.
5. The composition according to claim 4 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-,
-GVPVWKEATTLFC-,
-AHKVWATHACV-,
-CVPTNPVPQEVV-,
-VLENVTENFNM-,
-NNMVEQMHEDII-,
-EQMHEDIISLWDQ-,
-LWDQSLKPCVKLT-,
-SLKPCVKLTPLC-,
-SVITQACSKVSFE-,
-FEPIPIHYCAFPGF-,
-KKFNGTGPCTN-,
-GTGPCTNVSTVQC-,
-VQCTHGIRPVVSTQ-,
-YLRDQQLLGIWGC-,
-FLGFLGAAGSTMGAASLTLTVQANQ-,
-CRIKQIINMWQGVGKAMYA-,
-CRIKQIINMWQGVGKAMYAPPIGGQIRC-,
-EGCRQIL-,
-ELRSLYNTVAT-,
-VIPMFSALSEG-,
-AMQMLKET-,
-YVDREYKT-,
-KTILKALGPA-, and
-EMMTACQGV-.
6. The composition according to claim 4 wherein said active peptide contains a sequence of about 10 to about 25 residues.
7. The composition according to claim 6 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-LWDQSLKPCVKLT-,
-GVPVWKEATTLFC-,
-GTGPCTNVSTVQC-,
-YLRDQQLLGIWQC-,
-FLGFLGAAGSTMGAASLTLTVARQ-,
-CRIKQIINMWQGVGKAMYA-,
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-, and
-SVITQACSKVSFE-.
8. A method of inducing T cell immunity to a preselected native HIV protein in a host animal without inducing substantial production of antibodies that immunoreact with said preselected native HIV protein that comprises introducing into said host animal an immunizing amount of a composition of claim 1 .
9. The method according to claim 8 wherein the amino acid residue sequence of each of said active peptides corresponds to a portion of a conserved domain of an HIV protein selected from the group consisting of the core, gp41 envelope and gp120 envelope proteins.
10. A method of inducing T cell immunity to a preselected native HIV protein in a host animal without inducing substantial production of antibodies that immunoreact with said preselected native HIV protein that comprises introducing into said host animal an immunizing amount of a composition of claim 4 .
11. The method according to claim 10 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-,
-GVPVWKEATTLFC-,
-AHKVWATHACV-,
-CVPTNPVPQEVV-,
-VLENVTENFNM-,
-NNMVEQMHEDII-,
-EQMHEDIISLWDQ-,
-LWDQSLKPCVKLT-,
-SLKPCVKLTPLC-,
-SVITQACSKVSFE-,
-FEPIPIHYCAFPGF-,
-KKFNGTGPCTN-,
-GTGPCTNVSTVQC-,
-VQCTHGIRPVVSTQ-,
-YLRDQQLLGIWGC-,
-FLGFLGAAGSTMGAASLTLTVQANQ-,
-CRIKQIINMWQGVGKAMYA-,
-CRIKQIINMWQGVGKAMYAPPIGGQIRC-,
-EGCRQIL-,
-ELRSLYNTVAT-,
-VIPMFSALSEG-,
-AMQMLKET-,
-YVDREYKT-,
-KTILKALGPA-, and
-EMMTACQGV-.
12. The method according to claim 10 wherein said active peptides consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-LWDQSLKPCVKLT-,
-GVPVWKEATTLFC-,
-GTGPCTNVSTVQC-,
-YLRDQQLLGIWQC-,
-FLGFLGAAGSTMGAASLTLTVARQ-,
-CRIKQIINMWQGVGKAMYA-,
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-, and
-SVITQACSKVSFE-.
13. A peptide containing up to about 30 amino acid residues that includes a peptide having a sequence that consists essentially of an amino acid residue sequence, from left to right and in the direction from amino-terminus to carboxy-terminus represented by a formula selected from the group consisting of
-YLRDQQLLGIWGC-,
-FLGFLGAAGSTMGAASLTLTVARQ-,
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-,
-SVITQACSKVSFE-,
-GVPVWKEATTLFC-,
-AHKVWATHACV-,
-CVPTNPVPQEVV-,
-SLKPCVKLTPLC-,
-FEPIPIHYCAFPGF-,
-EGCRQIL-,
-ELRSLYNTVAT-,
-VIPMFSALSEG-,
-AMQMLKET-,
-YVDREYKT-,
-KTILKALGPA-, and
-EMMTACQGV-.
14. The peptide according to claim 13 wherein said amino acid residue sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, is represented by a formula selected from the group consisting of
-YLRDQQLLGIWGC-,
-FLGFLGAAGSTMGAASLTLTVARQ-,
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-,
-SVITQACSKVSFE-, and
-GVPVWKEATTLFC-.
15. The peptide according to claim 13 wherein said amino acid residue sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, is represented by a formula selected from the group consisting of
YLRDQQLLGIWGC,
FLGFLGAAGSTMGAASLTLTVARQ,
EQLWVTVYYGVPV,
VYYGVPVWKEA,
SVITQACSKVSFE,
GVPVWKEATTLFC,
AHKVWATHACV,
CVPTNPVPQEVV,
SLKPCVKLTPLC,
FEPIPIHYCAFPGF,
EGCRQIL,
ELRSLYNTVAT,
VIPMFSALSEG,
AMQMLKET,
YVDREYKT,
KTILKALGPA, and
EMMTACQGV.
16. The peptide according to claim 13 wherein said amino acid residue sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, is represented by a formula selected from the group consisting of
YLRDQQLLGIWGC,
FLGFLGAAGSTMGAASLTLTVARQ,
EQLWVTVYYGVPV,
VYYGVPVWKEA,
SVITQACSKVSFE, and
GVPVWKEATTLFC.
17. A method of killing target cells that exhibit an HIV protein or a portion of an HIV protein on their cell surfaces that comprises the steps of
(a) contacting target cells that exhibit an HIV protein or a portion of an HIV protein on their cell surfaces with a killing effective amount of cytotoxic T cells that have been immunized with a composition of claim 1; and
(b) maintaining said contact for a time period sufficient for said cytotoxic T cells to kill said target cells.
18. A method of killing target cells that exhibit an HIV protein or a portion of an HIV protein on their cell surfaces that comprises the steps of
(a) contacting target cells that exhibit an HIV protein or a portion of an HIV protein on their cell surfaces with a killing effective amount of cytotoxic T cells that have been immunized with a composition of claim 4; and
(b) maintaining said contact for a time period sufficient for said cytotoxic T cells to kill said target cells.
19. A peptide multimer comprising a plurality of active peptides bonded together by oxidized cysteine residues at the termini of each of said active peptides, each of said active peptides consisting essentially of 7 to about 30 amino acid residues having a sequence that corresponds to a conserved domain of an HIV protein, said peptide multimer, when dispersed in an aqueous composition and introduced in an immunologically effective amount into an immunocompetent host animal, having the capacity to induce cytotoxic T cell activation to the corresponding native HIV protein, but being substantially free from inducing antibodies that immunoreact with said corresponding native HIV protein.
20. The peptide multimer according to claim 19 wherein the amino acid residue sequence of each of said active peptides corresponds to a portion of a conserved domain of an HIV protein selected from the group consisting of the core, gp41 envelope and gp120 envelope proteins.
21. The peptide multimer according to claim 20 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-,
-GVPVWKEATTLFC-,
-AHKVWATHACV-,
-CVPTNPVPQEVV-,
-VLENVTENFNM-,
-NNMVEQMHEDII-,
-EQMHEDIISLWDQ-,
-LWDQSLKPCVKLT-,
-SLKPCVKLTPLC-,
-SVITQACSKVSFE-,
-FEPIPIHYCAFPGF-,
-KKFNGTGPCTN-,
-GTGPCTNVSTVQC-,
-VQCTHGIRPVVSTQ-,
-YLRDQQLLGIWGC-,
-FLGFLGAAGSTMGAASLTLTVQANQ-,
-CRIKQIINMWQGVGKAMYA-,
-CRIKQIINMWQGVGKAMYAPPIGGQIRC-,
-EGCRQIL-,
-ELRSLYNTVAT-,
-VIPMFSALSEG-,
-AMQMLKET-,
-YVDREYKT-,
-KTILKALGPA-, and
-EMMTACQGV-.
22. The peptide multimer according to claim 20 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-LWDQSLKPCVKLT-,
-GVPVWKEATTLFC-,
-GTGPCTNVSTVQC-,
-YLRDQQLLGIWQC-,
-FLGFLGAAGSTMGAASLTLTVARQ-,
-CRIKQIINMWQGVGKAMYA-,
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-, and
-SVITQACSKVSFE-.
23. A di-amide-peptide reaction product formed from a C12-C18 fatty acid and the alpha- and epsilon-amino groups of the amino-terminal lysyl residue of a composite polypeptide, said composite polypeptide consisting essentially of an amino-terminal lysyl residue spacer peptide containing one to about five amino acid residues in addition to said lysyl residue peptide bonded to the amino-terminus of a peptide containing 7 to about 30 amino acid residues having a sequence that corresponds to a portion of a conserved domain of an HIV protein, said di-amide peptide reaction product, when dispersed in an aqueous composition as a peptide multimer micelle and used to immunize an immunocompetent animal, having the capacity to induce ctyotoxic T cell activation to the corresponding native HIV protein, but being substantially free from inducing antibodies that immunoreact with said corresponding native HIV protein.
24. The di-amide reaction product according to claim 24 wherein said C12-C18 fatty acid is palmitic acid and said spacer peptide has the sequence, from amino-terminus to carboxy-terminus and from left to right, represented by the formula Lys-Gly-Gly.
25. The di-amide reaction product according to claim 23 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-,
-GVPVWKEATTLFC-,
-AHKVWATHACV-,
-CVPTNPVPQEVV-,
-VLENVTENFNM-,
-NNMVEQMHEDII-,
-EQMHEDIISLWDQ-,
-LWDQSLKPCVKLT-,
-SLKPCVKLTPLC-,
-SVITQACSKVSFE-,
-FEPIPIHYCAFPGF-,
-KKFNGTGPCTN-,
-GTGPCTNVSTVQC-,
-VQCTHGIRPVVSTQ-,
-YLRDQQLLGIWGC-,
-FLGFLGAAGSTMGAASLTLTVQANQ-,
-CRIKQIINMWQGVGKAMYA-,
-CRIKQIINNWQGVGKAMYAPPIGGQIRC-,
-EGCRQIL-,
-ELRSLYNTVAT-,
-VIPMFSALSEG-,
-AMQMLKET-,
-YVDREYKT-,
-KTILKALGPA-, and
-EMMTACQGV-.
26. The di-amide reaction product according to claim 23 wherein said active peptide consists essentially of a sequence, from left to right and in the direction from amino-terminus to carboxy-terminus, represented by a formula selected from the group consisting of
-LWDQSLKPCVKLT-,
-GVPVWKEATTLFC-,
-GTGPCTNVSTVQC-,
-YLRDQQLLGIWQC-,
-FLGFLGAAGSTMGAASLTLTVARQ-,
-CRIKQIINMWQGVGKAMYA-,
-EQLWVTVYYGVPV-,
-VYYGVPVWKEA-, and
-SVITQACSKVSFE-.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/911,838 US20020151678A1 (en) | 1987-08-28 | 2001-07-24 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US9064687A | 1987-08-28 | 1987-08-28 | |
US07/410,727 US5128319A (en) | 1987-08-28 | 1989-09-20 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
US07/834,923 US6265539B1 (en) | 1987-08-28 | 1992-02-13 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
US09/911,838 US20020151678A1 (en) | 1987-08-28 | 2001-07-24 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/834,923 Continuation US6265539B1 (en) | 1987-08-28 | 1992-02-13 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020151678A1 true US20020151678A1 (en) | 2002-10-17 |
Family
ID=23625981
Family Applications (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/410,727 Expired - Lifetime US5128319A (en) | 1987-08-28 | 1989-09-20 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
US07/834,923 Expired - Fee Related US6265539B1 (en) | 1987-08-28 | 1992-02-13 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
US09/911,838 Abandoned US20020151678A1 (en) | 1987-08-28 | 2001-07-24 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
Family Applications Before (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US07/410,727 Expired - Lifetime US5128319A (en) | 1987-08-28 | 1989-09-20 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
US07/834,923 Expired - Fee Related US6265539B1 (en) | 1987-08-28 | 1992-02-13 | Prophylaxis and therapy of acquired immunodeficiency syndrome |
Country Status (5)
Country | Link |
---|---|
US (3) | US5128319A (en) |
EP (1) | EP0491861A4 (en) |
JP (1) | JPH05500517A (en) |
CA (1) | CA2065402A1 (en) |
WO (1) | WO1991004045A1 (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011049914A2 (en) * | 2009-10-22 | 2011-04-28 | Board Of Regents Of The University Of Nebraska | Anti-hiv peptides and methods of use thereof |
US9580472B2 (en) | 2011-11-21 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Anti-microbial peptides and methods of use thereof |
US9988425B2 (en) | 2012-01-27 | 2018-06-05 | Laboratories Del Dr. Esteve S.A. | Immunogens for HIV vaccination |
US10723764B2 (en) | 2011-11-21 | 2020-07-28 | Board Of Regents Of The University Of Nebraska | Anti-microbial peptides and methods of use thereof |
US11666651B2 (en) | 2019-11-14 | 2023-06-06 | Aelix Therapeutics, S.L. | Prime/boost immunization regimen against HIV-1 utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes |
Families Citing this family (62)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5939074A (en) * | 1986-12-30 | 1999-08-17 | The United States Of America As Represented By The Department Of Health And Human Services | Multideterminant peptide antigens |
US6210873B1 (en) | 1987-08-28 | 2001-04-03 | Board Of Regents, The University Of Texas System | Methods and compositions for the priming of specific cytotoxic T-lymphocyte response |
US5128319A (en) * | 1987-08-28 | 1992-07-07 | Board Of Regents, The University Of Texas System | Prophylaxis and therapy of acquired immunodeficiency syndrome |
ATE112687T1 (en) * | 1988-09-13 | 1994-10-15 | Chiron Corp | MUTANTS OF HIV-1 ENVELOPE PROTEIN WITH MISSING HYPERVARIABLE DOMAINS. |
EP0438332B1 (en) * | 1990-01-16 | 1998-04-08 | Orgenics Ltd. | Peptides issued from the glycoprotein envelope of HIV virus, their uses for the detection of an infection due to these viruses and for the vaccination against AIDS |
US5346989A (en) * | 1990-08-22 | 1994-09-13 | Syntello Vaccine Development Kb | Peptides for use in induction of T cell activation against HIV-1 |
ATE238065T1 (en) * | 1990-09-27 | 2003-05-15 | Tripep Ab | PEPTIDES FOR USE IN VACCINATION AND STIMULATION OF ANTIBODIES AGAINST HUMAN IMMUNODEFICIENCY VIRUS |
DE4032127A1 (en) * | 1990-10-10 | 1992-04-16 | Basf Ag | USE OF DISULFID-BRIDGED PROTEINS AND PEPTIDES |
US5654423A (en) * | 1990-11-21 | 1997-08-05 | Regents Of The University Of California | Boronated metalloporphyrine and therapeutic methods |
JPH06510025A (en) * | 1991-06-03 | 1994-11-10 | シンテロ ヴァクシン デベロップメント アクチ ボラゲット | Peptides used to induce T cell activation against HIV-1 |
DE4120296A1 (en) * | 1991-06-28 | 1992-03-19 | Regina Tilgner | Plant-based combination for use against aids - contains tannic acid, glycosidecpd., bitter substances, ethereal oils, limonene, M-cresol, etc. |
US6322789B1 (en) | 1991-08-26 | 2001-11-27 | Epimmune, Inc. | HLA-restricted hepatitis B virus CTL epitopes |
US6419931B1 (en) * | 1991-08-26 | 2002-07-16 | Epimmune Inc. | Compositions and methods for eliciting CTL immunity |
WO1993004697A1 (en) * | 1991-08-29 | 1993-03-18 | The Government Of The United States Of America As Represented By The Department Of Health And Human Services | Multideterminant peptide antigens that stimulate helper t lymphocyte response to hiv in a range of human subjects |
PT671947E (en) * | 1991-12-02 | 2000-07-31 | Univ Texas | COMPOSITIONS FOR PRODUCING RESPONSES OF CITOTOXIC T-LYMPHOCYTES AGAINST VIRUSES |
US20110097352A9 (en) * | 1992-01-29 | 2011-04-28 | Pharmexa Inc. | Inducing cellular immune responses to hepatitis B virus using peptide and nucleic acid compositions |
US7611713B2 (en) * | 1993-03-05 | 2009-11-03 | Pharmexa Inc. | Inducing cellular immune responses to hepatitis B virus using peptide compositions |
DE4228787A1 (en) * | 1992-08-29 | 1994-03-03 | Chemotherapeutisches Forschungsinstitut Georg Speyer Haus | New HIV-1 virus isolates of a subtype, vaccines against HIV-1 virus infections of this subtype and process for their preparation, use of the HIV-1 virus isolates |
AU4846193A (en) * | 1992-09-03 | 1994-03-29 | Regents Of The University Of California, The | Metallo porphyrin compositions |
US9266930B1 (en) | 1993-03-05 | 2016-02-23 | Epimmune Inc. | Inducing cellular immune responses to Plasmodium falciparum using peptide and nucleic acid compositions |
US5603933A (en) * | 1993-08-31 | 1997-02-18 | Board Of Regents, The University Of Texas | CD4 peptides for binding to viral envelope proteins |
JP3814828B2 (en) * | 1993-10-19 | 2006-08-30 | 味の素株式会社 | Peptide capable of inducing immune response against HIV and anti-AIDS prophylactic / therapeutic agent containing the peptide |
DE69508382D1 (en) * | 1994-01-19 | 1999-04-22 | Us Health | PEPTOMERS WITH INCREASED IMMUNOGENICITY |
DE4405810A1 (en) | 1994-02-23 | 1995-08-24 | Behringwerke Ag | Peptides derived from a retrovirus from the HIV group and their use |
NZ334941A (en) * | 1996-10-10 | 2000-11-24 | Probe Internat | Methods for treating infections using proteins which induce an immune response in one animal species but not in another |
US6534482B1 (en) * | 1998-05-13 | 2003-03-18 | Epimmune, Inc. | Expression vectors for stimulating an immune response and methods of using the same |
US6656471B1 (en) * | 1998-11-17 | 2003-12-02 | Board Of Regents, The University Of Texas System | HIV-specific T-cell induction |
CA2358385C (en) | 1998-12-31 | 2013-08-06 | Chiron Corporation | Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof |
EP2206785A1 (en) * | 1998-12-31 | 2010-07-14 | Novartis Vaccines and Diagnostics, Inc. | Improved expression of HIV polypeptides and production of virus-like particles |
US7935805B1 (en) * | 1998-12-31 | 2011-05-03 | Novartis Vaccines & Diagnostics, Inc | Polynucleotides encoding antigenic HIV Type C polypeptides, polypeptides and uses thereof |
ES2299276T3 (en) | 1998-12-31 | 2008-05-16 | Novartis Vaccines And Diagnostics, Inc. | MODIFIED HIV ENV POLIPEPTIDES. |
EP1200109A4 (en) * | 1999-07-19 | 2005-06-15 | Epimmune Inc | Inducing cellular immune responses to hepatitis c virus using peptide and nucleic acid compositions |
ATE445643T1 (en) * | 1999-11-18 | 2009-10-15 | Pharmexa Inc | HETEROCLITIC ANALOGUE OF CLASS-I EPITOPES |
US7026443B1 (en) * | 1999-12-10 | 2006-04-11 | Epimmune Inc. | Inducing cellular immune responses to human Papillomavirus using peptide and nucleic acid compositions |
US20040248113A1 (en) * | 1999-12-28 | 2004-12-09 | Alessandro Sette | Method and system for optimizing multi-epitope nucleic acid constructs and peptides encoded thereby |
US7462354B2 (en) * | 1999-12-28 | 2008-12-09 | Pharmexa Inc. | Method and system for optimizing minigenes and peptides encoded thereby |
FR2812087B1 (en) | 2000-07-21 | 2007-05-11 | Inst Nat Sante Rech Med | METHOD OF SCREENING PEPTIDES USED IN IMMUNOTHERAPY |
US20040121946A9 (en) * | 2000-12-11 | 2004-06-24 | John Fikes | Inducing cellular immune responses to her2/neu using peptide and nucleic acid compositions |
AU2002320314A1 (en) | 2001-07-05 | 2003-01-21 | Chiron, Corporation | Polynucleotides encoding antigenic hiv type c polypeptides, polypeptides and uses thereof |
EP1409694A4 (en) * | 2001-07-05 | 2006-02-08 | Chiron Corp | Polynucleotides encoding antigenic hiv type b and/or type c polypeptides, polypeptides and uses thereof |
CA2458995C (en) * | 2001-08-31 | 2013-04-30 | Chiron Corporation | Polynucleotides encoding antigenic hiv type b polypeptides, polypeptides and uses thereof |
US20030170614A1 (en) * | 2001-08-31 | 2003-09-11 | Megede Jan Zur | Polynucleotides encoding antigenic HIV type B polypeptides, polypeptides and uses thereof |
WO2003037264A2 (en) * | 2001-10-29 | 2003-05-08 | Genzyme Corporation | Therapeutic anti-hiv (vpr) compounds |
AU2002360317A1 (en) * | 2001-10-29 | 2003-06-30 | Genzyme Corporation | Therapeutic anti-hiv (iv9) compounds |
US7491690B2 (en) * | 2001-11-14 | 2009-02-17 | Northwestern University | Self-assembly and mineralization of peptide-amphiphile nanofibers |
WO2003070749A2 (en) | 2002-02-15 | 2003-08-28 | Northwestern University | Self-assembly of peptide-amphiphile nanofibers under physiological conditions |
US7534761B1 (en) | 2002-08-21 | 2009-05-19 | North Western University | Charged peptide-amphiphile solutions and self-assembled peptide nanofiber networks formed therefrom |
US7554021B2 (en) * | 2002-11-12 | 2009-06-30 | Northwestern University | Composition and method for self-assembly and mineralization of peptide amphiphiles |
WO2004046167A2 (en) * | 2002-11-14 | 2004-06-03 | Northwestern University | Synthesis and self-assembly of abc triblock bola peptide |
WO2004072104A2 (en) | 2003-02-11 | 2004-08-26 | Northwestern University | Methods and materials for nanocrystalline surface coatings and attachment of peptide amphiphile nanofibers thereon |
WO2005012502A2 (en) * | 2003-03-28 | 2005-02-10 | Idm Pharma, Inc. | Methods of identifying optimal variants of peptide epitopes |
CA2549391A1 (en) | 2003-12-05 | 2005-06-23 | Northwestern University | Branched peptide amphiphiles, related epitope compounds and self assembled structures thereof |
CA2549164A1 (en) * | 2003-12-05 | 2005-06-23 | Northwestern University | Self-assembling peptide amphiphiles and related methods for growth factor delivery |
WO2005118626A2 (en) * | 2004-06-01 | 2005-12-15 | Innogenetics N.V. | Peptides for inducing a ctl and/or htl response to hepatitis c virus |
US7851445B2 (en) * | 2005-03-04 | 2010-12-14 | Northwestern University | Angiogenic heparin-binding epitopes, peptide amphiphiles, self-assembled compositions and related methods of use |
WO2008045252A2 (en) | 2006-10-04 | 2008-04-17 | The Board Of Trustees Of The Leland Stanford Junior University | Engineered integrin binding peptides |
US8076295B2 (en) * | 2007-04-17 | 2011-12-13 | Nanotope, Inc. | Peptide amphiphiles having improved solubility and methods of using same |
AU2010236584A1 (en) * | 2009-04-13 | 2011-11-10 | Northwestern University | Novel peptide-based scaffolds for cartilage regeneration and methods for their use |
US8778888B2 (en) * | 2009-11-06 | 2014-07-15 | The Board Of Trustees Of The Leland Stanford Junior University | Cystine knot peptides binding to alpha IIb beta 3 integrins and methods of use |
WO2012052068A1 (en) * | 2010-10-22 | 2012-04-26 | University College Cork, National University Of Ireland, Cork | Method and probe for monitoring oxygen status in live mammalian cells |
AU2015301753B2 (en) | 2014-08-12 | 2021-04-08 | Massachusetts Institute Of Technology | Synergistic tumor treatment with IL-2 and integrin-binding-Fc-fusion protein |
EP3914289A1 (en) | 2019-01-23 | 2021-12-01 | Massachusetts Institute of Technology | Combination immunotherapy dosing regimen for immune checkpoint blockade |
Family Cites Families (36)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FI83662C (en) * | 1980-07-17 | 1991-08-12 | Scripps Clinic Res | Diagnostic antibody and procedure for its preparation |
US4474795A (en) * | 1981-10-09 | 1984-10-02 | E. R. Squibb & Sons, Inc. | Enkephalinase inhibitors |
US4886663A (en) * | 1983-01-03 | 1989-12-12 | Scripps Clinic And Research Foundation | Synthetic heat-stable enterotoxin polypeptide of Escherichia coli and multimers thereof |
US4493795A (en) * | 1983-10-17 | 1985-01-15 | Syntex (U.S.A.) Inc. | Synthetic peptide sequences useful in biological and pharmaceutical applications and methods of manufacture |
US4725669A (en) * | 1984-11-09 | 1988-02-16 | President And Fellows Of Harvard College | Assay for detecting infection by human T-cell lymphotropic virus-III |
WO1986006414A1 (en) * | 1985-04-29 | 1986-11-06 | Genetic Systems Corporation | Synthetic antigens for the detection of aids-related disease |
US4689397A (en) * | 1985-08-12 | 1987-08-25 | Scripps Clinic And Research Foundation | Synthetic polypeptides for detecting mycobacterial infections |
US5075211A (en) * | 1986-03-26 | 1991-12-24 | Genetic Systems Corporation | Synthetic antigen for the detection of AIDS-related disease |
US4983387A (en) | 1986-05-19 | 1991-01-08 | Viral Technologies Inc. | HIV related peptides, immunogenic antigens, and use therefor as subunit vaccine for AIDS virus |
US5142025A (en) | 1986-08-01 | 1992-08-25 | Repligen Corporation | Recombinant HTLV-III proteins and uses thereof |
US4818527A (en) * | 1986-12-09 | 1989-04-04 | Scripps Clinic And Research Foundation | T cell epitopes of the hepatitis B virus nucleocapsid protein |
US5081226A (en) | 1986-12-30 | 1992-01-14 | The United States Of America As Represented By The Department Of Health And Human Services | Synthetic peptides sharing sequence homology with the HIV envelope protein |
US5030449A (en) * | 1988-07-21 | 1991-07-09 | The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services | Synthetic vaccine against AIDS virus |
US5976541A (en) | 1988-01-26 | 1999-11-02 | The United States Of America As Represented By The Department Of Health And Human Services | Potent peptide for stimulation of cytotoxic T lymphocytes specific for the HIV-1 envelope |
AU592258B2 (en) | 1986-12-30 | 1990-01-04 | United States of America, as represented by the Secretary, U.S. Department of Commerce, The | Synthetic peptides which induce cellular immunity to the aids virus and aids viral proteins |
JPH01501939A (en) * | 1987-01-28 | 1989-07-06 | オーソ・フアーマシユーチカル・コーポレーシヨン | Immunosuppressive peptides and usage |
NO881151L (en) * | 1987-03-27 | 1988-09-28 | Syntello Ab | SYNTHETIC HIV-1 ANTIGEN. |
US5128319A (en) | 1987-08-28 | 1992-07-07 | Board Of Regents, The University Of Texas System | Prophylaxis and therapy of acquired immunodeficiency syndrome |
WO1989002277A2 (en) * | 1987-08-28 | 1989-03-23 | Board Of Regents, The University Of Texas System | Prophylaxis and therapy of acquired immunodeficiency syndrome |
US5019387A (en) | 1987-09-08 | 1991-05-28 | Duke University | Production of antibodies to HIV |
US5013548A (en) | 1987-09-08 | 1991-05-07 | Duke University | Production of antibodies to HIV |
SE8704185L (en) * | 1987-10-28 | 1989-04-29 | Ferring Ab | NEW PEPTIDES, ARTIFICIAL ANTIGENS AND IMMUNO ANALYSIS TEST RATES |
WO1989007112A1 (en) * | 1988-01-26 | 1989-08-10 | The United States Of America, As Represented By Th | A synthetic antigen evoking anti-hiv response |
ATE134195T1 (en) * | 1988-06-10 | 1996-02-15 | United Biomedical Inc | PEPTIDE FRAGMENTS OF HIV |
US4943628A (en) | 1988-06-13 | 1990-07-24 | Ortho Pharmaceutical Corporation | HIV peptide-inducted T cell stimulation |
US5185147A (en) | 1988-08-19 | 1993-02-09 | Cellular Products, Inc. | Short polypeptide sequences useful in the production and detection of antibodies against human immunodeficiency virus |
GB8918200D0 (en) | 1989-08-09 | 1989-09-20 | Medical Res Council | The peptide fragments of hiv |
CA2025634A1 (en) | 1989-09-19 | 1991-03-20 | Thomas Fuerst | Peptides including ctl epitopes of hiv proteins and use thereof |
IT1238343B (en) | 1989-10-16 | 1993-07-13 | Cesalpino Andrea Fond | PROCEDURE FOR THE PREPARATION OF VACCINES CAPABLE OF GENERATING NOT ONLY THE IMMUNE RESPONSE OF T HELPER LYMPHOCYTES, BUT ALSO AN EFFECTIVE RESPONSE OF CYTOTOXIC T LYMPHOCYTES, AND VACCINES WITH THESE CHARACTERISTICS |
US5480967A (en) | 1990-01-05 | 1996-01-02 | United Biomedical, Inc. | HIV-1 core protein fragments |
US5336758A (en) | 1990-03-09 | 1994-08-09 | The United States Of America As Represented By The Department Of Health And Human Services | Peptides stimulating cytotoxic T cells immune to HIV RT |
JPH06510025A (en) | 1991-06-03 | 1994-11-10 | シンテロ ヴァクシン デベロップメント アクチ ボラゲット | Peptides used to induce T cell activation against HIV-1 |
WO1993004697A1 (en) | 1991-08-29 | 1993-03-18 | The Government Of The United States Of America As Represented By The Department Of Health And Human Services | Multideterminant peptide antigens that stimulate helper t lymphocyte response to hiv in a range of human subjects |
WO1993015750A1 (en) | 1992-02-10 | 1993-08-19 | Haynes Barton F | Use of synthetic peptides to induce tolerance to pathogenic t and b cell epitopes of autoantigens |
GB9208428D0 (en) | 1992-04-16 | 1992-06-03 | Proteus Molecular Design | Synthetic polypeptides |
WO1994000488A1 (en) | 1992-06-23 | 1994-01-06 | Sumitomo Pharmaceuticals Company, Limited | Anti-hiv peptide or peptide derivative |
-
1989
- 1989-09-20 US US07/410,727 patent/US5128319A/en not_active Expired - Lifetime
-
1990
- 1990-09-20 JP JP2514054A patent/JPH05500517A/en active Pending
- 1990-09-20 WO PCT/US1990/005391 patent/WO1991004045A1/en not_active Application Discontinuation
- 1990-09-20 EP EP19900914985 patent/EP0491861A4/en not_active Withdrawn
- 1990-09-20 CA CA002065402A patent/CA2065402A1/en not_active Abandoned
-
1992
- 1992-02-13 US US07/834,923 patent/US6265539B1/en not_active Expired - Fee Related
-
2001
- 2001-07-24 US US09/911,838 patent/US20020151678A1/en not_active Abandoned
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2011049914A2 (en) * | 2009-10-22 | 2011-04-28 | Board Of Regents Of The University Of Nebraska | Anti-hiv peptides and methods of use thereof |
WO2011049914A3 (en) * | 2009-10-22 | 2011-11-03 | Board Of Regents Of The University Of Nebraska | Anti-hiv peptides and methods of use thereof |
US8722616B2 (en) | 2009-10-22 | 2014-05-13 | Board Of Regents Of The University Of Nebraska | Anti-HIV peptides and methods of use thereof |
US9580472B2 (en) | 2011-11-21 | 2017-02-28 | Board Of Regents Of The University Of Nebraska | Anti-microbial peptides and methods of use thereof |
US10723764B2 (en) | 2011-11-21 | 2020-07-28 | Board Of Regents Of The University Of Nebraska | Anti-microbial peptides and methods of use thereof |
US9988425B2 (en) | 2012-01-27 | 2018-06-05 | Laboratories Del Dr. Esteve S.A. | Immunogens for HIV vaccination |
US10815278B2 (en) | 2012-01-27 | 2020-10-27 | Laboratorios Del Dr. Esteve S.A. | Immunogens for HIV vaccination |
US11325946B2 (en) | 2012-01-27 | 2022-05-10 | Laboratorios Del Dr. Esteve S.A. | Method of treating HIV-1 infection utilizing a multiepitope T cell immunogen comprising gag, pol, vif and nef epitopes |
US11919926B2 (en) | 2012-01-27 | 2024-03-05 | Esteve Pharmaceuticals, S.A. | Method of treating HIV-1 infection utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes |
US11666651B2 (en) | 2019-11-14 | 2023-06-06 | Aelix Therapeutics, S.L. | Prime/boost immunization regimen against HIV-1 utilizing a multiepitope T cell immunogen comprising Gag, Pol, Vif, and Nef epitopes |
Also Published As
Publication number | Publication date |
---|---|
WO1991004045A1 (en) | 1991-04-04 |
CA2065402A1 (en) | 1991-03-21 |
JPH05500517A (en) | 1993-02-04 |
EP0491861A1 (en) | 1992-07-01 |
EP0491861A4 (en) | 1992-10-07 |
US6265539B1 (en) | 2001-07-24 |
US5128319A (en) | 1992-07-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US6265539B1 (en) | Prophylaxis and therapy of acquired immunodeficiency syndrome | |
Girard et al. | Vaccine-induced protection of chimpanzees against infection by a heterologous human immunodeficiency virus type 1 | |
CA2162880C (en) | Composite synthetic peptide construct eliciting neutralizing antibodies and cytotoxic t lymphocytes against hiv | |
US5993819A (en) | Synthetic vaccine for protection against human immunodeficiency virus infection | |
EP0436634A1 (en) | Hiv proteins and peptides useful in the diagnosis, prophylaxis or therapy of aids | |
WO1989002277A2 (en) | Prophylaxis and therapy of acquired immunodeficiency syndrome | |
Berzofsky | Development of artificial vaccines against HIV using defined epitopes | |
QUESADA-ROLANDER et al. | Protection against mucosal SIVsm challenge in macaques infected with a chimeric SIV that expresses HIV type 1 envelope | |
AU632683B2 (en) | Peptides stimulating cytotoxic t cells immune to hiv rt | |
US6210873B1 (en) | Methods and compositions for the priming of specific cytotoxic T-lymphocyte response | |
EP0762895B1 (en) | Synthetic vaccine for protection against human immunodeficiency virus infection | |
De Groot et al. | Human immunodeficiency virus reverse transcriptase T helper epitopes identified in mice and humans: correlation with a cytotoxic T cell epitope | |
WO1998041536A1 (en) | Glycosylation deficient siv and hiv envelope glycoproteins | |
WO1998041536A9 (en) | Glycosylation deficient siv and hiv envelope glycoproteins | |
CA2235168A1 (en) | Synthetic vaccine for protection against human immunodeficiency virus infection | |
US7319000B1 (en) | Compositions and methods for eliciting immune or anti-infective responses | |
KR100815888B1 (en) | DNA vaccines encoding HIV co-proteins | |
AU666160B2 (en) | Compositions for eliciting cytotoxic T-lymphocyte responses against viruses | |
EP0328390B1 (en) | Peptide treatment of refractory infectious diseases | |
Vogt et al. | Heterologous HIV-2 challenge of rhesus monkeys immunized with recombinant vaccinia viruses and purified recombinant HIV-2 proteins | |
VASLIN et al. | Nef and Gag synthetic peptide priming of antibody responses to HIV type 1 antigens in mice and primates | |
Biberfeld et al. | Progress with HIV vaccines | |
Biberfeld et al. | HIV-2 Vaccine Trials in Cynomolgus | |
Benveniste et al. | Four cross-linked HIV Gag peptides prime the immune response to HIV proteins in mice | |
Ahlers | Developing synthetic peptide vaccines for HIV-1: the design and characterization of multideterminant T helper-CTL/neutralizing antibody vaccine constructs and the use of cytokines for steering immune responses toward desired functional types |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |