US20020147301A1 - Parevins and tachytegrins - Google Patents
Parevins and tachytegrins Download PDFInfo
- Publication number
- US20020147301A1 US20020147301A1 US09/865,943 US86594301A US2002147301A1 US 20020147301 A1 US20020147301 A1 US 20020147301A1 US 86594301 A US86594301 A US 86594301A US 2002147301 A1 US2002147301 A1 US 2002147301A1
- Authority
- US
- United States
- Prior art keywords
- seq
- arg
- cys
- compound
- gly
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Abandoned
Links
- 241000700605 Viruses Species 0.000 claims abstract description 18
- 241000894006 Bacteria Species 0.000 claims abstract description 10
- 150000001875 compounds Chemical class 0.000 claims description 109
- 235000001014 amino acid Nutrition 0.000 claims description 108
- 150000001413 amino acids Chemical group 0.000 claims description 106
- XUJNEKJLAYXESH-REOHCLBHSA-N L-Cysteine Chemical compound SC[C@H](N)C(O)=O XUJNEKJLAYXESH-REOHCLBHSA-N 0.000 claims description 51
- 235000018417 cysteine Nutrition 0.000 claims description 47
- 238000000034 method Methods 0.000 claims description 46
- XUJNEKJLAYXESH-UHFFFAOYSA-N cysteine Natural products SCC(N)C(O)=O XUJNEKJLAYXESH-UHFFFAOYSA-N 0.000 claims description 36
- LJRDOKAZOAKLDU-UDXJMMFXSA-N (2s,3s,4r,5r,6r)-5-amino-2-(aminomethyl)-6-[(2r,3s,4r,5s)-5-[(1r,2r,3s,5r,6s)-3,5-diamino-2-[(2s,3r,4r,5s,6r)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-6-hydroxycyclohexyl]oxy-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxyoxane-3,4-diol;sulfuric ac Chemical compound OS(O)(=O)=O.N[C@@H]1[C@@H](O)[C@H](O)[C@H](CN)O[C@@H]1O[C@H]1[C@@H](O)[C@H](O[C@H]2[C@@H]([C@@H](N)C[C@@H](N)[C@@H]2O)O[C@@H]2[C@@H]([C@@H](O)[C@H](O)[C@@H](CO)O2)N)O[C@@H]1CO LJRDOKAZOAKLDU-UDXJMMFXSA-N 0.000 claims description 35
- FFFHZYDWPBMWHY-VKHMYHEASA-N L-homocysteine Chemical compound OC(=O)[C@@H](N)CCS FFFHZYDWPBMWHY-VKHMYHEASA-N 0.000 claims description 35
- 230000002209 hydrophobic effect Effects 0.000 claims description 34
- 239000002158 endotoxin Substances 0.000 claims description 28
- 229960001639 penicillamine Drugs 0.000 claims description 27
- FSYKKLYZXJSNPZ-UHFFFAOYSA-N sarcosine Chemical compound C[NH2+]CC([O-])=O FSYKKLYZXJSNPZ-UHFFFAOYSA-N 0.000 claims description 26
- 150000003839 salts Chemical class 0.000 claims description 24
- 125000000539 amino acid group Chemical group 0.000 claims description 16
- 210000004899 c-terminal region Anatomy 0.000 claims description 16
- 208000015181 infectious disease Diseases 0.000 claims description 13
- BWGNESOTFCXPMA-UHFFFAOYSA-N Dihydrogen disulfide Chemical compound SS BWGNESOTFCXPMA-UHFFFAOYSA-N 0.000 claims description 12
- 241000588724 Escherichia coli Species 0.000 claims description 9
- 230000002378 acidificating effect Effects 0.000 claims description 8
- 238000011282 treatment Methods 0.000 claims description 8
- 150000008574 D-amino acids Chemical class 0.000 claims description 7
- 241000606153 Chlamydia trachomatis Species 0.000 claims description 6
- 239000008194 pharmaceutical composition Substances 0.000 claims description 6
- 241000186779 Listeria monocytogenes Species 0.000 claims description 5
- 241000588652 Neisseria gonorrhoeae Species 0.000 claims description 5
- ONIBWKKTOPOVIA-UHFFFAOYSA-N Proline Natural products OC(=O)C1CCCN1 ONIBWKKTOPOVIA-UHFFFAOYSA-N 0.000 claims description 5
- 235000014469 Bacillus subtilis Nutrition 0.000 claims description 4
- 241000701074 Human alphaherpesvirus 2 Species 0.000 claims description 4
- 241000725303 Human immunodeficiency virus Species 0.000 claims description 4
- 241000293869 Salmonella enterica subsp. enterica serovar Typhimurium Species 0.000 claims description 4
- 241000224527 Trichomonas vaginalis Species 0.000 claims description 4
- 229910052799 carbon Inorganic materials 0.000 claims description 4
- 230000000813 microbial effect Effects 0.000 claims description 4
- 241000700588 Human alphaherpesvirus 1 Species 0.000 claims description 3
- 241000713772 Human immunodeficiency virus 1 Species 0.000 claims description 3
- 241000701806 Human papillomavirus Species 0.000 claims description 3
- 230000002401 inhibitory effect Effects 0.000 claims description 3
- 241000495778 Escherichia faecalis Species 0.000 claims 2
- 241000244587 Leucanthemopsis pallida Species 0.000 claims 2
- RJQXTJLFIWVMTO-TYNCELHUSA-N Methicillin Chemical compound COC1=CC=CC(OC)=C1C(=O)N[C@@H]1C(=O)N2[C@@H](C(O)=O)C(C)(C)S[C@@H]21 RJQXTJLFIWVMTO-TYNCELHUSA-N 0.000 claims 2
- 108010059993 Vancomycin Proteins 0.000 claims 2
- 241000606834 [Haemophilus] ducreyi Species 0.000 claims 2
- 229960003085 meticillin Drugs 0.000 claims 2
- 230000010076 replication Effects 0.000 claims 2
- 244000000033 sexually transmitted pathogen Species 0.000 claims 2
- MYPYJXKWCTUITO-LYRMYLQWSA-N vancomycin Chemical compound O([C@@H]1[C@@H](O)[C@H](O)[C@@H](CO)O[C@H]1OC1=C2C=C3C=C1OC1=CC=C(C=C1Cl)[C@@H](O)[C@H](C(N[C@@H](CC(N)=O)C(=O)N[C@H]3C(=O)N[C@H]1C(=O)N[C@H](C(N[C@@H](C3=CC(O)=CC(O)=C3C=3C(O)=CC=C1C=3)C(O)=O)=O)[C@H](O)C1=CC=C(C(=C1)Cl)O2)=O)NC(=O)[C@@H](CC(C)C)NC)[C@H]1C[C@](C)(N)[C@H](O)[C@H](C)O1 MYPYJXKWCTUITO-LYRMYLQWSA-N 0.000 claims 2
- 229960003165 vancomycin Drugs 0.000 claims 2
- MYPYJXKWCTUITO-UHFFFAOYSA-N vancomycin Natural products O1C(C(=C2)Cl)=CC=C2C(O)C(C(NC(C2=CC(O)=CC(O)=C2C=2C(O)=CC=C3C=2)C(O)=O)=O)NC(=O)C3NC(=O)C2NC(=O)C(CC(N)=O)NC(=O)C(NC(=O)C(CC(C)C)NC)C(O)C(C=C3Cl)=CC=C3OC3=CC2=CC1=C3OC1OC(CO)C(O)C(O)C1OC1CC(C)(N)C(O)C(C)O1 MYPYJXKWCTUITO-UHFFFAOYSA-N 0.000 claims 2
- 208000035143 Bacterial infection Diseases 0.000 claims 1
- 125000002038 D-arginyl group Chemical group N[C@@H](C(=O)*)CCCNC(=N)N 0.000 claims 1
- 208000031886 HIV Infections Diseases 0.000 claims 1
- 208000037357 HIV infectious disease Diseases 0.000 claims 1
- 208000036142 Viral infection Diseases 0.000 claims 1
- 208000022362 bacterial infectious disease Diseases 0.000 claims 1
- 208000033519 human immunodeficiency virus infectious disease Diseases 0.000 claims 1
- 239000000546 pharmaceutical excipient Substances 0.000 claims 1
- 230000009385 viral infection Effects 0.000 claims 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 abstract description 5
- 108700042778 Antimicrobial Peptides Proteins 0.000 abstract description 3
- 102000044503 Antimicrobial Peptides Human genes 0.000 abstract description 3
- 241000233866 Fungi Species 0.000 abstract description 2
- 241001430294 unidentified retrovirus Species 0.000 abstract description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 371
- 102000004196 processed proteins & peptides Human genes 0.000 description 317
- 229920001184 polypeptide Polymers 0.000 description 203
- CYXCAHZVPFREJD-LURJTMIESA-N Arg-Gly-Gly Chemical compound NC(=N)NCCC[C@H](N)C(=O)NCC(=O)NCC(O)=O CYXCAHZVPFREJD-LURJTMIESA-N 0.000 description 156
- KLGFILUOTCBNLJ-IHRRRGAJSA-N Tyr-Cys-Arg Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)N)O KLGFILUOTCBNLJ-IHRRRGAJSA-N 0.000 description 122
- BSGSDLYGGHGMND-IHRRRGAJSA-N Arg-Phe-Cys Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N BSGSDLYGGHGMND-IHRRRGAJSA-N 0.000 description 105
- 229940024606 amino acid Drugs 0.000 description 81
- JLXVRFDTDUGQEE-YFKPBYRVSA-N Gly-Arg Chemical compound NCC(=O)N[C@H](C(O)=O)CCCN=C(N)N JLXVRFDTDUGQEE-YFKPBYRVSA-N 0.000 description 78
- ZHWZDZFWBXWPDW-GUBZILKMSA-N Val-Val-Cys Chemical compound CC(C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(O)=O ZHWZDZFWBXWPDW-GUBZILKMSA-N 0.000 description 66
- 108010062266 glycyl-glycyl-argininal Proteins 0.000 description 63
- 108010084264 glycyl-glycyl-cysteine Proteins 0.000 description 61
- RGTVXXNMOGHRAY-WDSKDSINSA-N Cys-Arg Chemical compound SC[C@H](N)C(=O)N[C@H](C(O)=O)CCCN=C(N)N RGTVXXNMOGHRAY-WDSKDSINSA-N 0.000 description 58
- 101100505161 Caenorhabditis elegans mel-32 gene Proteins 0.000 description 54
- IGULQRCJLQQPSM-DCAQKATOSA-N Arg-Cys-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O IGULQRCJLQQPSM-DCAQKATOSA-N 0.000 description 52
- QUOGESRFPZDMMT-UHFFFAOYSA-N L-Homoarginine Natural products OC(=O)C(N)CCCCNC(N)=N QUOGESRFPZDMMT-UHFFFAOYSA-N 0.000 description 35
- QUOGESRFPZDMMT-YFKPBYRVSA-N L-homoarginine Chemical compound OC(=O)[C@@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-YFKPBYRVSA-N 0.000 description 35
- MBPKYKSYUAPLMY-DCAQKATOSA-N Cys-Arg-Leu Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC(C)C)C(O)=O MBPKYKSYUAPLMY-DCAQKATOSA-N 0.000 description 28
- DHMQDGOQFOQNFH-UHFFFAOYSA-N Glycine Chemical compound NCC(O)=O DHMQDGOQFOQNFH-UHFFFAOYSA-N 0.000 description 28
- AEFJNECXZCODJM-UWVGGRQHSA-N Val-Val-Gly Chemical compound CC(C)[C@H]([NH3+])C(=O)N[C@@H](C(C)C)C(=O)NCC([O-])=O AEFJNECXZCODJM-UWVGGRQHSA-N 0.000 description 27
- ABLJDBFJPUWQQB-DCAQKATOSA-N Cys-Leu-Arg Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CS)N ABLJDBFJPUWQQB-DCAQKATOSA-N 0.000 description 24
- 239000000203 mixture Substances 0.000 description 23
- 230000000845 anti-microbial effect Effects 0.000 description 22
- 210000004027 cell Anatomy 0.000 description 22
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 21
- 230000000694 effects Effects 0.000 description 20
- 241000196324 Embryophyta Species 0.000 description 19
- 239000002609 medium Substances 0.000 description 18
- ALTQTAKGRFLRLR-GUBZILKMSA-N Cys-Val-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)O)NC(=O)[C@H](CS)N ALTQTAKGRFLRLR-GUBZILKMSA-N 0.000 description 17
- 230000015572 biosynthetic process Effects 0.000 description 16
- 108090000623 proteins and genes Proteins 0.000 description 16
- OTOXOKCIIQLMFH-KZVJFYERSA-N Arg-Ala-Thr Chemical compound C[C@@H](O)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CCCN=C(N)N OTOXOKCIIQLMFH-KZVJFYERSA-N 0.000 description 14
- BFDDUDQCPJWQRQ-IHRRRGAJSA-N Arg-Tyr-Cys Chemical compound C1=CC(=CC=C1C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N)O BFDDUDQCPJWQRQ-IHRRRGAJSA-N 0.000 description 14
- IXKRSKPKSLXIHN-YUMQZZPRSA-N Gly-Cys-Leu Chemical compound [H]NCC(=O)N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(O)=O IXKRSKPKSLXIHN-YUMQZZPRSA-N 0.000 description 14
- KDIIENQUNVNWHR-JYJNAYRXSA-N Pro-Arg-Phe Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O KDIIENQUNVNWHR-JYJNAYRXSA-N 0.000 description 14
- 229920006008 lipopolysaccharide Polymers 0.000 description 14
- 238000004519 manufacturing process Methods 0.000 description 14
- 238000007792 addition Methods 0.000 description 13
- 108010067216 glycyl-glycyl-glycine Proteins 0.000 description 13
- XKUKSGPZAADMRA-UHFFFAOYSA-N glycyl-glycyl-glycine Natural products NCC(=O)NCC(=O)NCC(O)=O XKUKSGPZAADMRA-UHFFFAOYSA-N 0.000 description 13
- 238000012360 testing method Methods 0.000 description 13
- 125000004122 cyclic group Chemical group 0.000 description 12
- MHYHLWUGWUBUHF-GUBZILKMSA-N Cys-Val-Arg Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)O)NC(=O)[C@H](CS)N MHYHLWUGWUBUHF-GUBZILKMSA-N 0.000 description 11
- NUEHSWNAFIEBCQ-NAKRPEOUSA-N Ile-Val-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CS)C(=O)O)N NUEHSWNAFIEBCQ-NAKRPEOUSA-N 0.000 description 11
- 108010077895 Sarcosine Proteins 0.000 description 11
- 238000003556 assay Methods 0.000 description 11
- 150000001945 cysteines Chemical class 0.000 description 11
- 235000018102 proteins Nutrition 0.000 description 11
- 102000004169 proteins and genes Human genes 0.000 description 11
- 239000011780 sodium chloride Substances 0.000 description 11
- XTGGTAWGUFXJSV-NAKRPEOUSA-N Arg-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](CCCN=C(N)N)N XTGGTAWGUFXJSV-NAKRPEOUSA-N 0.000 description 10
- HQIZDMIGUJOSNI-IUCAKERBSA-N Arg-Gly-Arg Chemical compound N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CCCNC(N)=N)C(O)=O HQIZDMIGUJOSNI-IUCAKERBSA-N 0.000 description 10
- AOHKLEBWKMKITA-IHRRRGAJSA-N Arg-Phe-Ser Chemical compound C1=CC=C(C=C1)C[C@@H](C(=O)N[C@@H](CO)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N AOHKLEBWKMKITA-IHRRRGAJSA-N 0.000 description 10
- UVTGNSWSRSCPLP-UHFFFAOYSA-N Arg-Tyr Natural products NC(CCNC(=N)N)C(=O)NC(Cc1ccc(O)cc1)C(=O)O UVTGNSWSRSCPLP-UHFFFAOYSA-N 0.000 description 10
- YYLBXQJGWOQZOU-IHRRRGAJSA-N Cys-Phe-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CC=CC=C1)NC(=O)[C@H](CS)N YYLBXQJGWOQZOU-IHRRRGAJSA-N 0.000 description 10
- WTUSRDZLLWGYAT-KCTSRDHCSA-N Gly-Trp-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CC1=CNC2=CC=CC=C21)NC(=O)CN WTUSRDZLLWGYAT-KCTSRDHCSA-N 0.000 description 10
- 241000880493 Leptailurus serval Species 0.000 description 10
- OPTCSTACHGNULU-DCAQKATOSA-N Lys-Cys-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCCN OPTCSTACHGNULU-DCAQKATOSA-N 0.000 description 10
- 241001465754 Metazoa Species 0.000 description 10
- UKEVLVBHRKWECS-LSJOCFKGSA-N Val-Ile-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](C(C)C)N UKEVLVBHRKWECS-LSJOCFKGSA-N 0.000 description 10
- 230000000840 anti-viral effect Effects 0.000 description 10
- 108010060035 arginylproline Proteins 0.000 description 10
- -1 cyclohexene-2-yl Chemical group 0.000 description 10
- 108010015792 glycyllysine Proteins 0.000 description 10
- 108010027338 isoleucylcysteine Proteins 0.000 description 10
- 108010024607 phenylalanylalanine Proteins 0.000 description 10
- 210000002966 serum Anatomy 0.000 description 10
- RWDVGVPHEWOZMO-GUBZILKMSA-N Arg-Cys-Val Chemical compound CC(C)[C@H](NC(=O)[C@H](CS)NC(=O)[C@@H](N)CCCNC(N)=N)C(O)=O RWDVGVPHEWOZMO-GUBZILKMSA-N 0.000 description 9
- JXVFJOMFOLFPMP-KKUMJFAQSA-N Cys-Leu-Tyr Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(O)=O JXVFJOMFOLFPMP-KKUMJFAQSA-N 0.000 description 9
- KRRMJKMGWWXWDW-STQMWFEESA-N Gly-Arg-Phe Chemical compound NC(=N)NCCC[C@H](NC(=O)CN)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 KRRMJKMGWWXWDW-STQMWFEESA-N 0.000 description 9
- LRQKBLKVPFOOQJ-YFKPBYRVSA-N L-norleucine Chemical compound CCCC[C@H]([NH3+])C([O-])=O LRQKBLKVPFOOQJ-YFKPBYRVSA-N 0.000 description 9
- OWCLJDXHHZUNEL-IHRRRGAJSA-N Phe-Cys-Val Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(O)=O OWCLJDXHHZUNEL-IHRRRGAJSA-N 0.000 description 9
- 238000003786 synthesis reaction Methods 0.000 description 9
- LHSGPCFBGJHPCY-UHFFFAOYSA-N L-leucine-L-tyrosine Natural products CC(C)CC(N)C(=O)NC(C(O)=O)CC1=CC=C(O)C=C1 LHSGPCFBGJHPCY-UHFFFAOYSA-N 0.000 description 8
- OUYCCCASQSFEME-QMMMGPOBSA-N L-tyrosine Chemical compound OC(=O)[C@@H](N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-QMMMGPOBSA-N 0.000 description 8
- 125000003275 alpha amino acid group Chemical group 0.000 description 8
- 108010068380 arginylarginine Proteins 0.000 description 8
- 108010012058 leucyltyrosine Proteins 0.000 description 8
- 238000002360 preparation method Methods 0.000 description 8
- QUOGESRFPZDMMT-RXMQYKEDSA-N (2r)-2-amino-6-(diaminomethylideneamino)hexanoic acid Chemical compound OC(=O)[C@H](N)CCCCNC(N)=N QUOGESRFPZDMMT-RXMQYKEDSA-N 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 7
- PVSNBTCXCQIXSE-JYJNAYRXSA-N Arg-Arg-Phe Chemical compound NC(=N)NCCC[C@H](N)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@H](C(O)=O)CC1=CC=CC=C1 PVSNBTCXCQIXSE-JYJNAYRXSA-N 0.000 description 7
- NIUDXSFNLBIWOB-DCAQKATOSA-N Arg-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N NIUDXSFNLBIWOB-DCAQKATOSA-N 0.000 description 7
- LBOLGUYQEPZSKM-YUMQZZPRSA-N Cys-Gly-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CS)N LBOLGUYQEPZSKM-YUMQZZPRSA-N 0.000 description 7
- ODKSFYDXXFIFQN-SCSAIBSYSA-N D-arginine Chemical compound OC(=O)[C@H](N)CCCNC(N)=N ODKSFYDXXFIFQN-SCSAIBSYSA-N 0.000 description 7
- 229930028154 D-arginine Natural products 0.000 description 7
- COLNVLDHVKWLRT-QMMMGPOBSA-N L-phenylalanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CC=C1 COLNVLDHVKWLRT-QMMMGPOBSA-N 0.000 description 7
- ISHNZELVUVPCHY-ZETCQYMHSA-N Lys-Gly-Gly Chemical compound NCCCC[C@H](N)C(=O)NCC(=O)NCC(O)=O ISHNZELVUVPCHY-ZETCQYMHSA-N 0.000 description 7
- BEGQVWUZFXLNHZ-IHPCNDPISA-N Lys-Lys-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCCCN)NC(=O)[C@@H](N)CCCCN)C(O)=O)=CNC2=C1 BEGQVWUZFXLNHZ-IHPCNDPISA-N 0.000 description 7
- XJFXZQKJQGYFMM-GUBZILKMSA-N Val-Cys-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)N[C@@H](C(C)C)C(=O)O)N XJFXZQKJQGYFMM-GUBZILKMSA-N 0.000 description 7
- 239000002253 acid Substances 0.000 description 7
- 230000000844 anti-bacterial effect Effects 0.000 description 7
- 108010062796 arginyllysine Proteins 0.000 description 7
- 229960003067 cystine Drugs 0.000 description 7
- 238000002474 experimental method Methods 0.000 description 7
- 239000000126 substance Substances 0.000 description 7
- IYKVSFNGSWTTNZ-GUBZILKMSA-N Ala-Val-Arg Chemical compound C[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N IYKVSFNGSWTTNZ-GUBZILKMSA-N 0.000 description 6
- HAVKMRGWNXMCDR-STQMWFEESA-N Arg-Gly-Phe Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O HAVKMRGWNXMCDR-STQMWFEESA-N 0.000 description 6
- WVNFNPGXYADPPO-BQBZGAKWSA-N Arg-Gly-Ser Chemical compound NC(N)=NCCC[C@H](N)C(=O)NCC(=O)N[C@@H](CO)C(O)=O WVNFNPGXYADPPO-BQBZGAKWSA-N 0.000 description 6
- XKDYWGLNSCNRGW-WDSOQIARSA-N Arg-Lys-Trp Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@@H](NC(=O)[C@@H](N)CCCN=C(N)N)CCCCN)C(O)=O)=CNC2=C1 XKDYWGLNSCNRGW-WDSOQIARSA-N 0.000 description 6
- FTMRPIVPSDVGCC-GUBZILKMSA-N Arg-Val-Cys Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCN=C(N)N)N FTMRPIVPSDVGCC-GUBZILKMSA-N 0.000 description 6
- LHLSSZYQFUNWRZ-NAKRPEOUSA-N Cys-Arg-Ile Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H]([C@@H](C)CC)C(O)=O LHLSSZYQFUNWRZ-NAKRPEOUSA-N 0.000 description 6
- KXUKTDGKLAOCQK-LSJOCFKGSA-N Ile-Val-Gly Chemical compound CC[C@H](C)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)NCC(O)=O KXUKTDGKLAOCQK-LSJOCFKGSA-N 0.000 description 6
- ROHFNLRQFUQHCH-YFKPBYRVSA-N L-leucine Chemical compound CC(C)C[C@H](N)C(O)=O ROHFNLRQFUQHCH-YFKPBYRVSA-N 0.000 description 6
- KSPIYJQBLVDRRI-UHFFFAOYSA-N N-methylisoleucine Chemical compound CCC(C)C(NC)C(O)=O KSPIYJQBLVDRRI-UHFFFAOYSA-N 0.000 description 6
- DXYWRYQRKPIGGU-BPNCWPANSA-N Tyr-Ala-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 DXYWRYQRKPIGGU-BPNCWPANSA-N 0.000 description 6
- RWOKVQUCENPXGE-IHRRRGAJSA-N Tyr-Ser-Arg Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O RWOKVQUCENPXGE-IHRRRGAJSA-N 0.000 description 6
- LHADRQBREKTRLR-DCAQKATOSA-N Val-Cys-Leu Chemical compound CC(C)C[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)[C@H](C(C)C)N LHADRQBREKTRLR-DCAQKATOSA-N 0.000 description 6
- 239000004599 antimicrobial Substances 0.000 description 6
- 108010069926 arginyl-glycyl-serine Proteins 0.000 description 6
- 108010036533 arginylvaline Proteins 0.000 description 6
- 125000000151 cysteine group Chemical group N[C@@H](CS)C(=O)* 0.000 description 6
- 108010069495 cysteinyltyrosine Proteins 0.000 description 6
- 108010037850 glycylvaline Proteins 0.000 description 6
- 239000003755 preservative agent Substances 0.000 description 6
- 210000001519 tissue Anatomy 0.000 description 6
- XGIAHEUULGOZHH-GUBZILKMSA-N Cys-Arg-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCCN=C(N)N)NC(=O)[C@H](CS)N XGIAHEUULGOZHH-GUBZILKMSA-N 0.000 description 5
- 108020004414 DNA Proteins 0.000 description 5
- 125000000510 L-tryptophano group Chemical group [H]C1=C([H])C([H])=C2N([H])C([H])=C(C([H])([H])[C@@]([H])(C(O[H])=O)N([H])[*])C2=C1[H] 0.000 description 5
- 108091005804 Peptidases Proteins 0.000 description 5
- PDUVELWDJZOUEI-IHRRRGAJSA-N Phe-Cys-Arg Chemical compound [H]N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O PDUVELWDJZOUEI-IHRRRGAJSA-N 0.000 description 5
- 239000004365 Protease Substances 0.000 description 5
- 208000019802 Sexually transmitted disease Diseases 0.000 description 5
- 239000012736 aqueous medium Substances 0.000 description 5
- UCMIRNVEIXFBKS-UHFFFAOYSA-N beta-alanine Chemical compound NCCC(O)=O UCMIRNVEIXFBKS-UHFFFAOYSA-N 0.000 description 5
- 210000004369 blood Anatomy 0.000 description 5
- 239000008280 blood Substances 0.000 description 5
- 239000000499 gel Substances 0.000 description 5
- 108010050475 glycyl-leucyl-tyrosine Proteins 0.000 description 5
- 125000001183 hydrocarbyl group Chemical group 0.000 description 5
- 230000003278 mimic effect Effects 0.000 description 5
- 230000002829 reductive effect Effects 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000010561 standard procedure Methods 0.000 description 5
- 230000003612 virological effect Effects 0.000 description 5
- MTCFGRXMJLQNBG-REOHCLBHSA-N (2S)-2-Amino-3-hydroxypropansäure Chemical compound OC[C@H](N)C(O)=O MTCFGRXMJLQNBG-REOHCLBHSA-N 0.000 description 4
- BNASHXXLSULNNI-UHFFFAOYSA-N *.CC(C)(C)C.CC(C)(C)C Chemical compound *.CC(C)(C)C.CC(C)(C)C BNASHXXLSULNNI-UHFFFAOYSA-N 0.000 description 4
- CZUHPNLXLWMYMG-UBHSHLNASA-N Arg-Phe-Ala Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)N[C@@H](C)C(O)=O)CC1=CC=CC=C1 CZUHPNLXLWMYMG-UBHSHLNASA-N 0.000 description 4
- GSUFZRURORXYTM-STQMWFEESA-N Arg-Phe-Gly Chemical compound NC(N)=NCCC[C@H](N)C(=O)N[C@H](C(=O)NCC(O)=O)CC1=CC=CC=C1 GSUFZRURORXYTM-STQMWFEESA-N 0.000 description 4
- 0 CCC.C[C-]=[*-]#[*-]=[V-][V-][C-](C)F Chemical compound CCC.C[C-]=[*-]#[*-]=[V-][V-][C-](C)F 0.000 description 4
- 241000498849 Chlamydiales Species 0.000 description 4
- ZXCAQANTQWBICD-DCAQKATOSA-N Cys-Lys-Val Chemical compound CC(C)[C@@H](C(=O)O)NC(=O)[C@H](CCCCN)NC(=O)[C@H](CS)N ZXCAQANTQWBICD-DCAQKATOSA-N 0.000 description 4
- ONIBWKKTOPOVIA-BYPYZUCNSA-N L-Proline Chemical compound OC(=O)[C@@H]1CCCN1 ONIBWKKTOPOVIA-BYPYZUCNSA-N 0.000 description 4
- AYFVYJQAPQTCCC-GBXIJSLDSA-N L-threonine Chemical compound C[C@@H](O)[C@H](N)C(O)=O AYFVYJQAPQTCCC-GBXIJSLDSA-N 0.000 description 4
- KDXKERNSBIXSRK-UHFFFAOYSA-N Lysine Natural products NCCCCC(N)C(O)=O KDXKERNSBIXSRK-UHFFFAOYSA-N 0.000 description 4
- XGFYGMKZKFRGAI-RCWTZXSCSA-N Thr-Val-Arg Chemical compound C[C@@H](O)[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@H](C(O)=O)CCCN=C(N)N XGFYGMKZKFRGAI-RCWTZXSCSA-N 0.000 description 4
- NIHNMOSRSAYZIT-BPNCWPANSA-N Tyr-Ala-Arg Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 NIHNMOSRSAYZIT-BPNCWPANSA-N 0.000 description 4
- UBTBGUDNDFZLGP-SRVKXCTJSA-N Val-Arg-Val Chemical compound CC(C)[C@@H](C(=O)N[C@@H](CCCN=C(N)N)C(=O)N[C@@H](C(C)C)C(=O)O)N UBTBGUDNDFZLGP-SRVKXCTJSA-N 0.000 description 4
- 239000003443 antiviral agent Substances 0.000 description 4
- 239000007864 aqueous solution Substances 0.000 description 4
- RYYVLZVUVIJVGH-UHFFFAOYSA-N caffeine Chemical compound CN1C(=O)N(C)C(=O)C2=C1N=CN2C RYYVLZVUVIJVGH-UHFFFAOYSA-N 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 238000009472 formulation Methods 0.000 description 4
- 239000001963 growth medium Substances 0.000 description 4
- 238000011065 in-situ storage Methods 0.000 description 4
- 150000002500 ions Chemical class 0.000 description 4
- 239000000463 material Substances 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 4
- 238000012552 review Methods 0.000 description 4
- 125000003396 thiol group Chemical group [H]S* 0.000 description 4
- 239000001974 tryptic soy broth Substances 0.000 description 4
- MRTPISKDZDHEQI-YFKPBYRVSA-N (2s)-2-(tert-butylamino)propanoic acid Chemical compound OC(=O)[C@H](C)NC(C)(C)C MRTPISKDZDHEQI-YFKPBYRVSA-N 0.000 description 3
- NPDBDJFLKKQMCM-SCSAIBSYSA-N (2s)-2-amino-3,3-dimethylbutanoic acid Chemical compound CC(C)(C)[C@H](N)C(O)=O NPDBDJFLKKQMCM-SCSAIBSYSA-N 0.000 description 3
- 229920000936 Agarose Polymers 0.000 description 3
- VRZDJJWOFXMFRO-ZFWWWQNUSA-N Arg-Gly-Trp Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](CC1=CNC2=C1C=CC=C2)C(O)=O VRZDJJWOFXMFRO-ZFWWWQNUSA-N 0.000 description 3
- NKNILFJYKKHBKE-WPRPVWTQSA-N Arg-Gly-Val Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@@H](C(C)C)C(O)=O NKNILFJYKKHBKE-WPRPVWTQSA-N 0.000 description 3
- UGZUVYDKAYNCII-ULQDDVLXSA-N Arg-Phe-Leu Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=CC=C1)C(=O)N[C@@H](CC(C)C)C(O)=O UGZUVYDKAYNCII-ULQDDVLXSA-N 0.000 description 3
- QUBKBPZGMZWOKQ-SZMVWBNQSA-N Arg-Trp-Arg Chemical compound C1=CC=C2C(C[C@H](NC(=O)[C@H](CCCN=C(N)N)N)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O)=CNC2=C1 QUBKBPZGMZWOKQ-SZMVWBNQSA-N 0.000 description 3
- BTBUEUYNUDRHOZ-UHFFFAOYSA-N Borate Chemical compound [O-]B([O-])[O-] BTBUEUYNUDRHOZ-UHFFFAOYSA-N 0.000 description 3
- 108091003079 Bovine Serum Albumin Proteins 0.000 description 3
- 241000222122 Candida albicans Species 0.000 description 3
- 108010069514 Cyclic Peptides Proteins 0.000 description 3
- 102000001189 Cyclic Peptides Human genes 0.000 description 3
- UKVGHFORADMBEN-GUBZILKMSA-N Cys-Arg-Arg Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CCCNC(N)=N)C(O)=O UKVGHFORADMBEN-GUBZILKMSA-N 0.000 description 3
- CEZSLNCYQUFOSL-BQBZGAKWSA-N Cys-Arg-Gly Chemical compound [H]N[C@@H](CS)C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(O)=O CEZSLNCYQUFOSL-BQBZGAKWSA-N 0.000 description 3
- QNAYBMKLOCPYGJ-UHFFFAOYSA-N D-alpha-Ala Natural products CC([NH3+])C([O-])=O QNAYBMKLOCPYGJ-UHFFFAOYSA-N 0.000 description 3
- KCXVZYZYPLLWCC-UHFFFAOYSA-N EDTA Chemical compound OC(=O)CN(CC(O)=O)CCN(CC(O)=O)CC(O)=O KCXVZYZYPLLWCC-UHFFFAOYSA-N 0.000 description 3
- WHUUTDBJXJRKMK-UHFFFAOYSA-N Glutamic acid Natural products OC(=O)C(N)CCC(O)=O WHUUTDBJXJRKMK-UHFFFAOYSA-N 0.000 description 3
- 239000004471 Glycine Substances 0.000 description 3
- 150000008575 L-amino acids Chemical class 0.000 description 3
- DCXYFEDJOCDNAF-REOHCLBHSA-N L-asparagine Chemical compound OC(=O)[C@@H](N)CC(N)=O DCXYFEDJOCDNAF-REOHCLBHSA-N 0.000 description 3
- LEVWYRKDKASIDU-IMJSIDKUSA-N L-cystine Chemical compound [O-]C(=O)[C@@H]([NH3+])CSSC[C@H]([NH3+])C([O-])=O LEVWYRKDKASIDU-IMJSIDKUSA-N 0.000 description 3
- WHUUTDBJXJRKMK-VKHMYHEASA-N L-glutamic acid Chemical compound OC(=O)[C@@H](N)CCC(O)=O WHUUTDBJXJRKMK-VKHMYHEASA-N 0.000 description 3
- ZDXPYRJPNDTMRX-VKHMYHEASA-N L-glutamine Chemical compound OC(=O)[C@@H](N)CCC(N)=O ZDXPYRJPNDTMRX-VKHMYHEASA-N 0.000 description 3
- QEFRNWWLZKMPFJ-ZXPFJRLXSA-N L-methionine (R)-S-oxide Chemical compound C[S@@](=O)CC[C@H]([NH3+])C([O-])=O QEFRNWWLZKMPFJ-ZXPFJRLXSA-N 0.000 description 3
- QEFRNWWLZKMPFJ-UHFFFAOYSA-N L-methionine sulphoxide Natural products CS(=O)CCC(N)C(O)=O QEFRNWWLZKMPFJ-UHFFFAOYSA-N 0.000 description 3
- PPBKJAQJAUHZKX-SRVKXCTJSA-N Leu-Cys-Leu Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CS)C(=O)N[C@H](C(O)=O)CC(C)C PPBKJAQJAUHZKX-SRVKXCTJSA-N 0.000 description 3
- YORLGJINWYYIMX-KKUMJFAQSA-N Leu-Cys-Phe Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O YORLGJINWYYIMX-KKUMJFAQSA-N 0.000 description 3
- ONPJGOIVICHWBW-BZSNNMDCSA-N Leu-Lys-Tyr Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCCN)C(=O)N[C@H](C(O)=O)CC1=CC=C(O)C=C1 ONPJGOIVICHWBW-BZSNNMDCSA-N 0.000 description 3
- SXOFUVGLPHCPRQ-KKUMJFAQSA-N Leu-Tyr-Cys Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CS)C(O)=O SXOFUVGLPHCPRQ-KKUMJFAQSA-N 0.000 description 3
- PINHPJWGVBKQII-SRVKXCTJSA-N Lys-Leu-Cys Chemical compound CC(C)C[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](CCCCN)N PINHPJWGVBKQII-SRVKXCTJSA-N 0.000 description 3
- 101100342977 Neurospora crassa (strain ATCC 24698 / 74-OR23-1A / CBS 708.71 / DSM 1257 / FGSC 987) leu-1 gene Proteins 0.000 description 3
- 102100037486 Reverse transcriptase/ribonuclease H Human genes 0.000 description 3
- 206010040047 Sepsis Diseases 0.000 description 3
- 241000589884 Treponema pallidum Species 0.000 description 3
- PYPZMFDMCCWNST-NAKRPEOUSA-N Val-Ile-Cys Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](CS)C(=O)O)NC(=O)[C@H](C(C)C)N PYPZMFDMCCWNST-NAKRPEOUSA-N 0.000 description 3
- 229960000583 acetic acid Drugs 0.000 description 3
- 238000002802 antimicrobial activity assay Methods 0.000 description 3
- 229940121357 antivirals Drugs 0.000 description 3
- 108010094001 arginyl-tryptophyl-arginine Proteins 0.000 description 3
- 230000008901 benefit Effects 0.000 description 3
- 238000006664 bond formation reaction Methods 0.000 description 3
- 239000000872 buffer Substances 0.000 description 3
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 3
- 238000005119 centrifugation Methods 0.000 description 3
- 229940038705 chlamydia trachomatis Drugs 0.000 description 3
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 239000012530 fluid Substances 0.000 description 3
- 230000005847 immunogenicity Effects 0.000 description 3
- 238000011534 incubation Methods 0.000 description 3
- 229910001410 inorganic ion Inorganic materials 0.000 description 3
- 238000002955 isolation Methods 0.000 description 3
- 108010045069 keyhole-limpet hemocyanin Proteins 0.000 description 3
- 108010047926 leucyl-lysyl-tyrosine Proteins 0.000 description 3
- 238000012454 limulus amebocyte lysate test Methods 0.000 description 3
- 108010064486 phenylalanyl-leucyl-valine Proteins 0.000 description 3
- 239000007790 solid phase Substances 0.000 description 3
- 238000006467 substitution reaction Methods 0.000 description 3
- 108010050327 trypticase-soy broth Proteins 0.000 description 3
- 108010009962 valyltyrosine Proteins 0.000 description 3
- YSZUKWLZJXGOTF-UHFFFAOYSA-N *.*.CCC.CCC Chemical compound *.*.CCC.CCC YSZUKWLZJXGOTF-UHFFFAOYSA-N 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 2
- REWSWYIDQIELBE-FXQIFTODSA-N Ala-Val-Ser Chemical compound [H]N[C@@H](C)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CO)C(O)=O REWSWYIDQIELBE-FXQIFTODSA-N 0.000 description 2
- PHHRSPBBQUFULD-UWVGGRQHSA-N Arg-Gly-Lys Chemical compound C(CCN)C[C@@H](C(=O)O)NC(=O)CNC(=O)[C@H](CCCN=C(N)N)N PHHRSPBBQUFULD-UWVGGRQHSA-N 0.000 description 2
- UAOSDDXCTBIPCA-QXEWZRGKSA-N Arg-Ile-Gly Chemical compound CC[C@H](C)[C@@H](C(=O)NCC(=O)O)NC(=O)[C@H](CCCN=C(N)N)N UAOSDDXCTBIPCA-QXEWZRGKSA-N 0.000 description 2
- QHUOOCKNNURZSL-IHRRRGAJSA-N Arg-Tyr-Ser Chemical compound [H]N[C@@H](CCCNC(N)=N)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CO)C(O)=O QHUOOCKNNURZSL-IHRRRGAJSA-N 0.000 description 2
- 239000004475 Arginine Substances 0.000 description 2
- DCXYFEDJOCDNAF-UHFFFAOYSA-N Asparagine Natural products OC(=O)C(N)CC(N)=O DCXYFEDJOCDNAF-UHFFFAOYSA-N 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- BHPQYMZQTOCNFJ-UHFFFAOYSA-N Calcium cation Chemical compound [Ca+2] BHPQYMZQTOCNFJ-UHFFFAOYSA-N 0.000 description 2
- 241000222120 Candida <Saccharomycetales> Species 0.000 description 2
- 241000606161 Chlamydia Species 0.000 description 2
- 208000007190 Chlamydia Infections Diseases 0.000 description 2
- 108010002069 Defensins Proteins 0.000 description 2
- 102000000541 Defensins Human genes 0.000 description 2
- ULGZDMOVFRHVEP-RWJQBGPGSA-N Erythromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)C(=O)[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 ULGZDMOVFRHVEP-RWJQBGPGSA-N 0.000 description 2
- YIFUFYZELCMPJP-YUMQZZPRSA-N Gly-Leu-Cys Chemical compound NCC(=O)N[C@@H](CC(C)C)C(=O)N[C@@H](CS)C(O)=O YIFUFYZELCMPJP-YUMQZZPRSA-N 0.000 description 2
- 241000238631 Hexapoda Species 0.000 description 2
- FDGQSTZJBFJUBT-UHFFFAOYSA-N Hypoxanthine Natural products O=C1NC=NC2=C1NC=N2 FDGQSTZJBFJUBT-UHFFFAOYSA-N 0.000 description 2
- YHFPHRUWZMEOIX-CYDGBPFRSA-N Ile-Val-Val Chemical compound CC[C@H](C)[C@@H](C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](C(C)C)C(=O)O)N YHFPHRUWZMEOIX-CYDGBPFRSA-N 0.000 description 2
- LPHGQDQBBGAPDZ-UHFFFAOYSA-N Isocaffeine Natural products CN1C(=O)N(C)C(=O)C2=C1N(C)C=N2 LPHGQDQBBGAPDZ-UHFFFAOYSA-N 0.000 description 2
- IBMVEYRWAWIOTN-UHFFFAOYSA-N L-Leucyl-L-Arginyl-L-Proline Natural products CC(C)CC(N)C(=O)NC(CCCN=C(N)N)C(=O)N1CCCC1C(O)=O IBMVEYRWAWIOTN-UHFFFAOYSA-N 0.000 description 2
- FADYJNXDPBKVCA-UHFFFAOYSA-N L-Phenylalanyl-L-lysin Natural products NCCCCC(C(O)=O)NC(=O)C(N)CC1=CC=CC=C1 FADYJNXDPBKVCA-UHFFFAOYSA-N 0.000 description 2
- QNAYBMKLOCPYGJ-REOHCLBHSA-N L-alanine Chemical compound C[C@H](N)C(O)=O QNAYBMKLOCPYGJ-REOHCLBHSA-N 0.000 description 2
- CKLJMWTZIZZHCS-REOHCLBHSA-N L-aspartic acid Chemical compound OC(=O)[C@@H](N)CC(O)=O CKLJMWTZIZZHCS-REOHCLBHSA-N 0.000 description 2
- AGPKZVBTJJNPAG-WHFBIAKZSA-N L-isoleucine Chemical compound CC[C@H](C)[C@H](N)C(O)=O AGPKZVBTJJNPAG-WHFBIAKZSA-N 0.000 description 2
- QIVBCDIJIAJPQS-VIFPVBQESA-N L-tryptophane Chemical compound C1=CC=C2C(C[C@H](N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-VIFPVBQESA-N 0.000 description 2
- KZSNJWFQEVHDMF-BYPYZUCNSA-N L-valine Chemical compound CC(C)[C@H](N)C(O)=O KZSNJWFQEVHDMF-BYPYZUCNSA-N 0.000 description 2
- IBMVEYRWAWIOTN-RWMBFGLXSA-N Leu-Arg-Pro Chemical compound CC(C)C[C@H](N)C(=O)N[C@@H](CCCN=C(N)N)C(=O)N1CCC[C@@H]1C(O)=O IBMVEYRWAWIOTN-RWMBFGLXSA-N 0.000 description 2
- RIHIGSWBLHSGLV-CQDKDKBSSA-N Leu-Tyr-Ala Chemical compound [H]N[C@@H](CC(C)C)C(=O)N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](C)C(O)=O RIHIGSWBLHSGLV-CQDKDKBSSA-N 0.000 description 2
- ROHFNLRQFUQHCH-UHFFFAOYSA-N Leucine Natural products CC(C)CC(N)C(O)=O ROHFNLRQFUQHCH-UHFFFAOYSA-N 0.000 description 2
- OHXUUQDOBQKSNB-AVGNSLFASA-N Lys-Val-Arg Chemical compound NCCCC[C@H](N)C(=O)N[C@@H](C(C)C)C(=O)N[C@@H](CCCN=C(N)N)C(O)=O OHXUUQDOBQKSNB-AVGNSLFASA-N 0.000 description 2
- 239000004472 Lysine Substances 0.000 description 2
- 229910019142 PO4 Inorganic materials 0.000 description 2
- 102000035195 Peptidases Human genes 0.000 description 2
- WEDZFLRYSIDIRX-IHRRRGAJSA-N Phe-Ser-Arg Chemical compound NC(=N)NCCC[C@@H](C(O)=O)NC(=O)[C@H](CO)NC(=O)[C@@H](N)CC1=CC=CC=C1 WEDZFLRYSIDIRX-IHRRRGAJSA-N 0.000 description 2
- SMFQZMGHCODUPQ-ULQDDVLXSA-N Pro-Lys-Phe Chemical compound [H]N1CCC[C@H]1C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](CC1=CC=CC=C1)C(O)=O SMFQZMGHCODUPQ-ULQDDVLXSA-N 0.000 description 2
- 102000001708 Protein Isoforms Human genes 0.000 description 2
- 108010029485 Protein Isoforms Proteins 0.000 description 2
- 239000012980 RPMI-1640 medium Substances 0.000 description 2
- MTCFGRXMJLQNBG-UHFFFAOYSA-N Serine Natural products OCC(N)C(O)=O MTCFGRXMJLQNBG-UHFFFAOYSA-N 0.000 description 2
- 206010041925 Staphylococcal infections Diseases 0.000 description 2
- AYFVYJQAPQTCCC-UHFFFAOYSA-N Threonine Natural products CC(O)C(N)C(O)=O AYFVYJQAPQTCCC-UHFFFAOYSA-N 0.000 description 2
- 239000004473 Threonine Substances 0.000 description 2
- 239000007983 Tris buffer Substances 0.000 description 2
- QIVBCDIJIAJPQS-UHFFFAOYSA-N Tryptophan Natural products C1=CC=C2C(CC(N)C(O)=O)=CNC2=C1 QIVBCDIJIAJPQS-UHFFFAOYSA-N 0.000 description 2
- PMDWYLVWHRTJIW-STQMWFEESA-N Tyr-Gly-Arg Chemical compound NC(N)=NCCC[C@@H](C(O)=O)NC(=O)CNC(=O)[C@@H](N)CC1=CC=C(O)C=C1 PMDWYLVWHRTJIW-STQMWFEESA-N 0.000 description 2
- PMHLLBKTDHQMCY-ULQDDVLXSA-N Tyr-Lys-Val Chemical compound [H]N[C@@H](CC1=CC=C(O)C=C1)C(=O)N[C@@H](CCCCN)C(=O)N[C@@H](C(C)C)C(O)=O PMHLLBKTDHQMCY-ULQDDVLXSA-N 0.000 description 2
- CLEGSEJVGBYZBJ-MEYUZBJRSA-N Tyr-Thr-Lys Chemical compound NCCCC[C@@H](C(O)=O)NC(=O)[C@H]([C@H](O)C)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 CLEGSEJVGBYZBJ-MEYUZBJRSA-N 0.000 description 2
- JHDZONWZTCKTJR-KJEVXHAQSA-N Tyr-Thr-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H]([C@@H](C)O)NC(=O)[C@@H](N)CC1=CC=C(O)C=C1 JHDZONWZTCKTJR-KJEVXHAQSA-N 0.000 description 2
- JTWIMNMUYLQNPI-WPRPVWTQSA-N Val-Gly-Arg Chemical compound CC(C)[C@H](N)C(=O)NCC(=O)N[C@H](C(O)=O)CCCNC(N)=N JTWIMNMUYLQNPI-WPRPVWTQSA-N 0.000 description 2
- KZSNJWFQEVHDMF-UHFFFAOYSA-N Valine Natural products CC(C)C(N)C(O)=O KZSNJWFQEVHDMF-UHFFFAOYSA-N 0.000 description 2
- 239000004480 active ingredient Substances 0.000 description 2
- 239000002671 adjuvant Substances 0.000 description 2
- 235000010419 agar Nutrition 0.000 description 2
- 239000011543 agarose gel Substances 0.000 description 2
- 235000004279 alanine Nutrition 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- 125000003277 amino group Chemical group 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 230000000843 anti-fungal effect Effects 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 210000000628 antibody-producing cell Anatomy 0.000 description 2
- 229940121375 antifungal agent Drugs 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- ODKSFYDXXFIFQN-UHFFFAOYSA-N arginine Natural products OC(=O)C(N)CCCNC(N)=N ODKSFYDXXFIFQN-UHFFFAOYSA-N 0.000 description 2
- 108010038850 arginyl-isoleucyl-tyrosine Proteins 0.000 description 2
- 235000009582 asparagine Nutrition 0.000 description 2
- 229960001230 asparagine Drugs 0.000 description 2
- 235000003704 aspartic acid Nutrition 0.000 description 2
- OQFSQFPPLPISGP-UHFFFAOYSA-N beta-carboxyaspartic acid Natural products OC(=O)C(N)C(C(O)=O)C(O)=O OQFSQFPPLPISGP-UHFFFAOYSA-N 0.000 description 2
- 230000003115 biocidal effect Effects 0.000 description 2
- 229960001948 caffeine Drugs 0.000 description 2
- VJEONQKOZGKCAK-UHFFFAOYSA-N caffeine Natural products CN1C(=O)N(C)C(=O)C2=C1C=CN2C VJEONQKOZGKCAK-UHFFFAOYSA-N 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000015556 catabolic process Effects 0.000 description 2
- 238000001311 chemical methods and process Methods 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 239000000882 contact lens solution Substances 0.000 description 2
- 230000000120 cytopathologic effect Effects 0.000 description 2
- 238000006731 degradation reaction Methods 0.000 description 2
- 230000003111 delayed effect Effects 0.000 description 2
- 238000009792 diffusion process Methods 0.000 description 2
- 239000003085 diluting agent Substances 0.000 description 2
- 125000002228 disulfide group Chemical group 0.000 description 2
- 150000002019 disulfides Chemical class 0.000 description 2
- VHJLVAABSRFDPM-QWWZWVQMSA-N dithiothreitol Chemical compound SC[C@@H](O)[C@H](O)CS VHJLVAABSRFDPM-QWWZWVQMSA-N 0.000 description 2
- 239000003814 drug Substances 0.000 description 2
- 239000002702 enteric coating Substances 0.000 description 2
- 238000009505 enteric coating Methods 0.000 description 2
- 239000013604 expression vector Substances 0.000 description 2
- 239000012091 fetal bovine serum Substances 0.000 description 2
- 239000012894 fetal calf serum Substances 0.000 description 2
- 210000002950 fibroblast Anatomy 0.000 description 2
- 239000012362 glacial acetic acid Substances 0.000 description 2
- 235000013922 glutamic acid Nutrition 0.000 description 2
- 239000004220 glutamic acid Substances 0.000 description 2
- ZDXPYRJPNDTMRX-UHFFFAOYSA-N glutamine Natural products OC(=O)C(N)CCC(N)=O ZDXPYRJPNDTMRX-UHFFFAOYSA-N 0.000 description 2
- HNDVDQJCIGZPNO-UHFFFAOYSA-N histidine Natural products OC(=O)C(N)CC1=CN=CN1 HNDVDQJCIGZPNO-UHFFFAOYSA-N 0.000 description 2
- 230000003100 immobilizing effect Effects 0.000 description 2
- 230000002163 immunogen Effects 0.000 description 2
- 238000000338 in vitro Methods 0.000 description 2
- 230000000415 inactivating effect Effects 0.000 description 2
- 230000002452 interceptive effect Effects 0.000 description 2
- PGLTVOMIXTUURA-UHFFFAOYSA-N iodoacetamide Chemical compound NC(=O)CI PGLTVOMIXTUURA-UHFFFAOYSA-N 0.000 description 2
- AGPKZVBTJJNPAG-UHFFFAOYSA-N isoleucine Natural products CCC(C)C(N)C(O)=O AGPKZVBTJJNPAG-UHFFFAOYSA-N 0.000 description 2
- 229960000310 isoleucine Drugs 0.000 description 2
- 210000000265 leukocyte Anatomy 0.000 description 2
- 239000006166 lysate Substances 0.000 description 2
- 238000012423 maintenance Methods 0.000 description 2
- 208000015688 methicillin-resistant staphylococcus aureus infectious disease Diseases 0.000 description 2
- 210000005087 mononuclear cell Anatomy 0.000 description 2
- 230000004899 motility Effects 0.000 description 2
- 238000006386 neutralization reaction Methods 0.000 description 2
- 239000007800 oxidant agent Substances 0.000 description 2
- 244000052769 pathogen Species 0.000 description 2
- COLNVLDHVKWLRT-UHFFFAOYSA-N phenylalanine Natural products OC(=O)C(N)CC1=CC=CC=C1 COLNVLDHVKWLRT-UHFFFAOYSA-N 0.000 description 2
- 239000010452 phosphate Substances 0.000 description 2
- 230000004962 physiological condition Effects 0.000 description 2
- 239000002504 physiological saline solution Substances 0.000 description 2
- 238000011533 pre-incubation Methods 0.000 description 2
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 238000011321 prophylaxis Methods 0.000 description 2
- 239000012064 sodium phosphate buffer Substances 0.000 description 2
- 241000894007 species Species 0.000 description 2
- 238000001228 spectrum Methods 0.000 description 2
- 210000002784 stomach Anatomy 0.000 description 2
- 125000001424 substituent group Chemical group 0.000 description 2
- 239000006228 supernatant Substances 0.000 description 2
- 108010071097 threonyl-lysyl-proline Proteins 0.000 description 2
- 230000000699 topical effect Effects 0.000 description 2
- LENZDBCJOHFCAS-UHFFFAOYSA-N tris Chemical compound OCC(N)(CO)CO LENZDBCJOHFCAS-UHFFFAOYSA-N 0.000 description 2
- OUYCCCASQSFEME-UHFFFAOYSA-N tyrosine Natural products OC(=O)C(N)CC1=CC=C(O)C=C1 OUYCCCASQSFEME-UHFFFAOYSA-N 0.000 description 2
- 239000004474 valine Substances 0.000 description 2
- BVAUMRCGVHUWOZ-ZETCQYMHSA-N (2s)-2-(cyclohexylazaniumyl)propanoate Chemical compound OC(=O)[C@H](C)NC1CCCCC1 BVAUMRCGVHUWOZ-ZETCQYMHSA-N 0.000 description 1
- RWLSBXBFZHDHHX-VIFPVBQESA-N (2s)-2-(naphthalen-2-ylamino)propanoic acid Chemical compound C1=CC=CC2=CC(N[C@@H](C)C(O)=O)=CC=C21 RWLSBXBFZHDHHX-VIFPVBQESA-N 0.000 description 1
- 125000003088 (fluoren-9-ylmethoxy)carbonyl group Chemical group 0.000 description 1
- BWKMGYQJPOAASG-UHFFFAOYSA-N 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid Chemical compound C1=CC=C2CNC(C(=O)O)CC2=C1 BWKMGYQJPOAASG-UHFFFAOYSA-N 0.000 description 1
- FUOOLUPWFVMBKG-UHFFFAOYSA-N 2-Aminoisobutyric acid Chemical compound CC(C)(N)C(O)=O FUOOLUPWFVMBKG-UHFFFAOYSA-N 0.000 description 1
- HBAQYPYDRFILMT-UHFFFAOYSA-N 8-[3-(1-cyclopropylpyrazol-4-yl)-1H-pyrazolo[4,3-d]pyrimidin-5-yl]-3-methyl-3,8-diazabicyclo[3.2.1]octan-2-one Chemical class C1(CC1)N1N=CC(=C1)C1=NNC2=C1N=C(N=C2)N1C2C(N(CC1CC2)C)=O HBAQYPYDRFILMT-UHFFFAOYSA-N 0.000 description 1
- QTBSBXVTEAMEQO-UHFFFAOYSA-M Acetate Chemical compound CC([O-])=O QTBSBXVTEAMEQO-UHFFFAOYSA-M 0.000 description 1
- CPELXLSAUQHCOX-UHFFFAOYSA-M Bromide Chemical compound [Br-] CPELXLSAUQHCOX-UHFFFAOYSA-M 0.000 description 1
- OGNAOIGAPPSUMG-UHFFFAOYSA-N C1CC12CC2 Chemical compound C1CC12CC2 OGNAOIGAPPSUMG-UHFFFAOYSA-N 0.000 description 1
- GFZMYHRAJMQORR-UHFFFAOYSA-N C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2 Chemical compound C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2.C1CC12CC2 GFZMYHRAJMQORR-UHFFFAOYSA-N 0.000 description 1
- JPUQBEJPMNXQJI-UHFFFAOYSA-N CC(C)(C)C.CC(C)(C)C.P Chemical compound CC(C)(C)C.CC(C)(C)C.P JPUQBEJPMNXQJI-UHFFFAOYSA-N 0.000 description 1
- PGOROZWXUZQYCS-UHFFFAOYSA-N CCC.CCC.[W] Chemical compound CCC.CCC.[W] PGOROZWXUZQYCS-UHFFFAOYSA-N 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- 108090000565 Capsid Proteins Proteins 0.000 description 1
- 101710205625 Capsid protein p24 Proteins 0.000 description 1
- 229930186147 Cephalosporin Natural products 0.000 description 1
- 241001529572 Chaceon affinis Species 0.000 description 1
- 206010061041 Chlamydial infection Diseases 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-M Chloride anion Chemical compound [Cl-] VEXZGXHMUGYJMC-UHFFFAOYSA-M 0.000 description 1
- 108090000317 Chymotrypsin Proteins 0.000 description 1
- 206010053567 Coagulopathies Diseases 0.000 description 1
- 108020004705 Codon Proteins 0.000 description 1
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- 102000004190 Enzymes Human genes 0.000 description 1
- 108090000790 Enzymes Proteins 0.000 description 1
- 241000283073 Equus caballus Species 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- BDAGIHXWWSANSR-UHFFFAOYSA-M Formate Chemical compound [O-]C=O BDAGIHXWWSANSR-UHFFFAOYSA-M 0.000 description 1
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 description 1
- LEGMTEAZGRRIMY-ZKWXMUAHSA-N Gly-Cys-Ile Chemical compound CC[C@H](C)[C@@H](C(=O)O)NC(=O)[C@H](CS)NC(=O)CN LEGMTEAZGRRIMY-ZKWXMUAHSA-N 0.000 description 1
- KSOBNUBCYHGUKH-UWVGGRQHSA-N Gly-Val-Val Chemical compound CC(C)[C@@H](C(O)=O)NC(=O)[C@H](C(C)C)NC(=O)CN KSOBNUBCYHGUKH-UWVGGRQHSA-N 0.000 description 1
- 108010027044 HIV Core Protein p24 Proteins 0.000 description 1
- 241000282412 Homo Species 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- AHLPHDHHMVZTML-BYPYZUCNSA-N L-Ornithine Chemical compound NCCC[C@H](N)C(O)=O AHLPHDHHMVZTML-BYPYZUCNSA-N 0.000 description 1
- 125000000998 L-alanino group Chemical group [H]N([*])[C@](C([H])([H])[H])([H])C(=O)O[H] 0.000 description 1
- ZGUNAGUHMKGQNY-ZETCQYMHSA-N L-alpha-phenylglycine zwitterion Chemical compound OC(=O)[C@@H](N)C1=CC=CC=C1 ZGUNAGUHMKGQNY-ZETCQYMHSA-N 0.000 description 1
- RHGKLRLOHDJJDR-BYPYZUCNSA-N L-citrulline Chemical compound NC(=O)NCCC[C@H]([NH3+])C([O-])=O RHGKLRLOHDJJDR-BYPYZUCNSA-N 0.000 description 1
- FFEARJCKVFRZRR-BYPYZUCNSA-N L-methionine Chemical compound CSCC[C@H](N)C(O)=O FFEARJCKVFRZRR-BYPYZUCNSA-N 0.000 description 1
- 241000239220 Limulus polyphemus Species 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- 241000124008 Mammalia Species 0.000 description 1
- 102000016943 Muramidase Human genes 0.000 description 1
- 108010014251 Muramidase Proteins 0.000 description 1
- 108010062010 N-Acetylmuramoyl-L-alanine Amidase Proteins 0.000 description 1
- 125000001429 N-terminal alpha-amino-acid group Chemical group 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- RHGKLRLOHDJJDR-UHFFFAOYSA-N Ndelta-carbamoyl-DL-ornithine Natural products OC(=O)C(N)CCCNC(N)=O RHGKLRLOHDJJDR-UHFFFAOYSA-N 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 108091028043 Nucleic acid sequence Proteins 0.000 description 1
- AHLPHDHHMVZTML-UHFFFAOYSA-N Orn-delta-NH2 Natural products NCCCC(N)C(O)=O AHLPHDHHMVZTML-UHFFFAOYSA-N 0.000 description 1
- UTJLXEIPEHZYQJ-UHFFFAOYSA-N Ornithine Natural products OC(=O)C(C)CCCN UTJLXEIPEHZYQJ-UHFFFAOYSA-N 0.000 description 1
- 101710177166 Phosphoprotein Proteins 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 108010076504 Protein Sorting Signals Proteins 0.000 description 1
- 241000589516 Pseudomonas Species 0.000 description 1
- 108020004511 Recombinant DNA Proteins 0.000 description 1
- 239000006146 Roswell Park Memorial Institute medium Substances 0.000 description 1
- 241000702670 Rotavirus Species 0.000 description 1
- 108010071390 Serum Albumin Proteins 0.000 description 1
- 102000007562 Serum Albumin Human genes 0.000 description 1
- 241000700584 Simplexvirus Species 0.000 description 1
- 101710149279 Small delta antigen Proteins 0.000 description 1
- 241000589970 Spirochaetales Species 0.000 description 1
- 241000191967 Staphylococcus aureus Species 0.000 description 1
- 229930006000 Sucrose Natural products 0.000 description 1
- CZMRCDWAGMRECN-UGDNZRGBSA-N Sucrose Chemical compound O[C@H]1[C@H](O)[C@@H](CO)O[C@@]1(CO)O[C@@H]1[C@H](O)[C@@H](O)[C@H](O)[C@@H](CO)O1 CZMRCDWAGMRECN-UGDNZRGBSA-N 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-L Sulfate Chemical compound [O-]S([O-])(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-L 0.000 description 1
- 108010070741 Tachypleus tridentatus tachyplesin peptide Proteins 0.000 description 1
- 239000004098 Tetracycline Substances 0.000 description 1
- 241000224526 Trichomonas Species 0.000 description 1
- GLNADSQYFUSGOU-GPTZEZBUSA-J Trypan blue Chemical compound [Na+].[Na+].[Na+].[Na+].C1=C(S([O-])(=O)=O)C=C2C=C(S([O-])(=O)=O)C(/N=N/C3=CC=C(C=C3C)C=3C=C(C(=CC=3)\N=N\C=3C(=CC4=CC(=CC(N)=C4C=3O)S([O-])(=O)=O)S([O-])(=O)=O)C)=C(O)C2=C1N GLNADSQYFUSGOU-GPTZEZBUSA-J 0.000 description 1
- 108090000631 Trypsin Proteins 0.000 description 1
- 102000004142 Trypsin Human genes 0.000 description 1
- OXGVAUFVTOPFFA-XPUUQOCRSA-N Val-Gly-Cys Chemical compound CC(C)[C@@H](C(=O)NCC(=O)N[C@@H](CS)C(=O)O)N OXGVAUFVTOPFFA-XPUUQOCRSA-N 0.000 description 1
- 125000002777 acetyl group Chemical group [H]C([H])([H])C(*)=O 0.000 description 1
- 230000000397 acetylating effect Effects 0.000 description 1
- 229960004150 aciclovir Drugs 0.000 description 1
- 150000007513 acids Chemical class 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 125000002252 acyl group Chemical group 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 239000002168 alkylating agent Substances 0.000 description 1
- 229940100198 alkylating agent Drugs 0.000 description 1
- 230000009435 amidation Effects 0.000 description 1
- 238000007112 amidation reaction Methods 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- APKFDSVGJQXUKY-INPOYWNPSA-N amphotericin B Chemical compound O[C@H]1[C@@H](N)[C@H](O)[C@@H](C)O[C@H]1O[C@H]1/C=C/C=C/C=C/C=C/C=C/C=C/C=C/[C@H](C)[C@@H](O)[C@@H](C)[C@H](C)OC(=O)C[C@H](O)C[C@H](O)CC[C@@H](O)[C@H](O)C[C@H](O)C[C@](O)(C[C@H](O)[C@H]2C(O)=O)O[C@H]2C1 APKFDSVGJQXUKY-INPOYWNPSA-N 0.000 description 1
- 210000004102 animal cell Anatomy 0.000 description 1
- 230000000798 anti-retroviral effect Effects 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000000427 antigen Substances 0.000 description 1
- 230000030741 antigen processing and presentation Effects 0.000 description 1
- 102000036639 antigens Human genes 0.000 description 1
- 108091007433 antigens Proteins 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 229960004099 azithromycin Drugs 0.000 description 1
- MQTOSJVFKKJCRP-BICOPXKESA-N azithromycin Chemical compound O([C@@H]1[C@@H](C)C(=O)O[C@@H]([C@@]([C@H](O)[C@@H](C)N(C)C[C@H](C)C[C@@](C)(O)[C@H](O[C@H]2[C@@H]([C@H](C[C@@H](C)O2)N(C)C)O)[C@H]1C)(C)O)CC)[C@H]1C[C@@](C)(OC)[C@@H](O)[C@H](C)O1 MQTOSJVFKKJCRP-BICOPXKESA-N 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- WPYMKLBDIGXBTP-UHFFFAOYSA-N benzoic acid Chemical compound OC(=O)C1=CC=CC=C1 WPYMKLBDIGXBTP-UHFFFAOYSA-N 0.000 description 1
- WTOFYLAWDLQMBZ-LURJTMIESA-N beta(2-thienyl)alanine Chemical compound OC(=O)[C@@H](N)CC1=CC=CS1 WTOFYLAWDLQMBZ-LURJTMIESA-N 0.000 description 1
- 229940000635 beta-alanine Drugs 0.000 description 1
- 108050002883 beta-defensin Proteins 0.000 description 1
- 102000012265 beta-defensin Human genes 0.000 description 1
- 230000004071 biological effect Effects 0.000 description 1
- 210000001124 body fluid Anatomy 0.000 description 1
- 239000010839 body fluid Substances 0.000 description 1
- 239000011575 calcium Substances 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 229910001424 calcium ion Inorganic materials 0.000 description 1
- 229940095731 candida albicans Drugs 0.000 description 1
- 125000003917 carbamoyl group Chemical group [H]N([H])C(*)=O 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 150000001768 cations Chemical class 0.000 description 1
- 229940124587 cephalosporin Drugs 0.000 description 1
- 150000001780 cephalosporins Chemical class 0.000 description 1
- 210000004978 chinese hamster ovary cell Anatomy 0.000 description 1
- 229960002376 chymotrypsin Drugs 0.000 description 1
- 229960002173 citrulline Drugs 0.000 description 1
- 235000013477 citrulline Nutrition 0.000 description 1
- 230000035602 clotting Effects 0.000 description 1
- 108010045487 coagulogen Proteins 0.000 description 1
- 230000000295 complement effect Effects 0.000 description 1
- 239000002299 complementary DNA Substances 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000006071 cream Substances 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 231100000433 cytotoxic Toxicity 0.000 description 1
- 230000001472 cytotoxic effect Effects 0.000 description 1
- 230000008260 defense mechanism Effects 0.000 description 1
- 108010014154 defensin NP-1 Proteins 0.000 description 1
- 239000012024 dehydrating agents Substances 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000001212 derivatisation Methods 0.000 description 1
- 239000000645 desinfectant Substances 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 238000010790 dilution Methods 0.000 description 1
- 239000012895 dilution Substances 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 229960003983 diphtheria toxoid Drugs 0.000 description 1
- 201000010099 disease Diseases 0.000 description 1
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 231100000673 dose–response relationship Toxicity 0.000 description 1
- 229940088598 enzyme Drugs 0.000 description 1
- 229960003276 erythromycin Drugs 0.000 description 1
- 230000032050 esterification Effects 0.000 description 1
- 238000005886 esterification reaction Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 102000037865 fusion proteins Human genes 0.000 description 1
- 108020001507 fusion proteins Proteins 0.000 description 1
- BTCSSZJGUNDROE-UHFFFAOYSA-N gamma-aminobutyric acid Chemical compound NCCCC(O)=O BTCSSZJGUNDROE-UHFFFAOYSA-N 0.000 description 1
- 238000001879 gelation Methods 0.000 description 1
- 230000002068 genetic effect Effects 0.000 description 1
- 238000010353 genetic engineering Methods 0.000 description 1
- 229960004198 guanidine Drugs 0.000 description 1
- PJJJBBJSCAKJQF-UHFFFAOYSA-N guanidinium chloride Chemical compound [Cl-].NC(N)=[NH2+] PJJJBBJSCAKJQF-UHFFFAOYSA-N 0.000 description 1
- VKYKSIONXSXAKP-UHFFFAOYSA-N hexamethylenetetramine Chemical compound C1N(C2)CN3CN1CN2C3 VKYKSIONXSXAKP-UHFFFAOYSA-N 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- XMBWDFGMSWQBCA-UHFFFAOYSA-N hydrogen iodide Chemical compound I XMBWDFGMSWQBCA-UHFFFAOYSA-N 0.000 description 1
- 230000007062 hydrolysis Effects 0.000 description 1
- 238000006460 hydrolysis reaction Methods 0.000 description 1
- 230000001900 immune effect Effects 0.000 description 1
- 230000028993 immune response Effects 0.000 description 1
- 238000003018 immunoassay Methods 0.000 description 1
- 230000016784 immunoglobulin production Effects 0.000 description 1
- 238000001727 in vivo Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 230000001524 infective effect Effects 0.000 description 1
- 230000005764 inhibitory process Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 238000011081 inoculation Methods 0.000 description 1
- 238000010255 intramuscular injection Methods 0.000 description 1
- 238000010253 intravenous injection Methods 0.000 description 1
- 108010044374 isoleucyl-tyrosine Proteins 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 231100001231 less toxic Toxicity 0.000 description 1
- 125000005647 linker group Chemical group 0.000 description 1
- 210000003712 lysosome Anatomy 0.000 description 1
- 230000001868 lysosomic effect Effects 0.000 description 1
- 229960000274 lysozyme Drugs 0.000 description 1
- 239000004325 lysozyme Substances 0.000 description 1
- 235000010335 lysozyme Nutrition 0.000 description 1
- 239000003120 macrolide antibiotic agent Substances 0.000 description 1
- 229940041033 macrolides Drugs 0.000 description 1
- 239000011777 magnesium Substances 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- MYWUZJCMWCOHBA-VIFPVBQESA-N methamphetamine Chemical compound CN[C@@H](C)CC1=CC=CC=C1 MYWUZJCMWCOHBA-VIFPVBQESA-N 0.000 description 1
- 229930182817 methionine Natural products 0.000 description 1
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 1
- 239000004530 micro-emulsion Substances 0.000 description 1
- 244000005700 microbiome Species 0.000 description 1
- 108091005601 modified peptides Proteins 0.000 description 1
- 125000000740 n-pentyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003472 neutralizing effect Effects 0.000 description 1
- 210000000440 neutrophil Anatomy 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 231100000252 nontoxic Toxicity 0.000 description 1
- 230000003000 nontoxic effect Effects 0.000 description 1
- 239000002773 nucleotide Substances 0.000 description 1
- 125000003729 nucleotide group Chemical group 0.000 description 1
- 235000015097 nutrients Nutrition 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000002674 ointment Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 150000002891 organic anions Chemical class 0.000 description 1
- 150000002892 organic cations Chemical class 0.000 description 1
- 229960003104 ornithine Drugs 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000010647 peptide synthesis reaction Methods 0.000 description 1
- 210000005105 peripheral blood lymphocyte Anatomy 0.000 description 1
- 210000003819 peripheral blood mononuclear cell Anatomy 0.000 description 1
- 239000000825 pharmaceutical preparation Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- NBIIXXVUZAFLBC-UHFFFAOYSA-K phosphate Chemical compound [O-]P([O-])([O-])=O NBIIXXVUZAFLBC-UHFFFAOYSA-K 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000003910 polypeptide antibiotic agent Substances 0.000 description 1
- 229920001282 polysaccharide Polymers 0.000 description 1
- 239000005017 polysaccharide Substances 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 230000003389 potentiating effect Effects 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000017854 proteolysis Effects 0.000 description 1
- 238000000746 purification Methods 0.000 description 1
- 230000001698 pyrogenic effect Effects 0.000 description 1
- 238000010188 recombinant method Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 238000004007 reversed phase HPLC Methods 0.000 description 1
- 229940043230 sarcosine Drugs 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000012216 screening Methods 0.000 description 1
- 125000000467 secondary amino group Chemical group [H]N([*:1])[*:2] 0.000 description 1
- 230000028327 secretion Effects 0.000 description 1
- UQDJGEHQDNVPGU-UHFFFAOYSA-N serine phosphoethanolamine Chemical compound [NH3+]CCOP([O-])(=O)OCC([NH3+])C([O-])=O UQDJGEHQDNVPGU-UHFFFAOYSA-N 0.000 description 1
- 239000002356 single layer Substances 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- RMLUKZWYIKEASN-UHFFFAOYSA-M sodium;2-amino-9-(2-hydroxyethoxymethyl)purin-6-olate Chemical compound [Na+].O=C1[N-]C(N)=NC2=C1N=CN2COCCO RMLUKZWYIKEASN-UHFFFAOYSA-M 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 238000010532 solid phase synthesis reaction Methods 0.000 description 1
- 210000004989 spleen cell Anatomy 0.000 description 1
- 230000007480 spreading Effects 0.000 description 1
- 238000003892 spreading Methods 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 238000010254 subcutaneous injection Methods 0.000 description 1
- 239000007929 subcutaneous injection Substances 0.000 description 1
- 239000005720 sucrose Substances 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000007910 systemic administration Methods 0.000 description 1
- 230000009885 systemic effect Effects 0.000 description 1
- ZJQFYZCNRTZAIM-PMXBASNASA-N tachyplesin Chemical compound C([C@H]1C(=O)N[C@@H](CCCNC(N)=N)C(=O)NCC(=O)N[C@H](C(N[C@H]2CSSC[C@H](NC(=O)[C@H](C(C)C)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=3C=CC=CC=3)NC(=O)[C@@H](NC(=O)[C@H](CC=3C4=CC=CC=C4NC=3)NC(=O)[C@@H](N)CCCCN)CSSC[C@H](NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CCCNC(N)=N)NC(=O)[C@H](CC=3C=CC(O)=CC=3)NC2=O)C(=O)N[C@@H](CCCNC(N)=N)C(N)=O)C(=O)N1)=O)[C@@H](C)CC)C1=CC=C(O)C=C1 ZJQFYZCNRTZAIM-PMXBASNASA-N 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 229960002180 tetracycline Drugs 0.000 description 1
- 229930101283 tetracycline Natural products 0.000 description 1
- 235000019364 tetracycline Nutrition 0.000 description 1
- 150000003522 tetracyclines Chemical class 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
- 238000002560 therapeutic procedure Methods 0.000 description 1
- 239000003104 tissue culture media Substances 0.000 description 1
- 239000003860 topical agent Substances 0.000 description 1
- 239000008009 topical excipient Substances 0.000 description 1
- 239000012049 topical pharmaceutical composition Substances 0.000 description 1
- 231100000419 toxicity Toxicity 0.000 description 1
- 230000001988 toxicity Effects 0.000 description 1
- 231100000583 toxicological profile Toxicity 0.000 description 1
- 230000009261 transgenic effect Effects 0.000 description 1
- 239000012588 trypsin Substances 0.000 description 1
- 230000001810 trypsinlike Effects 0.000 description 1
- 208000000143 urethritis Diseases 0.000 description 1
- 210000003501 vero cell Anatomy 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K7/00—Peptides having 5 to 20 amino acids in a fully defined sequence; Derivatives thereof
- C07K7/04—Linear peptides containing only normal peptide links
- C07K7/08—Linear peptides containing only normal peptide links having 12 to 20 amino acids
-
- A—HUMAN NECESSITIES
- A01—AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
- A01N—PRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
- A01N37/00—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids
- A01N37/44—Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a carbon atom having three bonds to hetero atoms with at the most two bonds to halogen, e.g. carboxylic acids containing at least one carboxylic group or a thio analogue, or a derivative thereof, and a nitrogen atom attached to the same carbon skeleton by a single or double bond, this nitrogen atom not being a member of a derivative or of a thio analogue of a carboxylic group, e.g. amino-carboxylic acids
- A01N37/46—N-acyl derivatives
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61L—METHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
- A61L12/00—Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor
- A61L12/08—Methods or apparatus for disinfecting or sterilising contact lenses; Accessories therefor using chemical substances
- A61L12/14—Organic compounds not covered by groups A61L12/10 or A61L12/12
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K38/00—Medicinal preparations containing peptides
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A50/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
- Y02A50/30—Against vector-borne diseases, e.g. mosquito-borne, fly-borne, tick-borne or waterborne diseases whose impact is exacerbated by climate change
Definitions
- the invention relates to the field of antibiotic peptides.
- the invention concerns short peptides with unique patterns of cysteine type residues and conformations that have a wide range of antimicrobial activities.
- peptides that have antimicrobial and antiviral activity.
- Various classes of these peptides have been isolated from tissues of both plants and animals.
- PCT application WO 95/03325 published Feb. 2, 1995 contains a review of the literature on this subject.
- Such peptides include tachyplesins, which are 17-18 amino acid peptides containing four invariant cysteines, the defensins, ⁇ -defensins, and insect defensins, which are somewhat longer peptides characterized by six invariant cysteines, and antifungal and antibacterial peptides and proteins which have been found in plants.
- protegrins antimicrobial and antiviral peptides
- the applications in the series of which WO 95/03325 is a part provide a new class of antimicrobial and antiviral peptides, designated “protegrins”, representative members of which have been isolated from porcine leukocytes. These peptides are useful as antibacterial antiviral and antifungal agents in both plants and animals.
- the isolation of some of the protegrin peptides was reported in a paper by Kokryakov, V. N. et al. FEBS (1993) 337:231-236 (July issue).
- a later publication described the presence of a new protegrin, whose sequence and that of its precursor were deduced from its isolated cDNA clone.
- the protegrins have also been found to bind to endotoxins—i.e., the lipopolysaccharide (LPS) compositions derived from gram-negative bacteria which are believed responsible for gram-negative sepsis.
- LPS lipopolysaccharide
- the protegrins are also effective in inhibiting the growth of organisms that are associated with sexually transmitted diseases such as Chlamydia trachomatis and Neisseria gonorrhoeae.
- the invention described below relates to peptide type compounds that are related to the protegrins described above, but reflect displacements of the protegrin cysteines at positions 6 and 15.
- C 4 , C 5 , C 16 or C 17 in the formula set forth below must be cysteine
- the common name terminology of these components reflects particularly preferred situations wherein both of C 4 and C 17 are cysteine type residues (the tachytegrins) or where both C 5 and C 16 are cysteine type residues (the parevins).
- the invention provides compounds which retain generally the antimicrobial activity of the protegrins discussed above, but differ in conformation due to the dislocation of the cysteine residues at positions 6 and/or 15 of these protegrins. Surprisingly, these modified compounds exhibit activity spectra which are analogous to those of the protegrins, but offer the opportunity to fine-tune the biological activity of antibiotics and antivirals. All of these peptides can be produced synthetically and those that contain only gene-encoded amino acids can also be produced recombinantly. These compounds are useful as preservatives or in pharmaceutical compositions in treating or preventing infection in animals. Alternatively, the peptides can be formulated into compositions which can be applied to plants to protect them against viral or microbial infection. In still another approach, the DNA encoding the peptides can be expressed in situ, in animals or preferably in plants, to combat infections. The peptides are also useful as standards in antimicrobial assays and in binding endotoxins.
- the invention is directed to a purified and isolated or recombinantly or synthetically produced compound which contains the amino acid sequence A 1 -A 2 -A 3 -C 4 -C 5 -C 6 -A 7 -C 8 -A 9 -A 10 -A 11 -A 12 -C 13 -A 14 -C 15 -C 16 -C 17 -A 18 (1)
- the compounds also include the N-terminal acylated and/or C-terminal amidated or esterified forms and may be either in the, optionally —SH stabilized, linear or in a disulfide-bridged form.
- each of A 1 -A 3 is independently present or not present, and if present each is independently a basic, hydrophobic, polar/large, or small amino acid;
- each of C 4 , C 5 , C 6 , C 15 , C 16 and C 17 is independently cysteine, homocysteine or penicillamine or a basic, hydrophobic, polar/large, or small amino acid, and C 4 and/or C 17 may be present or not present; C 6 and/or C 15 may also be acidic;
- each of C 8 and C 13 is independently cysteine, homocysteine or penicillamine;
- each of A 7 and A 14 is independently a hydrophobic or a small amino acid
- a 9 -A 12 must be capable of effecting a or ⁇ -turn when contained in the compound and at least one of A 9 -A 12 must be a basic amino acid;
- a 18 is present or not present, and if present, is a basic, hydrophobic, polar/large or small amino acid.
- the compounds of the invention may, in the alternative, contain a modified form of formula (1) wherein one or both of C 8 , and C 13 is independently replaced by a basic, hydrophobic, polar/large, acidic, or small amino acid.
- C 4 , C 5 , C 16 and C 17 must be cysteine, homocysteine or penicillamine;
- C 4 , C 5 , and C 6 can be cysteine, homocysteine or penicillamine.
- C 15 , C 16 and C 17 can be cysteine, homocysteine or penicillamine.
- a particular advantage of some of the peptides of the invention lies in their reduced size. As a result of this, they are less costly to produce, generally are expected to provide better distribution in tissue, and are less immunogenic. As they provide alternative structures, they are likely to have different pharmacokinetic and toxicological profiles.
- the invention is directed to recombinant materials useful for the production of the peptides of the invention as well as plants or animals modified to contain expression systems for the production of these peptides.
- the invention is also directed to pharmaceutical compositions and compositions for application to plants containing the peptides of the invention as active ingredients or compositions which contain expression systems for production of the peptides or for in situ expression of the nucleotide sequence encoding these peptides.
- the invention is also directed to methods to prepare the invention peptides synthetically, to antibodies specific for these peptides, and to the use of the peptides as preservatives.
- the invention is directed to the use of the compounds of the invention as standards in antimicrobial assays.
- the compounds many also be used as antimicrobials in solutions useful in eye care, such as contact lens solutions, and in topical or other pharmaceutical compositions for treatment of sexually transmitted diseases (STDs).
- STDs sexually transmitted diseases
- the invention is also directed to use of the invention compounds as preservatives for foods or other perishables.
- the invention peptides can inactivate endotoxin
- the invention is also directed to a method to inactivate endotoxins using the compounds of the invention and to treat gram-negative sepsis by taking advantage of this property.
- FIGS. 1A and 1B show antibacterial activity of two of the parevins against E. coli ML-35p;
- FIGS. 2A and 2B show antibacterial activity of two of the parevins against Listeria monocytogenes
- FIGS. 3A and 3B shows antifungal activity of two of the parevins against Candida albicans
- FIGS. 4A and 4B shows antibacterial activity of a tachytegrin against E. coli ML-35p
- FIGS. 5A and 5B shows antibacterial activity of a tachytegrin against B. subtilis ;
- FIGS. 6A and 6B shows antibacterial activity of a tachytegrin against S. typhimurium 14028s.
- the peptides of the invention are characterized by the amino acid sequence: (1) A 1 -A 2 -A 3 -C 4 -C 5 -C 6 -A 7 -C 8 -A 9 -A 10 -A 11 -A 12 -C 13 -A 14 -C 15 -C 16 -C 17 -A 18
- a n in each case represents an amino acid at the specified position in the peptide.
- a 1 -A 3 , C 4 , C 17 and/or A 18 may or may not be present.
- the peptides of the invention contain 11-24 amino acids.
- the sequence shown as (1) can be extended at the N and/or C terminus with non-interfering amino acids or sequence.
- cysteine, homocysteine or penicillamine residues shown as C in formula (1), are invariant in one embodiment of the peptides of the invention; however, in the modified forms of the peptides containing the sequence of formula (1), also included within the scope of the invention, one or more of these cysteines may be replaced by a small, basic acidic or hydrophobic amino acid. However, at least one of C 4 , C 5 , C 16 and C 17 must be cysteine, homocysteine penicillamine.
- All of the peptides of the invention have a net positive charge of at least +1 at physiological pH; approximately 15%-50% of the amino acid residues included in the sequence should be basic. For embodiments having as few as 11 amino acids, there may be only one basic amino acid residue; however, at least two basic residues, even in this short-chain residue, are preferred. If the peptide contains as many as 15 amino acid residues, two basic residues are required. It is preferred that at least 20% of the amino acids in the sequence be basic, more preferably 30%, but not more than 50%.
- the active peptides also preferably contain a ⁇ -turn bracketed by two strands that form a ⁇ -sheet. While not intending to be bound by any theory, applicants believe that antimicrobial activity of the compounds containing the sequence of formula (1) is associated with such a ⁇ -turn bracketed by two strands that form a ⁇ -sheet structure.
- the amino acids A 9 -A 12 must be capable of effecting a ⁇ -turn, which can be encouraged by the cystine bond between C 8 and C 13 as well as by hydrogen bonding between A 9 and A 12 .
- the presence of proline at A 10 and/or A 11 does not interfere with the ⁇ -turn stabilized by the presence of a hydrophobic amino acid at positions A 9 or A 12 .
- ⁇ -turn refers to a recognized sub-class of reverse-turns.
- a “ ⁇ -turn” is a four amino acid residue peptide segment that reverses the direction of a polypeptide chain so as to allow a single polypeptide chain to adopt an anti-parallel ⁇ -sheet secondary structure.
- the two internal amino acid residues of the ⁇ -turn are not involved in the hydrogen-bonding of the ⁇ -sheet; the two amino acid residues on either side of the internal residues are included in the hydrogen-bonding of the J-sheet.
- ⁇ -turn expressly includes all types of peptide ⁇ -turns commonly known in the art including, but not limited to, type-I, type-II, type-III, type-I′, type-II′, and type-III′ ⁇ -turns (see, Rose et al., 1985, Adv. Protein Chem. 37:1-109; Wilmer-White et al., 1987, Trends Biochem. Sci. 12:189-192; Wilmot et al., 1988, J. Mol. Biol. 206:759-777; Tramontano et al., 1989, Proteins; Struct. Funct. Genet. 6:382-394).
- the ⁇ sheets are believed to be effected by the sequences surrounding C 8 and C 13 and are inclusive of these residues.
- a 7 and A 14 are preferably hydrophobic amino acids.
- the cysteine residues may also, then, be replaced by other residues which do not affect the maintenance of the ⁇ sheet formation; these substitutions would include acidic, basic, hydrophobic polar or small amino acids.
- the amino terminus of the peptide may be in the free amino form or may be acylated by a group of the formula RCO—, wherein R represents a hydrocarbyl group of 1-6C.
- R represents a hydrocarbyl group of 1-6C.
- the hydrocarbyl group is saturated or unsaturated and is typically, for example, methyl, ethyl, i-propyl, t-butyl, n-pentyl, cyclohexyl, cyclohexene-2-yl, hexene-3-yl, hexyne-4-yl, and the like.
- the C-terminus of the peptides of the invention may be in the form of the underivatized carboxyl group, either as the free acid or an acceptable salt, such as the potassium, sodium, calcium, magnesium, or other salt of an inorganic ion or of an organic ion such as caffeine. In some embodiments, it is difficult to make salts since the remainder of the molecule bears a positive charge which may repel the relevant cation.
- the carboxyl terminus may also be derivatized by formation of an ester with an alcohol of the formula ROH, or may be amidated by an amine of the formula NH 3 , or RNH 2 , or R 2 NH, wherein each R is independently hydrocarbyl of 1-6C as defined above. Amidated forms of the peptides wherein the C-terminus has the formula CONH 2 are preferred.
- the peptides of the invention may be supplied in the form of the acid addition salts.
- Typical acid addition salts include those of inorganic ions such as chloride, bromide, iodide, fluoride or the like, sulfate, nitrate, or phosphate, or may be salts of organic anions such as acetate, formate, benzoate and the like. The acceptability of each of such salts is dependent on the intended use, as is commonly understood.
- the peptides of the invention that contain at least two cysteines, homocysteine or penicillamine may be in straight-chain or cyclic form.
- the straight-chain forms are convertible to the cyclic forms, and vice versa.
- Methods for forming disulfide bonds to create the cyclic peptides are well known in the art, as are methods to reduce disulfides to form the linear compounds.
- the linear compounds can be stabilized by addition of a suitable alkylating agent such as iodoacetamide.
- Cyclic forms are the result of the formation of disulfide linkages among all or some of the four cysteine, homocysteine or penicillamine residues that may be present.
- Cyclic forms of the invention include all possible permutations of disulfide bond formation; if the —SH containing amino acids are numbered in order of their occurrence starting at the N-terminus as C 4 , C 5 , C 6 , C 8 , C 13 , C 16 , C 17 or C 18 , these permutations include, when two disulfides are present:
- these permutations include:
- linearalized forms of the native cyclic peptides have valuable activities, even when chemically stabilized to preserve the sulfhydryl form of cysteine, homocysteine or penicillamine for example, by reaction with iodoacetamide.
- the compounds of the invention also include linearalized forms which are stabilized with suitable reagents.
- “SH-stabilized” forms of the peptides of the invention contain sulfhydryl groups reacted with standard reagents to prevent reformation into disulfide linkages.
- An alternative approach to providing linear forms of the invention compounds comprises use of the modified form of the peptides where residues at C 8 and/or C 13 are replaced by amino acids which do not form cystine linkages, in combination with stabilization of any cysteine, homocysteine or penicillamine residues at C 4 , C 5 , or C 6 and/or C 15 , C 16 , C 17 .
- Forms of the invention compounds which have only one disulfide bond are conveniently obtained by replacing the cysteine, homocysteine or penicillamine residues at C 8 and/or C 13 , preferably both, with amino acids which do not form disulfide linkages.
- amino acids denoted by A n may be those encoded by the gene or analogs thereof, and may also be the D-isomers thereof.
- One preferred embodiment of the peptides of the invention is that form wherein all of the residues are in the D-configuration thus conferring resistance to protease activity while retaining antimicrobial or antiviral properties.
- the resulting peptides are enantiomers of the native L-amino acid-containing forms.
- either one or both of the residues found at C 5 and/or C 16 is a basic amino acid and/or at least one of A 1 -A 3 and C 4 is hydrophobic and/or at least one, and preferably all four of these amino acids are deleted.
- amino acid notations used herein are conventional and are as follows: One-Letter Three-Letter Amino Acid Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol Symbol
- amino acids not encoded genetically are abbreviated as indicated in the discussion below.
- the compounds of the invention are peptides which are partially defined in terms of amino acid residues of designated classes. Amino acid residues can be generally subclassified into major subclasses as follows:
- Acidic The residue has a negative charge due to loss of H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.
- Polar/large The residues are not charged at physiological pH, but the residue is not sufficiently repelled by aqueous solutions so that it would seek inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.
- Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or nonaromatic, self-explanatory classifications with respect to the side-chain substituent groups of the residues, and as small or large.
- the residue is considered small if it contains a total of four carbon atoms or less, inclusive of the carboxyl carbon, provided an additional polar substituent is present; three or less if not. Small residues are, of course, always nonaromatic.
- the gene-encoded secondary amino acid proline is a special case due to its known effects on the secondary conformation of peptide chains, and is not, therefore, included in a group. Cysteine and other —SH containing amino acid residues are also not included in these classifications since their capacity to form disulfide bonds to provide secondary structure is critical in the compounds of the present invention.
- Certain commonly encountered amino acids include, for example, ⁇ -Alanine ( ⁇ -Ala), or other omega-amino acids, such as 3-aminopropionic, 2,3-diaminopropionic (2,3-diaP), 4-aminobutyric and so forth, I-aminisobutyric acid (Aib), sarcosine (Sar) or N-methyl glycine (MeGly), ornithine (Orn), citrulline (Cit), t-butylalanine (t-BuA), t-butylglycine (t-BuG), N-methylisoleucine (N-MeIle), phenylglycine (Phg), and cyclohexylalanine (Cha), norleucine (Nle), 2-naphthylalanine (2-Nal); 1,2,3,4-tetrahydroisoquinoline-3-carboxylic
- t-BuA, t-BuG, N-MeIle, Nle, Mvl, Cha, Phg, Nal, Thi and Tic are hydrophobic;
- Cit, Acetyl Lys, and MSO are polar/large.
- the various omega-amino acids are classified according to size as small ( ⁇ -Ala and 3-aminopropionic) or as large and hydrophobic (all others).
- one or more amide linkages may optionally be replaced with another linkage which is an isostere such as —CH 2 NH—, —CH 2 S—, —CH 2 CH 2 , —CH ⁇ CH— (cis and trans), —COCH 2 —, —CH(OH)CH 2 — and —CH 2 SO—.
- This replacement can be made by methods known in the art.
- the following references describe preparation of peptide analogs which include these alternative-linking moieties: Spatola, A. F., Vega Data (March 1983), Vol. 1, Issue 3, “Peptide Backbone Modifications” (general review); Spatola, A.
- the peptides or proteins of the invention include peptide mimetics in general, such as those described by Olson, G. L. et al. J Med Chem (1993) 36:3039-3049 and retro-inverso type peptides as described by Chorev, M. et al. Science (1979) 204:1210-1212; and Pallai, P. V. et al., Int J Pept Protein Res (1983) 21:84-92.
- One class of preferred embodiments of the compounds invention includes the “unmodified” forms where positions 8 and 13 are independently cysteine, homocysteine or penicillamine residues, especially in the disulfide bonded form.
- each of A 7 and A 14 is a hydrophobic acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe or is a small amino acid, Ala, Gly, Ser or Thr.
- all of A 1 -A 3 are not present or at least one, and preferably two of A 1 -A 3 is a hydrophobic amino acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe.
- C 4 and/or C 17 is not present or, if present, is a cysteine, homocysteine or penicillamine or a hydrophobic amino acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe, or a small amino acid, preferably S, A, G or T.
- C 5 and/or C 16 is a cysteine, homocysteine or penicillamine or a hydrophobic amino acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe, or a small amino acid, preferably S, A, G or T.
- a 9 -A 12 contain at least one hydrophobic amino acid residue, preferably Phe, Tyr or Trp.
- each of A 1 and A 9 is independently selected from the group consisting of R, K and Har; more preferably, both A 1 and A 9 are R; however, each of A 1 may be absent.
- each of A 2 and A 3 is independently selected from the group consisting of G, A, S and T; more preferably, A 2 and A 3 are G; however, A 2 and/or A 3 may be absent.
- one of A 9 and A 12 is R, K, Har, Orn or H preferably R and the other is I, V, L, NLe, W, Y or F, preferably R, F or W, or is S, G, A or T.
- each of A 10 and A 11 is independently proline or a small, basic or hydrophobic amino acid, preferably R, G, W or P.
- a 18 is preferably absent, but when present, is preferably R, K or Har, most preferably R.
- a 1 -A 3 and C 4 are present, A 1 is basic, C 4 is C or basic, and A 2 and A 3 are small amino acids, or at least one of A 1 -A 3 and C 4 is hydrophobic.
- Preferred embodiments of A 1 -A 3 include R-G-G, K-G-S, K-S-G, and the like.
- the compounds of Formula (1) are either in cyclic or noncyclic (linearalized) form or may be modified wherein 1 or 2 of the cysteines, homocysteine or penicillamine at C 8 and C 13 are replaced by a small, hydrophobic, or a basic amino acid residue. Such modification is preferred when compounds containing only one disulfide bond are prepared. If the linearalized forms of the compound of Formula (1) are prepared, or if linearalized forms of those modified peptides which contain at least two cysteines are prepared, it is preferred that the sulfhydryl groups be stabilized by addition of a suitable reagent.
- Preferred embodiments for the hydrophobic amino acid to replace cysteine, homocysteine or penicillamine residues at C 8 and/or C 13 are I, V, L and Nle, preferably I, V or L.
- Preferred small amino acids to replace the cysteine, homocysteine or penicillamine residues include G, A, S and T, more preferably G.
- Preferred basic amino acids are R and K.
- Particularly preferred compounds of the invention including the N-terminal acylated and C-terminal amidated forms thereof are the parevins, wherein C 5 and C 16 are both cysteine, homocysteine or penicillamine and the tachytegrins wherein both C 4 and C 17 are cysteine, homocysteine or penicillamine.
- disulfide forms of these compounds cis-parevins wherein the two disulfide bridges are C 5 -C 8 and C 13 -C 16 ; the trans-parevins wherein the disulfide bridges are C 5 -C 16 and C 8 -C 13 ; and the trans-tachytegrins wherein the disulfide bridges are C 4 -C 17 and C 8 -C 13 .
- Particularly preferred are the following parevins and tachytegrins:
- Typical compounds of the invention include the linear and cyclic (where possible) forms of the following compounds: RGGRCLYCRRRFCVVCGR (SEQ ID NO:11); RGGCRLYCRRRFCVVGCR (SEQ ID NO:12); RGGRCLYCRRRFCIVCG (SEQ ID NO:13); RGGCRLYCRRRFCIVGC (SEQ ID NO:14); RGGGCLYCRRRFCVVCGR (SEQ ID NO:15); RGGCGLYCRRRFCVVGCR (SEQ ID NO:16); RGGRCLYCRGWICFVCGR (SEQ ID NO:17); RGGCRLYCRGWICFVGCR (SEQ ID NO:18); RGGRCLYCRPRFCVVCGR (SEQ ID NO:19); RGGCRLYCRPRFCVVGCR (SEQ ID NO:20); RGGRCVYCRRRFCVVCG (SEQ ID NO:21); RGGCRVYCRRRFCVIGC (SEQ ID NO:22); KGGRCLYCRRRFCVVCG (SEQ ID NO:
- RGGCLRYCRPRFCVRVCR SEQ ID NO:53
- RGGCRLYCRRRFCXTVGCR SEQ ID NO:54
- RGVCLRYCRGRFCVRLCR SEQ ID NO:55
- RGRVCLRYCRGRFCVRLCFR SEQ ID NO:56
- RWRVCLRYCRGRFCVRLCLR SEQ ID NO:57
- RGWRVCLKYCRGRFCVKLCLR SEQ ID NO:58
- RGGRVCLRYCRGKFCVRLCLR SEQ ID NO:59
- RGGCLRYAVPRFAVRVCR SEQ ID NO:77
- RGGCLRYTKPKFTVRVCR SEQ ID NO:78
- RGGCLRYAVGRFAVRVCR SEQ ID NO:79
- RGGCLRYARZRFAVRVCR SEQ ID NO:
- the invention compounds are essentially peptide backbones which may be modified at the N- or C-terminus and also may contain one or two cystine disulfide linkages.
- the peptides may first be synthesized in noncyclized form. These peptides may then be converted to the cyclic peptides if desired by standard methods of cystine bond formation.
- cyclic forms refers to those forms which contain cyclic portions by virtue of the formation of disulfide linkages between cysteine residues in the peptide. If the straight-chain forms are preferred, it is preferable to stabilize the sulfhydryl groups for any peptides of the invention which contain two or more cysteine residues.
- Standard methods for synthesis of peptides can be used. Most commonly used currently are solid phase synthesis techniques; indeed, automated equipment for systematically constructing peptide chains can be purchased. Solution phase synthesis can also be used but is considerably less convenient. When synthesized using these standard techniques, amino acids not encoded by the gene and D-enantiomers can be employed in the synthesis. Thus, one very practical way to obtain the compounds of the invention is to employ these standard chemical synthesis techniques.
- the N- and/or C-terminus can be derivatized, again using conventional chemical techniques.
- the compounds of the invention may optionally contain an acyl group, preferably an acetyl group at the amino terminus. Methods for acetylating or, more generally, acylating, the free amino group at the N-terminus are generally known in the art; in addition, the N-terminal amino acid may be supplied in the synthesis in acylated form.
- the carboxyl group may, of course, be present in the form of a salt; in the case of pharmaceutical compositions this will be a pharmaceutically acceptable salt.
- Suitable salts include those formed with inorganic ions such as NH 4 + , Na + , K + , Mg ++ , Ca ++ , and the like as well as salts formed with organic cations such as those of caffeine and other highly substituted amines.
- inorganic ions such as NH 4 + , Na + , K + , Mg ++ , Ca ++ , and the like
- salts formed with organic cations such as those of caffeine and other highly substituted amines.
- the carboxy terminus may also be esterified using alcohols of the formula ROH wherein R is hydrocarbyl (1-6C) as defined above.
- carboxy terminus may be amidated so as to have the formula —CONH 2 , —CONHR, or —CONR 2 , wherein each R is independently hydrocarbyl (1-6C) as herein defined.
- Techniques for esterification and amidation as well as neutralizing in the presence of base to form salts are all standard organic chemical techniques.
- the side-chain amino groups of the basic amino acids will be in the form of the relevant acid addition salts.
- a particularly preferred method is solution oxidation using molecular oxygen. This method has been used by the inventors herein to refold the compounds of the invention.
- the peptide backbone is comprised entirely of gene-encoded amino acids, or if some portion of it is so composed, the peptide or the relevant portion may also be synthesized using recombinant DNA techniques.
- the DNA encoding the peptides of the invention may itself be synthesized using commercially available equipment; codon choice can be integrated into the synthesis depending on the nature of the host.
- Synthesized and recombinantly produced forms of the compounds may require subsequent derivatization to modify the N- and/or C-terminus and, depending on the isolation procedure, to effect the formation of cystine bonds as described hereinabove. Depending on the host organism used for recombinant production, some or all of these conversions may already have been effected.
- the DNA encoding the peptides of the invention is included in an expression system which places these coding sequences under control of a suitable promoter and other control sequences compatible with an intended host cell.
- suitable promoter and other control sequences compatible with an intended host cell.
- Types of host cells available span almost the entire range of the plant and animal kingdoms.
- the compounds of the invention could be produced in bacteria or yeast (to the extent that they can be produced in a nontoxic or refractile form or utilize resistant strains) as well as in animal cells, insect cells and plant cells.
- modified plant cells can be used to regenerate plants containing the relevant expression systems so that the resulting transgenic plant is capable of self protection vis-á-vis these infective agents.
- the compounds of the invention can be produced in a form that will result in their secretion from the host cell by fusing to the DNA encoding the peptide, a DNA encoding a suitable signal peptide, or may be produced intracellularly. They may also be produced as fusion proteins with additional amino acid sequence which may or may not need to be subsequently removed prior to the use of these compounds as antimicrobials or antivirals.
- the compounds of the invention can be produced in a variety of modalities including chemical synthesis, recombinant production, isolation from natural sources, or some combination of these techniques.
- purified and isolated any members of the invention class which coincidentally occur naturally must be supplied in purified and isolated form.
- purified and isolated is meant free from the environment in which the peptide normally occurs (in the case of such naturally occurring peptides) and in a form where it can be used practically.
- purified and isolated form means that the peptide is substantially pure, i.e., more than 90% pure, preferably more than 95% pure and more preferably more than 99% pure or is in a completely different context such as that of a pharmaceutical preparation.
- Antibodies to the peptides of the invention may also be produced using standard immunological techniques for production of polyclonal antisera and, if desired, immortalizing the antibody-producing cells of the immunized host for sources of monoclonal antibody production. Techniques for producing antibodies to any substance of interest are well known. It may be necessary to enhance the immunogenicity of the substance, particularly as here, where the material is only a short peptide, by coupling the hapten to a carrier. Suitable carriers for this purpose include substances which do not themselves produce an immune response in the mammal to be administered the hapten-carrier conjugate.
- Common carriers used include keyhole limpet hemocyanin (KLH), diphtheria toxoid, serum albumin, and the viral coat protein of rotavirus, VPG. Coupling of the hapten to the carrier is effected by standard techniques such as contacting the carrier with the peptide in the presence of a dehydrating agent such as dicyclohexylcarbodiimide or through the use of linkers such as those available through Pierce Chemical Company, Chicago, Ill.
- KLH keyhole limpet hemocyanin
- VPG viral coat protein of rotavirus
- peptides of the invention in immunogenic form are then injected into a suitable mammalian host and antibody titers in the serum are monitored. It should be noted, however, that some forms of the peptides require modification before they are able to raise antibodies, due to their resistance to antigen processing. For example, peptides containing two cystine bridges may be nonimmunogenic when administered without coupling to a larger carrier and may be poor immunogens even in the presence of potent adjuvants and when coupled in certain formats such as using glutaraldehyde or to KLH. Any lack of immunogenicity may therefore result from resistance to processing to a linear form that can fit in the antigen-presenting pocket of the presenting cell. Immunogenicity of these forms of the peptides can be enhanced by cleaving the disulfide bonds.
- Polyclonal antisera may be harvested when titers are sufficiently high.
- antibody-producing cells of the host such as spleen cells or peripheral blood lymphocytes may be harvested and immortalized. The immortalized cells are then cloned as individual colonies and screened for the production of the desired monoclonal antibodies.
- the antibodies of the invention include those that can be made by genetic engineering techniques. For example, single-chain forms, such as F v forms, chimeric antibodies, and antibodies modified to mimic those of a particular species, such as humans, can be produced using standard methods.
- the antibodies of the invention can be prepared by isolating or modifying the genes encoding the desired antibodies and producing these through expression in recombinant host cells, such as CHO cells.
- the antibodies of the invention are, of course, useful in immunoassays for determining the amount or presence of the peptides. Such assays are essential in quality controlled production of compositions containing the peptides of the invention. In addition, the antibodies can be used to assess the efficacy of recombinant production of the peptides, as well as screening expression libraries for the presence of peptide encoding genes.
- compositions Containing the Invention Peptides and Methods of Use Containing the Invention Peptides and Methods of Use
- the peptides of the invention are effective in inactivating a wide range of microbial and viral targets, including gram-positive and gram-negative bacteria, yeast, protozoa and certain strains of virus. Accordingly, they can be used in disinfectant compositions and as preservatives for materials such as foodstuffs, cosmetics, medicaments, or other materials containing nutrients for organisms.
- the peptides are supplied either as a single peptide, in admixture with several other peptides of the invention, or in admixture with additional antimicrobial agents or both.
- these are preservatives in this context they are usually present in relatively low amounts, of less than 5%, by weight of the total composition, more preferably less than 1%, still more preferably less than 0.1%.
- the peptides of the invention are also useful as standards in antimicrobial assays and in assays for determination of capability of test compounds to bind to endotoxins such as lipopolysaccharides.
- the peptides of the invention can be formulated as pharmaceutical or veterinary compositions.
- a summary of such techniques is found in Remington's Pharmaceutical Sciences , latest edition, Mack Publishing Co., Easton, Pa.
- the peptides of the invention can also be used as active ingredients in pharmaceutical compositions useful in treatment of sexually transmitted diseases, including those caused by Chlamydia trachomatis, Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis , Herpes simplex type 2 and HIV.
- Topical formulations are preferred and include creams, salves, oils, powders, gels and the like. Suitable topical excipient are well known in the art and can be adapted for particular uses by those of ordinary skill.
- the peptides of the invention may be used alone or in combination with other antibiotics such as erythromycin, tetracycline, macrolides, for example azithromycin and the cephalosporins.
- antibiotics such as erythromycin, tetracycline, macrolides, for example azithromycin and the cephalosporins.
- the peptides will be formulated into suitable compositions to permit facile delivery to the affected areas.
- the tachytegrins may be used in forms containing one or two disulfide bridges or may be in linear form.
- enantiomeric forms containing all D-amino acids may confer advantages such as resistance to those proteases, such as trypsin and chymotrypsin, to which the peptides containing L-amino acids are less resistant.
- the peptides of the invention can be administered singly or as mixtures of several peptides or in combination with other pharmaceutically active components.
- the formulations may be prepared in a manner suitable for systemic administration or topical or local administration.
- Systemic formulations include those designed for injection (e.g., intramuscular, intravenous or subcutaneous injection) or may be prepared for transdermal, transmucosal, or oral administration.
- the formulation will generally include a diluent as well as, in some cases, adjuvants, buffers, preservatives and the like.
- the tachytegrins can be administered also in liposomal compositions or as microemulsions.
- the peptides of the invention must be protected from degradation in the stomach using a suitable enteric coating. This may be avoided to some extent by utilizing amino acids in the D-configuration, thus providing resistance to protease. However, the peptide is still susceptible to hydrolysis due to the acidic conditions of the stomach; thus, some degree of enteric coating may still be required.
- the peptides of the invention also retain their activity against microbes in the context of borate solutions that are commonly used in eye care products. Also, it is important that the peptides retain their activity under physiological conditions including relatively high saline and in the presence of serum. In addition, the peptides are dramatically less cytotoxic with respect to the cells of higher organisms as compared with their toxicity to microbes. These properties, make them particularly suitable for in vivo and therapeutic use.
- microbe will be used to include not only yeast, bacteria, and other unicellular organisms, but also viruses.
- the particular peptide used can also be chosen to be advantageous in a particular context, such as low salt or physiological salt, the presence or human serum, or conditions that mimic the conditions found in blood and tissue fluids.
- the peptides of the invention may also be applied to plants or to their environment to prevent virus- and microbe-induced diseases in these plants.
- Suitable compositions for this use will typically contain a diluent as well as a spreading agent or other ancillary agreements beneficial to the plant or to the environment.
- the peptides of the invention may be used in any context wherein an antimicrobial and/or antiviral action is required. This use may be an entirely in vitro use, or the peptides may be administered to organisms.
- the antimicrobial or antiviral activity may be generated in situ by administering an expression system suitable for the production of the peptides of the invention.
- an expression system suitable for the production of the peptides of the invention can be supplied to plant and animal subjects using known techniques. For example, in animals, pox-based expression vectors can be used to generate the peptides in situ. Similarly, plant cells can be transformed with expression vectors and then regenerated into whole plants which are capable of their own production of the peptides.
- the peptides of the invention are also capable of inactivating endotoxins derived from gram-negative bacteria—i.e., lipopolysaccharides (LPS) and may be used under any circumstances where inactivation of LPS is desired.
- LPS lipopolysaccharides
- One such situation is in the treatment or amelioration of gram-negative sepsis.
- antimicrobial activity refers to inhibition with respect both to traditional microorganisms and to viruses, although occasionally, “antimicrobial” and “antiviral” are both specifically indicated.
- Media for testing antimicrobial activity are designed to mimic certain specific conditions.
- the standard buffer medium, medium A uses an underlay agar with the following composition: 0.3 mg/ml of trypticase soy broth powder, 1% w/v agarose and 10 mM sodium phosphate buffer (final pH 7.4). This will be designated either “medium A” or “standard in vitro conditions” herein.
- a second medium contains 100 mM NaCl in order to mimic the salt levels in blood and tissue fluids. This will be designated “medium B” or “salt medium” herein.
- a third medium is supplemented with 2.5% normal human serum; however, it is of low ionic strength and thus does not mimic body fluids. This medium will be designated “medium C” or “serum-containing medium” herein.
- a fourth medium contains 80% RPMI-1640, a standard tissue culture medium which contains the principal ions and amino acids found in blood and tissue fluids. In addition, it contains 2.5% normal human serum. This will be designated “medium D” or “physiological medium” herein.
- the peptides of the invention therefore represent a peculiarly useful class of compounds because of the following properties:
- the peptides of the invention are synthesized using conventional Fmoc chemistry on solid-phase supports.
- the crude synthetic peptides are refolded, purified and characterized as follows.
- the crude synthetic peptide is reduced by adding an amount of dithiothreitol (DTT) equal in weight to that of the synthetic peptide, which has been dissolved at 10 mg/ml in a solution containing 6M guanidine HCl, 0.5M Tris buffer and 2 mmol EDTA, pH 8.05 and incubated for 2 hours at 52° C. under nitrogen.
- DTT dithiothreitol
- the mixture is passed through a 0.45 um, filter, acidified with 1/20 v/v glacial acetic acid and subjected to conventional RP HPLC purification with a C18 column.
- HPLC-purified, reduced peptides are partially concentrated by vacuum centrifugation in a Speed Vac and allowed to fold for 24 hours at room temperature and air.
- the folding is accomplished in 0.1M Tris, pH 7.7 at 0.1 mg peptide/ml to minimize formation of interchain cystine disulfides.
- the folded compounds are concentrated and acidified with 5% acetic acid. The purity of the final products is verified by AU-PAGE, analytical HPLC and FAB-mass spec.
- trans-parevin-1 or the “hairpin” isoform
- cis-parevin-1 or “cloverleaf” isoform
- trans-tachytegrin-1 were prepared. These compounds are of the formulas
- Cis-parevin-1 [0195] Cis-parevin-1:
- the radial diffusion assay in agarose gels is conducted using radiodiffusion and gel overlay techniques as described by Lehrer, R. I. et al. J Immunol Meth (1991) 137:167-173. Briefly, the underlay agars used for all organisms had a final pH of 7.4 and contained 10 mM sodium phosphate buffer, 1% w/v agarose and 0.30 ug/ml trypticase soy broth powder (BBL Cockeysville, Md.). In some cases, the underlay was supplemented with 100 mM NaCl. The units of activity in the radial diffusion assay were measured as described; 10 units correspond to a 1 mm diameter clear zone around the sample well. FIGS. 1 - 6 show the results against five test organisms in units described as above. A synthetic protegrin (PG-1) containing two cystines (sPG-1) or PG-1 in linear form were used as controls.
- PG-1 synthetic protegrin
- FIG. 1 shows the results for trans-parevin and tachytegrin with respect to E. coli both with and without the addition of 100 mM NaCl. Both of these peptides were slightly more effective than sPG-1 although slightly less effective than linear PG-1 in the absence of salt. However, in the presence of 100 mM NaCl, all four peptides were comparably effective.
- FIG. 2 shows the results of the same determination with respect to L. monocytogenes .
- all four peptides were roughly similarly effective in the absence of salt; the presence of 100 mM NaCl, however, greatly reduced the effectiveness of linear PG-1. The remaining three peptides remained effective under these conditions.
- FIG. 3 shows the results of the same experiment using C. albicans as the target organism. All four peptides were comparably effective in the absence of salt; again, the effectiveness of linear PG-1 was greatly reduced in the presence of 100 mM NaCl, while the remaining three peptides maintained their effectiveness under these conditions.
- FIGS. 4 - 6 show the results of similar experiments using, as test peptides, the two isomers of parevin, trans-parevin (hairpin) and cis-parevin (cloverleaf).
- sPG-1 was used as a control.
- the two parevins were comparably effective in the absence of salt and both were more effective than sPG-1.
- all three peptides maintained their effectiveness and were comparable.
- FIG. 5 shows results of the same experiment conducted with B. subtilis as target organism. Again, both forms of parevin were comparably effective and both were slightly more effective than sPG-1; in the presence of 100 mM NaCl, all three peptides remained effective antimicrobials and had about the same activity.
- the compounds of the invention are tested for their ability to bind the lipid polysaccharide (LPS) of the gram-negative bacterium E. coli strain 0.55B5, using the Limulus amebocyte lysate (LAL) test for endotoxins conducted in the presence and absence of the test compounds.
- LPS lipid polysaccharide
- LAL Limulus amebocyte lysate
- the LAL test is based on the ability of LPS to effect gelation in the commercial reagent E-Toxate ⁇ which is prepared from the lysate of circulating amebocytes of the Horseshoe Crab Limulus polyphemus . As described in the technical bulletin, when exposed to minute quantities of LPS, the lysate increases in opacity as well as viscosity and may gel depending on the concentration of endotoxin.
- test compounds are used at various concentrations from 0.25 ug-10 ug in a final volume of 0.2 ml and the test mixtures contained LPS at a final concentration of 0.05 endotoxin unit/ml and E-ToxateTM at the same concentration.
- the test compounds are incubated together with the LPS for 15 minutes before the E-ToxateTM is added to a final volume after E-ToxateTM addition of 0.2 ml.
- the tubes are then incubated for 30 minutes at 37° C. and examined for the formation of a gel.
- Contact lens solutions are typically formulated with borate buffered physiological saline and may or may not contain EDTA in addition.
- the compounds of the invention are tested generally in the assay described in Example 2 wherein all underlay gels contain 25 mM borate buffer, pH 7.4, 1% (v/v) trypticase soy broth (0.3 ug/ml TSB powder) and 1% agarose. Additions include either 100 mM NaCl, 1 mM EDTA or a combination thereof.
- Other test compounds used as controls are the defensin NP-1 and lysozyme, and dose response curves are determined.
- the compounds of the invention are tested for antimicrobial activity against various STD pathogens. These include HIV-1, Chlamydia trachomatis, Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis , Herpes simplex type 2, Herpes simplex type 1, Hemophilus ducreyi , and Human papilloma virus.
- STD pathogens include HIV-1, Chlamydia trachomatis, Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis , Herpes simplex type 2, Herpes simplex type 1, Hemophilus ducreyi , and Human papilloma virus.
- active means that the peptide is effective at less than 10 10 ug/ml; moderately active indicates that it is active at 10-25 ug/ml; and slightly active means activity at 25-50 ug/ml. If no
- the compounds of the invention are tested for their antimicrobial activity against Chlamydia using the “gold standard” chlamydial culture system for clinical specimens described by Clarke, L. M. in Clinical Microbiology Procedures Handbook II (1992), Isenberg, H. T. Ed. Am. Soc. Microbiol. Washington, D.C.; pp. 8.0.1 to 8.24.3.9.
- C. trachomatis serovar L2 (L2/434Bu) described by Kuo, C. C. et al. in Nongynococcal Urethritis and Related Infections (1977), Taylor-Robinson, D. et al. Ed. Am. Soc. Microbiol. Washington, D.C., pp. 322-326 is used.
- the seed is prepared from a sonicated culture in L929 mouse fibroblast cells, and partially purified by centrifugation. Since host protein is still present in the seed aliquots, each seed batch is titered at the time of preparation with serial ten-fold dilutions to 2 ⁇ 10 ⁇ 9 .
- the seed containing 9.2 ⁇ 10 6 IFU/ml is thawed quickly at 37° C. and diluted to 10 ⁇ 2 with sucrose/phosphate salts/glycine to produce IFU of about 200 after room temperature preincubation and to dilute background eukaryotic protein.
- the peptides to be tested are prepared as stock solutions in 0.01% glacial acetic acid. 100 ul of the diluted chlamydial seed are aliquoted into 1.5 ml eppendorf tubes and 200 ul of the antibiotic peptide was added per tube. Aliquots of the peptide stock (and controls) are incubated with the seed at room temperature for one hour, two hours and four hours. About 10 minutes before the end of each incubation period, maintenance media are aspirated from the McCoy vials in preparation for standard inoculation and culture. Culture is then performed in the presence and absence of the peptides; in some cases, the peptides are added to final concentration in the culture media in addition to the preculture incubation. The test is evaluated microscopically.
- Chlamydia seed is preincubated for two hours with and without 10% FBS and also with or without test compound at 25 ug.
- the 50% immobilizing end point (IE 50 ) is calculated to indicate the concentration needed to immobilize 50% of the spirochetes.
- Tachyplesin IE 50 s are 5.231 ug and 2.539 ug for 0 and 4 hours, in contrast to HNP and NP preparations which show little immobilizing ability.
- Herpes Simplex Virus using viral stocks prepared in VERO cells, grown in minimal essential medium (MEM) with 2% fetal calf serum, the effect of various peptides on HSV 1 MacIntyre strain, a pool of ten clinical HSV 1 isolates, HSV-2G, and a pool of ten clinical HSV 2 isolates, all sensitive to 3 uM acyclovir are tested.
- Two fibroblast cell lines, human W138 and equine CCL57, are used as targets and tests are done by direct viral neutralization and delayed peptide addition.
- the virus In the direct neutralization format, the virus is preincubated with the peptides for 90 min before it is added to the tissue culture monolayers.
- the delayed peptide addition format the virus is added and allowed 50 min to adsorb to the target cells, then the monolayers are washed and peptides are added for 90 min. Finally, the monolayer is washed to remove the peptide and the cells are fed with peptide-free MEM and cultured until the untreated infected monolayers exhibit 4+ cytopathic effect (CPE) (about 60 hours).
- CPE cytopathic effect
- T. vaginallis (heretofore vigorously motile) becomes stationary. Soon thereafter, the organisms become permeable to trypan blue, and, over the ensuing 15-30 minutes, lyse. As expected, such organisms fail to grow when introduced into their customary growth medium (Diamond's medium). Organisms exposed to 25 ug/ml of PG-3 retain their motility.
- the invention compounds are tested for antiviral activity against strains of HIV using the method described in Miles, S. A. et al., Blood (1991) 78:3200-3208. Briefly, the mononuclear cell fraction is recovered from normal donor leukopacs from the American Red Cross using a Ficoll-hypaque density gradient. The mononuclear cells are resuspended at 1 ⁇ 10 6 cells per ml in RPMI 1640 medium with 20% fetal bovine serum, 1% penn/strep with fungizone and 0.5% PHA and incubated 24 hours at 37° C. in 5% CO 2 . The cells are centrifuged, washed and then expanded for 24 hours in growth medium.
- Non-laboratory adapted, cloned HIV JR-CSF and HIV JR-FL are electroporated into the human peripheral blood mononuclear cells prepared as described above. Titers are determined and in general, multiplicities of infection (MOI) of about 4,000 infectuous units per cell are used (which corresponds to 25-40 picograms per ml HIV p24 antigen in the supernatant).
- MOI multiplicities of infection
- the HIV stocks prepared as above are diluted to the correct MOI and the PBM are added to 24 well plates at a concentration of 2 ⁇ 10 6 per ml. One ul total volume is added to each well. The peptide to be tested is added in growth medium to achieve the final desired concentration. Then the appropriate number of MOI are added.
- 200 ul of supernatant is removed on days 3 and 7 and the concentration of p24 antigen is determined using a commercial assay (Coulter Immunology, Hialeah, Fla.). Controls include duplicate wells containing cells alone, cells plus peptide at 5 ug/ml cells with virus but not peptide and cells with virus in the presence of AZT at 10 ⁇ 5 M-10 ⁇ 8 M.
- the time of addition of peptide can be varied. Cells pretreated for 2 hours prior to addition of virus, at the time of addition of virus, or 2 hours after infection show antiviral activity for the peptide.
- Example 2 Several illustrative tachytegrins were synthesized as described in Example 1 and tested for activity against Staphylococcus aureus (MRSA), Pseudomonas (Psa), VREF, Candida and E.coli as described in Example 2. The results shown in Table 1 as minimal inhibitory concentration (MIC) in ug/ml were obtained with the C-terminal amidated forms except for the last two which were tested as the free acids, as indicated by *. In all peptides in Table 1, X is MeGly. TABLE 1 SEQUENCE MRSA Psa VREF Candida E.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Veterinary Medicine (AREA)
- Medicinal Chemistry (AREA)
- Molecular Biology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biophysics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Biochemistry (AREA)
- Epidemiology (AREA)
- Animal Behavior & Ethology (AREA)
- Public Health (AREA)
- Genetics & Genomics (AREA)
- Agronomy & Crop Science (AREA)
- Pest Control & Pesticides (AREA)
- Plant Pathology (AREA)
- Engineering & Computer Science (AREA)
- Dentistry (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Environmental Sciences (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
Abstract
The present invention provides a new class of broad-spectrum antimicrobial peptides effective against a wide variety of microbes, including bacteria, viruses, retroviruses, fungi, yeast and protozoa.
Description
- This application is a continuation-in-part of application Ser. No. 08/674,622, filed Jul. 3, 1996, which is a continuation-in-part of provisional application Ser. No. 60/000,898, filed Jul. 6, 1995. The contents of these applications are hereby incorporated herein by references in their entireties.
- [0002] This invention was made with funding from NIH Grant No. A122839. The U.S. Government has certain rights in this invention.
- The invention relates to the field of antibiotic peptides. In particular, the invention concerns short peptides with unique patterns of cysteine type residues and conformations that have a wide range of antimicrobial activities.
- One of the defense mechanisms against infection by both animals and plants is the production of peptides that have antimicrobial and antiviral activity. Various classes of these peptides have been isolated from tissues of both plants and animals. PCT application WO 95/03325 published Feb. 2, 1995 contains a review of the literature on this subject. Such peptides include tachyplesins, which are 17-18 amino acid peptides containing four invariant cysteines, the defensins, β-defensins, and insect defensins, which are somewhat longer peptides characterized by six invariant cysteines, and antifungal and antibacterial peptides and proteins which have been found in plants.
- The applications in the series of which WO 95/03325 is a part provide a new class of antimicrobial and antiviral peptides, designated “protegrins”, representative members of which have been isolated from porcine leukocytes. These peptides are useful as antibacterial antiviral and antifungal agents in both plants and animals. The isolation of some of the protegrin peptides was reported in a paper by Kokryakov, V. N. et al.FEBS (1993) 337:231-236 (July issue). A later publication described the presence of a new protegrin, whose sequence and that of its precursor were deduced from its isolated cDNA clone. Zhao, C et al, FEBS Letters (1994) 346:285-288. An additional paper disclosing cationic peptides from porcine neutrophils was published by Mirgorodskaya, O. A. et al. FEBS (1993) 330:339-342. Storici, P. et al. Biochem Biophys Res Comm (1993) 196:1363-1367, report the recovery of a DNA sequence which encodes a pig leukocyte antimicrobial peptide with a cathelin-like prosequence. The peptide is reported to be one of the protegrins. Additional publications related to protegrins are Harwig, S. S. L., et al. J Peptide Sci (1995) in press; Zhao, C., et al. FEBS Lett (1995) 376:130-134; Zhao, C. et al. FEBS Lett (1995) 368:197-202. See also, U.S. Pat. No. 5,464,823, U.S. Pat. No. 5,696,486, WO 95/03325, WO 96/37508 and WO 98/03192.
- The protegrins have also been found to bind to endotoxins—i.e., the lipopolysaccharide (LPS) compositions derived from gram-negative bacteria which are believed responsible for gram-negative sepsis. The protegrins are also effective in inhibiting the growth of organisms that are associated with sexually transmitted diseases such asChlamydia trachomatis and Neisseria gonorrhoeae.
- The invention described below relates to peptide type compounds that are related to the protegrins described above, but reflect displacements of the protegrin cysteines at positions 6 and 15. The availability of these compounds, the preferred forms of which are designated parevins and tachytegrins, expands the repertoire of antimicrobial peptides and permits more exquisite matching of indications to antimicrobial formulations. Although at least one of C4, C5, C16 or C17 in the formula set forth below must be cysteine, the common name terminology of these components reflects particularly preferred situations wherein both of C4 and C17 are cysteine type residues (the tachytegrins) or where both C5 and C16 are cysteine type residues (the parevins).
- The invention provides compounds which retain generally the antimicrobial activity of the protegrins discussed above, but differ in conformation due to the dislocation of the cysteine residues at positions 6 and/or 15 of these protegrins. Surprisingly, these modified compounds exhibit activity spectra which are analogous to those of the protegrins, but offer the opportunity to fine-tune the biological activity of antibiotics and antivirals. All of these peptides can be produced synthetically and those that contain only gene-encoded amino acids can also be produced recombinantly. These compounds are useful as preservatives or in pharmaceutical compositions in treating or preventing infection in animals. Alternatively, the peptides can be formulated into compositions which can be applied to plants to protect them against viral or microbial infection. In still another approach, the DNA encoding the peptides can be expressed in situ, in animals or preferably in plants, to combat infections. The peptides are also useful as standards in antimicrobial assays and in binding endotoxins.
- Accordingly, in one aspect, the invention is directed to a purified and isolated or recombinantly or synthetically produced compound which contains the amino acid sequence
A1-A2-A3-C4-C5-C6-A7-C8-A9-A10-A11-A12-C13-A14-C15-C16-C17-A18 (1) - said compound containing 11-24 amino acid residues. The sequence shown as (1) can be extended at the N and/or C terminus with non-interfering amino acids or sequence.
- The compounds also include the N-terminal acylated and/or C-terminal amidated or esterified forms and may be either in the, optionally —SH stabilized, linear or in a disulfide-bridged form.
- In the amino acid sequence shown, each of A1-A3 is independently present or not present, and if present each is independently a basic, hydrophobic, polar/large, or small amino acid;
- each of C4, C5, C6, C15, C16 and C17 is independently cysteine, homocysteine or penicillamine or a basic, hydrophobic, polar/large, or small amino acid, and C4 and/or C17 may be present or not present; C6 and/or C15 may also be acidic;
- each of C8 and C13 is independently cysteine, homocysteine or penicillamine;
- each of A7 and A14 is independently a hydrophobic or a small amino acid;
- A9-A12 must be capable of effecting a or β-turn when contained in the compound and at least one of A9-A12 must be a basic amino acid;
- A18 is present or not present, and if present, is a basic, hydrophobic, polar/large or small amino acid.
- The compounds of the invention may, in the alternative, contain a modified form of formula (1) wherein one or both of C8, and C13 is independently replaced by a basic, hydrophobic, polar/large, acidic, or small amino acid.
- In all of the compounds of the invention at least about 15% and no more than about 50% of the amino acids must be basic amino acids, and the compounds must have a net charge of +1 at physiological pH;
- with the proviso that at least one of C4, C5, C16 and C17 must be cysteine, homocysteine or penicillamine; and
- only one of C4, C5, and C6, and only one of C15, C16 and C17 can be cysteine, homocysteine or penicillamine.
- A particular advantage of some of the peptides of the invention, especially those which contain fewer amino acids, lies in their reduced size. As a result of this, they are less costly to produce, generally are expected to provide better distribution in tissue, and are less immunogenic. As they provide alternative structures, they are likely to have different pharmacokinetic and toxicological profiles.
- In still other aspects, the invention is directed to recombinant materials useful for the production of the peptides of the invention as well as plants or animals modified to contain expression systems for the production of these peptides. The invention is also directed to pharmaceutical compositions and compositions for application to plants containing the peptides of the invention as active ingredients or compositions which contain expression systems for production of the peptides or for in situ expression of the nucleotide sequence encoding these peptides. The invention is also directed to methods to prepare the invention peptides synthetically, to antibodies specific for these peptides, and to the use of the peptides as preservatives.
- In other aspects, the invention is directed to the use of the compounds of the invention as standards in antimicrobial assays. The compounds many also be used as antimicrobials in solutions useful in eye care, such as contact lens solutions, and in topical or other pharmaceutical compositions for treatment of sexually transmitted diseases (STDs). The invention is also directed to use of the invention compounds as preservatives for foods or other perishables. As the invention peptides can inactivate endotoxin, the invention is also directed to a method to inactivate endotoxins using the compounds of the invention and to treat gram-negative sepsis by taking advantage of this property.
- FIGS. 1A and 1B show antibacterial activity of two of the parevins againstE. coli ML-35p;
- FIGS. 2A and 2B show antibacterial activity of two of the parevins againstListeria monocytogenes;
- FIGS. 3A and 3B shows antifungal activity of two of the parevins againstCandida albicans;
- FIGS. 4A and 4B shows antibacterial activity of a tachytegrin againstE. coli ML-35p;
- FIGS. 5A and 5B shows antibacterial activity of a tachytegrin againstB. subtilis; and
- FIGS. 6A and 6B shows antibacterial activity of a tachytegrin againstS. typhimurium 14028s.
- The peptides of the invention are characterized by the amino acid sequence:
(1) A1-A2-A3-C4-C5-C6-A7-C8-A9-A10-A11-A12-C13-A14-C15-C16-C17-A18 - and its defined modified forms. Any of these peptides which may coincidentally occur in nature must be in purified and isolated form or prepared recombinantly or synthetically.
- The designation An in each case represents an amino acid at the specified position in the peptide. As defined, A1-A3, C4, C17 and/or A18 may or may not be present. However, the peptides of the invention contain 11-24 amino acids. Thus, the sequence shown as (1) can be extended at the N and/or C terminus with non-interfering amino acids or sequence. The positions of the cysteine, homocysteine or penicillamine residues, shown as C in formula (1), are invariant in one embodiment of the peptides of the invention; however, in the modified forms of the peptides containing the sequence of formula (1), also included within the scope of the invention, one or more of these cysteines may be replaced by a small, basic acidic or hydrophobic amino acid. However, at least one of C4, C5, C16 and C17 must be cysteine, homocysteine penicillamine.
- All of the peptides of the invention, however, have a net positive charge of at least +1 at physiological pH; approximately 15%-50% of the amino acid residues included in the sequence should be basic. For embodiments having as few as 11 amino acids, there may be only one basic amino acid residue; however, at least two basic residues, even in this short-chain residue, are preferred. If the peptide contains as many as 15 amino acid residues, two basic residues are required. It is preferred that at least 20% of the amino acids in the sequence be basic, more preferably 30%, but not more than 50%.
- The active peptides also preferably contain a β-turn bracketed by two strands that form a β-sheet. While not intending to be bound by any theory, applicants believe that antimicrobial activity of the compounds containing the sequence of formula (1) is associated with such a β-turn bracketed by two strands that form a β-sheet structure. The amino acids A9-A12 must be capable of effecting a β-turn, which can be encouraged by the cystine bond between C8 and C13 as well as by hydrogen bonding between A9 and A12. The presence of proline at A10 and/or A11 does not interfere with the β-turn stabilized by the presence of a hydrophobic amino acid at positions A9 or A12.
- As used herein, “β-turn” refers to a recognized sub-class of reverse-turns. Typically, a “β-turn” is a four amino acid residue peptide segment that reverses the direction of a polypeptide chain so as to allow a single polypeptide chain to adopt an anti-parallel β-sheet secondary structure. Generally, the two internal amino acid residues of the β-turn are not involved in the hydrogen-bonding of the β-sheet; the two amino acid residues on either side of the internal residues are included in the hydrogen-bonding of the J-sheet. The term “β-turn” expressly includes all types of peptide β-turns commonly known in the art including, but not limited to, type-I, type-II, type-III, type-I′, type-II′, and type-III′ β-turns (see, Rose et al., 1985,Adv. Protein Chem. 37:1-109; Wilmer-White et al., 1987, Trends Biochem. Sci. 12:189-192; Wilmot et al., 1988, J. Mol. Biol. 206:759-777; Tramontano et al., 1989, Proteins; Struct. Funct. Genet. 6:382-394).
- The presence of the four invariant cysteines of the protegrins or of the C8 and C13 cysteines, homocysteine or penicillamine of the compounds of the present invention is helpful in effecting the β-turn conformation; however, by properly choosing the substitutions, one or both of the cysteine, homocysteine or penicillamine residues at C8 or C13 can be replaced without substantially disturbing the three-dimensional shape of the molecule.
- The β sheets are believed to be effected by the sequences surrounding C8 and C13 and are inclusive of these residues. Thus, in the unmodified forms of the compound, A7 and A14 are preferably hydrophobic amino acids. The cysteine residues may also, then, be replaced by other residues which do not affect the maintenance of the β sheet formation; these substitutions would include acidic, basic, hydrophobic polar or small amino acids.
- The amino terminus of the peptide may be in the free amino form or may be acylated by a group of the formula RCO—, wherein R represents a hydrocarbyl group of 1-6C. The hydrocarbyl group is saturated or unsaturated and is typically, for example, methyl, ethyl, i-propyl, t-butyl, n-pentyl, cyclohexyl, cyclohexene-2-yl, hexene-3-yl, hexyne-4-yl, and the like.
- The C-terminus of the peptides of the invention may be in the form of the underivatized carboxyl group, either as the free acid or an acceptable salt, such as the potassium, sodium, calcium, magnesium, or other salt of an inorganic ion or of an organic ion such as caffeine. In some embodiments, it is difficult to make salts since the remainder of the molecule bears a positive charge which may repel the relevant cation. The carboxyl terminus may also be derivatized by formation of an ester with an alcohol of the formula ROH, or may be amidated by an amine of the formula NH3, or RNH2, or R2NH, wherein each R is independently hydrocarbyl of 1-6C as defined above. Amidated forms of the peptides wherein the C-terminus has the formula CONH2 are preferred.
- As the peptides of the invention contain substantial numbers of basic amino acids, the peptides of the invention may be supplied in the form of the acid addition salts. Typical acid addition salts include those of inorganic ions such as chloride, bromide, iodide, fluoride or the like, sulfate, nitrate, or phosphate, or may be salts of organic anions such as acetate, formate, benzoate and the like. The acceptability of each of such salts is dependent on the intended use, as is commonly understood.
- The peptides of the invention that contain at least two cysteines, homocysteine or penicillamine may be in straight-chain or cyclic form. The straight-chain forms are convertible to the cyclic forms, and vice versa. Methods for forming disulfide bonds to create the cyclic peptides are well known in the art, as are methods to reduce disulfides to form the linear compounds. The linear compounds can be stabilized by addition of a suitable alkylating agent such as iodoacetamide.
- The cyclic forms are the result of the formation of disulfide linkages among all or some of the four cysteine, homocysteine or penicillamine residues that may be present. Cyclic forms of the invention include all possible permutations of disulfide bond formation; if the —SH containing amino acids are numbered in order of their occurrence starting at the N-terminus as C4, C5, C6, C8, C13, C16, C17 or C18, these permutations include, when two disulfides are present:
- a) C4-C17 and C8-C13;
- b) C4-C16 and C8-C13;
- c) C4-C15 and C8-C13;
- d) C5-C17 and C8-C13;
- e) C5-C16 and C8-C13;
- f) C5-C15 and C8-C13;
- g) C6-C17 and C8-C13;
- h) C6-C16 and C8-C13;
- i ) C4-C8 and C13-C17;
- j) C4-C8 and C13-C16;
- k) C5-C8 and C13-C17; and
- l) C5-C8 and C13-C16;
- When one disulfide is present, these permutations include:
- C4-C7;
- C4-C16;
- C4-C15;
- C5-C17;
- C5-C16;
- C6-C17;
- C6-C16;
- C8-C13;
- C4-C8;
- C13-C17; and
- C13-C16.
- In the modified forms of the peptides, where 1 or 2 cysteines, homocysteine or penicillamine are replaced, similar permutations are available as in when 2-3 cysteines, homocysteine or penicillamine are present.
- The linearalized forms of the native cyclic peptides have valuable activities, even when chemically stabilized to preserve the sulfhydryl form of cysteine, homocysteine or penicillamine for example, by reaction with iodoacetamide. The compounds of the invention also include linearalized forms which are stabilized with suitable reagents. As defined herein, “SH-stabilized” forms of the peptides of the invention contain sulfhydryl groups reacted with standard reagents to prevent reformation into disulfide linkages.
- An alternative approach to providing linear forms of the invention compounds comprises use of the modified form of the peptides where residues at C8 and/or C13 are replaced by amino acids which do not form cystine linkages, in combination with stabilization of any cysteine, homocysteine or penicillamine residues at C4, C5, or C6 and/or C15, C16, C17.
- Forms of the invention compounds which have only one disulfide bond are conveniently obtained by replacing the cysteine, homocysteine or penicillamine residues at C8 and/or C13, preferably both, with amino acids which do not form disulfide linkages.
- The amino acids denoted by An may be those encoded by the gene or analogs thereof, and may also be the D-isomers thereof. One preferred embodiment of the peptides of the invention is that form wherein all of the residues are in the D-configuration thus conferring resistance to protease activity while retaining antimicrobial or antiviral properties. The resulting peptides are enantiomers of the native L-amino acid-containing forms.
- In one class of peptides described herein, either one or both of the residues found at C5 and/or C16 is a basic amino acid and/or at least one of A1-A3 and C4 is hydrophobic and/or at least one, and preferably all four of these amino acids are deleted. By suitable manipulation of these and other features, the range of conditions under which the class of peptides of the present invention are effective can be varied. Furthermore, the spectrum of microbes against which they are effective can also be modified. This is further described hereinbelow.
- The amino acid notations used herein are conventional and are as follows:
One-Letter Three-Letter Amino Acid Symbol Symbol Alanine A Ala Arginine R Arg Asparagine N Asn Aspartic acid D Asp Cysteine C Cys Glutamine Q Gln Glutamic acid E Glu Glycine G Gly Histidine H His Isoleucine I Ile Leucine L Leu Lysine K Lys Methioninie M Met Phenylalanine F Phe Proline P Pro Serine S Ser Threonine T Thr Tryptophan W Trp Tyrosine Y Tyr Valine V Val - The amino acids not encoded genetically are abbreviated as indicated in the discussion below.
- In the specific peptides shown in the present application, the L-form of any amino acid residue having an optical isomer is intended unless the D-form is expressly indicated by a dagger superscript (†).
- The compounds of the invention are peptides which are partially defined in terms of amino acid residues of designated classes. Amino acid residues can be generally subclassified into major subclasses as follows:
- Acidic: The residue has a negative charge due to loss of H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.
- Basic: The residue has a positive charge due to association with H ion at physiological pH and the residue is attracted by aqueous solution so as to seek the surface positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium at physiological pH.
- Hydrophobic: The residues are not charged at physiological pH and the residue is repelled by aqueous solution so as to seek the inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.
- Polar/large: The residues are not charged at physiological pH, but the residue is not sufficiently repelled by aqueous solutions so that it would seek inner positions in the conformation of a peptide in which it is contained when the peptide is in aqueous medium.
- This description also characterizes certain neutral amino acids as “small” since their side chains are not sufficiently large, even if polar groups are lacking, to confer hydrophobicity. “Small” amino acids are those with four carbons or less when at least one polar group is on the side chain and three carbons or less when not.
- It is understood, of course, that in a statistical collection of individual residue molecules some molecules will be charged, and some not, and there will be an attraction for or repulsion from an aqueous medium to a greater or lesser extent. To fit the definition of “charged,” a significant percentage (at least approximately 25%) of the individual molecules are charged at physiological pH. The degree of attraction or repulsion required for classification as polar or nonpolar is arbitrary and, therefore, amino acids specifically contemplated by the invention have been classified as one or the other. Most amino acids not specifically named can be classified on the basis of known behavior.
- Amino acid residues can be further subclassified as cyclic or noncyclic, and aromatic or nonaromatic, self-explanatory classifications with respect to the side-chain substituent groups of the residues, and as small or large. The residue is considered small if it contains a total of four carbon atoms or less, inclusive of the carboxyl carbon, provided an additional polar substituent is present; three or less if not. Small residues are, of course, always nonaromatic.
- For the naturally occurring protein amino acids, subclassification according to the foregoing scheme is as follows.
Acidic Aspartic acid and Glutamic acid Basic Noncyclic: Arginine, Lysine Cyclic: Histidine Small Glycine, Serine, Alanine, Threonine Polar/large Asparagine, Glutamine Hydrophobic Tyrosine, Valine, Isoleucine, Leucine, Methionine, Phenylalanine, Tryptophan - The gene-encoded secondary amino acid proline is a special case due to its known effects on the secondary conformation of peptide chains, and is not, therefore, included in a group. Cysteine and other —SH containing amino acid residues are also not included in these classifications since their capacity to form disulfide bonds to provide secondary structure is critical in the compounds of the present invention.
- Certain commonly encountered amino acids, which are not encoded by the genetic code, include, for example, β-Alanine (β-Ala), or other omega-amino acids, such as 3-aminopropionic, 2,3-diaminopropionic (2,3-diaP), 4-aminobutyric and so forth, I-aminisobutyric acid (Aib), sarcosine (Sar) or N-methyl glycine (MeGly), ornithine (Orn), citrulline (Cit), t-butylalanine (t-BuA), t-butylglycine (t-BuG), N-methylisoleucine (N-MeIle), phenylglycine (Phg), and cyclohexylalanine (Cha), norleucine (Nle), 2-naphthylalanine (2-Nal); 1,2,3,4-tetrahydroisoquinoline-3-carboxylic acid (Tic); β-2-thienylalanine (Thi); methionine sulfoxide (MSO); and homoarginine (Har). These also fall conveniently into particular categories.
- Based on the above definitions,
- Sar or MeGly, β-Ala, and Aib are small;
- t-BuA, t-BuG, N-MeIle, Nle, Mvl, Cha, Phg, Nal, Thi and Tic are hydrophobic;
- Orn, 2,3-diaP and Har are basic;
- Cit, Acetyl Lys, and MSO are polar/large.
- The various omega-amino acids are classified according to size as small (β-Ala and 3-aminopropionic) or as large and hydrophobic (all others).
- Other amino acid substitutions of those encoded in the gene can also be included in peptide compounds within the scope of the invention and can be classified within this general scheme according to their structure.
- In all of the peptides of the invention, one or more amide linkages (—CO—NH—) may optionally be replaced with another linkage which is an isostere such as —CH2NH—, —CH2S—, —CH2CH2, —CH═CH— (cis and trans), —COCH2—, —CH(OH)CH2— and —CH2SO—. This replacement can be made by methods known in the art. The following references describe preparation of peptide analogs which include these alternative-linking moieties: Spatola, A. F., Vega Data (March 1983), Vol. 1, Issue 3, “Peptide Backbone Modifications” (general review); Spatola, A. F., in Chemistry and Biochemistry of Amino Acids Peptides and Proteins, B. Weinstein, eds., Marcel Dekker, New York, p. 267 (1983) (general review); Morley, J. S., Trends Pharm Sci (1980) pp. 463-468 (general review); Hudson, D., et al., Int J Pept Prot Res (1979) 14:177-185 (—CH2NH—, —CH2CH2—); Spatola, A. F., et al., Life Sci (1986) 38:1243-1249 (—CH2—S); Hann, M. M., J Chem Soc Perkin Trans I (1982) 307-314 (—CH—CH—, cis and trans); Almquist, R. G., et al., J Med Chem (1980) 23:1392-1398 (—COCH2—); Jennings-White, C., et al., Tetrahedron Lett (1982) 23:2533 (—COCH2—); Szelke, M., et al., European Application EP 45665 (1982) CA:97:39405 (1982) (—CH(OH)CH2—); Holladay, M. W., et al., Tetrahedron Lett (1983) 24:4401-4404 (—C(OH)CH2—); and Hruby, V. J., Life Sci (1982) UB:189-199 (—CH2—S—).
- In addition to analogs which contain isosteres in place of peptide linkages, the peptides or proteins of the invention include peptide mimetics in general, such as those described by Olson, G. L. et al.J Med Chem (1993) 36:3039-3049 and retro-inverso type peptides as described by Chorev, M. et al. Science (1979) 204:1210-1212; and Pallai, P. V. et al., Int J Pept Protein Res (1983) 21:84-92.
- One class of preferred embodiments of the compounds invention includes the “unmodified” forms where positions 8 and 13 are independently cysteine, homocysteine or penicillamine residues, especially in the disulfide bonded form.
- In addition, or alternatively, each of A7 and A14 is a hydrophobic acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe or is a small amino acid, Ala, Gly, Ser or Thr.
- In another set of preferred embodiments, all of A1-A3 are not present or at least one, and preferably two of A1-A3 is a hydrophobic amino acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe.
- In another set of preferred embodiments, C4 and/or C17 is not present or, if present, is a cysteine, homocysteine or penicillamine or a hydrophobic amino acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe, or a small amino acid, preferably S, A, G or T.
- In another set of preferred embodiments, C5 and/or C16 is a cysteine, homocysteine or penicillamine or a hydrophobic amino acid, preferably Ile, Val, Leu, NLe, Trp, Tyr or Phe, or a small amino acid, preferably S, A, G or T.
- In another set of preferred embodiments, A9-A12 contain at least one hydrophobic amino acid residue, preferably Phe, Tyr or Trp.
- Other preferred embodiments include those wherein each of A1 and A9 is independently selected from the group consisting of R, K and Har; more preferably, both A1 and A9 are R; however, each of A1 may be absent.
- In another class of preferred embodiments, each of A2 and A3 is independently selected from the group consisting of G, A, S and T; more preferably, A2 and A3 are G; however, A2 and/or A3 may be absent.
- In another set of preferred embodiments, one of A9 and A12 is R, K, Har, Orn or H preferably R and the other is I, V, L, NLe, W, Y or F, preferably R, F or W, or is S, G, A or T.
- In another set of preferred embodiments, each of A10 and A11 is independently proline or a small, basic or hydrophobic amino acid, preferably R, G, W or P.
- A18 is preferably absent, but when present, is preferably R, K or Har, most preferably R.
- Also preferably when all four amino acids A1-A3 and C4 are present, A1 is basic, C4 is C or basic, and A2 and A3 are small amino acids, or at least one of A1-A3 and C4 is hydrophobic. Preferred embodiments of A1-A3 include R-G-G, K-G-S, K-S-G, and the like.
- As described above, the compounds of Formula (1) are either in cyclic or noncyclic (linearalized) form or may be modified wherein 1 or 2 of the cysteines, homocysteine or penicillamine at C8 and C13 are replaced by a small, hydrophobic, or a basic amino acid residue. Such modification is preferred when compounds containing only one disulfide bond are prepared. If the linearalized forms of the compound of Formula (1) are prepared, or if linearalized forms of those modified peptides which contain at least two cysteines are prepared, it is preferred that the sulfhydryl groups be stabilized by addition of a suitable reagent. Preferred embodiments for the hydrophobic amino acid to replace cysteine, homocysteine or penicillamine residues at C8 and/or C13 are I, V, L and Nle, preferably I, V or L. Preferred small amino acids to replace the cysteine, homocysteine or penicillamine residues include G, A, S and T, more preferably G. Preferred basic amino acids are R and K.
- Where the compounds of the invention have two disulfide bridges, particularly preferred are the pairs of bridges:
- a) C5-C16 and C8-C13;
- b) C5-C17 and C8-C13;
- c) C5-C8 and C13-C16;
- d) C4-C16 and C8-C13; and
- e) C4-C17 and C8-C13.
- Especially preferred are the bridges:
- C5-C16 and C8-C13; and
- C4-C17 and C8-C13.
- Where the compound has only one disulfide bridge, particularly preferred are:
- C4-C17 or C5-C16.
- Particularly preferred compounds of the invention, including the N-terminal acylated and C-terminal amidated forms thereof are the parevins, wherein C5 and C16 are both cysteine, homocysteine or penicillamine and the tachytegrins wherein both C4 and C17 are cysteine, homocysteine or penicillamine. Also preferred are the disulfide forms of these compounds, cis-parevins wherein the two disulfide bridges are C5-C8 and C13-C16; the trans-parevins wherein the disulfide bridges are C5-C16 and C8-C13; and the trans-tachytegrins wherein the disulfide bridges are C4-C17 and C8-C13. Particularly preferred are the following parevins and tachytegrins:
-
-
-
-
-
-
-
-
-
-
- Particularly preferred are cis- and trans-parevin-1 and trans-tachytegrin-1.
- Typical compounds of the invention include the linear and cyclic (where possible) forms of the following compounds:
RGGRCLYCRRRFCVVCGR (SEQ ID NO:11); RGGCRLYCRRRFCVVGCR (SEQ ID NO:12); RGGRCLYCRRRFCIVCG (SEQ ID NO:13); RGGCRLYCRRRFCIVGC (SEQ ID NO:14); RGGGCLYCRRRFCVVCGR (SEQ ID NO:15); RGGCGLYCRRRFCVVGCR (SEQ ID NO:16); RGGRCLYCRGWICFVCGR (SEQ ID NO:17); RGGCRLYCRGWICFVGCR (SEQ ID NO:18); RGGRCLYCRPRFCVVCGR (SEQ ID NO:19); RGGCRLYCRPRFCVVGCR (SEQ ID NO:20); RGGRCVYCRRRFCVVCG (SEQ ID NO:21); RGGCRVYCRRRFCVIGC (SEQ ID NO:22); KGGRCLYCRRRFCVVCG (SEQ ID NO:23); KGGCRIYCRRRFCVIGC (SEQ ID NO:24); RGGXCLYCRRRFCVVC (SEQ ID NO:25); RGGCXLYCRRRFCVIC (SEQ ID NO:26); RGGXCLYCXRRFCVVCGR (SEQ ID NO:27); RGGCXLYCXRRFCVIGCR (SEQ ID NO:28); RGGRCVYCRXRFCVVCGR (SEQ ID NO:29); RGGCRVYCRXRFCVVGCR (SEQ ID NO:30); RGGRCLYCRKKWCVVCGR (SEQ ID NO:31); RGGCRLYCRKKWCVVGCR (SEQ ID NO:32); RGGRCLYCRXRYCVVCGR (SEQ ID NO:33); RGGCRLYCRXRYCVVACR (SEQ ID NO:34); RGSGCLYCRRKWCVVCGR (SEQ ID NO:35); RGSCGLYCRRKWCVVGCR (SEQ ID NO:36); RATRCIFCRRRFCVVCGR (SEQ ID NO:37); RATCRIFCRRRFCVIGCR (SEQ ID NO:38); RGGKCVYCRXRFCVVCGR (SEQ ID NO:39); RGGCKVYCRXRFCVIGCR (SEQ ID NO:40); RATRCIFCrRRFCVVCGr (SEQ ID NO:41); RATCRIFCrRRFCVVGCr (SEQ ID NO:42); RGGKCVYCRxRFCVVCGR (SEQ ID NO:43); RGGCKVYCRxRFCVVGCR (SEQ ID NO:44); rggrclycrrrfcvvcgr (SEQ ID NO:45); rggcrlycrrrfcvvgcr (SEQ ID NO:46); rggrclycrrrfcivcg (SEQ ID NO:47); rggcrlycrrrfcivgc (SEQ ID NO:48); rgggclycrrrfcvvcgr (SEQ ID NO:49); rggcglycrrrfcvvgcr (SEQ ID NO:50); rggrclycrgwicfvcgr (SEQ ID NO:51); rggcrlycrgwicfvgcr (SEQ ID NO:52); RGGCLRYCRPRFCVRVCR (SEQ ID NO:53); RGGCRLYCRRRFCVVGCR (SEQ ID NO:54); RGVCLRYCRGRFCVRLCR (SEQ ID NO:55); RGRVCLRYCRGRFCVRLCFR (SEQ ID NO:56); RWRVCLRYCRGRFCVRLCLR (SEQ ID NO:57); RGWRVCLKYCRGRFCVKLCLR (SEQ ID NO:58); RGGRVCLRYCRGKFCVRLCLR (SEQ ID NO:59); RGGRCLYARRRFAVVCGR (SEQ ID NO:60); RGGRCLYARRRFSIVC (SEQ ID NO:61); RGGGCLYSRRRFAVVCGR (SEQ ID NO:62); RGGRCLYARRRFGVVC (SEQ ID NO:63); KGGRCLYVRRRFIVVC (SEQ ID NO:64); RGGXCLYARRRFVGCV (SEQ ID NO:65); RGGXCLYAXRRFSVVCR (SEQ ID NO:66); RGGCXLYAXRRFSVVGCR (SEQ ID NO:67); RGGRCVYVRXRFLVCVGR (SEQ ID NO:68); RGGRCLYSRKKWAVSCGR (SEQ ID NO:69); RGGRCLYSRXRYSVICGR (SEQ ID NO:70); RGSGCIYCRRKWGVVGCR (SEQ ID NO:71); RATRCIFSRRRFSVVCGR (SEQ ID NO:72); RGGKCVYGRXRFSVVCGR (SEQ ID NO:73); RATRCIFGrRRFGVVCGr (SEQ ID NO:74); RGGKCVYLRxRFLVVCGR (SEQ ID NO:75); RGGRCVFLRPRIGVVCGR (SEQ ID NO:76); RGGCLRYAVPRFAVRVCR (SEQ ID NO:77); RGGCLRYTKPKFTVRVCR (SEQ ID NO:78); RGGCLRYAVGRFAVRVCR (SEQ ID NO:79); RGGCLRYARZRFAVRVCR (SEQ ID NO:80); RGFCLRYTVPRFTVRFCVR (SEQ ID NO:81); RGFCLRYKVGRFKVRFCVR (SEQ ID NO:82); RGFCLRYZVGRFZVRFCVR (SEQ ID NO:83); RGGCLRYARZRFAVRVCR (SEQ ID NO:84); RGGCLRYAVGRFAVRVCR (SEQ ID NO:85); RGGRCLYCRRRFCVVGCR (SEQ ID NO:86); RGGCRLYCRRRFCVVCGR (SEQ ID NO:87); RGGRCLYCRRRFCVCVGR (SEQ ID NO:88); RGGCRLYCRRRFCVCVGR (SEQ ID NO:89); RGGRLCYCRRRFCVVCGR (SEQ ID NO:90); RGGRLCYCRRRFCVVGCR (SEQ ID NO:91); RGGCRLYCRRRFCVVGC (SEQ ID NO:92); RGGRCLYCRRRFCVVGC (SEQ ID NO:93); RGGCRLYCRRRFCVVCG (SEQ ID NO:94); RGGRCLYCRRRFCVCVG (SEQ ID NO:95); RGGCRLYCRRRFCVCVG (SEQ ID NO:96); RGGRLCYCRRRFCVVCG (SEQ ID NO:97); RGGRLCYCRRRFCVVGC (SEQ ID NO:98); RGGGCLYCRRRFCVVGCR (SEQ ID NO:99); RGGGCLYCRRRFCVCVGR (SEQ ID NO:100); RGGCGLYCRRRFCVCVGR (SEQ ID NO:101); RGGGLCYCRRRFCVVCGR (SEQ ID NO:102); RGGGLCYCRRRFCVVGCR (SEQ ID NO:103); - and N-terminal acylated and C-terminal amidated or esterified forms thereof, where uppercase letters represent L-amino acids, lower case letters represent D-amino acids, X is Har, x is D-Har and Z is MeGly.
- Particularly preferred are the cyclic forms (where possible) and C-terminal amidated forms of the above compounds, especially the cyclic forms (where possible) and C-terminal amidated forms of:
RGGCLRYCRPRFCVRVCR (SEQ ID NO:53); RGGCRLYCRRRFCXTVGCR (SEQ ID NO:54); RGVCLRYCRGRFCVRLCR (SEQ ID NO:55); RGRVCLRYCRGRFCVRLCFR (SEQ ID NO:56); RWRVCLRYCRGRFCVRLCLR (SEQ ID NO:57); RGWRVCLKYCRGRFCVKLCLR (SEQ ID NO:58); RGGRVCLRYCRGKFCVRLCLR (SEQ ID NO:59); RGGCLRYAVPRFAVRVCR (SEQ ID NO:77); RGGCLRYTKPKFTVRVCR (SEQ ID NO:78); RGGCLRYAVGRFAVRVCR (SEQ ID NO:79); RGGCLRYARZRFAVRVCR (SEQ ID NO:80); RGFCLRYTVPRFTVRFCVR (SEQ ID NO:81); RGFCLRYKVGRFKVRFCVR (SEQ ID NO:82); RGFCLRYZVGRFZVRFCVR (SEQ ID NO:83); RGGCLRYARZRFAVRVCR (SEQ ID NO:84); and RGGCLRYAVGRFAVRVCR (SEQ ID NO:85), - where upper and lower case letters and X and Z are as previously defined.
- Preparation of the Invention Compounds
- The invention compounds are essentially peptide backbones which may be modified at the N- or C-terminus and also may contain one or two cystine disulfide linkages. The peptides may first be synthesized in noncyclized form. These peptides may then be converted to the cyclic peptides if desired by standard methods of cystine bond formation. As applied to the compounds herein, “cyclic forms” refers to those forms which contain cyclic portions by virtue of the formation of disulfide linkages between cysteine residues in the peptide. If the straight-chain forms are preferred, it is preferable to stabilize the sulfhydryl groups for any peptides of the invention which contain two or more cysteine residues.
- Standard methods for synthesis of peptides can be used. Most commonly used currently are solid phase synthesis techniques; indeed, automated equipment for systematically constructing peptide chains can be purchased. Solution phase synthesis can also be used but is considerably less convenient. When synthesized using these standard techniques, amino acids not encoded by the gene and D-enantiomers can be employed in the synthesis. Thus, one very practical way to obtain the compounds of the invention is to employ these standard chemical synthesis techniques.
- In addition to providing the peptide backbone, the N- and/or C-terminus can be derivatized, again using conventional chemical techniques. The compounds of the invention may optionally contain an acyl group, preferably an acetyl group at the amino terminus. Methods for acetylating or, more generally, acylating, the free amino group at the N-terminus are generally known in the art; in addition, the N-terminal amino acid may be supplied in the synthesis in acylated form.
- At the carboxy terminus, the carboxyl group may, of course, be present in the form of a salt; in the case of pharmaceutical compositions this will be a pharmaceutically acceptable salt. Suitable salts include those formed with inorganic ions such as NH4 +, Na+, K+, Mg++, Ca++, and the like as well as salts formed with organic cations such as those of caffeine and other highly substituted amines. However, when the compound of
formula 1 contains a multiplicity of basic residues, salt formation may be difficult or impossible. The carboxy terminus may also be esterified using alcohols of the formula ROH wherein R is hydrocarbyl (1-6C) as defined above. Similarly, the carboxy terminus may be amidated so as to have the formula —CONH2, —CONHR, or —CONR2, wherein each R is independently hydrocarbyl (1-6C) as herein defined. Techniques for esterification and amidation as well as neutralizing in the presence of base to form salts are all standard organic chemical techniques. - If the peptides of the invention are prepared under physiological conditions, the side-chain amino groups of the basic amino acids will be in the form of the relevant acid addition salts.
- Formation of disulfide linkages, if desired, is conducted in the presence of mild oxidizing agents. Chemical oxidizing agents may be used, or the compounds may simply be exposed to the oxygen of the air to effect these linkages. Various methods are known in the art. Processes useful for disulfide bond formation have been described by Tam, J. P. et al.,Synthesis (1979) 955-957; Stewart, J. M. et al., “Solid Phase Peptide Synthesis” 2d Ed. Pierce Chemical Company Rockford, Ill. (1984); Ahmed A. K. et al., J Biol Chem (1975) 250:8477-8482 and Pennington M. W. et al., Peptides 1990, E. Giralt et al., ESCOM Leiden, The Netherlands (1991) 164-166. An additional alternative is described by Kamber, B. et al., Helv Chim Acta (1980) 63:899-915. A method conducted on solid supports is described by Albericio Int J Pept Protein Res (1985) 26:92-97.
- A particularly preferred method is solution oxidation using molecular oxygen. This method has been used by the inventors herein to refold the compounds of the invention.
- If the peptide backbone is comprised entirely of gene-encoded amino acids, or if some portion of it is so composed, the peptide or the relevant portion may also be synthesized using recombinant DNA techniques. The DNA encoding the peptides of the invention may itself be synthesized using commercially available equipment; codon choice can be integrated into the synthesis depending on the nature of the host.
- Synthesized and recombinantly produced forms of the compounds may require subsequent derivatization to modify the N- and/or C-terminus and, depending on the isolation procedure, to effect the formation of cystine bonds as described hereinabove. Depending on the host organism used for recombinant production, some or all of these conversions may already have been effected.
- For recombinant production, the DNA encoding the peptides of the invention is included in an expression system which places these coding sequences under control of a suitable promoter and other control sequences compatible with an intended host cell. Types of host cells available span almost the entire range of the plant and animal kingdoms. Thus, the compounds of the invention could be produced in bacteria or yeast (to the extent that they can be produced in a nontoxic or refractile form or utilize resistant strains) as well as in animal cells, insect cells and plant cells. Indeed, modified plant cells can be used to regenerate plants containing the relevant expression systems so that the resulting transgenic plant is capable of self protection vis-á-vis these infective agents.
- The compounds of the invention can be produced in a form that will result in their secretion from the host cell by fusing to the DNA encoding the peptide, a DNA encoding a suitable signal peptide, or may be produced intracellularly. They may also be produced as fusion proteins with additional amino acid sequence which may or may not need to be subsequently removed prior to the use of these compounds as antimicrobials or antivirals.
- Thus, the compounds of the invention can be produced in a variety of modalities including chemical synthesis, recombinant production, isolation from natural sources, or some combination of these techniques.
- Any members of the invention class which coincidentally occur naturally must be supplied in purified and isolated form. By “purified and isolated” is meant free from the environment in which the peptide normally occurs (in the case of such naturally occurring peptides) and in a form where it can be used practically. Thus, “purified and isolated” form means that the peptide is substantially pure, i.e., more than 90% pure, preferably more than 95% pure and more preferably more than 99% pure or is in a completely different context such as that of a pharmaceutical preparation.
- Antibodies
- Antibodies to the peptides of the invention may also be produced using standard immunological techniques for production of polyclonal antisera and, if desired, immortalizing the antibody-producing cells of the immunized host for sources of monoclonal antibody production. Techniques for producing antibodies to any substance of interest are well known. It may be necessary to enhance the immunogenicity of the substance, particularly as here, where the material is only a short peptide, by coupling the hapten to a carrier. Suitable carriers for this purpose include substances which do not themselves produce an immune response in the mammal to be administered the hapten-carrier conjugate. Common carriers used include keyhole limpet hemocyanin (KLH), diphtheria toxoid, serum albumin, and the viral coat protein of rotavirus, VPG. Coupling of the hapten to the carrier is effected by standard techniques such as contacting the carrier with the peptide in the presence of a dehydrating agent such as dicyclohexylcarbodiimide or through the use of linkers such as those available through Pierce Chemical Company, Chicago, Ill.
- The peptides of the invention in immunogenic form are then injected into a suitable mammalian host and antibody titers in the serum are monitored. It should be noted, however, that some forms of the peptides require modification before they are able to raise antibodies, due to their resistance to antigen processing. For example, peptides containing two cystine bridges may be nonimmunogenic when administered without coupling to a larger carrier and may be poor immunogens even in the presence of potent adjuvants and when coupled in certain formats such as using glutaraldehyde or to KLH. Any lack of immunogenicity may therefore result from resistance to processing to a linear form that can fit in the antigen-presenting pocket of the presenting cell. Immunogenicity of these forms of the peptides can be enhanced by cleaving the disulfide bonds.
- Polyclonal antisera may be harvested when titers are sufficiently high. Alternatively, antibody-producing cells of the host such as spleen cells or peripheral blood lymphocytes may be harvested and immortalized. The immortalized cells are then cloned as individual colonies and screened for the production of the desired monoclonal antibodies.
- Recombinant techniques are also available for the production of antibodies, and thus, the antibodies of the invention include those that can be made by genetic engineering techniques. For example, single-chain forms, such as Fv forms, chimeric antibodies, and antibodies modified to mimic those of a particular species, such as humans, can be produced using standard methods. Thus, the antibodies of the invention can be prepared by isolating or modifying the genes encoding the desired antibodies and producing these through expression in recombinant host cells, such as CHO cells.
- The antibodies of the invention are, of course, useful in immunoassays for determining the amount or presence of the peptides. Such assays are essential in quality controlled production of compositions containing the peptides of the invention. In addition, the antibodies can be used to assess the efficacy of recombinant production of the peptides, as well as screening expression libraries for the presence of peptide encoding genes.
- Compositions Containing the Invention Peptides and Methods of Use
- The peptides of the invention are effective in inactivating a wide range of microbial and viral targets, including gram-positive and gram-negative bacteria, yeast, protozoa and certain strains of virus. Accordingly, they can be used in disinfectant compositions and as preservatives for materials such as foodstuffs, cosmetics, medicaments, or other materials containing nutrients for organisms. For use in such contexts, the peptides are supplied either as a single peptide, in admixture with several other peptides of the invention, or in admixture with additional antimicrobial agents or both. In general, as these are preservatives in this context, they are usually present in relatively low amounts, of less than 5%, by weight of the total composition, more preferably less than 1%, still more preferably less than 0.1%.
- The peptides of the invention are also useful as standards in antimicrobial assays and in assays for determination of capability of test compounds to bind to endotoxins such as lipopolysaccharides.
- For use as antimicrobials or antivirals for treatment of animal subjects, the peptides of the invention can be formulated as pharmaceutical or veterinary compositions. Depending on the subject to be treated, the mode of administration, and the type of treatment desired—e.g., prevention, prophylaxis, therapy; the invention peptides are formulated in ways consonant with these parameters. A summary of such techniques is found in Remington'sPharmaceutical Sciences, latest edition, Mack Publishing Co., Easton, Pa.
- The peptides of the invention can also be used as active ingredients in pharmaceutical compositions useful in treatment of sexually transmitted diseases, including those caused byChlamydia trachomatis, Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis, Herpes simplex type 2 and HIV. Topical formulations are preferred and include creams, salves, oils, powders, gels and the like. Suitable topical excipient are well known in the art and can be adapted for particular uses by those of ordinary skill.
- In general, for use in treatment or prophylaxis of STDs, the peptides of the invention may be used alone or in combination with other antibiotics such as erythromycin, tetracycline, macrolides, for example azithromycin and the cephalosporins. Depending on the mode of administration, the peptides will be formulated into suitable compositions to permit facile delivery to the affected areas. The tachytegrins may be used in forms containing one or two disulfide bridges or may be in linear form. In addition, use of the enantiomeric forms containing all D-amino acids may confer advantages such as resistance to those proteases, such as trypsin and chymotrypsin, to which the peptides containing L-amino acids are less resistant.
- The peptides of the invention can be administered singly or as mixtures of several peptides or in combination with other pharmaceutically active components. The formulations may be prepared in a manner suitable for systemic administration or topical or local administration. Systemic formulations include those designed for injection (e.g., intramuscular, intravenous or subcutaneous injection) or may be prepared for transdermal, transmucosal, or oral administration. The formulation will generally include a diluent as well as, in some cases, adjuvants, buffers, preservatives and the like. The tachytegrins can be administered also in liposomal compositions or as microemulsions.
- If administration is to be oral, the peptides of the invention must be protected from degradation in the stomach using a suitable enteric coating. This may be avoided to some extent by utilizing amino acids in the D-configuration, thus providing resistance to protease. However, the peptide is still susceptible to hydrolysis due to the acidic conditions of the stomach; thus, some degree of enteric coating may still be required.
- The peptides of the invention also retain their activity against microbes in the context of borate solutions that are commonly used in eye care products. Also, it is important that the peptides retain their activity under physiological conditions including relatively high saline and in the presence of serum. In addition, the peptides are dramatically less cytotoxic with respect to the cells of higher organisms as compared with their toxicity to microbes. These properties, make them particularly suitable for in vivo and therapeutic use.
- By appropriately choosing the member or members of the peptide class of the invention, it is possible to adapt the antimicrobial activity to maximize its effectiveness with respect to a particular target microbe. As used herein, “microbe” will be used to include not only yeast, bacteria, and other unicellular organisms, but also viruses. The particular peptide used can also be chosen to be advantageous in a particular context, such as low salt or physiological salt, the presence or human serum, or conditions that mimic the conditions found in blood and tissue fluids.
- The peptides of the invention may also be applied to plants or to their environment to prevent virus- and microbe-induced diseases in these plants. Suitable compositions for this use will typically contain a diluent as well as a spreading agent or other ancillary agreements beneficial to the plant or to the environment.
- Thus, the peptides of the invention may be used in any context wherein an antimicrobial and/or antiviral action is required. This use may be an entirely in vitro use, or the peptides may be administered to organisms.
- In addition, the antimicrobial or antiviral activity may be generated in situ by administering an expression system suitable for the production of the peptides of the invention. Such expression systems can be supplied to plant and animal subjects using known techniques. For example, in animals, pox-based expression vectors can be used to generate the peptides in situ. Similarly, plant cells can be transformed with expression vectors and then regenerated into whole plants which are capable of their own production of the peptides.
- The peptides of the invention are also capable of inactivating endotoxins derived from gram-negative bacteria—i.e., lipopolysaccharides (LPS) and may be used under any circumstances where inactivation of LPS is desired. One such situation is in the treatment or amelioration of gram-negative sepsis.
- Conditions Relevant to Antimicrobial/Antiviral Activity
- It has been stated above that as used herein “antimicrobial” activity refers to inhibition with respect both to traditional microorganisms and to viruses, although occasionally, “antimicrobial” and “antiviral” are both specifically indicated.
- Media for testing antimicrobial activity are designed to mimic certain specific conditions. The standard buffer medium, medium A, uses an underlay agar with the following composition: 0.3 mg/ml of trypticase soy broth powder, 1% w/v agarose and 10 mM sodium phosphate buffer (final pH 7.4). This will be designated either “medium A” or “standard in vitro conditions” herein.
- All of the remaining media contain these same components. However, in addition:
- A second medium contains 100 mM NaCl in order to mimic the salt levels in blood and tissue fluids. This will be designated “medium B” or “salt medium” herein.
- A third medium is supplemented with 2.5% normal human serum; however, it is of low ionic strength and thus does not mimic body fluids. This medium will be designated “medium C” or “serum-containing medium” herein.
- A fourth medium contains 80% RPMI-1640, a standard tissue culture medium which contains the principal ions and amino acids found in blood and tissue fluids. In addition, it contains 2.5% normal human serum. This will be designated “medium D” or “physiological medium” herein.
- Particularly preferred is the amidated form of this peptide.
- Summary
- The peptides of the invention therefore represent a peculiarly useful class of compounds because of the following properties:
- 1) They have an antimicrobial effect with respect to a broad spectrum of target microbial systems, including viruses, including retroviruses, bacteria, fungi, yeast and protozoa.
- 2) Their antimicrobial activity is effective under physiological conditions—i.e., physiological saline and in the presence of serum.
- 3) They are much less toxic to the cells of higher organisms than to microbes.
- 4) They can be prepared in nonimmunogenic form thus extending the number of species to which they can be administered.
- 5) They can be prepared in forms which are resistant to certain proteases suggesting they are antimicrobial even in lysosomes.
- 6) They can be prepared in forms that resist degradation when autoclaved, thus simplifying their preparation as components of pharmaceuticals.
- 7) They can be modified in amino acid sequence so as to optimize the specificity with respect to target.
- 8) They can be modified structurally so as to accommodate the conditions under which antimicrobial activity is to be exhibited.
- The following examples are intended to illustrate but not to limit the invention.
- The peptides of the invention are synthesized using conventional Fmoc chemistry on solid-phase supports. The crude synthetic peptides are refolded, purified and characterized as follows.
- The crude synthetic peptide is reduced by adding an amount of dithiothreitol (DTT) equal in weight to that of the synthetic peptide, which has been dissolved at 10 mg/ml in a solution containing 6M guanidine HCl, 0.5M Tris buffer and 2 mmol EDTA, pH 8.05 and incubated for 2 hours at 52° C. under nitrogen. The mixture is passed through a 0.45 um, filter, acidified with 1/20 v/v glacial acetic acid and subjected to conventional RP HPLC purification with a C18 column.
- The HPLC-purified, reduced peptides are partially concentrated by vacuum centrifugation in a Speed Vac and allowed to fold for 24 hours at room temperature and air. The folding is accomplished in 0.1M Tris, pH 7.7 at 0.1 mg peptide/ml to minimize formation of interchain cystine disulfides. The folded compounds are concentrated and acidified with 5% acetic acid. The purity of the final products is verified by AU-PAGE, analytical HPLC and FAB-mass spec.
- Using this procedure, the compounds trans-parevin-1 (or the “hairpin” isoform), cis-parevin-1 (or “cloverleaf” isoform) and trans-tachytegrin-1 were prepared. These compounds are of the formulas
-
-
-
- The radial diffusion assay in agarose gels is conducted using radiodiffusion and gel overlay techniques as described by Lehrer, R. I. et al.J Immunol Meth (1991) 137:167-173. Briefly, the underlay agars used for all organisms had a final pH of 7.4 and contained 10 mM sodium phosphate buffer, 1% w/v agarose and 0.30 ug/ml trypticase soy broth powder (BBL Cockeysville, Md.). In some cases, the underlay was supplemented with 100 mM NaCl. The units of activity in the radial diffusion assay were measured as described; 10 units correspond to a 1 mm diameter clear zone around the sample well. FIGS. 1-6 show the results against five test organisms in units described as above. A synthetic protegrin (PG-1) containing two cystines (sPG-1) or PG-1 in linear form were used as controls.
- FIG. 1 shows the results for trans-parevin and tachytegrin with respect toE. coli both with and without the addition of 100 mM NaCl. Both of these peptides were slightly more effective than sPG-1 although slightly less effective than linear PG-1 in the absence of salt. However, in the presence of 100 mM NaCl, all four peptides were comparably effective.
- FIG. 2 shows the results of the same determination with respect toL. monocytogenes. With respect to this organism, all four peptides were roughly similarly effective in the absence of salt; the presence of 100 mM NaCl, however, greatly reduced the effectiveness of linear PG-1. The remaining three peptides remained effective under these conditions.
- FIG. 3 shows the results of the same experiment usingC. albicans as the target organism. All four peptides were comparably effective in the absence of salt; again, the effectiveness of linear PG-1 was greatly reduced in the presence of 100 mM NaCl, while the remaining three peptides maintained their effectiveness under these conditions.
- FIGS.4-6 show the results of similar experiments using, as test peptides, the two isomers of parevin, trans-parevin (hairpin) and cis-parevin (cloverleaf). sPG-1 was used as a control. As shown in FIG. 4, the two parevins were comparably effective in the absence of salt and both were more effective than sPG-1. In the presence of 100 mM NaCl, all three peptides maintained their effectiveness and were comparable.
- FIG. 5 shows results of the same experiment conducted withB. subtilis as target organism. Again, both forms of parevin were comparably effective and both were slightly more effective than sPG-1; in the presence of 100 mM NaCl, all three peptides remained effective antimicrobials and had about the same activity.
- The results obtained with respect toS. typhimurium are also similar, as shown in FIG. 6. Again, the two parevins were more effective than sPG-1 in the absence of salt and all three peptides had comparable effectiveness when 100 mM NaCl was added.
- The compounds of the invention are tested for their ability to bind the lipid polysaccharide (LPS) of the gram-negative bacteriumE. coli strain 0.55B5, using the Limulus amebocyte lysate (LAL) test for endotoxins conducted in the presence and absence of the test compounds. The test is conducted using the procedure described in Sigma Technical Bulletin No. 210 as revised in December 1992 and published by Sigma Chemical Company, St. Louis, Mo.
- The LAL test is based on the ability of LPS to effect gelation in the commercial reagent E-ToxateÔ which is prepared from the lysate of circulating amebocytes of the Horseshoe CrabLimulus polyphemus. As described in the technical bulletin, when exposed to minute quantities of LPS, the lysate increases in opacity as well as viscosity and may gel depending on the concentration of endotoxin. The technical bulletin goes on to speculate that the mechanism appears analogous to the clotting of mammalian blood and involves the steps of activation of a trypsin-like preclotting enzymes by the LPS in the presence of calcium ion, followed by enzymic modifications of a “coagulogen” by proteolysis to produce a clottable protein. These steps are believed tied to the biologically active or “pyrogenic” portion of the molecule. It has been shown previously that detoxified LPS (or endotoxin) gives a negative LAL test.
- The test compounds are used at various concentrations from 0.25 ug-10 ug in a final volume of 0.2 ml and the test mixtures contained LPS at a final concentration of 0.05 endotoxin unit/ml and E-Toxate™ at the same concentration. The test compounds are incubated together with the LPS for 15 minutes before the E-Toxate™ is added to a final volume after E-Toxate™ addition of 0.2 ml. The tubes are then incubated for 30 minutes at 37° C. and examined for the formation of a gel.
- In a follow-up experiment, the concentration of LPS is varied from 0.05-0.25 endotoxin units (E.U.).
- Contact lens solutions are typically formulated with borate buffered physiological saline and may or may not contain EDTA in addition. The compounds of the invention are tested generally in the assay described in Example 2 wherein all underlay gels contain 25 mM borate buffer, pH 7.4, 1% (v/v) trypticase soy broth (0.3 ug/ml TSB powder) and 1% agarose. Additions include either 100 mM NaCl, 1 mM EDTA or a combination thereof. Other test compounds used as controls are the defensin NP-1 and lysozyme, and dose response curves are determined.
- Using standard solid phase techniques, a peptide having the amino acid sequence of trans-parevin, but wherein every amino acid is in the D form is prepared. This form is tested againstE. coli, L. monocytogenes, C. albicans and other microbes in the absence and presence of protease and otherwise as described for the radiodiffusion assay in agarose gels set forth in Example 2.
- The compounds of the invention are tested for antimicrobial activity against various STD pathogens. These include HIV-1,Chlamydia trachomatis, Treponema pallidum, Neisseria gonorrhoeae, Trichomonas vaginalis, Herpes simplex type 2,
Herpes simplex type 1, Hemophilus ducreyi, and Human papilloma virus. The results are provided in a form wherein “active” means that the peptide is effective at less than 10 10 ug/ml; moderately active indicates that it is active at 10-25 ug/ml; and slightly active means activity at 25-50 ug/ml. If no effect is obtained at 50-200 ug/ml the compound is considered inactive. - The compounds of the invention are tested for their antimicrobial activity against Chlamydia using the “gold standard” chlamydial culture system for clinical specimens described by Clarke, L. M. inClinical Microbiology Procedures Handbook II (1992), Isenberg, H. T. Ed. Am. Soc. Microbiol. Washington, D.C.; pp. 8.0.1 to 8.24.3.9.
- In the assays,C. trachomatis serovar L2 (L2/434Bu) described by Kuo, C. C. et al. in Nongynococcal Urethritis and Related Infections (1977), Taylor-Robinson, D. et al. Ed. Am. Soc. Microbiol. Washington, D.C., pp. 322-326 is used. The seed is prepared from a sonicated culture in L929 mouse fibroblast cells, and partially purified by centrifugation. Since host protein is still present in the seed aliquots, each seed batch is titered at the time of preparation with serial ten-fold dilutions to 2×10−9. The seed containing 9.2×106 IFU/ml is thawed quickly at 37° C. and diluted to 10−2 with sucrose/phosphate salts/glycine to produce IFU of about 200 after room temperature preincubation and to dilute background eukaryotic protein.
- In the initial assays, the peptides to be tested are prepared as stock solutions in 0.01% glacial acetic acid. 100 ul of the diluted chlamydial seed are aliquoted into 1.5 ml eppendorf tubes and 200 ul of the antibiotic peptide was added per tube. Aliquots of the peptide stock (and controls) are incubated with the seed at room temperature for one hour, two hours and four hours. About 10 minutes before the end of each incubation period, maintenance media are aspirated from the McCoy vials in preparation for standard inoculation and culture. Culture is then performed in the presence and absence of the peptides; in some cases, the peptides are added to final concentration in the culture media in addition to the preculture incubation. The test is evaluated microscopically.
- In another series of experiments, various concentrations of tachytegrin (1 ug, 12.5 ug, 25 ug and 50 ug) are used in the two-hour preincubation.
- The effect of the presence of serum is also tested. The Chlamydia seed is preincubated for two hours with and without 10% FBS and also with or without test compound at 25 ug.
- The experiments are repeated but adding 25 ug of compound after the start of the chlamydial culture, i.e., after centrifugation and final medium mix and one hour into the beginning of the 48-hour culture period. Finally, the compound (at 25 ug) is added to the chlamydial seed and the mix then immediately cultured.
- The effect of serum is particularly important since for a topical agent to be effective in combatting Chlamydia infection, it must act in the presence of serum.
- In addition, there are several mouse-based models for Chlamydia infection which can be used to assess the efficacy of the tachytegrins. These include those described by Patton, D. L. et al. inChlamydial Infections (1990) Bowie, W. R. et al. Eds. Cambridge Universe providing a source of complement. Ten ul of a suspension of T. pallidum containing about 5×107/ul organisms is added to each tube and the mixtures with the appropriate peptides are incubated at 34° C. under 95% N2 and 5% CO2. At time zero, just prior to incubation, 4 hours and 16 hours, 25 randomly selected organisms are examined for the presence or absence of motility. The 50% immobilizing end point (IE50) is calculated to indicate the concentration needed to immobilize 50% of the spirochetes. Tachyplesin IE50s are 5.231 ug and 2.539 ug for 0 and 4 hours, in contrast to HNP and NP preparations which show little immobilizing ability.
- For Herpes Simplex Virus, using viral stocks prepared in VERO cells, grown in minimal essential medium (MEM) with 2% fetal calf serum, the effect of various peptides on
HSV 1 MacIntyre strain, a pool of tenclinical HSV 1 isolates, HSV-2G, and a pool of ten clinical HSV 2 isolates, all sensitive to 3 uM acyclovir are tested. Two fibroblast cell lines, human W138 and equine CCL57, are used as targets and tests are done by direct viral neutralization and delayed peptide addition. - In the direct neutralization format, the virus is preincubated with the peptides for 90 min before it is added to the tissue culture monolayers. In the delayed peptide addition format, the virus is added and allowed 50 min to adsorb to the target cells, then the monolayers are washed and peptides are added for 90 min. Finally, the monolayer is washed to remove the peptide and the cells are fed with peptide-free MEM and cultured until the untreated infected monolayers exhibit 4+ cytopathic effect (CPE) (about 60 hours).
- ForTrichomonas vaginallis, strain C1 (ATCC 30001) is grown as described by Gorrell, T. E. et al., Carlsberg Res Comm (1984) 49:259-268. In experiments performed in RPMI +1% heat-activated fetal calf serum, within a few minutes after exposure to 50 ug/ml PG-1, T. vaginallis (heretofore vigorously motile) becomes stationary. Soon thereafter, the organisms become permeable to trypan blue, and, over the ensuing 15-30 minutes, lyse. As expected, such organisms fail to grow when introduced into their customary growth medium (Diamond's medium). Organisms exposed to 25 ug/ml of PG-3 retain their motility.
- The invention compounds are tested for antiviral activity against strains of HIV using the method described in Miles, S. A. et al.,Blood (1991) 78:3200-3208. Briefly, the mononuclear cell fraction is recovered from normal donor leukopacs from the American Red Cross using a Ficoll-hypaque density gradient. The mononuclear cells are resuspended at 1×106 cells per ml in RPMI 1640 medium with 20% fetal bovine serum, 1% penn/strep with fungizone and 0.5% PHA and incubated 24 hours at 37° C. in 5% CO2. The cells are centrifuged, washed and then expanded for 24 hours in growth medium.
- Non-laboratory adapted, cloned HIVJR-CSF and HIVJR-FL are electroporated into the human peripheral blood mononuclear cells prepared as described above. Titers are determined and in general, multiplicities of infection (MOI) of about 4,000 infectuous units per cell are used (which corresponds to 25-40 picograms per ml HIV p24 antigen in the supernatant).
- In the assay, the HIV stocks prepared as above are diluted to the correct MOI and the PBM are added to 24 well plates at a concentration of 2×106 per ml. One ul total volume is added to each well. The peptide to be tested is added in growth medium to achieve the final desired concentration. Then the appropriate number of MOI are added. To assay viral growth, 200 ul of supernatant is removed on days 3 and 7 and the concentration of p24 antigen is determined using a commercial assay (Coulter Immunology, Hialeah, Fla.). Controls include duplicate wells containing cells alone, cells plus peptide at 5 ug/ml cells with virus but not peptide and cells with virus in the presence of AZT at 10−5 M-10−8 M.
- The time of addition of peptide can be varied. Cells pretreated for 2 hours prior to addition of virus, at the time of addition of virus, or 2 hours after infection show antiviral activity for the peptide.
- Several illustrative tachytegrins were synthesized as described in Example 1 and tested for activity againstStaphylococcus aureus (MRSA), Pseudomonas (Psa), VREF, Candida and E.coli as described in Example 2. The results shown in Table 1 as minimal inhibitory concentration (MIC) in ug/ml were obtained with the C-terminal amidated forms except for the last two which were tested as the free acids, as indicated by *. In all peptides in Table 1, X is MeGly.
TABLE 1 SEQUENCE MRSA Psa VREF Candida E. Coli RGGCLRYAVPRFAVRVCR SEQ ID NO:77 >128 0.05 RGGCLRYTKPKFTVRVCR SEQ ID NO:78 RGGCLRYAVGRFAVRVCR SEQ ID NO:79 RGGCLRYARXRFAVRVCR SEQ ID NO:80 >32 5.7 RGFCLRYTVPRFTVRFCVR SEQ ID NO:81 1.88 0.57 0.99 RGFCLRYKVGRFKVRFCVR SEQ ID NO:82 >64 2.7 RGFCLRYXVGRFXVRFCVR SEQ ID NO:83 RGGCLRYCRPRFCVRVCR SEQ ID NO:53 9.8 0.18 9.68 0.2 RGGCRLYCRRRFCVVGCR SEQ ID NO:54 53.3 3.3 4 4 RGVCLRYCRGRFCVRLCR SEQ ID NO:55 8 2 RGRVCLRYCRGRFCVRLCFR SEQ ID NO:56 6.7 1 RWRVCLRYCRGRFCVRLCLR SEQ ID NO:57 4 4 RGWRVCLKYCRGRFCVKLCLR SEQ ID NO:58 RGGRVCLRYCRGKFCVRLCLR SEQ ID NO:59 8 0.75 RGGCLRYAVGRFAVRVCR* SEQ ID NO:77 >32 5.3 RGFCLRYXVGRFXVRFCVR* SEQ ID NO:83 >32 12 -
-
0 SEQUENCE LISTING <160> NUMBER OF SEQ ID NOS: 201 <210> SEQ ID NO 1 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <223> OTHER INFORMATION: cis-Parevin 1 <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <223> OTHER INFORMATION: cis-Parevin 1 <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <223> OTHER INFORMATION: trans-Parevin 1 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Parevin 1 <400> SEQUENCE: 1 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 2 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <223> OTHER INFORMATION: cis-Parevin 2 <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <223> OTHER INFORMATION: cis-Parevin 2 <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <223> OTHER INFORMATION: trans-Parevin 2 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Parevin 2 <400> SEQUENCE: 2 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 3 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <223> OTHER INFORMATION: cis-Parevin 3 <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <223> OTHER INFORMATION: cis-Parevin 3 <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <223> OTHER INFORMATION: trans-Parevin 3 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Parevin 3 <400> SEQUENCE: 3 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 4 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <223> OTHER INFORMATION: cis-Parevin 4 <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <223> OTHER INFORMATION: cis-Parevin 4 <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <223> OTHER INFORMATION: trans-Parevin 4 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Parevin 4 <400> SEQUENCE: 4 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 5 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <223> OTHER INFORMATION: cis-Parevin 5 <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <223> OTHER INFORMATION: cis-Parevin 5 <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <223> OTHER INFORMATION: trans-Parevin 5 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Parevin 5 <400> SEQUENCE: 5 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 6 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <223> OTHER INFORMATION: trans-Tachytegrin-1 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Tachytegrin-1 <400> SEQUENCE: 6 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 7 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <223> OTHER INFORMATION: trans-Tachytegrin-2 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Tachytegrin-2 <400> SEQUENCE: 7 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 8 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <223> OTHER INFORMATION: trans-Tachytegrin-3 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Tachytegrin-3 <400> SEQUENCE: 8 Arg Gly Gly Cys Gly Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 9 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <223> OTHER INFORMATION: trans-Tachytegrin-4 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Tachytegrin-4 <400> SEQUENCE: 9 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 10 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <223> OTHER INFORMATION: trans-Tachytegrin-5 <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <223> OTHER INFORMATION: trans-Tachytegrin-5 <400> SEQUENCE: 10 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 11 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 11 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 12 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 12 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 13 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 13 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly <210> SEQ ID NO 14 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 14 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Gly 1 5 10 15 Cys <210> SEQ ID NO 15 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 15 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 16 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 16 Arg Gly Gly Cys Gly Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 17 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 17 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 18 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 18 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 19 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 19 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 20 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 20 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 21 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 21 Arg Gly Gly Arg Cys Val Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 22 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 22 Arg Gly Gly Cys Arg Val Tyr Cys Arg Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys <210> SEQ ID NO 23 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 23 Lys Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 24 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 24 Lys Gly Gly Cys Arg Ile Tyr Cys Arg Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys <210> SEQ ID NO 25 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 25 Arg Gly Gly Xaa Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 <210> SEQ ID NO 26 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 5 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 26 Arg Gly Gly Cys Xaa Leu Tyr Cys Arg Arg Arg Phe Cys Val Ile Cys 1 5 10 15 <210> SEQ ID NO 27 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4,9 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 27 Arg Gly Gly Xaa Cys Leu Tyr Cys Xaa Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 28 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 5,9 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 28 Arg Gly Gly Cys Xaa Leu Tyr Cys Xaa Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 29 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 29 Arg Gly Gly Arg Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 30 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 30 Arg Gly Gly Cys Arg Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 31 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 31 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Lys Lys Trp Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 32 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 32 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Lys Lys Trp Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 33 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 33 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Xaa Arg Tyr Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 34 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 34 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Xaa Arg Tyr Cys Val Val Ala 1 5 10 15 Cys Arg <210> SEQ ID NO 35 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 35 Arg Gly Ser Gly Cys Leu Tyr Cys Arg Arg Lys Trp Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 36 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 36 Arg Gly Ser Cys Gly Leu Tyr Cys Arg Arg Lys Trp Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 37 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 37 Arg Ala Thr Arg Cys Ile Phe Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 38 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 38 Arg Ala Thr Cys Arg Ile Phe Cys Arg Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 39 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 39 Arg Gly Gly Lys Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 40 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 40 Arg Gly Gly Cys Lys Val Tyr Cys Arg Xaa Arg Phe Cys Val Ile Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 41 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-Arginine <400> SEQUENCE: 41 Arg Ala Thr Arg Cys Ile Phe Cys Xaa Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Xaa <210> SEQ ID NO 42 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-Arginine <400> SEQUENCE: 42 Arg Ala Thr Cys Arg Ile Phe Cys Xaa Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Xaa <210> SEQ ID NO 43 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-Homoarginine <400> SEQUENCE: 43 Arg Gly Gly Lys Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 44 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-Homoarginine <400> SEQUENCE: 44 Arg Gly Gly Cys Lys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 45 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 45 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 46 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 46 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 47 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(17) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 47 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly <210> SEQ ID NO 48 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(17) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 48 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Gly 1 5 10 15 Cys <210> SEQ ID NO 49 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 49 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 50 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 50 Arg Gly Gly Cys Gly Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 51 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 51 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 52 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 52 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 53 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 53 Arg Gly Gly Cys Leu Arg Tyr Cys Arg Pro Arg Phe Cys Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 54 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 54 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 55 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 55 Arg Gly Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg Leu 1 5 10 15 Cys Arg <210> SEQ ID NO 56 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 56 Arg Gly Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg 1 5 10 15 Leu Cys Phe Arg 20 <210> SEQ ID NO 57 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 57 Arg Trp Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg 1 5 10 15 Leu Cys Leu Arg 20 <210> SEQ ID NO 58 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 58 Arg Gly Trp Arg Val Cys Leu Lys Tyr Cys Arg Gly Arg Phe Cys Val 1 5 10 15 Lys Leu Cys Leu Arg 20 <210> SEQ ID NO 59 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 59 Arg Gly Gly Arg Val Cys Leu Arg Tyr Cys Arg Gly Lys Phe Cys Val 1 5 10 15 Arg Leu Cys Leu Arg 20 <210> SEQ ID NO 60 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 60 Arg Gly Gly Arg Cys Leu Tyr Ala Arg Arg Arg Phe Ala Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 61 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 61 Arg Gly Gly Arg Cys Leu Tyr Ala Arg Arg Arg Phe Ser Ile Val Cys 1 5 10 15 <210> SEQ ID NO 62 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 62 Arg Gly Gly Gly Cys Leu Tyr Ser Arg Arg Arg Phe Ala Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 63 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 63 Arg Gly Gly Arg Cys Leu Tyr Ala Arg Arg Arg Phe Gly Val Val Cys 1 5 10 15 <210> SEQ ID NO 64 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 64 Lys Gly Gly Arg Cys Leu Tyr Val Arg Arg Arg Phe Ile Val Val Cys 1 5 10 15 <210> SEQ ID NO 65 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 65 Arg Gly Gly Xaa Cys Leu Tyr Ala Arg Arg Arg Phe Val Gly Cys Val 1 5 10 15 <210> SEQ ID NO 66 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4,9 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 66 Arg Gly Gly Xaa Cys Leu Tyr Ala Xaa Arg Arg Phe Ser Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 67 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 5,9 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 67 Arg Gly Gly Cys Xaa Leu Tyr Ala Xaa Arg Arg Phe Ser Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 68 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 68 Arg Gly Gly Arg Cys Val Tyr Val Arg Xaa Arg Phe Leu Val Cys Val 1 5 10 15 Gly Arg <210> SEQ ID NO 69 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 69 Arg Gly Gly Arg Cys Leu Tyr Ser Arg Lys Lys Trp Ala Val Ser Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 70 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 70 Arg Gly Gly Arg Cys Leu Tyr Ser Arg Xaa Arg Tyr Ser Val Ile Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 71 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 71 Arg Gly Ser Gly Cys Ile Tyr Cys Arg Arg Lys Trp Gly Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 72 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 72 Arg Ala Thr Arg Cys Ile Phe Ser Arg Arg Arg Phe Ser Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 73 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <400> SEQUENCE: 73 Arg Gly Gly Lys Cys Val Tyr Gly Arg Xaa Arg Phe Ser Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 74 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-arginine <400> SEQUENCE: 74 Arg Ala Thr Arg Cys Ile Phe Gly Xaa Arg Arg Phe Gly Val Val Cys 1 5 10 15 Gly Xaa <210> SEQ ID NO 75 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-homoarginine <400> SEQUENCE: 75 Arg Gly Gly Lys Cys Val Tyr Leu Arg Xaa Arg Phe Leu Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 76 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 76 Arg Gly Gly Arg Cys Val Phe Leu Arg Pro Arg Ile Gly Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 77 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 77 Arg Gly Gly Cys Leu Arg Tyr Ala Val Pro Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 78 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 78 Arg Gly Gly Cys Leu Arg Tyr Thr Lys Pro Lys Phe Thr Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 79 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 79 Arg Gly Gly Cys Leu Arg Tyr Ala Val Gly Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 80 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = MeGly SEQUENCE: 80 Arg Gly Gly Cys Leu Arg Tyr Ala Arg Xaa Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 81 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 81 Arg Gly Phe Cys Leu Arg Tyr Thr Val Pro Arg Phe Thr Val Arg Phe 1 5 10 15 Cys Val Arg <210> SEQ ID NO 82 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 82 Arg Gly Phe Cys Leu Arg Tyr Lys Val Gly Arg Phe Lys Val Arg Phe 1 5 10 15 Cys Val Arg <210> SEQ ID NO 83 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 8,13 <223> OTHER INFORMATION: Xaa = MeGly <400> SEQUENCE: 83 Arg Gly Phe Cys Leu Arg Tyr Xaa Val Gly Arg Phe Xaa Val Arg Phe 1 5 10 15 Cys Val Arg <210> SEQ ID NO 84 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = MeGly <400> SEQUENCE: 84 Arg Gly Gly Cys Leu Arg Tyr Ala Arg Xaa Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 85 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 85 Arg Gly Gly Cys Leu Arg Tyr Ala Val Gly Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 86 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 86 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 87 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 87 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 88 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 88 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Cys Val 1 5 10 15 Gly Arg <210> SEQ ID NO 89 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 89 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Cys Val 1 5 10 15 Gly Arg <210> SEQ ID NO 90 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 90 Arg Gly Gly Arg Leu Cys Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 91 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 91 Arg Gly Gly Arg Leu Cys Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 92 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 92 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys <210> SEQ ID NO 93 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 93 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys <210> SEQ ID NO 94 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 94 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 95 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 95 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Cys Val 1 5 10 15 Gly <210> SEQ ID NO 96 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 96 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Cys Val 1 5 10 15 Gly <210> SEQ ID NO 97 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 97 Arg Gly Gly Arg Leu Cys Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 98 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 98 Arg Gly Gly Arg Leu Cys Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys <210> SEQ ID NO 99 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 99 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 100 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 100 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Cys Val 1 5 10 15 Gly Arg <210> SEQ ID NO 101 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 101 Arg Gly Gly Cys Gly Leu Tyr Cys Arg Arg Arg Phe Cys Val Cys Val 1 5 10 15 Gly Arg <210> SEQ ID NO 102 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 102 Arg Gly Gly Gly Leu Cys Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 103 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <400> SEQUENCE: 103 Arg Gly Gly Gly Leu Cys Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 104 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID LOCATION: (8)...(13) SEQUENCE: 104 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 105 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 105 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly <210> SEQ ID NO 106 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 106 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 107 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 107 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 108 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 108 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 109 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 109 Arg Gly Gly Arg Cys Val Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys <210> SEQ ID NO 110 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 110 Lys Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 111 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 111 Arg Gly Gly Xaa Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 <210> SEQ ID NO 112 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4,9 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 112 Arg Gly Gly Xaa Cys Leu Tyr Cys Xaa Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 113 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 113 Arg Gly Gly Arg Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 114 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 114 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Lys Lys Trp Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 115 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 115 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Xaa Arg Tyr Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 116 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 116 Arg Gly Ser Gly Cys Leu Tyr Cys Arg Arg Lys Trp Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 117 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 117 Arg Ala Thr Arg Cys Ile Phe Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 118 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 118 Arg Gly Gly Lys Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 119 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-arginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 119 Arg Ala Thr Arg Cys Ile Phe Cys Xaa Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Xaa <210> SEQ ID NO 120 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 120 Arg Gly Gly Lys Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 121 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 121 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 122 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(16) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 122 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly <210> SEQ ID NO 123 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 123 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 124 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 124 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 125 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 125 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 126 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 126 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly <210> SEQ ID NO 127 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 127 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 128 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 128 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 129 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 129 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Pro Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 130 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 130 Arg Gly Gly Arg Cys Val Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 131 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 131 Lys Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly <210> SEQ ID NO 132 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) SEQUENCE: 132 Arg Gly Gly Xaa Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 <210> SEQ ID NO 133 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4,9 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 133 Arg Gly Gly Xaa Cys Leu Tyr Cys Xaa Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 134 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 134 Arg Gly Gly Arg Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 135 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 135 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Lys Lys Trp Cys Val Val Cys 1 5 10 15 Gly Arg SEQ ID NO 136 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 136 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Xaa Arg Tyr Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 137 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 137 Arg Gly Ser Gly Cys Leu Tyr Cys Arg Arg Lys Trp Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 138 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 138 Arg Ala Thr Arg Cys Ile Phe Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 139 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 139 Arg Gly Gly Lys Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 140 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-arginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 140 Arg Ala Thr Arg Cys Ile Phe Cys Xaa Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Xaa <210> SEQ ID NO 141 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 141 Arg Gly Gly Lys Cys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 142 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 142 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 143 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(17) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 143 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly <210> SEQ ID NO 144 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 144 Arg Gly Gly Gly Cys Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 145 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <400> SEQUENCE: 145 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 146 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 146 Arg Gly Gly Cys Arg Val Tyr Cys Arg Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys <210> SEQ ID NO 147 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 147 Lys Gly Gly Cys Arg Ile Tyr Cys Arg Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys <210> SEQ ID NO 148 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 5,9 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) SEQUENCE: 148 Arg Gly Gly Cys Xaa Leu Tyr Cys Xaa Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 149 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 149 Arg Gly Gly Cys Arg Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 150 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 150 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Lys Lys Trp Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 151 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 151 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Xaa Arg Tyr Cys Val Val Ala 1 5 10 15 Cys Arg <210> SEQ ID NO 152 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 152 Arg Gly Ser Cys Gly Leu Tyr Cys Arg Arg Lys Trp Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 153 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 153 Arg Ala Thr Cys Arg Ile Phe Cys Arg Arg Arg Phe Cys Val Ile Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 154 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 154 Arg Gly Gly Cys Lys Val Tyr Cys Arg Xaa Arg Phe Cys Val Ile Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 155 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-arginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 155 Arg Ala Thr Cys Arg Ile Phe Cys Xaa Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Xaa <210> SEQ ID NO 156 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 156 Arg Gly Gly Cys Lys Val Tyr Cys Arg Xaa Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 157 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 157 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 158 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(17) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 158 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Gly 1 5 10 15 Cys <210> SEQ ID NO 159 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(17) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 159 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Gly 1 5 10 15 Cys <210> SEQ ID NO 160 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 160 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Gly Trp Ile Cys Phe Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 161 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 161 Arg Gly Gly Cys Leu Arg Tyr Cys Arg Pro Arg Phe Cys Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 162 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 162 Arg Gly Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg Leu 1 5 10 15 Cys Arg <210> SEQ ID NO 163 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(18) <221> NAME/KEY: DISULFID <222> LOCATION: (9)...(14) <400> SEQUENCE: 163 Arg Gly Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg 1 5 10 15 Leu Cys Phe Arg 20 <210> SEQ ID NO 164 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(18) <221> NAME/KEY: DISULFID <222> LOCATION: (9)...(14) <400> SEQUENCE: 164 Arg Trp Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg 1 5 10 15 Leu Cys Leu Arg 20 <210> SEQ ID NO 165 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (6)...(19) <221> NAME/KEY: DISULFID <222> LOCATION: (10)...(15) <400> SEQUENCE: 165 Arg Gly Trp Arg Val Cys Leu Lys Tyr Cys Arg Gly Arg Phe Cys Val 1 5 10 15 Lys Leu Cys Leu Arg 20 <210> SEQ ID NO 166 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (6)...(19) <221> NAME/KEY: DISULFID <222> LOCATION: (10)...(15) <400> SEQUENCE: 166 Arg Gly Gly Arg Val Cys Leu Arg Tyr Cys Arg Gly Lys Phe Cys Val 1 5 10 15 Arg Leu Cys Leu Arg 20 <210> SEQ ID NO 167 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 167 Arg Gly Gly Cys Leu Arg Tyr Cys Arg Pro Arg Phe Cys Arg Val Cys 1 5 10 15 Cys Arg <210> SEQ ID NO 168 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 168 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 169 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 169 Arg Gly Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg Leu 1 5 10 15 Cys Arg <210> SEQ ID NO 170 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(18) <221> NAME/KEY: DISULFID <222> LOCATION: (9)...(14) <400> SEQUENCE: 170 Arg Gly Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg 1 5 10 15 Leu Cys Phe Arg 20 <210> SEQ ID NO 171 <211> LENGTH: 20 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(18) <221> NAME/KEY: DISULFID <222> LOCATION: (9)...(14) <400> SEQUENCE: 171 Arg Trp Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val Arg 1 5 10 15 Leu Cys Leu Arg 20 <210> SEQ ID NO 172 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (6)...(19) <221> NAME/KEY: DISULFID <222> LOCATION: (10)...(15) <400> SEQUENCE: 172 Arg Gly Trp Arg Val Cys Leu Lys Tyr Cys Arg Gly Arg Phe Cys Val 1 5 10 15 Lys Leu Cys Leu Arg 20 <210> SEQ ID NO 173 <211> LENGTH: 21 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (6)...(19) <221> NAME/KEY: DISULFID <222> LOCATION: (10)...(15) <400> SEQUENCE: 173 Arg Gly Gly Arg Val Cys Leu Arg Tyr Cys Arg Gly Arg Phe Cys Val 1 5 10 15 Arg Leu Cys Leu Arg 20 <210> SEQ ID NO 174 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 174 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys <210> SEQ ID NO 175 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 175 Arg Gly Gly Cys Leu Arg Tyr Ala Val Pro Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 176 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(7) <400> SEQUENCE: 176 Arg Gly Gly Cys Leu Arg Tyr Thr Lys Pro Lys Phe Thr Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 177 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 177 Arg Gly Gly Cys Leu Arg Tyr Ala Val Gly Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 178 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 5,9 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 178 Arg Gly Gly Cys Xaa Leu Tyr Ala Xaa Arg Arg Phe Ser Val Val Gly 1 5 10 15 Cys Arg <210> SEQ ID NO 179 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = MeGly <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 179 Arg Gly Gly Cys Leu Arg Tyr Ala Arg Xaa Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 180 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 180 Arg Gly Phe Cys Leu Arg Tyr Thr Val Pro Arg Phe Thr Val Arg Phe 1 5 10 15 Cys Val Arg <210> SEQ ID NO 181 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 181 Arg Gly Phe Cys Leu Arg Tyr Lys Val Gly Arg Phe Lys Val Arg Phe 1 5 10 15 Cys Val Arg <210> SEQ ID NO 182 <211> LENGTH: 19 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 8,13 <223> OTHER INFORMATION: Xaa = MeGly <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 182 Arg Gly Phe Cys Leu Arg Tyr Xaa Val Gly Arg Phe Xaa Val Arg Phe 1 5 10 15 Cys Val Arg <210> SEQ ID NO 183 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = MeGly <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 183 Arg Gly Gly Cys Leu Arg Tyr Ala Arg Xaa Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 184 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <400> SEQUENCE: 184 Arg Gly Gly Cys Leu Arg Tyr Ala Val Gly Arg Phe Ala Val Arg Val 1 5 10 15 Cys Arg <210> SEQ ID NO 185 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 185 Arg Gly Gly Arg Cys Leu Tyr Ala Arg Arg Arg Phe Ala Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 186 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 186 Arg Gly Gly Arg Cys Leu Tyr Ala Arg Arg Arg Phe Ser Ile Val Cys 1 5 10 15 <210> SEQ ID NO 187 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 187 Arg Gly Gly Gly Cys Leu Tyr Ser Arg Arg Arg Phe Ala Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 188 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 188 Arg Gly Gly Arg Cys Leu Tyr Ala Arg Arg Arg Phe Gly Val Val Cys 1 5 10 15 <210> SEQ ID NO 189 <211> LENGTH: 16 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 189 Lys Gly Gly Arg Cys Leu Tyr Val Arg Arg Arg Phe Ile Val Val Cys 1 5 10 15 <210> SEQ ID NO 190 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 4,9 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 190 Arg Gly Gly Xaa Cys Leu Tyr Ala Xaa Arg Arg Phe Ser Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 191 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 191 Arg Gly Gly Arg Cys Leu Tyr Ser Arg Lys Lys Trp Ala Val Ser Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 192 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 192 Arg Gly Gly Arg Cys Leu Tyr Ser Arg Xaa Arg Tyr Ser Val Ile Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 193 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 193 Arg Ala Thr Arg Cys Ile Phe Ser Arg Arg Arg Phe Ser Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 194 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = Homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 194 Arg Gly Gly Lys Cys Val Tyr Gly Arg Xaa Arg Phe Ser Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 195 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 9,18 <223> OTHER INFORMATION: Xaa = D-arginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 195 Arg Ala Thr Arg Cys Ile Phe Gly Xaa Arg Arg Phe Gly Val Val Cys 1 5 10 15 Gly Xaa <210> SEQ ID NO 196 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: 10 <223> OTHER INFORMATION: Xaa = D-homoarginine <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 196 Arg Gly Gly Lys Cys Val Tyr Leu Arg Xaa Arg Phe Leu Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 197 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <400> SEQUENCE: 197 Arg Gly Gly Arg Cys Val Phe Leu Arg Pro Arg Ile Gly Val Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 198 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(16) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 198 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 199 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (5)...(8) <221> NAME/KEY: DISULFID <222> LOCATION: (13)...(16) <400> SEQUENCE: 199 Arg Gly Gly Arg Cys Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Cys 1 5 10 15 Gly Arg <210> SEQ ID NO 200 <211> LENGTH: 17 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 200 Arg Gly Gly Cys Arg Leu Tyr Cys Arg Arg Arg Phe Cys Ile Val Gly 1 5 10 15 Cys <210> SEQ ID NO 201 <211> LENGTH: 18 <212> TYPE: PRT <213> ORGANISM: Artificial Sequence <220> FEATURE: <223> OTHER INFORMATION: Synthetic polypeptide <221> NAME/KEY: MOD_RES <222> LOCATION: (1)...(18) <223> OTHER INFORMATION: All genetically encoded amino acids are in the D-configuration <221> NAME/KEY: DISULFID <222> LOCATION: (4)...(17) <221> NAME/KEY: DISULFID <222> LOCATION: (8)...(13) <400> SEQUENCE: 201 Arg Gly Gly Cys Gly Leu Tyr Cys Arg Arg Arg Phe Cys Val Val Gly 1 5 10 15 Cys Arg
Claims (47)
1. A compound composed of 11-24 amino acid residues comprising the amino acid sequence:
or a pharmaceutically acceptable salt or an N-terminal acylated or C-terminal amidated or esterified form thereof, said compound being either in a linear or in a disulfide-bridged form, wherein:
each of A1-A3 is independently present or not present, and if present each is independently a basic, hydrophobic, polar/large, or small amino acid;
each of C4 and C17 is independently present or not present, and if present each is independently selected from the group consisting of cysteine, homocysteine, penicillamine, a basic amino acid, a hydrophobic amino acid, a polar/large amino acid and a small amino acid;
C5 is selected from the group consisting of cysteine, homocysteine, penicillamine, a basic amino acid, a hydrophobic amino acid, a polar/large amino acid and a small amino acid;
each of C6, C8, C13 and C15 is independently selected from the group consisting of cysteine, homocysteine, penicillamine, a basic amino acid, a hydrophobic amino acid, a polar/large amino acid, a small amino acid and an acidic amino acid;
C16 is selected from the group consisting of cysteine, homocysteine, penicillamine, a hydrophobic amino acid or a small amino acid;
each of A7 and A14 is independently a hydrophobic or a small amino acid;
A9-A12 taken together are capable of effecting a β-turn when contained in the compound and at least one of A9-A12 is a basic amino acid;
A18 is present or not present, and if present, is a basic, hydrophobic, polar/large, or small amino acid;
at least about 15% to about 50% of the amino acid residues composing said compound are basic amino acids; and
said compound has a net positive charge of at least +1 at physiological pH;
with the provisos that: (i) when one of C4, C5 or C6 is cysteine, homocysteine or penicillamine, the other two are other than cysteine, homocysteine and penicillamine;
(ii) when one of C15, C16 or C17 is cysteine, homocysteine or penicillamine, the other two are other than cysteine, homocysteine and penicillamine;
and (iii) at least one of C4, C5, C16 or C17 is cysteine, homocysteine or penicillamine.
2. The compound of claim 1 which comprises two disulfide bridges.
3. The compound of claim 2 , wherein one of said disulfide bridges links C5-C16 and the other links C8-C13.
5. The compound of claim 2 , wherein one of said disulfide bridges links C5-C8 and the other links C13-C16.
7. The compound of claim 2 , wherein one of said disulfide bridges links C4-C17 and the other links C8-C13.
9. The compound of claim 1 which comprises one disulfide bridge.
10. The compound of claim 9 in which said disulfide bridge links C4-C17.
12. The compound of claim 9 in which said disulfide bridge links C5-C16.
14. The compound of claim 9 in which the disulfide bridge links C8 and C13.
15. The compound of claim 1 which is in the linear form.
16. The compound of claim 1 in which at least one of A1, A2 or A3 is not present.
17. The compound claim 1 in which A1, A2 and A3 are not present.
18. The compound of claim 1 in which at least one of A1, A2 or A3 is a hydrophobic amino acid.
19. The compound of claim 1 in which each of C5 and C16 is independently selected from the group consisting of cysteine, homocysteine, penicillamine, I, V, L, NLe, W, Y, F, A, S, G and T.
20. The compound of claim 1 in which each of C4 and C17 is independently selected from the group consisting of cysteine, homocysteine, penicillamine, I, V, L, NLe, W, Y, F, A, S, G and T.
21. The compound of claim 1 in which each of A7and A14 is independently selected from the group consisting of I, V, L, NLe, W, Y, F, A, S, G and T.
22. The compound of claim 1 in which one of A9 or A12 is R, K, Har, Orn or H and the other is I, V, L, NLe, W, Y, F, A, S, G or T.
23. The compound of claim 1 in which all amino acids are in the D-configuration.
24. The compound of claim 1 in which A7 and A14 are each independently a hydrophobic amino acid.
25. The compound of claim 1 in which A9 or A12 is a hydrophobic amino acid or a small amino acid.
26. The compound of claim 1 in which A10 and A11 are each independently selected from the group consisting of proline, a basic amino acid, a hydrophobic amino acid and a small amino acid.
27. The compound of claim 1 in which each of C8 and C13 is independently cysteine, homocysteine or penicillamine.
28. The compound of claim 1 in which A9-A10-A12 is selected from the group consisting of: R-R-R-F, R-G-W-I, R-P-R-F, X-R-R-F, R-X-RF, R-K-K-W, R-X-R-Y, R-R-K-W, r-R-R-F, R-x-R-F, R-G-R-F, C-R-G-R, Y-C-G-R, V-P-R-R-F, K-P-K-F, V-G-R-F, R-P-R-I and R-Z-R-F, where X is Har, x is D-Har, Z is MeGly and r is D-Arg.
29. The compound of claim 1 which is in the linear or disulfide-bridged form and which is selected from the group consisting of:
+M1 !,4 RGGRCLYCRRRFCVVCGR? ,19 (SEQ ID NO:11);? ! !RGGCRLYCRRRFCVVGCR? (SEQ ID NO:12);? ! !RGGRCLYCRRRFCIVCG? (SEQ ID NO:13);? ! !RGGCRLYCRRRFCIVGC? (SEQ ID NO:14);? ! !RGGGCLYCRRRFCVVCGR? (SEQ ID NO:15);? ! !RGGCGLYCRRRFCVVGCR? (SEQ ID NO:16);? ! !RGGRCLYCRGWICFVCGR? (SEQ ID NO:17);? ! !RGGCRLYCRGWICFVGCR? (SEQ ID NO:18);? ! !RGGRCLYCRPRFCVVCGR? (SEQ ID NO:19);? ! !RGGCRLYCRPRFCVVGCR? (SEQ ID NO:20);? ! !RGGRCVYCRRRFCVVCG? (SEQ ID NO:21);? ! !RGGCRVYCRRRFCVIGC? (SEQ ID NO:22);? ! !KGGRCLYCRRRFCVVCG? (SEQ ID NO:23);? ! !KGGCRIYCRRRFCVIGC? (SEQ ID NO:24);? ! !RGGXCLYCRRRFCVVC? (SEQ ID NO:25);? ! !RGGCXLYCRRRFCVIC? (SEQ ID NO:26);? ! !RGGXCLYCXRRFCVVCGR? (SEQ ID NO:27);? ! !RGGCXLYCXRRFCVIGCR? (SEQ ID NO:28);? ! !RGGRCVYCRXRFCVVCGR? (SEQ ID NO:29);? ! !RGGCRVYCRXRFCVVGCR? (SEQ ID NO:30);? ! !RGGRCLYCRKKWCVVCGR? (SEQ ID NO:31);? ! !RGGCRLYCRKKWCVVGCR? (SEQ ID NO:32);? ! !RGGRCLYCRXRYCVVCGR? (SEQ ID NO:33);? ! !RGGCRLYCRXRYCVVACR? (SEQ ID NO:34);? ! !RGSGCLYCRRKWCVVCGR? (SEQ ID NO:35);? ! !RGSCGLYCRRKWCVVGCR? (SEQ ID NO:36);? ! !RATRCIFCRRRFCVVCGR? (SEQ ID NO:37);? ! !RATCRIFCRRRFCVIGCR? (SEQ ID NO:38);? ! !RGGKCVYCRXRFCVVCGR? (SEQ ID NO:39);? ! !RGGCKVYCRXRFCVIGCR? (SEQ ID NO:40);? ! !RATRCIFCrRRFCVVCGr? (SEQ ID NO:41);? ! !RATCRIFCrRRFCVVGCr? (SEQ ID NO:42);? ! !RGGKCVYCRxRFCVVCGR? (SEQ ID NO:43);? ! !RGGCKVYCRxRFCVVGCR? (SEQ ID NO:44);? ! !rggrclycrrrfcvvcgr? (SEQ ID NO:45);? ! !rggcrlycrrrfcvvgcr? (SEQ ID NO:46);? ! !rggrclycrrrfcivcg? (SEQ ID NO:47);? ! !rggcrlycrrrfcivgc? (SEQ ID NO:48);? ! !rgggclycrrrfcvvcgr? (SEQ ID NO:49);? ! !rggcglycrrrfcvvgcr? (SEQ ID NO:50);? ! !rggrclycrgwicfvcgr? (SEQ ID NO:51);? ! !rggcrlycrgwicfvgcr? (SEQ ID NO:52);? ! !RGGCLRYCRPRFCVRVCR? (SEQ ID NO:53);? ! !RGGCRLYCRRRFCVVGCR? (SEQ ID NO:54);? ! !RGVCLRYCRGRFCVRLCR? (SEQ ID NO:55);? ! !RGRVCLRYCRGRFCVRLCFR? (SEQ ID NO:56);? ! !RWRVCLRYCRGRFCVRLCLR? (SEQ ID NO:57);? ! !RGWRVCLKYCRGRFCVKLCLR? (SEQ ID NO:58);? ! !RGGRVCLRYCRGKFCVRLCLR? (SEQ ID NO:59);? ! !RGGRCLYARRRFAVVCGR? (SEQ ID NO:6O);? ! !RGGRCLYARRRFSIVC? (SEQ ID NO:61);? ! !RGGGCLYSRRRFAVVCGR? (SEQ ID NO:62);? ! !RGGRCLYARRRFGVVC? (SEQ ID NO:63);? ! !KGGRCLYVRRRFIVVC? (SEQ ID NO:64);? ! !RGGXCLYARRRFVGCV? (SEQ ID NO:65);? ! !RGGXCLYAXRRFSVVCR? (SEQ ID NO:66);? ! !RGGCXLYAXRRFSVVGCR? (SEQ ID NO:67);? ! !RGGRCVYVRXRFLVCVGR? (SEQ ID NO:68);? ! !RGGRCLYSRKKWAVSCGR? (SEQ ID NO:69);? ! !RGGRCLYSRXRYSVICGR? (SEQ ID NO:70);? ! !RGSGCIYCRRKWGVVGCR? (SEQ ID NO:71);? ! !RATRCIFSRRRFSVVCGR? (SEQ ID NO:72);? ! !RGGKCVYGRXRFSVVCGR? (SEQ ID NO:73);? ! !RATRCIFGrRRFGVVCGr? (SEQ ID NO:74);? ! !RGGKCVYLRXRFLVVCGR? (SEQ ID NO:75);? ! !RGGRCVFLRPRIGVVCGR? (SEQ ID NO:76);? ! !RGGCLRYAVPRFAVRVCR? (SEQ ID NO:77);? ! !RGGCLRYTKPKFTVRVCR? (SEQ ID NO:78);? ! !RGGCLRYAVGRFAVRVCR? (SEQ ID NO:79);? ! !RGGCLRYARZRFAVRVCR? (SEQ ID NO:80);? ! !RGFCLRYTVPRFTVRFCVR? (SEQ ID NO:81);? ! !RGFCLRYKVGRFKVRFCVR? (SEQ ID NO:82);? ! !RGFCLRYZVGRFZVRFCVR? (SEQ ID NO:83);? ! !RGGCLRYARZRFAVRVCR? (SEQ ID NO:84);? ! !RGGCLRYAVGRFAVRVCR? (SEQ ID NO:85);? ! !RGGRCLYCRRRFCVVGCR? (SEQ ID NO:86);? ! !RGGCRLYCRRRFCVCVGR? (SEQ ID NO:87);? ! !RGGRCLYCRRRFCVCVGR? (SEQ ID NO:88);? ! !RGGCRLYCRRRFCVCVGR? (SEQ ID NO:89);? ! !RGGRLCYCRRRFCVVCGR? (SEQ ID NO:90);? ! !RGGRLCYCRRRFCVVGCR? (SEQ ID NO:91);? ! !RGGCRLYCRRRFCVVGC? (SEQ ID NO:92);? ! !RGGRCLYCRRRFCVVGC? (SEQ ID NO:93);? ! !RGGCRLYCRRRFCVVCG? (SEQ ID NO:94);? ! !RGGRCLYCRRRFCVCVG? (SEQ ID NO:95);? ! !RGGCRLYCRRRFCVCVG? (SEQ ID NO:96);? ! !RGGRLCYCRRRFCVVCG? (SEQ ID NO:97);? ! !RGGRLCYCRRRFCVVGC? (SEQ ID NO:98);? ! !RGGGCLYCRRRFCVVGCR? (SEQ ID NO:99);? ! !RGGGCLYCRRRFCVCVGR? (SEQ ID NO:100);? ! !RGGCGLYCRRRFCVCVGR? (SEQ ID NO:101);? ! !RGGGLCYCRRRFCVVCGR? (SEQ ID NO:102);? ! !RGGGLCYCRRRFCVVGCR? (SEQ ID NO:103);? !
!
and the C-terminal amidated and N-terminal acylated forms thereof, wherein X is Har, x is D-Har, Z is MeGly and lower case letters represent D-amino acids.
30. A pharmaceutical composition comprising a compound according to claim 1 and a pharmaceutically acceptable excipient.
31. A method of inhibiting the growth of a microbe or the replication of a virus which comprises the step of contacting said virus or said microbe with an amount of a compound according to claim 1 effective to inhibit said growth or said replication.
32. The method of claim 31 in which the microbe is a bacteria.
33. The method of claim 32 in which the bacteria is selected from the group consisting of E. coli, L. monocytogenes, B. subtilis, S. typhimurium, S. aureus and P. aeruginosa.
34. The method of claim 31 in which the microbe or virus is a sexually-transmitted microbe or virus.
35. The method of claim 34 in which the sexually-transmitted microbe or virus is selected from the group consisting of HIV-1, C. trachomatis, T. pallidum, N. gonorrhoeae, T. vaginalis, HSV-1, HSV-2, H. ducreyi and human papilloma virus.
36. The method of claim 31 in which the microbe or virus is HIV.
37. The method of claim 31 in which the microbe or virus is methicillin-resistant S. aureus (MRSA) or vancomycin-resistant E. faecalis (VREF).
38. A method to inactivate the endotoxin of gram-negative bacteria, which method comprises contacting said endotoxin with an amount of a compound according to claim 1 effective to inactivate said endotoxin.
39. A method to treat or prevent a microbial or viral infection in a subject, which method comprises administering to a subject in need of such treatment an amount of a compound according to claim 1 effective to ameliorate said infection in the subject.
40. The method of claim 39 in which the infection is a bacterial infection.
41. The method of claim 40 in which the bacteria is selected from the group consisting of E. Coli, L. monocytogenes, B. subtilis, S. typhimurium, S. aureus and P. aeruginosa.
42. The method of claim 39 in which the infection is caused by a sexually-transmitted pathogen.
43. The method of claim 42 in which the sexually-transmitted pathogen is selected from the group consisting of HIV-1, C. trachomatis, T. pallidum, N. gonorrhoeae, T. vaginalis, HSV-1, HSV-2, H. ducreyi and human papilloma virus.
44. The method of claim 39 in which the infection is an HIV infection.
45. The method of claim 39 in which the infection is a methicillin-resistant S. aureus (MRSA) or vancomycin-resistant E. faecalis (VREF) infection.
46. The method of claim 39 in which the compound is administered topically.
47. The method of claim 39 in which the compound is administered prophylactically.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US09/865,943 US20020147301A1 (en) | 1995-07-06 | 2001-05-24 | Parevins and tachytegrins |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US89895P | 1995-07-06 | 1995-07-06 | |
US67462296A | 1996-07-03 | 1996-07-03 | |
US09/128,344 US6307016B1 (en) | 1995-07-06 | 1998-08-03 | Parevins and tachytegrins |
US09/865,943 US20020147301A1 (en) | 1995-07-06 | 2001-05-24 | Parevins and tachytegrins |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/128,344 Continuation US6307016B1 (en) | 1995-07-06 | 1998-08-03 | Parevins and tachytegrins |
Publications (1)
Publication Number | Publication Date |
---|---|
US20020147301A1 true US20020147301A1 (en) | 2002-10-10 |
Family
ID=26668280
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/128,344 Ceased US6307016B1 (en) | 1995-07-06 | 1998-08-03 | Parevins and tachytegrins |
US09/865,943 Abandoned US20020147301A1 (en) | 1995-07-06 | 2001-05-24 | Parevins and tachytegrins |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US09/128,344 Ceased US6307016B1 (en) | 1995-07-06 | 1998-08-03 | Parevins and tachytegrins |
Country Status (1)
Country | Link |
---|---|
US (2) | US6307016B1 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020110553A1 (en) * | 1998-03-25 | 2002-08-15 | The Regents Of The University Of California | Use of antibiotic peptides produced by human corneal epithelial cells to manage infection |
ITMI20122263A1 (en) * | 2012-12-28 | 2014-06-29 | Azienda Ospedaliero Universitaria Di Parma | NEW CYCLIC CATIONIC PEPTIDES WITH ANTIMICROBIAL ACTIVITY |
CN108366560A (en) * | 2016-03-31 | 2018-08-03 | 积水化学工业株式会社 | Anti-bacteria and anti-virus composition |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6653442B1 (en) | 1993-07-20 | 2003-11-25 | Intrabiotics Pharmaceuticals, Inc. | Protegrins |
US6335318B1 (en) | 1999-05-10 | 2002-01-01 | The Regents Of The University Of California | Antimicrobial theta defensins and methods of using same |
US7119070B2 (en) * | 2002-04-30 | 2006-10-10 | The Regents Of The University Of California | Antimicrobial theta defensins, analogs thereof, and methods of use |
US20080255052A1 (en) * | 2004-12-23 | 2008-10-16 | The Regents Of The University Of California | Immunologic regulation by theta defensins |
EP1874801A4 (en) * | 2005-03-07 | 2009-03-25 | Univ North Carolina | RECA ACTIVITY INHIBITORS TO CONTROL ANTIBIOTIC-RESISTANT BACTERIAL PATHOGENS |
JP5222129B2 (en) * | 2005-03-21 | 2013-06-26 | シタコート アーベー | In particular, an antibacterial agent comprising a cysteine compound covalently bonded to a substrate by bonding by S—S crosslinking via a spacer molecule |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159936A (en) * | 1993-07-20 | 2000-12-12 | The Regents Of The University Of California | Compositions and methods for treating and preventing microbial and viral infections |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5708154A (en) | 1989-02-24 | 1998-01-13 | City Of Hope | RNA-DNA hybrid molecules of nucleic acid |
US5434074A (en) | 1991-07-05 | 1995-07-18 | Gibson; D. Wade | Cytomegalovirus proteinase |
US5488035A (en) | 1991-12-06 | 1996-01-30 | Pioneer Hi-Bred International, Inc. | Peptide with inhibitory activity towards plant pathogenic fungi |
US5804558A (en) | 1993-07-20 | 1998-09-08 | University Of California | Protegrins |
US5693486A (en) | 1993-07-20 | 1997-12-02 | Intrabiotics | DNA sequences encoding protegrins and protegrin analogs and their use in recombinant methods of producing protegrins |
US5708145A (en) | 1993-07-20 | 1998-01-13 | University Of California | Immunglobulins reactive with protegrins |
US5464823A (en) | 1993-07-20 | 1995-11-07 | The Regents Of The University Of California | Mammalian antibiotic peptides |
US5589364A (en) | 1994-07-29 | 1996-12-31 | Magainin Pharmaceuticals Inc. | Recombinant production of biologically active peptides and proteins |
JPH11509842A (en) | 1995-07-06 | 1999-08-31 | イントラバイオティクス ファーマシューティカルズ,インコーポレーテッド | Palevin and tacitgulin |
US5994306A (en) * | 1995-11-22 | 1999-11-30 | Intrabiotics Pharmaceuticals, Inc. | Fine-tuned protegrins |
US5916872A (en) | 1996-07-24 | 1999-06-29 | Intrabiotics Pharmaceuticals, Inc. | Cyclic peptides having broad spectrum antimicrobial activity |
US6043220A (en) | 1997-12-03 | 2000-03-28 | Intrabiotics Pharmaceuticals, Inc. | Threonine-containing protegrins |
-
1998
- 1998-08-03 US US09/128,344 patent/US6307016B1/en not_active Ceased
-
2001
- 2001-05-24 US US09/865,943 patent/US20020147301A1/en not_active Abandoned
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6159936A (en) * | 1993-07-20 | 2000-12-12 | The Regents Of The University Of California | Compositions and methods for treating and preventing microbial and viral infections |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020110553A1 (en) * | 1998-03-25 | 2002-08-15 | The Regents Of The University Of California | Use of antibiotic peptides produced by human corneal epithelial cells to manage infection |
US6984622B2 (en) * | 1998-03-25 | 2006-01-10 | The Regents Of The University Of California | Use of lipopolysaccharides to manage corneal infections and wounds |
ITMI20122263A1 (en) * | 2012-12-28 | 2014-06-29 | Azienda Ospedaliero Universitaria Di Parma | NEW CYCLIC CATIONIC PEPTIDES WITH ANTIMICROBIAL ACTIVITY |
WO2014102596A3 (en) * | 2012-12-28 | 2014-08-21 | Universita' Degli Studi Di Parma | Cyclic cationic peptides with antibmicrobial activity |
AU2013369042B2 (en) * | 2012-12-28 | 2017-10-05 | Icf S.R.L. | Cyclic cationic peptides with antibmicrobial activity |
US10421782B2 (en) | 2012-12-28 | 2019-09-24 | Icf S.R.L. | Cyclic cationic peptides with antimicrobial activity |
CN108366560A (en) * | 2016-03-31 | 2018-08-03 | 积水化学工业株式会社 | Anti-bacteria and anti-virus composition |
CN112042644A (en) * | 2016-03-31 | 2020-12-08 | 积水化学工业株式会社 | Antibacterial and antiviral composition |
Also Published As
Publication number | Publication date |
---|---|
US6307016B1 (en) | 2001-10-23 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU689487B2 (en) | Protegrins | |
EP0871654B1 (en) | Protegrins | |
US5464823A (en) | Mammalian antibiotic peptides | |
CA2179286C (en) | Broad spectrum antimicrobial compounds and methods of use | |
WO1996037508A9 (en) | Protegrins | |
CZ159198A3 (en) | Peptide exhibiting antimicrobial activity and pharmaceutical preparation | |
US5693486A (en) | DNA sequences encoding protegrins and protegrin analogs and their use in recombinant methods of producing protegrins | |
US20030100483A1 (en) | Protegrins | |
US6307016B1 (en) | Parevins and tachytegrins | |
EP0836617A1 (en) | Parevins and tachytegrins | |
US6043220A (en) | Threonine-containing protegrins | |
US6653442B1 (en) | Protegrins | |
WO1998038309A1 (en) | Clavaspirins | |
WO1998038309A9 (en) | Clavaspirins | |
USRE38828E1 (en) | Parevins and tachytegrins | |
AU714294C (en) | Parevins and tachytegrins | |
CA2238610A1 (en) | Fine tuned protegrins |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AS | Assignment |
Owner name: REGENTS OF THE UNIVERSITY OF CALIFORNIA, THE, CALI Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNOR:INTRABIOTICS PHARMACEUTICALS;REEL/FRAME:016641/0177 Effective date: 20050610 |
|
STCB | Information on status: application discontinuation |
Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION |